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Abstract: Community Energy Markets (CEMs) enable trading opportunities between participants1

in a community to achieve savings and profits. However, the market design and the behaviour of2

participants are key factors that determine the success of such markets. To this end, this research3

presents a CEM model and conducts agent-based simulations to study the benefits of the CEM to4

consumers and prosumers. The proposed market structure is an hour-ahead periodic double auction.5

In particular, market rules are proposed which incentivise the provision of energy supply to the6

community and the investment in energy storage. Furthermore, a trading strategy is introduced7

which leverages energy flexibility created by the storage devices. Finally, as well as the hour-ahead8

market, we include a minute-by-minute balancing as part of the CEM’s energy exchange mechanism.9

The balancing approach is introduced to account for a community budget deficit caused by the time10

difference between supply and demand. The proposed market results in cost savings for consumers11

and profit for prosumers similar to existing approaches, while increasing the energy suppliers’12

percentage of financial benefits from 50% to a range between 60%-96% depending on the community13

configuration. Moreover, the market model accounts for uncertainties in supply and demand and14

suggests a methodology to overcome the community budget deficit.15

Keywords: Community Energy Markets; Energy Trading; Smart Grid; Energy Storage; Auction;16

Bidding; Agents17

1. Introduction18

The smart grid is a promising technology to transform the traditional energy industry. Nowadays,19

the growth of Distributed Energy Resources (DERs) such as Renewable Energy Sources (RESs),20

energy storage and electric vehicles (EV) is significantly impacting energy networks [1]. Furthermore,21

consumers in the residential sector are increasingly aware of the environmental and economic benefits22

of using DERs such as solar photovoltaic (PV) or wind-based energy sources. Such on-premise RES23

combined with storage make their energy demands more flexible. In addition, it enables consumers to24

also become producers, the so-called prosumers (producers and consumers), and looking for energy25

trading opportunities. To this end, some incentives have been put in place to encourage the use of RES26

at the residential levels, such as the Feed-in-Tariff (FIT) schemes where prosumers sell their surplus27

energy to the grid [1]. However, the FIT schemes are not always appropriately designed and can28

be inefficient, and thus often do not provide sufficient incentive for DER investment [2]. Therefore,29

there is a need to design energy markets where consumers and prosumers can trade with each other.30

Now, Community Energy Markets (CEMs) are a way to facilitate trading between participants in a31

community and create better financial situations compared to dealing with the grid. However, the32

market mechanism and the behaviour of participants are key factors that determine their success.33

Researching those factors contributes to the creation of beneficial markets that could be adopted in the34
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future to help reduce global CO2 emissions and promote the use of sustainable energy sources. To this35

end, the aim of this paper is to propose a novel market mechanism for community energy markets,36

and through simulations show the benefits of such a market for the various participants.37

There has been extensive work on designing and evaluating energy markets in recent years38

[3–8], ranging from economically to environmentally focused (see also Section 2). Most research in39

this area usually focuses on the overall economic benefits such as cost reductions and profits to the40

community as a whole and neglects how those benefits are distributed. Some research considers the41

equal distribution of benefits as one reasonable objective for CEM designs [9,10]. However, bearing42

in mind the investments that prosumers made to supply energy, other consumers in the market who43

are not adding any value are exploiting this equality. Moreover, the uncertainty in energy supply and44

demand poses a limitation to CEMs and needs to be thoroughly evaluated [11]. Therefore, in this study,45

we seek to design a CEM that promotes renewable energy supply through financial motivations and46

storage consideration, and that incorporates uncertainty in supply and demand. Moreover, we seek47

to evaluate the proposed model using agent-based simulations.In more detail, our contributions are48

as follows. First, we design a market model which provides financial incentives for energy suppliers49

and suppliers with storage capabilities. Second, we introduce a mechanism to address uncertainties in50

supply and demand. Third, we perform simulations using real market and household data in order to51

investigate and validate the proposed model.52

The rest of this paper is structured as follows. Section 2 summarises related work in the area of53

CEMs and highlights the motivational research gaps for this work. Section 3 presents the proposed54

market model. Section 4 discusses the considered market agents and their trading strategy. Section 555

explains the market simulations performed and Section 6 discusses the obtained results. Lastly,56

Section 7 summarises the paper and suggests areas for future work.57

2. Related Work58

The issue of market design for CEMs and microgrids has been widely explored in the literature. These59

studies can be broadly categorised into two groups depending on the market structure considered:60

peer-to-peer (P2P) approaches, where energy is traded bilaterally between pairs of participants,61

and centralised auctions. More specifically, the first group includes [12–19], and the second group62

[16,20–26].63

In more detail, focusing on the former category, [12] study a local energy exchange system64

considering both the physical and the trading infrastructures, and simulate user behaviour using game65

theory. Focusing on the trading aspect, [13] consider different existing P2P energy sharing mechanisms66

with a focus on both economic and technical indices and realistic scenarios from the UK. Moreover,67

a very similar setting is also studied by [17] with a focus on PV generation integration. In a slightly68

different vein, [14] propose a regret-matching P2P procedure which also includes transmission costs69

and a game theoretic analysis of the participants. Focusing now on the integration of RES, [15] employ70

a random-matching P2P procedure to link households with surplus RES generation with others with71

excess demand, their results showing that RES utilisation is greatly improved by the proposed P2P72

market. Moreover, this work is subsequently extended in [16] by focusing on the effect of different73

participant strategies, including zero-intelligence and learning agents. [27] take a different perspective74

and focus on the storage aspect of local P2P trading, considering both decentralised household-owned75

batteries, and centralised community storage. Finally, [18] and [28] review the state-of-the-art in76

real-world P2P trials and discuss their relative merits. All these works present consistent results: CEMs77

and local P2P trading present significant improvements, including monetary savings and profits, RES78

utilisation and congestion mitigation.79

Regarding the second category, we can find two different types of auctions in the literature:80

continuous [20,22] and discrete [19,21,23–26]. In more detail, continuous auctions match buy and sell81

orders instantly and keep an order book continuously open (like stock markets). In contrast, discrete82

auctions are open for a certain interval of time, and clear the market periodically considering all83
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the received orders. Specifically, [20] propose using a continuous double auction for energy trading,84

together with a real-time balancing market to mitigate energy imbalances. Moreover, line congestion85

is dynamically taken into account in the pricing of the traded energy. Furthermore, trading agents86

are also considered, including zero-intelligence and adaptive-aggressiveness strategies. In a slightly87

different vein, [22] also consider a continuous double auction in a similar setting but focus on agent88

behaviour, presenting a prediction-integration strategy that the market participants can use in order to89

perform more informed trading. In a different vein, [19] and [21] focus on the possibilities offered by90

blockchain technology as a framework for implementing CEM auctions, such as increased transparency91

and trust-less execution.92

These existing P2P and auction-based approaches demonstrate the benefits offered by CEMs, such93

as reductions in energy costs and grid congestion, and better grid stability by increased accommodation94

of RES. However, these works do not account for the uncertainty of future supply and demand. More95

specifically, the realised demand or supply will differ from the amounts of energy bid in a given96

market, given that no forecast is perfect. In this work we address this issue by considering both97

an hour-ahead market and a minute-by-minute balancing market where forecast deviations can be98

addressed. Moreover, while often the aim is to optimise the social welfare of all agents, little attention99

has been devoted to who the main beneficiaries are at the individual level, e.g. whether it is prosumers100

with storage supply and renewable energy or regular consumers as well. To this end, we consider101

the effects of the proposed CEM for different types of households and, in so doing, study the use of102

monetary incentives for investment in RES.103

In addition to the works studying the design of CEMs reviewed above, the role of energy storage104

in such markets has also received considerable interest in recent years [16,27,29–35]. In more detail,105

[29] study the creation of charging and discharging schedules for storage systems, with a focus on106

profit maximisation for communities purchasing energy from the grid, and their results show the107

economic benefits associated with the addition of storage. Similarly, [16] and [27] study the effects108

of adding storage to a P2P CEM design, and their results emphasise the higher market efficiency109

achieved with the introduction of storage. In a slightly different vein, others study the effects of adding110

storage to households with RES [30,31]. In these studies, storage and RES are shown to be tightly111

coupled, and to provide significant cost reductions together, in comparison to only either of them being112

present in the household. Similar scenarios, but from a business perspective, are analysed in [32,33].113

In these works, both the accommodation of solar generation and the load-shifting necessary to avoid114

congestion and demand peaks are considered. Moreover, different battery technologies are considered,115

and several techno-economical indicators studied, showing that storage is able to significantly reduce116

the dependence on the grid. The work by [34] considers a different perspective, focusing on the117

issue of planning the location and capacity of local storage systems in a micro-grid with photovoltaic118

generation. In more detail, the authors perform a cost-benefit analysis of such storage systems and119

propose a planning strategy that maximises the total net present value of the storage system for the120

micro-grid. Finally, [35] look at the possibilities offered by storage from a policy perspective. With the121

aim of improving the efficiency and operation of both large-scale grids and micro-grids, the authors122

propose defining storage as a new and important class of grid participants, and consider it essential123

for the the smart-grid paradigm. Overall, storage is seen as a key element in the transition to the124

smart-grid paradigm and is shown to provide ample benefits to prosumers participating in both125

CEMs and traditional electricity markets. However, many of these works ignore the business aspect of126

investment in storage. In order to address this issue, we study the provision of monetary incentives to127

households for investing in storage solutions.128

Finally, another relevant area of the literature is the investigation of trading strategies for129

household participation in CEMs. Different types of algorithms have been proposed in previous130

literature, including zero-intelligence (ZI) [16,23,36], zero-intelligence plus [20] and forecasting-based131

agents [16,22]. Among these, the former are only valid as a proof-of-concept due to their simplicity.132

The second type include some degree of sophistication, usually by keeping track of margin prices133
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that get updated with some simple rule in every sequential auction. Although these techniques have134

been shown to significantly outperform ZI agents, they are quite simple and do not exploit most of135

the information available to the agent. Finally, the third group is quite generic and may contain many136

different types of algorithms, characterised by exploiting the data available to the agent and using137

forecasts to optimise their behaviour. Examples of these include the extreme machine learning models138

presented in [22], the reinforcement learning approach from [37], the constraint satisfaction problem139

from [38] or the support vector machine forecaster from [36]. In a similar vein to these works, we140

propose a trading algorithm which exploits the flexibility provided by the available storage and a141

forecast about future supply and demand to optimise the household participation strategy.142

3. Market Design143

In this research, a residential community is considered where the physical exchange of energy144

is assumed possible via a microgrid network and smart grid technologies. The households are145

participants in the CEM. The community is assumed to be always connected to the grid. The grid is146

assumed to have a continuous supply of energy without interruptions and no limits on the feed-in147

energy from households with excess renewable supply. A household can only import or export energy148

at any moment and cannot do both at the same time. This constraint is referred to as the one-way flow149

of energy assumption. This section is structured as follows. First, a brief explanation of the two-sided150

auction is presented in Section 3.1, followed by definitions of the market players in Section 3.2 and151

the trading rules in Section 3.3. Section 3.4 explains the optimisation problem to solve for pricing and152

clearing. The following Section 3.5 presents the adopted method for allocation. Section 3.6 describes153

the minute by minute balancing approach to fulfil energy and the proposed secondary market. Finally,154

the accounting method to calculate the bills is presented in Section 3.7.155

3.1. Two-Sided Auction156

Auctions are a common trading mechanisms whereby traders submit offers for buying or selling goods.157

A bid is an offer to buy a good, while an ask is an offer to sell a good. Two-sided auctions allow both158

bids or asks and aims to match these resulting in an exchange. The time interval when orders can be159

submitted is referred to as the trading period. A discrete-time auction permits the exchange of goods160

only at the end of the trading period. A famous example of a discrete-time two-sided market is the161

clearinghouse where the offers are cleared at the end of each trading period [39]. The CEM presented162

in this work is modelled as a repeated clearinghouse auction with uniform pricing, which means that163

there is a single price for all the accepted transactions in that period.164

3.2. Players165

The primary players are consumers (i.e. buyers), suppliers/producers (i.e. sellers) and prosumers166

(who can be both buyers and sellers). These players are represented by so-called software agents167

which are able to autonomously trade energy on their behalf. The fourth market player is the grid.168

Lastly, a market facilitator is introduced to perform support tasks. The remainder of this section will169

detail these market players.170

In more detail, buyers (i.e. consumers and prosumers) can submit bids to the market to purchase171

energy. A bid contains a quantity in kWh and the maximum price accepted to pay for each kWh172

in pence. Similarly, sellers submit asks ask containing a quantity in kWh and the minimum price173

accepted to sell each kWh in pence. More Importantly, buyers and sellers can submit multiple such174

orders. For example, a seller may be willing to sell its first 10 kWh for 20 pence, and its next 10 kWh175

for 50 pence. This can be achieved by simultaneously submitting two asks.176

Prosumers and suppliers can produce energy through either renewables or a storage device. In177

practice, storage is typically sold in combination with renewable energy installations. Therefore, we178

assume that households with storage will also have some renewable, although we will also have179
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households with just renewable (or no supply at all). Prosumers with energy storage devices are180

referred to as flexible agents.181

The grid is an essential player in the market and represents a (private) energy supplier. It resolves182

any imbalance by providing or accepting energy that could not be fulfilled within the community183

market. The grid is assumed to have two fixed prices: a bid and an ask. These are varied in our184

experiments. The bid price is denoted by Gb per kWh and represents the residential energy price when185

energy needs to be purchased without the CEM. The second price is effectively a feed-in-tariff, and is186

denoted by Gs. We assume these are available at sufficient capacity to address any imbalance.187

The market facilitator receives the bids and asks from the agents, determine the exchange price,188

allocates energy fairly and calculates the agents’ bill. These issues are discussed in more detail in the189

subsections that follow.190

3.3. Auction Rules191

In this work we consider an hour-ahead market. The trading period for exchange in the next hour192

opens at minute 45 of the current hour and closes at minute 55. Agents submit their bids and asks193

during this 10-minute interval. A trading period is referred to as a market round. The hour which194

agents are trading for and energy is physically exchanged in is referred to as the energy exchange195

period. An agent can submit multiple offers with different prices, but once an offer is submitted, it196

cannot be recalled. Two minutes before the energy exchange period starts, the facilitator announces197

the market round (auction) results, which specify the price, the winning agents and their energy198

allocations. At the end of each energy exchange period, the demand and supply amounts are used to199

calculate the agents’ bill. The proposed market timeline is depicted in Figure 1.200

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 00 01
Minute

Trading Peroid
Auction
Closes

Auction
Opens

Results
Announced

Energy 
Exhange 
Starts

Figure 1. The market timeline showing when agents submit their bids and asks and when the facilitator
announces the results. Exchanging energy based on the results occurs at the start of every hour. The
hourly bills are calculated at the end of each hour.

3.4. Clearing201

At the end of each trading period, the clearing price and trading quantity or volume are calculated202

based on market equilibrium matching using uniform pricing [40]. The market objective is to maximise203

the equilibrium trading volume. There are typically two different types of goals when it comes to204

auctions: maximising social welfare or maximising trading volume. Maximising volume would be205

better for a community energy market because, in our proposed market, the private values of the206

buyers and sellers which are required to compute social welfare are unknown. In addition, using a207

uniform pricing approach, as in our model, we aim to trade as much energy as possible to reduce208

energy exchanged with the grid. So, given the set of bids NB
T for market a round T, where bi and di209

i ∈ NB
T are the bid price and demand quantity respectively, (1) calculates the demand quantity for210

a price p. Moreover, given the set of asks NA
T , where oi and si i ∈ NA

T are the ask price and supply211

quantity respectively, (2) calculates the supply quantity. So, for a price p, (3) calculates the market212

trading volume Q(p).213

D(p) =
NB

T

∑
i=0

{
di, if bi ≥ p

0, otherwise
(1)



Version February 19, 2020 submitted to Energies 6 of 31

S(p) =
NA

T

∑
i=0

{
si, if oi ≤ p

0, otherwise
(2)

Q(p) = min
(

D(p), S(p)
)

(3)

The facilitator is responsible for finding the auction clearing price P that maximises Q. If there are214

two or more prices that achieve the same trading volume, this referred to as a buy-sell gap. In this215

case, the clearing price P is then chosen in the middle between the minimum ask and maximum bid in216

order not to favour suppliers in all situations, and to provide some benefits to consumers. Therefore, P217

is the average of the set P returned by (4) as represented by (5).218

P = argmax
p

Q(p) (4)

P = P (5)

Algorithm 1 shows the steps to compute the clearing price and the trading volume given NB
T and219

NA
T . Moreover, Figure 2 shows an example clearing price alongside the corresponding supply and220

demand curves. The shaded area refers to social welfare, which is the total utility of the buyers minus221

the total cost of the sellers [41]. Although social welfare as defined in (6), assumes the knowledge of222

the true demand and supply curves using the private sellers’ cost (c) and buyers’ marginal benefit (m),223

in our setting, the submitted bids and asks are used to represent the supply and demand curves.224

SocialWel f are =
NB

T

∑
i=0

(mi − bi)di −
NA

T

∑
i=0

(oi − ci)si (6)
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3

4

5

6

7

8

9

Pr
ice
 (P
en
ce
)

Supply
Demand
Clearing Price
Cleared Quantity
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Figure 2. Example of computed clearing price and trading volume for a market round. The bids and
asks prices are always within the grid prices. The clearing price is in the middle of the buy-sell gap.
Demand/supply at any price is the aggregate bids/asks that could be fulfilled using this price.The
shaded area corresponds to social welfare using the bids and asks as the traders private values.

3.5. Allocation225

After the clearing price and the trading volume are computed, the facilitator needs to distribute the226

cleared energy among the winning agents. Sometimes demand from the winning buyers is more than227

supply or vice versa. Therefore, an allocation mechanism is needed to distribute the cleared energy.The228

adopted allocation approach is an envy-free division protocol [42]. To explain our motivation, let us229

consider this more detailed description of the problem. First, once a clearing price is determined, the230

clearing mechanism needs to determine a precise energy allocation, i.e. who supplies energy and231



Version February 19, 2020 submitted to Energies 7 of 31

Algorithm 1 Compute Clearing Price and Volume

Input bids list NB
T , asks list NA

T Output clearing price P and trading volume V

procedure COMPUTECLEARINGPRICEANDVOLUME(NB
T , NA

T )
Require: NB

T 6= ∅ & NA
T 6= ∅

P← 0
V ← 0
bidsQ← [] . Initialise empty list
asksQ← [] . Initialise empty list
for p in [NB

T .b] do . Loop over the unique set of bid prices
q← Q(p) . Compute the volume for price p using (3)
bidsQ← bidsQ || (p, q) . Append price p and volume q to the bids list

for p in [NA
T .o] do . Loop over the unique set of asks prices

q← Q(p)
asksQ← asksQ || (p, q) . Append price p and volume q to the asks list

maxQbid← max(bidsQ.q) . Get the bid with max volume
maxQask← max(asksQ.q) . Get the ask with max volume
if maxQbid.q > maxQask.q then

V ← maxQbid.q
P← maxQbid.p

else if maxQbid.q < maxQask.q then
V ← maxQask.q
P← maxQask.p

else
V ← maxQbid.q
P← (maxQbid.p + maxQask.p)/2

if V = 0 then
return Null . Return null if no trade can be done

return P, V . Return the clearing price and the trading volume
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whose demand is met. Buyers whose buy price is highest are matched with sellers whose price is232

lowest. However, at the border where demand meets supply, there could be multiple agents who233

have the same price. The problem is then choosing who should contribute and how many resources234

should they contribute. The algorithm is based on a proportional selection but takes into account the235

individual agent’s constraints. For example, suppose that, at a price p = 5, there is demand of 9 units,236

and a supply of 2, 5 and 10 units by agents 1, 2 and 3 respectively. Hence there is a demand of 9, but a237

supply of 17. The question is: how to select who supplies energy and how many units. If we divide238

these proportionally, then each agent would contribute 3. However, agent 1 can supply a maximum of239

2 units at that price. Therefore, we have a preliminary allocation of 2,3,3, which equals 8 units. So there240

is 1 unit left that needs to be allocated in a second round. Again we divide this proportionally between241

the remaining agents (2 and 3), and they contribute 0.5 each. This is within their maximum supply,242

so the algorithm stops, and the final allocation is: 2, 3.5, 3.5. This seems a natural way of dividing243

the resources. We call this allocation envy-free since no agent is envious of the allocation of the other244

agents. In more detail, for a set of players R and an energy quantity E to be divided, this protocol245

guarantees at least 1
R for each player. This way, no player is envious or desires the share of another246

player. If a player desires less than the minimum share, he is allocated what he desires, and the leftover247

energy is redistributed on the remaining players who desire more. In situations where the winning248

demand is more than the winning supply, the set of players R becomes the winning buyers, and E249

becomes the wining supply. Otherwise, R becomes the set of winning suppliers, and E is the winning250

demand. The procedure for the division protocol is shown in Algorithm 2. Agents who did not win in251

the auction are implemented as if they have a desire of zero. For each round T, the demand allocation252

for an agent a is denoted as LDa
T , and the supply allocation is denoted as LSa

T .253

Algorithm 2 Envy Free Division
Input energy amount E and list of agents with their desire R

Output a dictionary of agents with their shares resulting from the division

procedure DIVIDE(E, R)
Require: E > 0 & R 6= ∅

if E = 0 then return 0 for all agents . No energy to divide
results← {} . Initialise empty dictionary for the results
R← sort(R.desire) . Sort winning agents’ desire in ascending order
Rlength← length of R
for a in R do

share← min( E
Rlength , a.desire)

results[a]← share
E← E− share
agentslen← agentslen− 1

return results . Return agents with their shares

3.6. Balancing254

Agents are assumed to demand or supply more or less than what they were allocated in the market.255

The excess supply, for instance, can be caused by a surge in solar energy on a sunny day. Similarly,256

the excess demand can be caused by increased human activities. This behaviour is referred to as257

uncertainty in future supply and demand. Storage, on the other hand, can help reduce this uncertainty258

and preserve energy to be used when needed. Naturally, the difference between the allocated and exact259

energy amounts should be reflected in the agents’ final bills, which will be explained in Section 3.7.260

However, first, an energy balancing method needs to be implemented to fulfil the community’s energy261

needs. The proposed balancing mechanism is a minute by minute approach. Before we discuss how262

energy balancing is achieved, we need to consider the time differences between agents’ allocated263
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supply and demand, as it is not reasonable to assume that energy exchange in the hourly round will264

overlap perfectly. This issue is depicted in Figure 3. This condition creates an energy quantity that has265

to be fulfilled by the grid, and for which no agent is responsible, as agents are only accountable for266

their net energy at the end of each hour. This results in what is referred to as a deficit in the community267

net bill.268

0 10 20 30 40 50 60
Minute

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Po
we

r (
kW

)
True Supply
True Demand
Shortage or Surpluess

Figure 3. An example of the imperfect overlap between a consumer and a supplier each allocated 2
kWh. In the first half-hour, no supply is available, so there is a shortage of 1 kWh. The supplier’s
entire 2 kWh is exported in the second half of the hour, which creates a surplus of 1 kWh. Assuming
both agents do not have storage, the shortage and surplus have to be fulfilled by the grid. So, 1 kWh
is imported at Gb, and 1 kWh is exported at Gs. This condition creates a net bill deficit because both
agents demanded and supplied exactly their allocation, but some energy was exchanged with the grid
to resolve the imperfect overlap.

We define three sources of energy used to satisfy the agents’ energy needs which are inflexible269

energy, flexible energy and the grid. Inflexible energy is the energy that needs to be fulfilled no matter270

what, like an appliance’s demand or excess solar energy with no storage which has to be exported.271

The energy that is or could be charged or discharged from storage devices is referred to as flexible272

energy. This energy is sometimes used to fulfil inflexible energy in order to avoid dealing with the273

grid and to maintain the benefits within the community. The grid’s energy is always considered as274

the last resort if any needs cannot be satisfied by the other two types of energy. Therefore, to fully275

utilise the energy within the community, the concept of demand and supply ability at a given minute276

is introduced, representing the amounts agents can demand or supply in a given minute. For agents277

without storage, the demand and supply abilities are the same as their exact needs in a given minute.278

However, for agents with storage, their abilities change every minute depending on their needs and279

their storage state. The formulas used to compute the demand and supply abilities will be explained280

in Section 4.2. The proposed balancing method uses the demand and supply abilities to facilitate the281

energy exchange of the allocated market amounts and resolve any imbalance. Energy can be exchanged282

between agents outside the allocated market amounts within what is referred to as the secondary283

market, which is explained next in Section 3.6.1. The algorithm for the balancing methodology is284

shown in Algorithm 3. This algorithm treats agents with no storage devices as if they have storage285

devices with zero capacity. This approach makes the implementation functional for agents with and286

without storage. The algorithm uses some functions that will be presented in Section 4.287

3.6.1. Secondary Market288

The uncertainty in supply and demand creates secondary exchange opportunities between agents.289

However, to avoid strategic behaviour, inflexible energy is exchanged at grid prices. So, instead of one290

supplier exporting his energy at Gs and the consumer importing it at Gb, they exchange the energy291

at those prices, and the community gets the profit instead of the grid. This profit is referred to as292
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Algorithm 3 Balance Market
Input agents list A, allocated demand dictionary for current round LDT , allocated supply

dictionary for the current round LST , minute t, current round cleared price PT and the community
energy accounts accounts Output updated community accounts

procedure BALANCEMARKET(agents, LDT , LST , t, P, accounts)
Require: A 6= ∅ & LDT 6= ∅ & LST 6= ∅

consumersAbility← {} . Initialise empty dictionary for consumers
suppliersAbility← {} . Initialise empty dictionary for suppliers
D ← 0
S← 0
for a in A do . Do agents who have remaining allocation

consumersAbility[a]← min
(
MAXDEMAND(a, t, t, 0), LDa

T
)

suppliersAbility[a]← max
(
MAXDSUPPLY(a, t, t, 0), LSa

T
)

D ← D + consumersAbility[a]
S← S + suppliersAbility[a]

if D + S ≥ 0 then . No enough supply to cover demand or equal
supplyShares← suppliersAbility . Suppliers sell all their supply
demandShares← DIVIDE(S,consumersAbility) . Divide supply

else
demandShares← consumersAbility . Consumers buy all their demand
supplyShares← DIVIDE(D,suppliersAbility) . Divide demand

Secondary Market
excessDemand← {} . Initialise empty dictionary for excess demand
excessSupply← {} . Initialise empty dictionary for excess supply
f lexibleDemand← {} . Initialise empty dictionary for flexible demand
f lexibleSupply← {} . Initialise empty dictionary for flexible supply
CA← 0
SA← 0
for a in A do . Now compute remaining for all agents for secondary market

f lexibleDemand[a]← FLEXIBLEDEMAND (a, t, t, 0)
f lexibleSupply[a]←FLEXIBLESUPPLY(a, t, t, 0)
excessDemand[a]← min

(
0,NET(a, t, t, 0)− demandShares[a] + f lexibleSupply[a]

)
excessSupply[a]← max

(
0,NET(a, t, t, 0)− supplyShares[a] + f lexibleDemand[a]

)
D ← D + excessDemand[a]
S← S + excessSupply[a]
if supplyShares[a] = 0 then . Make sure of one way flow of energy

consumersAbility[a]← consumersAbility[a]− demandShares[a]
CA← CA + consumersAbility[a]

else
consumersAbility[a]← 0

if demandShares[a] = 0 then . Make sure of one way flow of energy
suppliersAbility[a]← suppliersAbility[a]− supplyShares[a]
SA← SA + suppliersAbility[a]

else
suppliersAbility[a]← 0

if D + S ≥ 0 then . Excess demand more than excess supply or equal
if D ≥| SA | then . Excess demand more than supply ability or equal

supplyShares2nd← suppliersAbility . Suppliers sell all their ability
demandShares2nd← DIVIDE(SA,consumersAbility) . Divide supply ability

else . Supply ability is more that excess demand
demandShares2nd← excessDemand . Consumers buy all their excess demand
supplyShares2nd← DIVIDE(D,suppliersAbility) . Divide excess demand
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else . Excess supply is more than excess demand
if DA = 0 ‖ then
else if | S |≥ CA then . Excess supply more than demand ability or equal

demandShares2nd← consumersAbility . Consumers buy all their ability
supplyShares2nd← DIVIDE(CA,suppliersAbility) . Divide all demand ability

else . Demand ability is more that excess supply
supplyShares2nd← excessSupply . Suppliers sell all their excess supply
demandShares2nd← DIVIDE(S,consumersAbility) . Divide excess supplyGrid State

gridImport← {} . Initialise empty dictionary for grid import
gridExport← {} . Initialise empty dictionary for grid export
for a in A do . Now compute what is needed from the grid

gridImport[a]← max
(
0, excessDemand[a]− demandShares2nd[a]

)
gridExport[a]← min

(
0, excessSupply[a]− supplyShares2nd[a]

)
Update round allocated amounts
LDa

T ← max(0, LDa
T − demandShares[a]− demandShares2nd[a]− gridImport[a])

LSa
T ← max(0, LSa

T − supplyShares[a]− supplyShares2nd[a]− gridExport[a])
Update State

Exchange energy and update agents storage devices
Update accounts with supplyShares, demandShares
supplyShares2nd, demandShares2nd, gridImport, gridExport
f lexibleDemand, f lexibleSupply, LDT , LST

a surplus in the community net bill, which is used to compensate for the deficit resulting from the293

imperfect overlap between supply and demand discussed in Section 3.6. If the energy exchanged294

is flexible, the situation is different. The secondary market provides an opportunity for agents with295

storage to capitalise on the inflexibility of other agents. Flexible supply can be used or sold later, while296

the flexible demand is extra energy that can be stored. Therefore, agents with storage involved in the297

secondary exchanged, act as the grid. They get the benefits of fulfilling inflexible energy. So, when298

an inflexible consumer needs energy, he pays Gb, the flexible agent providing this energy receives299

Gb instead of Gs because he supplied this energy as the grid would. The flexible agent does not lose300

anything because if this energy is needed later, it can always be imported from the grid at Gb or from301

the market at a lower price.302

Similarly, when an inflexible supplier exports energy, he receives Gs, the flexible agent pays Gs303

instead of Gb because he received this energy as the grid would. Also, the flexible agent does not304

lose anything because this energy can always be exported at Gs, used for self-consumption or sold305

to the market for profit. Note that when flexible energy is used in the secondary market, it always306

fulfils inflexible energy. Naturally, the benefits of the secondary market apply only to the flexible307

energy amount provided. For example, an agent might provide 1 kWh from his storage as flexible308

energy, and 2 kWh that could not be stored as inflexible, so he only gets the benefits of the flexible309

quantity. Because of the positive advantage crated by the secondary market, all flexible agents are310

assumed to participate. The energy exchanged within the secondary market creates a division problem311

to distribute inflexible energy that needs to be fulfilled, which is solved using the envy-free division312

presented in Section 3.5. A notable limitation to consider is the direction of energy. If a flexible agent313

is supplying energy to fulfil his allocated market amounts, he cannot also demand energy from the314

secondary market at the same minute. The flow of energy has to be one-way. So, if a flexible agent is315

supplying to fulfil his allocated supply, he can only supply more energy to the secondary market in316

the same minute. The same applies to the demand case. Section 3.7 will explain how the energy from317

the primary and secondary markets are reflected in the agents’ bills.318
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3.7. Accounting319

The accounting function refers to the bill calculation method which determines the cost of energy320

to consumers and the income from sold energy for suppliers. This accounting should be simple in321

order to clearly communicate to the market players how their bills are calculated. The results from322

the energy balancing are used in the accounting function with additional conditions. In the balancing323

function, energy might be fulfilled by the grid because of the imperfect overlap between agents supply324

and demand for which no agent is responsible. Yet, it is accounted in the community’s net bill. So,325

to calculate the agents’ bills, the total energy for each agent at end of each round is calculated. For a326

round T and an agent a, the sum of demand energy imported within the market allocation is denoted327

as DMa
T , and the demand imported within the secondary market as D2a

T , the demand imported from328

the grid as GIa
T , his flexible demand as DXa

T and his allocated demand LDa
T . We denote the supply329

exported within the market allocation as SMa
T , the supply exported within the secondary market as330

S2a
T , the supply exported to the grid as GEa

T , his flexible supply as SXa
T and his allocated supply as331

LSa
T . Lastly, (7) and (8) calculate the total imported demand denoted as Da

T and the total exported332

supply denoted as Sa
T .333

Da
T = DMa

T + D2a
T + GIa

T (7)

Sa
T = SMa

T + S2a
T + GEa

T (8)

The market facilitator maintains energy amounts from the balancing algorithm and is responsible334

for calculating all the bills at the end of each hour. A positive bill represents a cost, and a negative bill335

represents an income. The bill calculation for inflexible energy is straightforward. If an agent consumes336

or supplies what he was allocated in the round, he pays or receives the cleared market price PT for that337

energy amount. For each kWh of excess demand, he pays Gb, and for each kWh of excess supply, he338

receives Gs. When an agent consumes or supplies less than his allocation, he is penalised. The penalty339

is needed because the difference is still provided by other agents who trade all their allocated amounts340

using the cleared price. Besides, this charge is necessary to enforce the market allocations and prevent341

agents from exaggerating their offer with no consequences. The demand shortage fee is denoted as342

DFT and the supply shortage fee as SFT , which are defined in (9) and (10).343

DFT = PT − Gs (9)

SFT = Gb − PT (10)

When excess inflexible demand and supply are exchanged within the secondary market, a surplus344

is created in the community net bill, as explained in Section 3.6.1. However, this unclaimed profit is345

needed to compensate for the deficit created from the imperfect overlap of supply and demand. Also,346

trading excess energy at grid prices, prevents inflexible agents from misreporting in the auction to347

strategise over the secondary market.348

Flexible energy bills are calculated slightly differently because of the secondary market. Similar to349

inflexible energy, for each kWh consumed or supplied within the allocated amounts, flexible agents350

pay or receive the cleared market price PT . If they provide any excess flexible supply or demand within351

the secondary market, they act as the grid. Therefore, for each kWh of excess flexible demand, they352

pay Gs, and for each kWh of excess flexible supply they get Gb. If a flexible agent consumes less or353

supplies less than his allocation, he also pays the shortage fees. So, for an agent a and a round T, (11)354

and (12) compute the net demand cost denoted as Ca
T , and the net supply income Ia

T respectively. The355

agent net bill, denoted as Ba
T is defined by (13), and the grid net bill, denoted as BG

T is defined by (14).356

Finally, a bill is defined for the community budget balance, which is the amount needed to balance all357

agents net bills and the grid to zero. The community budget balance is referred to as the community358

net bill, denoted as BC
T and is represented by (15).The accounting algorithm to compute the hourly bills359

is shown in Algorithm 4.360
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Ca
T = min(Da

T , LDa
T)PT + max(0, Da

T − LDa
T)Gb

+ max(0, LDa
T − Da

T)DFT −min(DXa
T , D2a

T)(Gb − Gs)
(11)

Ia
T = max(Sa

T , LSa
T)PT + min(0, Sa

T − LSa
T)Gs

−min(0, LSa
T − Sa

T)SFT + max(SXa
T , S2a

T)(Gb − Gs)
(12)

Ba
T = Ca

T + Ia
T (13)

BG
T = ∑

a∈A
GEa

T · Gs + ∑
a∈A

GIa
T · Gb (14)

BC
T = − ∑

a∈A
Ba

T + Ba
G (15)

361

The accounting algorithm maintains the hourly bills for all agents in the facilitator’s accounts362

database. The next section will present the agents’ energy prediction and their bidding strategy.363

4. Agent Trading Strategies364

This section will explain the energy profiles in Section 4.1, followed by the energy prediction method365

in Section 4.2, and concludes with the agents’ bidding strategy in Section 4.3.366

4.1. Energy Profile367

A set of agents A is defined where an agent a ∈ A has an energy profile in minute resolution na
i368

i ∈ [0, . . . , T ] where na
i is positive for energy demand and negative for energy supply. An agent with369

renewable supply or a prosumer is assumed to always first self-consume this supply. So when na
i is370

negative, this agent has already self-satisfied its demand and has more supply.371

4.2. Energy Prediction372

Agents in this work predict their demand or supply based on past values using a look-back amount373

denoted as k. So, for a given time t, the predicted energy na
t = na

t−k where t ∈ [0, .., T ]. If k is 0 and t374

is in the future, this assumes the agent has complete knowledge of his future energy needs and can375

predict his profile with perfect foresight. Although such perfection in prediction, in reality, is highly376

unlikely, it is worth exploring and will be discussed in Section 5 in more details.377

For an inflexible agent a ∈ A, the predicted energy demand, denoted as Da
T , and the predicted

energy supply, denoted as Sa
T , for a time interval T where the starting time in minutes is ts and the end

time is t f , are represented by (16) and (17) respectively, where k is look-back amount in minutes used
to compute na

t .

Da
T =

t f

∑
t=ts

min(0, na
t ) (16)

Sa
T =

t f

∑
t=ts

max(0, na
t ) (17)

For a flexible agent a ∈ A, a storage device is defined with capacity a of Ca, a charge power of Va
−378

and a discharge power of Va
+ and a state of charge profile SCa

t where t ∈ [0, .., T ]. A storage device can379

only discharge or charge at any given time and cannot do both. An energy profile wa
t is defined for the380

estimated energy profile after storage fulfilment. The predicted energy profile using the look-back k is381
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Algorithm 4 Compute Hourly Bills
Input agents list A, accounts book accounts and round T, Output updated accounts

procedure COMPUTEHOURLYBILLS(A, accounts, T)
Require: A 6= ∅

bills← {} . Initialise empty dictionary for the bills
PT ← clear price for round T
start of the round T ts , end of the hour t f
for a in A do . Loop over all agents list

Demand Cost
Da

T ← ∑ accounts.demand(a, ts, t f )
Dxa

T ← accounts. f lexibleDemand(a, ts)
D2a

T ← accounts.secondaryDemand(a, ts)
market← min(Da

T , LDa
T) · PT

excess← max(0, Da
T − LDa

T) · Gb
shortageFee← max(0, LDa

T − Da
T) · DFT

f lexDiscount← min(Dxa
T , D2a

T) · (Gb − Gs)
Ca

T ← market + excess + shortageFee− f lexDiscount
Supply Income

Sa
T ← ∑ accounts.supply(a, ts, t f )

Sxa
T ← accounts. f lexibleSupply(a, ts)

S2a
T ← accounts.secondarySupply(a, ts)

market← max(Sa
T , LSa

T) · P
excess← min(0, Sa

T − LSa
T) · Gs

shortageFee← min(0, LSa
T − Sa

T) · SFT
f lexBonus← max(Sxa

T , S2a
T) · (Gb − Gs)

Ia
T ← market + excess− shortageFee + f lexBonus

Agent Net
Ba

T ← Ca
T + Ia

T
bills[a]← Ba

T
Grid Net

BG
T ← ∑a∈A accounts.gridExport(a, ts, t f )Gs + ∑a∈A accounts.gridImport(a, ts, t f )Gb

bills[Grid]← BG
T

Community Net
BC

T ← −∑a∈A Ba
T + BG

T
bills[Community]← BC

T
Update accounts with bills
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used alongside the current SCa
t to predict a new energy profile after using the energy storage. wa

t is382

calculated using (18).383

wa
t =


max

(
0, na

t −min(SCa
t , Va

+)
)
, if na

t > 0

min
(
0, na

t −max(SCa
t − Ca,−Va

−
)
, if na

t < 0

0, if na
t = 0

(18)

It is worth noting that while calculating the energy profile wa
t , at each t, the SCa

t is updated384

with the fulfilled amount from na
t . Similar to inflexible agents, the predicted demand and supply are385

calculated via (16) and (17) but using wa
t instead of na

t . These are the predicted inflexible demand and386

supply, which cannot be fulfilled by the storage device.387

Storage devices give flexible agents the ability to supply or demand more than they need. This
ability allows these agents to sell or buy more if the price is suitable and to participate in the secondary
market to fulfil their inflexible energy. First, flexible agents need to estimate how much demand or
supply can they offer in the market. An agent’s maximum demand and supply abilities are defined as
the maximum amounts the storage device can charge or discharge at time t plus the agent’s estimated
net na

t . The flexible agents maximum demand for a time interval T with start time ts and finish t f
and a look-back value k is defined by (19). The storage demand is reduced by the predicted excess
energy which needs to be stored, or is added to the agent’s demand. When na

t is positive, this means
the agent has energy need that could either be fulfilled by the storage or by the market. However, if the
storage fulfils this demand, then at this moment, the storage cannot charge because it is discharging to
fulfil this energy need. Therefore, the storage demand ability at this moment is zero. In contrast, if the
agent’s need is added to the storage demand, the agent can request more from the market to cover his
needs and store the rest. The second approach is implemented to maximise the potential energy stored.
If na

t is negative, the agent can demand from the market the remaining in his charge power if available
or zero.

MaxDT =

t f

∑
t=ts

max
(
0, min(Ca − SCa

t , Va
−) + na

t
)

(19)

Similarly, the maximum storage supply and for a time interval T is defined by (20). The storage supply
is reduced by the predicted needed energy or is added to the agent’s supply. When na

t is negative, this
means the agent has an excess supply that could be stored or exported to the market. However, if this
supply is stored, then at this moment, the storage cannot discharge because it is charging with the
excess supply. Therefore, the storage supply ability at this moment is zero. In contrast, if the agent’s
supply is added to the storage supply, the agent can offer more to the market. If na

t is positive, the
agents can offer the market the remaining in his discharge power if available or zero. Again, the second
approach is implemented to maximise the potential energy offered to the market.

MaxST =

t f

∑
t=ts

min
(
0, max(−SCa

t ,−Va
+) + na

t
)

(20)

In computing the maximum demand ability and supply ability for a flexible agent At each t, a
temporary SCa

t is updated with the maximum charge or discharge amounts to be included in the
calculation of t + 1. The maximum demand and supply in (19) and (20) contains both flexible and
inflexible energy. Agents need to distinguish between them for bidding reasons. Therefore, flexible
energy is calculated by subtracting inflexible energy from the maximum demand and supply.

DXT = MaxDT − DT (21)

SXT = MaxST − ST (22)

The inflexible and flexible energy is priced differently, which is explained next in Section 4.3.388
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4.3. Bidding Strategy389

The two grid prices Gb and Gs play an important role in the trading strategy. There is no reason390

for an agent to exchange energy within the community market at prices worse than the grid prices.391

Therefore, the maximum possible market price is Gb, and the minimum possible price is Gs. Since392

consumers are inflexible (i.e. they need to satisfy demand), we assume they are always prepared to393

pay Gb to buy energy, and so their bids are always Gb. Similarly, suppliers and prosumers without394

storage with any surplus supply are always prepared to sell at Gs, their asks are always at Gs (since395

otherwise the energy is wasted). Therefore, The bid for inflexible demand Da
T is Gb and the ask for the396

inflexible supply Sa
T is Gs.397

However, when prosumers have storage, they can offer different prices for both demand and398

supply. They can buy energy when supply is ample and sell it back when demand is higher. This is an399

essential element of the proposed market to create a profit opportunity for prosumers with storage.400

So, flexible agents can choose prices for SXT or DXT within the limits of the grid prices. No agent is401

allowed to sell energy at a lower price than Gs or buy at a higher price that than Gb.402

Due to the complexity of the market model, a simple bidding strategy for flexible agents is
implemented. The strategy is based on multiple parameters. The first one is the predicted price for
the next market round denoted as PT+1. The prediction is performed by averaging the previously
announced prices for the same round from past days. So, given the set of announced market prices HT

i
i ∈ [T − 24, T − 48, .., 0] and a size of the set MT for a market round T, (23) represents the predicted
price for the next round PT+1. If no market announcements exist for the next round, the predicted
price is chosen halfway between the grid prices. To avoid having all agents adopt the same price
prediction, a random noise ε, drawn from a standard uniform distribution with a minimum of -1 and
a maximum of 1 is added to the predicted price. In summary, agents use the previously announced
market prices to predict the price for the next round. ε is a random noise to introduce variance in the
bidding strategy as all agents adopt the same strategy. The range (-1,1) is chosen because the price
range between the gird prices is 5 in our simulations, and 20% of that range is 1, which is a reasonable
variance.

PT+1 =

{
∑ HT+1

MT+1 + ε ∼ U (−1, 1), if MT+1 > 0
Gb+Gs

2 , if MT+1 = 0
(23)

The rationale behind predicting the price for the next market round is that agents can assume that403

if they do not sell their energy at the current round, they can sell it in the next round at PT+1. So, PT+1404

is the minimum asking price for the current round. The same applies to the demand, but instead of405

selling, agents assume they can buy it in the next round at PT+1. So, PT+1 is the maximum bidding406

price for the current round.407

Another vital parameter in the bidding method is the gap between the selling and buying prices408

that flexible agents adopt. This gap is denoted as ∆. Agents adopt an increasing function for their409

flexible supply quantity SXT . They start at a price of PT+1 +
∆
2 and increase it by an increment price z410

for each additional unit u that can be offered up to the maximum price of Gb − y. When the maximum411

price is reached, all the remaining quantity of SXT is offered at this maximum price even if it exceeds u.412

In the case of flexible demand quantity DXT , the price function is a decreasing function where agents413

start with the PT+1 − ∆
2 and decrease the price by z for each additional unit u demanded down to the414

minimum price of Gs + y. Similarly, any reaming DXT is offered at the minimum price. Algorithm 5415

shows the function used by agents to price their flexible energy using the mentioned parameters.416

Figure 4 provides an example quantity pricing for an agent with 5 kWh of DXT and 5 kWh of SXT .417

With this methodology, flexible agents participate in the market by providing their offers. The next418

section will present the agent-based market simulations.419
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Algorithm 5 Quantity Pricing
Input the estimated price for the next round PT+1, the gap between the selling and buying prices

∆, price changing unit z quantity changing unit u, price of buying energy form the grid Gb,price of
selling energy to the grid Gs, flexible demand quantity DXT , flexible supply quantity SXT Output
lists of bids and asks bids, asks

procedure QUANTITY PRICING(PT+1, ∆, z, u, y, Gb, Gs, DXT , SXT)
Require: Gb ≥ PT+1 ≥ Gs, ∆ ≥ 0, z > 0, u ≥ 0, y ≥ 0, Gb > Gs, DXT ≥ 0, SXT ≥ 0

bids← [] . initialise bids list
maxBid← max(PT+1 − ∆

2 , Gs + y)
minBid← Gs + y
asks← [] . initialise asks list
maxAsk← Gb − y
minAsk← min(PT+1 +

∆
2 , Gb − y)

if DXT > 0 then
priceSpace← maxBid−minBid
while DXT > 0 do

if priceSpace = 0 then
bids← bids || (DXT , minBid) . append quantity and price to bids list
DXT ← 0

else
bids← bids || (min(DXT , u), minBid + priceSpace)
DXT ← max(0, DXT − u)
priceSpace← max(0, priceSpace− z)

if SXT > 0 then
priceSpace← maxAsk−minAsk
while SXT > 0 do

if priceSpace = 0 then
asks← asks || (SXT , maxAsk) . append quantity and price to asks list
SXT ← 0

else
asks← bids || (min(SXT , u), maxAsk− priceSpace)
SXT ← max(0, SXT − u)
priceSpace← max(0, priceSpace− z)

return bids, asks
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Figure 4. Asks and bids for 5 kWh of flexible energy in both supply and demand. The next round
predicted price PT+1 at this instance is halfway between Gb and Gs. The price gap ∆ is set to 1 pence,
the quantity u is set to 1 kWh, the price changing rate z is set to 0.5 pence and the price distance from
the grid prices y is set to 0.25 pence. This agent submitted 5 bids and 5 asks for each with 1 kWh.

5. Simulations420

In order to empirically validate the market mechanisms and agents proposed in earlier sections, we421

performed multiple simulations using data from real household appliances ,random occupant activities422

and real energy prices. In more detail, the rest of this section is structured as follows. Section 5.1 gives423

an overview of the data used for energy profiles. Section 5.2 explains the measures evaluated in the424

simulations. Finally Section 5.3 states the assumptions in the simulations and the parameters varied.425

We then present and discuss the results obtained in Section 6.426

5.1. Data427

The data used in the simulations are generated using the stochastic energy model developed by the428

Centre of Renewable Energy Systems Technology [43] to create realistic energy profiles. The model429

simulates households’ energy consumption using a range of electrical appliances and randomised430

human activities. Also, the model includes dwellings with Photovoltaic (PV) panels and models431

the energy generation by specifying the geographical coordinates in the UK, and using historical432

irradiation, temperature and cloud clearness data. The model is used to generate energy profiles for433

100 agents with 50 consumers and 50 prosumers for 29 days in June, including weekends, using the434

geographical coordinates of Southampton. Five different solar array profiles are used with a maximum435

output of 2, 3, 3.5, 4 and 6 kW for 10 prosumers each to introduce variations in renewable supply436

among prosumers. The grid prices used in the simulations are from The Office of Gas and Electricity437

Markets (OFGEM), which is a UK government regulatory entity for energy markets. The selling to438

grid price Gs is based on the latest Feed-In Tariff rates from OFGEM for 2019 [44]. The price used is439

3.41 pence/kWh, which is the standard solar photovoltaic receiving the middle rate 0-10 kW as of Q1440

2019. The buying from grid price Gb is based on the annual average tariff prices for six large suppliers441

in the UK provided by OFGEM as of 28 June 2019 [45] which is 8.3 pence/kWh.442

5.2. Measures443

Two measures of financial benefit are defined, one for consumers and one for suppliers. The saved444

demand cost attained from participating in the market compared to not being in the market, and445

buying the same energy from the grid at round T is referred to as demand savings, denoted as DST ,446

and represented by (24). The extra supply income received from participating in the market compared447

to not being in the market, and selling the same energy to the grid at round T is referred to as supply448
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profit, denoted as SPT , and represented by (25). When DST or SPT is negative indicates demand cost449

or supply income at this round is worse compared to the existence of no market.450

DST = ∑
a∈A

Da
T · Gb − Ca

T (24)

SPT = ∑
a∈A

Sa
T · Gs − Ia

T (25)

The community net bill BC
T defined in Section 3.7 is another measure considered. If BC

T is positive,451

a deficit exists in the budget and cost needs to be paid by the community as a whole. If BC
T is negative,452

a surplus exists in the budget and profit needs to be shared. The mechanism of distributing the453

community budget deficit or surplus is beyond the scope of this research, so only the net budget bill is454

reported.455

In some cases, the fees from demand and supply shortage could result in agent bills that are456

worse than not being in the market. For example, let say an agent is allocated 5 kWh at the price of457

6 pence/kWh, the agent then only uses 1 kWh. It is therefore charged a shortage fee of 4 · DFT =458

4(6− 3.41) which is 10.36. It pays this fee plus the 6 pence he pays for the 1 kWh which totals to 16.36459

pence. On the other hand, importing 1 kWh from the grid with no market costs 8.3 pence. So, this agent460

does not make any savings, and in fact, pays more for his energy compared to not participating in the461

market. Therefore, we introduce a notion of capped bills where the agent never pays more than the462

cost to import its true demand without participating in the market. Similarly, the agent never receives463

less than the income to export its true supply without participating in the market. The concept of the464

capped bill is adopted to avoid resulting in higher energy costs or profit compared to not participating465

in the CEM. In other words, agents are always at least as well off participating and never worse off.466

To this end, we compare what the cost would have been using the (fixed) grid prices. Note that we467

consider the caps ex-post, i.e. based on the actual consumption and/or production and so there is no468

uncertainty to consider here.469

Equation (26) defines the capped bill B̂a
T for agent a at round T. Moreover, the capped community470

net bill B̂C
T is defined using B̂a

T in (26). Finally, the capped demand savings and supply profit D̂Sa
T471

and ŜPa
T are defined in (28) and (29). The capped measures are important to note here as they will be472

discussed in more details under the imperfect predictions simulations Section 6.2.473

B̂a
T = min(Ca

T , Da
T · Gb) + min(Ia

T , Sa
T · Gs) (26)

B̂C
T = − ∑

a∈A
B̂a

T + BG
T (27)

D̂ST = ∑
a∈A

Da
T · Gb −min(Ca

T , Da
T · Gb) (28)

ŜPT = ∑
a∈A

Sa
T · Gs −min(Ia

T , Sa
T · Gs) (29)

Finally, the aggregate measure for a day K is the sum of all measures for rounds T where T ∈ K.
Equations (30), (31), (32), (33), (34) and (35) define the aggregate uncapped and capped measures. The
average daily aggregate measures and the aggregate measures for the entire simulations period will be
compared in each setting presented in Section 6.

BC
K = ∑

T∈K
BC

T (30)

B̂C
K = ∑

T∈K
B̂C

T (31)
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DSK = ∑
T∈K

DST (32)

D̂SK = ∑
T∈K

D̂ST (33)

SPK = ∑
T∈K

SPT (34)

ŜPK = ∑
T∈K

ŜPT (35)

5.3. Assumptions and Parameters474

The simulations are performed over a 29 days period, which is referred to as M. The proposed market475

is simulated using two main settings, perfect predictions and imperfect predictions. Each setting is476

executed for a market without storage and varying the prosumer ratio in the community from 0%477

to 100%. Increasing the prosumer ratio also increases the renewable capacity of the community as478

prosumers have different solar profiles. Then, each setting is run for a market with 40% prosumers479

with storage varying the ratio of prosumers with storage from 0% to 100% with three different storage480

profiles. These profiles are capacities of 3, 5 and 10 kWh and charge/discharge powers of 3, 5 and481

5 kW. Some parameters are fixed throughout the performed simulations. The fixed values provide482

reasonable freedom for agents to submit multiple offers given the price space between the chosen grid483

prices Gb and Gs is about 5 pence.484

Paramter Value Unit Description

M 29 days Length of the simulation
∆ 1 penny Strategy price gap
u 1 kWh Strategy increment quantity
z 0.5 penny Strategy price changing rate
y 0.25 penny Strategy distance from the grid prices

Gb 8.3 pence Buy price from the grid
Gs 3.41 pence Sell price to the grid

Table 1. Simulations fixed parameters

6. Results and Discussion485

This section presents the results for the market simulations using the parameters discussed in486

Section 5.3 and the measures defined in Section 5.2. Section 6.1 presents the setting with prefect487

predictions, and Section 6.2 presents the setting with imperfect predictions.488

6.1. Perfect Predictions489

In the perfect predictions setting, agents are assumed to have absolute certainty or perfect foresight of490

their future supply and demand. This certainty is achieved by setting the look-back amount k to zero.491

Section 6.1.1 presents the simulations without storage, and Section 6.1.2 presents the simulations with492

storage.493

6.1.1. Perfect Predictions Without Storage494

In each simulation, the average daily community net bill BC
K where K ∈ M, is calculated for different495

prosumer ratios. Also, the averages daily SPK and DSK are calculated. A simulation with 20%496

prosumer ratio means a community with exactly 5 prosumers and 45 consumers. The simulations497

show that with perfect predictions, BC
K is in a deficit state. This deficit exists because no energy is498
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traded in the secondary market to create profit that compensates for the supply-demand overlap499

deficit. Figure 5 shows the daily average BC
K with increasing prosumer ratio. With a prosumer ratio of500

zero, no deficit exists as there is no market. With a prosumer ratio of 20%, the deficit is insignificant501

because the energy traded is small since only 10 prosumers with 2 kW solar array can supply energy,502

and the demand is far greater. However, as energy traded becomes large enough, the deficit becomes503

significant at around £0.65 per day on average.504
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Figure 5. Daily average BC
K for the simulations with perfect predictions without storage. A deficit

exists a result of the imperfect overlap between supply and demand. The deficit is noticeable with a
prosumer ratio of 40% and higher as more energy is traded within the market. The error bars represent
95% confidence intervals.

Figure 6 shows a comparison between the average daily SPK and DSK. Both are equal because the505

energy price in this setting is always at the mid-price between the grid prices. The mid-price is a result506

of all agents being inflexible, and therefore, not able to bid or ask different prices. Table 2 compares507

the measures for this entire period M for each prosumer ratio. This setting with perfect predictions508

without storage indicates that the prosumer ratios between 40% and 60% produces the most benefit to509

the community, which is a similar result to other reviewed literate [10].510
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(a) Average daily DSK
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(b) Average daily SPK

Figure 6. Average daily SPK and DSK for the setting with perfect predictions without storage. Both
measures are the same in this setting because PT is always in the middle of Gb and Gs as all agents are
inflexible. The error bars represent 95% confidence intervals.

6.1.2. Perfect Predictions With Storage511

When flexible agents are incorporated, the number of prosumers is fixed, and the storage ratio among512

the prosumers is varied. The prosumer ratio in this setting is selected at 40%, which means 20 agents513



Version February 19, 2020 submitted to Energies 22 of 31

Prosumer
Ratio

Aggregate Max
PV Power BC

M DSM SPM

20% 20 1.51 50.05 50.05
40% 50 21.51 101.51 101.51
60% 85 18.54 102.82 102.82
80% 125 18.38 87.54 87.54

100% 185 14.80 61.71 61.71

Table 2. The measures for M in £ for the setting with perfect predictions without storage. At the end of
the period, BC

M is in a deficit state with all prosumer ratios. DSM and SPM are highest with prosumer
ratios between 40%-60%.

are prosumers with an aggregate max PV power of 50 kW. Similar to the simulations in the previous514

setting without storage, the simulations with storage show that with perfect predictions, BC
K is in a515

deficit state. This is expected as no energy is traded in the secondary market to compensate for the516

deficit. However, the deficit is reduced with the introduction of storage. Compared to the market517

with 40% prosumer ratio and without storage where the average daily BC
K is around £0.75 per day,518

introducing 20% storage ratio among the prosumers with 3 kWh storage devices, reduces the average519

daily BC
K to around £0.6 per day. Furthermore, increasing the storage ratio or the capacity also reduces520

the average daily BC
K as seen in Figure 7. This reduction is due to the flexible agents’ ability to preserve521

energy and discharge it when it is needed by the market, rather than having the randomised supply522

control when energy is exported to the market.523
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Figure 7. Average daily BC
K for the simulations with perfect predictions with storage. The average daily

BC
K deficit was reduced by increasing the ratio of prosumers with storage or by increasing the storage

capacity in the community.

The distribution of financial benefits in this setting shows that the average daily SPK is more524

significant than DSK. This shift is because flexible agents trade their energy at high prices to maximise525

their profit as seen in Figure 8. Moreover, Figure 8(a) shows that as more prosumers become flexible,526

DSK is reduced because less inflexible supply is offered at the low price of Gs. Also, increasing the527

storage capacity has the same effect of lowering the inflexible energy. Figure 8(b) shows that having 10528

kWh storage devices with all prosumers results in the most substantial average daily SPK and the least529

DSK at the same time.530

Table 3 compares the measures for this setting for the entire period M. It shows that introducing531

storage increases the sum of DSM and SPM, with SPM as the significant portion. Also, as the ratio of532

prosumers with storage increases, the share of SPM in the sum increases as well. In the same setting533

with 40% prosumers but without storage, the sum of both DSM and SPM is around £203 with 50%534

for SPM. Equipping 20% of the prosumers with 3 kWh storage devices results in increasing the sum535
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(a) Average daily DSK
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(b) Average daily SPK

Figure 8. Average daily DSK and SPK for the setting with perfect predictions with storage. The average
SPK is more than DSK because flexible agents raise the trading price to gain more profit. That is why as
storage ratio increases, SPK increases as well because prosumers have more flexible energy to offer at
higher prices, which also decreases DSK . The error bars represent 95% confidence intervals.

to £236, which is a 16% increase with SPM, making 60% of the sum. The market with 40% of the536

prosumers having 10 kWh capacity storage devices, has the most significant sum of £302, which is a537

48% increase from the setting without storage, with SPM making 77% of the sum. This setting with538

storage shows that suppliers are benefiting more compared to without storage, which is anticipated,539

given their flexible ability and bidding strategy. To provide a further comparison, Table 3 also shows540

the aggregate demand savings from only using storage with no market. It refers to the savings from541

the energy that is stored then discharged to fulfil the agents’ demand. If no storage existed, this energy542

would have been exported to the grid and imported when needed. Therefore, the savings are the543

difference between Gs and Gb for every kWh. The storage only savings show that participating in the544

market is more profitable for prosumers with storage.545

6.2. Imperfect Predictions546

In the setting with imperfect predictions, uncertainty in demand and supply is introduced. A look-back547

time k of 60 minutes is chosen, which means agents predict their next round’s demand and supply548

as the amounts from the past hour. The capped and uncapped measures explained in Section 5.2 are549

compared for each simulation in this section, for the daily averages and the entire period. Section 6.2.1550

presents the settings without storage, and Section 6.2.2 presents the setting with storage.551

6.2.1. Imperfect Predictions Without Storage552

The results is this setting show the impact of the secondary market, which is evident compared to the553

setting with perfect predictions. The profit from the secondary market to the community overcomes554

any deficit and creates a surplus. However, when the bills are not capped, the shortage fees reduce555

DSM and SPM. Figure 9 shows a comparison between the average daily capped B̂C
K and uncapped556

BC
K where both are negative bills which indicate surplus states. However, this setting shows that the557

average daily BC
K is larger than B̂C

K because the uncapped shortage fees result in higher demand costs558

and less supply income.559

Figure 10 shows a comparison between the average daily DSK and SPK, and the average daily560

D̂SK and ŜPK. Increasing the prosumer ratio reduces the average daily DSK until it becomes negative561

with 100% prosumers as seen in Figure 10(a). This behaviour is a sign that demand in a market with562

100% prosumers under the uncapped approach, is slightly more expensive compared to no market.563

This is because demand shortage fees become more significant as increasing the prosumer ratio means564

fewer consumers, which reduces the overall market demand. Another reason is the higher uncertainty565
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Ratio of
Prosumers

With
Storage

Storage
Capacity

(kWh)

Storage
Power
(kW)

BC
M DSM SPM

DSM+
SPM

SPM
SPM+DSM

Aggregate
Demand Savings

From Storage
Only

0% 0 0 21.51 101.51 101.51 203.02 50%

20% 3 3 17.70 95.71 141.10 236.81 60% 18.66
40% 3 3 15.13 82.65 170.18 252.83 67% 39.66
60% 3 3 13.64 68.63 190.65 259.28 74% 61.32
80% 3 3 10.77 48.64 214.18 262.82 81% 82.94

100% 3 3 9.10 39.00 225.78 264.78 85% 102.73

20% 5 5 18.32 100.43 149.25 249.68 60% 22.43
40% 5 5 14.24 78.55 190.64 269.19 71% 47.35
60% 5 5 11.19 52.04 221.85 273.89 81% 74.48
80% 5 5 10.27 27.30 237.68 264.98 90% 101.82

100% 5 5 7.07 23.00 244.41 267.41 91% 125.41

20% 10 5 13.04 111.32 174.30 285.62 61% 25.17
40% 10 5 8.54 69.53 232.86 302.39 77% 52.79
60% 10 5 8.77 31.95 252.88 284.83 89% 84.96
80% 10 5 10.40 15.89 241.31 257.20 94% 117.50

100% 10 5 5.54 15.62 251.00 266.62 94% 144.44

Table 3. The measures for M in £ for the setting with perfect predictions with storage. At the end
of the period, BC

M is in a deficit state in all storage ratio variations. However, increasing the storage
ratio decreases the deficit. Also, increasing the storage ratio increases SPM as more prosumers become
flexible, but, it also reduces DSM. By aggregating DSM and SPM, the configuration of 40% of prosumers
having 10 kWh capacity storage devices, results in the most substantial combined benefit with 77% for
SPM.
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Figure 9. Average daily B̂C
K and BC

K for the setting with imperfect predictions without storage. Both

average daily B̂C
K and BC

K are negative, which indicate surplus states. However, BC
K is more with all

prosumer ratios due to the uncapped approach. The error bars represent 95% confidence intervals.

in demand predictions compared to supply predictions when using the past hour approach. That is566

why the uncapped approach also reduces SPK but not the same levels. Nevertheless, the average daily567

D̂SK and ŜPK in Figure 10(b), indicate that the capped bill approach limits the shortage fees to a certain568

level, and results in higher combined benefit. Table 4 compares the measures for this setting for the569

entire period M. In both capped and uncapped approaches, B̂C
M and BC

M are negative, which indicates570

surplus states. However, the gain in the uncapped approach is a result of reducing DSM and SPM.571

This setting shows that the surplus from the secondary market is enough to overcome the deficit and572

adopted the capped bill approach.573
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(a) Average daily DSK and SPK . With 100% prosumer ratio, DSK is
negative because of the uncapped bills approach.
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(b) Average daily D̂SK and ŜPK . The capped bills approach produces
higher D̂SK and ŜPK compared to the uncapped DSK and SPK .

Figure 10. Comparison between the average daily DSK and SPK , and the average daily D̂SK and ŜPK

for the setting with imperfect predictions without storage. The error bars represent 95% confidence
intervals.

Prosumer
Ratio BC

M B̂C
M DSM D̂SM SPM ŜPM

20% -39.11 -30.47 38.36 40.70 21.12 27.42
40% -88.60 -58.81 37.94 55.78 54.97 66.92
60% -95.30 -60.42 27.83 50.69 63.97 75.98
80% -86.25 -49.51 12.17 38.31 58.29 68.88

100% -74.05 -38.48 -4.26 21.91 38.83 48.23

Table 4. Comparison between capped and uncapped measures for the setting with imperfect

predictions without storage for M in £. At the end of the period, both BC
M and B̂C

M are in surplus states.
However, under the uncapped approach, increasing the prosumer ratio decreases DSM until it becomes
negative with 100% prosumers, while the capped approach maintains community surplus, and results
in higher D̂SM and ŜPM.

6.2.2. Imperfect Predictions With Storage574

By introducing flexible agents to the imperfect predictions settings, the results show the advantages of575

the proposed market to prosumers with storage and the effect of the secondary market. It is worth576

noting that flexible agents in this setting, include the present state of charge in their predictions577

alongside the net profile from the past hour. Figure 11 shows that increasing the storage ratio reduces578

the surplus as more flexible agents take advantage of the secondary market, and less inflexible579

energy is traded there. The average daily B̂C
K and BC

K are both in surplus states in all varying storage580

capacities and ratios. Figure 11(b) shows that the capped bill approach results in less surplus while581

still overcoming the deficit reaching close to complete balance of zero with 100% storage ratio.582

As more prosumers become flexible, the trading price becomes higher, and the demand shortage583

fees become higher as well because of the gap between the clearing price and Gs widens. On the584

other hand, the supply shortage fees become smaller as the gap between the clearing price and Gb585

shrinks. This effect is shown in Figure 12(a), where the average daily DSK decreases as the storage ratio586

increases. Also, increasing the storage ratio decreases the market demand as flexible agents become587

more able to fulfil themselves, which reduces DSK. The uncapped approach results in negative DSK588

with some storage ratios and capacities, while the capped approach maintains a positive D̂SK in all589

combinations as seen in Figure 12(b).590

This setting shows that the average daily SPK and ŜPK are larger with the addition of storage591

compared to the absence of storage. Also, increasing the capacity increases the average daily profit592
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(a) Average daily BC
K . Under the uncapped approach, increasing the

storage capacity or the ratio of prosumers with storage decreases the
average daily surplus, but it is still significant with around £2 per day
when all prosumers have storage.
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(b) Average daily B̂C
K . Under the capped approach, increasing the

storage capacity or the ratio of prosumers with storage decreases the
average daily surplus, but it reaches close to zero with 100% prosumers

with storage. However, B̂C
K does not enter a deficit state.

Figure 11. Comparison between the average daily B̂C
K and BC

K for the setting with imperfect predictions
with storage. The error bars represent 95% confidence intervals.
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(a) Average daily DSK . Capacities 5 and 10 kWh with 60% or more
prosumers with storage, decrease DSK to below zero, which is more
significant with larger capacities.
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(b) Average daily D̂SK . Increasing the storage capacity or the ratio of
prosumers with storage decreases D̂SK , but it never reaches negative
levels.

Figure 12. Comparison between average daily DSK and D̂SK with storage variations. The error bars
represent 95% confidence intervals.

as well as it increases the flexible agents’ ability to offer supply in the market. Figure 13 shows both593

average daily SPK and ŜPK. The differences between them are insignificant because of high trading594

prices, low supply shortage fees and less uncertainty as flexible agents predictions include the current595

state of charge. Table 5 compares the measures for this setting for M. The surplus from the secondary596

market overcomes the deficit in all variations. The uncapped bills result in extra costs in demand597

because of the high shortage fees, which causes the demand to be more expensive. These cases are598

highlighted in red. Overall, the surplus from the secondary market is enough to support the capped599

bills approach, which results in a higher D̂SM and ŜPM. This setting also shows the ratio of ŜPM in the600

sum of benefits ŜPM + D̂SM increases from 54% without storage to a range between 66%-96% with601

different storage ratios and capacities.602

7. Conclusions603

This paper develops and evaluates a new community energy market. The proposed market model604

is a repeated discrete-time two-sided auction. The market selects prices and clears energy using market605

equilibrium methodology. The participating agents predict their energy offers using past consumption606

and production values. Only agents with storage can submit offers different from the grid prices.607

Agents that do not have storage always use the grid prices because they are inflexible. Agents with608
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(a) Average daily SPK
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(b) Average daily ŜPK

Figure 13. Comparison between average daily SPK and ŜPK . Increasing the storage ratio and capacity
increase both profits. The reduction from the uncapped bill approach is still present. However, it
is insignificant due to high supply profit and low supply shortage fees as more prosumers become
flexible. The error bars represent 95% confidence intervals.

Storage
Ratio

Capacity
(kWh)

Power
(kW) BC

M B̂C
M DSM D̂SM SPM ŜPM

ŜPM

ŜPM+D̂SM

0% 0 0 -88.60 -58.81 37.94 55.78 54.97 66.92 54%

20% 3 3 -98.55 -62.05 24.17 52.94 96.05 103.78 66%
40% 3 3 -94.90 -60.05 20.89 50.85 123.77 128.66 72%
60% 3 3 -84.77 -48.50 14.22 47.15 151.31 154.65 77%
80% 3 3 -66.78 -26.85 -1.49 37.15 187.65 188.94 84%
100% 3 3 -55.13 -14.45 -5.59 34.68 211.92 212.33 86%

20% 5 5 -102.72 -63.27 27.10 57.81 99.19 107.93 65%
40% 5 5 -101.75 -59.59 10.38 47.13 142.06 147.46 76%
60% 5 5 -90.71 -45.83 -4.69 37.27 178.73 181.65 83%
80% 5 5 -71.47 -21.66 -28.10 21.31 218.65 219.06 91%
100% 5 5 -59.52 -8.42 -31.54 19.47 241.28 241.38 93%

20% 10 5 -123.84 -76.54 33.65 68.33 108.44 121.07 64%
40% 10 5 -120.92 -68.30 -2.65 43.67 170.85 177.16 80%
60% 10 5 -101.32 -47.18 -30.85 21.70 213.13 214.73 91%
80% 10 5 -73.88 -18.71 -44.61 10.39 227.04 227.22 96%
100% 10 5 -63.52 -8.30 -44.00 11.13 249.15 249.24 96%

Table 5. Comparison between capped and uncapped measures for the setting with imperfect

predictions with storage for M in £. Both BC
M and B̂C

M are in a surplus states. However, increasing the
storage ratio or the capacity decreases DSM until it becomes negative as highlighted in the red cells.
The capped approach maintains a community surplus and results in higher D̂SM and ŜPM. The ratio
of ŜPM in the benefits sum increase form 54% without storage to 66%-96%.

storage adopt a simple bidding strategy with an increasing price function for supply and a decreasing609

price function for demand. The bidding strategy maximises their profit under constrains on price610

increments and quantities. The market cleared energy is allocated using the envy-free division protocol.611

The model uses a minute by minute energy balancing approach that fulfils energy within the allocated612

amounts or a secondary exchange opportunity where agents with storage can capitalise, or lastly by613

the grid. The proposed billing method charges the grid prices for any excess energy and enforces the614

auction allocations using shortage fees to discourage agents from exaggerating their offers. The billing615

method also rewards agents with storage for any energy exchanged within the secondary market.616

Considering the minute by minute energy balancing, this research shows that the imperfect617

overlap between supply and demand creates a deficit in the community net bill. This deficit is reduced618
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through the proposed secondary market, capitalising on uncertainty in future energy predictions.619

The proposed billing method also reduces the deficit by collecting portions of the shortage fees620

from both demand and supply at the same time when less energy is exchanged with the grid. The621

disadvantage of this method is that it can result in overpriced demand when uncapped. However,622

the market evaluations show that capping the market bills with the bills if no market exists, results in623

more financial benefits for both consumers and suppliers, while still maintaining enough surplus to624

overcome the deficit. In other words, the capped bill approach penalises the benefits from the market625

and does not create any financial disadvantages for the market participants. Therefore, the capped bills626

method is recommended with the proposed market. The model assumes accurate reporting of flexible627

and inflexible energy by agents and access to the storage devices, which may not always be feasible.628

Nevertheless, the results present a positive step towards promoting community energy markets.629

Evaluation of the proposed market is performed using agent-based simulations for a community630

with 50 agents over 29 days. The market simulated is an-hour-ahead trading market. Simulated energy631

profiles based on CERT model [43] are used with average grid prices from OFGEM [44,45]. Several632

market settings are evaluated by varying the prosumer ratio in the community without storage, and633

then fixing this ratio and varying the ratio of storage among the prosumers. Furthermore, all the634

variations for the simulations with storage or without storage are performed for settings with perfect635

energy predictions and imperfect energy predictions. The results of the setting with perfect energy636

predictions without storage show that consumers and suppliers share the benefits equally. Additionally,637

the number of prosumers in the community influences the benefits. The highest combined benefit for638

consumers and suppliers achieved in the market simulations are for communities with prosumer ratios639

between 40%-60%, which results in average aggregate daily demand savings and supply profit of £3.5640

each. The same prosumer ratios also result in the highest average daily community net bill deficit641

of around £0.75. However, the results of the setting with imperfect energy predictions also without642

storage show the effect of the secondary market and the billing method to overcome the deficit and643

create a surplus. Still, prosumer ratios between 40%-60% result in the highest average daily community644

net bill surplus of £2 when bills are capped. The average aggregate daily demand savings drops to645

£1.9, and the average aggregate daily supply profit drops to £2.5 due to fees caused by uncertainties in646

supply and demand.647

The results of introducing storage to the proposed market model are interesting. In the setting648

with perfect energy predictions with storage, flexible agents reduce the community net deficit through649

minimising the inflexibility of their supply and demand. With a community with 40% prosumers, the650

average daily community net bill deficit drops from £0.75 to £0.6 with 20% of prosumers having 3 kWh651

storage devices and down to £0.2 with all prosumers having 10 kWh storage devices. Furthermore,652

the market simulations with storage show more shares of the financial benefits go toward suppliers,653

which is desirable, given their investments in renewable generation or storage technology. Also using654

a community with 40% prosumers with perfect predictions, the average aggregate daily supply profit655

increases from to £3.5 without storage, to £8.5 when all prosumers have 10 kWh storage devices. On656

the other hand, the average aggregate daily demand savings drops from £3.5 without storage, to £0.5657

with all prosumers having 10 kWh storage devices. The setting with perfect predictions with storage658

show an increase in the total community benefits up to 48% compared to the same setting without659

storage. Moreover, the ratio of supply in the total community benefits increases from 50% to a range660

between 60%-94% depending on the storage ratio and capacity.661

In the setting with imperfect energy predictions with storage, the proposed secondary market662

and bill methods still overcome the deficit and create a surplus. However, flexible agents reduce the663

community net surplus because of lower uncertainty and benefits gained from the secondary market.664

Storage is a primary reason for reducing the uncertainty of energy predictions as the proposed model665

uses the current state of charge for the next round’s offers. The results show that storage reduces666

the average daily community net bill surplus from £2 without storage, to £0.4 when all prosumers667

have storage. Furthermore, the setting with imperfect predictions also shows that storage shifts the668
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financial benefits towards suppliers. The average aggregate daily supply profit increases from £2.3669

without storage, to £8 when all prosumers have 10 kWh storage devices. In contrast, the average670

aggregate daily demand savings decreases from £1.9 without storage, to £0.4 when all prosumers have671

10 kWh storage devices. Moreover, the ratio of supply in the total community benefits increases from672

54% to a range between 66%-96% depending on the storage ratio and capacity. The proposed market673

model provides opportunities for flexible suppliers to benefit through the auction mechanism and the674

secondary market. However, the results show that having all suppliers as flexible with large storage675

capacities tend to make the demand savings insignificant in comparison. Therefore, a combination of676

flexible and inflexible suppliers is suggested to maintain motivation for consumers. Variations in the677

fixed parameters could modify the results obtained, but it not believed to change the overall trends.678

Additional simulations for the scenarios with storage were conducted with changed prosumer ratios,679

and similar results were achieved.680

Finally, the proposed market model presents a design of a community energy market to incentivise681

supply and energy storage investments and account for uncertainty in supply and demand. In general,682

a mix of prosumers with storage, prosumers and consumers, creates an ideal setting for the proposed683

market model where the benefits are shared in that order. Uncertainty in supply and demand is684

expected, but not at extreme levels where the market predictions become irrelevant, and most energy685

is exchanged in the secondary market. Although the net bill deficit/surplus is reduced by adding686

storage at the prosumers’ level, the net bill is not balanced completely. Further studies are therefore687

necessary to determine fair mechanisms of distributing the community net bill in both deficit and688

surplus states. Due to the complexity of the proposed market model, this research kept the agent689

strategy simple. However, future work will explore more sophisticated strategic behaviour and690

cooperative game-theoretical approaches. Moreover, the complexity of the model will be improved691

through incorporating electric vehicles, which not only influence the energy needs, but can also act as692

storage devices and means for transporting energy.693
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