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ABSTRACT

Multi-agent resource allocation is an important and well-studied
problem within Al and economics. It is generally assumed that the
quantity of each resource is known a priori. However, in many real-
world problems, such as the production of renewable energy which
is typically weather dependent, the exact amount of each resource
may not be known at the time of decision making. In this paper
we investigate fair division of a homogeneous divisible resource
where the available amount is given by a probability distribution.
Specifically, we study the notion of ex-ante envy-freeness, where,
in expectation, agents weakly prefer their allocation over every
other agent’s allocation. We analyse the trade-off between fairness
and social welfare. We show that allocations satisfying ex-ante
envy-freeness can result in higher social welfare compared to those
satisfying ex-post envy-freeness. Nevertheless, the price of envy-
freeness is at least Q(n), where n is the number of agents, and this
is tight under concave valuation functions. Principally, we show
that the problem of optimising ex-ante social welfare subject to
ex-ante envy-freeness is NP-hard in the strong sense. Finally, we
devise an integer program to calculate the optimal ex-ante envy-free
allocation for linear satiable valuation functions.
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1 INTRODUCTION

We consider the problem of dividing a homogeneous resource
among interested agents in a fair manner without using payments.
This problem has a wide range of applications such as the alloca-
tion of electricity, estate, storage space, bandwidth or processing
time [12, 27, 33]. Among the various in the literature introduced
notions of fairness, envy-freeness has received a lot of attention in
social choice theory [9, 14]. This natural criterion requires that no
agent prefers another agent’s allocation over his/her own. While
obtaining envy-freeness is trivial for homogeneous divisible goods,
we are also interested in maximising social welfare (i.e. efficiency)
and understanding the trade-offs between them. In addition, we
consider, for the first time, these two problems when the amount of
available resource is ex-ante uncertain. In this case the allocations
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are conditional on the events (i.e. the amount of available resource)
and this allows us to distinguish between two notions of envy-
freeness and efficiency: ex-ante, i.e. in expectation based on the
probability distribution, and ex-post, i.e. at the time of consumption.

A particular example of interest is that of local energy exchange
markets [24]. In these communal markets fairness plays a major
role. Furthermore, the amount of available energy is uncertain due
the variable production of renewables [22, 32].

The literature on fair division of resources is extensive but mainly
focuses on the allocation of bundles of items or heterogeneous re-
sources [6, 11]. One reason for this is that, without payments or
uncertainty, the envy-free allocation of a homogeneous good is
trivial and consists of giving every agent the same amount [12].
Even with uncertainty, ex-post envy-freeness would generally re-
quire equal distribution in all events and therefore inhibits ex-ante
social welfare improvements. However, relaxing envy-freeness to
only hold in expectation allows social welfare improvements in ex-
pectation. The following example shows that an ex-ante envy-free
allocation can achieve more ex-ante social welfare than the ex-post
envy-free solution.

Example 1.1. Consider a renewable energy setting where 2 agents
share a photovoltaic system. They want to plan for the next day to
be able to acquire further electricity from other sources if necessary.
The weather forecast for the next day has the weather as one of two
events; event w; is that the day is cloudy which occurs with a prob-
ability of 2/3, whereas event w; is that the day is sunny which occurs
with a probability of !/3. Based on these weather predictions, the
photovoltaic system produces an amount of 0.2 kWh and 0.4 k<Wh
of energy, respectively. The two agents are interested in electricity
and value it according to the valuation functions v1(x) = % - X
for 0 < x < 0.3, v1(x) = 5 for x > 0.3, and va(x) = ﬁ - x for
0 < x < 0.2 and va(x) = 1 for x > 0.2 (see Figure 1a). The objective
is to find an ex-ante allocation. In all three cases, the next day the
agents would get deterministically the allocation associated with
the event (the actual weather).

In the social welfare maximising allocation, agent 1 would get
everything in the first event and 0.3 kWh in the second, while
agent 2 gets the remaining 0.1 kWh (see Figure 1b), resulting in an
expected social welfare of 41—18. In contrast, giving equal amounts to
both agents in both cases (see Figure 1c) achieves an expected social
welfare of 2%. Since this allocation gives both agents the same in
both events, it is both ex-ante and ex-post envy-free. Now, consider
the allocation where the first agent gets 0.075kWh in the first event
and 0.3kWh in the second event, and the second agent gets the
remaining energy each time (see Figure 1d). For the first event
agent 1 values his and the other agent’s allocation at % and 21—12
respectively. For the second event, agent 2 values his and the other
agent’s allocation at % and 1. Hence, the allocation for neither of
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(a) The agents’ valuation func- (b) The efficient allocation uncon- (c) The ex-post envy-free alloca- (d) An ex-ante but not ex-post

tions in the example. strained by envy-freeness.

tion. envy-free allocation.

Figure 1: The allocations of the example. In each case, the bars are the two events, w; and w; with an available amount of 0.2 k<Wh
and 0.4 kWh, respectively. The patterns and numbers inside the events refer to the allocations to the agents. The diagonal lines
indicate an allocation to agent 1 and the dots indicate an allocation to agent 2.

the events is ex-post envy-free. In comparison, considering ex-ante
valuations, agent 1 values his own and the other agent’s allocation
at 2% and lg—}1 respectively, and agent 2 values his own allocation as
well as the other agent’s allocation both at % Hence, the allocation
is ex-ante envy-free and has with 3% an ex-ante social welfare
higher than that of the ex-post envy-free allocation.

The example highlights how the allocation illustrated in Fig-
ure 1d utilises that the allocation can vary between the events.
This allows increased ex-ante social welfare in comparison to the
allocation illustrated in Figure 1c.

Related to our work, Feige and Tennenholtz [12] showed how to
use a relaxation of fairness to hold in expectation to improve the ex-
ante social welfare of a fair allocation by introducing randomisation
of allocations. However, they not only use a different fairness mea-
sure but their mechanisms are uniform lotteries over equally sized
allocations of the same resource amount, while in our setting the
probability distribution is given exogenously and the events signify
different amounts of available resource. Furthermore, in contrast
to their lotteries, we use deterministic (conditional) allocations to
improve ex-ante social welfare under ex-ante envy-freeness. While
efficiency can be improved by considering ex-ante envy-freeness,
there remain intrinsic trade-offs between envy-freeness and effi-
ciency. To this end, we derive the price of envy-freeness [5] which
measures the ratio of the (unconstrained) efficient allocation to the
efficient allocation subject to ex-ante envy-freeness. Principally, we
analyse the complexity of maximising ex-ante efficiency subject to
ex-ante envy-freeness. Finally, we devise an integer program for
linear satiable valuation functions using linearisation techniques.

Contributions. We present a new problem of fair division of a
homogeneous resource with uncertain availability. For this setting,
we show that:

(1) Ex-ante allocations are ex-ante efficient if and only if the
allocations are ex-post efficient (Lemma 4.1). This means that
efficient allocations can be easily calculated for reasonable
valuation functions.

(2) Ex-post envy-free allocations are also ex-ante envy-free
(Lemma 5.2). However, the opposite is not necessarily true

which means that there are settings where ex-ante envy-
free allocations can achieve a higher ex-ante efficiency than
ex-post envy-free allocations (see Example 1.1).
The social welfare of the ex-ante efficient allocation under
ex-ante envy-freeness can be substantially smaller than the
welfare of the (unconstrained) ex-ante efficient allocation.
To be precise, the price of envy-freeness has a lower bound
of Q(n) (Theorem 6.4), where n is the number of agents,
which is asymptotically tight for concave valuation functions
(Theorem 6.5).
The problem of maximising the ex-ante social welfare under
ex-ante envy-freeness is strongly NP-hard even for continu-
ous and concave valuation functions, and uniform probabili-
ties (Theorem 7.2).
(5) We devise an integer program to calculate the optimal ex-
ante envy-free allocation for linear but satiable functions
(see Equations 1 - 4 in Section 8).
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The first three results are obtained by relatively straightforward
arguments and/or constructions. The insights they provide are nev-
ertheless valuable. The proof of the intractability is rather involved
and is the most interesting from a technical perspective.

In the remainder of this paper we discuss related work, formally
introduce the model, and provide our results in the aforementioned
order. Due to space limitations some proofs are omitted or sketched.
Most of these proofs are either straightforward to obtain or tech-
nical but the meaning of the statements are intuitively clear and
sufficient to explain the proofs of the main theorems.

2 RELATED WORK

Computational social choice is a prosperous research field and
fair division is certainly within its core [6]. However, our prob-
lem is related to and has features of a wide array of problems and
areas. From within the field of fair division these include cake cut-
ting [28, 29] and estate or land division [27], and, from related fields,
divisible auctions, divisible task scheduling [17, 25] and packing
problems [30]. We have motivated our model by the requirements
and constraints of local energy markets with renewable energy
sources but this model can be applied to other important areas
including emission permits for greenhouse gases [1], fair load shed-
ding [26], and uncertain computational resources [3, 18].



As mentioned, the work of Feige and Tennenholtz [12] on a
single homogeneous divisible resource is the most closely related
to our work. However, in contrast to our consideration of envy-
freeness, they are using a fairness criterion that adapts the concept
of proportionality which ordinarily means each agent gets at least
one n-th of his total utility. Additionally, there are other works
on divisible goods, where these usually consider several divisible
items [6, 20, 27] or auctioning the divisible resource [19, 21].

Gajdos and Tallon [15] study the relationship of ex-ante and
ex-post envy-freeness under ex-ante efficiency when agents have
different perceptions of the availability. They focus on two very
simple cases where the amount of resource is equal for all events.
They show that, for their setting, ex-ante optimal allocations are
included in ex-post optimal ones and that ex-post envy-free allo-
cations are a subset of ex-ante envy—free solutions. In contrast, we
show that ex-post and ex-ante efficiency are the same when we do
not require envy-freeness, and quantify the degradation of ex-ante
efficiency from ex-ante envy-freeness as well as the complexity of
calculating ex-ante envy-free efficient allocations.

The important area of cake cutting, in contrast to our homoge-
neous resource, considers a heterogeneous resource. Bei et al. [4]
show that, for the measure of proportionality, efficiency is NP-hard
to approximate within a factor of Q('/yr) for general piecewise con-
stant valuation functions and they give a PTAS for linear functions.
Furthermore, Chen et al. [9] develop fair cake cutting algorithms
focusing on piecewise uniform valuation functions.

Another extensive field is that of indivisible goods where whole
items have to be assigned [31]. However, this area is different as
envy-free allocations do not have to exist, and determining their
existence is already hard [6].

For the welfare loss of envy-free allocations we use the price
of envy-freeness. This measure was introduced by Bertsimas et al.
[5] for resource allocation problems. Furthermore, it has been used
to quantify the degradation of efficiency in cake cutting by, for
example, Aumann and Dombb [2], and [8].

Finally, the problem considered in our work has similarities to
several other areas. These include estate division [27] where parties
have claims on the items, and land division [29] which is cutting
across two dimensions. Furthermore, in scheduling, especially with
divisible tasks, jobs have to be assigned to machines which is similar
to agents getting resource from the events [10, 13, 25]. Additionally,
allocating the resources is also close to packing problems [30],
although this usually considers equal sized containers which differ
from our events with different available amounts.

3 PRELIMINARIES

There are n € N agents which are interested in a resource whose
actual amount is uncertain. The uncertain amount of the resource
is represented by a random variable X € [0,1] (X : Q — [0, 1]) with
a finite number of events m := |Q| with Q C [0, 1] and probability
mass function f. Note that, for simplicity, we have overloaded our
notation for events and let w := X(w) for v € Q. The allocation
of the resource to the agents is represented by the vector A =
(a1, az, . ..,an) where the allocation to an agent i is a function a; :
Q — [0, 1]. An allocation A is valid if it satisfies these two validity
constraints: positivity that implies a;(w) > 0 Vi € [n], Yo € Q, and

respecting the maximal amount that implies 3’ ;[ ai(w) < @ Vo €
Q. It is important to notice that allocation functions are conditional
on the events. Let # c [0, 1] be the set of all valid allocation
functions and let A = F" be the set of all valid allocations.

An agent i € [n] values the amount of received resource accord-
ing to a monotonically increasing valuation functionv; : [0,1] —» R
which also satisfies non-negativity (v(x) > 0 Vx € [0, 1]) and no
valuation for zero (v(0) = 0). The monotonicity reflects that agents
can drop excess resource which does not decrease their valuation.
Let © c RI%! be the set of all valid valuation functions. Addition-
ally, let V; : ¥ — R denote an agent i’s utility given an allocation
function which is equal to the expected valuation of the allocation
function, that is, Vi(a;) := X, eq vi(aj(w))f(w) for any j € [n]. We
note here, for motivational reasons, the valuations are not scaled to
not give all the agents the same weight. Moreover, normalisation is
non-trivial in our setting and would not affect the negative results.

The goal is, given the agents’ valuation functions, to find a valid
ex-ante envy-free allocation A, that is an allocation where, in terms
of utility, an agent weakly prefers his allocation over every other
agent’s allocation, Vi(a;) > Vj(aj) for all i,j € [n], such that A
maximises ex-ante social welfare W(A) := 3. ;¢ Vi(a:). This is in
contrast to ex-post envy-freeness that implies v;(a;(w)) > vi(a;(w))
for all i,j € [n], and the maximisation of ex-post social welfare
Yie[n] vi(ai(®)) with respect to one event w € Q. We note that,
henceforth, any reference to envy-freeness or social welfare without
preposition refers to the respective ex-ante notion. Furthermore,

an allocation of maximum social welfare is called efficient.
W(AE(9))
W(Agr(9))
where Ag is an unrestricted ex-ante efficient allocation and AgF is

an ex-ante envy-free and efficient solution. It expresses the degrada-
tion of efficiency due to the enforcement of ex-ante envy-freeness
and a higher value indicates a higher efficiency loss.

Finally, the price of envy-freeness is the ratio maxgcg

4 EFFICIENT ALLOCATION

We begin by focusing on the efficiency of unconstrained allocations,
i.e. when not requiring ex-ante envy-freeness. We show that any
efficient allocation is also ex-post efficient and vice versa, which
means that, under concave valuation functions, an efficient solution
can be found in polynomial time. This gives us a reference for the
price of envy-freeness and also for any future approximation.

LEMMA 4.1. An allocation is ex-ante efficient if and only if the
allocation is ex-post efficient for every w € Q.

PRroOF SKETCH. By linearity of expectation, ex-post efficiency
implies ex-ante efficiency. For the reverse, we assume for contra-
diction that an allocation A is ex-ante efficient but not ex-post
efficient for a number of events ¥ C Q. Using A and an allocation
A = (a,...,a}) that is ex-post efficient for every w € ¥, ie.
Zie[n] vi(ai(®)) > Yie[n) vi(ai(w)), we create allocation A” with
aj(w) = aj(w)if o ¢ ¥ and a}(w) = af (w) if © € ¥. Efficiency of A®
for all @ € ¥ and linearity of expectation imply that A” has a higher
social welfare than A. Hence, A cannot be ex-ante efficient. ]

Therefore, we can construct an ex-ante efficient allocation by
using the ex-post efficient allocations for every event. This calcula-
tion for one event can be represented as an optimisation problem
with the ex-ante social welfare as the optimisation function and



two linear constraints which require that the allocation does not
exceed the available amount and that it is not negative for any
agent. Hence, we have that, for concave valuations functions, the
optimisation function is concave and the problem can be solved
in polynomial time within some restrictions [7]. Since there are m
events we can find the entire allocation in polynomial time.

5 ENVY-FREE ALLOCATION

In contrast to the unconstrained efficiency of the previous section,
allocations for the envy-freeness constraint problem can vary sig-
nificantly. Our result is that there is always an envy-free allocation
where all resources are allocated, denoted as equal share allocation:

Definition 5.1 (Equal Share Allocation). The equal share allocation
Ags is the allocation with a;(w) = € for all i € [n] and w € Q.

In order to establish that this allocation is envy-free we prove
that, for envy-freeness, the set of ex-post allocations is a subset of
the set of ex-ante allocations.

LEMMA 5.2. If an allocation function is ex-post envy-free for every
w € Q, it is also ex-ante envy-free.

Proor. Let A € A be a valid allocation satisfying the lemmas
statement, i.e. vi(a;(w)) > vi(aj(w)) for alli,j € [n] and w € Q.
Then, Vi(ai) = Xpeq vi(ai(o))f(w)
> Yie[n] Lweq vi(aj(w)f(w) = Vi(a)), Vi, j € [n]. m

Note, the opposite is not necessarily true and this is exactly
why it is possible to find allocations with increased ex-ante social
welfare. Additionally, since the equal share allocation is trivially
ex-post envy-free, it is also ex-ante envy-free by Lemma 5.2.

COROLLARY 5.3. The equal share allocation is ex-ante envy-free.

6 PRICE OF ENVY-FREENESS

We next consider the extent to which both efficiency and envy-
freeness can be achieved. Specifically, we show in Theorem 6.4
that, without restricting the valuation functions, the price of envy-
freeness is at least in the order of the number of agents. This follows
since, in the case of linear and non-equal valuation functions, the
most efficient solution is to give everything to one agent (see Lemma
6.2), and that, under ex-ante envy-freeness, it is not possible to
achieve a higher efficiency than the equal share allocation (see
Lemma 6.3). Finally, we show that the bound is asymptotically tight
for concave valuation functions (see Theorem 6.5).

For this section, we assume all valuation functions are linear, i.e.
vi(x) = ¢; - x with ¢; € Ry for i € [n]. Then, an ex-ante efficient
allocation, which we call maximal slope allocation, gives everything
to an agent with the highest slope. The ex-ante social welfare is a
function of the maximal slope and the probability distribution.

Definition 6.1 (Maximal Slope Allocation). A maximal slope al-
location is the allocation where an agent j € arg max; ¢, {ci} gets
all of the resource.

LEMMA 6.2. A maximal slope allocation is efficient and has an
ex-ante social welfare of ¢j - E[X] for j € arg maxie[n]{ci}.

In comparison, the maximum possible social welfare under envy-
freeness is achieved by the equal share allocation and is a function of

the average of the slopes of all agents. This demonstrates that there
is an inherent trade-off between social welfare and envy-freeness.

LEMMA 6.3. No ex-ante envy-free allocation can have more ex-ante
social welfare than mean; ¢ {ci} - E[X] which is matched by the
equal share allocation.

Proor skeTcH. The key point is that under linearity of the val-
uations ex-ante envy-freeness implies that the expected allocations
are the same, i.e. E[a;] = E[a;] for all i, j € [n]. Hence, the ex-ante
social welfare is determined by the allocations and the average
slope, i.e. W(A) = n - mean;¢[,){ci} - E[ag] for any k € [n]. Then,
since every allocation is limited by the available amount, we have
that n-E[ag] < E[X] which implies the claimed limit on the achiev-
able ex-ante social welfare. It is straightforward to show that this
is matched by the equal share allocation. O

Finally, we construct an instance for the price of envy-freeness.

THEOREM 6.4. The division of a homogeneous resource has a price
of envy-freeness of Q(n).

ProoF. Let X be arbitrary but have at least one event with pos-
itive amount and probability. Let the valuation function of the
first agent be v1(x) = 2x and the remaining valuation functions
vi(x) = ﬁ -x for i € {2,...,n}. Then, the ratio of the effi-
cient to the envy-free allocation is, by Lemma 6.2 and 6.3, (c; -

E[X])/(mean;e[,){ci} -E[X]) = 2/3-n which implies the claim. O

For arbitrary valuation functions the upper bound can be un-
bounded. However, for the realistic assumption of concave valua-
tion functions the bound is asymptotically tight.

THEOREM 6.5. For concave valuation functions, the division of a
homogeneous resource has a price of envy-freeness of at most n.

The results of the theorems 6.4 and 6.5 are the same as the bounds
for every event ex-post. However, the results of the theorems extend
the ex-post results by showing that irrespective of the probability
distribution, the results also holds ex-ante. In other words, the
bounds confirm that there is still no worst-case improvement.

7 COMPLEXITY

The results from the previous section show that, for linear valuation
functions, equal share already attains maximum possible efficiency.
However, Example 1.1 shows that, if the valuation functions of
some of the agents are non-linear, there are allocations with higher
ex-ante social welfare. Hence we ask: how difficult would it be to
find more efficient allocations in general. We show that the problem
of maximising ex-ante social welfare under ex-ante envy-freeness
is strongly NP-hard. In order to prove this we consider the decision
version of our problem which we call decision version of uncertain
amount fair division (D-UAFD).

Definition 7.1 (Decision Version of Uncertain Amount Fair Division
(D-UAFD)).
Instance: (X, (vi);¢[n], B) where X : Q — [0, 1] with finite
Q ¢ [0, 1]is adiscrete random variable, (v;);¢[p) Withv; € ©
are valuation functions and B € R is a bound.
Problem: Does there exist a valid allocation A = (a;);e[n] €
F" such that Vj(a;) > Vi(a;) for all i, j € [n] and W(A) > B.



0, 7, V; and W(A) are defined as in the preliminaries.
THEOREM 7.2. D-UAFD is NP-complete in the strong sense.

We prove this by reducing from the 3-partition problem, that is
known to be NP-complete in the strong sense [16].

Definition 7.3 (3-Partition Problem).

Instance: (S, B), where S C N is a finite multiset of 3m ele-
ments s1 . . .3, and B € Z* is a bound such that B/4 < s; <
B/2 Vi€ [3m] and };¢[3m) Si = mB.

Problem: Can S be partitioned into m disjoint subsets
S1,...>Sm such that ¥, cs, x = Bforalli € [m].

(Notice that the item size requirements imply that each subset must
contain exactly 3 elements.)

We reduce a given instance of 3-partition problem to an instance
of our fair distribution problem which we call envy partition instance.
In short, we scale the 3-partition instance down and transform it
into an instance of D-UAFT where the sets are the events and the
3-partition elements are the agents. To achieve this, the agents’
valuation functions are chosen so that the opposing goals of envy-
freeness and efficiency require that every agent gets allocated ex-
actly the amount specified by the corresponding 3-partition element
in a single event. Therefore, allocating this amount to the agents
corresponds to choosing a set for the corresponding 3-partition
element. Additionally, to address that every event has to have a
different amount, we slightly increase the size of the events and
add additional agents who desire exactly these amounts.

Definition 7.4 (Envy Partition Instance). An envy partition in-
stance (X, (vi);e[n], B') is an instance of D-UAFD constructed given
a 3-partition instance (S, B) in the following way. We assume with-
out loss of generality that the 3-partition elements are ordered in a
non-decreasing way, i.e. s < 53 < ... < s3.

Firstly, there are 4m agents in total; i.e. n = 4m. The agents
m+1,...,4m correspond to the elements of the 3-partition instance.
The remaining m agents correspond to both the partitioning subsets
of the 3-partition instance and the events as defined for this instance.
In particular, let s] := si/imp) for all i € [3m], let ¢ be chosen such
that 0 < £ < 2/(m*B(m +1), and let Z := 2;’;1 i - €. Then the valuation
functions are defined as follows.

0 ifx<0
vi(x)=14i-x if0<x<3§;
i-S; if x > §;
N i€ ifi<m
with§; =4 . )
Si_m ifm+1<i<4m

for i € [4m]. We refer to §; as agent i’s saturation amount. Note
that $;’s are weakly increasing in i.

The second step is the construction of the random variable
X. The set of events consists of m elements which are of size
% plus an additional small and increasing offset. Formally, Q =

{w1,...,0om} = {% + ¢, % +2-6..., % +m~s}A Additionally,
our random variable is uniformly distributed, i.e. has the prob-
ability mass function f(w) = ﬁ = % for all w € Q. Note that

2weqw =1+Z=Yc[am)Si-

Finally, B’ = L . y3m i-sl+ £ (2m?+3m+1) +1.

This construction can be done in polynomial time, the con-
structed instance is of polynomial size, and the constructed values
are polynomial in the values of the 3-partition instance.

Given the constructed envy partition instance, we first show
that an allocation A achieves the required social welfare B’ and
satisfies ex-ante envy-freeness only if it allocates to each agent,
except maybe agent 1, his saturation amount in exactly one event
and zero in all other events; that is, a;(w”) = $; for one w’ € Q and
ai(w) = 0forall w € Q\{w’}. We then show that such an allocation,
satisfying envy-freeness and having social welfare of at least B’,
exists if and only if a 3-partition exists.

Intuitively speaking, to maximise social welfare we need to give
the agents with higher index larger allocations, as they have higher
valuations, but we cannot allocate to them too much as then the
agents with lower index will envy them.

For the purpose of our proof, we introduce a new representation
of an allocation which we call allocation by pieces. In this repre-
sentation, we allocate up to the entire amount of resource over all
events ), ,cqo @ = 1+ Z to agents as pieces, independent of the
events. Each agent receives m pieces. We then map events to pieces.

Definition 7.5 (Allocation by Pieces). An allocation by pieces con-
sists of functions a‘? : [m] — [0, 1] for each agent i € [4m] such
that 0 < af (j) < §;, Vj € [m] and ¥;e(n) Xjefm) @/ () < 1+ Z, and
a function ® : [n] X Q — [m] where ®(i, w) # ®(i,w’), Vi € [n],
Yo # o' € Q.

Social welfare and envy-freeness for af ’s are defined as in the pre-

liminaries. Furthermore, an allocation by pieces is valid if af (®(i, w))
is valid Vi € [n],Yo € Q, where validity is defined as in the

preliminaries. Given ali’ ’s and given a @, we say that ® is valid

if af(cb(i, w))’s are valid.

We will show that taking any allocation by pieces and modifying
it so that the pieces for a given agent i are reduced to a number
of pieces of size §; and maximum one piece of size less than §;
(see Definition 7.7) does not change social welfare (see Lemma 7.8).
Furthermore, if af ’s are ex-ante envy-free and a valid ® exists then
a[;(d)(i, w))’s are ex-ante envy-free (see Lemma 7.9).

Note that an agent’s valuation in any given event does not in-
crease after reaching his saturation amount. Therefore, reducing
his allocation to his saturation amount and changing nothing else
maintains the social welfare and envy-freeness.

PROPOSITION 7.6. It suffices to consider allocations A with a;(w) <
$i foralli € [n].

From now on we only consider allocations in which each agent
receives in each event at most his saturation amount.

Any allocation A = (ay, ..., ay) is equivalent to the allocation
by pieces AP with a‘i)(j) = a;j(wj) and ®(i, ;) = j. Considering the
whole amount of the allocation, we can observe that the pieces can
be reduced to a number of pieces allocating exactly the saturation
amount and at most one piece with less than the saturation amount.
This means that we can create a new allocation by pieces which
allocates to each agent the same total amount as in A. We denote
this allocation as total amount allocation.



Definition 7.7 (Total Amount Allocation). An agent i’s allocation
can be represented as a total amount allocation A; = n; - §; +d; with
0 < d; < §;. This corresponds to the allocation in pieces af(j) =5;
for j € [n;] with n; € ([m] U {0}) and ’ (n; + 1) = d;.

Given an allocation by pieces, a total amount allocation can
be created in a stepwise manner. For example, assume that agent
i has two pieces (1, 2) below his saturation amount and that his
allocation under 1 is weakly less than his allocation under 2; i.e.
af(l) < a’i)(Z) < §;. Then it is possible to reduce the allocation by
d := min{a’ (2),5; — a’(1)} in piece 2 (' (2) = o (2) + d) and
increase it in piece 1 (a‘?/(l) = af/(l) +d).

We remark again that we ignore ® here. Generally, a valid ®
does not have to exist for all total amount allocations. However, the
aim is to show that for any allocation to achieve a social welfare
of B/, any agent i’s allocation has to be exactly §; in one event and
zero in all other events. This is independent of the choice of the
event in which the agent gets his saturation amount. In this respect,
the total amount allocation is suitable since its social welfare is the
same as the social welfare of the allocation it is based on, and if the
original allocation is ex-ante envy-free and a valid ® exists, then
the allocation (a’i’ (@i, ®)))ie[n],weq is also ex-ante envy-free. The
social welfare is unaffected since the valuation functions are linear.

LEMMA 7.8. The ex-ante social welfare of an allocation and its
representing total amount allocation are equivalent.

The envy-freeness of (af(fb(i, ®)))ie[n],weq can be argued with
the shifts to create a total amount allocation. An agent i is indifferent
between the allocation before and after a shift since he receives the
same amount in total and all events are equally likely. Every other
agent j’s utility of agent i’s allocation after the shift is weakly less
than before the shift, since it is the same amount but all utilities are
subject to agent j’s saturation amount. Hence, the difference in the
ex-ante envy-freeness inequalities can only increase.

LEMMA 7.9. Ifaf ’s are ex-ante envy-free then the total amount
allocation is ex-ante envy-free.

LEmMA 7.10. Ifa‘? ’s are ex-ante envy-free and a valid ® exists then
(ai (@3, w))ie[n],weq is ex-ante envy-free.

The following lemmata are used in the shifting procedure in the
proof of Theorem 7.2. If any shift based on the following lemmata
ends in an allocation for which a valid ® exists then by Lemmata
7.9 and 7.10 we have reached an envy-free allocation.

LEMMA 7.11. Fixing an allocation A and an agent 1 < k < 4m, if
all agents i wherei < k have a total amount allocation of A; = $; and
agent k’s total amount allocation is Ay > Sy, then shifting allocation
to create allocation A’ such that any excess is shifted to the next agent,
ie. Al =8 and Al | = Apyq + Ay — 8y, increases social welfare.

Envy-freeness stipulates that, if an agent receives less than his
saturation amount, then all agents of higher index also receive less
than their saturation amounts.

LEMMA 7.12. Fortwo agentsi, k € [4m] withi > k, ifagentk has a
total amount allocation of less than, or equal to, his saturation amount,
i.e. Ap < Sy, then the same must be true for agent i, i.e. A; < §;. The
same holds for the strict case, i.e. if A < Si then A; < §;.

Further, envy-freeness imposes the following conditions on ®.

LEMMA 7.13. If for an envy-free allocation every agent has an
allocation of once his saturation amount then agents 2, . . ., 4m have
to have their saturation amount in exactly one event or piece.

Proor skeTCH. If the allocation of §; for i € [n]\{1} is in one
event, the utility of agent 1 for the allocation of agent i will be §;
(the remainder $; — §1 is of no value to him). If §; is split between
two or more events, then agent 1 will receive some additional utility
from §; — §; and hence his utility for agent i’s allocation will be
more than $;, implying that agent 1 envies agent i’s allocation. O

Finally, we are able to prove the main theorem.

Proor or THEOREM 7.2. Itis easy to see that given an allocation,
we can calculate the social welfare and verify the envy-freeness
in polynomial time. Therefore D-UAFD is in NP. To prove NP-
completeness, we show that the constructed envy partition instance
(see Definition 7.4) is a yes-instance if and only if the given 3-
partition instance is a yes-instance.

First, consider the case where there is a valid partition Sy, . . ., Sp,
for the 3-partition instance. Consider the allocation A where for
s; € Sj agent i + m is allocated $;+pm, in w; for all i € [3m] and for
i € [m] agent i gets assigned §; in w;. Recall that §;1,, = slf = %
Vi € [3m], and §; = i.e Vi € [m]. It is thus easy to verify that
allocation A is valid as Zs,-esj s; = Zs,-esj % = % The utility for
an agent i € [n] with respect to his own allocation is V;(a;) = # -Si,
and his utility with respect to the allocation of agent j € [n] is
Viaj) = L .5 ifj > iand Vi(aj)) = L -85 < L.gifi > j.
Hence, A is ex-ante envy-free. Furthermore, the sum of the utilities

is Tiefn Vila) = & (z?;"l(i m)eslESm 2 g) - B/, which
concludes this case.

Now, consider the case where there is an envy-free allocation A
with social welfare at least B’ for the constructed envy partition
instance. By Observation 7.6, we can assume that every agent re-
ceives in every event at most his saturation amount. Therefore, A
can be represented as an allocation by pieces (Definition 7.5), and
hence has a total amount allocation representation (A, .. ., A4m)
(Definition 7.7) that has the same ex-ante social welfare as A (by
Lemma 7.8) and is ex-ante envy-free (by Lemma 7.9). This gives us
a framework in which we show that, independent of ®, to achieve
B’ every agent, except maybe agent 1, has to get his saturation
amount exactly once; i.e. aj(w’) = §; for one w’ € Q and a;(w) = 0
forallw € Q\ {w’}, for all agents i, 2 < i < 4m.

Starting from the total amount allocation (Ay, ..., A4mm) and
considering agents one by one in increasing order of indices, we
construct another allocation A’ using the following procedure. If
the current agent i is agent 4m or has a total amount allocation
A;j < §j, we stop. If the current agent i has a total amount allocation
A; > §; the additional amount is shifted to the next agent.

If the procedure reaches agent 4m and no amount has been
shifted, then for each agent i < 4m we have that A; = §; and, by
Lemma 7.12, we have that A4y, < S4m. An allocation where every
agent is allocated exactly his saturation amount has social welfare
of B’. Thus, if Ay < S4m then W(A) < B which contradicts our
assumption. If Ag;, = S4m then, by Lemma 7.13, every agent in A,
except maybe agent 1, is allocated his saturation amount exactly



once in one event. If the procedure reaches agent 4m and some
amount has been shifted during the procedure, then by Lemma 7.11,
W(A’) > W(A). Furthermore, each agent i < 4m is allocated ex-
actly his saturation amount in A’ and the total amount of resource
available stipulates that agent 4m is allocated at most his saturation
amount. An allocation where every agent is allocated exactly his
saturation amount has social welfare of B’. Therefore W(A’) < B’,
and hence W(A) < B’ which contradicts our assumption. If the
procedure stops at an agent i < 4m, then we have that (1) every
agent j < i is allocated exactly his saturation amount in A, and (2)
since A; < §; then, by Lemma 7.12, for each agent j > i we have
that A; < §; and hence each such agent is allocated less than his sat-
uration amount in A’. An allocation where every agent is allocated
exactly his saturation amount has social welfare of B’. Therefore
W(A’) < B’. By Lemma 7.11, W(A”) > W(A), and hence W(A) < B’
which contradicts our assumption. Hence we can conclude that
either each agent, except maybe agent 1, is allocated his saturation
amount exactly once, or W(A) < B’ which is a contradiction.

So far we have established that allocation A is equivalent to
the allocation by pieces AP where af.)(l) = §; and af(i) = 0 for
j € ([m]\{1}), for all i € [4m]\ {1}. In the remainder of the proof
we show that a valid @ exists only if there exists a 3-partition and,
moreover, agent 1 too receives his saturation amount exactly once
in A. Since by assumption A is valid, hence a valid ® must exist and
thus a 3-partition exists and, moreover, every agent receives his
saturation amount exactly once in A.

For easier presentation, we multiply saturation amounts and the
amount of events by mB which results in saturation amounts of
agents m+ 1...4m to be equal to 3-partition elements, which are
all integers, and the amount of resource in each event j € [m] to
be equal to B+ B - m - j - €. Recall that integer B denotes the size of
each set. Furthermore, by the choice of e, B-m - j - ¢ < 1,Vj € [m].

We now investigate what must hold for a valid ® to exist. We first
claim that each agent i with 2 < i < m must be assigned to event i.
For if not, then there must be an event j € [m] with a remaining
unallocated amount of less than B. Hence, since no event has an
amount of B + 1 or more, this implies that we have a total amount
of less than mB that we can assign to agents m + 1. ..4m. But then
these agents’ saturation amounts add up to mB so it impossible to
have these agents assigned. A similar argument holds if agent 1 is
not assigned to event 1, and hence we conclude that each agent
i € [m] is assigned to event i. Therefore, the remaining amount in
each event is exactly B. We have that the saturation amounts of
agents m + 1...4m are equal to their corresponding 3-partition
elements, hence the existence of a valid ® implies that there exists
a 3-partition, which can be directly derived from .

Therefore, the envy partition instance is a yes-instance if and
only if the 3-partition instance is a yes-instance. Finally, since the
envy partition instance can be constructed in polynomial time and
is of polynomial size this concludes the strong completeness. O

8 INTEGER PROGRAM

Unfortunately, the instances of both the NP-hardness proof and the
price of envy-freeness together imply that there is no reasonable
relaxation which allows easy solutions. Essentially, linear functions
do not allow any increase above equal share and, in all other cases,

the envy-freeness is a non-linear constraint. Nevertheless, in this
section we consider linear satiable valuations and formulate an
integer program to calculate the efficient envy-free allocation.

It is straightforward to represent the problem in this work as
an optimisation problem. However, this program, depending on
the valuation functions, may be non-linear and non-concave. In
the setting of linear satiable valuation functions we can rewrite
the utility functions and envy-freeness constraint with minima
functions. These can be transformed into a series of constraints to
reformulate the mathematical program into an integer program to
calculate the optimal envy-free solution.

More explicitly, the linear satiable valuation for agent i € [n] is
defined as vi(x) = “/q; - x if x < q; and v;(x) = u; otherwise, with
saturation amount q; € [0, 1] and maximal value u; € R*.

Like in the proof of Theorem 7.2 the utility of any allocation
depends on the minimum of the agent’s saturation amount and the
allocated amounts. This fact allows us to rewrite the utility as well
as the equations representing envy-freeness.

ProrosITION 8.1. The utility for agent i € [n] with (uj,q;) €
([0, 1], R*) is Vi(a) = ¢F - ZQ min{a(w;), 4i} f (@).
we

PROPOSITION 8.2. The envy-freeness constraint for agents i, k €
[n] is represented by the equation

EF(i, k) = ZQ (min{a;(®), gi} - min{ai (@), gi}) f(w) 2 0

Altogether, we can formulate the problem as the following op-
timisation program with decision variables x;; for i € [n] and

j€[m].

max Z Vi ((xij)je[m]) @
i€[n]

s.t. Z Xij < wj Vj € [m] @)
i€[n]
EF(LK) > 0 Vi k € [n] 3)
xij > 0 Vie([nlje[m] (4

The optimisation function is the social welfare rewritten using
Proposition 8.1. The first constraint limits the allocation x;; for
agent i € [n] in event j € [m] to the maximal available amount. The
second constraint is envy-freeness and the last constraint ensures
only positive allocations are attained.

In this formulation neither the optimisation function nor the
envy-freeness constraint appear linear. However, in a series of
replacements we can replace those with linear constraints and
integer variables.

Firstly, similar to Proposition 7.6 allocating more to an agent
than the saturation amount does not increase the value. Further-
more, it can only negatively affect envy-freeness since the agents’
valuations do not increase but another agent might be envious of
the increased amount. Consequently, we can replace one of the
minimum functions in the optimisation program.

LEMMA 8.3. The expression min{x;;, q;} can be replaced with x;;
and constraint x;j < q; foralli € [n] and j € [m].

The other minimum in the envy-freeness equation, min{xy;, gi},
cannot be replaced that easily. We apply linearisation techniques



and replace the minimum function with three more types of vari-
ables and a number of constraints. An overview of linearisation
techniques can be found for example in the work by Liberti [23].

Firstly, we substitute the minimum function min{xy, q;} with
a variable xlij. Secondly, we use a second integer variable y]icj to
ensure that the substitution is valid.

Lemma 8.4. The equation x; . = min{xy;,qi} foralli,k € [n],j €

i
ki . 4
[m] holds for constraints q; - y;cj < x;cj < qiandxp;-(1- yllcj) <

i ; i
X < xgj with Yy € {0, 1}.

The general idea behind the technique is as follows: for the
equation to hold, the variable x]icj has to be smaller than both values

in the minimum; yet at the same time it also has to be greater than
one of the two, i.e. be exactly of that value. By setting yI’C . to one or
J

zero we can tighten one or the other constraint to be of the minimal
value. Considering the four cases of the two possible values of the
minimum and the two possible values of yllcj, one can see that yllcj

can only be chosen so that the equation x; . = min{xy, g;} holds.

i

Tkio
However, the constraint x; - (1 - y]’Cj) < x]lc. still contains a

non-linear expression in the form of a product. We replace that

i . . i . . .
product x Yg; with a new variable 2y which yields constraint

i i .
Xk > Xpj zy and further constraints.

LEmMA 8.5. The equatio.n zli(j = Xgj - y,icj foralli,k € [n],j € [m]
1

holds for constraints 0 < 2L

< xp; and xp; + yl’;j -1< z]i(j < ylicj.

The main observations for the linearisation are that xi; € [0,1]
and that ylicj is binary. This implies that z;;j has to be smaller than

both factors. Furthermore, the constraint xy ; + y,icj — Lis either xy;

or non-positive and therefore assures that the result holds.
Finally, replacing the minimum functions with the variables and
constraints from the Lemmata 8.3, 8.4 and 8.5 yields an integer
linear program. We can verify this by observing that all of the
resulting constraints are linear and we have continuous variables
Xkjs x]ij and z]ic. as well as the binary variables yl’;j, Due to space

limitations we omit the full integer program here.

8.1 Example

We ran a preliminary experiments on random instances to see the
efficiency of the ex-ante envy-free solution. Firstly, the main con-
straint of the optimisation program is the envy-freeness. Computa-
tionally, this is apparent from the fact that increasing the number of
agents increases the runtime significantly more than increasing the
number of events. We selected one example (see Figure 2) where
we show the social welfare of the equal share allocation, the un-
constrained efficient allocation and the ex-ante efficient envy-free
allocation for 30 events and 2 to 9 agents. The events are drawn uni-
formly from (0, 1], the agents’ maximal values are drawn uniformly
from [1, 20] and, in the case of satiable valuations, the agents’ satu-
ration amounts are drawn uniformly from (0, 1]. The plot shows
that the social welfare difference of the unconstrained efficient al-
location and the envy-free allocations increases. However, in the
case of satiable valuations, in comparison to the linear valuations
case, the social welfare is increasing for the envy-free allocations.

— Efficient allocation (satiable)

18 4 ——- Envy-free allocation (satiable)
- Equal share allocation (satiable)
16 1 - - Efficient allocation (linear)

—-- Envy-free allocation (linear)
14

12 4

Social Welfare

Number of Agents

Figure 2: The social welfare of the equal share allocation, the
efficient ex-ante envy-free allocation and the unconstrained
efficient allocation for 30 events and an increasing number
of agents with linear or linear satiable valuation functions.

9 CONCLUSIONS

We consider a fair division variant where the amount of a homoge-
neous resource is uncertain which is reflected by a random variable
over a finite set of discrete events. We show that, while uncon-
strained efficiency optimisation can be solved in polynomial time
for concave and other reasonable valuation functions, this is not
no longer the case if ex-ante envy-freeness is required. In this case,
an ex-ante envy-free allocation always exists but might have a sig-
nificantly worse social welfare than the ex-ante efficient allocation.
More specifically, the price of envy-freeness is tightly bounded
by n for concave valuation functions, where n is the number of
agents. Principally, we show that the problem of finding an ex-
ante efficient allocation under ex-ante envy-freeness is strongly
NP-complete, even under simple continuous valuation functions
and with uniform probability over the events. Finally, we devise
an integer program for the optimal ex-ante envy-free solution for
linear satiable valuations.

The setting presented in this paper invites various directions for
future work. Firstly, our NP-hardness result calls for a polynomial-
time algorithm that approximates efficiency under ex-ante envy-
freeness. Secondly, it would be interesting to investigate the price
of envy-freeness in other restricted classes of valuation functions
(besides linear valuation functions). Thirdly, we have assumed that
the valuations are known. While this makes sense in some settings
it would be of interest to examine the strategic case where agents
can misrepresent their valuation.
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