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ABSTRACT

We introduce a set of global high-resolution (0.058) precipitation (P) climatologies corrected for bias using

streamflow (Q) observations from 9372 stations worldwide. For each station, we inferred the ‘‘true’’ long-term P

using a Budyko curve, which is an empirical equation relating long-term P, Q, and potential evaporation. We sub-

sequently calculated long-term bias correction factors for three state-of-the-art P climatologies [the ‘‘WorldClim

version 2’’ database (WorldClim V2); Climatologies at High Resolution for the Earth’s Land Surface Areas, version

1.2 (CHELSAV1.2 ); and Climate Hazards Group Precipitation Climatology, version 1 (CHPclim V1)], after which

we used random-forest regression to produce global gap-free bias correction maps for the P climatologies. Monthly

climatological bias correction factors were calculated by disaggregating the long-term bias correction factors on the

basis of gauge catch efficiencies.We found that all three climatologies systematically underestimateP over parts of all

majormountain ranges globally, despite the explicit consideration of orography in the production of each climatology.

In addition, all climatologies underestimate P at latitudes.608N, likely because of gauge undercatch. Exceptionally
high long-term correction factors (.1.5) were obtained for all three P climatologies in Alaska, HighMountain Asia,

and Chile—regions characterized by marked elevation gradients, sparse gauge networks, and significant snowfall.

Using the bias-corrected WorldClim V2, we demonstrated that other widely used P datasets (GPCC V2015, GPCP

V2.3, and MERRA-2) severely underestimate P over Chile, the Himalayas, and along the Pacific coast of North

America. Mean P for the global land surface based on the bias-corrected WorldClim V2 is 862mmyr21 (a 9.4%

increase over the originalWorldClimV2). The annual andmonthly bias-correctedP climatologies have been released

as the Precipitation Bias Correction (PBCOR) dataset, which is available online (http://www.gloh2o.org/pbcor/).

1. Introduction

Information about the spatiotemporal distribution of

precipitation P is crucial for numerous scientific, com-

mercial, and operational applications (e.g., Tapiador

et al. 2012; Kucera et al. 2013; Kirschbaum et al. 2017).

Such information can be obtained from three main data

sources: 1) satellites, 2) reanalyses, and 3) P gauges

(Strangeways 2007; Sun et al. 2018). However, all three

sources show reduced accuracy in mountainous and
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snowfall-dominated regions (Roe 2005; Wrzesien et al.

2019). Satellite retrievals are confounded by surface snow

and ice (Kidd et al. 2012; Cao et al. 2018) and there are

major challenges associated with the detection of snowfall

(Levizzani et al. 2011; Skofronick-Jackson et al. 2015).

Reanalyses [e.g., JRA-55 (Kobayashi et al. 2015),MERRA-

2 (Reichle et al. 2017), and ERA5 (Hersbach et al. 2018)]

rely on uncertain parameterizations, and their spatial reso-

lutions may be too coarse ($0.258) to adequately represent

orographic P (Skamarock 2004; Ménégoz et al. 2013; Liu

et al. 2018). Precipitation gauge networks tend to be sparse

or nonexistent and topographically biased toward low ele-

vations in mountainous regions (Briggs and Cogley 1996;

Schneider et al. 2014; Kidd et al. 2017), and gauges can

underestimate snowfall by up to 90% because of wind-

induced undercatch (Groisman and Legates 1994;

Sevruk et al. 2009; Rasmussen et al. 2012).

Observations of streamflow Q have revealed that ex-

isting P datasets—including those explicitly considering

gauge undercatch and orographic effects—underestimate

P inmountainous and snow-dominated regions as a result

of the aforementioned limitations (e.g., Oki et al. 1999;

Fekete et al. 2004; Biemans et al. 2009; Kauffeldt et al.

2013; Beck et al. 2015, 2017a; Immerzeel et al. 2015;

Prein and Gobiet 2017; Alvarez-Garreton et al. 2018;

Ghatak et al. 2018). Recently, several global high-

resolution P climatologies have been developed, such

as WorldClim, version 2 (WorldClim V2; Fick and

Hijmans 2017); Climatologies at High Resolution for

the Earth’s Land Surface Areas, version 1.2 (CHELSA

V1.2; Karger et al. 2017); and the Climate Hazards

Group Precipitation Climatology, version 1 (CHPclim

V1; Funk et al. 2015). These datasets have been spe-

cifically designed to provide highly accurate climatic P

estimates over the entire land surface by combining

disparate data sources. However, the gauge data used

to derive WorldClim V2 and CHPclim V1 have not

been explicitly corrected for undercatch, and, despite the ex-

plicit consideration of orography in the production of each

climatology, comparisons with Q observations suggest that

CHPclim V1 still underestimates orographic P (Beck

et al. 2017b). These underestimations are concerning because

mountainous and snow-dominated regions contribute a large

share of the world’s population with freshwater (Viviroli and

Weingartner 2004; Viviroli et al. 2007).

Only a few, mostly regional, studies have inferred or

corrected P estimates using Q observations (Adam et al.

2006; Salo 2006; Weingartner et al. 2007; Lundquist et al.

2009; Valery et al. 2009; Henn et al. 2015, 2016, 2018; Le

Moine et al. 2015; Koppa and Gebremichael 2017). Several

studies focused on the Sierra Nevada mountain range of

California and demonstrated the value ofQ observations for

improving individual storm estimates through visual time

series comparison (Lundquist et al. 2009) and for inferring

long-term P through hydrological modeling (Henn et al.

2015, 2016, 2018). Two studies focused on the European

Alps:Weingartner et al. (2007) inferred long-termP fromQ

observations using a water balance approach, while Le

Moine et al. (2015) used Q observations to enhance the

interpolation of station-basedP and air temperature data.

Salo (2006) and Adam et al. (2006) were the first to rec-

ognize the value of the Budyko curve (Donohue et al.

2007; Wang et al. 2016)—a parsimonious first-order em-

pirical equation relating long-term actual evaporation E, P,

and potential evaporation Ep—for inferring P from Q

observations. Salo (2006) used just two Russian catch-

ments and inferred P at annual and long-term time

scales, while Adam et al. (2006) used 357 catchments

worldwide and inferred only long-term P. Adam et al.

(2006) represents the only global study thus far. The

usefulness of the Budyko curve was further demon-

strated by Valery et al. (2009), who corrected long-term

P in Swedish and Swiss catchments using Q observa-

tions, and more recently, by Koppa and Gebremichael

(2017), who illustrated how the Budyko curve can be

used in conjunction with Q observations to identify

systematic biases in both P and Ep data for catchments

in the conterminous United States.

Here, we quantify the magnitude of P underestimation

globally using a Budyko curve in combination with an un-

precedented database ofQ observations from 9372 stations

worldwide. As baseline, we use the three aforemen-

tioned high-resolution P climatologies (i.e., WorldClim

V2, CHELSAV1.2, andCHPclimV1). Additionally, we

use random-forest (RF) regression to derive global

gap-free bias correction maps for each P climatology.

Finally, we present and discuss improved estimates of

mean P over the land surface.

2. Data and methods

a. Observed streamflow and derived runoff

We used an initial database of daily and monthly ob-

served Q and catchment boundaries for 21 940 stations

across the globe. The database was compiled from seven

national and international sources (listed in descending

order of number of catchments):

1) the U.S. Geological Survey (USGS) National Water

Information System (NWIS; https://waterdata.usgs.gov/

nwis) andGAGES-II database (Falcone et al. 2010; 9180

catchments),

2) the Global Runoff Data Centre (GRDC; http://grdc.

bafg.de; Lehner 2012; 4628 catchments),

3) the HidroWeb portal of the Brazilian Agência

Nacional deÁguas (http://www.snirh.gov.br/hidroweb;

3029 catchments),
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4) the European Water Archive of the European Flow

Regimes from International Experimental and Network

Data (EURO-FRIEND-Water; http://ne-friend.bafg.de)

and theCatchmentCharacterisationandModelling–Joint

ResearchCentre database (CCM2-JRC;Vogt et al. 2007;

2260 catchments),

5) the Water Survey of Canada Hydrometric Data

(HYDAT; https://www.canada.ca/en/environment-

climate-change; 1479 catchments),

6) the Australian Bureau of Meteorology (BoM; http://

www.bom.gov.au/waterdata; Zhang et al. 2013; 776

catchments), and

7) the Chilean Center for Climate and Resilience

Research (CR2; http://www.cr2.cl/datos-de-caudales/)

andCatchmentAttributes andMeteorology for Large-

Sample Studies (CAMELS-CL; Alvarez-Garreton et

al. 2018; 516 catchments).

For each station, monthly Q values were calculated by

averaging thedaily values if$26daily valueswere available,

annualQ values were calculated by averaging the monthly

values if $11 monthly values were available, and mean

annual Q values were calculated by averaging the annual

values if$5 annual values were available (not necessarily

consecutive). We subsequently calculated the mean an-

nual runoff R generated in the ‘‘interstation’’ region [the

catchment area of the station excluding, if needed, the

catchment area(s) of nested upstream catchment(s), fol-

lowing Fekete et al. (2002); see Fig. 1 herein] as follows:

R
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2 �

n

k51

Q
k

1000

�
A

i
2 �

n

k51

A
k

�, (1)

where Ri is the mean annual runoff depth (mmyr21) for

the interstation region of station i,Q denotesmean annual

volumetric streamflow (m3yr21), A represents catchment

area (km2), and the summation is over nested upstream

stations k5 1, 2, . . . , n. Since stations located close to each

other on the same river reach yield R values that reflect

systematic bias in the Q measurements rather than the

actual R, stations with interstation area ,15% of the

total catchment area were excluded. Additionally, we

omitted stations with catchment or interstation areas of

less than 200 km2, to ensure that each station covers at

least two grid cells of the inputs (Table 1). In total, 9372

stations of the initial set of 21 940 stations passed both

criteria. The 10th-, 50th-, and 90th-percentile intersta-

tion areas of the remaining stations are 281, 929, and

8372 km2, respectively.

b. Precipitation inference from observed runoff

The Budyko framework is encapsulated by empirical

first-order equations relating long-term E to the water

supply (expressed by P) and demand (expressed by Ep)

at catchment scales (Donohue et al. 2007; Wang et al.

2016). For each interstation region, we inverted the

Budyko function to infer long-term P from long-term R

and long-term Ep by assuming that 1) E 5 P 2 R,

2) long-term water storage changes are negligible,

and 3) P is the only input of water, and R and E are

the only outputs. A large number of functional forms

of the Budyko curve with slightly varying shapes

have been proposed since the early twentieth century

(e.g., Ol’dekop 1911; Pike 1964; Budyko 1974; Fu 1981;

Choudhury 1999; Zhang et al. 2001; Porporato et al.

2004). We adopted the widely used Fu (1981) curve

(Fig. 2a) given by

FIG. 1. Example of an interstation region in red. The interstation region of station A consists of

the catchment of station A excluding the catchments of nested upstream stations B and C.
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where E is the mean annual actual evaporation, P is the

mean annual precipitation, Ep is the mean2 annual po-

tential evaporation (all in millimeters per year), and w

is an empirical parameter that represents catchment

characteristics (unitless).

The w parameter exhibits substantial variability across

catchments due to differences in, among other factors,

P and Ep seasonality, P phase, vegetation cover, soil

moisture capacity, and topography (Milly 1994; Potter

TABLE 1. Overview of gridded precipitation P and potential evaporation Ep climatologies used in this study.

Short name Full name and details Temporal span Spatial resolution Reference

P datasets

WorldClim V2 WorldClim version 2 (http://www.

worldclim.org)

1970–2000 0.00838 Fick and Hijmans (2017)

CHELSA V1.2 Climatologies at High Resolution for the

Earth’s Land Surface Areas version 1.2

(http://chelsa-climate.org)

1979–2013 0.00838 Karger et al. (2017)

CHPclim V1 Climate Hazards Group’s Precipitation

Climatology version 1 (http://

chg.geog.ucsb.edu/data/CHPclim/)

1980–2009 0.058 Funk et al. (2015)

Ep datasets

WC-HG Calculated using Hargreaves (1994) from

WorldClim V1 (Hijmans et al.

2005) min and max daily temperature

(https://cgiarcsi.community/data/

global-aridity-and-pet-database/)

1960–90 0.00838 Trabucco et al. (2008)

WFDEI-HG Calculated using Hargreaves (1994) from

downscaled Water and Global Change

(WATCH) Forcing Data Method

Applied to ERA-Interim Data

(WFDEI) data (Weedon et al. 2014)

1979–2010 0.18 Sperna Weiland et al. (2015)

WFDEI-PT Calculated using Priestley and Taylor

(1972) from downscaled WFDEI data

1979–2010 0.18 Sperna Weiland et al. (2015)

WFDEI-PM Calculated using Penman–Monteith

(Monteith 1965) from downscaled

WFDEI data

1979–2010 0.18 Sperna Weiland et al. (2015)

FIG. 2. (a) Fu (1981) curves [Eq. (2)] for differentw values. The energy limit corresponds toE5Ep, whereas the

water limit corresponds to E 5 P. (b) Relationships for mean annual runoff R vs precipitation P, obtained by

numerically solving the Fu (1981) equation for different w and potential evaporation Ep values.
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et al. 2005; Donohue et al. 2010a; Xu et al. 2013; Wang

and Tang 2014; Padrón et al. 2017; de Lavenne and

Andréassian 2018). Although the default value for w is

2.6 [which yields the Budyko (1974) curve; see Fig. 2a

herein] this value is probably too high for our purpose

given the E reduction observed in snow-dominated en-

vironments (Berghuijs et al. 2014; Zhang et al. 2015;

Padrón et al. 2017). Xu et al. (2013) and Padrón et al.

(2017) obtained w values of around 1–2 in the global

northern regions, but they used P data lacking gauge

undercatch corrections, resulting in too low w values.

Therefore, as a compromise, we considered, for each

interstation region, 10 random values for w drawn

from a normal distribution with mean 2 and standard

deviation 1 (truncated at a lower limit of 1.2). Assuming

an aridity index (ratio between long-termEp andP) of 1,

the spread in w values introduces a variance in the in-

ferred mean annual P of 19% (Fig. 2b).

The inferred mean annual P values will also be af-

fected by uncertainties in the Ep and R estimates. To

account for uncertainty in the Ep estimates (Weiß and

Menzel 2008; Donohue et al. 2010b; Fisher et al. 2011),

we considered four Ep datasets derived using various

Ep formulations and meteorological datasets (Table 1;

Fig. 2b). To account for uncertainty in the R estimates,

following Di Baldassarre and Montanari (2009) and

Kiang et al. (2018), we assumed an error of 25% and

drew 10 random values for R from a normal distribution

with mean R and standard deviation 0.25 3 R,

introducing a variance in the inferred mean annual

P of 25% (Fig. 2b).

For each interstation region, we inferred mean annual

P for all 400 possible combinations of w parameters

(10 options), Ep estimates (4 options), and R estimates

(10 options) by numerically solving Eq. (2). From this

distribution, we used the median to provide a ‘‘best esti-

mate’’ mean annual P, and the 25th and 75th percentiles

to represent upper and lower uncertainty boundaries,

respectively.

c. Estimation of bias correction factors

For each of the 9372 interstation regions, we calcu-

lated long-term bias correction factors by dividing the

inferred observation-based mean annual P estimates

(generated per section 2b) by the interstation-mean esti-

mates from the state-of-the-artP climatologies (WorldClim

V2, CHELSA V1.2, and CHPclim V1; Table 1). We sub-

sequently used RF regression models (Breiman 2001;

Svetnik et al. 2003) to derive global gap-free bias cor-

rection maps for each P climatology. RF regression

models are nonparametric ensemble machine learning

algorithms that grow a ‘‘forest’’ of individual regression

trees. Advantages of RF regressionmodels are their high

predictive accuracy, computational efficiency, ability to

model nonlinear relationships, and insensitivity to over-

fitting (Criminisi et al. 2012; Reichstein et al. 2019). RF

regressionmodels have been successfully applied in several

previousP-related studies (e.g., Ibarra-Berastegi et al. 2011;

Kühnlein et al. 2014; Baez-Villanueva et al. 2020). For RF

training, interstation regions with bias correction factors

. 5 were considered to be erroneous and were discarded.

Interstation regions with bias correction factors , 1 were

included, to avoid the trained model yielding estimates

greater than 1 everywhere. TheRF regressionmodels have

four parameters to specify: 1) the number of regression

trees (set at 100); 2) the leaf size (i.e., theminimumnumber

of observations per node; set at 5); 3) the number of vari-

ables to select at random for each decision split (set at one-

third of the number of predictors; see Table 2); and 4) the

number of observations randomly withheld for each tree

(i.e., the ‘‘out of bag’’ portion; set at one-third of the total

number of observations).

Seven predictors were incorporated in the RF re-

gression models (Table 2). Predictors were selected

based on their expected relationship with orographic P

and gauge undercatch. To highlight large-scale oro-

graphic features, the elevation predictor (Elev) was

smoothed using a Gaussian kernel with a 10-km radius

TABLE 2. Predictors used in the RF regression models to estimate P bias correction factors.

Predictor Description Resolution Data source

Elev Surface elevation (m above mean

sea level)

90m Multi-Error-Removed Improved Terrain (MERIT; Yamazaki

et al. 2017)

GradN North component of the smoothed

elevation gradient (m)

90m See Elev

GradE East component of the smoothed

elevation gradient (m)

90m See Elev

fsnow Long-term fraction of total P falling as snow

(calculation provided in appendix A)

1 km WorldClim V2 (Fick and Hijmans 2017)

CldCov Cloud cover frequency 1 km Wilson and Jetz (2016)

Lat Geographical latitude (8) — —

Lon Geographical longitude (8) — —
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following recommendations by Hutchinson (1998) and

Smith et al. (2003). North and east components of the

elevation gradient (GradN and GradE, respectively)

were included to account for P enhancement on wind-

ward flanks and P suppression on the lee (Roe 2005).

The snowfall fraction predictor (fsnow) was included as

snowfall is subject to greater gauge undercatch (Yang

et al. 2005; Sevruk et al. 2009; Rasmussen et al. 2012).

The cloud cover predictor (CldCov) was incorporated

because cloudiness is associated with P (Fick and

Hijmans 2017). Latitude and longitude were also in-

cluded, to enable region-specific behavior. To train the

RF models, we calculated mean predictor values for

each interstation region.

For each P climatology, the predictor importance was

estimated by random permutation of the out-of-bag

values of each predictor. For each tree, the difference

in mean square error (MSE) before and after permuting

the predictor was calculated. The mean MSE difference

over all trees was calculated and normalized with the

standard deviation over all trees, yielding the permu-

tation importance of the predictor in question. The

permutation importance values are unitless due to the

normalization and will not sum up to one. When in-

terpreting the permutation importance values, one

should focus on the relative differences among pre-

dictors rather than the absolute values.

The trained RF regression models were subsequently

applied using global 0.058 maps of the predictors, yielding

gap-free gridded long-termbias correctionmaps for eachP

climatology covering the entire global land surface. For

this purpose, the predictor maps were upscaled from their

native resolution (Table 2) to 0.058 using bilinear resam-

pling. The obtained bias correction factors were truncated

at a lower limit of 1, as bias correction factors of,1 cannot

be confidently attributed to P overestimation, given the

prevalence of factors that can reduce Q compared to

Budyko’s fundamental assumption of a steady state (e.g.,

anthropogenic water use, channel transmission losses, and

reservoir evaporation; Pilgrim et al. 1988; Vörösmarty and

Sahagian 2000). Conversely, bias correction factors of .1

can confidently be attributed to P underestimation, given

the relative paucity of factors that can increase Q in com-

parison with Budyko’s estimate (perhaps only accelerated

glaciermelt and interbasin water transfers; Lutz et al. 2015;

Emanuel et al. 2015). This truncation is not a major con-

cern asP ismore likely to be under than overestimated due

to gauge undercatch (Groisman and Legates 1994; Sevruk

et al. 2009; Rasmussen et al. 2012) and the low-elevation

bias in gauge placement (Briggs and Cogley 1996;

Schneider et al. 2014; Kidd et al. 2017).

The delayed response of Q to P (Gericke and

Smithers 2014; Liu et al. 2016) prevents us from inferring

monthly bias correction factors from monthly Q data.

We therefore calculated monthly climatological cor-

rection factors by disaggregating the gridded long-term

correction factors derived for each P climatology based

on gauge catch ratios according to

CF
m
5

�
1

CR
m

2 1

�
CF

yr
2 1

1

CR
yr

2 1

1 1, (3)

where CFm is the monthly bias correction factor, CFyr is

the long-term bias correction factor, CRm and CRyr are

the monthly and long-term gauge catch ratio, respec-

tively (both ranging from 0 to 1; appendix B), and m

denotes month (1, 2, . . . , 12).

3. Results and discussion

a. Precipitation inference from observed runoff

Annual P bias correction factors were calculated from

Q observations for 9372 interstation regions using three

high-resolution P climatologies as baseline (WorldClim

V2, CHELSA V1.2, and CHPclim V1). Since the results

were similar for the three climatologies, we only present

and discuss results for WorldClim V2 (see the online

supplemental material for the other climatologies).

Figure 3 shows the median inferred bias correction

factors and the percentage of inferred bias correc-

tion factors .1 for the interstation regions, indicating

the likelihood of underestimated P. Median correction

factors were .1, .1.5, and .2 for 41.3%, 9.0%, and

2.8% of the interstation regions, respectively (Fig. 3a).

The proportion of interstation regions with a very high

likelihood of underestimated P (defined when.90% of

the bias correction factors of the previously intro-

duced 400 possible combinations for each interstation

region are greater than 1). was 10.4% (Fig. 3b). Parts of

all major mountain ranges across the globe appear to be

affected by substantial P underestimation (Fig. 3), de-

spite the explicit consideration of orography in the

production of each climatology. Additionally, regions.
608N consistently showed P underestimation (Fig. 3),

due at least partly to a lack of correction for gauge un-

dercatch (Sevruk et al. 2009; Rasmussen et al. 2012).

Correction factors were particularly high (.1.5) for in-

terstation regions in Alaska, High Mountain Asia, and

Chile (Figs. 3 and 4a). These regions exhibit marked

elevation gradients, sparse gauge networks, and sub-

stantial snowfall: all factors that tend to favor P under-

estimation (Adam and Lettenmaier 2003; Adam

et al. 2006; Fick and Hijmans 2017; Kidd et al. 2017).

Conversely, relatively well-gauged mountain ranges such

1304 JOURNAL OF CL IMATE VOLUME 33



as the U.S. Appalachians, the European Alps, and the

Scandinavian Kjolen exhibit more moderate correction

factors ranging from 1 to 1.5 (Fig. 3a), as they are only

primarily affected by gauge undercatch.

These correction factors accord with numerous stud-

ies that evaluated hydrological model simulations and

concluded that P was underestimated (e.g., Oki et al.

1999; Fekete et al. 2004; Biemans et al. 2009; Beck et al.

2017a; Prein and Gobiet 2017; Ghatak et al. 2018).

Additionally, our correction factors are consistent with

Kauffeldt et al. (2013), who obtained runoff coefficient

(RC; ratio of long-term R to P) values .1 for a large

number of catchments in Alaska, and with Alvarez-

Garreton et al. (2018), who obtained RC values .1 for

numerous Andean catchments in Chile. Both studies

tested multiple (four) state-of-the-art gridded P datasets

with similar results. Our findings also agree with Beck

et al. (2015), who obtained RC values .1 using the

WorldClim V1 P dataset (Hijmans et al. 2005) for most

regions showing P underestimation here (Fig. 3a; see

FIG. 3. (a) WorldClim V2 P bias correction factors inferred for the interstation regions (N 5 9372) using the Fu

(1981) curve [see Eq. (2)] from streamflow Q observations and potential evaporation Ep estimates. For each in-

terstation region, we calculated the median of the 400 bias correction factors inferred using different combinations

of w (10 options), Ep (4 options), andR (10 options). (b) The percentage of inferred bias correction factors that are

greater than 1 for each interstation region, indicating the likelihood of underestimated P. In (a) and (b), each dot

represents the centroid of an interstation region. Figures S1 and S2 in the online supplemental material present

equivalent figures for CHELSA V1.2 and CHPclim V1, respectively.
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also Figs. S1a and S2a in the online supplemental ma-

terial). Furthermore, our results are consistent with

studies that inferred P from Q observations for the

Sierra Nevada of California (Henn et al. 2015, 2016,

2018) and for Sweden and Switzerland (Valery et al.

2009), as well as with studies using numerical weather

models to confirm that P is severely underestimated

across western North America (Wrzesien et al. 2019),

Chile (Favier et al. 2009; Garreaud et al. 2016), and the

Himalayas (Li et al. 2017; Bonekamp et al. 2018).

b. Estimation of bias correction factors

RF regression models were trained to globally estimate

the observation-basedP bias correction factors reported in

section 3a. The results were again similar for the three P

climatologies, and therefore, we only present figures for

WorldClim V2 (see the online supplemental material for

the other climatologies). We obtained a training Pearson

correlation coefficient r of 0.91 and slightly lower valida-

tion r of 0.77 (Figs. 5a and 5b, respectively), suggesting that

the employed RF regression model and predictors are ef-

fective at estimating P bias correction factors. However,

high values (.2) were underestimated (Figs. 5a and 5b);

this is characteristic of RF regression models and is due to

the averaging of different trees (e.g., Baccini et al. 2004;

Kühnlein et al. 2014; Baez-Villanueva et al. 2020). The

relatively small difference between the training and vali-

dation r values suggests that the trained models generalize

reasonably well to unseen data. Longitude (Lon) emerged

as the most important predictor (Fig. 5c) because of the

distinctly higher bias correction factors in some longitude

ranges (Fig. 3a). Elevation (Elev) emerged as the second-

most important predictor (Fig. 5c), reflecting the strong

influence of orography on P patterns (Roe 2005). The

trainedRFmodels were subsequently applied using global

0.058 predictor maps to generate gridded high-resolution

long-term bias correction factors for the entire land sur-

face (Fig. 5d). The RF-based maps of correction factors

correspond well with the observation-based correction

factors (Fig. 3a), although the underestimation of high

values is again evident. Figure 4 presents WorldClim V2

results for Chile, highlighting the fine spatial detail of the

produced bias correction map and the .1000mmyr21

of P underestimation over the Andes between 358 and

FIG. 4. WorldClim V2 P bias correction results for Chile. (a) Median bias correction factors inferred using Fu

(1981) [see Eq. (2) herein] from Q observations and Ep estimates. Each dot represents the centroid of an inter-

station region. (b) Bias correction factors estimated using the trained RF regression model. (c) The original un-

corrected WorldClim V2 mean P, and (d) the corrected WorldClim V2 mean P. (e) Corrected minus original

WorldClim V2 mean P.
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568S (Favier et al. 2009; Garreaud et al. 2016; Alvarez-

Garreton et al. 2018).

Adam and Lettenmaier (2003) estimated gauge un-

dercatch correction factors globally by interpolation of

correction factors computed using gauge-type-specific

equations from observations of P, air temperature, and

wind speed from 7878 stations. The map of Adam and

Lettenmaier (2003, their Fig. 6) exhibits reasonable

agreement with our map (Fig. 5d). Both show high

correction factors at high latitudes as a result of wind-

induced gauge undercatch and a clear discrepancy be-

tween Alaska and Canada due to the lower catch

FIG. 5. Scatterplots between RF- and observation-based bias correction factors for (a) the so-called in-bag

training data and (b) the out-of-bag validation data. The WorldClim V2 P climatology was used as baseline. Each

data point represents an interstation region (N 5 9372); r denotes the Pearson correlation coefficient. (c) The

importance of the predictors incorporated in the RF model. Also shown are bias correction factors obtained by

global application of the trained RF model [(d) best estimate, (e) lower uncertainty bound, and (f) upper uncer-

tainty bound]. Figures S3 and S4 in the online supplemental material present equivalent figures for CHELSAV1.2

and CHPclim V1, respectively.
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efficiency of the National Weather Service 8-in. (;20cm)

gauge used in theUnited States relative to theNipher gauge

used in Canada (Scaff et al. 2015). However, the map of

Adam and Lettenmaier (2003) lacks fine spatial detail and

fails to represent several major mountain ranges (e.g., the

Andes, the Himalayas, and the central Asian mountains)

because of the sparseness of the station networks.

Similar to the present study, Adam et al. (2006) de-

rived P bias correction factors globally from Q obser-

vations using a Budyko curve. Despite the use of a

different baseline (the University of Delaware gauge-

based interpolated P dataset; monthly 0.58 resolution;
Willmott and Matsuura 2001), the bias correction map

of Adam et al. (2006, their Fig. 12) exhibits broad

agreement with our maps (Fig. 5d and also Figs. S3d and

S4d of the online supplemental material). However,

their approach is subject to three limitations: 1) they

used Q observations from only 524 large catchments

(.10 000 km2), whereas we used Q observations from

9372 medium- to large-sized interstation regions

(.200km2 of which 1016 were .10 000km2); 2) their

Budyko curve was optimized using ‘‘low relief’’ catch-

ments, which may not be representative of mountain-

ous and snow-dominated catchments (Xu et al. 2013;

Berghuijs et al. 2014); and 3) they excluded several im-

portant mountain ranges from the correction domain,

such as the U.S. Appalachians and the Russian Urals.

Immerzeel et al. (2015) used glacier mass balance data

to infer long-term P for the Hindu Kush region in Asia.

They obtained bias correction factors of around 2 on av-

erage and up to 10 using the gauge-based APHRODITE

P dataset (daily 0.258 resolution;Yatagai et al. 2012), which

lacks explicit gauge undercatch corrections, as their base-

line. This is in good agreement with our estimates (Fig. 5d

and also Figs. S3d and S4d of the online supplemental

material); noting that our baseline P datasets have already

had orographic correction applied in their production,

which is very likely why our maximum bias correction

factor is 3 whereas Immerzeel et al. (2015) had similar

values approaching 10.

Figure 6 presents climatic bias correction factors for

NorthernHemisphere winter and summer, calculated by

disaggregating the RF-based long-term correction fac-

tors (Fig. 5d) based on gauge catch efficiencies (appendix

B). Large differences between summer and winter were

found in regions with significant snowfall, emphasizing

the importance of using the monthly correction factors

rather than the long-term ones for subannual applica-

tions. Our maps exhibit substantially more detail than

similar maps from previous studies derived by in-

terpolation of correction factors based on P, air tem-

perature, and wind speed observations from sparse

and unevenly distributed measurement networks (e.g.,

Legates and Willmott 1990; Adam and Lettenmaier

2003; Schneider et al. 2017). However, our winter cor-

rection factors may be on the low side in the northern

conterminousUnited States, possibly suggesting that the

w parameter [Eq. (2)] is too low or that Ep (Table 1) is

underestimated in this region.

c. Revision of global land mean P estimates

Figure 7 presents the corrected WorldClim V2 mean

annual P map derived herein and the difference with

1) the original WorldClim V2 climatology (monthly

1-km resolution; Fick and Hijmans 2017); 2) GPCC

V2015 (monthly 0.58 resolution; Schneider et al. 2017);
3)GPCPV2.3 (monthly 2.58 resolution; Adler et al. 2018);

and 4) MERRA-2 (hourly 0.6258 resolution; Reichle

et al. 2017). The original WorldClim V2 has not been

corrected for gauge undercatch. In contrast, both GPCC

V2015 and GPCP V2.3 include explicit gauge under-

catch corrections. At high latitudes, MERRA-2 is based

on reanalysis output, negating the need for gauge un-

dercatch corrections, while at middle and low latitudes

MERRA-2 is corrected using GPCPV2.1 (monthly 2.58
resolution; Adler et al. 2003). The corrected WorldClim

V2 exhibits substantially higher P (.1000mmyr21) than

the other P datasets over Chile, East Greenland, parts of

Antarctica, the Himalayas, and along the Pacific coast

of North America (Figs. 7b–e). The P difference over

FIG. 6. Northern Hemisphere (a) winter (December–February) and (b) summer (June–August) bias correction

factors for the WorldClim V2 P climatology, calculated by averaging the monthly bias correction factors.
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East Greenland and parts of Antarctica should be in-

terpreted with caution because of a lack of Q (Fig. 3a)

and P (Fick andHijmans 2017, their Fig. 2) observations

in these areas. The differences over the other regions

were derived from various quantities of local Q and P

observations and are therefore more conclusive.

MeanP for the global land surface (excludingAntarctica)

based on the corrected WorldClim V2 map is 862mmyr21

as compared with 788mmyr21 for the original WorldClim

V2—amounting to a 9.4% increase.AdamandLettenmaier

(2003) and Adam et al. (2006) corrected the University of

Delaware P dataset (Willmott and Matsuura 2001) for

gauge undercatch and orographic effects and obtained

mean P increases for the land surface of 11.7% and 6.2%,

respectively. The combined correction (obtained by multi-

plying these two figures expressed as fractions, noting that

the percentage increases are additional to the original

value so 11.7% becomes 0.1171 1.05 1.117 and the same

for 6.2% to become 1.117 3 1.062 5 1.186) yields a to-

tal increase of 18.6%, considerably higher than our 9.4%

FIG. 7. (a) Mean annual P from the bias-correctedWorldClim V2 climatology, and differences relative to (b) the

original WorldClim V2, (c) GPCC V2015, (d) GPCP V2.3, and (e) MERRA-2. The data represent 1970–2000 for

bothWorldClim V2maps, 1951–2000 for GPCCV2015, 1979–2013 for GPCP V2.3, and 1980–2017 for MERRA-2.

To calculate the differences, the corrected WorldClim V2 dataset was upscaled to the native resolution of each

P dataset using bilinear resampling.
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estimate, probably becauseWorldClimV2 has already, to a

certain degree, been corrected for orographic effects and is

based on markedly more P gauges than the University of

Delaware dataset (34542 vs 1870–16360 depending on the

year) and thus likely ismore accurate.MeanP estimates for

the global land surface (excluding Antarctica) for GPCC

V2015,GPCP V2.3, and MERRA-2 are 793, 853, and

785mmyr21, respectively (Figs. 7c–e). The GPCP V2.3

estimate is similar to ours because of higher rainfall

amounts in GPCP V2.3 over most of the land surface,

reflecting the applied gauge undercatch correction

(Legates and Willmott 1990; Fig. 7d).

Several studies have used gravity anomaly measure-

ments from theGravityRecovery andClimateExperiment

(GRACE) satellite pair to infer winter P (e.g., Swenson

2010; Behrangi et al. 2017, 2018; Robinson and Clark

2019). Swenson (2010), for example, inferred P using

GRACE over high-latitude North America and Eurasia

and concluded that the undercatch correction applied by

GPCP V2.0 (monthly 2.58 resolution; Adler et al. 2003)

is generally too high, in line with our results for northern

central Eurasia (Fig. 5d). More recently, Behrangi et al.

(2018) inferred winter P for the same region using

GRACE and found a better agreement withGPCPV2.3

(monthly 2.58 resolution; Adler et al. 2018) than with

GPCC Full Data Reanalysis V7 (monthly 0.58 resolution;
Schneider et al. 2017), in reasonable agreement with our

findings (Figs. 7c and 7d, respectively). GRACE can only

be used to infer P under freezing conditions, when E and

R are low, and is thus in some sense complementary to

our Q-based approach to infer P. A limitation of the

GRACE-based approach is the lack of fine spatial detail

due to GRACE’s large footprint size (;400km; Rodell

et al. 2009). Combining GRACE as an additional con-

straint to higher-resolution Budyko-based P bias correc-

tion modeling could reveal new insights and warrants

further investigation.

4. Conclusions

Our findings can be summarized as follows:

1) The ‘‘true’’ long-term annual Pwas inferred using an

unprecedented database of Q observations from

9372 stations worldwide. Bias correction factors were

subsequently calculated for three high-resolution

global P climatologies (WorldClim V2, CHELSA

V1.2, and CHPclim V1). For all three climatologies,

correction factors were . 1 over parts of nearly all

major mountain ranges globally. Correction fac-

tors were particularly high (.1.5) for Alaska, High

Mountain Asia, and Chile. More moderate correction

factors (1–1.5) were obtained for mountain ranges with

denseP gauge networks such as theU.S.Appalachians,

the European Alps, and the Scandinavian Kjolen.

2) RF regression models were trained to regionalize the

observation-based P bias correction factors to the

entire global land surface for the three P climatol-

ogies. We obtained training r values of 0.91–0.92 and

slightly lower validation r values of 0.75–0.78, sug-

gesting that the models are effective at predicting the

correction factors, although they underestimate high

values (.2). The trained RF models were subse-

quently applied using global 0.058 predictor maps to

yield detailed gap-free bias correction maps for each

P climatology. Monthly climatological bias correc-

tion factors were calculated by disaggregating the

long-term bias correction factors using gauge-type-

specific catch ratios.

3) Mean annual P for the global land surface (excluding

Antarctica) based on the correctedWorldClimV2map

is 862mmyr21, amounting to a 9.4% increase over the

original WorldClim V2. This increase is substantially

less than the total increase of 18.6% based on two

previous studies using a gauge-based interpolated P

dataset as baseline (Adam and Lettenmaier 2003;

Adam et al. 2006), probably because WorldClim V2

has already been corrected for topographic effects,

whereas their P dataset had not. Other widely used P

datasets (GPCCV2015, GPCPV2.3, andMERRA-2)

underestimate P by .1000mmyr21 over Chile, the

Himalayas, and along the Pacific coast of North

America.

Our findings underscore the need to exercise caution

when using gridded P datasets—whether derived from

gauge, satellite, or reanalysis data, whether corrected for

gauge undercatch or not, and whether high or low spatial

resolution—in mountainous and snow-dominated re-

gions. The bias-corrected P climatologies derived in this

study can be useful for numerous purposes, including,

among others, hydrological model simulations, water

resources assessments, exploring spatial P variations,

evaluating P datasets, and validating climate model

outputs. However, the bias correction factors should be

interpreted with caution at subcatchment scales and in

regions with few or noQ gauges (Fig. 3). Additionally, it

should be kept in mind that the bias correction factors

are affected by the Ep estimates as well as by our choice

of w parameter (Fig. 2). The annual and monthly bias-

corrected climatologies are freely available online

(http://www.gloh2o.org/pbcor/) as the Precipitation Bias

Correction (PBCOR) dataset.

Acknowledgments.Hylke Beck was supported in part

by the U.S. Army Corps of Engineers’ International

Center for Integrated Water Resources Management

1310 JOURNAL OF CL IMATE VOLUME 33

http://www.gloh2o.org/pbcor/


(ICIWaRM), under the auspices of UNESCO. We

gratefully acknowledge the precipitation and potential

evaporation dataset developers for producing and mak-

ing available their datasets. The following organizations

are thanked for providing streamflow and/or catchment

boundary data: the United States Geological Survey

(USGS), the Global Runoff Data Centre (GRDC), the

BrazilianAgênciaNacional deÁguas, EURO-FRIEND-

Water, the European Commission Joint ResearchCentre

(JRC), the Water Survey of Canada (WSC), the

Australian Bureau of Meteorology (BoM), and the

Chilean Center for Climate and Resilience Research

(CR2, CONICYT/FONDAP/15110009). We thank

the editor and two anonymous reviewers for their

constructive comments.

APPENDIX A

Snowfall Fraction

Themonthly fraction of total P falling as snow fsnowm

was calculated following Legates and Bogart (2009) as

f snow
m
5 (11 2:1473 1:5315Tavg_m)21, (A1)

where Tavg_m (8C) is monthly mean air temperature

(fromWorldClimV2) andm denotesmonth (1, 2,. . . , 12).

The long-term annual snowfall fraction fsnow was

calculated as

f snow5
�
12

m51

(P
m
f snow

m
)

P
yr

, (A2)

where Pm (mmmonth21) is mean monthly precipitation

(fromWorldClimV2) andPyr (mmyr21) is mean annual

precipitation (from WorldClim V2).

APPENDIX B

Gauge Catch Ratios

Monthly climatological maps of gauge catch ratios

(CRs; ranging from 0 to 1) were calculated using gauge-

type-specific undercatch correction equations for rain-

fall fromLegates (1988) and for snowfall fromGoodison

et al. (1998), based on monthly mean wind speed, air

temperature, and water vapor pressure data from

WorldClim V2. The wind speed was limited to 6.5m s21

to avoid extrapolating the equations beyond the data

used for the fitting. For each month, the snowfall and

rainfall CRs were weighted according to the snowfall

fraction (appendix A). The long-term gauge CR was

subsequently calculated for each of the three P clima-

tologies following

CR
yr
5P

base_yr

,
�
12

m51

P
base_m

CR
m

, (B1)

where CRm is the monthly climatological catch ratio,

Pbase_m (mm month21) is the baseline (uncorrected)

mean monthly precipitation, and Pbase_yr (mmyr21) is

the baseline (uncorrected) mean annual precipitation.
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