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Abstract5

Small area estimation is concerned with methodology for estimat-6

ing population parameters associated with a geographic area defined7

by a cross-classification that may also include non-geographic dimen-8

sions. In this paper, we develop constrained estimation methods for9

small area problems: those requiring smoothness with respect to sim-10

ilarity across areas, such as geographic proximity or clustering by co-11

variates; and benchmarking constraints, requiring weighted means of12

estimates to agree across levels of aggregation. We develop methods13

for constrained estimation decision-theoretically and discuss their geo-14

metric interpretation. The constrained estimators are the solutions to15

tractable optimization problems and have closed-form solutions. Mean16

squared errors of the constrained estimators are calculated via boot-17

strapping. Our approach assumes the Bayes estimator exists and is18

applicable to any proposed model. In addition, we give special cases of19

our techniques under certain distributional assumptions. We illustrate20

the proposed methodology using web-scraped data on Berlin rents ag-21

gregated over areas to ensure privacy.22

1 Introduction23

Small area estimation (SAE) deals with estimating many parameters, each24

associated with an “area”—a geographic domain, a demographic group, an25
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experimental condition, etc. Areas are “small” since there is little or no26

information about any one area. Estimates of a parameter based only on27

observations from the associated area, called direct estimates, can be im-28

precise. To increase precision, one tries to “borrow strength” from related29

areas, and hierarchical and empirical Bayesian models are one way to do30

so. Since the pioneering work of Fay and Herriot (1979) and Battese et al.31

(1988), such models have dominated SAE, with many successful applica-32

tions in official statistics, sociology, epidemiology, political science, business,33

etc. (Rao and Molina 2015). Recently, SAE has been applied in other fields,34

such as neuroscience, and performs as well as common approaches such as35

smoothed ridge regression and elastic net (Wehbe et al. 2015).36

We extend these classical approaches in two directions, both of which37

have been the subject of recent interest in the SAE literature. One direc-38

tion is to take direct account of information about the proximity of areas39

in space or time. In many applications, it is reasonable to expect that the40

parameters will be smooth, so that nearby areas will have similar parame-41

ters, but this is not altogether standard within SAE (Rao and Molina 2015).42

Incorporating spatial dependence directly into Bayesian models leads to sta-43

tistical and computational difficulties, yet it seems misguided to discard such44

information. The other direction is “benchmarking,” the imposition of con-45

sistency constraints on (weighted) averages of the parameter estimates. A46

simple form of benchmarking is when the average of the parameter estimates47

must match a known global average. When there are multiple levels of ag-48

gregation for the estimates, there can be issues of internal consistency as49

well.50

We provide a unified approach to smoothing and benchmarking by re-51

garding them both as constraints on Bayes estimates. Benchmarking corre-52

sponds to equality constraints on global averages and variances. Similarly,53

smoothing corresponds to an inequality constraint on the “roughness” of54

estimates (how much the parameter estimates of nearby areas differ). The55

motivation of this smoothing is based upon manifold learning and frequen-56

tist non-parametrics, where loss functions are augmented by a penalty. Such57

a penalty term is in the spirit of ridge regression, where a transformation58

of the parameters is performed and additional shrinkage is carried out. Our59

penalty corresponds to how much estimates at nearby points in the domain60

should differ.61

Decision-theoretically, we obtain smoothed, benchmarked estimates by62

minimizing the Bayes risk subject to these constraints, extending the ap-63

proaches of Datta et al. (2011) and Ghosh and Steorts (2013) (themselves in64

the spirit of Louis (1984) and Ghosh (1992)). Geometrically, the constrained65
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Bayes estimates are found by projecting the unconstrained estimates into66

the feasible set. If the constraints are linear, then the resulting optimization67

can be solved in closed form, requiring nothing more than basic matrix oper-68

ations on the unconstrained Bayes estimates. Another strong advantage of69

our decision-theoretic and geometric approach is its generality. We require70

no distributional assumptions on the data or on the unconstrained Bayes es-71

timator. Our results apply whether the unconstrained estimator is linear or72

non-linear. The relevant notion of proximity between areas may be spatial73

or more abstract. It can also include clustering on covariates not directly74

included in the model. Finally, we are able to prove known cases under our75

proposed approach, where the Bayes and frequentist estimates are in fact76

the same. Finally, we illustrate our proposed methodology on rental prices77

in Berlin.78

The rest of the paper proceeds as follows. Section 2 describes related79

work. Section 3 provides the proposed general framework for smoothing80

in small area estimation. Section 3.1, introduces notation used throughout81

the paper. Section 3.2 proposes a general result for SAE in the context82

of smoothing. Section 3.3 proposes special cases of our general framework83

under the area-level Fay-Herriot model. Section 4 extends our generalized84

result in Section 3.2 to benchmarking constraints. Section 4.2 derives special85

cases under the area-level Fay-Herriot model. Section 4.3 discusses choices86

of the smoothness penalties. Section 5 proposes a non-parametric boot-87

strap for mean squared error (MSE) estimation. Section 6 applies the pro-88

posed methodology to web-scraped data for estimating average rent prices89

in Berlin. Section 7 concludes with a discussion and future work.90

2 Related Work91

The proposed methodology for SAE with benchmarking and smoothing gen-92

eralizes the work of Datta et al. (2011) and Ghosh and Steorts (2013), which93

take a decision theoretic approach to SAE. However, this literature does not94

allow for spatial smoothing. The approach proposed in this paper is also95

similar to that of Wehbe et al. (2015) in the sense that spatial smooth-96

ing is considered; however, these authors do not consider benchmarking.97

Moreover, the authors focus more on a neuroscience application and less98

on developing a general methodology for SAE methodology. Other relevant99

literature includes Pratesi and Salvati (2008), who proposed a spatial em-100

pirical best linear unbiased predictor under the Fay-Herriot model with a101

simultaneous autoregressive (SAR) structure for the random effects and an102
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analytic based MSE. Souza et al. (2009) account for spatial relationships103

when fitting hierarchical Bayesian exponential growth models. Rao and Yu104

(1994) proposed a linking model that does not include area-specific random105

effects in essence to avoid over-smoothing, which is a valid concern when106

proposing any type of smoothing constraint.107

Previous efforts at smoothing in SAE problems have smoothed either108

the raw data or direct estimates. In contrast, we smooth estimates based on109

models which do not themselves include spatial structure. Computationally,110

this is much easier than expanding the models. Our optimization problems111

can be solved in closed form and retain the advantages of model-based es-112

timation. This approach to smoothing also combines naturally with the113

imposition of benchmarking constraints, which has never been handled to114

our knowledge in the literature before.115

Our proposed methodology employs ideas about smoothing on graphs116

and manifolds from frequentist non-parametrics and machine learning. In117

particular, we take advantage of “Laplacian” regularization ideas (Belkin118

et al. 2006; Corona et al. 2008; Lee and Wasserman 2010), where the loss119

function is augmented by a penalty term which reflects how much estimates120

at nearby points in the domain differ. Such regularization is designed to121

ensure that estimates vary smoothly with respect to the intrinsic geometry122

of some underlying graph or manifold. (Smoothness on a domain is rep-123

resented mathematically by the domain’s Laplacian operator, which is the124

generator for diffusion processes.) This generalizes the roughness or curva-125

ture penalties from spline smoothing (Wahba 1990) to domains geometrically126

more complicated than Rd. We are unaware of any previous application of127

Laplacian regularization to SAE problems, though spline smoothing is often128

used in spatial statistics, including traditional SAE applications to disease129

mapping (Kafadar 1996).130

3 Smoothing for Small Area Estimation131

In this section, we provide a generalized approach for SAE. First, we intro-132

duce notation used throughout the paper (Section 3.1). Second, we provide133

a general result for SAE in the context of smoothing (Section 3.2). Third,134

we provide special cases of this result under the area-level Fay-Herriot model135

(Section 3.3).136
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3.1 Notation and Terminology137

In this section, we present general notation that is used throughout the138

remainder of the paper. We assume m areas, and for each area i, we estimate139

an associated scalar quantity θi, collectively θ = (θ1, θ2, . . . , θm). We denote140

the response (direct estimator) by y = (y1, y2, . . . , ym). “Areas” are often141

spatial regions, but they might be different demographic groups. Our goal is142

to estimate the unknown parameter θ by some estimator δ = (δ1, δ2, . . . , δm),143

where we denote the optimal estimator by δ̂ = (δ̂1, δ̂2, . . . , δ̂m).144

Denote the ith area by a (column) vector of covariates145

xi =


xi1
xi2
...
xip

 ,

which may include spatial coordinates. We can represent the covariates as
a design matrix in the following way:

Xm×p =


x11 x12 . . . x1p
x21 x22 . . . x2p

...
...

. . .
...

xm1 xm2 . . . xmp

 .

One Bayesian treatment of this problem of finding an optimal estimator146

is to define a loss function, and then minimize the posterior risk. That147

is, under a defined loss function L(θ, δ), one goal will be to minimize the148

posterior risk with respect to the estimator δ.149

Turning to the loss function, we will assume for convenience and for
the desirability of tractable solutions that our loss function is a weighted
squared error, where the weight for area i is φi > 0, which can be denoted
by a matrix of weights, Φ. The total loss is denoted by

L(θ, δ) =

m∑
i=1

φi(θi − δi)2 = (θ − δ)TΦ(θ − δ).

In many SAE applications, the weights Φ reflect variations in measure-150

ment precision and can be estimated from the survey design (Pfeffermann151

2013; Rao and Molina 2015; Tzavidis et al. 2018). There exists a large lit-152

erature regarding proposals for estimating loss function weights. Isaki et al.153
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(2004) proposed taking each weight as the reciprocal of the posterior vari-154

ance of the Bayes estimator. For a full review of such choices for the loss155

function weights, we refer to Datta et al. (2011), and stress that the choice156

of the loss function weights is application specific.157

Under our proposed methodology, we simply assume that a Bayes esti-158

mator exists, and under this framework, the modeling structure can be set159

by the user. Of course, in certain situations, the Bayes estimator is the same160

as other estimators in the frequentist literature, such as the Best Linear Un-161

biased Predictor (BLUP). A full review of such cases can be found in Molina162

and Rao (2010) and Ghosh et al. (1994).163

3.2 General Result164

In this section, we propose our general framework for smoothing in SAE.
Before doing so, we introduce new terminology that is needed for the re-
mainder of the paper. Consider two different areas i and i′, where i 6= i′.
We define a symmetric matrix, Q, with elements qii′ ≥ 0, to control how
important it is that the estimate of θi is close to the estimate of θi′ . It may
often be the case that qii′ = q(xi,xi′); i.e., the degree of smoothing of δi and
δi′ is a function of the covariates xi and xi′ . Note also that the qii′ may be
discrete-valued, corresponding to clustering of areas, or continuous-valued,
corresponding to a metric space of areas. Writing Q in matrix form, we see
that

Q =


q11 q12 . . . q1m
q21 q22 . . . q2m
...

...
. . .

...
qm1 qm2 . . . qmm

 .

165

A natural measure of the smoothness of δi is the Q-weighted sum of
squared differences between elements,

∑m
i=1

∑m
i′=1 (δi − δi′)2qii′ , where for

the remainder of the paper we denote
∑m

i=1

∑m
i′=1 as

∑
i,i′ . We add a

penalty term

γ
∑
i,i′

(δi − δi′)2qii′

to our objective function, with the penalty factor γ ≥ 0 chosen to specify166

the overall importance of smoothness. (We address the choice of Q below167

and of γ in Section 4.3.)168

Therefore, we seek to minimize the posterior risk of the loss function169

L(θ, δ) =
∑
i

φi(θi − δi)2 + γ
∑
i,i′

(δi − δi′)2qii′ . (3.1)
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Minimizing the posterior expectation of equation 3.1 is equivalent to mini-170

mizing171 ∑
i

φiE[(θi − δi)2|y] + γ
∑
i,i′

(δi − δi′)2qii′ . (3.2)

Finally, we define Ω to be a matrix such that
∑

i,i′ (δi − δi′)2qii′ = δTΩδ,172

where Ω is a semi-positive definite matrix. See Lemma A in the Supplemen-173

tary Material for the above equivalence.174

Then minimizing equation 3.2 is equivalent to minimizing175

(δ − θ̂B)TΦ(δ − θ̂B) + γδTΩδ, (3.3)

where θ̂B = (θ̂B1 , . . . θ̂
B
m). See Datta et al. (2011) and Ghosh and Steorts176

(2013) for details on this equivalence. Then we have the following result.177

Theorem 3.1. The smoothed Bayes estimator is178

θ̃S = (Im + γΦ−1Ω)−1θ̂B.

Proof. Differentiating equation 3.3 with respect to δ and setting the gradient179

to zero at θ̃S yields Φ(θ̃S − θ̂B) + γΩθ̃S = 0. Then180

(Φ + γΩ)θ̃S = Φθ̂B =⇒ θ̃S = (Im + γΦ−1Ω)−1θ̂B.

Since equation 3.3 is a positive-definite quadratic form in δ, the solution is181

unique.182

3.3 Area-Level Fay-Herriot Model183

In this section, we consider a special case of our general result in Section184

3.2, where our only assumption was that the Bayes estimate exists. In this185

section, we consider a special case of Theorem 3.1 in Section 3.2, where we186

assume the standard Fay-Herriot model (Fay and Herriot 1979).187

Before proceeding, we review the Fay-Herriot model and a few standard
results that follow from assuming this model, which is a special case of the
general framework proposed in Section 3.2. More specifically, we consider
the area-level Fay-Herriot model

ym×1 = θm×1 + em×1 (3.4)

θm×1 = Xm×pβp×1 + um×1,

where

em×1
ind∼ MVN(0, D) and um×1

ind∼ MVN(0, σ2uIm), (3.5)
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and

Dm×m = Diag(D1, . . . , Dm),

Bm×m = Diag(D1(σ
2
u +D1)

−1, . . . , Dm(σ2u +Dm)−1).

Note that β is a p × 1 vector of unknown regression coefficients and the188

rank(X) = p(< m). Equation 3.4 was first considered in the context of189

estimating income for small areas by Fay and Herriot (1979).190

If both σ2u or D are unknown, then the model is not identifiable. This191

is seen by writing the marginal distribution of y, which can be shown to be192

y ∼ MVN(Xβ, V ), where V = Diag(σ2u+D1, . . . , σ
2
u+Dm). There is clearly193

an identifiability issue when both σ2u or D are unknown. (In a Bayesian194

setting, this is the marginal distribution of y after integrating out θ).195

When the variance component σ2u is known and β has a uniform prior
on Rp, then the Bayes estimator of θ is

θ̂B = θ̂BLUP = (Im −Bm×m)ym×1 +Bm×mXm×pβ̃p×1, (3.6)

where β̃ ≡ β̃(σ2u) = (X ′V −1X)−1X ′V −1y. It is well known that under196

the conditions given above, the Bayes estimator is also the best unbiased197

predictor of θ (Datta and Ghosh 1991; Datta et al. 2011; Rao and Molina198

2015).199

In more realistic settings, σ2u is unknown and must be estimated. Thus,
the empirical Bayes estimator becomes

θ̂EB = (Im − B̂m×m)ym×1 + B̂m×mXm×pβ̃(σ̂2u)p×1. (3.7)

Note that σ̂2u in equation 3.7 can be estimated many different ways. For200

example, many common estimators are moment estimators or maximum201

likelihood estimation. Moment estimation is quite convenient in particu-202

lar situations, as shown in Prasad and Rao (1990) and Steorts and Ghosh203

(2013). However, more general techniques can be found in Rao and Molina204

(2015). Thus, in the standard Fay-Herriot situation, where one considers205

this very specialized situation, the Bayes and frequentist estimates are the206

same, and one may find these estimates without resorting to Markov chain207

Monte Carlo (MCMC).208

Assuming the standard area-level Fay-Herriot model in equation 3.4, we209

prove a special case of Theorem 3.1 in Lemma 3.1.210
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Lemma 3.1. Assume the loss function in equation 3.3 and assume the area-211

level Fay-Herriot model in equation 3.4. Consider two choices of the Bayes212

estimate, which are θ̂BLUP and θ̂EBLUP and are given in equations 3.6 and213

3.7. The smoothed best linear unbiased Bayes (SBLUP) estimator is214

θ̃SBLUP = (Im + γΦ−1Ω)−1θ̂BLUP.

and the smoothed empirical best linear unbiased Bayesian (SEBLUP)215

estimator is216

θ̃SEBLUP = (Im + γΦ−1Ω)−1θ̂EBLUP.

Proof. Under the assumption of the Fay-Herriot model and by equations 3.6217

and 3.7, the results follows by direction substitution into Theorem 3.1.218

As already mentioned in Section 3.1, there are many ways to choose the219

loss function weights, and this is typically application specific. We define220

the loss function weights used in our application in Section 6.221

4 Benchmarking and Smoothing222

We now turn to situations where our estimates should not just be smooth,223

minimizing equation 3.3, but also obey benchmarking constraints. As the224

benchmarking constraints are relaxed, we should recover the results of Sec-225

tion 3.226

Definition 4.1 (Benchmarking constraints, benchmarked Bayes estimator).227

Benchmarking constraints are equality constraints on the weighted means or228

weighted variances of subsets (possibly all) of the estimates. The bench-229

marked Bayes estimator is the minimizer of the posterior risk subject to the230

benchmarking constraints.231

The levels to which we benchmark, i.e., the values of the equality con-232

straints, are assumed to be given externally from some other data source.233

For internal benchmarking, we refer to Bell et al. (2013). Our methods234

address linear, weighted mean constraints, in a similar manner to that of235

Datta et al. (2011) and Ghosh and Steorts (2013); however, our results are236

more general.237

4.1 General Linear Benchmarking Constraints238

We now return to our general assumptions in Section 3.2. We first con-239

sider benchmarking constraints which are linear in the estimate δ, such as240
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means or totals. The general problem is now to minimize the posterior risk241

in equation 3.3 subject to the constraints242

Mδ = t, (4.1)

where t is a given k-dimensional vector and M is a k × m matrix. This243

is equivalent to introducing a k-dimensional vector of Lagrange multipliers244

λ and minimizing (δ − θ̂B)TΦ(δ − θ̂B) + γδTΩδ − 2λT (Mδ − t). The full245

details on this equivalence can be found in Datta et al. (2011).246

Theorem 4.1. Suppose that equation 4.1 has solutions. Then the con-247

strained Bayes estimator under the constraint in equation 4.1 is248

θ̃BM = Σ−1
[
Φθ̂

B
+MT (MΣ−1MT )−1

(
t−MΣ−1Φθ̂

B
)]
,

where Σ = Φ + γΩ.249

Remark 4.1. Note that the Theorem 4.1 estimator θ̃BM can be expressed250

in terms of the Theorem 3.1 estimator θ̃S as251

θ̃BM = θ̃S + Σ−1MT (MΣ−1MT )−1(t−M θ̃S).

Thus, it can be seen that the benchmarking essentially “adjusts” the estima-252

tor θ̃S based on the discrepancy between M θ̃S and the target t.253

Proof of Theorem 4.1. Differentiating with respect to δ and setting the re-
sult equal to zero at θ̃BM yields

MTλ = Φ(θ̃BM − θ̂B) + γΩθ̃BM

=⇒ θ̃BM = Σ−1(Φθ̂
B

+MTλ).

Then by the constraint,

t = MΣ−1(Φθ̂B +MTλ) (4.2)

= MΣ−1Φθ̂B +MΣ−1MTλ,

so λ = (MΣ−1MT )−1(t−MΣ−1Φθ̂B). The result follows immediately.254

Often there is only one linear constraint of the form
∑

iwiδi = t, or
equivalently wTδ = t, for some nonnegative weights wi and some t ∈ R.
This is simply a special case of Theorem 4.1 with k = 1 and M = wT , in
which case the result simplifies to

θ̃BM = θ̃S + (t−wT θ̃S)(wTΣ−1w)−1Σ−1w.
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Geometric Interpretation: Our formulation of benchmarking and255

smoothing as constrained optimization problems has a geometric interpre-256

tation. It is well known that the Bayes estimate is the minimizer of the257

conditional expectation of the MSE. Since the minimization is taken over258

all possible values of θ, the Bayes estimate will not respect any constraints259

we might wish to impose (except by chance) or unless these constraints are260

included in the specification of the prior. Instead, we minimize the MSE261

within the feasible set of the constraints. We find the point in the feasible262

set which is as close (in the sense of expected weighted squared error) to the263

Bayes estimate as possible. That is, we project the Bayes estimate into the264

feasible set.265

The geometry of the feasible set is itself slightly complicated, because of266

the constraints imposed. Note that the smoothness penalty in the loss func-267

tion may be reformulated as a smoothness constraint of the form δTΩδ ≤ s268

for some s > 0. This constraint defines an ellipsoid centered at the ori-269

gin. Constraints on weighted means define linear sub-spaces, e.g., planes,270

depending on the number of constraints and the number of variables.271

Remark 4.2. We do not consider benchmarked constraints of weighted vari-272

abilities in this paper as the problem is non-convex. Geometrically, con-273

straints of weighted variabilities define the surfaces of cones. The constrained274

Bayes estimator is the projection of the unconstrained Bayes estimator onto275

the intersection of the ellipsoid, the linear sub-space, and the cones. We276

return to this in our discussion of future work.277

4.2 Area-Level Fay-Herriot Model with Benchmarking and278

Smoothing279

In this section, we return to the assumptions of the area-level Fay-Herriot280

model in Section 3.3 and equation 3.4, which allows us to derive a special case281

of our generalized approach for smoothing and benchmarking in Lemma 4.1.282

Lemma 4.1. Let us assume the conditions of Theorem 4.1. In addition,
assume the area-level Fay-Herriot model in equation 3.4. Finally, let us
assume that the Bayes estimator is either θ̂BLUP or θ̂EBLUP. It immediately
follows that the smoothed, benchmarked BLUP and EBLUP are

θ̃SB-BLUP = θ̃SBLUP + (t−wT θ̃SBLUP)(wTΣ−1w)−1Σ−1w (4.3)

and

θ̃SB-EBLUP = θ̃SEBLUP + (t−wT θ̃SEBLUP)(wTΣ−1w)−1Σ−1w, (4.4)
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where283

θ̃SBLUP = (Im + γΦ−1Ω)−1θ̂BLUP.

and the smoothed empirical best linear unbiased Bayesian (SEBLUP) esti-284

mator is285

θ̃SEBLUP = (Im + γΦ−1Ω)−1θ̂EBLUP.

Proof. In this situation, the result follows directly from Lemma 3.1.286

4.3 Choice of Smoothing Penalties287

The choice of γ is assumed to be fixed a priori. But knowing γ is equivalent288

to knowing how smooth the estimate ought to be, and this knowledge is289

lacking in most applications. In such situations, we suggest obtaining γ by290

leave-one-out cross-validation (Corona et al. 2008; Stone 1974; Wahba 1990).291

For each value of γ and each area i, define δ(−i)(γ) as the solution of the292

corresponding optimization problem with the loss-function term for area i293

dropped.1 The smoothness penalty and any applicable benchmarking con-294

straints are calculated over the whole of the vector δ, not just the non-i295

entries. (This ensures that δ(−i)(γ) does meet all the constraints, while still296

making a prediction about θi.)297

The cross-validation score of γ is

V (γ) =
1

m

m∑
i=1

[
δ
(−i)
i (γ)− θ̂Bi

]2
φi,

where δ
(−i)
i (γ) denotes the ith component of δ(−i)(γ), and the minimizer of298

the cross-validation scores is γ̂ = argminγ≥0 V (γ). Direct evaluation of V (γ)299

can be computationally costly. See Wahba (1990) for faster approximations,300

such as “generalized cross-validation.”301

5 Mean Squared Error Estimation302

It is traditional in SAE to report approximations to the overall prediction303

error. This is generally a challenging undertaking, since methods like cross-304

validation can be used to evaluate prediction error in a way which is compa-305

rable across models, but they do not work for estimation error. Thus, one306

needs to use more strictly model-based approaches, either analytic or based307

on the bootstrap.308

1Instead of the sum of squared errors
∑m

i′=1 φi′(δi′ − θi′)
2, we use

∑
i′ 6=i φi′(δi′ − θi′)

2.
This amounts to replacing Φ with a matrix whose ith row and column are both 0.
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Evaluating the MSE of our estimates is especially difficult, since we309

combine a model-based estimate with a non-parametric smoothing term.310

A straightforward model-based bootstrap would sample from the posterior311

distribution of equation 3.4 to generate a new set of true estimates θ∗ and312

observations y∗, re-run the estimation on y∗, and see how close the result-313

ing estimates δ∗ came to θ∗. However, this presumes the correctness of the314

Fay-Herriot model in equation 3.4, which is precisely what we have chosen315

not to assume through our imposition of the benchmarking/smoothing con-316

straints2. Note that such constraints do not fit naturally into the generative317

model.318

We evade this dilemma by using a non-parametric bootstrap, a common319

approach when the functional form of a regression is known fairly securely320

but the distribution of the error terms is not. The bootstrap assumes that321

smoothing is appropriate and that we have chosen the right Ω matrix. We322

discuss the choice of Ω and the smoothing penalty in Section 6.3 for the323

application on the Empirica database. We assume that the loss function324

weight for the ith area (φi) is the inverse of the estimated MSE.325

5.1 Non-parametric Bootstrap326

In this section, we describe the use of a non-parametric bootstrap in order327

to estimate the MSE. Assume the area-level Fay-Herriot model in equation328

3.4; however, the assumed model here can be a parametric, non-parametric,329

or semi-parametric. Assume an estimator θ̂ of θ. For example, one could330

consider θ̂EB in equation 3.7, such as the Bayes estimator or the empirical331

Bayes estimator. In addition, assume a constrained Bayes estimator θ̂BM ,332

such as a benchmarked estimator or a smoothed benchmarked estimator.333

For convenience, we can re-write the Fay-Herriot model in equation 3.4
as the following:

y = Xβ + u+ e. (5.1)

Now, define the residuals as r = y − θ̂ as in Carpenter et al. (2003). There
are other non-parametric bootstraps that have been utilized in the small
area literature that can be found in the work of Opsomer et al. (2008) and
Molina et al. (2009). Next, center and scale the residuals r and the estimated
random effects û, where we denote these by rce and rcu, respectively. These
are centered at 0 and scaled to ensure that they have empirical covariances

2If we follow this procedure nonetheless, we always conclude that benchmarking and
especially smoothing radically increase the MSE by introducing large biases.
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equal to D and σ̂uIm, respectively. Next, we bootstrap and re-sample the
centered and scaled random effects rcu, and the residuals rce, in the following
way:

u∗
iid∼ {rcu} (5.2)

e∗
iid∼ {rce} (5.3)

y∗ = Xβ̃(σ̂2u) + u∗ + e∗. (5.4)

All the residuals are re-sampled independently.334

In equations 5.2 and 5.3, we draw (with replacement) independent and335

identically distributed (iid) random variables u∗1, . . . , u
∗
m and e∗1, . . . , e

∗
m where336

each u∗i is equal to each of rc1, . . . , r
c
m and each e∗i is equal to each of rc1, . . . , r

c
m337

with probability 1/m respectively.338

Re-sampling–based bootstraps are commonly used in assessing uncer-339

tainty for regression models. They presume the correctness of the functional340

form of the regression, but not of distributional assumptions about the noise.341

To summarize, the resampling procedure proceeds in the following way:342

1. From data (x,y), obtain estimates θ̂ and centered and scaled residuals343

rcu and rce.344

2. Repeat B times:345

(a) Draw u∗ and e∗ by resampling with replacement from rcu and rce346

respectively.347

(b) Set y∗ = Xβ̃(σ̂2u) + u∗ + e∗.348

(c) Refit the model on (x,y∗) to obtain θ̂∗.349

(d) Calculate the constrained Bayes estimate θ̂BM∗.350

3. Use the distribution of θ̂∗ and θ̂BM∗ in bootstrap calculations to obtain351

the estimated MSE.352

Thus, we have proposed a non-parametric bootstrap, where we define353

this using the unconstrained estimates. This is important to ensure that354

the bootstrap produces synthetic data closer to the observed data. This can355

of course be checked for a few situations under the Fay-Herriot model, and356

we do so in our application given previous work done by Prasad and Rao357

(1990).358
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6 Application: Estimating Rental Prices in Berlin359

In this section, our goal is to estimate the average rent in each of the 447360

low geographical areas called Lebensweltlich orientierte Räume (LORs) in361

Berlin in 2015. The Berlin Senate Department for Urban Development and362

Housing is officially responsible for providing official comparative rents for363

the consumer price index in Berlin. This official data set is comprised of364

roughly 2,000 apartments. Furthermore, it is collected by the Federal Sta-365

tistical Office in Berlin-Brandenburg using a stratified sampling design. The366

strata are defined by type of the apartment, districts, and type of the land-367

lord.3 Unfortunately, this survey is confidential due to privacy constraints,368

and it is not possible to access this database.369

In order to mimic the official data set collected by the Federal Statistical370

Office in Berlin-Brandenburg, Empirica provided us with a similar data set371

for 2,000 apartments available for rent in Berlin in 2015. The Empirica data372

set was obtained via web-scraping and print media. The Empirica data set373

creates the following two new challenges: (1) reliable estimates at the LOR374

level are not available due to the very small or zero sample sizes in some375

LORs and (2) the sample from the Empirica data set may fail to capture376

important parts of the Berlin rental market. Therefore, we combine direct377

estimates from the sample of the Empirica data set with small area models378

that use area level predictors. The small area model is described in detail379

in Section 6.2. To match the official rent per square meter in Berlin we380

incorporate a benchmarking constraint (i.e. the fixed amount of rent set by381

law for the city of Berlin) and investigate the effect of smoothing in Section382

6.3. The spatial distribution of rent prices in Berlin is also discussed. Before383

proceeding, we first further describe the Empirica data set in Section 6.1.384

6.1 The Empirica Data Set385

The Empirica data set is chosen (in order to mimic the data collected by the386

Federal Statistical Office in Berlin-Brandenburg) according to a stratified387

sampling design (strata are defined using the region and the size of the388

apartment) with a sample size of around 2,000. There are a total of 100389

covariates such as rental price per square meter (excluding costs for water,390

sewage, trash collection, etc.), number of bedrooms and bathrooms, year391

of construction, balcony, and the address (including longitude and latitude392

coordinates).393

3We refer to https://www.statistik-berlin-brandenburg.de/publikationen/

aufsaetze/2016/HZ_201602-04.pdf for further information.
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The 48 strata are defined by the cross-classification of the 12 districts394

with the living space categories (four categories: < 40m2, 40 − 60m2, 60−395

90m2, > 90m2). This leads to a sample size of 2,083 apartments with 302396

in-sample LORs and 142 out-of-sample LORs. The summary statistics of397

the sample sizes by LORs are presented in Table 1.398

Table 1: Summary statistics over LOR (Empirica Database)

Min. 1st Qu. Median Mean 3rd Qu. Max.

Sample size 3 4 5 6.90 9 24

Direct estimation—using only the sample data—of the average rental399

price per square meter is not an option because direct estimates are only400

available for 302 out of the 447 LORs. In addition, for some areas where401

sample data is available, the small samples sizes lead to direct estimates402

with a low precision. As such, we attempt to improve the precision of small403

area direct estimates by combining the direct estimates from the sample of404

the database with small area models. The small area model from which405

we derive our initial estimates is described in Section 6.2. It provides an406

estimate of the average rental price per square meter at LOR level in Berlin407

based on the Empirica database.408

In addition, because rentals often directly change hands from outgoing409

tenants to incoming tenants in Berlin, a market is not covered by online and410

print media sources. More specifically, in this secondary market, it is likely411

that the rental price remains constant. For this reason, we may expect some412

overestimation of the average rental price per square meter by using the413

Empirica database. To adjust for the potential lack of representativeness414

of the sample data, we incorporate a benchmarking constraint such that415

the weighted mean of the average LOR rental price estimates matches the416

official rent per square meter of e 8.02 in Berlin as published by the Berlin417

Senate Department for Urban Development and Housing. In addition to418

benchmarking, we add a spatial smoothness constraint across LORs since we419

may expect rental prices to be spatially related. Our choice of the Laplacian420

and smoothing penalty is discussed in Section 6.3.421

6.2 The Fay-Herriot Model applied to Empirica422

In this section, we describe our methodology that we use for analysis and423

estimation. In the context of the Empirica data set, θ denotes the true rental424

price per square meter for all the LORs, y denotes the direct estimates425
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based on the survey from the Empirica data set, D = Diag(D1, . . . , Dm)426

denotes the sampling covariance matrix of the direct estimates y, σ2u denotes427

the area-level variance parameter, xi denotes the vector of covariates, and428

β denotes the unknown regression coefficients. Our initial unconstrained429

estimates for the average rental price per square meter are derived from the430

area-level Fay-Herriot model in equation 3.4 (Fay and Herriot 1979).431

The final model is selected following the ideas by Marhuenda et al.432

(2014). In particular, we used a Kullback symmetric divergence criterion433

with a bootstrap adjustment, KICb2. The final model includes seven ag-434

gregated (LOR-level) predictors obtained from the Empirica data set: 1)435

the average year of construction, 2) the average floor of the apartment in436

the building, and 3-7) share of apartments with an energy performance cer-437

tificate available (EPC)/ balcony/ elevator/ fitted kitchen/ open fireplace,438

respectively. The distribution of the predictors over LORs is presented in439

Table 2. The inclusion of these covariates led to an R2 = 52% for the linear440

model at the aggregated level.441

Table 2: Summary statistics over LOR

Min. 1st Qu. Median Mean 3rd Qu. Max.

Year of construction 1909 1936 1955 1956 1973 2010
Floor 0.44 1.77 2.27 2.50 2.83 7.64
Share of EPC 0.00 0.55 0.66 0.64 0.75 1.00
Share of balcony 0.36 0.62 0.72 0.72 0.83 1.00
Share of elevator 0.00 0.16 0.31 0.36 0.54 0.98
Share of fitted kitchen 0.000 0.33 0.47 0.47 0.60 0.94
Share of open fireplace 0.00 0.00 0.01 0.02 0.02 0.28

The Fay-Herriot model is estimated by using the emdi package in R442

(Kreutzmann et al. 2019). Figure 1 presents the average rental price per443

square meter based on the Fay-Herriot estimator. We observe that the most444

expensive parts of Berlin are around the city centre and the area in the445

south-west (Zehlendorf and Grunewald) of Berlin, which is consistent with446

official results by the Berlin Senate.447

6.3 Benchmarking/Smoothing applied to Empirica448

Figure 1 offers a first picture about the rent per square meter at the LOR-449

level in Berlin using a sample from the Empirica data set. As already men-450

tioned, the Empirica data set may exclude certain parts of the rental market.451
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Figure 1: Average rent per square meter in e based on the unconstrained
Fay-Herriot estimator (left map) and the direct estimator (right map).

To correct for this, we incorporate a benchmarking constraint requiring that452

the weighted mean of the average rental price estimates matches the official453

rent per square meter of e 8.02 in Berlin and in addition consider smoothing454

the estimates over space.455

In particular, we consider the following two options for benchmarking456

and/or smoothing: (i) benchmarking the mean without spatial smoothing,457

and (ii) benchmarking the mean with spatial smoothing. We expect that458

smoothing will reduce the variability in the resulting benchmarked estimates.459

In addition, in each case (i) and (ii), we choose the benchmarked weights460

wi to be proportional to the number of apartments in each LOR. There is a461

rich literature on the choice of such weights. We refer to Ghosh and Steorts462

(2013) and Datta et al. (2011) for further details.463

Figure 2 compares the unconstrained Fay-Herriot estimator to the bench-464

marked Fay-Herriot estimator. As expected, the Fay-Herriot estimates of the465

average rental price per square meter are higher than the benchmarked esti-466

mates for each of the 447 LOR. Observe that the benchmarked Fay-Herriot467

estimates are on average around e 0.348 lower than the unconstrained Fay-468

Herriot estimates. This is expected as the Empirica data set excludes the469

secondary rental market, which means that rental prices in the Empirica470

data set tend to be lower than those advertised online or in print media.471

Intuitively, properties that are advertised in the open market may ignore472

the law on rental prices, altogether.473

Turning now to the use of spatial smoothing, the most important part474

of the smoothing procedure is selecting the matrices Ω and Q. Recall that475
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Figure 2: Average rent per square meter in e using (a) the benchmarked
Fay-Herriot estimates and (b) the unconstrained Fay-Herriot estimates.

Ω is used to measure the smoothness of estimates; and Q shows how similar476

the estimates for any two domains should be. This is inevitably application-477

specific. In our application, we utilize a simple choice, where where qii′ = 1478

if the LORs i and i′ shared a border, and 0 otherwise. This treats the479

LOR as nodes in an unweighted graph, with Q being its adjacency matrix480

and Ω its Laplacian. In addition, we considered several alternative ways481

of smoothing the Fay-Herriot estimates. One can choose qii′ such that it482

decreases with the geographic distance between LORs, regarding the points483

at their respective centers. A second approach was to treat the 12 districts484

in Berlin as clusters, setting qii′ = 1 for LORs within a cluster and qii′ = 0485

for LORs between them, but neither of these two approaches worked well486

under cross-validation. Note that choosing the spatial smoothing parameter487

is not an issue in our application as we do not encounter spatial islands,488

however, if one does encounter such issues, we would recommend modifying489

the definition of a neighbor to be the minimum geographic distance criterion.490

As described in Section 4.3, the smoothing factor γ was picked by leave-491

one-out cross-validation and the final value was γ ≈ 0.146. Figure 3 shows492

the smoothed and benchmarked Fay-Herriot estimates versus the uncon-493

strained Fay-Herriot estimates. In general, the effect of spatial smoothing494

causes an upward adjustment of low values of the unconstrained Fay-Herriot495

estimates, and causes a downwards adjustment of higher unconstrained Fay-496
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Figure 3: Average rent per square meter in e using (a) the benchmarked
Fay-Herriot estimates with cross-validated smoothing and (b) the uncon-
strained Fay-Herriot estimates.

Herriot estimates. However, the majority of the unconstrained Fay-Herriot497

estimates are pulled down as a result of both smoothing and benchmarking.498

This observation is further confirmed by Figure 4 where the effect of com-499

bining smoothing with benchmarking is illustrated this time for the twelve500

districts in Berlin. Observe that in each of the twelve districts the smooth501

benchmarked Fay-Herriot estimates fall on the line with a slope of less than502

1.503

Table 3 reports the MSEs under the non-parametric bootstrap of Sec-504

tion 5 for different combinations of benchmarking and smoothing. In partic-505

ular, FH denotes the unconstrained Fay-Herriot estimates, FH Bench the506

benchmarked estimates and FH Bench/Smooth the corresponding bench-507

marked estimates with cross-validated smoothing. The results are based on508

B = 1000 bootstrap replications. In addition, we ran a Fay-Herriot model509

with spatially correlated random effects, FH SAR, using the same adjacency510

matrix Q used for the FH Bench/Smooth. We followed Pratesi and Salvati511

(2009) and used a SAR specifications for the random effects. The MSE of512

the FH SAR is estimated by a non-parametric bootstrap (B = 1000) as pro-513

posed by Molina et al. (2009). Please note that in the case of MSE estimation514

under the benchmarked approach with spatially correlated random effects,515

FH SAR Bench, benchmarking is being implemented with each bootstrap516
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Figure 4: Benchmarked and Spatially Smoothed Fay-Herriot estimates ver-
sus unconstrained Fay-Herriot estimates, by region. Large unconstrained
Fay-Herriot estimates are adjusted downwards by the benchmarked and
spatially smoothed Fay-Herriot estimators, while small unconstrained Fay-
Herriot estimators are adjusted upwards. This effect can be seen by the
dotted line, denoting the regression line, and the red line, denoting the in-
tersection line.
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sample. First, we observe that the unconstrained Fay-Herriot estimates (FH517

and FH SAR) have a smaller MSE compared to the benchmarked estimates.518

This is expected as the constraint in the estimation introduces additional519

variability. However, as benchmarking is required in the application, we fo-520

cus on the three constrained estimates (FH Bench, FH SAR Bench and FH521

Bench/Smooth). Incorporating the spatial effect via smoothing or a SAR522

structure reduces the variability for most LORs compared to the bench-523

marked estimates (Bench). In addition, the estimated MSEs under the FH524

SAR Bench approach and the FH Bench/Smooth are comparable. In par-525

ticular, on average both methods provide similar estimated MSEs with the526

Fay-Herriot benchmarked and smooth approach also offering less extreme527

estimated MSEs.528

Table 3: Summary statistics of RMSE estimates over LOR

Min. 1st Qu. Median Mean 3rd Qu. Max.

FH 0.07 0.60 0.67 0.63 0.71 0.89
FH SAR 0.10 0.46 0.64 0.61 0.74 2.17
FH SAR Bench 0.10 0.46 0.67 0.71 0.86 2.91
FH Bench/Smooth 0.07 0.67 0.74 0.75 0.81 1.86
FH Bench 0.07 0.68 0.75 0.77 0.85 1.80

Having assessed the variability of the three constrained estimates, we529

have a closer look to the point estimates of the actual rent per square meter530

in Berlin. Figure 5 presents the benchmarked estimates with and without531

cross-validated smoothing and the benchmarked Fay-Herriot with spatially532

correlated random effects. Overall, all maps reflect the current situation533

of the rental market for apartments in Berlin with higher rents in the city534

center and in the district Steglitz-Zehlendorf (in the south-west), whereas535

the districts of Spandau (in the west) and Marzahn-Hellersdorf (in the east)536

have lower rents compared to other parts in Berlin. For instance, vast hous-537

ing estates (plattenbau style - large panel system building) were built in538

the 1980s in Marzahn-Hellersdorf. Most of the plattenbau apartments were539

built in large settlements on the edge of Berlin making them inconveniently540

located leading to high vacancy rates and low rent prices. In contrast, the541

district of Steglitz-Zehlendorf consists of very affluent localities like Dahlem542

or Zehlendorf. The localities Nikolasee and Wannsee of Steglitz-Zehlendorf543

are located around the forest of Grunewald and two lakes (Greater and Little544

Wannsee). These localities are some of the most expensive areas in Berlin545

for housing.546
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Figure 5: Average rent per square meter in e based on the benchmarked
Fay-Herriot estimator with (middle) and without (left map) cross-validated
smoothing and the benchmarked Fay-Herriot with spatially correlated ran-
dom effects (right map).

However, we also observe some differences between the three maps. First,547

some LORs in the city center around the governmental quarter (with the Re-548

ichstag building, German Chancellery, and Bellevue Palace) have lower than549

expected rental prices based on the benchmarked estimates (FH Bench and550

FH SAR Bench) in Figure 5 and on the unconstrained Fay-Herriot estimates551

in Figure 1. Additional discrepancies occur for LORs in the suburbs in the552

north (for instance the locality Blankenfelde in the district Pankow) and553

south-east (for instance the locality Karolinenhof in the district Treptow-554

Köpenick). In the latter case LORs have higher than expected rental prices555

based on the benchmarked estimates (FH Bench and FH SAR Bench) in556

Figure 5 and on the unconstrained Fay-Herriot estimates in Figure 1. These557

localities are bordering the federal state of Brandenburg, are located in ru-558

ral parts of Berlin and they are the least densely populated areas in Berlin.559

In addition, Figure 1 reveals that sample information is missing from these560

LORs, and thus, we heavily rely on the Fay-Herriot equation 3.4. It is pos-561

sible that especially for LORs with somehow different characteristics (in-562

frastructure and environment) our estimates based on equation 3.4 suffer563

from some misspecification. Nevertheless, it appears that our benchmarked564

estimates with cross-validated smoothing are able to adjust the estimates565

and protect against potential model misspecification.566
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7 Discussion567

We have provided a general approach to area-level SAE, where we smooth568

and benchmark model-based estimates. Our approach yields closed-form569

solutions without requiring any distributional assumptions. Furthermore,570

our results apply for linear and non-linear estimators. Finally, we show in571

the application that smoothing has the potential to improve estimation of572

rental prices on LOR level in Berlin for most LORs.573

We now outline some possible extensions, namely extensions to weighted574

variability constraints, moving beyond squared error loss, and moving from575

point estimation to full posterior estimates for maximal flexibility. As men-576

tioned earlier, working beyond a weighted mean constraint and with both a577

weighted mean and weighted variability would be a more general benchmark-578

ing framework. The question of how to incorporate variability constraints579

while maintaining tractability of the model is a potential direction of future580

research and is beyond the scope of this paper, as the problem may not al-581

ways be a convex optimization problem. In addition, throughout our paper,582

we have worked with the squared error loss function. However, it should583

be possible to replace this with any other loss function. Once the Bayes584

estimate is obtained, the constrained Bayes estimate would be found by a585

projection onto the corresponding feasible set.586

This would presumably mean a need for using numerical optimization587

when the optimization problem in not tractable. Finally, it may be possible588

to go beyond point estimates to distributional estimates. Given a sample589

from the posterior distribution (e.g., from MCMC), it is possible to project590

each sample point into the feasible set, giving rise to a posterior distribu-591

tion whose support respects the constraints. This idea is related to that592

of Dunson and Neelon (2003), however, cannot be directly adapted to our593

setting. Dunson and Neelon (2003) have proposed constrained Bayes esti-594

mation through a posterior projection approach, which is appealing in the595

sense that one fully achieves a Bayesian posterior distribution to the con-596

strained optimization problem. The constraints considered by the authors597

are ordered parameters, and do not easily generalize to both weighted means598

and weighted variabilities in our general framework.599
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Supplementary Material702

A Lemma on Squared Differences703

Lemma A.1. For a suitable matrix Ω,704 ∑
i,i′

(δi − δi′)2qii′ = δTΩδ.

Proof. Begin by expanding the square and collecting terms:705 ∑
i,i′

(δi − δi′)2qii′

=
∑
i,i′

δ2i qii′ +
∑
i,i′

δ2i′qii′ − 2
∑
i,i′

δiδi′qii′

=
∑
i

δ2i
∑
i′

qii′ +
∑
i′

δ2i′
∑
i

qii′ − 2
∑
i,i′

δiδi′qii′ .

Now define the diagonal matrix Q(r) with elements q
(r)
ii =

∑
i′ qii′ , and define706

the diagonal matrix Q(c) with elements q
(c)
jj =

∑
i qij . Substituting,707 ∑

i,i′

(δi − δi′)2qi,i′ = δTQ(r)δ + δTQ(c)δ − 2δTQδ

= δT
(
Q(r) +Q(c) − 2Q

)
δ,

which defines Ω.708

Remark A.1. In an unweighted, undirected graph with adjacency matrix A,709

the degree matrix D is defined by Dii =
∑

j Aij, Dij = 0; the graph Laplacian710

in turn is L = D − A (Newman 2010). If Q is an adjacency matrix, then711

Q(r) = Q(c) = D, and Ω = 2L.712

Remark A.2. By construction, Ω is clearly positive semi-definite. It is not713

positive definite, because (1 1 · · · 1) is always an eigenvector, of eigenvalue714

zero. This corresponds to the fact that adding the same constant to each δi715

does not change
∑

i,i′ (δi − δi′)2qi,i′. (These are of course basic properties of716

graph Laplacians.)717
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