
Switching Between Different Non-Hierachical
Administrative Areas via Simulated Geo-Coordinates:

A Case Study for Student Residents in Berlin

Marcus Groß1, Ann-Kristin Kreutzmann1, Ulrich Rendtel1, Timo Schmid1,

and Nikos Tzavidis2

The transformation of area aggregates between non-hierarchical area systems (administrative
areas) is a standard problem in official statistics. For this problem, we present a proposal
which is based on kernel density estimates. The approach applies a modification of a
stochastic expectation maximization algorithm, which was proposed in the literature for the
transformation of totals on rectangular areas to kernel density estimates. As a by-product of
the routine, one obtains simulated geo-coordinates for each unit. With the help of these geo-
coordinates, it is possible to calculate case numbers for any area system of interest. The
proposed method is evaluated in a design-based simulation based on a close-to-reality,
simulated data set with known exact geo-coordinates. In the empirical part, the method is
applied to student resident figures from Berlin, Germany. These are known only at the level of
ZIP codes, but they are needed for smaller administrative planning districts. Results for
(a) student concentration areas and (b) temporal changes in the student residential areas
between 2005 and 2015 are presented and discussed.
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1. Introduction

Maps are increasingly used for the dissemination of official statistics. Mostly, these consist

of areas that display some value of interest in different colors. Thus, maps demonstrate, for

instance, where the poor live (U.S. Census Bureau 2017), where people are most exposed

to air pollution (Spiekermann and Wegener 2003), and where accessibility to services is

low (Langford et al. 2008; Schmid et al. 2017). Therefore, maps are also an illustrative and

easily understandable basis for targeting policies.

The commonly used maps are “choropleths” that use a discretization of the value of

interest. The areas or zones are defined, for example, by administrative districts at different

levels or statistical units as the European nomenclature des unités territoriales statistiques

(NUTS), see the Statistical Atlas of the European Statistical Yearbook (Eurostat 2018).

In using choropleth maps, it is problematic that the size of an area is not properly taken into

account, which may lead to misinterpretations. Alternatively, areas can be defined by a
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rectangular grid of a certain size, say 1 km2. These maps are often referred to as grid maps,

see for an example the German Census atlas (Statistische Ämter des Bundes und der

Länder 2015). Gallego et al. (2011) discuss several approaches that can be used to

downscale area data to fine-scale raster grids in order to receive maps with a higher

resolution and thus precision. Grid or raster data is commonly used in urban planning and

simulations (Schürmann et al. 2002; Lautso et al. 2004; Patterson et al. 2011). Geo-coded

data enables to create a different type of map that is independent of area definitions. These

maps are based on a two dimensional kernel density of the variable of interest. They

display each level of the estimated density by a different color. In contrast to choropleths,

the color scheme, often ranging from light for low values to dark for high values of the

density, is continuous. An example is the Service Map of Helsinki (OpenStreetMap

Foundation 2019), where the user can combine different background maps with kernel

density estimates of demographic subpopulations, like age groups and ethnic minorities.

In addition to the described downscaling or disaggregation of data to subsets of

administrative units, switching between different area definitions/systems is often a

challenge in official statistics. Performing statistical inference on an area level without

available data while having data for another related area level is also known as spatial

change of support (COS) (see e.g., Bradley et al. 2016). This occurs when there are

different local planning areas in use, for example, fire brigade districts, schooling districts,

hospital districts that are different from the standard administrative areas. For certain

large-scale planning projects, such as an airport, the number of inhabitants in the

upcoming noisefield of airplanes is of interest. European data in the INSPIRE Knowledge

Base (Infrastructure for spatial information in Europe) are often reported on squares of

different length. Here it may be necessary to adapt the European units to the local units

(European Commission 2019). In the application of this work, the number of student

residents in administrative areas of Berlin, “Lebensweltlich orientierte Räume” (LOR), is

required by the Berlin Senate Department for Urban Planning and Environment for

planning purposes. LORs are the smallest urban planning units for Berlin and have

an average area size of around 1.99 km2. However, the university enrollment registers

only provide student totals at the level of ZIP codes with an average area size of around

4.62 km2. Figure 1 shows the 447 LORs, as well as the 193 ZIP-code areas of Berlin.

A careful inspection of the areas reveals many cross-cuttings of the area borders. Figure 2
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Fig. 1. ZIP-code areas of Berlin (a) and administrative planning areas (LORs) (b).
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demonstrates, in detail, the non-hierarchical structure of the ZIP-code areas (blue lines)

and the LOR areas (dotted red lines) in the north east edge of Berlin. In other words, LORs

are by no means a lower-level area system than ZIP-code areas.

As these two area systems are non-hierarchical, we are confronted with a problem that is

hard to solve at an elementary level. Often this task is advanced by ad hoc methods, based

on a proportional allocation of totals depending on which part of the ZIP-code area

belongs to the respective administrative planning area (LOR). Such an approach is tedious

and relies on an unrealistic assumption, namely, that the units are uniformly distributed

across the ZIP-code area. Instead, Mugglin and Carlin (1998) and Mugglin et al. (1999)

propose a hierarchical Bayesian approach for the spatial change of support. Bradley et al.

(2016) extend the approach to data with sampling variability and enable the spatial and

temporal change of support. These model-based approaches require covariate information

on the area of interest and rely on distributional assumptions. Within the field of small area

estimation, Trevisani and Gelfand (2013) extend hierarchical Bayesian models to soften

the requirements for the covariate information by allowing the use of covariates of areas

non-nested within the small areas of interest. In this work, we suggest a non-parametric

alternative in the form of a kernel density estimate (KDE) that tackles the problem of

transferring count numbers from one area system to another without covariate

information. As the density function is independent of administrative areas, it is possible

to compute count numbers for any area definition/system from the density.

In our case, we do not have the exact geo-coordinates at hand but only totals for areas

that are not related to the areas of interest. Therefore, we present an approach in which

geo-coordinates are simulated from area-specific aggregates. The method proposed in this

work is similar to the approach of Groß et al. (2017), where it is used to counteract the

rounding of geo-coordinates due to confidentiality reasons. In their analysis, kernel

densities are generated to detect concentration areas of migrants and elderly persons in

Fig. 2. The non-hierarchical structure of the ZIP areas (blue straight lines) and the LOR areas (red dotted lines)

in the north east edge of Berlin.
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Berlin. Rendtel and Ruhanen (2018) use the approach with “Open Data” in order to

demonstrate local need for child care.

The algorithm of Groß et al. (2017) works for totals on rectangles that are the outcome

of the rounding process. However, the approach can be extended to totals of arbitrary

shape files. The algorithm is based on two elementary steps: the first step is to draw a

sample from a two-dimensional density that gives the simulated geo-coordinates. The

sampling is done with respect to the known number of observations in the reference areas,

which is achieved by stratified sampling. The second step is a classical estimation step that

generates a kernel density estimate from a sample of geo-coded data. These two steps

resemble a “stochastic expecation maximization” (SEM) algorithm (Celeux et al. 1996).

The article is organized as follows. In Section 2, the proposed algorithm and its statistical

foundation is described in more detail. Section 3 evaluates the quality of the conversion to

different areas via a design-based simulation study. The proposed method is applied to the

Berlin student residents data set in Section 4. Furthermore, the problem of allocating

the students of Berlin to administrative areas/LORs for the planning of student homes and

other student-related infrastructure is discussed. Besides the estimation of the total number

of students in administrative areas/LORs, the kernel densities offer alternative methods to

display regions with a dense student population and their development over time. The

method is compared with the classical approaches via choropleths. Section 5 concludes and

provides further research ideas.

2. Method

Multivariate kernel density estimation is a non-parametric approach to estimate the joint

probability distribution of two or more continuous variables. Let X ¼ X1; : : : ;Xnf g

denote the exact geo-coordinates, such as longitude and latitude, of observations i ¼ 1,.., n

with Xi ¼ (Xi1, Xi2). To estimate the density f (x) at point x, a multivariate kernel density

estimator is employed, which is given by:

f̂ H xð Þ ¼
1

n Hj j

1

2

Xn

i¼1

K H
2

1

2

x 2 X ið Þ

 !
; ð1Þ

where K(·) denotes a multivariate kernel function and jHj denotes the determinant of a

symmetric positive definite bandwidth matrix H. A popular choice for K(·) is the

multivariate Gaussian kernel. The choice of H is highly important for the performance

of the kernel density estimator. In principle, all bandwidth selection strategies try

to minimize the mean integrated squared error (MISE) which is E
Ð

f̂H xð Þ2 f xð Þ
� �2

dx;

where f (x) is the true density and f̂H xð Þ is the kernel estimate using the bandwidth matrix

H. For high case numbers, the asymptotic MISE (AMISE) offers some simplification by

omitting some terms of lower order. The essential part depends on the mixed derivatives of

the underlying density
Ð

f mð Þ xð Þ f xð Þdx. Wand and Jones (1994) suggest some simple but

efficient approximations of the empirical substitute 1=n
Pn

i¼1 f̂ ðmÞH ðxiÞ. They discuss the

choice of the bandwidth in the multivariate case by using a plug-in estimator, which is also

used in this work.
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Instead of the exact geo-coordinates X, only aggregated data for certain areas is

available in this work. Simply applying a kernel density estimator to, for instance the area

centers, leads to strongly biased estimates for rectangular shapes as shown in Groß et al.

(2017). Therefore, a special treatment is needed. Following Groß et al. (2017), we can

interpret the available data on area level, denoted by W ¼ W 1; : : : ;W nf g, as a coarse

measurement of the exact geo-coordinates of individual i. As the measurement process is

known, we are able to formulate a measurement model p(W jX) for W. It can be written as

a simple product of Dirac distributions, p WjX
� �

¼
Qn

i¼1p W ijX i

� �
; with

p W ijX i

� �
¼

1 for X i e areaðW iÞ;

0 else;

(
ð2Þ

where area(Wi) stands for the set of geo-coordinates that belong to the area where Wi

lies in.

From p(XijWi), we can draw pseudo samples of the Xi to estimate the density f by

using the Bayes theorem:

p X ijW i

� �
/ p W ijX i

� �
p X ið Þ: ð3Þ

Thus, the exact geo-coordinates, X ¼ X1; : : : ;Xnf g, are distributed according to the

kernel density estimate restricted to the area where the observation Wi comes from. In an

iterative procedure, the Xi are sampled from p(XijWi) followed by the estimation of p(Xi),

respectively f(x), by employing a multivariate kernel density estimator on the Xi.

In particular, a SEM algorithm (Celeux et al. 1996) is utilized. This is a modification of

the original EM-algorithm. The basic setting of the EM-algorithm refers to a situation

where a part of the observations is missing. Thus, one has to maximize the marginal

loglikelihood for the observed part of the data. As this can be quite complicated, one

regards the expected value of the loglikelihood of the complete data where the expectation

is done with respect to the current estimate of the parameter estimate. In many instances,

this expected value of the loglikelihood of the complete data can be maximized by standard

routines and leads to an update of the parameter estimate. With the SEM algorithm, the

expected value is replaced by one realization of the unobserved part of the sample under

the current parameter estimate. Again, the likelihood for this completed pseudo-sample is

maximized and a new update of the parameter estimate is achieved. The generation of the

pseudo-sample step brings a stochastic element into the algorithm, giving a more realistic

distribution of the missing observations. In our application, the missing data are the exact

geo-coordinates and the maximization of a likelihood is replaced by the kernel density

estimation (a generalised SEM, Groß et al. 2017). In contrast to SEM, a simple EM

algorithm would clearly not be helpful in this application, as all observations within an

area would fall on the same location and thus not prevent a bias of the resulting kernel

density estimate.

The algorithm starts with all the points concentrated at the center of the area. Starting

from these artificial geo-coordinates, a kernel estimate f̂ 0ð Þ xð Þ is generated. Two iterative

computation steps are performed as follows:

Step 1 (the ‘S’-step in SEM): “Pseudo-samples” of the exact geo-coordinates, the Xi,

are drawn by sampling from the conditional distribution p(XijWi). This conditional
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distribution is equal to the current density estimate restricted to the area where Wi

belongs

Step 2 (the ‘M’-step in SEM): The bivariate kernel density f̂ nþ1ð Þ xð Þ is estimated using

the drawn pseudo-sample.

By B þ N iterations of Step 1 and Step 2, a sequence of kernel density estimates is

generated. The final density estimate is computed by averaging the estimates of f̂ nð Þ xð Þ over

the N samples after discarding the first B burn-in samples. The number of burn-in samples

to achieve convergence and the number of samples N for a desired accuracy may depend

on the application. As for MCMC-methods, no general recommendations can be given.

However, for similar applications as presented here, we found that B ¼ 5 and N ¼ 100 was

generally sufficient. More details on the kernel density estimation method and the exact

implementation of the algorithm can be found in Groß et al. (2017). The only detail that is

changed is to draw the pseudo-samples from the corresponding shape rather than from a

rectangle, that means in the ‘S’- step truncating the density to the area where observation

Wi lies. This is more computationally intense, especially for complex-formed shapes,

because we have to check whether there is a potential pseudo-sample inside the shape.

However, this is of little importance with modern computers as long as the areas do not

have a very complex shape, for example non-convex shapes cut into separate parts.

In our application, the problem arises from the fact that large areas of a town may

consist of unsettled areas, like parks, lakes or industrial areas. These areas should be

excluded from the generation of the geo-coordinates. If this information is available, it

may considerably improve the estimation of the case numbers in the new area system. In

principle, this is no problem for the SEM algorithm. One simply has to exempt the

unsettled areas from the sampling of the geo-coordinates. However, in this case the

boundary problem of the kernel density estimation comes into play, as the kernel function

may not respect the boundary of the settled regions. One approach, the “cut- and

normalize-method” (Gasser and Müller 1979), to overcome this problem is to restrict the

kernel function to settled areas and to compute a new normalizing factor that makes the

kernel function on the reduced area a density. Such a factor has to be computed for every

spot where the kernel function is evaluated. This costs computational time, but it is not a

real obstacle as it is implemented in existing software (Groß 2018).

After computing a non-parametric density estimate with this algorithm, the question

arises how to allocate the number of observations to each shape in the new target area

system. One possibility would be to numerically integrate over the non-parametric density

and multiply the result by the number of total observations. However, it is likely that the

result would not be consistent with the original data, that is, the number of observations

belonging to a shape of the first area level would be different from the starting values. To

preserve the original data structure, we chose to count the pseudo-samples falling in each

shape of the target area system for each iteration. This also avoids numerical integration.

These area counts will be averaged over all iterations.

The existence of N replications of an estimate makes it possible to calculate a

confidence interval for the population value. In our simulation study below, we computed

an interval that is given by the 5% and the 95% quantile of the N replications. This is not

an exact confidence interval as it ignores the sampling from the density. But in our
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application, sampling and its induced variance is not an issue as the starting values, that is,

the numbers at ZIP-level, are population values with no variance. Nevertheless, the

distribution over N replications reflects exactly the uncertainty of the knowledge of the

case numbers in the new area system.

The algorithm is implemented in the R package Kernelheaping (Groß 2018) as function

dshapebivr, which requires a data matrix with aggregated observation numbers for each

area and a *.shp shapefile including the geometric data as input. The function

toOtherShape in this package performs the operation to preserve the original data structure

given the output of the function dshapebivr and an additional shapefile for the new

administrative area system.

3. Simulation

In order to check the precision of the proposed method, we generated close-to-reality

populations in a simulation. As a reminder, the areas of interest are the 447 LORs of

Berlin, while the information of student totals is only given at the 193 ZIP-code areas. The

cross-cutting of these area systems shown in Figure 3 confirms that the area systems are

non-heirarchical.

We then randomly selected 15 mid-points to avoid a simple cluster in the center of the

town. At each mid-point, 2,000 observations were generated from bivariate normal density

with a variance of 3 £ 106 (with covariance equal to 0). Then the points that were allocated

to uninhabited areas were removed. Afterwards, we used two versions of the SEM

algorithm. In the first version, we ignored the information about which areas are unsettled

(SEM), while in the second version, we used the boundary correction (SEM-Boundary)

0 5
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Fig. 3. Cross-cutting of ZIP-code area (blue, straight lines) and LOR area (red, dashed lines) borders in Berlin.
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that keeps the density estimate within the settled areas. In order to evaluate the

routine against the standard GIS procedure, we used a uniform density within the areas.

Here, we used two versions as well. The first version ignores the unsettled areas

(UNIFORM), while the second version respects the unsettled areas (UNIFORM-

Boundary). The uniform allocation of the observations within the ZIP-code areas avoids

the tedious computation of the cross-cutted areas that would be necessary in the GIS-

approach, but is approximately equivalent. This procedure was repeated R ¼ 100 times,

however the preselected 15 mid-points were kept fixed. In order to compute 90-percent

confidence regions, we selected the number of replications as N ¼ 100. The burn-in phase

was taken as B ¼ 5.

Figure 4 displays one artificial allocation of geo-coordinates together with the LOR

borders (left) and with the unsettled areas in green (forests and parks), blue (water) and

grey (industrial and other).

In a next step, the number of observations falling in each area is counted at LOR-area

level (treated as true values) and at the ZIP-code area level. The ZIP-code area level

counts are used to estimate the “true” counts at the LOR-area level. As explained in

Section 2, this is done by counting the number of the generated pseudo-samples falling in

each LOR. There is no extra computational effort: during the generation of a new density,

it can be checked in which of the LORs the new coordinates fall. Hence, every round of

the SEM algorithm produces an estimate of the expected number of points falling into a

LOR. Thus, it is only necessary to average these figures over the N Monte-Carlo

replications.

Table 1 compares the performance of the four procedures with respect to the root mean

squared error (RMSE) of the estimated LOR totals over the R replications, defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R

XR

r¼1

dLORLORr 2 LORrÞ
2

�
vuut

where dLORLOR denotes the estimated and LOR the true LOR total. The RMSE is computed

for every area and the distribution of these area-specific RMSE values is then analyzed

over areas. We see that the information on settled areas is helpful in reducing the RMSE

(a) (b)
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Fig. 4. Simulated geo-coordinates (a) and including their restriction to settled areas (b). Result of one out of

100 simulation runs.
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for both algorithms. However, the average RMSE of the SEM algorithm is always lower

than the average RMSE with the UNIFORM procedure. With no information on settled

areas, the differences are more pronounced: here the SEM algorithm amounts to only

76.8% of the RMSE with the uniform distribution. With information on settled areas, the

reduction drops to 86.6%. Similar figures are obtained for the upper quantiles of the RMSE.

The last column displays the coverage of the 90% quantile interval based on the

replications of the SEM algorithm. For each area count there is such an interval. The area-

specific coverage rates are then averaged over all areas. For our simulations, the average

coverage of this interval is close to its nominal value. Thus, the variation of the N

replications of the SEM algorithm may be used to construct a confidence interval for the

area counts.

In order to demonstrate the use of the Kernelheaping package, we present a minimal

working example in the Github repository Kernelheaping MinimalWorkingExample.

4. Application

The city of Berlin is a growing town. In the past five years, Berlin has gained around

220,000 people in total, see Senator für Stadtentwicklung und Umwelt (2016). A large

proportion of this increase is due to the population gains in the age group of 20 to 30 years

old, which contains many students. With the increasing number of students, questions for

urban development planning arise. Where do students live and how do they get to their

universities? What type of housing do students need? Students, as well as other social

groups, have special requirements and behavioral patterns with regard to the local

infrastructures.

To answer the above questions, it is helpful to have accurate and reliable information of

the residential locations of students in Berlin. This information can improve the planning

of projects that students benefit from and, consequently, these can be implemented more

targeted. Therefore, the Senate Department for Urban Development and Environment

aimed to analyze where students who are enrolled at Berlin universities are located in the

metropolitan region of Berlin-Brandenburg and how they relate to the counts of LORs and

Brandenburg municipalities. Before, there was no data available about student locations at

small-scale residential areas. The LORs are the smallest urban planning units in Berlin.

One possible data source about student residences are the enrollment offices of the Berlin

universities. However, for privacy concerns, these figures are available only at the level of

ZIP-code coordinates.

Table 1. RMSE and coverage of the estimated LOR totals over the R ¼ 100 simulation runs.

Method
Average
RMSE

95%
quantile
RMSE

99%
quantile
RMSE

Max
RMSE

Coverage
of 90%
quantile

SEM 5.63 9.91 24.85 45.4 83.54
UNIFORM 7.33 11.88 34.03 63.6 N/A

SEM-Boundary 4.36 7.45 15.93 38.70 90.54
UNIFORM-Boundary 5.04 9.19 16.24 47.05 N/A
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4.1. The Data

The number of students at ZIP-code area level in the years 2005, 2010 and 2015 could be

established for the three – by far largest – universities of Berlin: Freie Universität Berlin

(FU), Humboldt-Universität zu Berlin (HU) and Technische Universität Berlin (TU).

The same applies for the rather small Alice Salomon Hochschule Berlin. Only for the year

2015, we were provided with numbers from Beuth Hochschule für Technik Berlin, the

Hochschule für Wirtschaft und Recht Berlin (HWR) and the Hochschule für Technik und

Wirtschaft Berlin (HTW). All numbers refer to the beginning of the winter term

(‘Wintersemester’, abbr. WS), except for the data from FU and HU in 2015, which refer to

the summer term (‘Sommersemester’, abbr. SoSe), where student numbers are typically

lower. Thus, we applied a correction for the HU and the FU in 2015 and multiplied the

numbers of these two universities by the ratio of winter term to summer term (e.g., FU:

36,674 ¼ 33,173 · 1.106). Table 2 gives an overview of the total number of students in

each year for every college and university, as well as the total number of students in Berlin.

The data is provided by the Statistical Office for Berlin-Brandenburg. Figure 9 (see

Appendix 6) visualizes the locations and size of the colleges and universities in Berlin.

Furthermore, we have information on all dormitories in Berlin and the number of students

living there for every considered year. As our information on ZIP-code totals does not

cover all educational institutes with students in Berlin, our totals only sum up to 80% of

the total number of students. With respect to the total number of students in Berlin, there is

precise information from official statistical sources (Amt für Statistik Berlin-Brandenburg

2018). In order to cover the rest of the students from other institutes, we used some

calibrations for the ZIP-code totals. As this calibration is not relevant for the method

displayed here, we deferred the details of our calibrations to the appendix (see Appendix,

Section 6). The students living in dormitories are not used for the kernel density estimates

and are added afterwards to the final estimates at LOR-level to produce more accurate

estimates, as their location is already known.

4.2. Results for the Location of Students in Different Map Representations

The maps in Figure 5 visualize the number of students in ZIP-code area (the level for

which data is available), the kernel density estimate (transmission tool) computed on the

Table 2. Number of students in 2005, 2010 and 2015 for available colleges.

College/University WS 2005 WS 2010 WS 2015 SoSe 2015

TU Berlin 29,772 29,758 33,933 -
FU Berlin 34,936 33,518 36,674 33,173
HU Berlin 32,428 29,689 34,214 31,098
Beuth - - 12,532 -
HTW - - 13,355 -
Alice Salomon 1,611 2,512 3,422 -
HWR - - 10,009 -
Sum of available colleges 98,697 95,477 144,139 -
Sum of all Berlin colleges 133,024 147,030 175,651 -
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basis of these counts and the estimated number of students in the LORs of Berlin (the level

of interest for urban planning) and its surrounding municipalities in 2015.

All three maps display a joint pattern with a concentration of students in a belt

surrounding the center of the town. This belt is characterized by a traditional dense

settlement (Senate Department for Urban Development and Housing 2017). It can also be

seen that some students commute from neighboring municipalities to Berlin universities.

Clearly, this number declines rapidly with the distance from Berlin. However, the

graphical impression of the map with ZIP-code areas and LORs is quite different in the

southwest of Berlin (the area of Potsdam). In the LOR representation, it looks very much

as if there is a cluster that is densely populated with students. However, the ZIP-code area

and the KDE representation do not exhibit such a pattern. The southwest “cluster” is

simply the result of taking the entire municipality of Potsdam as one LOR.

When it comes to the individual development of the LORs with the highest student

counts, it can be noted that they are located in certain districts of Berlin (Wedding,

Neukölln, Moabit, Prenzlauer Berg, Friedrichshain and Kreuzberg). Table 3 lists the ten

most popular LORs among students in 2015 and their development over time together with

the 95% coverage interval for the 2015 values. The values exhibit remarkable changes in

their student population from 2005 to 2015. Thus, the necessity of studies aiming to

monitor the changes of the student population at a low level of regional aggregation is

restated. With the exception of Rixdorf in Neukölln, all areas with a substantial increase of

the student population lie in the north-west (Wedding and Moabit) of the central belt. In all

the other LORs the student population is quite stable over time.

(a) Distribution at ZIP-code level (b) Kernel density estimates

(c) Distribution at LOR level

Number of students
> 1,000
501 to 1,000
201 to 500
101 to 200
51 to 100
<= 50

Number of students
> 1,000
501 to 1,000
201 to 500
101 to 200
51 to 100
<= 50

0 2010
km

0 2010
km

0 105
km

High

D
en

si
ty

Low

Fig. 5. The plots show number (density) of Berlin students in 2015.
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4.2.1. A Closer Look at the Temporal Development 2005–2015

Since data is available for the years 2005, 2010 and 2015, we can have a closer look at the

temporal development of Berlin students residencies.

In general, the proportion of students living in Berlin has slightly but steadily increased

from 82.3% in 2005 to 84.4% in 2015. In contrast to that, the percentage of students living

in other German regions and foreign countries (mostly Poland) has decreased from 7.1%

in 2005 to 5.0% in 2015. For a more detailed overview, Table 4 shows the estimated

proportions of students living in Berlin, in the surrounding municipalities, in other

municipalities of Brandenburg and outside of Berlin or Brandenburg. Focusing on Berlin

and its surroundings, Figure 6 shows the KDE maps for each of the three reference years

2005, 2010 and 2015. From this representation, the structure of the students settlement

seems to remain quite stable. However, if we display the highest density regions (HDR)

remarkable regional changes can be seen. Note that such a representation is restricted to

the KDE approach. Figure 7 compares the HDRs containing 25% and 50% of the students

over time. Parts of the northwestern inner belt (Moabit and Wedding), as well as the

southern belt (Neukölln) are now included in the 25% region in comparison to 2005. Parts

of the eastern belt (southern Prenzlauer Berg and parts of Friedrichshain and Kreuzberg)

did drop off from the 25% HDR in the last ten years. Interestingly, it becomes apparent

that, in general, the concentration decreased. The 25% highest density region enfolded

only 24.64 km2 in 2005. This area grew to 28.58 km2 in 2010 and to 33.27 km2 in 2015. A

Table 3. The ten most popular urban planning areas (LOR) in 2015 with students counts for 2005, 2010 and

2015. The 95% coverage interval refers to the year 2015.

Urban planning area District 2015 Coverage Interv. 2010 2005

Reuter Kiez Neukölln 2072 (2051, 2094) 2187 1956
Samariterviertel Friedrichshain 1892 (1833, 1940) 2095 2159
Rixdorf Neukölln 1856 (1805, 1899) 1469 869
Rehberge Wedding 1680 (1630, 1725) 1148 773
Traveplatz Friedrichshain 1637 (1571, 1704) 1226 1354
Emdener Straße Moabit 1580 (1566, 1591) 1162 942
Soldiner Straße Wedding 1540 (1521, 1565) 1036 695
Reinickendorfer Straße Wedding 1440 (1382, 1493) 923 603
Graefe Kiez Kreuzberg 1409 (1393, 1426) 1350 1513

Table 4. Distribution of students of Berlin colleges living in Berlin, in the surrounding municipalities, in other

municipalities of Brandenburg and out of Berlin/Brandenburg.

2005 2010 2015

Berlin 109,436 (82.3%) 121,356 (82.5%) 148,231 (84.4%)
Surrounding municipalities 6,713 (5.0%) 7,648 (5.2%) 9,595 (5.5%)
Other municipalities

of Brandenburg
7,504 (5.6%) 8,620 (5.9%) 9,059 (5.2%)

Other German regions
and foreign countries

9,470 (7.1%) 9,406 (6.4%) 8,766 (5,0%)

Overall 133,024 (100%) 147,030 (100%) 175,651 (100%)
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similar effect is noticeable for the 50% HDR (2005: 76.88 km2, 2010: 81.45 km2, and

2015: 92.40 km2).

Analyzing the absolute differences in the number of students on the level of the urban

planning areas reveals further insights. Differences over the whole time period are

visualized in Figure 8. A very large increase can be observed here for the locality of

Wedding (northwest). The localities Neukölln (south), Lichtenberg (east), Moabit

(northwest) and to a lesser extent Adlershof (southeast), Tempelhof (south) or Schöneberg

(southwest) have gained students. Strong negative trends are recorded for Prenzlauer

Berg (northeast) and the northern part of Mitte (center), which can be attributed to the
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gentrification of these quarters (Schulz 2017; Holm and Schulz 2018). In addition, the

eastern parts of Friedrichshain (east) and Kreuzberg (southeast) have lost students in the

reference period.

The observations described may be due to the general increase of student numbers by

almost 32% in Berlin, see Table 4. But they are also the result of a tightening housing

market, which led the students to search for an apartment in other areas where housing is

affordable for them. By contrast, Moabit, Wedding and Neukölln are propagated in the

discussion on revaluation and displacement processes that can be carried out by pioneers

such as students.

5. Conclusion

This work shows that kernel density estimates are a useful tool for the transformation of

case numbers between area systems that are not hierarchical. Compared to ad hoc

solutions, the proposed method is particularly preferable due to the following reasons.

First, our approach is not based on the unrealistic assumption that the characteristic is

uniformly distributed within areas. Second, while ad hoc solutions are often carried out

manually, the approach in this work is available in the R package Kernelheaping and thus,

the user can do this task quite automatically. Third, the algorithm is able to deal with

uninhabited areas, which is a problem that is often encountered in practice. Fourth, the

algorithm delivers coverage intervals for the population values. Finally, the proposed

method is superior to the ad-hoc approach with respect to the RMSE.

Furthermore, density estimates, which are used as a transmission tool in this work, have

their own merits. They help highlight the highest density regions, which can be used to

identify local concentrations in the region of interest.

It should be noted that our algorithm is extremely useful for the construction of maps

that are based on Open Data. Because of confidentiality reasons and their easy access, they
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Fig. 8. Differences in student numbers 2015 compared to 2005 on administrative planning area level.
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are often provided as local aggregates. For example, the Open Data in Berlin are presented

at the level of LORs or at a grid level (Berlin Open Data 2019). In the considered

application the disclosure risk of individuals is not increased as the simulated geo-

coordinates of individuals of a certain ZIP-code area are all drawn from the same

distribution. However, additional information at individual level, such as ethnic affiliation,

might help to identify an individual’s location more precisely by running the presented

algorithm on different sub-groups.

6. Appendix

The vast majority (about 80%) of Berlin’s students in 2015 was covered by our sample of

colleges and universities. Nevertheless, we would clearly underestimate the number of

students in the planning areas due to the missing colleges. Therefore, a calibration is
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necessary. The Statistical Office for Berlin-Brandenburg provides the total numbers of

students enrolled in Berlin, giving us the possibility to simply upscale the total number of

students in each ZIP-code area by a factor (e.g., multiplying by 175,651/144,139 ¼ 1.22

for 2015; cf. Table 2). Another issue is the problematic comparison of the years 2005 and

2010 with 2015, as the coverage of colleges and universities is lower in these years. This is

especially important as the specific college has a definite influence on the students’ living

address. We found out that a large proportion of the students live within the inner city

borders, but some live near the college as well, as the kernel density estimate for 2015

shows (cf. Figure 9).

For the year 2015, we think that the effect of missing colleges is negligible, as we have

information on the most important ones and the remaining ones are rather small and quite

similarly distributed. If we would leave out the colleges only available in 2015, we get

quite different area aggregates for ZIP-code areas near the missing colleges, for example

ZIP code 10318 with only 145 instead of 796 students. Figure 10 excellently shows

the kernel density estimates of the HTW and the FU student distributions. To account for

the lower number of colleges in 2005 and 2010, we tried to adjust the number of students

using the data of 2015. To achieve this, we employed a generalized linear mixed model,

GLMM, (McCulloch and Neuhaus 2001) linking the number of students in each ZIP-code

area considering all colleges available (Y) with the number considering colleges with data

available for 2005 to 2015 (X). With a random intercept for each ZIP code (zipi , N (0, t)),

we fitted a Poisson-glmm with a log-link and the following model formula:

Yi ¼ expðb0 þ logðXi þ 1Þb1 þ zipiÞ

This formula was then used to predict Y for the years 2005 and 2010.
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