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Two-Timescale Hybrid Analog-Digital
Beamforming for mmWave Full-Duplex MIMO

Multiple-Relay Aided Systems
Yunlong Cai, Kaidi Xu, An Liu, Minjian Zhao, Benoit Champagne, and Lajos Hanzo

Abstract—Due to the severe pathloss experienced by electro-
magnetic wave transmission in the mmWave band, one challenge
for the design of millimeter wave (mmWave) communication
systems is coverage extension. Aiming to improve the coverage
and sum rate performance of mmWave communications, we in-
vestigate new schemes for the design of full-duplex (FD) mmWave
multiple-input multiple-output (MIMO) multiple-relay systems.
Specifically, we propose a novel two-timescale analog-digital
hybrid beamforming scheme to maximize the sum rate, while
reducing the system complexity and channel state information
(CSI) signalling overhead, as well as mitigating the effects of self-
interference and CSI errors caused by the delays. In the proposed
scheme, the long-timescale analog beamforming matrices are
designed based on the available channel statistics and updated in
a frame-based manner, where a frame contains a fixed number
of time slots, while for each time slot, the short-timescale digital
beamforming matrices are optimized based on low-dimensional
effective CSI matrices available in real-time. We develop an
effective analog beamforming algorithm based on the cut-set
bound and stochastic successive convex approximation (SSCA)
and an innovative digital beamforming algorithm that relies on
the theory of penalty dual decomposition (PDD) to maximize the
system sum rate. The convergence properties and computational
complexity of the proposed algorithms are also examined. Our
simulation results show that the proposed two-timescale hybrid
beamforming design significantly outperforms the conventional
beamforming algorithms both in terms of the CSI-signalling
overhead and the achievable sum rate in the presence of CSI
delays.

Index Terms—Hybrid A/D beamforming, two-timescale,
mmWave, full-duplex relay.

I. INTRODUCTION

Millimeter wave (mmWave) communications operating in
the frequency band spanning from 30 to 300GHz have at-
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tracted considerable interest for the development of beyond
5G wireless networks [1]–[7]. They can be readily combined
with large-scale antenna array techniques for dramatically
improving system capacity, hence mitigating the current radio
spectrum shortage. In this context however, the conventional
fully digital beamforming structure leads to excessive fab-
rication costs and energy consumption, owing to its use of
numerous (i.e., one per antenna element) radio frequency (RF)
chains and analog-digital (AD) converters operating at such
high frequencies. In recent years, a hybrid AD beamforming
structure has been proposed for circumventing this problem,
which allows the use of a smaller number of RF chains than
the number of antenna elements [8]–[25].

By exploiting the structure of mmWave channels, orthog-
onal matching pursuit (OMP) and channel matching based
hybrid beamforming algorithms have been proposed in [8]
and [9], respectively. In [10], [11], the authors investigated the
uplink spectral efficiency of massive multiple-input multiple-
output (MIMO) systems with low-resolution AD converters
over Rician fading channels. In [12], the authors formulated a
nonlinear least-square problem for the hybrid transceiver de-
sign and solved it iteratively in a greedy manner, where a one-
dimensional search algorithm with the Nelder-Mead simplex
method is employed in each step. The authors of [13] proposed
a low-complexity hybrid precoding algorithm for downlink
multi-user mmWave systems leveraging the sparse nature of
the channel and the large number of deployed antennas. The
performance of the proposed algorithm was analyzed when the
channels are single path and when the system dimensions are
very large. The work of [14] decoupled the matrix factorization
problem into a series of convex subproblems and solved it
via alternating optimization. In [15], the authors proposed an
effective hybrid transceiver design algorithm. In particular, the
analog beamforming matrix is first optimized, and then the
other transceiver parameters are sequentially designed by given
the analog beamforming matrix. The simulation results showed
that the sum rate performance of this algorithm achieves that of
the fully digital transceiver. In [16] and [17], the authors devel-
oped joint hybrid beamforming algorithms based on manifold
optimization. In [18], a sophisticated joint hybrid beamforming
algorithm has been developed based on novel penalty meth-
ods. Besides, considering the associated hardware limitations,
several codebook-based hybrid beamforming algorithms have
been investigated in [19]–[21]. All the aforementioned hybrid
beamforming algorithms are designed based on the instanta-
neous channel state information (CSI). Owing to the use of
large-scale antennas, the acquisition of high-dimensional CSI



2

matrices results in transmitting a large number of signalling
bits, which can cause serious transmission delay. In [22]–[25],
a series of two-timescale hybrid beamforming algorithms have
been proposed, where the long-timescale analog beamforming
matrices are designed based on the channel statistics and the
short-timescale digital beamforming matrices are optimized by
using the low-dimensional real-time effective CSI matrices.
These algorithms can reduce the overhead needed for the
exchange of CSI and thus increase the robustness against the
CSI errors caused by the transmission delays.

Due to the severe pathloss experienced by electromagnetic
wave transmission in the mmWave band, one challenge for
the design of mmWave communication systems is coverage
extension. Relaying techniques can be employed to avoid
line-of-sight (LOS) blockage and extend the coverage area.
In [26], [27], the authors proposed the OMP and channel
matching based hybrid beamforming algorithms for relay-
aided mmWave systems. The achievable rate of a multipair
massive MIMO relaying system with low-resolution AD con-
verters at the relay has been analyzed in [28]. The authors of
[29] proposed joint hybrid beamforming design algorithms for
the sub-connected and full-connected structures in relay-aided
mmWave systems. However, those techniques are developed
for relays operating in half-duplex (HD) mode, for which
system capacity is decreased dramatically due to the two-
hop transmission. Full duplex (FD) relaying techniques, which
support simultaneous transmission and reception at the relay
station (RS), have therefore received great attention as a means
to boost capacity in fully digital systems [30]–[34]. Recently,
the authors of [35] proposed a joint AD hybrid beamforming
algorithm to handle the residual self-interference (SI) at the
RS and maximize the sum rate in a single FD MIMO relay
mmWave system. However, this approach requires a large
amount of CSI overhead and its performance may degrade
greatly due to CSI errors caused by transmission delays. In
spite of these recent advances, to the best of our knowledge,
the advanced AD hybrid beamforming techniques have not
been well investigated in FD multiple-relay systems.

In this work, aiming to improve the coverage and sum
rate performance of mmWave communications while reducing
implementation overhead and mitigating the effects of FD
interference and CSI delay, we investigate new schemes for
the design of FD mmWave MIMO multiple-relay systems.
Especially, we develop an efficient algorithm based on two
timescales for the design of the AD hybrid beamforming
matrices employed in these systems. In our approach, the
time axis is partitioned into a sequence of superframes —
defining the long timescale — during which the channel
statistics are assumed to remain nearly constant [22]–[24].
Each superframe is in turn partitioned into a sequence of
time slots — defining the short timescale — during which
the instantaneous CSI remains nearly constant. Within each
superframe, the long-timescale analog beamforming matrices
are designed based on the available CSI statistics and updated
in a frame-based manner, where a frame contains a fixed
number of time slots, while for each time slot, the short-
timescale digital beamforming matrices are optimized based
on low-dimensional effective CSI matrices available in real-

time.

To design the analog beamforming matrices, we exploit the
concept of a cut-set bound to formulate a weighted ergodic
sum rate maximization problem and propose a novel algo-
rithm based on stochastic successive convex approximation
(SSCA) to solve it. Subsequently, we derive a tight upper
bound for the inter-relay interference (IRI) and formulate an
optimization problem for the digital beamforming matrices,
whereby a lower bound of the weighted instantaneous sum
rate is maximized subject to total transmit power constraints
at the BS and RS. To solve this highly coupled problem, we
conceive an innovative algorithm based on the theory of penal-
ty dual decomposition (PDD). The convergence behaviour and
computational complexity of these new algorithms are also
examined. Our simulation results show that in the presence of
CSI delay, the proposed two-timescale hybrid beamforming
design significantly outperforms the conventional beamform-
ing designs in terms of overhead and sum rate performance.

Within this framework, the main original contributions are
summarized as follows:

1) System model: We investigate an FD MIMO multiple-
relay system, with the aim to extend the coverage and
improve the sum rate performance of mmWave communi-
cations, and propose a novel two-timescale hybrid beam-
forming design scheme which can significantly reduce
implementation overhead as well as the harmful effects of
CSI delays. The existing two-timescale hybrid precoding
algorithms were mainly developed for multiuser massive
MIMO systems rather than mmWave MIMO relay sys-
tems.

2) Problem formulation: We face a challenge to model the
IRI in the investigated system. We derive a tight upper
bound of the IRI term and formulate two problems for
designing the long-timescale and short-timescale beam-
forming matrices, respectively. Specifically, we formu-
late a weighted ergodic sum rate maximization problem
based on the cut-set bound for the design of the long-
timescale analog beamformers, where the maximum er-
godic capacity of the feeder link and the upper bound
of the ergodic rate of user m in the access link are
obtained. Subsequently, a weighted instantaneous sum
rate maximization optimization problem is formulated for
the digital beamforming matrices.

3) Long-timescale beamforming design: Different from
the conventional algorithms which are obtained directly
by solving a two-timescale problem based on the exist-
ing stochastic optimization framework, in this work we
develop an effective long-timescale beamforming design
algorithm by fully exploiting the special structure of
the problem. The long-timescale beamforming design
problem can be equivalently decomposed into the feeder
link and access link problems. Moreover, the access
link problem is effectively transformed into a number
of independent unconstrained subproblems. Finally, these
subproblems and the feeder link problem are solved based
on the SSCA-based long-timescale analog beamforming
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algorithm that relies on the CSI statistics1

4) Short-timescale beamforming design: The formulated
optimization problem of short-timescale beamforming
matrices is hard to tackle due to the highly coupled
transmit power constraints. The existing deterministic
optimization algorithms cannot solve it effectively. In
this work, we propose an innovative digital beamform-
ing algorithm that relies on the theory of penalty dual
decomposition (PDD) to maximize the system sum rate.

5) Optimality and simulations: We analyze the com-
putational complexity of the proposed algorithms and
show that under mild conditions, they converge to the
Karush-Kuhn-Tucker (KKT) solutions of the original
long-timescale and short-timescale beamforming design
problems, respectively. The simulation results demon-
strate the advantages of the proposed two-timescale hy-
brid beamforming design.

This paper is structured as follows. Section II and III
describe the system model and formulate the optimization
problems of interest, respectively. In Section IV, we develop
the SSCA-based long-timescale analog beamforming algo-
rithm and discuss its optimality and complexity. The short-
timescale digital beamforming algorithm based on PDD is
developed and studied in Section V. The simulation results are
presented in Section VI and conclusions are drawn in Section
VII.

Notations: Scalars, vectors and matrices are respectively
denoted by lower case, boldface lower case and boldface
upper case letters. I represents an identity matrix and 0
denotes an all-zero matrix. For a matrix A, AT , A∗, AH

and ∥A∥ denote its transpose, conjugate, conjugate transpose
and Frobenius norm, respectively. For a square matrix A,
Tr(A) denotes its trace, A ≽ 0 (A ≼ 0) means that
A is positive (negative) semidefinite. [A]a:b ,c:d represents a
submatrix of A. For a vector a, ∥a∥ represents its Euclidean
norm. E{.} denotes the statistical expectation. ℜ{.} (ℑ{.})
denotes the real (imaginary) part of a variable. The operator
vec(·) stacks the elements of a matrix in one long column
vector. | · | denotes the absolute value of a complex scalar.
The operator ∠ takes the phase angles of the elements in a
matrix. Cm×n (Rm×n) denotes the space of m× n complex
(real) matrices. The symbol ⊗ denotes the Kronecker product
of two vectors/matrices. The projection of a point X onto a set
Ω is denoted by PΩ{X} , minY∈Ω ∥X−Y∥. If Ω is a sphere
of radius r centered at the origin, i.e., Ω = {X|∥X∥ ≤ r},
then PΩ{X} is equal to r X

∥X∥+max(0,r−∥X∥) .

1In this work, channel statistics refers to the moments or distribution of the
channel fading realizations. The proposed SSCA-based analog beamforming
design algorithm only needs to obtain one (possibly outdated) channel sample
at each frame, and the analog beamforming matrices are updated directly based
on the observed channel samples. By observing one channel sample at each
time, the proposed SSCA-based design algorithm can automatically learn the
channel statistics (in an implicit way) and converge to a stationary point of
the considered stochastic optimization problem for the design. Note that the
possibly outdated channel sample required by the proposed SSCA-based
design algorithm is very different from the real-time full CSI required by the
fast-timescale hybrid beamforming.

II. SYSTEM MODEL

We consider a multiuser FD mmWave MIMO multiple-relay
system, as shown in Fig. 1, which consists of one BS, K RSs
operating in FD mode and M users. The BS is equipped with
Ns transmit antennas and R1 (R1 ≤ Ns) RF chains. The kth
RS, k ∈ K , {1, . . . ,K}, is equipped with Nr,k receive and
Nr,k transmit antennas, as well as R2,k (R2,k ≤ Nr,k) RF
chains for the receive and transmit processing, respectively.
Each user is equipped with a single receive antenna (and RF
chain). We assume that M ≤ min{R1, R2,k} so as to provide
sufficient degrees of freedom for signal detection. Moreover,
we assume that there is no direct link between the BS and the
users due to physical obstacles or severe attenuation.

Let bτ = [bτ1 , . . . , b
τ
M ]T represent the M × 1 transmit sym-

bol vector at time instant τ ∈ {0, 1, 2, . . .}, whose elements are
modeled as independent random variables (over time and user
indices) with zero mean and unit variance, i.e., E{|bτm|2} = 1,
where m ∈ M , {1, . . . ,M}. The transmit signal vector at
the BS can be expressed as

xτB = UPbτ , (1)

where P = [p1, . . . ,pM ] ∈ CR1×M denotes the BS digital
beamforming matrix, and U ∈ CNs×R1 denotes the BS analog
transmit beamforming matrix, whose elements obey the unit
modulus constraint, i.e., |U(l, n)| = 1, ∀l, n. The transmit
power of the BS can be expressed as

PB , E{Tr(xτBxτHB )} = ∥UP∥2. (2)

The signal received through the feeder link at RS k ∈ K can
be written as

yτR,k = HkUPbτ + iτk + nτR,k, (3)

where Hk ∈ CNr,k×Ns denotes the channel matrix between
the BS and RS k, iτk denotes the IRI at RS k and time t
resulting from the simultaneous transmission of the previous
symbol at the other K − 1 RS in FD mode 2, and nτR,k ∈
CNr,k×1 represents an additive noise vector at RS k. The noise
is assumed to be complex circular Gaussian, spatially white,
independent over time, with zero-mean and covariance matrix
E{nτR,knτHR,k} = σ2

r,kI, where σ2
r,k denotes the noise variance.

The received vector yτR,k at RS k is operated successively
by the receive analog beamforming matrix Fk ∈ CR2,k×Nr,k

with element constraints |Fk(l, n)| = 1, ∀l, n, the baseband
AF digital beamforming matrix Wk ∈ CR2,k×R2,k and the
transmit analog beamforming matrix Tk ∈ CNr,k×R2,k with
element constraints |Tk(l, n)| = 1, ∀l, n. Hence, the transmit
signal at RS k and time τ can be expressed as

xτR,k = TkWkFk(HkUPbτ + iτk + nτR,k). (4)

In the sequel, it is convenient to express the IRI as

iτk =
K∑
j ̸=k

H̄k,jx
τ−1
R,j , (5)

2Since the relay self-loop CSI can be easily estimated at the RS, the
self-interference (SI) can be eliminated by applying existing cancellation
techniques as in [31], [36]–[38]. Hence, in this work, we focus our attention
on the IRI and its effective mitigation.
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Fig. 1: Full-duplex mmWave MIMO multiple-relay system.

where H̄k,j ∈ CNr,k×Nr,j denotes the inter-relay channel
matrix between RS j and RS k. Moreover, the transmit power
at RS k can be expressed as

PR,k , E{∥xτR,k∥2}, ∀k, τ. (6)

By introducing P1 and P2,k as the transmit power budget of
the BS and RS k, respectively, we have the following power
constraints:

∥UP∥2 ≤ P1 (7)

and
E{∥xτR,k∥2} ≤ P2,k, ∀k, τ. (8)

The signal received through the access link at user m and
time instant τ can be written as

yτm =
K∑
k=1

gHm,kTkWkFk(HkUPbτ+nτR,k)+s
τ
m+nτm, (9)

where sτm ,
∑K
k=1

∑K
j ̸=k g

H
m,kTkWkFkH̄k,jx

τ−1
R,j denotes

the contributing effect of the IRI at user m and time τ ,
gm,k ∈ CNr,k×1 represents the Hermitian transpose of the
channel vector between RS k and user m, and nτm is the
complex circular Gaussian receiver noise at user m, which
is assumed to be Gaussian, spatially white, independent over
time, with zero-mean and variance E{|nτm|2} = σ2

m. The
transmitted symbols and the noise elements are mutually
independent.

III. PROBLEM FORMULATION

In a typical mobile radio environment, the various channel
matrices appearing in the system model of Section II will
exhibit a random behavior and change more or less rapidly
over time. The joint design of analog and digital beamform-
ing matrices for each channel instance is not realistic for
implementation since as it requires repeated application of
a search-based algorithm with extremely high computational
complexity. Moreover, this approach entails a huge amount
of overhead in the estimation and exchange of real-time CSI

information 3, and is likely to be very sensitive to CSI delays.
Therefore, to circumvent these difficulties, we hereby propose
a practical two-timescale hybrid beamforming scheme that
takes into account changes in both the instantaneous CSI and
their local statistics. As illustrated in Fig. 2, the time domain
can be divided into a number of superframes of duration UL,
each of which consists of T frames which are made up of Tf
time slots of duration US . Based on this partitioning, let us
define the following concepts of timescales:

• Long-timescale: The channel statistics are assumed con-
stant over intervals of duration UL.

• Short-timescale: The channel gains are assumed constant
over intervals of duration US .

In practice, the values of US and UL can be easily determined
given the coherence times of the complex channel gains
and their short-time statistics, respectively. In our proposed
approach, to reduce CSI overhead, we only make use of the
complete estimated CSI at the end of each frame, while we
employ a so-called effective CSI with reduce dimensionality
within each time slot. The short-timescale digital beamforming
matrices are optimized in each time slot by using the effective
real-time channel matrices with reduced dimension, and the
long-timescale analog beamforming matrices are updated at
the end of each frame based on (possibly outdated) estimated
CSI. In the following, we formulate the optimization problems
for the analog and digital beamforming design, respectively.

A. Analog beamforming

Note that the long-timescale analog beamforming matrices
should be optimized based on the CSI statistics over the
superframe, and we cannot directly optimize them by maxi-
mizing the weighted ergodic sum rate that relies on the optimal
digital beamforming matrices for all channel realizations. To
overcome this difficulty, we propose to optimize the analog
beamforming matrices by maximizing a cut-set bound of the
weighted ergodic sum rate, that does not depend on the digital
beamforming matrices. In the following, we first derive the

3In this case, the MIMO channel matrices, {Hk}, {H̄k,j} and {gm,k},
∀k, j,m, have to be estimated and exchanged between system nodes for each
time slot. When the numbers of antennas, i.e., Ns and Nr,k , become large,
the system overhead will therefore dramatically increase.
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Channel coherence time US

Fig. 2: Decomposition of the time axis into two timescales.

ergodic capacity expressions of the feeder and access links,
respectively. Then, we formulate the optimization problem for
the design of the analog beamforming matrices.

The feeder link can be seen as a virtual point-to-point
MIMO channel with extra interference caused by the relay FD
operation. Let us first derive an upper bound on the correlation
matrix of the IRI at the relays after processing by their relay
analog receive beamforming matrices,

E{FkiτkiτHk FHk } ≼ E{Tr(FkiτkiτHk FHk )}I

= E{∥Fk
K∑
j ̸=k

(H̄k,jx
τ−1
R,j )∥

2}I

≼ E
{
(
K∑
j ̸=k

∥FkH̄k,jx
τ−1
R,j ∥)

2
}
I

≼ E
{
(
K∑
j ̸=k

∥FkH̄k,j∥∥xτ−1
R,j ∥)

2
}
)I

≼ (K − 1)
K∑
j ̸=k

∥FkH̄k,j∥2E
{
∥xτ−1

R,j ∥
2
}
I

= (K − 1)
K∑
j ̸=k

P2,j∥FkH̄k,j∥2I.

(10)

Then, the corresponding lower bound of the ergodic capacity
in the feeder link can be expressed as (11), where we have F ,
diag {F1,F2, ...,FK}, H , [HT

1 ,H
T
2 , ...,H

T
K ]T , P̄1 , P̄1

K−1 ,
and σ̄ , σ√

K−1
. The diagonal matrix Υ ∈ C

∑
k R2,k×

∑
k R2,k

is given by (12), where 1R2,k
∈ RR2,k×1 is an all ones vector.

Furthermore, by defining the equivalent channel vector
h̃m , [gHm,1T1,g

H
m,2T2 ...g

H
m,KTK ]H , based on the uplink-

downlink duality [39], [40], we can express each user’s
ergodic capacity in the access link as (13), where T̄ ,
diag {T1,T2, ...,TK}.

Hence, by introducing an auxiliary variable rm as the end-
to-end ergodic rate of user m ∈ M, we can formulate the
following weighted ergodic sum rate maximization problem
based on the cut-set bound for the design of the long-timescale

analog beamformers,

max
{θTk

,θFk
},θU ,{rm}

M∑
m=1

αmrm (14a)

s.t.
M∑
m=1

rm ≤ C̄0(θU , {θFk
}) (14b)

0 ≤ rm ≤ C̄m({θTk
}), ∀m, (14c)

where we define θU = ∠U, θFk
= ∠Fk and θTk

= ∠Tk,
in consideration of the constant modulus structure of analog
beamforming matrices. Constraint (14b) reflects the fact that
the ergodic sum rate must not exceed the ergodic capacity
of the feeder link, while constraint (14c) represents the upper
bound of the ergodic rate of each user in the access link.
The positive weights αm in (14a) are chosen based on the
desired user priority; without loss of generality, we assume
α1 ≥ α2 ≥ . . . ≥ αM .

B. Digital beamforming

For given long-timescale analog beamforming matrices,
we aim to maximize the weighted instantaneous sum rate
by optimizing the digital beamforming matrices under the
transmit power constraints. Note that it is difficult to obtain
a closed-form expression for the sum rate due to the indirect
effect of IRI at the user end, as given by the term

E{|sτm|2} = E{|
K∑
k=1

K∑
j ̸=k

gHm,kTkWkFkH̄k,jx
τ−1
R,j |

2}, ∀m.

(15)
Therefore, we instead derive and employ a tight lower bound
of the sum rate. Expanding the quadratic term in (15) and using
basic inequalities for the magnitudes of complex numbers, we
have (16). Applying expectation to (16) and using (8), the
upper bound shown in (17) for the IRI term (15) is obtained.
In turn, making use of (17), we have the inequality shown in
(18) for the signal-to-interference-plus-noise ratio (SINR) at
user m. Therefore, the lower bound of the instantaneous sum
rate can be expressed as

R =

M∑
m=1

αmlog(1 + η̃m). (19)

Next, let us consider the power constraint at the RS. By
substituting the expression of xτR,k (as defined in (4)) into (6),
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C̄0 , E{C0} , E{log det[I+ P̄1

R1Ns
FHUUHHHFH(σ̄2FFH +Υ)−1]}. (11)

Υ , diag

[
∑
j ̸=1

P2,jTr(F1H̄1jH̄
H
1jF

H
1 )1TR2,1

, . . . ,
∑
j ̸=K

P2,jTr(FKH̄KjH̄
H
KjF

H
K)1TR2,K

]

 . (12)

C̄m , E{Cm} , E
{
log det

(
I+

KPr
M

h̃mh̃Hm(σ2
mT̄HT̄+

KPr
∑M
j ̸=m h̃jh̃

H
j

M
)−1

)}
, ∀m. (13)

|sτm|2 = |
K∑
k=1

K∑
j ̸=k

gHm,kTkWkFkH̄k,jx
τ−1
R,j |

2

≤
K∑
k=1

K∑
j ̸=k

K∑
k′=1

K∑
j′ ̸=k′

∥xτ−1
R,j ∥∥g

H
m,kTkWkFkH̄k,j∥∥xτ−1

R,j′
∥∥gH

m,k′
Tk′Wk′Fk′ H̄k′ ,j′∥

≤ 1

2

K∑
k=1

K∑
j ̸=k

K∑
k′=1

K∑
j′ ̸=k′

(√P2,j′

P2,j
∥xτ−1

R,j ∥
2 +

√
P2,j

P2,j′
∥xτ−1

R,j′
∥2
)
∥gHm,kTkWkFkH̄k,j∥∥gHm,k′Tk′Wk′Fk′ H̄k′ ,j′∥.

(16)

we obtain

E{∥xτR,k∥2} = ∥TkWkFkHkUP∥2

+ E{∥TkWkFk

K∑
j ̸=k

H̄k,jx
τ−1
R,j ∥

2}

+ σ2
r,k∥TkWkFk∥2, ∀k, τ.

(20)

We further can derive a closed-form upper bound expression
of the second term in (20). Specifically, following the same
approach as in (16) and (17) yields

E{∥TkWkFk

K∑
j ̸=k

H̄k,jx
τ−1
R,j ∥

2}

≤ (
K∑
j ̸=k

√
P2,j∥TkWkFkH̄k,j∥)2.

(21)

Hence, the power constraint at the RS can be written as

∥TkWkFkHkUP∥2 + (

K∑
j ̸=k

√
P2,j∥TkWkFkH̄k,j∥)2

+ σ2
r,k∥TkWkFk∥2 ≤ P2,k, ∀k.

(22)

We optimize the digital beamforming matrices P and Wk

to maximize the lower bound of the instantaneous sum rate,
i.e., (19), subject to the transmit power constraints. The design
problem can be formulated as

max
P,Wk

M∑
m=1

αm log(1 + η̃m) (23a)

s.t. (7), (22), (23b)

where constraints in (23b) reflect the transmit power con-
straints of the BS and RS.

IV. PROPOSED LONG-TIMESCALE ANALOG
BEAMFORMING DESIGN

In this section, we introduce the proposed long-timescale
analog beamforming algorithm based on the CSI statistics.
Solving the analog optimization problem (14) poses several
challenges. First, the ergodic capacities (11) and (13) are
neither convex nor concave, and do not admit closed-form
expressions. Moreover, the presence of stochastic nonconvex
constraints further complicates the problem. In the following,
we first decompose problem (14) into two simpler subproblem-
s and then propose efficient stochastic optimization algorithms
to find the associated KKT points based on SSCA.

A. Problem decomposition

Referring to problem (14), we can see that the search
variables θU and {θFk

} only appear in C̄0, while {θTk
}

only appear in C̄m, ∀m ∈ M. Hence, this problem can be
equivalently expressed in the form of two subproblems, as
follows:

• The feeder link subproblem:

max
θU ,{θFk

}
C̄0(θU , {θFk

}). (24)

• The access link subproblem:

max
{θTk

},{rm}

M∑
m=1

αmrm

s.t.
M∑
m=1

rm ≤ C̄⋆0

0 ≤ rm ≤ C̄m({θTk
}), ∀m,

(25)

where C̄⋆0 denotes the maximum ergodic capacity of the
feeder link under the optimal angle matrices θ⋆U and {θ⋆Fk

}
solving (24). This implies that the feasible region of problem
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E{|sτm|2} ≤
K∑
k=1

K∑
j ̸=k

K∑
k′=1

K∑
j′ ̸=k′

√
P2,j′P2,j∥gHm,kTkWkFkH̄k,j∥∥gHm,k′Tk′Wk′Fk′ H̄k′ ,j′∥

= Im , (
K∑
k=1

K∑
j ̸=k

√
P2,j∥gHm,kTkWkFkH̄k,j∥)2.

(17)

ηm =
|
∑K
k=1 g

H
m,kTkWkFkHkUpm|2∑M

j ̸=m |
∑K
k=1 g

H
m,kTkWkFkHkUpj |2 +

∑K
k=1 σ

2
r,k∥gHm,kTkWkFk∥2 + E{|sτm|2}+ σ2

m

≥ η̃m ,
|
∑K
k=1 g

H
m,kTkWkFkHkUpm|2∑M

j ̸=m |
∑K
k=1 g

H
m,kTkWkFkHkUpj |2 +

∑K
k=1 σ

2
r,k∥gHm,kTkWkFk∥2 + Im + σ2

m

.

(18)

(25) with respect to {θTk
} and {rm} is maximized, which

cannot decrease the weighted ergodic sum rate. Note that
problem (25) is still difficult to handle due to the stochastic
nonconvex constraints. In the following, we convert it into a
more tractable form.

Involving concepts from linear programming and exploiting
the structure of problem (25), the maximum ergodic rate of
user 1 is given by the following expression which depends on
two conditions,

r⋆1 =

{
C̄1({θ⋆Tk

}) if C̄1({θ⋆Tk
}) ≤ C̄⋆0

C̄⋆0 if C̄1({θ⋆Tk
}) > C̄⋆0 .

(26)

Proceeding sequentially, the maximum ergodic rate of user m,
where m ∈ {2, . . . ,M}, can be expressed in (27), where three
conditions are now involved, and {r⋆m} and {θ⋆Tk

} denote the
optimal solution of problem (25).

Then, by employing (26) and (27), we can see that there
are M + 1 possibilities for the optimal value {θ⋆Tk

}, which
can be formulated as the solutions of M + 1 independent
unconstrained problems, i.e.,

max
{θ̃l,Tk

}
Sl({θ̃l,Tk

}) (28)

where Sl({θ̃l,Tk
}) is given in (29). The final solution {θ⋆Tk

}
can be determined by selecting the one among {θ̃⋆l,Tk

} which
maximizes the objective function and satisfies (30), where
{θ̃⋆l,Tk

} denotes a KKT solution of the lth problem (28) 4.
Subsequently, {r⋆m} can be obtained by using (26) and (27).
The optimality of the solution obtained in this way the access
link subproblem is characterized in the following theorem,
whose detailed proof is provided in Appendix A.

Theorem 1. When the KKT solution of problem (25) ex-
ists, at least one solution among the sets {θ̃⋆l,Tk

} for l ∈
{0, 1, . . . ,M} satisfies (30). Any such solution is a KKT
solution of problem (25).

4Due to the stochastic nonconvex nature of problem (25), based on currently
available optimization techniques, it does not seem possible to find its global
optimal solution. At the present time, providing a KKT solution, which
satisfies the necessary conditions for optimality, is the best we can do for
this kind of optimization problem.

In the following subsections, we introduce the proposed
algorithms to obtain the KKT solutions of (24) and (28),
respectively.

B. Algorithm for solving the feeder link subproblem in (24)

In this subsection, we propose an efficient SSCA algorithm
to solve the feeder link subproblem (24) based on the theo-
retical framework exposed in [22], [23]. At each frame index,
the long-timescale angle variables θU and {θFk

} for analog
beamforming are updated by solving a quadratic optimization
problem obtained by replacing the ergodic capacity of the
feeder link shown in (11) with a quadratic surrogate function.
Specifically, at the end of each frame, new channel samples Ht

and {H̄t
k,j}, where t ∈ {0, 1, 2, . . .} denotes the current frame

index, are obtained and the surrogate function is updated by
using these channel samples and the values θt−1

U and {θt−1
Fk
}

as

S̃t(φU , {φFk
}) , ϖ∥φU − θt−1

U ∥2 +ϖ

K∑
k=1

∥φFk
− θt−1

Fk
∥2

+
K∑
k=1

Tr
(
(F̃t−1

Fk
)H(φFk

− θt−1
Fk

)
)

+Tr
(
(F̃t−1

U )H(φU − θt−1
U )

)
,

(31)

where ϖ > 0 denotes a constant, and F̃t−1
U and {F̃t−1

Fk
} denote

approximations to the gradients with respect to θU and θFk
, as

obtained based on the current channel samples Ht and {H̄t
k,j}.

Subsequently, we obtain the optimal solutions φ⋆U and
{φ⋆Fk

} for frame t by solving the following problem,

min
φU ,{φFk

}
S̃t(φU , {φFk

}) (32)

which is a convex approximation of the feeder link subproblem
(24). It is readily seen that the optimal solution is given by

φ⋆Fk
= θt−1

Fk
−

F̃t−1
Fk

2ϖ
, φ⋆U = θt−1

U −
F̃t−1
U

2ϖ
. (33)

Then, the long-timescale variables are updated according to

θtFk
= (1− γt)θt−1

Fk
+ γtφ⋆Fk

, θtU = (1− γt)θt−1
U + γtφ⋆U .

(34)
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r⋆m =


C̄m({θ⋆Tk

}) if
∑m
i=1 C̄i({θ⋆Tk

}) ≤ C̄⋆0
C̄⋆0 −

∑m−1
i=1 C̄i({θ⋆Tk

}) if
∑m−1
i=1 C̄i({θ⋆Tk

}) ≤ C̄⋆0 <
∑m
i=1 C̄i({θ⋆Tk

})
0 if C̄⋆0 ≤

∑m−1
i=1 C̄i({θ⋆Tk

})
(27)

Sl({θ̃l,Tk
}) =


∑M
m=1 αmC̄m({θ̃l,Tk

}) if l = 0,∑M−l
m=1(αm − αM−l+1)C̄m({θ̃l,Tk

}) + αM−l+1C̄
⋆
0 if l ∈M′ , {1, . . . ,M − 1}

α1C̄
⋆
0 if l =M.

(29)


∑M−l
m=1 C̄m({θ̃⋆l,Tk

}) ≤ C̄⋆0 if l = 0,∑M−l
m=1 C̄m({θ̃⋆l,Tk

}) ≤ C̄⋆0 <
∑M−l+1
m=1 C̄m({θ̃⋆l,Tk

}) if l ∈M′
,

C̄⋆0 < C̄1({θ̃⋆l,Tk
}) if l =M,

(30)

The approximations of gradients can be updated recursively
as follows

F̃tFk
= (1−ϱt)F̃t−1

Fk
−ϱt ∂C0

∂θtFk

, F̃tU = (1−ϱt)F̃t−1
U −ϱ

t ∂C0

∂θtU
,

(35)
where ∂C0

∂θt
Fk

and ∂C0

∂θt
U

are the gradients of the instantaneous
capacity of the feeder link, and their expressions are derived
in Appendix B, and 0 < γt, ϱt < 1 are time-varying forgetting
factors.

The proposed long-timescale analog beamforming design
algorithm for the feeder link is summarized in Algorithm
1. In order to characterize the computational complexity, we
focus on single iteration. For simplicity, we assume that the
relays are equipped with N transmit, N receive antennas and
R RF chains, while the BS is equipped with N transmit
antennas and R RF chains. We measure the complexity in
terms of the number of complex multiplications, which mainly
comes from Step 1. Hence the overall complexity is given by
O(K4N4R3). We emphasize that the proposed long-timescale
design algorithm requires low complexity, since the analog
beamforming matrices are only updated at the end of each
frame.

Algorithm 1 Proposed long-timescale analog beamforming
algorithm for θU and θFk

• Initialize: Set θ0
U , θ0

Fk
, F̃0

Fk
, F̃0

U as zero matrices. Set an appropriate
value for ϖ and let t = 1.

• Step 1: Obtain channel samples Ht and {H̄t
k,j}. Update ϱt and γt,

and the surrogate function via (31).
• Step 2: Obtain the optimal solution φ⋆

Fk
and φ⋆

U via (33).
• Step 3: Update θt

Fk
and θt

U via (34). Update F̃t
Fk

and F̃t
U via (35).

• Step 4: Let t = t+ 1 and return to Step 1 (until convergence).

Based on [22], if we choose the parameters γt and ϱt so
that they meet the following conditions,

lim
t→∞

ϱt = 0,
∑
t

ϱt =∞,
∑
t

(ϱt)2 <∞,

lim
t→∞

γt = 0,
∑
t

γt =∞,
∑
t

(γt)2 <∞, lim
t→∞

γt

ϱt
= 0,

(36)

then the proposed Algorithm 1 converges to the KKT solution

of subproblem (24). A typical choice of ϱt, γt that satisfies
condition (36) is ϱt = ( ψ1

ψ2+t
)κ1 and γt = ( ψ3

ψ4+t
)κ2 , where

0.5 < κ1 < κ2 ≤ 1, ψ1 > 0, ψ2 > 0, ψ3 > 0, and
ψ4 > 0 are properly chosen to achieve a good tradeoff between
accuracy and complexity. In practice, the hyper-parameters κ1,
κ2, ψ1, ψ2, ψ3, ψ4 can be tuned such that a good empirical
convergence speed is achieved.

C. Algorithm for solving the lth problem (28)

By following the same approach as above, we can develop
an SSCA algorithm to find the KKT solution of the lth problem
(28) for the access link. We construct the quadratic surrogate
for the objective function shown in (28) at frame t as 5

S̄tl ({φl,Tk
}) =

K∑
k=1

Tr
(
(F̃t−1

l,Tk
)H(φl,Tk

− θ̃t−1
l,Tk

)
)

+ϖ
K∑
k=1

∥φl,Tk
− θ̃t−1

l,Tk
∥2, ∀l ∈M

′
.

(37)

Hence, the optimal solution {φ⋆l,Tk
} for frame t can be

obtained by solving the following problem

min
{φl,Tk

}
S̄tl ({φl,Tk

}), (38)

which yields

φ⋆l,Tk
= θ̃t−1

l,Tk
−

F̃t−1
l,Tk

2ϖ
. (39)

Subsequently, the long-timescale variables θ̃tl,Tk
and the ap-

proximate gradient F̃tl,Tk
are updated as follows

θ̃tl,Tk
= (1−γt)θ̃t−1

l,Tk
+γtφ⋆l,Tk

, F̃tl,Tk
= (1−ϱt)F̃t−1

l,Tk
+ϱt

∂Sl

∂θ̃tl,Tk

,

(40)
where ∂Sl

∂θ̃t
l,Tk

denotes the gradient of the instantaneous weight-

ed sum capacity of the access link, whose expression is derived
in Appendix B.

5Note that for the case of l = M , the objective function is a con-
stant, and the solution of {θ̃l,Tk

} needs be chosen to meet the condition
C̄⋆

0 < C̄1({θ̃⋆
l,Tk

}) in (30). Thus, this solution can be obtained by solving
maxθ̃l,Tk

C̄1, which is equivalent to the case l = M − 1.
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The resulting algorithm is summarized in Algorithm 2.
According to [22], if we choose the parameters γt and ϱt

so that they satisfy the conditions in (36), the proposed Algo-
rithm 2 converge to the KKT solution of the lth problem (28).
The overall complexity for updating the analog beamforming
matrices in the access link is given by O(M2K2N2R2).
Similarly, the analog beamforming matrices are only updated
at the end of each frame.

The proposed Algorithm 1 and Algorithm 2 do not require
explicit knowledge of channel statistics. They have the ability
to automatically learn the channel statistics from the channel
samples obtained at each frame and converge to the KKT
points of problem (24) and (25). Note that in practice, it
is easier to obtain channel samples than channel statistics
since we can always generate channel samples from channel
statistics.

Algorithm 2 Proposed long-timescale analog beamforming
algorithm for θ̃l,Tk

, l ∈M′

• Initialize: Set θ̃0
l,Tk

, F̃0
l,Tk

as zero matrices. Set an appropriate value
for ϖ and let t = 1.

• Step 1: Obtain channel samples {h̃t
m} within frame t. Update ϱt and

γt, and the surrogate function via (37).
• Step 2: Obtain the optimal φ⋆

l,Tk
via (39).

• Step 3: Update θ̃t
l,Tk

and F̃t
l,Tk

via (40).
• Step 4: Let t = t+ 1 and return to Step 1 (until convergence).

V. PROPOSED SHORT-TIMESCALE DIGITAL
BEAMFORMING DESIGN

In this section, we concentrate on the design of the short-
timescale digital beamforming matrices by using the real-time
low-dimensional effective CSI matrices. This problem is first
reformulated in an equivalent but more tractable form, follow-
ing which an innovative PDD-based algorithm is developed to
obtain its solution.

A. Problem transformation

Let us define the following effective channel matrices,
Sk,j , FkH̄k,j , S̃k , FkHkU, and g̃m,k , TH

k gm,k,
∀k, j,m. By fixing the long-timescale analog beamforming
matrices, the design problem for the digital beamforming
matrices can be formulated as (41), where

Ĩm , (

K∑
k=1

K∑
j ̸=k

√
P2,j∥g̃Hm,kWkSk,j∥)2. (42)

Due to its highly nonlinear objective function, problem (41)
is very difficult to tackle. The following theorem provides us
with an equivalent yet more tractable form for this problem:

Theorem 2. Problem (41) is equivalent to the following
problem, in the sense that the global optimal solution P and
Wk for these two problems are identical:

min
zm>0,um,P,Wk

M∑
m=1

zmem − αm log(zm) (43a)

s.t. (41b), (41c), (43b)

where zm > 0 and um are auxiliary variables, and

em , E{|btm − umytm|2}

= |um|2(
M∑
j=1

|
K∑
k=1

g̃Hm,kWkS̃kpj |2

+

K∑
k=1

σ2
r,k∥g̃Hm,kWkFk∥2 + Ĩm + σ2

m)

− (um

K∑
k=1

g̃Hm,kWkS̃kpm

+ u∗m

K∑
k=1

pHmS̃Hk WH
k g̃m,k) + 1.

(44)

Proof: Note that variables um and zm only appear in
the objective function of problem (43). By fixing the other
variables, the optimal value of um can be obtained by applying
the first order optimality condition, which yields (45). By sub-
stituting (45) into (44) and applying the first order optimality
condition with respect to zm, we obtain the optimal value for
zm as shown in (46). Upon substitution of (45) and (46) into
problem (43), we recover (41). This completes the proof.

B. PDD-based digital beamforming algorithm
1) Augmented Lagrangian problem: In order to tackle the

coupling constraints (41b) and (41c) of problem (43), we intro-
duce a set of auxiliary variables Ũ, Xk, X̄k, W̄k, tk, t̄k ∀k,
where tk is the upper bound of

∑K
j ̸=k

√
P2,j∥TkW̄kSk,j∥,

while the other auxiliary variables satisfy the following equal-
ity constraints:

Ũ = UP, Xk = TkWkS̃kP, X̄k = σr,kTkWkFk,

W̄k = Wk, tk = t̄k, ∀k.
(47)

Making use of these auxiliary variables, it is readily seen that
problem (43) can be equivalently expressed as follows

min
zm>0,um,tk,t̄k,

P,Wk,W̄k,U,Ũ,Xk,X̄k

M∑
m=1

zmem − αm log(zm) (48a)

s.t. ∥Ũ∥2 ≤ P1, (48b)

∥Xk∥2 + t̄2k + ∥X̄k∥2 ≤ P2,k, ∀k,
(48c)

K∑
j ̸=k

√
P2,j∥TkW̄kSk,j∥ ≤ tk, ∀k,

(48d)
(47). (48e)

Based on the PDD optimization framework [41], [42], we
take all the equality constraints shown in (47) into account
by augmenting the objective function with dual variables λ1,
λ2,k, λ3,k, λ4,k and λ5,k ∀k, along with a penalty parameter
ρ. Thus, we obtain the augmented Lagrangian (AL) problem
as shown in (49). The proposed PDD-based algorithm for
short-timescale digital beamforming design exhibits a twin-
loop structure. In the outer loop, we adjust the dual variables
and the penalty parameter, while in the inner loop, we optimize
the primal variables by solving the AL problem in (49).
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max
P,Wk

M∑
m=1

αm log

(
1 +

|
∑K
k=1 g̃

H
m,kWkS̃kpm|2∑M

j ̸=m |
∑K
k=1 g̃

H
m,kWkS̃kpj |2 +

∑K
k=1 σ

2
r,k∥g̃Hm,kWkFk∥2 + Ĩm + σ2

m

)
(41a)

s.t. ∥UP∥2 ≤ P1, (41b)

∥TkWkS̃kP∥2 + (
K∑
j ̸=k

√
P2,j∥TkWkSk,j∥)2 + σ2

r,k∥TkWkFk∥2 ≤ P2,k, ∀k. (41c)

um =

∑K
k=1 p

H
mS̃Hk WH

k g̃m,k∑M
j=1 |

∑K
k=1 g̃

H
m,kWkS̃kpj |2 +

∑K
k=1 σ

2
r,k∥g̃Hm,kWkFk∥2 + Ĩm + σ2

m

. (45)

zm = αm

∑M
j=1 |

∑K
k=1 g̃

H
m,kWkS̃kpj |2 +

∑K
k=1 σ

2
r,k∥g̃Hm,kWkFk∥2 + Ĩm + σ2

m∑M
j ̸=m |

∑K
k=1 g̃

H
m,kWkS̃kpj |2 +

∑K
k=1 σ

2
r,k∥g̃Hm,kWkFk∥2 + Ĩm + σ2

m

. (46)

min
zm>0,um,tk,t̄k,

P,Wk,W̄k,U,Ũ,Xk,X̄k

M∑
m=1

(zmem − αm log(zm)) +
1

2ρ
(∥Ũ−UP+ ρλ1∥2

+

K∑
k=1

(∥Xk −TkWkS̃kP+ ρλ2,k∥2 + ∥X̄k − σr,kTkWkFk + ρλ3,k∥2

+ ∥W̄k −Wk + ρλ4,k∥2 + ∥tk − t̄k + ρλ5,k∥2))
s.t. (48b)− (48d).

(49)

2) Proposed SCA algorithm for solving (49): In the fol-
lowing, we develop an algorithm based on successive convex
approximation (SCA) to solve problem (49) in the inner
loop of the PDD optimization framework. One of the main
difficulties faced in solving problem (49) is due to the term
Ĩm (42) in the expression of the mean-square error em. To
surmount this complication, we seek a more tractable problem
form, obtained by finding a locally tight upper bound of the
objective function. In this regard, we make use of the following
lemma:

Lemma 1. For vectors x, y, x̃ and ỹ, the following inequality
holds true:

∥x∥∥y∥ ≤ ∥x∥
2∥ỹ∥

2∥x̃∥
+
∥y∥2∥x̃∥
2∥ỹ∥

, ∀x̃ ̸= 0, ỹ ̸= 0, x, y,

(50)
with equality satisfied at ∥x∥ = ∥x̃∥ and ∥y∥ = ∥ỹ∥ 6.

By expanding the square term in (42) and applying Lemma
1, we have (51), where Wi

k denotes the value of Wk in the
ith iteration of the SCA algorithm and

am,k,j =
∑K
k′=1

∑K
j′ ̸=l

√
P2,j′P2,j

∥g̃H

m,k
′W

i

k
′Sk

′
,j

′ ∥

∥g̃H
m,kW

i
kSk,j∥

. Conse-
quently, the desired tight upper bound of the objective function
in (49) is provided as (52).

Another challenge in solving problem (49) is posed by
constraint (48d). By using Lemma 1 we can obtain a tight

6This lemma follows immediately from the basic inequality: xy ≤ x2+y2

2
,

where x ≥ 0 and y ≥ 0.

upper bound of
∑K
j ̸=k

√
P2,j∥TkW̄kSk,j∥ as follows:

K∑
j ̸=k

√
P2,j∥TkW̄kSk,j∥ ≤

1

2

K∑
j ̸=k

√
P2,j

(∥TkW̄kSk,j∥2

∥TkW̄i
kSk,j∥

+ ∥TkW̄
i
kSk,j∥

)
, ∀k.

(53)

Accordingly, constraint (48d) can be approximated as

1

2

K∑
j ̸=k

√
P2,j(

∥TkW̄kSk,j∥2

∥TkW̄i
kSk,j∥

+ ∥TkW̄
i
kSk,j∥) ≤ tk, ∀k.

(54)
Hence, by considering the locally upper bound L in (52)

and using (54), we can approximate problem (49) as follows:

min
zm>0,um,tk,t̃k,

P,Wk,Ũ,Xk,X̄k,X̃k

L

s.t. (48b), (48c), (54).
(55)

The proposed SCA algorithm solves problem (55) itera-
tively, that is: it minimizes the upper bound successively by
updating one block of variables at a time while fixing the
others. Specifically, in each iteration, we divide the design
variables into four blocks, where the variables in each block
can be optimized either in closed form or by the Lagrange
multiplier method. The detailed derivation of the updating step
for each block of variables is provided in Appendix C.

3) Parameter adjustment in the outer loop: In the outer
loop of the proposed PDD-based algorithm, we adjust the
penalty parameter ρ and the dual variables λ1, λ2,k, λ3,k, λ4,k
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Ĩm =

K∑
k=1

K∑
j ̸=k

K∑
k′=1

K∑
j′ ̸=k′

√
P2,j′P2,j∥g̃Hm,kWkSk,j∥∥g̃Hm,k′Wk′Sk′ ,j′∥

≤
K∑
k=1

K∑
j ̸=k

K∑
k′=1

K∑
j′ ̸=k′

√
P2,j′P2,j

2

(∥g̃Hm,kWkSk,j∥2∥g̃Hm,k′W
i
k′
Sk′ ,j′∥

∥g̃Hm,kWi
kSk,j∥

+
∥g̃H

m,k′
Wk′Sk′ ,j′∥2∥g̃Hm,kWi

kSk,j∥
∥g̃H

m,k′
Wi

k′
Sk′ ,j′∥

)

= Īm ,
K∑
k=1

K∑
j ̸=k

am,k,j∥g̃Hm,kWkSk,j∥2,

(51)

L ,
M∑
m=1

(
zm(|um|2(

M∑
j=1

|
K∑
k=1

g̃Hm,kWkS̃kpj |2 +
K∑
k=1

σ2
r,k∥g̃Hm,kWkFk∥2 + Īm + σ2

m)

− (um

K∑
k=1

g̃Hm,kWkS̃kpm + u∗m

K∑
k=1

pHmS̃Hk WH
k g̃m,k) + 1)− log(zm)

)
+

1

2ρ
(∥Ũ−UP+ ρλ1∥2 +

K∑
k=1

(∥Xk −TkWkS̃kP+ ρλ2,k∥2

+ ∥X̄k − σr,kTkWkFk + ρλ3,k∥2 + ∥W̄k −Wk + ρλ4,k∥2 + ∥tk − t̄k + ρλ5,k∥2)).

(52)

and λ5,k. In particular, the penalty parameter is decreased by
updating ρn+1 ← cρn, where 0 < c < 1 and n denotes the
iteration index of the outer loop, and the dual variables are
updated as follows

λn+1
1 = λn1 +

1

ρn
(Ũ−UP),

λn+1
2,k = λn2,k +

1

ρn
(Xk −TkWkS̃kP),

λn+1
3,k = λn3,k +

1

ρn
(X̄k − σr,kTkWkFk),

λn+1
4,k = λn4,k +

1

ρn
(W̄k −Wk),

λn+1
5,k = λn5,k +

1

ρn
(tk − t̄k), ∀k ∈ K.

(56)

Let us define a constraint violation metric as

h = max{∥Ũ−UP∥, ∥Xk −TkWkS̃kP∥,
∥X̄k − σr,kTkWkFk∥, ∥W̄k −Wk∥, |tk − t̄k|, ∀k}.

(57)

Then the outer loop of the PDD-based algorithm is terminated
when h is less than a predefined tolerance threshold of accu-
racy. The overall proposed PDD-based digital beamforming
design algorithm is summarized in Algorithm 3.

Due to the fact that problem (41) and (48) are equiva-
lent and based on the convergence analysis in [41], we can
conclude that the proposed PDD-based short-timescale digital
beamforming algorithm converges to the set of KKT solutions
of problem (41). By retaining the dominant terms we obtain
the overall complexity of the proposed PDD-based digital

beamforming algorithm as O
(
I1I2

(
(KR2)3 + KM2R4 +

KR4NM+KN2R2
))

, where I1 and I2 denote the maximum

Algorithm 3 Proposed PDD-based digital beamforming de-
sign algorithm

1. Define the tolerance of accuracy δ1 and δ2. Initialize the algorithm with
a feasible point.
Set the iteration number i = 1 and n = 1. Set 0 < c < 1, h0 and
ρ(1) > 0.

2. Repeat
– Repeat

∗ Update zm based on (68).
∗ Update Ũ and Wk based on (70) and (72).
∗ Update (Xk, X̄k, t̄k) and um based on (74).
∗ Update P and (W̄k, tk) based on (76) and (78).
∗ Update the iteration number: i = i+ 1.

– Until the difference between successive values of the objective
function is less than δ1.

– if hn ≤ 0.9hn−1

– Update the dual variables according to (56).
– else
– Update the penalty coefficient according to ρn+1 = cρn.
– end
– Update the iteration number : n = n+ 1.

3. Until hn < δ2.

number of iterations for its outer and inner loop, respective-
ly. Although the short-timescale digital beamforming design
algorithm is implemented based on the real-time effective
CSI at each time slot, it requires relatively low computational
complexity due to the small values of K and R in general.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
two-timescale hybrid AD beamforming design algorithm for
FD mmWave MIMO multi-relay systems. In the simulation,
we consider a network configuration consisting of one BS
(downlink), 2 RSs and 4 users: the BS is equipped with
32 transmit antennas and 4 RF chains; each RS is equipped
with 32 receive and 32 transmit antennas, along with 4 RF
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chains for the receive and transmit processing, respectively;
the end users are equipped with single antenna receivers.
For the mmWave channel model, we consider the uniform
linear antenna array configuration. Hence, the channel matrix
between RS k and user m can be expressed as

Hk =

Ncl∑
ncl

Np∑
p

Γncl,pa
Tr(θtncl,p

)(aRe(θrncl,p
))T

× exp(j2πfdτocos(θrncl,p
)),

(58)

where Γncl,p denotes the channel gain, Ncl represents the
total number of aggregated clusters with Np rays within
each cluster, aTr(θtncl,p

) and aRe(θrncl,p
) are the transmit

and receive array response vectors, θtncl,p
and θrncl,p

are the
azimuth angles of arrival and departure, respectively, fd is
the maximum Doppler shift, and τo is the delay. The generic
expression for the response vector is given by

a(θ) =
1√
M

[1, ejkodaπsin(θ), ..., ejkodaπ(M−1)sin(θ)]T , (59)

where ko = 2π/λo, λo is the wavelength at the operating
frequency and da is the antenna spacing 7. We assume that
there are 3 clusters and 4 rays per cluster as in [15], [18].
Unless otherwise specified, the following parameter values are
used. The transmit power at each RS is given by P2,k = 15dB,
the attenuation of the IRI link is set according to [34], [43],
and the level of noise variance is chosen as σ2

r,k = σ2
m =

0.01, ∀k,m. The transmission delay is set to τ0 = 4ms. The
updating rule of the parameters in the proposed long-timescale
analog beamforming algorithm is given by ϱt = ( 8

1+t )
0.6 and

γt = 35
15+15t . Regarding the implementation of the proposed

short-timescale digital beamforming algorithm, the tolerance
parameters are chosen as δ1 = δ2 = 10−5 and the parameter
c is set to 0.25. We consider the following algorithms for
comparison:

• Proposed two-timescale FD: The long-timescale analog
beamforming matrices are designed based on Algorithm
1 and Algorithm 2 while the short-timescale digital
beamforming matrices are designed based on Algorithm
3.

• Conventional two-timescale FD: The long-timescale ana-
log beamforming matrices are designed directly based on
the SSCA algorithm to maximize the average energy of
the feeder link and access link, respectively. The short-
timescale digital beamforming matrices are designed
based on Algorithm 3.

• Fully digital FD: The single-timescale FD fully digital
beamforming algorithm.

• Single-timescale FD: The analog beamforming matrices
are obtained by using the channel matching approach [9]
and the digital beamforming matrices are designed based
on the PDD scheme.

• Single-timescale HD: Conventional single-timescale HD
hybrid AD beamforming algorithm.

We first study the convergence performance of the long-
timescale analog and short-timescale digital beamforming

7Here we provide the detailed mmWave channel matrix of the feeder link,
while the channel matrices for the other links can be obtained similarly.
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Fig. 3: Convergence performance of the long-timescale analog
beamforming design algorithm (a) in the feeder link and (b)
in the access link.
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Fig. 4: (a) Objective value and (b) constraint violation versus
the number of iterations for the proposed PDD-based short-
timescale digital beamforming design algorithm.

design algorithms. In particular, Fig. 3 (a) and (b) show
the convergence performance for the proposed long-timescale
analog beamforming design Algorithm 1 and Algorithm 2 in
the feeder and access links, respectively. From the results, the
proposed SSCA-based algorithms converge within less than
500 iterations. Fig. 4 (a) and (b) show the objective value
and the constraint violation versus the number of iterations
for the proposed short-timescale digital beamforming design
Algorithm 3, respectively. We can see that the value of
objective function converges within less than 50 iterations
while the constraint violation decreases to a value below 10−6

after 150 iterations, thereby verifying that the proposed PDD-
based algorithm can effectively tackle the equality constraints.

Next, we compare the number of required signalling bits
of CSI feedback for the proposed two-timescale hybrid beam-
forming scheme and the conventional single-timescale hybrid
beamforming scheme. We assume that B denotes the number
of quantization bits for each element of the CSI matrix, thus
the number of signalling bits of the proposed algorithm in a
superframe can be given by BTTf (R2 +MKR+K2NR−
KNR) +BT (N2 +MKN +K2N2 −KN2). Similarly, we
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Fig. 5: The number of signalling bits versus the number of
antennas for the proposed FD two-timescale hybrid beamform-
ing scheme and the single-timescale FD hybrid beamforming
scheme.
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Fig. 6: Sum rate versus the BS transmit power for the analyzed
beamforming algorithms.

can obtain that of the single-timescale hybrid beamforming
algorithm in a single superframe as BTTf (N2 + MKN +
K2N2 − KN2). Fig. 5 shows the number of signalling bits
versus the number of antennas at the BS and RS (which was
previously set to 32), where we employ T = 300, Tf = 500
and B = 6. We can see that the proposed two-timescale hybrid
beamforming algorithm can significantly reduce the system
overhead compared to the conventional single-timescale hybrid
beamforming algorithm.

Fig. 6 shows the sum rate performance of the analyzed
beamforming algorithms versus the transmit power at the
BS. It is seen that with an increase of transmit power,
the proposed two-timescale FD hybrid beamforming design
provides the best performance, followed by the conventional
two-timescale FD hybrid beamforming design, the FD fully
digital beamforming algorithm, the FD single-timescale hybrid
beamforming algorithm and the HD single-timescale hybrid
beamforming algorithm. In Fig. 7, we compare the sum rate
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Fig. 7: Sum rate versus different values of delay for the
analyzed beamforming algorithms (the transmit power at the
BS is set to 20dB).
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Fig. 8: Sum rate versus the BS transmit power for the proposed
two-timescale hybrid beamforming algorithm: finite resolution
phase shifters.

performance of the various algorithms under study versus
different values of delay. We can see that as the delay in-
creases, the performance of the conventional single-timescale
beamforming algorithms degrades dramatically, while that of
the proposed two-timescale hybrid beamforming algorithm
changes only slightly due to the sophisticated design and the
large saving of signalling bits. Specially, the proposed design
starts to outperform the conventional fully digital beamforming
algorithm when the delay exceeds 1ms. These results verify
the effectiveness of the proposed algorithm against the CSI
errors caused by the delay.

In our last experiment, we investigate the impact of finite
resolution phase shifters on the proposed two-timescale hybrid
beamforming design. In Fig. 8, we plot its sum rate perfor-
mance versus the BS transmit power for different number of
phase shifter quantization bits. It is seen that the performance
of the proposed algorithm improves with the number of quan-
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tization bits as expected. In particular, the performance with
6 bits can approach the performance with infinite resolution
phase shifters when there are 4 RF chains.

VII. CONCLUSION

In this paper, we have investigated an FD mmWave MI-
MO multiple-relay system and proposed an innovative two-
timescale analog-digital hybrid beamforming design scheme,
where the long-timescale analog beamforming matrices are
updated based on the channel sample at the end of each frame
and the short-timescale digital beamforming matrices are op-
timized based on the real-time low-dimensional effective CSI
matrices. We developed the SSCA and PDD based algorithms
to optimize the analog and digital beamforming matrices, re-
spectively. We also discussed the optimality and computational
complexity of the proposed algorithms. The proposed two-
timescale hybrid beamforming design can maximize the sum
rate, reduce the system complexity and overhead and mitigate
the FD interference and the effect caused by the delay of
CSI. Our simulation results have shown that the proposed
algorithm is capable of outperforming the existing benchmark
algorithms.

APPENDIX A
PROOF FOR THEOREM 1

The Lagrange function for problem (25) is given by

Z =
M∑
m=1

(−αm+λm+λ−γm)rm−
M∑
m=1

λmC̄m({θTk
})−λC⋆0 ,

(60)
where λ, {λm}, and {γm} denote the dual variables associated
to constraints

∑M
m=1 rm ≤ C̄⋆0 , rm ≤ C̄m({θTk

}) and rm ≥
0.

Applying the KKT conditions to the lth problem, where
l ∈M′

, we obtain

M−l∑
m=1

(αm − αM−l+1)∇θ̃l,Tk
C̄m({θ̃⋆l,Tk

}) = 0. (61)

Based on (26) and (27), and in the case that condition (30)
is satisfied, the following equations are established for the
solution of the lth problem when l ∈M′ and m ∈M,

M−l+1∑
m=1

rm = C⋆0 ,

M−l∑
m=1

(αm − αM−l+1)∇θ̃l,Tk
C̄m({θ̃⋆l,Tk

}) = 0,

rM−l+1 ≤ C̄M−l+1({θ̃⋆l,Tk
}), λ = αM−l+1,

λm = 0, ∀m ≥M − l + 1,

rm = 0, γm = αM−l+1 − αm, ∀m ≥M − l + 2,

λm = αm − αM−l+1, γm = 0,

rm = C̄m({θ̃⋆l,Tk
}), ∀m ≤M − l,

rm = 0, ∀m ≥M − l + 1.

(62)

When l = 0 and m ∈M, we have

M∑
m=1

rm ≤ C⋆0 ,
M∑
m=1

αm∇θ̃l,Tk
C̄m({θ̃⋆l,Tk

}) = 0, λ = 0,

rm = C̄m({θ̃⋆l,Tk
}), λm = αm, γm = 0, ∀m,

(63)
and when l =M and m ∈M, we have

rm = 0,∀m ≥ 2; λm = 0, γm = α1 − αm, ∀m;

λ = α1, r1 = C⋆0 .
(64)

Here, we let α0 = 0, αM+1 = 0, r0 = 0 and rM+1 = 0 for
consistency of the expressions.

For the case of l ∈ M′ and m ∈ M, by using (62),
we can further obtain the equations shown in (65), where
(65a) and (65b) represent the first-order necessary optimality
conditions, (65c), (65d) and (65e) denote the complementary
slackness conditions, (65f) and (65g) are the primal feasibility
conditions, and (65h) and (65i) represent the dual feasibility
conditions. Together, (65a)-(65i) imply that if (30) is satisfied,
{θ̃⋆l,Tk

} for problem l is a KKT solution of problem (25).
For the cases l = 0 and l = M , where m ∈ M, with the
aid of (63) and (64) we can reach the same conclusion. This
completes the proof.

APPENDIX B
DERIVATION OF GRADIENTS

Based on the rules of derivative for matrix functions, we
can obtain the gradients of C0(θU , {θFk

}) and Sl(θ̃l,Tk
), l ∈

{1, . . . ,M−1}, with respect to the analog beamforming phase
matrices as follows

∂C0

∂θFk

=
∂C0

∂Fk
◦ jFk −

∂C0

∂F∗
k

◦ jF∗
k

∂C0

∂θU
=
∂C0

∂U
◦ jU− ∂C0

∂U∗ ◦ jU
∗

∂Sl

∂θ̃l,Tk

=
∂Sl
∂Tl,k

◦ jTl,k −
∂Sl
∂T∗

l,k

◦ jT∗
l,k,

(66)

where ∂C0

∂Fk
=

(
∂C0

∂F∗
k

)∗
, ∂C0

∂U =
(
∂C0

∂U∗

)∗
and ∂Sl

∂Tk
=

(
∂Sl

∂T∗
l,k

)∗
,

while the operator ◦ denotes the Hadamard product.
Moreover, the conjugate gradients ∂C0

∂F∗
k

, ∂C0

∂U∗ , and ∂Sl

∂T∗
l,k

in (66) can be obtained as (67), where G1 , σ̄2FFH +
Υ + P̄1

R1Ns
FHUUHHHFH , G2 , σ̄2FFH + Υ, G̃l,1m ,

σ2
mT̄HT̄ +

KPr
∑M

j=1 h̃j h̃
H
j

M and G̃l,2m , σ2
mT̄HT̄ +

KPr

∑M
j ̸=m h̃j h̃

H
j

M .

APPENDIX C
DERIVATION OF UPDATING STEPS IN THE SCA ALGORITHM

In Block 1, we optimize zm by fixing the remaining
variables. By applying the first order optimality condition, the
solution for zm is obtained as

zm =
αm
em

. (68)
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∂Z
∂rm

= −αm + λm + λ− γm = 0, ∀m, (65a)

∇θ̃l,Tk
Z =

M∑
m=1

λm∇θ̃l,Tk
C̄m({θ̃⋆l,Tk

}) =
M−l∑
m=1

(αm − αM−l+1)∇θ̃l,Tk
C̄m({θ̃⋆l,Tk

}) = 0, ∀m, (65b)

(rm − C̄m({θ̃⋆l,Tk
}))λm = 0, ∀m, (65c)

rmγm = 0, ∀m, (65d)

(

M∑
m=1

rm − C⋆0 )λ = 0, ∀m, (65e)

M∑
m=1

rm ≤ C̄⋆0 , (65f)

0 ≤ rm ≤ C̄m({θ̃⋆l,Tk
}), ∀m, (65g)

λm ≥ 0, γm ≥ 0, ∀m, (65h)
λ ≥ 0. (65i)

∂C0

∂F∗
k

=σ̄2[G−1
1 ](k−1)R2,k+1:kR2,k,(k−1)R2,k+1:kR2,k

Fk + Pr

kR2,k∑
i=(k−1)R2,k+1

[G−1
1 ]i,i

K∑
j ̸=k

FkH̄kjH̄
H
kj

+
P̄1

R1Ns

K∑
i=1

[G−1
1 ](k−1)R2,k+1:kR2,k,(i−1)R2,i+1:iR2,i

FiHiUUHHH
k

− σ̄2[G−1
2 ](k−1)R2,k+1:kR2,k,(k−1)R2,k+1:kR2,k

Fk − Pr
kR2,k∑

i=(k−1)R2,k+1

[G−1
2 ]i,i

K∑
j ̸=k

FkH̄kjH̄
H
kj ,

∂C0

∂U∗ =
P̄1

R1Ns
HHFHG−1

1 FHU,

∂Sl
∂T∗

l,k

=−
M−l∑
m=1

(
(αm − αM−l+1)

(KPr
M

M∑
j=1

K∑
i=1

gj,kg
H
j,iTl,i[G̃

−1
l,1m](i−1)R2,i+1:iR2,i,(k−1)R2,k+1:kR2,k

+ σ2
mTl,k[G̃

−1
l,1m](k−1)R2,k+1:kR2,k,(k−1)R2,k+1:kR2,k

− KPr
M

M∑
j ̸=m

K∑
i=1

gj,kg
H
j,iTl,i[G̃

−1
l,2m](i−1)R2,i+1:iR2,i,(k−1)R2,k+1:kR2,k

− σ2
mTl,k[G̃

−1
l,2m](k−1)R2,k+1:kR2,k,(k−1)R2,k+1:kR2,k

))
.

(67)

In Block 2, we optimize Ũ and Wk in parallel. The first
subproblem for Ũ is given by

min
Ũ

1

2ρ
∥Ũ−UP+ ρλ1∥2

s.t. ∥Ũ∥2 ≤ P1.

(69)

The solution can be obtained as the projection a point onto a
sphere centered at the origin; specifically, it can be expressed
in closed form as

Ũ = PΩ1{UP− ρλ1}, (70)

where Ω1 , ∥Ũ∥2 ≤ P1.
The second subproblem for Wk is given by (71), which

is a convex unconstrained optimization problem and has a

closed-form solution. By vectorizing Wk and examining the
first order optimality condition, we obtain

w = (B+C)−1d, (72)

where w , [vec(W1)
T , vec(W2)

T , . . . , vec(Wk)
T , . . . ,

vec(WK)T ]T denotes a stacked vector, B ∈
C

∑
k R

2
2,k×

∑
k R

2
2,k has the following structure

[B](k−1)R2
2,k+1:kR2

2,k, (l−1)R2
2,l+1:lR2

2,l

=

M∑
m=1

M∑
j=1

zm|um|2((S̃kpj)T ⊗ g̃Hm,k)
H(S̃lpj)

T ⊗ g̃Hm,l,
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min
{Wk}

M∑
m=1

(
zm

(
|um|2(

M∑
j=1

|
K∑
k=1

g̃Hm,kWkS̃kpj |2 +
K∑
k=1

σ2
r,k∥g̃Hm,kWkFk∥2 + Īm + σ2

m)

− (um

K∑
k=1

g̃Hm,kWkS̃kpm + u∗m

K∑
k=1

pHmS̃Hk WH
k g̃m,k)

))
+

1

2ρ

K∑
k=1

(∥Xk −TkWkS̃kP+ ρλ2,k∥2

+ ∥X̄k − σr,kTkWkFk + ρλ3,k∥2 + ∥W̄k −Wk + ρλ4,k∥2)

(71)

C ∈ C
∑

k R
2
2,k×

∑
k R

2
2,k denotes a block diagonal matrix as

[C](k−1)R2
2,k+1:kR2

2,k, (k−1)R2
2,k+1:kR2

2,k

=

M∑
m=1

zm|um|2(σ2
r,k(F

T
k ⊗ g̃Hm,k)

HFTk ⊗ g̃Hm,k

+
K∑
j ̸=k

am,k,j(S
T
k,j ⊗ g̃Hm,k)

HSTk,j ⊗ g̃Hm,k)

+
1

2ρ

((
(S̃kP)T ⊗Tk

)H(
(S̃kP)T ⊗Tk

)
+ (σr,kF

T
k ⊗Tk)

H(σr,kF
T
k ⊗Tk) + I),

and d ∈ C
∑

k R2,kR2,k×1 follows the structure

[d](k−1)R2
2,k+1:kR2

2,k

=
M∑
m=1

zmu
∗
m(S̃kpm)∗ ⊗ g̃m,k

+
1

2ρ

((
(S̃kP)T ⊗Tk

)Hvec(Xk + ρλ2,k)

+ (σr,kF
T
k ⊗Tk)

Hvec(X̄k + ρλ3,k) + vec(W̄k + ρλ4,k)
)
.

In Block 3, we optimize um and (Xk, X̄k, t̄k) in parallel.
The solution of um is given by (45). The subproblem for
(Xk, X̄k, t̄k) is given by (73). Similarly, we have the following
closed-form solution shown in (74), where Ω2,k , ∥Xk∥2 +
t̄2k + ∥X̄k,j∥2 ≤ P2,k.

In Block 4, we optimize P and (W̄k, tk) in parallel.
The subproblem for P is given by (75), which is a convex
unconstrained optimization problem. This problem can be
solved in the same way used for solving {Wk}. The solution
of P is given by

[P]:,l = A−1
p bp,l, (76)

where [P]:,l denotes the lth column of P, Ap =∑M
m=1

(
zm|um|2(

∑K
k=1 g̃

H
m,kWkS̃k)

H(
∑K
n=1 g̃

H
m,nWnS̃n)

)
+

1
2ρ (U

HU +
∑K
k=1(TkWkS̃k)

HTkWkS̃k), and
bp,l = zlu

∗
l

∑K
k=1 S̃

H
k WH

k g̃l,k +
1
2ρ (U

H([Ũ]:,l + ρ[λ1];,l) +∑K
k=1(TkWkS̃k)

H([Xk]:,l + ρ[λ2,k]:,l)).
The subproblem for (W̄k, tk), ∀k, is given by

min
W̄k, tk

1

2ρ
(∥W̄k −Wk + ρλ4,k∥2 + ∥tk − t̄k + ρλ5,k∥2)

s.t.
1

2

K∑
j ̸=k

√
P2,j(

∥TkW̄kSk,j∥2

∥TkW̄i
kSk,j∥

+ ∥TkW̄
i
kSk,j∥) ≤ tk.

(77)

This problem can be solved by using the method of Lagrange
multiplier as follows

tk(µk) = ρµk + t̄k − ρλ5,k,

W̄k(µk) = (I+ 2ρµk
∑
j ̸=k

√
P2,j

2||TkW̄i
kSk,j ||

W̃H
k,jW̃k,j)

−1w̃k,

(78)

where w̃k , vec(Wk − ρλ4,k), W̃k,j , STk,j ⊗ Tk, and µk
denotes the Lagrangian multiplier which can be obtained by
using a bisection search method as in [35].
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