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Abstract—The problem of adaptive multi-user scalable layered
video transmission is considered in energy harvesting (EH)
aided wireless communication systems. With the goal of im-
proving the quality of video services while providing fairness
amongst the users despite the random nature of both energy
harvesting and the channel quality, we formulate our Scalable
Video Coding (SVC) design as a Constrained Utility Function
Maximization (CUFM) problem. The proportional fairness and
playback smoothness of our design is guaranteed by maximizing
the log-sum of the users’ video qualities, while satisfying the
battery fullness constraint and video layer (quality) fluctuation
constraint. By invoking the classical Lyapunov drift based opti-
mization technique, we further decompose the CUFM problem
into two parallel subproblems, i.e., a dynamic transmission power
allocation problem and a dynamic layer selection problem. By
solving these two subproblems, we derive a joint power allocation
and video layer selection strategy for multi-user SVC video
transmission. The theoretical performance bound of the proposed
solution is also presented. Numerical simulations are conducted
with real H.264 SVC video traces and the experimental results
demonstrate the reduced playback interruption rate and layer
switching rate compared to a heuristic algorithm ProNTO. The
results also illustrate a tradeoff between the system’s utility
function and the playback smoothness experienced by the users.

Keywords—Energy harvesting, proportional fairness, energy-
efficient communication system, scalable video coding, Lyapunov
optimization, feasible direction method.

I. INTRODUCTION

ENERGY Harvesting (EH) constitutes a promising green
and self-sustainable communication technique, where

apart from data transmission, the nodes also accumulate energy
from the renewable sources like mechanical vibration, solar,
pressure and electromagentic radiation, thus reducing the use
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of fossil fuels. IDTechEx predicts that the energy harvesting
market grows to $2.6 billion by 2024 [1]. Internet of Things
(IoT) applications and devices are capable of simplifying
human activities, and EH has received significant research
attention for extending their battery life [2], [3].

Video streaming has been widely deployed in various
network applications and services [4]–[7]. According to the
Cisco’s white paper [8], by 2021 video traffic will constitute
82% of all the global Internet traffic. Energy harvesting is
also expected to support real-time video streaming services.
Although the power efficient transmission problem of EH aided
communications system has indeed been richly characterized
in the literature [9]–[13], throughput maximization has been
the main focus in these treatises, whilst dedicating little
attention to the upper-layer applications. Explicitly, throughput
maximization does not lead to Quality-of-Experience (QoE)
optimization owing to the resultant excessive packet-loss
events, especially not in multiuser scenarios. This motivates us
to conceive a new transmission strategy for multi-user video
streaming in EH aided communication systems.

Scalable Video Coding (SVC) has been emerging as an
advanced video compression technique [14] supporting on-
the-fly bitrate adaptation for video streaming, which breaks
a single-stream video into a multi-stream flow in terms of
a base layer and a few enhancement layers. This technique
enables the receiver/sender to most appropriately choose the
number of transmitted video layers for achieving the required
video quality, depending on the prevalent conditions of both
the network and of the device itself. The capability of on-
the-fly bitrate adaptation provided by SVC motivates us to
adopt it for accommodating the stochastically time-varying
nature of both the energy harvesting process and of the channel
quality, thus supporting resilient video transmission in EH-
aided wireless communication systems. The intuitive principle
of this is that for the scenario of low harvested energy only the
video base layer is streamed in order to keep a low likelihood
of playback interruptions, which would seriously degrade the
quality perception of the users, while for the scenario of having
abundant harvested energy the streaming of more enhancement
layers is desired for achieving a higher video quality. Hence,
our paper focuses on the problem of the optimal allocation of
stochastically harvested energy for scalable video transmission.
This problem becomes more complex in the scenario of multi- 1
user video transmission due to their different channel qualities
at the receivers and the requirement of maintaining fairness
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in terms of the received video quality of all the users.To the
best of our knowledge, the multi-user video streaming problem
of EH aided wireless communication systems has not been
explored in the open literature.

One potential promising application of EH aided multi-user
SVC streaming is satellite-5G network typically powered by
harvested solar energy [15], which is depicted in Fig. 1. The
SVC video sequences are uploaded from the ground station
to the communication satellite, and then from the satellite to
the moving vehicles. In contrast to the traditional ground-cell
network, the coverage of the communication satellite is wide,
which can help reduce the handover frequency of the terrestrial
vehicles and is conducive to providing seamless networking
services [16]. In energy harvesting communication systems,
the proposed methods that mainly focus on maximizing the
throughput are not directly applicable to video transmission
optimization. Our early work [17], [18] have solved the SVC
video transmission problem in the single-user scenario over
energy harvesting systems. However, in multi-user video2
transmission scenario, which can be found in satellite-5G
network, the communication systems will be confronted with
new difficulties and challenges, such as the fairness guarantee
among the users and dimensional disaster caused by multi-
user. All of these motivate us to derive a new strategy that
can solve the multi-user video transmission problem in energy
harvesting communication systems.

This paper focuses on the problem of downlink adaptive
scalable video streaming in multi-user EH-aided wireless com-
munication systems. Explicitly, we jointly consider the energy
resource allocation and the fairness among the users. In our
problem formulation, we conceive a total utility function in
terms of the log-sum of the video qualities, i.e., Peak Signal-
to-Noise Ratio (PSNR), for the sake of achieving proportional
fairness. We further conceive an online Power Allocation and
Layer Selection (PALS) strategy for improving the transmitted
video quality subject to a maximum tolerable playback inter-
ruption rate. Our contributions are listed as follows:
• This paper studies the multi-user SVC video transmis-

sion problem of energy harvesting communication sys-
tems. Considering the characteristics of the SVC video
and the fairness among the users, the multi-user video
transmission problem is formulated as a Constrained
Utility Function Maximization (CUFM) problem, where
the log-sum of the PSNR is chosen as the optimization
objective for guaranteeing proportional fairness.

• We consider the energy buffer fullness constraint and
video quality fluctuation constraint for the sake of main-
taining a smoothened perception of the video playback
quality. This implies that our problem formulation maxi-
mizes the overall video quality subject to the constraints
of proportional fairness and smoothened video quality.3

• We introduce the classical Lyapunov stochastic opti-
mization theory to transform the original CUFM prob-
lem into a Lyapunov optimization problem, which can be
further decomposed into two independent sub-problems,
i.e., the energy allocation and the video layer selection
problems. Unlike the layer-traversal algorithm proposed
in [17], whose computational complexity is on the order
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Fig. 1: EH aided multi-user SVC streaming application in
satellite-5G network.

of O(LK) in a K-user system, we rely on the feasible
direction method of [19] to solve the video layer selec-
tion problem and thus, the computational complexity is
reduced to the order of O(KL).

• Real video traces are utilized to conduct experiments for
demonstrating the efficiency of the proposed PALS strat-
egy. A benchmark algorithm termed as ProNTO [20],
which was proposed for maximizing the throughput of
energy harvesting systems, is used for our performance
comparisons. Furthermore, the performance sensitivity
to the parameters of our solution is also investigated for
fine-tuning the parameter settings.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III is devoted to formulat-
ing the CUFM problem taking into account both the harvested
energy and the wireless channel, while Section IV elaborates
on the derivation of the online PALS strategy for solving the
CUFM problem. Our simulation results characterizing PALS
are presented in Section V. Finally, we conclude in Section
VI.

II. RELATED WORK

A. Energy Harvesting Wireless Communication Systems
Recently, energy harvesting communication systems have

received significant research attentions [10]–[13], [21]–[33]. In
[21], wireless networks capable of harvesting RF energy were
analyzed while the throughput maximization problem of EH
systems was studied in [10]–[12]. A two-stage water filling
policy was derived in [23] for the throughput maximization
of a communication system that is powered both by harvested
energy and by the power grid. The authors of [24] proposed an
optimal packet scheduling policy for dynamically adjusting the
transmission rate according to the energy and the traffic load
of an EH communication system. Since most of the devices
in IoT are low-power battery fed systems, the finite charge of
such devices brings about new challenges in terms of system
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deployment and data transmission. To tackle this problem, a
novel Integrated Information Relay and Energy Supply based
RF harvesting model was proposed in [25]. A throughput
constrained problem dedicated to energy efficiency and trans-
mission rate maximization in RF-EH communication systems
was studied in [26]. The authors of [27] formulated the power
vs delay tradeoff as a stochastic problem, which is solved
by Lyapunov optimization theory. By jointly considering the
power allocation and time scheduling policy, an algorithm
was proposed in [28] to solve the end-to-end throughput
maximization problem in two-hop-relaying wireless systems,
where the relay node is capable of harvesting energy. In [13],
the per-flow performance of an EH multichannel system was
investigated.

Since communication systems equipped with EH constitute
a new video streaming scenario [17], optimizing the QoE at
the receivers constitutes an interesting new research problem.
The solutions discussed in the aforementioned contributions
mainly focused on improving the energy efficiency or the4
throughput, without giving any cognizance to the application-
level perceptual video quality. Hence, they are not directly
applicable to video transmission optimization in EH commu-
nication systems.

B. Adaptive Scalable Video Transmission With Sufficient En-
ergy

SVC constitutes an extended version of H.264/AVC, de-
signed for real-time video transmission and playback un-
der diverse conditions. Resource scheduling strategies and
transmission algorithms have been widely investigated in the
literature [17], [18], [34]–[42], and a comprehensive overview
of SVC-based video characteristics can be found in [14], [43],
[44]. In [14], a trace-based evaluation method was introduced
for SVC video streaming systems. The QoE-aware SVC video
transmission problem and a sophisticated power allocation
scheme was designed for Multi-Input Multi-Output (MIMO)
systems in [34] and [35]. The authors of [36] jointly configured
both the power and the transmission rate with the objective
of maximizing the decoding quality of SVC video streaming
in MIMO systems. As a further development, a cross-layer
optimization architecture was designed in [37] for scalable
video delivery over OFDMA wireless networks. Both [38] and
[39] have investigated the adaptive layer switching algorithm
and resource allocation problem for SVC video streaming in
wireless communication networks. Furthermore, by grouping
the moving vehicles into cooperative clusters, novel V2V
(vehicle-to-vehicle) communication techniques were proposed
in [40] for real-time SVC video streaming in vehicular net-
works. In [41], a novel SVC-based multi-user transmission
policy was proposed for wireless networks having sufficient
energy supply. In [42], a joint video rate and power control
framework was proposed for multi-node wireless networks
in order to satisfy the delay constraint associated with the
application-level data characteristics. However, the aforemen-5
tioned scalable video streaming strategies are mainly discussed
in the scenarios where the energy is always sufficient. Hence
they are not directly applicable to EH-aided wireless scalable

video streaming systems, where the amount of harvested
energy is not considered.

C. SVC Video Transmission in EH-aided Communication Sys-
tems

In contrast to wireless SVC video streaming relying on the
mains power supply, there is a paucity of adaptive techniques
designed for EH aided wireless video transmission. In [17]
and [18], the SVC video transmission was discussed in EH
wireless communication systems in a single-user scenario.
In [18], an energy starvation probability estimation model
relying on the Large Deviation Principle (LDP) was proposed,
which was used for adjusting the number of video layers 6
transmitted in a single-user scenario. The authors of [17]
derived a dynamic layer selection aided transmission algorithm
(DLTA) conceived for single-user EH aided wireless SVC
streaming. But again, EH aided multi-user video streaming,
routinely found in satellite-5G networks powered by harvested
solar energy [15], has only received very limited attention.

III. PROBLEM FORMULATION

We consider an EH wireless communication system having
K users served by a wireless transmitter which is equipped
with a rechargeable battery, as depicted in Fig. ??. The battery
is charged by an energy harvester, gleaning ambient energy on 7
board the satellite from solar radiation. We divide the time
into uniform slots of size d. Each frame of the SVC videos
consists of L layers, a base layer and (L − 1) enhancement
layers. The number of the video layers to be transmitted are
determined by the decision device, subject to different wireless
channel conditions of the K users and the amount of energy
stored in the battery. Let γk,n, k ∈ K , {1, 2, ...K}, denote
the channel gain of the link between the transmitter and user k
at time slot n, during which the fading conditions are assumed
to remain constant, but may change across the time slots.
Here, we consider Time-Division Multiple Access (TDMA)
for multiple users to share the same wireless channel having
a frequency bandwidth of W . For the sake of achieving real- 8
time video streaming, the SVC video packets queued at the
transmitter have to be transmitted to all the users immediately
during the next time slot. If the energy remaining in the battery
is insufficient, the video packets are discarded, which will
cause playback interruptions.

A. Wireless Channel Model
Fig. 3. shows the transmission model of the wireless chan-

nels between the transmitter and the K users. The video bits
are transmitted to the K users in a time-switching manner due
to the TDMA regime employed. During time slot n the bits
transmitted to user k have to obey Shannon’s formula of

Dk,n = tk,nWlog2

(
1 + γk,n

PTn
NoW

)
, (1)

where tk,n and No represent the transmission time of user k
and the power of the additive white Gaussian noise (AWGN) 9
[18]. Further more, we have

∑K
k=1 tk,n 6 d due to the duration

constraint of the time slots. And PTn is the transmission power
in the nth time slot.
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B. Model for Rechargeable Battery
As shown in Fig. ??, the energy is harvested from the

environment and stored in a rechargeable battery having a
maximum capacity of Bmax. Let ETn and EHn represent the
energy consumed by video transmission and harvested during
the slot n, respectively. It was assumed in [17] and [45] that
the harvested energy packet EHn can be considered as an i.i.d.
variable. At the start of slot n, the remaining energy of the
transmitter is Bn. We assume that the harvested energy EHn is
available until the beginning of slot n + 1. Then, the update
formula of the energy stored in the battery can be written as
follows:

Bn+1 = min
{
max

{
Bn − ETn , 0

}
+ EHn , Bmax

}
. (2)

The transmission power, determined by the Decision Device,
is allowed to vary across time slots, but it is kept constant
during each slot. Thus, the energy used for video transmission
is

ETn = PTn d, (3)

where PTn denotes the transmission power. In video services,
users tend to prefer a reduced video quality over playback
interruptions, since playback interruptions seriously reduce the
quality of experience. In an EH communication system, if the
energy is depleted, no video can be transmitted, thus imposing
a playback interruption. Therefore, in order to avoid playback
interruptions, it is necessary to reserve a certain amount of
energy at the transmitter for delivering the forthcoming packets
of the video base layers.

The long-term time-averaged value of the battery level is
defined as B , limN→∞

1
N

∑N
n=1Bn(PTn ). A certain amount10

of energy should be maintained for supporting uninterrupted
video streaming, and thus avoiding QoE degradation for the
end users. In order to achieve this, the time-average B is
constrained by a pre-defined energy threshold θ:

B > θ. (4)

Since higher video quality requires more video layers, this
is more likely to exhaust the battery in the absence of any
energy reservation. Once the battery energy is exhausted, the
forthcoming video packets will be discarded and the QoE of
the end users will be severely degraded. Hence, we apply the
constraint (4) to achieve a sustainable video transmission.

C. Video Quality Fluctuation
Apart from video playback interruption, fluctuations in video

quality constitute another factor affecting the user experience
in video applications. Varying the number of video layers
frequently will substantially reduce the end user’s QoE. The
difference of the transmitted layers between two adjacent time
slots is used for characterizing the fluctuation of the video qual-
ity, i.e., fk,n = |xk,n − xk,n−1|, where xk,n is the number of
transmitted video layers corresponding to user k at the time slot
n, and fk,n ∈ F , {0, ..., L− 1}. The time-averaged layer
fluctuation fk,n is defined as fk,n , limN→∞

1
N

∑N
n=1 fk,n.

In order to achieve a smoothly evolving video quality, the
average layer fluctuation should be kept below a certain
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Fig. 3: Transmission model, the time of the n-th slot is
allocated to K users for video data transmission.

threshold η. Then we have a constraint imposed on the time-
averaged fluctuation as

fk,n 6 η. (5)

Here, we use the layer switching frequency as a QoE metric for
characterizing the video quality fluctuation. However, accord-
ing to [17] the PSNR mainly depends on the base layer, while
the contribution of each enhancement layer is similar, which
implies that the video layer switching frequency is a reasonable
metric of characterizing the video quality fluctuation.

D. Video Quality Maximization Problem Formulation to Guar-
antee Proportional Fairness

The authors of [20], [46] have demonstrated that propor-
tional fairness among the users may be guaranteed in terms
of the log-sum based system utility. Inspired by this work,
the system utility in our EH-aided multi-user communication
system is defined as the log-sum of all the users video quality1

as follows: 11

Un =

K∑
k=1

log2 (1 + PSNRk,n) , (6)

where PSNRk,n (Peak Signal-to-Noise Ratio) characterizes
the received video quality of user k during the n-th time slot,
which is related to the transmitted video layers. Then, we
formulate the optimization problem constrained by playback
smoothness and energy dissipation. At the nth time slot, the
Decision Device of the transmitter embarks on transmitting
Xn = (x1,n, ..., xk,n, ..., xK,n) layers to the users, where
xk,n ∈ X , {0, ..., L}, and xk,n = 0 means that no video
layer is transmitted to user k. In order to achieve low-delay
video transmission, the dropped video packets will not be
retransmitted. Once the base layer is discarded due to having
insufficient energy, playback interruptions occur for all the
users during an entire time slot, which severely reduces the

1The defined utility function is strictly convex, and plus one can avoid
negative infinity when PSNRk,n = 0.
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perceived video quality. For this reason, constraint (4) is
introduced to keep a certain amount of energy in the battery for
near-future base layer transmission. Let Qk,n = ϕ

(
xk,n, P

T
n

)
denote the near-instantaneous PSNR value achieved by user
k upon receiving xk,n video layers, when the transmission
power is PTn . Then, the log-sum video quality metric of (6)
used for guaranteeing proportional fairness can be rewritten as12
Un(Xn, P

T
n ) =

∑K
i=k log2 (1 +Qk,n). Accordingly, the time-

averaged total video quality constituting our utility function is
defined as:

U = lim
N→∞

1

N

N∑
n=1

Un(Xn, P
T
n ). (7)

Since we aim for maximizing the utility function in (7), while
the constraints (4) and (5) are both satisfied, our constrained
utility function maximization (CUFM) problem associated
with proportional fairness is formulated as:

Maximize U

Subject to B > θ,

fk,n 6 η, k = 1, 2, ...,K∑K

k=1
tk,n 6 d,

Action
{
PTn , Xn

}
. (8)

In order to solve the above problem, the wireless transmitter
has to make decisions both about the optimal transmission
power and the number of video layers to transmit at each time
slot.

IV. DYNAMIC POWER ALLOCATION AND VIDEO LAYER
SELECTION STRATEGY

In this section, the Lyapunov optimization theory [47] will
be used for solving problem (8), and a dynamic online strategy
is derived for determining the optimal number of transmission
layers and the power allocation. In Section IV-C, the perfor-
mance bound of the proposed method is analyzed theoretically.

A. Lyapunov Stochastic Optimization Formulation

For the sake of solving the CUFM problem via the classical
Lyapunov optimization technique, K + 1 virtual queues (Hn

and zk,n, k ∈ {1, 2, ...,K}) are constructed for transforming
the constraints (4) and (5) into characterizing the queue stabil-
ity. According to the theory of Lyapunov optimization [47], the
dynamics of the virtual queues are characterized as follows:

Hn+1 = {Hn + θ −Bn+1}+ (9)

and
zk,n+1 = {zk,n + fk,n − η}+ , (10)

where (x)+ , max{x, 0}. As shown in [47], if the mean
rates of Hn and zk,n are stable, the energy constraint (4) and
the video quality fluctuation constraint (5) are satisfied. Let

Θ , {Hn, zk,n} , (k = 1, 2, ...,K) denote a cascaded vector.
Then, we define a quadratic Lyapunov equation as

L (Θn) =
1

2

(
H2
n +

n∑
k=1

z2k,n

)
. (11)

Accordingly, at the nth time slot, we define the conditional
Lyapunov drift as:

∆ (Θn) , E [L (Θn+1)− L (Θn) | Θn] . (12)

Minimizing (12) implies that Hn and zk,n are mean rate stable
on the basis of Lyapunov drift theory. Since our objective is
to maximize the utility function in (7), the term “drift-plus-
penalty” [47], which combines the instantaneous system utility
U(Xn) and the Lyapunov drift, is defined as:

∆ (Θn)− V E {U (Xn) | Θn} , (13)

where V > 0 is used as an equilibrium factor in (13) to
strike the trade-off between the video quality and the read-
out smoothness. A high V increases the system’s utility and
hence minimize the video distortion, but it will also increase
the playback interruption rate and layer switching rate. Thus,
the constrained optimization problem (8) can be solved by
minimizing the “drift-plus-penalty” term at the beginning of
each time slot n. 13

According to Lyapunov optimization theory [47], minimiz-
ing (13) can be achieved by minimizing the upper bound of
(13). Then, the bound of (13) is reformulated to develop our
dynamic video layer selection and power allocation strategy.
According to (9), we have

H2
n+1 6 (Hn −Bn+1)

2
+ θ2 + 2Hnθ

= H2
n +B2

n+1 + θ2 + 2Hn (θ −Bn+1) . (14)

Similarly

z2k,n+1 6 z2k,n + η2 + f2k,n + 2zk,n(fk,n − η). (15)

Upon substituting (2), (14) and (15) into (13), we have

∆(Θn)− V E {U(Xn) | Θn}

6C0 + C1,n + E
{

1

2
(ETn )2 + (Bn −Hn)(EHn − ETn ) | Θn

}
+

K∑
k=1

E {zk,n(fk,n − η) | Θn} − V E {U(Xn) | Θn}

=C0 + C1,n +
1

2
(ETn )2

+ (Bn −Hn)
(
E
{
EHn
}
− ETn

)
+

K∑
i=1

zk,n(fk,n − η)− V U(Xn), (16)

where C0 = 1
2

[
θ2 +

∑K
k=1(η2 + f2max) + (EHn,max)2

]
and

C1,n = 1
2B

2
n +Hn(θ −Bn) are a pair of constants, since Bn

and Hn are known at the nth time slot. According to Lyapunov
optimization theory [47], the CUFM problem associated with
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proportional fairness can be solved by minimizing the sum of
the last four terms on the right side of (16), rather than min-
imizing (13) directly. Hence, the CUFM problem associated
with proportional fairness is reformulated as

Minimize:
1

2
(ETn (PTn ))2

+ (Bn −Hn)(EHn − ETn (PTn ))

+

K∑
k=1

zk,n(fk,n − η)− V U(Xn)

Subject to:
∑K

k=1
tk,n 6 d

Action:
{
PTn , Xn

}
, (17)

where EHn = E
{
EHn
}

. Due to the stochastic nature of EHn ,
and the unknown probability distribution, EHn cannot be calcu-
lated straightforwardly. Therefore, the historical observations
are utilized for the online estimation of EHn . The estimated
value is denoted by ÊHn and the exponential smoothing (ES)
model is invoked for obtaining a smoothened estimate of EHn ,
which is given by:

ÊHn = ρÊHn−1 + (1− ρ)EHn , (18)

where the parameter ρ satisfies 0 < ρ < 1. Furthermore, it
was recommended by Gardner’s report [48] that the reasonable
range should be [0.7, 0.9].

The term (Bn − Hn)(EHn − ETn (PTn )) in (17) represents
a weighted expected mismatch between EHn and ETn (PTn ).
According to Equation (9), if Bn is higher than θ in some
consecutive time slots, Hn decreases. Once we have (Bn −
Hn) > 0, the transmission power PTn should be increased in
order to minimize (EHn −ETn (PTn )), consequently reducing the
term (Bn −Hn)(EHn − ETn (PTn )). By contrast, Hn increases
while Bn is lower than θ in some of the consecutive time
slots. When (Bn−Hn) < 0 is met, PTn should be decreased to
maximize (EHn −ETn (PTn )), hence, (Bn−Hn)(EHn −ETn (PTn ))
is reduced. Similarly, the weighted difference of the video
layer switching frequency and threshold η can be presented by
zk,n(fk,n − η) in (17). According to (10), zk,n can represent
the accumulated value of user k’s historical layer switching
rate. When zk,n becomes larger, the number of video layers
of user k is less likely to be changed for achieving reduced
fk,n, and thus to decrease the term zk,n(fk,n− η). Again, the
parameter V is a equilibrium factor between the utility and the
first two terms discussed above. A larger V can be chosen to
focus more on the total system utility, which is demonstrated
in Section V-C3.

B. Power Allocation and Layer Selection (PALS) Algorithm
If we directly search through the legitimate solution space to

find the optimal solution for (17), as in reference [17], for a K-
user system the algorithm suffers from an excessive complexity
of order O(LK). Fortunately, the first two items in (17) only
depend on the specific selection of the transmission power PTn ,
while the rest of the items rely on the layer selection variable

Xn. Based on this particular structure, the optimization prob-
lem (17) can be further decomposed into two independent low-
complexity sub-problems: the power allocation problem and
layer selection problem. We also employ the feasible direction
method of [19] to solve the layer selection problem and 14
thus, the computational complexity is reduced to the order of
O(KL).

1) Transmission Power Decision: By minimizing the first
two terms of the objective function in (17), the transmission
power optimization problem is given as:

Minimize:
1

2
(ETn (PTn ))2

+ (Bn −Hn)(EHn − ETn (PTn )), (19)
Action: PTn , (20)

where the expression (19) is a quadratic function, and the
optimal PTn ≥ 0 can be obtained as follows2:

max

(
Bn −Hn

d
, 0

)
︸ ︷︷ ︸

the optimal value of PT
n

. (21)

2) Video Layers Selection: Below, we derive the optimal
video layer selection strategy by minimizing the last part of the
objective function in (17), and thus the optimization problem
is written as:

Minimize:
K∑
k=1

[zk,n (fk,n − η)− V log2 (Qk,n (xk,n))︸ ︷︷ ︸
hk,n(xk,n)

]

(22a)

Subject to:
∑K

k=1
tk,n 6 d (22b)

Action: Xn.

15
In (22a), each term of the objective function is represented

by the variable hk,n (xk,n) for convenience, which contains
the variables zk,n and fk,n. For further interpreting Eq. (22),
we have:

tk,n (xk,n) =
Dk,n(xk,n)

Wk,nlog2

(
1 + γk,n

PT
n

Wk,nNo

) , (23)

where tk,n(xk,n) is derived from Shannon’s capacity formula
Eq. (1), for representing the transmission duration of user k,
when the number of transmitted video layers is xk,n, and
Dk,n(xk,n) is the total number of video bits with respect to
xk,n that are transmitted to user k in the nth time slot.

Applying the enumerative algorithm of [17] for solving the
problem (22) suffers from a high computational complexity.
Hence, we consider applying the feasible direction method of
[19] to solve this challenging problem, because it can reduce
the complexity of solving such non-linear programming prob-
lems. In order to invoke this method, a key step is to transform

2The minimum point of a quadratic function y = ax2 + bx+ c (a > 0),
is ( b

−2a
, 4ac−b2

4a
).
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the optimization problem (22) into the classical feasible direc-
tion method. Let hjk,n, tjk,n denote hk,n(xk,n) and tk,n(xk,n),
respectively, where xk,n = j, and j ∈ J , {1, ..., L}. It
should be noted that hjk,n and tjk,n are both monotonically
increasing with j. Hence, the optimization problem (22) is
rewritten as:16

Minimize:
K∑
k=1

L∑
j=1

hjk,nω
j
k,n (24a)

Subject to:
K∑
k=1

L∑
j=1

tjk,nω
j
k,n + s = d, s > 0 (24b)

L∑
j=1

ωjk,n = 1, ωjk,n ∈ {0, 1} (24c)

Action: Ωk,n,∀k, (24d)

where s is a slack variable, and (24c) means that every user
should be served by the transmitter during time slot n, and
we define Ωk,n = (ω1

k,n, ω
2
k,n, ..., ω

L
k,n). The problem (24) is

a constrained optimization problem, which can be solved by
the classical feasible direction method.

Lemma 1. hk,n(x) is a convex function on x (1 6 x 6 L).
Proof: See Appendix A.

The convexity of hk,n(x) guarantees a unique local min-
imum point on [1, L]. Hence, the feasible direction method
may converge to the optimal value of (24a). According to the
feasible direction method of [19], the optimal descent direction
in the feasible domain is given by:

ϑk∗,j∗ = min
k∈K,j∈J

(
δjk,n

νjk,n
ωjk,n) =

δj
∗

k∗,n

νj
∗

k∗,n

ωj
∗

k∗,n, (25)

where δjk,n = hj+1
k,n − h

j
k,n, νjk,n = tj+1

k,n − t
j
k,n, and

δjk,n

νj
k,n

is

the gradient of user k’s utility, if the number of transmission
layers increases from j to j + 1.

At the start of slot n, all the users are assumed to receive
the base layers. Then the optimal direction ϑk∗,j∗ is chosen
for increasing the number of video layers of user k∗ by one.
However, if the transmission duration constraint (24b) is not
met, which means that the video layer of the user k∗ cannot
be increased anymore, user k∗ should be removed from K.
Furthermore, it will also be removed from K if the number
of video layers reaches the maximal value L. This process
is repeated until there is no user left in K, as described in
Algorithm 1.

C. Performance bound of PALS

In this subsection, a Theorem is presented for formulating
the performance bound of PALS, while minimizing the bound
of (16). The parameter V in (16) can be any positive constant
that is greater or equal to one.

Algorithm 1 Feasible Direction Method based Video Layers
Selection Algorithm (FD-VLS)

1: Set H1 and zk,1 to zero
2: repeat
3: At the time slot n, according to (22a) and (23), calculate

hjk,n, tjk,n for all k ∈ K, j ∈ J
4: Calculate δjk,n, νjk,n, for k ∈ K, j ∈ J , and set ωjk,n = 1

for k ∈ K, j = 1
5: Finding the optimal PTn in (19) according to (21)
6: while K 6= ∅ do
7: Find the feasible direction ϑk∗,j∗ according to (25)
8: Update ωj

∗

k∗,n = 0, ωj
∗+1
k∗,n = 1

9: if the constraint (24b) is not met then
10: Reset ωj

∗

k∗,n = 1, ωj
∗+1
k∗,n = 0.

11: Remove k∗ from K
12: else
13: if the number of transmission layers of the user k∗

is L then
14: Remove k∗ from K
15: else
16: Calculate δj

∗+1
k∗,n , νj

∗+1
k∗,n

17: end if
18: end if
19: end while
20: Update Bn, Hn, zk,n, according to Ωk,n and (9) (10)

∀k ∈ K , {1, ...,K}
21: n← n+ 1
22: until transmission completed

Theorem 1. The average utility UPALS obtained by the PALS
strategy satisfies:

UPALS > U∗ − B

V
. (26)

Here U∗ denotes the optimal utility value in (8), and B =
C0 + limN→∞

1
N

∑N
n=1 C1,n.

Proof: See Appendix B.

Inequality (26) shows that a larger V can be conductive to
achieving a high transmitted video quality, and when a smaller
V is chosen, the fluctuation of the number of video layers is
more likely to be decreased (13). This conclusion is further
demonstrated by the simulation results of Section V.

V. PERFORMANCE EVALUATION

In this section, the layer switch and playback interruption
rate are chosen to be the metrics for characterizing the per-
formance of the proposed PALS algorithm. For comparison,
the heuristic algorithm ProNTO proposed in [20] is used as a
benchmark, which is designed for optimizing the throughput
in a proportional fair way, and without any consideration of
the SVC video traffic characteristics.

A. Experimental Setup
To conduct our experiments, we set the channel bandwidth

W to 2MHz, the length of the time slot d to 1/3s, and the
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TABLE I: Video trace properties

Sequence Elephants Dream Big Buck Bunny
Encoder H.264/SVC H.264/SVC

Resolution CIF(352× 288) CIF(352× 288)
GoP Pattern G16B15 G16B15

Maximal Base Layer Size (Bytes) 55080 120176
Minimal Base Layer Size (Bytes) 104 104
Average Base Layer Size (Bytes) 5318.21 4663

Maximal Frame Quality (dB) 188.13 188.13
Average Frame Quality (dB) 42.91 41.57

noise density to N0 = 4× 10−9W/Hz. The harvested energy
EHn varies over the time slots, obeying an i.i.d. sequence,
based on the Poisson distribution [17]. The channel gains17

between the transmitter and users obey the classic Markov
process [49], [50], and the state space is discretized as G ={
g1 = −18.82dB, g2 = −13.79dB, g3 = −11.23dB, g4 =
−9.37dB, g5 = −7.80dB, g6 = −6.30dB, g7 = −4.68dB,
g8 = −2.08dB } similar to [51]. We used real H.264 video
traces for evaluating our strategy. The video traces chosen are
Elephants Dream (ED) and Big Buck Bunny (BBB) [14],
and each frame of the video traces is composed of a single base
layer and 6 enhancement layers. TABLE I shows the main
attributes of the video sequences.

B. Performance Comparison
1) Different Average Energy Harvesting Rate: The perfor-

mance differences between PALS and ProNTO were shown in
Fig. 4, in conjunction with θ = 40mJ , η = 0.2, V = 400,
ρ = 0.9, K = 8. All the users were divided equally into two
groups receiving individual SVC video sequences. In order to
implement ProNTO, the time slot was partitioned into multiple
equal time frames of duration τ , and we set τ = d

3.5K . Fig. 4
shows that PALS achieves a higher quality utility, representing
lower playback interruption rate and lower layer switching rate
than ProNTO for both video sequences. The ProNTO method
is designed mainly for optimizing the throughput, thus it is
not suitable for this application scenario powered by harvested
energy. Furthermore, the ProNTO method exhausted the energy
harvested for transmitting as many video bits as possible,
which led to a higher interruption rate and layer switching
rate. From Fig. 4 (a) and (b), we can see that the utility
increases while the interruption rate decreases upon increasing
the average energy harvesting rate EH . However, beyond a
certain value of EH , the utility and interruption rate tend to
become near-constant, which is because the harvested energy
is sufficient for the transmitting of all the enhancement layers.
The parameter η in PALS is used for controlling the layer
switching rate, which cannot be controlled in ProNTO. Fig. 4
(c) shows that the layer switching rate of the proposed PALS18
is always around the set threshold of η = 0.2, even upon
increasing EH . Hence, η is a parameter allowing us to control
the layer switching rate.

2) Different Number of Users: To compare the performance
of PALS and ProNTO when the number of users changes,
we set θ = 50mJ , η = 0.2, EH = 129mJ , V = 400,
and the total number of users K was varying from 3 to 20.
Upon increment K in PALS, the amount of reserved energy
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Fig. 4: Performance comparison for different energy harvesting
rates.

is no longer sufficient for all the base layers’ transmission.
This increases the interruption rate and reduces the utility
upon increasing K, but the layer switching rate is still no
higher than the set threshold of η = 0.2 (Fig. 5). Compared to
ProNTO, which does not reserve energy for the forthcoming
time slots, the utility of PALS decreases while the interruption
rate increases less sharply than that of ProNTO upon increasing
the number of users. Furthermore, without any video layer
fluctuation limitations, the layer switching rate of ProNTO is
much higher than that of PALS.

C. Parameter Sensitivity Analysis
1) Parameter Sensitivity of θ: Given K = 8, EH = 129mJ ,

η = 0.1, V = 300, this experiment was conducted to
investigate the system performance sensitivity wrt θ. The utility
decreases upon increasing θ, which is because a large value of
θ means that more energy should be reserved in the battery.
Thus, less enhancement layers are transmitted, as illustrated in
Fig. 6. Furthermore, playback interruptions are less likely to
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Fig. 5: Performance comparison for different number of users.
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Fig. 6: The system performance sensitivity to different value
of θ.

occur, since the reserved energy is sufficient. Interestingly, the
layer switching rate is always below the threshold of η = 0.1
as shown in Fig. 6, and it stabilizes even for an increased θ.
The reason for this is that we imposed an explicit constraint
on the layer switching rate, constraining it to be lower than η
in our optimization model.

2) Parameter Sensitivity of η: This experiment was con-
ducted for investigating the system performance sensitivity to
η, and the parameters were set to K = 8, EH = 129mJ ,
θ = 60mJ , V = 50, and η varying from 0.1 to 1 with a
step size of 0.1. The experimental results were shown in Fig.
7, which demonstrate that the layer switching rate increases
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Fig. 7: The system performance sensitivity to different value
of η.

steadily, as η becomes larger. By increasing the threshold η,
more enhancement layers are likely to be transmitted, and
thus the value of the utility is improved. However, this will
lead to more energy being consumed and less energy reserved
for the forthcoming slots. As a result, the interruption rate is
increased upon increasing η. In different video services, the
threshold value of η can be different. In general, η = 0.2 may 19
be advocated to maintain a relatively low layering switching
rate and interruption rate.

3) Parameter Sensitivity of V : The experiment in this sec-
tion was conducted for investigating the sensitivity of PALS
to the factor V . The parameters were set as: K = 8,
EH = 129mJ , θ = 40mJ , η = 0.2, and V grows from
50 to 600 at a step size of 50. According to the analysis in
Section IV-A, a larger value of V is conductive to a higher
utility of PALS, as demonstrated in Fig. 8. Nevertheless, upon
increasing V , the growth of the utility slows down. Observe
from (17) that upon increasing V , the proposed algorithm
tends to increase the utility by choosing more video layers for
transmission, which, in turn, increases the layer switching rate
and consumes more energy for video transmission. Then, the
playback interruption rate increases, since the reserved energy
is insufficient. This is the reason for the slow growth of the
utility. The results demonstrate that a tradeoff between the 20
playback smoothness and system utility representing the video
distortion can be struck by adjusting V . According to Fig. 8,
the value of V should be no more than 500 to maintain a
relatively low layer switching rate of less than 0.2.

VI. CONCLUSION

The multi-user scalable video transmission problem of EH
aided wireless communication systems was studied. By aiming
for improving the received video quality while maintaining
fairness amongst the users in the face of the random properties
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Fig. 8: The system performance sensitivity to different value
of V .

of both energy harvesting and of the channel quality, we have
formulated the CUFM problem associated with proportional
fairness and playback smoothness guarantees. By introducing
the classical Lyapunov drift and optimization technique, the21
CUFM problem was decomposed into a pair of independent
sub-problems:the power allocation problem and layer selection
problem. We also employed the feasible direction method to
solve the layer selection problem and reduced the compu-
tational complexity order to O(KL). Furthermore, we have
derived the theoretical performance bound for characterizing
the proposed solution. Our simulation results also show that
the PALS algorithm provides a higher performance than the
ProNTO benchmark algorithm [20].

As our future work, inspired by [52]–[55], the SVC video
streaming service will be considered in the context of wireless
mesh networks, where the optimal layer selection and routing
problems should be jointly tackled for improving the QoE of
the end users.

APPENDIX A
PROOF OF LEMMA 1

Proof: For (22a), the first term ζ(x) =
zk,n(|x− xk,n−1| − η) is a convex function. The last
part of (22a) is:

ψ(x) = −V log2[Qk,n(x)]. (27)

According to the properties of convex functions, if Qk,n(x)
is a concave function, ψ(x) can be proved to be convex.
Please refer to Fig. 9 of [14] to observe that the average
frame PSNR Qk,n(x) is a concave function around the average
bitrate. In fact, the transmission rate determines the number of22
transmitted video layers (1 ≤ x ≤ L). Thus, the convexity of
hk,n(x) = ζ(x) + ψ(x) is demonstrated.
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Fig. 9: Rate-distortion (RD) plots for the Big Buck Bunny
video traces encoded in MPEG-4, H.264/AVC, and H.264
SVC.

APPENDIX B
PROOF OF THEOREM 1

Proof: The proposed PALS algorithm tries to minimize
the right side of (16), and hence we have the following
inequality

∆(Θn)−V E {UPALS(Xn) | Θn}
6min

Xn

{C0 + C1,n

+
1

2
E{(Etn)2}+ (Bn −Hn)E(EHn − ETn )

+

K∑
k=1

E {zk,n(fk,n − η)} − V E {UPALS(Xn)}}.

(28)

Here the left part is the Lyapunov “drift-plus-penalty” term.
According to [47], the optimal system utility value can be
achieved by a stationary and randomized ω−only strategy,
while the constraint (4) and (5) are also satisfied. The stochas-
tic nature of the harvested energy is the single factor relevant to
the stationary ω-only strategy. Hence substituting the optimal
ω−only strategy into the PALS of (28), and exploiting the fact
that E {U∗} = U∗, we have

∆(Θn)− V E {UPALS(Xn) | Θn} 6 C0 + C1,n − V U∗.
(29)

Now taking the expectations on both sides of (29), we get the
following inequality:

E{L(Θn+1)} − E{L(Θn)} − V E {UPALS(Xn) | Θn}
6 C0 + C1,n − V U∗.

(30)
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Summing (30) over n = 0, 1, ..., N − 1 results in:

E{L(N)} − E{L(0)}−V
N−1∑
n=0

E{U(Xn)}

6 NC0 +

N−1∑
n=0

C1,n −NV U∗. (31)

Upon rearranging the terms, due to the fact that L(N) > 0
and L(0) = 0, and then dividing both sides by NV , we have

lim
N→∞

1

N

N−1∑
n=0

E{U(Xn)}

> U∗ −
C0 + limN→∞

1
N

∑N−1
n=0 C1,n

V
. (32)

This proves Theorem 1.
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