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Clinical utility of Cancer Susceptibility Genes
Germline Cancer Genetics, analysis for constitutional variation relating to cancer susceptibility, constitutes approximately one quarter of activity in NHS Molecular Diagnostic Laboratories in England1. Following identification of a Pathogenic Variant (PV) in a Cancer Susceptibility Genes (CSG), mitigation of the impact of future cancers may be possible via (i) surgical risk reduction (e.g. mastectomy, gastrectomy, oophorectomy, colectomy), (ii) chemoprevention (iii) intensive screening to enable early detection (iv) lifestyle modification2.  Family members negative for the familial CSG-PV can be spared anxiety and unnecessary screening.  On account of the late-onset, variably penetrant, autosomal dominant inheritance that characterises most CSGs, it is typical that multiple PV-positive family members are identified via cascade screening and may be geographically distributed across disparate genomics services.  
Erroneous interpretation of CSG variant pathogenicity can therefore (i) result in discordant management within families, (ii) have serious clinical consequences for individuals and (iii) at population level result in misdirection of resources 3-5.  For all these reasons, robust, rapid, accurate variant analysis and interpretation of disease risk is critical to effective delivery of germline cancer genetics and advancing outcomes for patients.
The evolving landscape of variant interpretation in germline cancer genetics
CSG analysis became available in the late 1990s via family cancer clinics, within a few years of identification of the relevant genes2.  If the cancer phenotype ascribed to the gene matched that found in the proband/family under study, typically a rare variant would be taken to be pathogenic and causative with little additional evidence6.  Subsequently, large-scale population sequencing studies revealed the degree of innocuous variation present in the human genome (and indeed in disease-associated genes) and “down-grading” was required for many erroneously-labelled pathogenic variants7.  An era of caution followed, with much greater recourse to labelling of variants as VUS/VOUS (“variants of uncertain significance”). However, due to the lack of systems for sharing emerging evidence, families have often sat for years in limbo with their “VUS”, even when data had long become available by which their variant could be up- or down-graded.
Sharing of clinical variant data was somewhat improved with the advent of Locus Specific Databases (LSDs), such as Breast Cancer Information Core (BIC) and Leiden Open Variant Databases (LOVDs)8-11.  However, the curation of clinical and molecular data was often suboptimal, with (i) erroneous nomenclature, (ii) duplication of entries and (iii) classifications that were highly subjective and frequently contradictory12.
Utilising data from ~70,000 genetic tests for hereditary breast ovarian cancer (HBOC) performed by Myriad Genetics¸ in 2007 Easton et al published a landmark multifactorial analysis by which using clinical, pedigree and allelic data ‘odds of causality’ were mathematically generated for 1433 variants13.  In 2008, the first formal 5 point variant interpretation system for CSGs was published by IARC, which included numeric thresholds for probability of pathogenicity14.   Expert cancer susceptibility consortia such as ENIGMA and InSIGHT further evolved these multifactorial variant classification systems to incorporate tumour phenotype and in-silico predictions15-17.  However, ENIGMA/InSIGHT approaches required statistical genetic-epidemiologic analyses of large curated research data series, and were not reproducible by an individual diagnostic laboratory seeking to classify in a clinical timescale a newly-identified variant.
In 2015, the American College of Medical Geneticists published a framework prescribing how multiple disparate evidence sources could be integrated into a classification by a diagnostic laboratory for a newly identified genomic variant18.  Acknowledged upfront by the authors as preliminary; the ACMG framework has subsequently been further evolved under the auspices of ClinGen including (i) application to particular genes and/or diseases (including TP53, CDH1 and PTEN) (ii) specification of particular criteria (eg functional assays)19 (iii) the underpinning Bayesian model20-23 .
Coordinated national UK approaches in Variant Interpretation 
In 2016, with endorsement from NHS England and Health Education England, it was agreed by the UK Association of Clinical Genomic Scientists (UK-ACGS) to adopt formally the ACMG framework for variant interpretation18,24. The UK-ACGS establishing a central national group to agree UK specification of the ACMG framework, members of which would then disseminate practice and training locally24.   To better address disease-specific clinical use-cases, UK-ACGS recommended focused variant classification specification and training for rare paediatric disease, germline cancer genetics, cardiac disease and hypercholesterolemia. In response to this recommendation, CanVIG-UK (Cancer Variant Interpretation Group UK) was initiated in 2017. 
CanVIG-UK: Cancer Variant Interpretation Group UK 

The purpose of CanVIG-UK (Cancer Variant Interpretation Group UK) is to advance outcomes for patients by improving the accuracy and consistency of interpretation of variants in Cancer Susceptibility genes across the UK clinical and diagnostic laboratory communities (hereafter termed the UK clinical-laboratory community).
We shall do this by advancing six objectives (see Box 1)
Creation of a UK national multi-disciplinary professional network and forum for variant interpretation in Germline Cancer Genetics 
CanVIG-UK currently comprises >100 members including clinical and laboratory representation from each of the 25 Molecular Diagnostic Laboratories and Clinical Genetics Services of the UK and ROI.  This group comprises roughly equal proportions of clinical scientists and clinical geneticists, with two thirds work exclusively or predominantly in cancer genetics (see Figure 1). There are two mechanisms for accessing the expertise of the CanVIG network. 
· Firstly, there is a monthly WebEx meeting to which topical issues and problematic variants/cases can be submitted. The ‘variant(s)-of-the-month’ are circulated one week in advance of the monthly meeting.   CanVIG-UK members then (i) ascertain whether additional cases and/or laboratory data exist locally (ii) undertake local, independent classification of the variant. The relevant clinical and laboratory data are presented by the nominating laboratory, followed by input of any additional information by the broader CanVIG-UK group and discussion regarding strength of evidence for each of the ACMG criteria.  A consensus CanVIG classification is generated following this discussion via a post-discussion on-line poll.  A date-stamped detailed CanVIG variant summary sheet is generated (Appendix 3): this is made available online to CanVIG-UK members via CanVar-UK and also submitted to ClinVar (see below).  
· Secondly, there is regular email activity within the group, whereby queries can be addressed for more immediate response and/or debate within the CanVIG-UK community.  
Education of the UK Clinical-Laboratory Community 
In addition to providing a consensus classification, the discussions provide an important educational role in variant interpretation and ACMG variant classification (see Figure 2). The CanVIG-UK group is also involved in education of the broader genetics and oncology communities in variant interpretation for cancer susceptibility genes.
Detailed specification for Germline Cancer Genetics of the UK-ACGS Best Practice Guidelines for Variant Classification  
The UK-ACGS has generated and updates annually a detailed specification of the ACMG variant interpretation framework to be applied across the NHS UK clinical-laboratory community (ACGS Best Practice Guidelines for Variant Classification 2019)24.  Like the original ACMG framework, the ACGS specification was developed primarily for rare Mendelian paediatric disease.  In germline cancer genetics, de novo and biallelic paradigms are less common:  instead we are typically reliant on frequency in case series and functional assays.  Thus, an important remit for CanVIG-UK has been to develop consistent with the ACGS specification, detailed specification for CSG variants relating in particular to these criteria (PS4, PS3/BS3) and. 
CanVIG-UK task-and-finish subgroups were established to develop each theme (e.g. splicing, functional, case-control) involving literature review, consultation with national experts and evaluative testing against positives and true negatives.  We include version 1.0 of the CanVIG-UK specification of the ACGS Best Practice Guidelines for Variant Classification, pertaining to criteria PS3, PS4, PM1, PP2, PM2, PM3, PM5, PP3, PP4, PP5, BS2, BS3, BP2, BP4, BP5 and BP6, including for each criterion explanatory notes detailing rationale/methodology (see Appendix 1).  It is anticipated that there will be ongoing iteration by CanVIG-UK of these criteria as new evidence and international recommendations emerge and the UK-ACGS specification evolves.  
Ratification of additional guidance in Germline Cancer Genetics relevant to the UK Clinical-Laboratory community
Historically, first presentation to the family cancer clinic was of an unaffected individual, concerned by a significant family cancer history.  Increasingly, genetic analysis is now performed as part of routine work-up at cancer diagnosis, either through analysis of a germline sample or through therapeutically-motivated molecular analysis of the tumour.   In both contexts (i) focused testing of one or two genes has often been superseded by broad ‘cancer panels’ containing dozens or hundreds of genes (ii) patients may be unselected for family history (iii) analysis and reporting in a tight time frame is typically required. A number of challenging issues have emerged, including:
(i) Categorisation and management of reduced penetrance variants in high penetrance genes
(ii) Variant interpretation and clinical management for moderate penetrance genes
(iii) Adaptation of variant interpretation and risk for different contexts of clinical ascertainment
(iv) Inference of germline findings from tumour-only sequencing 
Whilst germane across genomics, consideration of these issues has become pressing earliest within germline cancer genetics.  Benefitting from its regular forum, multidisciplinary membership and affiliation to UK-ACGS and the UK Cancer Genetics Group (UK-CGG), the CanVIG–UK group is also evolving national UK approaches on such issues (see Appendix 2: CanVIG-UK definitions and reporting recommendations for managing a variant of reduced penetrance in a high penetrance gene).
Development of an online platform to facilitate information-sharing and variant interpretation within the UK Clinical-Laboratory community
In germline cancer genetics, enrichment in cases (especially “strong families”) is one of the most valuable clinical observations indicating variant pathogenicity.  However, to date we have struggled to quantify such observations on account of (a) failure to aggregate data distributed across laboratories (ii) lack of a robust denominator.
In a collaborative venture between Public Health England and the CanVIG-UK national network of molecular diagnostic laboratories, historic and prospective data from molecular testing of cancer susceptibility genes have been submitted via a pseudonymisation portal to the NCRAS Section 251 compliant environment data environment of Public Health England25.  National variant totals (numerator and denominator) are released back to the clinical-laboratory community via the CanVar-UK datasystem (http://www.canvaruk.org/). 
CanVar-UK also provides multiple annotations for 1,008,643 variants from 95 cancer susceptibility genes, including selected gene-specific variant level annotations such as Locus Specific Databases case counts, functional assays, splicing assays and multifactorial analyses.  Accessible only to registered CanVIG-UK clinical-laboratory users is a community area for sharing of local classifications, comments/notes, upload of documents and results from local laboratory assays (e.g. RNA analyses of potential splicing variants), all non-identifiable.
UK contribution to international variant interpretation endeavours
CanVIG-UK facilitates is a valuable conduit between the UK clinical-laboratory germline cancer genetics community and relevant international variant interpretation endeavours.  Firstly, CanVIG-UK provides a means of dissemination to the broader UK clinical-laboratory communities of emerging projects and outputs from international endeavours such as ENIGMA, INSIGHT, and ClinGen expert groups. Secondly, CanVIG-UK provides a regular and broad clinical-laboratory forum upon which principles/issues/models emerging from these international groups can be readily and rapidly tested.  Thirdly, CanVIG-UK data are submitted to international projects, for example use by ENIGMA of the PHE UK laboratory data on BRCA1/BRCA2.  Fourthly, CanVIG-UK consensus classifications and underpinning details are shared internationally via ClinVar, making CanVIG-UK the first UK organisation to submit clinical-laboratory variant classifications to ClinVar.
Sustainability
Maintaining a national level network, regular meetings and development of the underpinning datasystem (CanVar-UK) requires sustained support: the activities of CanVIG-UK are currently supported by a Cancer Research UK Catalyst Award (CanGene-CanVar xxx).
Conclusion
CanVIG-UK is a multidisciplinary group compriing >100 diagnostics laboratory scientists and clinicians expert in germline cancer genetics with representation from the 25 molecular diagnostic laboratories of the UK and ROI.  Through CanVIG-UK, the UK clinical-laboratory germline cancer genetics community have evolved (i) an e-forum for realtime consultation on problematic variants (ii) a monthly WebEx multidisciplinary meeting and ‘variant surgery’ for detailed review of challenging cases and group education (iii) infrastructure for secure submission and centralisation of molecular data through Public Health England (iv) an online datasystem (CanVar-UK) for sharing of variant level-level data either publicly and within a secure community region (v) fruitful interactions with international CSG variant interpretation endeavours.  In summary, we propose CanVIG-UK as an exemplar of a disease-specific national multidisciplinary genomics network, the like of which are essential for effective specialist collaborative case-review, information-sharing and education in this era of rapid emergence of genomic knowledge. 





Box 1: The CanVIG Mission Statement
The purpose of CanVIG-UK (Cancer Variant Interpretation Group UK) is to advance outcomes for patients by improving the accuracy and consistency of interpretation of variants in Cancer Susceptibility genes across the UK clinical-laboratory community.  We have six specific objectives:
1. Creation of a UK national multi-disciplinary professional network and forum for Germline Cancer Genetics 
2. Education of the UK Clinical -Laboratory Community 
3. Detailed specification for Germline Cancer Genetics of the UK-ACGS Best Practice Guidelines for Variant Classification  
4. Ratification of additional guidance in Germline Cancer Genetics relevant to the UK Clinical-Laboratory community
5. Development of an online platform to facilitate information-sharing and variant interpretation within the UK Clinical-Laboratory germline cancer genetics community
6. UK contribution to international variant interpretation endeavours

Figure 1 (Below): Overview of the characteristics of the membership of CanVIG-UK.  Data from survey of CanVIG members (survey return rate 83/103 [80%], survey performed on 29/10/2019), asking about (a) primary profession (b) division of work (c) areas of expertise within germline cancer genetics
a
b
c



Figure 2: Responses from members regarding perceived utility of different CanVIG activities.  Participants were asked to rate the utility of aspects of CanVIG for their local CSG variant interpretation practice (5 very useful to 0-not useful at all).  Data from survey of CanVIG members (survey return rate 83/103 [80%], survey performed on 29/10/2019).
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Appendix 1: Specification for cancer susceptibility genes of 2019 ACGS Best Practice Guidelines for Variant Classification 
For the following categories, there is no additional specification for CSGs beyond that provided in ACGS Best Practice Guidelines for Variant Classification 201924  
	PVS1
	null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multi-exon deletion) in a gene where LOF is a known mechanism of disease. 

	PS1
	Same amino acid change as a previously established pathogenic variant regardless of nucleotide change. 

	PS2
	De novo (both maternity and paternity confirmed) in a patient with the disease and no family history. 

	PM4
	Protein length changes as a result of in-frame deletions/insertions in a non-repeat region or stop-loss variants. 

	PP1
	Co-segregation with disease in multiple affected family members in a gene definitively known to cause the disease. 

	BS4
	Non-segregation with disease

	BP3
	In-frame deletions/insertions in a repetitive region without a known function 

	BP7
	A synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence nor the creation of a new splice site AND the nucleotide is not highly conserved 



For the following categories, CanVIG-UK has developed detailed specification to supplement with that provided in ACGS Best Practice Guidelines for Variant Classification 2019.  
	PS3VSTR
STR
_MOD
_SUP



	Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product

	For assays of protein function
	
	Discrimination
	Controls
	Reproducibility

	Strong
	relative protein activity assay or functional impact 
<25% compared to level for wildtype
	≥10 ‘true positive’ 
≥10 ‘true-negative’
	≥2 laboratories OR results demonstrably  reproducible from a single laboratory

	Mod
	
	≥5 ‘true positive’ 
≥5 ‘true-negative’
	

	Sup
	
	≥2 ‘true positive’ 
≥2 ‘true-negative’
	single laboratory



Explanatory Notes:
· For use by CanVIG-UK, a published assay requires review by two independent CanVIG-UK registered clinical laboratory scientists.
· This criterion is for variant-specific analyses.  Where functional data provides support at the gene rather than variant level (e.g. biochemical analysis) this typically should be incorporated within the phenotypic specificity criterion PP4.

	For assays of splicing function
	Vstrong
	2 orthogonal assays: exhibiting abnormal transcripts; no evidence of leakiness 4,8

	Strong
	1 assay: exhibiting abnormal transcripts;  no evidence of leakiness8

	Mod
	≥1 assay: exhibiting abnormal transcripts;  evidence of some leakiness8

	Sup
	≥1 assay: exhibiting abnormal/alternative transcripts which have been reported as present in normal controls (implying naturally occurring isoforms)12

	Do not apply
	≥1 assay: exhibiting abnormal/alternative transcripts with evidence of extreme leakiness8



Explanatory Notes:
1. Experimental data may include quantitative assays (e.g. realtime-PCR, Sanger assay with formal quantitation of peak height +/-tape-station, minigene, NGS RNAseq) and semi/non-quantitative assays (e.g. visual evaluation of relative peaks height of Sanger, gel-based, analysis for splice variant-containing allele indicating loss via nonsense mediated decay (ie SNV in trans with the putative splicing variant appears homozygous on RNA sequencing despite being heterozygous on DNA sequencing indicating the loss of expression of the transcript containing the putative splicing variant)).  
2. The assays must be performed in a diagnostically ISO accredited laboratory or recognized research laboratory with which direct consultation can be undertaken.  If an alternative source of evidence (e.g. publication) downgrade by one level of evidence.  All assays should evidence appropriate validations and controls3
3. Laboratory methodology should be appropriately validated: primers must have been tested in ≥5 independent normal control reactions, not necessarily run at the same time (i.e. primers could be validated using 5 normal controls across several runs or runs as a batch on a single run).
4. Orthogonal assays include (a) PCR-based assays using different primers (b) ≥2 different platforms e.g. RT-PCR and minigene
5. To attain very strong/strong, the criteria by which the disease mechanism is interpreted as loss of function should be met (as per PVS1 recommendations26)
6. The exon in question must be present in the biologically relevant transcript 
7. Splicing impact must fulfil one of the criteria below, otherwise downgrade by one level of evidence
a) out of frame + predicted to undergo NMD+ removal of >10% of the protein
b) in-frame but removal of a critical hotspot (as listed in PM1)
c) in-frame but removal of >10% of the protein 
8. In the absence of specific data for a given gene/exon, the following thresholds of ‘leakiness’ should be applied:
· No evidence of leakiness: ratio for allele of >80:20 (abnormal: normal) ==overall ratio of > 40:60 (abnormal: normal)
· Evidence of some leakiness: ratio for allele of >20:80 (abnormal: normal) ==overall ratio of > 10:90 (abnormal: normal)
· Evidence of extreme leakiness: ratio for allele of <20:80 (abnormal: normal) ==overall ratio of < 10:90 (abnormal: normal). Typically abnormal transcript will be visible on gel but present only at extremely low level or not visible by Sanger sequencing.
9. For ±1&2, PVS1 criteria should be used instead of PS3.
10. When PS3 is applied for splicing, PP3 (in silico evidence), PM4 (in-frame aberration), PVS1 (truncating) can not be applied. 
11. Although PP3 cannot be applied alongside PS3, the assay results for variants at the intron-exon boundaries should nevertheless be supported by in silico predictions (MaxEntScan ≥15% difference OR SSFL ≥5% difference) Otherwise downgrade by one level of evidence.  Exceptions where in silico concordance not required: (i) U12 splice sites, (ii) TCCTTAAC at the 3’ end,  (iii) variants outside of intron-exon boundaries (namely 5’:Last 3 bases of exon plus 8 bases on intron,  3’:12 bases of intron plus 2 bases of exon)
12. As per naturally occurring (ie non-pathogenic) splice variants,( for example those delineated by ENIGMA at https://enigmaconsortium.org/wp-content/uploads/2018/10/ENIGMA_Rules_2017-06-29-v2.5.1.pdf)27  and reference transcriptome resources (for example GTEX, https://gtexportal.org/home/)28

	Additional comments:
· There is variation gene by gene, exon by exon in the lower limit of % normal transcript (‘leakiness’) at which normal protein function is maintained.  
· Furthermore, the accuracy of different assays in correctly quantifying ratios of different transcripts will vary and is often poorly quantified.  
· As improved data on the precision of different assays emerges, these standards will likely be amended.



	PS4 VSTR
STR
_MOD
_SUP



	The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls

	[image: ][image: ]
Explanatory Notes:
· The Pexact is generated from Fishers exact 2-way case control comparison.  Non-duplicated case data and control data from an equivalent ethic group, both robustly genotyped, are required.
· For Western European case data, comparison to the gnomAD NFE population is recommended (ie 64,603 individuals for gnomAD v2.1).
· A more stringent p-value should be applied commensurate with uncertainty regarding duplicates.
· The Odds Ratio (OR) from this case control comparison (ad/bc) should be consistent with the effect size anticipated for that gene type. 
· For a ‘high penetrance’ gene or variant, OR >5 for unselected cancer series or OR>10 for enriched familial cases. 
· For an ‘intermediate penetrance’ gene or reduced penetrance variant in high penetrance gene, OR >2 for unselected cancer series or OR>4 for enriched familial cases. 
· If the control frequency is 0, to generate an OR, the Haldane-Anscombe correction may be required (add 0.5 to cells a,b,c,d). 
· For non-coding variants, restriction to the WGS partition of gnoMAD is required.  

	Additional comments:
· The p-value of association is used to reflect the relative likelihood that observed differences in frequency arose due to association versus chance. For ‘strong’ evidence, p<0.05 equates to the stipulation that CI95 around the OR do not include 1.0.
· As the p-value does not reflect effect size, attainment of minimum effect size (OR) is also stipulated.
· A larger minimum effect size (OR) should be observed when an ‘enriched’ series is examined (compared to unselected disease).  
· Where paired numerator-denominator frequencies are unavailable, a case-counting approach is required, which takes into account the specificity of phenotype observed in the proband +/- family.  This approach does not take into account the denominator or the reference case series.    For TP53 and PTEN, case-counting guidance has been issued via the respective ClinGen expert groups20,22. For MMR, a case-counting approach is under development by CanVIG-UK.



	PM1, PP2_MOD
_SUP



	PM1: Located in a mutational hot spot and/or critical and well-established functional domain (e.g. active site of an enzyme) without benign variation

PP2: Missense variant in a gene that has a low rate of benign missense variation and in which missense variants are a common mechanism of disease.

	Use PM1 for missense variants arising in a CSG domain well characterised as a “hotspot” for pathogenic missense variants   
Use at Mod when there is no benign variation present in the hotspot region/domain.
Use at Sup when there is some benign variation present in the hotspot region/domain.

Use PP2 at Sup where there is overall constraint for missense variation at the level of the region/exon/gene (Z≥3.09)

Explanatory Notes:
1) The majority of CSGs act by loss of function.  Hence, for many of these genes, the majority of established pathogenic mutations are truncating (early linkage analyses, agnostic to mechanism, support this).  Examples: BRCA1, BRCA2, PALB2, PAD51C, RAD51C, RAD51D, MLH1, MSH2, MSH6, PMS2.  
However, in these genes, there are typically specific domains in which missense variation at key residues can cause loss of function; some benign variation typically also occura in these regions.  PM2_sup can be used for these specific residues/domains e.g residues listed in by ENIGMA within BRCA1 BRCT and RING domains, BRCA2: DNA binding domain (https://enigmaconsortium.org/wp-content/uploads/2018/10/ENIGMA_Rules_2017-06-29-v2.5.1.pdf) 27
2) PM1 and PP2 can be used together



	PM2_MOD
_SUP



	Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium

	Use at Mod: 0 observation in large control series >50,000 individuals 
Use at Sup : 1 observation in large control series >50,000 individuals

Explanatory Notes:
· Ensure that sequencing coverage is sufficient.
· Be cautious in using this criterion for small insertions/deletions, as calling of these variant types in NGS/exome/genome data can vary widely according to sequencing approaches/analytical methodologies.
· If a control series has been used for PS4 (case control analysis), the same dataset can not be re-used for PM2.
· If the GNOMAD NFE has been used for PS4, for PM2 the remainder of the GNOMAD populations may be used (ie 76,853 individuals for gnomAD v2.1) 



	PM3STR
_MOD
_SUP



	For recessive disorders, detected in trans with a pathogenic variant

	Use where variant found in trans with a pathogenic variant and the patient-level clinical features match those anticipated for the gene in question
Use at Strong where variant found in ≥2 unrelated cases, and the features are distinctive for that gene
Use at Mod where variant found in 1 case, and the features are distinctive for that gene
Use at Sup where variant found in 1 case, and the features are distinctive for a set of genes

Explanatory Notes:
· Comprehensive analysis should be undertaken for the gene to exclude an alternative second pathogenic mutation (e.g.incl MLPA) in that gene 
· Comprehensive analysis should be undertaken for all other genes for which the phenotypic features overlpa. 
· Requires testing of parents (or offspring) to confirm phase
· Can use for homozygous variants but downgrade by one evidence level (as per ClinGen SVI points-based system)29 
· Use PP4 for cellular/molecular phenotypes.





	PM5_MOD
_SUP



	Novel missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before

	Use at Sup where 
· Single known P/LP variant at that codon
Use at Mod: where 
· ≥2 known P/LP variants at that codon and the variant under evaluation is more deleterious than ≥2 P/LP variants at the codon using Revel or Align GVGD
Explanatory Notes:
· This requirement than the original ACMG stipulation, consistent with recommendations from the TP53 and CDH1 expert groups, and reflects data generated by CanVIG-UK for BRCA1/BRCA2 (manuscript in preparation).



	PP3_SUP



	Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact). 

	· Protein impact: 3/3 tools (one tool may be borderline below threshold) using a predefined strategy of (i) a set of three tools (ii) a single tool
· SIFT (deleterious), Polyphen HumVar ≥(probably damaging) plus:
· Align GVGD (C45, C65), (for BRCA1, BRCA2)
· MAPP (bad) (for MMR genes)
· CADD ( >15) (for any other CSG)
· Or use Revel (>0.7) as a single score
· Splicing impact: 
· Intron-exon boundary: MaxEnt >15% difference AND SSFL >5% difference30
· Deep intronic: predicted creation of a novel splice site of any strength, absent in the normal sequence.



	PP4STR
_MOD
_SUP



	Patient’s phenotype or family history is highly specific for a disease with a single genetic aetiology

		Level
	Points 
	A cellular/molecular phenotype that is:
	Example

	Sup
	1
	Highly predictive for germline aberration of one of a small set of genes
	Aberration on mitomycin-induced chromosomal breakage (for genes related to  Fanconi Anaemia)

	Sup
	1
	Moderately predictive for germline aberration of  the specific gene
	LOH on at chromosomal locus for tumour-suppressor gene

	
	
	
	Loss on immunohistochemistry (for mismatch repair deficiency)
MSH6 loss  MSH6
PMS2 loss  PMS2

	-
	0.5
	Moderately predictive for germline aberration of one of a small set of genes
	MSI (for mismatch repair deficiency)

	Mod
	2
	Highly predictive for germline aberration of  the specific gene
	Depletion of BRCA2 in lymphocytes  and aberration on mitomycin-induced chromosomal breakage (for BRCA2-related Fanconi Anaemia)

	
	
	
	Loss on immunohistochemistry (for mismatch repair deficiency)
MSH and MSH6 loss MSH2

	
	
	
	Loss of MLH1/PMS2 on immunohistochemistry and normal MLH1 promoter methylation (for MLH1-related mismatch repair deficiency)


Explanatory Notes:
· For CSGs, PP4 is applied for a cellular/molecular phenotype 
· For CSGs the high level clinical phenotype is often too non-specific (eg breast and/or ovarian cancer).  For a number of pleiomorphic rare tumour and/or syndromic presentation of cancer susceptibility, the specificity of high level clinical phenotype has been captured within PS4 within the case counting (eg ClinGen criteria for CDH1, PTEN, TP5320-22).  For other pleiomorphic rare tumour and/or syndromic presentations (eg MEN1, HLRCC) these specifications are awaited.
· Comprehensive analysis of the gene and related genes should have been undertaken to exclude an alternative pathogenic mutation (incl MLPA)
· Individuals/tumours included must have been demonstrated to carry the germline mutation
· Evidence can be summed across multiple cases: 
· Total points: Suporting:1; Moderate: 2; Strong: 4
· Only one individual per family can contribute 
· Up to two independent tumour phenotype assays can be included per case (e.g. MSI AND LOH).  Strongly correlated tumour phenotypes cannot both be included, e.g. MSI and IHC from the same case.



	PP5_SUP



	Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation

	Explanatory Notes:
· Any classification of LP/P after 2016 from 
· ≥2 accredited North American diagnostic laboratory OR
· a single North American diagnostic laboratory where the utilised evidence is clearly listed
· ClinGen Expert Group, eg INSIGHT, ENIGMA.  
· When a single laboratory has classified as LP/P with provision of insufficient detail, it is advised that the individual laboratory is contacted to procure directly the evidence used for classification.

	Additional comments:
· This is an exceptional application, as per UK-ACGS specification, as for commonly tested cancer susceptibility genes classifications by large laboratories may have be derived from their substantial series of case data not otherwise publicly available 



	BA1/BS1

	Allele frequency is “too high” for disorder ExAC or gnomAD

	Use BA1 as Stand_Alone when allele frequency in a heterogeneous outbred population is >1%.
Use BS1 as Strong when allele frequency in a heterogeneous outbred population is > value specified for specific gene by respective expert group.

Explanatory Notes:
BA1 should not be applied where the variant has already been well demonstrated as a pathogenic founder mutation (eg CHEK2 1100delC). The reduction of threshold of BA1 from 5% to  1% for Cancer Susceptibility Genes is predicated on existence of sufficiently high volumes of sequencing data to preclude existence of common undescribed founder mutations (>1% MAF).   





	BS2

	Observation in controls inconsistent with disease penetrance.  Observed in a healthy adult individual for a recessive (homozygous), dominant (heterozygous), or X-linked (hemizygous) disorder, with full penetrance expected at an early age

	Where variant is reported in homozygous state in unaffected individual
Use at Sup where no further genotyping or clinical/cellular phenotyping is possible
Use at Strong where 
· laboratory analysis has been repeated using an orthogonal approach (eg different primers) to confirm homozygosity for allele AND
· patient is of age at which biallelic mutations would be anticipated to be penetrant for a distinctive phenotype AND
· patient has been actively examined to exclude relevant phenotype AND/OR had analysis of cellular phenotype
OR
· the homozygote is observed in a specified control population in addition to a heterozygote frequency meeting BS1

Explanatory Notes:
· Use BP2 for compound heterozygotes



	BS3_SUP
_STR


	Well-established in vitro or in vivo functional studies show no damaging effect on protein function or splicing 

	For assays of protein function
	
	Discrimination
	Controls
	Reproducibility

	Strong
	relative protein activity assay or functional impact 
>25% compared to level for wildtype
	≥10 ‘true positive’ 
≥10 ‘true-negative’
	≥2 laboratories OR
Results demonstrated as  reproducible in single laboratory

	Sup
	
	≥2 ‘true positive’ 
≥2 ‘true-negative’
	single laboratory


.

	For assays of splicing function
	Strong
	1 assay: with no evidence of abnormal transcripts (% normal transcript>90%)
	ISO accredited laboratory or recognized research laboratory with which direct consultation can be undertaken.  

	Sup
	1 assay: with no evidence of abnormal transcripts (% normal transcript>90%)
	alternative source of evidence (e.g. publication)


Explanatory Notes:
· BS3 should only be applied for an assay of protein function whereby the assay has been validated for variants in the relevant domain to ensure that the mechanism of pathogenicity captured by the assay in question is relevant to that variant.  BS3 should not be applied for an assay of protein function when in silico tools predict effect on splicing and/or for the first or last three bases of the exon
· A splicing assay can only be used for BS3 for intronic variants and those in the first or last three bases of the exon.
· Evidence of amplification of both alleles is required (i.e. sequencing should demonstrate the SNV in question or another nearby SNV, on the background of the wildtype sequence). This is necessary to exclude generation of a ‘normal’ RNA result when the splicing aberration has not been detected by the assay used (e.g. due to intron retention, size too large for the PCR to amplify)
· When BS3 is applied for splicing OR protein function, BP4 (in silico evidence), cannot be applied.
· For specification of acceptable assays and QC standards, see PS3. 



	BP1_SUP



	Missense variant in a gene for which primarily truncating variants are known to cause disease

	Use at Sup for genes/gene regions in which >95% of reported pathogenic mutations are truncating
Explanatory note:
· Can be used for BRCA1 outside of BRCT and RING domains
· Can be used for BRCA2 outside of DNA-binding domain
· Can be used for MLH1 xxxxxxxxxxxxxxxxxxx



	BP2_STR
_SUP



	Observed in trans with a pathogenic variant for a fully penetrant dominant gene/disorder or observed in cis with a pathogenic variant in any inheritance pattern

	Where variant is reported in conjunction with a pathogenic variant in unaffected individual
· Use at Sup where no further clinical/cellular phenotyping is possible

Use at Strong where 
· alleles have been confirmed as in trans (for heterozygous variants in trans) AND
· patient is of age at which biallelic mutations would be anticipated to be penetrant for an distinctive phenotype AND
· patient has been actively examined to exclude relevant phenotype AND/OR had analysis of cellular phenotype

	Explanatory note:
· BS2 should be used when the variant is homozygous



	BP4_SUP



	Multiple lines of computational evidence suggest no impact on gene or gene product (conservation, evolutionary, splicing impact, etc. 

	· Splicing impact: 
· Intron-exon boundary: MaxEnt <15% difference AND SSFL<5% difference (Houdayer)  AND
· No evidence of deep intronic: predicted creation of a novel splice site, absent in the normal sequence, of any strength.
AND
· protein impact: 3/3 tools (one tool may be borderline above threshold) using a predefined set of tools (recommendations below) or single tool
· SIFT (tolerate), Polyphen HumVar (benign) plus:
· Align GVGD (C0, C15), (for BRCA1, BRCA2)
· MAPP (good) (for MMR genes)
· CADD ( <10) (for any other CSG)
· Or Revel (<0.4) as a single score



	BP5_SUP



	Variant found in a case with an alternate molecular basis for disease 

	This should not be applied in paradigms of non-syndromic autosomal dominant incompletely  penetrance cancer susceptibility eg HBOC 

Explanatory note:
· Co-occurrence of ≥2 pathogenic variants in different cancer susceptibility genes is widely reported.  Typically the phenotype exhibited is indistinguishable from that of a single pathogenic mutation

	



	BP6_SUP



	Reputable source recently reports variant as benign, but the evidence is not available to the laboratory to perform an independent evaluation

	Explanatory Notes:
· Any classification of LB/B after 2016 from 
· ≥2 accredited North American diagnostic laboratory OR
· a single North American diagnostic laboratory where the utilised evidence is clearly listed
· ClinGen Expert Group, eg INSIGHT, ENIGMA.  
· When a single laboratory has classified as LB/B with provision of insufficient detail, it is advised that the individual laboratory is contacted to procure directly the evidence used for classification.

	Additional comments:
This is an exceptional application, as per UK-ACGS specification, as for commonly tested cancer susceptibility genes, classifications by large laboratories may have be derived from their substantial series of case data not otherwise publicly available 




Appendix 2: Variants of reduced penetrance in high penetrance cancer susceptibility genes
	· Variant interpretation and classification should be undertaken using the ACMG framework (with ACGS and CanVIG-UK specifications)
· If any of the below criteria are met, the variant should be assigned the relevant ACMG class but with addendum of “reduced penetrance”.
· The report should reference and recommend the nationally ratified clinical management recommendations for that gene for variants of reduced penetrance.
· Clinical management recommendations for variants of reduced penetrance for each gene should established by disease-specific experts.

	Criterion 1: Down-modification of classic biallelic phenotype 
Abnormal physical AND cellular phenotype associated with biallelic mutations is present but notably milder.
Example: BRCA2-related Fanconi anaemia: 
· Cancer is not penetrant by 5 years AND
· Congenital abnormalities and physical features are mild AND
· Incomplete functional abrogation of chromosomal breakage following mitomycin C exposure OR BRCA2-specific assays show only modest depletion of BRCA2 in quantity and/or function

	Criterion 2: Well calibrated assay gives intermediate effect 
· Highly predictive and well-calibrated published functional assay demonstrate intermediate effect, ie significant impairment of protein function but not at level demonstrated for truncating mutations in gene (e.g. Guidugli et al for BRCA231,32, Findlay et al 2019 for BRCA133)

	Criterion 3: Segregation analysis gives lower estimate of penetrance
· Formal genetic epidemiologic analyses demonstrate variant to be associated with disease but of penetrance statistically significantly reduced compared to established estimates eg: BRCA1 c.5096G>A p.Arg1699Gln34,35




Appendix 3: Example of CanVIG-UK classification summary report 
	Variant classification by Can-VIG UK (Cancer Variant Interpretation UK)
Can-VIG UK is a working group convened on behalf of the UK ACGS (Association of Clinical Genetic Scientists), which includes registered clinical scientists and clinical geneticists representing the following UK Regional molecular diagnostic laboratories: Aberdeen, Belfast, Birmingham, Bristol, Cambridge, Cardiff, Dublin, Exeter, Glasgow, GOSH, Guy's, Leeds, Liverpool (Cheshire & Merseyside), Oxford, Manchester, Newcastle, Nottingham, Sheffield , SW Thames (St George's), Wessex (Salisbury/Southampton), University Hospitals of Leicester. 

	Submitter
	Dr Clare Turnbull MD PhD FRCP FRCPath
	Date
	28/11/18

	Gene
	BRCA1
	Transcript
	NM_007294.3
ENST00000357654
LRG_292t1
	Variant  
	c.53T>C (p.Met18Thr)

	Population data
	The variant was observed in 4 independent UK families undergoing clinical diagnostic testing, the denominator of which dataset of clinical testing was 16,600.  Case control comparison against ethnically matched population data (4/16,600 in familial cases against 0/63,369 GNOMAD NFE controls pexact= 0.0019

There are additional reports of this variant in ClinVar (5), BIC (3) and BRCA1 LOVD (11), UMD(7), DMuDB(7)

The variant is absent in the remainder of the GNOMAD populations (75,263 individuals).

	Prediction (based on variant type/location), IN silico tools
	AlignGVGD class:	C45
SIFT prediction:	deleterious
MAPP prediction:	bad
Polyphen2 HumVar prediction:	benign
CADD scaled score [0-99]:	16.18

	Functional data
	Findlay et al. 2018:  Non functional via saturation editing analysis using on haploid BRCA1 construct.

	Segregation data
	

	De novo data
	

	Allelic data (biallelic observations)
	

	Other classifications
	Ambry LP 2018, Gene Dx LP 2014, Counsyl LP 2018

	Other
	



	PATHOGENIC
Criteria
	Weight (supporting, moderate, strong, very strong)
	BENIGN
Criteria
	Weight (supporting, strong)

	PVS1(null)
	
	BS1/BA1 (controls)
	

	PS4 (case control)
	Very strong
	BP4 (in silico)
	

	PM2 (absent control)
	Mod
	BP1 (only trunc)
	

	PP3 (in silico)
	
	BP7 (synonymous)
	

	PM5 (same residue)
	
	BP3 (in frame, no func)
	

	PM1 (hot spot)
	
	BS3 (functional assay)
	

	PP1 (Segregation)
	
	BS4 (non segregation)
	

	PS3 (functional assay)
	Strong
	BP2 (biallelic)
	

	PM3 (biallelic)
	
	BP6 (other databases)
	

	PP5 (other databases)
	Sup
	Alternative cause (BP5)
	

	Specific phenotype (PP4)
	
	
	

	De novo (PM6, PS2)
	
	
	

	Total
	1 very strong, 1 strong, 1 mod, 1 sup
	Total
	

	Classification
	5-Pathogenic



Synopsis for ClinVar
	Data included in classification:
The variant was observed in 4 independent UK families undergoing clinical diagnostic testing, the denominator of which dataset of clinical testing was 16,600.  Case control comparison against ethnically matched population data (4/16,600 in familial cases against 0/63,369 GNOMAD NFE controls pexact= 0.0019 (PS4_VS).

The variant is absent in the remainder of the GNOMAD populations (75,263 individuals) (PM2).

Non-functional in SGE haploid BRCA1-assay (Findlay et al. 2018), an assay well validated against ENIGMA/ClinVar (PS3).

Classified as Likely Pathogenic by Ambry 2018, Gene Dx 2014, Counsyl 2018 (PP5).

Data not included in classification:
Predicted deleterious on SIFT, Align GVGD; Polyphen HumVar prediction benign .

There are additional reports of this variant in ClinVar (5), BIC (3) and BRCA1 LOVD (11), UMD(7), DMuDB(7).





Supplementary Note: CanVIG-UK membership
	Name
	Organisation

	Stephen Abbs
	Cambridge University Hospitals NHS Foundation Trust

	Patrick Tarpey
	Cambridge University Hospitals NHS Foundation Trust

	Jonathan Bruty
	Cambridge University Hospitals NHS Foundation Trust

	James Drummond
	Cambridge University Hospitals NHS Foundation Trust

	James Whitworth
	Cambridge University Hospitals NHS Foundation Trust

	Anne Ramsay Bowden
	Cambridge University Hospitals NHS Foundation Trust

	Marc Tischowitz
	Cambridge University Hospitals NHS Foundation Trust

	Eamonn Maher 
	Cambridge University Hospitals NHS Foundation Trust

	Shirley Heggarty
	Belfast Health And Social Care Trust

	Sean Hegarty
	Belfast Health And Social Care Trust

	Rosalind Martin
	Belfast Health And Social Care Trust

	Peter Logan
	Belfast Health And Social Care Trust

	Claire Byrne
	Belfast Health And Social Care Trust

	Yvonne Wallis
	Birmingham Women's And Children's NHS Foundation Trust

	Samantha Butler
	Birmingham Women's And Children's NHS Foundation Trust

	Rachel Hart
	Birmingham Women's And Children's NHS Foundation Trust

	Lowri Hughes
	Birmingham Women's And Children's NHS Foundation Trust

	Kim Reay
	Birmingham Women's And Children's NHS Foundation Trust

	Kai-Ren Ong
	Birmingham Women's And Children's NHS Foundation Trust

	Joanne Mason
	Birmingham Women's And Children's NHS Foundation Trust

	Ian Tomlinson
	Birmingham Women's And Children's NHS Foundation Trust

	Ian Frayling
	Cardiff & Vale University Health Board

	Sheila Palmer-Smith
	Cardiff & Vale University Health Board

	Julian Sampson
	Cardiff & Vale University Health Board

	Alex Murray
	Cardiff & Vale University Health Board

	Munaza Ahmed 
	Great Ormond Street Hospital For Children NHS Foundation Trust

	Louise Kiely
	Great Ormond Street Hospital For Children NHS Foundation Trust

	Louise Busby
	Great Ormond Street Hospital For Children NHS Foundation Trust

	Claire Brooks
	Great Ormond Street Hospital For Children NHS Foundation Trust

	Alison Taylor-Beadling
	Great Ormond Street Hospital For Children NHS Foundation Trust

	Ajith Kumar
	Great Ormond Street Hospital For Children NHS Foundation Trust

	Vishakha Tripathi
	Guy's And St Thomas' NHS Foundation Trust

	Mina Ryten
	Guy's And St Thomas' NHS Foundation Trust

	Louise Izatt
	Guy's And St Thomas' NHS Foundation Trust

	Anjana Kulkarni
	Guy's And St Thomas' NHS Foundation Trust

	Adam Shaw
	Guy's And St Thomas' NHS Foundation Trust

	Joanna Campbell
	Guy's And St Thomas' NHS Foundation Trust

	Huw Thomas 
	St. Mark's Hospital, Northwick Park Hospital, Harrow

	Daniel Chubb
	Institute Of Cancer Research

	Mary Alikian
	Institute Of Cancer Research

	Cankut Cubuk
	Institute Of Cancer Research

	Rachel Robinson
	Leeds Teaching Hospitals NHS Trust

	Brendan Mullaney
	Leeds Teaching Hospitals NHS Trust

	Karen-Lynn Greenhalgh
	Liverpool Women’s NHS Foundation Trust

	Virginia Clowes
	London North West University Healthcare NHS Trust

	Angela Brady
	London North West University Healthcare NHS Trust

	George Burghel
	Manchester University NHS Foundation Trust

	Emma Woodward
	Manchester University NHS Foundation Trust

	Ronnie Wright
	Manchester University NHS Foundation Trust

	Gareth Evans
	Manchester University NHS Foundation Trust

	Fiona Lalloo
	Manchester University NHS Foundation Trust

	Andrew Wallace
	Manchester University NHS Foundation Trust

	John Burn
	Newcastle Upon Tyne Hospitals NHS Foundation Trust

	James Tellez
	Newcastle Upon Tyne Hospitals NHS Foundation Trust

	Sarah Mackenzie
	Newcastle Upon Tyne Hospitals NHS Foundation Trust

	Helen Powell
	Newcastle Upon Tyne Hospitals NHS Foundation Trust

	Stephen Tennant
	NHS Grampian, Aberdeen

	Joanna Tolmie
	NHS Grampian, Aberdeen

	Dawn O'Sullivan
	NHS Grampian, Aberdeen

	Rosemarie Davidson
	NHS Greater Glasgow & Clyde

	Jonathan Grant
	NHS Greater Glasgow & Clyde

	Daniel Stobo
	NHS Greater Glasgow & Clyde

	Aisha Ansari
	NHS Greater Glasgow & Clyde

	Jennie Murray
	NHS Lothian, Edinburgh

	David Moore
	NHS Lothian, Edinburgh

	Rachael Tredwell
	Nottingham University Hospital NHS Trust

	Joanne Field
	Nottingham University Hospital NHS Trust

	Kirsty Bradshaw
	Nottingham University Hospital NHS Trust

	Rachel Harrison
	Nottingham University Hospital NHS Trust

	Logan Walker
	University of Otago, Christchurch, New Zealand

	Trudi Mcdevitt
	Our Lady's Children's Hospital, Crumlin, Dublin

	Marie Duff
	Our Lady's Children's Hospital, Crumlin, Dublin

	Catherine Clabby
	Our Lady's Children's Hospital, Crumlin, Dublin

	Treena Cranston
	Oxford University Hospitals NHS Foundation Trust

	Tina Bedenham
	Oxford University Hospitals NHS Foundation Trust

	Evgenia Petrides
	Oxford University Hospitals NHS Foundation Trust

	Lara Hawkes
	Oxford University Hospitals NHS Foundation Trust

	Fiona McRonald
	Public Health England

	Sian Ellard
	Royal Devon And Exeter NHS Foundation Trust

	Ruth Cleaver
	Royal Devon And Exeter NHS Foundation Trust

	Carole Brewer
	Royal Devon And Exeter NHS Foundation Trust

	Emma Baple
	Royal Devon And Exeter NHS Foundation Trust

	Nick Woodwaer
	Royal Free London NHS Foundation Trust

	Stacey Daniels
	Salisbury NHS Foundation Trust

	Alison Callaway
	Salisbury NHS Foundation Trust

	Khalid Tobal
	Sheffield Children's NHS Foundation Trust

	Shadi Albaba
	Sheffield Children's NHS Foundation Trust

	Sarah DELL
	Sheffield Children's NHS Foundation Trust

	Rodney Nyanhete
	Sheffield Children's NHS Foundation Trust

	Richard Kirk
	Sheffield Children's NHS Foundation Trust

	Mark Watson
	Sheffield Children's NHS Foundation Trust

	Miranda Durkie
	Sheffield Children's NHS Foundation Trust

	Katie Snape
	Sheffield Children's NHS Foundation Trust

	Jackie Cook
	Sheffield Children's NHS Foundation Trust

	Hazel Clouston
	Sheffield Children's NHS Foundation Trust

	Anne-Cecile Hogg
	Sheffield Children's NHS Foundation Trust

	Sabrina Talukdar
	St George's University Hospitals NHS Foundation Trust

	Lorraine Hawkes
	St George's University Hospitals NHS Foundation Trust

	Laura Cobbold
	St George's University Hospitals NHS Foundation Trust

	Kate Tatton-Brown
	St George's University Hospitals NHS Foundation Trust

	Helen Hanson
	St George's University Hospitals NHS Foundation Trust

	Charlene Crosby
	St George's University Hospitals NHS Foundation Trust

	Ayaovi Hadonou
	St George's University Hospitals NHS Foundation Trust

	Zoe Kemp
	The Royal Marsden NHS Foundation Trust

	Terri Mcveigh
	The Royal Marsden NHS Foundation Trust

	Clare Turnbull
	The Royal Marsden NHS Foundation Trust

	Alice Garrett
	The Royal Marsden NHS Foundation Trust

	Cathal O'Brien
	Trinity College Dublin, The University Of Dublin, Ireland

	Laura Yarram
	University Hospitals Bristol NHS Foundation Trust

	Kenneth Smith
	University Hospitals Bristol NHS Foundation Trust

	Helen Williamson
	University Hospitals Bristol NHS Foundation Trust

	Alan Donaldson
	University Hospitals Bristol NHS Foundation Trust

	Julian Barwell
	University Hospitals Of Leicester NHS Trust

	Matilda Bradford
	University Hospitals Plymouth NHS Trust

	Lucy Side
	University Hospital Southampton NHS Foundation Trust

	Diana Eccles
	University Hospital Southampton NHS Foundation Trust

	Diana Baralle
	University Hospital Southampton NHS Foundation Trust

	Anneke Lucassen
	University Hospital Southampton NHS Foundation Trust
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