Chandra observations of Jupiter's X-ray auroral emission during Juno apojove 2017
Chandra observations of Jupiter's X-ray auroral emission during Juno apojove 2017
Jupiter's auroral X-rays have been observed for 40 years with an unknown driver producing quasiperiodic emission, concentrated into auroral hot spots. In this study we analyze an (Formula presented.) 10-hr Chandra observation from 18:56 on 18 June 2017. We use a new Python pipeline to analyze the auroral morphology, perform timing analysis by incorporating Rayleigh testing, and use in situ Juno observations to infer the magnetosphere that was compressed during the Chandra interval. During this time Juno was near its apojove position of (Formula presented.) 112 (Formula presented.), on the dawn flank of the magnetosphere near the nominal magnetopause position. We present new dynamical polar plots showing an extended X-ray hot spot in the northern auroral region traversing across the Jovian disk. From this morphology, we propose setting a numerical threshold of (Formula presented.) 7 photons per 5° System III longitude (Formula presented.) 5° latitude to define a photon concentration of the northern hot spot region. Our timing analysis finds two significant quasiperiodic oscillations (QPOs) of (Formula presented.) 37 and (Formula presented.) 26 min within the extended northern hot spot. No statistically significant QPOs were found in the southern X-ray auroral emission. The Rayleigh test is combined with Monte Carlo simulation to find the statistical significance of any QPOs found. We use a flux equivalence mapping model to trace the possible origin of the QPOs, and thus the driver, to the dayside magnetopause boundary.
Chandra, Juno, Jupiter, Magnetosphere, QPO, X-rays, timing analysis
Weigt, D. M.
3ed9f7fd-d7e3-4082-8a61-679e9ffa6c9b
Jackman, C. M.
9bc3456c-b254-48f1-ade0-912c5b8b4529
Dunn, W. R.
ce8d659a-2bbb-4331-9807-b555b9907549
Gladstone, G. R.
bef6f242-bbaa-4c52-8d5c-cbde9448e9f1
Vogt, M. F.
7a00094d-e760-44eb-bf65-4135d218932b
Wibisono, A. D.
ab03efb6-84fd-4ff5-aedb-e376237b9d6b
Branduardi‐raymont, G.
36295f98-922c-47dc-879b-063a8ab190a5
Altamirano, D.
d5ccdb09-0b71-4303-9538-05b467be075b
Allegrini, F.
93abdb02-39ef-4952-a0c8-663dafc651a7
Ebert, R. W.
dd164ffc-bae5-4a7e-b035-fe1e327e3177
Valek, P. W.
de37f56f-d067-4bab-acc0-c2b52be11287
Thomsen, M. F.
cf27bb0b-0abf-49cd-8707-d5c50152632c
Clark, G.
ae970e92-7b81-4c88-ae13-1fac2ff7d737
Kraft, R. P.
811e3612-4856-40dc-b9b6-c8a4812c8d25
1 April 2020
Weigt, D. M.
3ed9f7fd-d7e3-4082-8a61-679e9ffa6c9b
Jackman, C. M.
9bc3456c-b254-48f1-ade0-912c5b8b4529
Dunn, W. R.
ce8d659a-2bbb-4331-9807-b555b9907549
Gladstone, G. R.
bef6f242-bbaa-4c52-8d5c-cbde9448e9f1
Vogt, M. F.
7a00094d-e760-44eb-bf65-4135d218932b
Wibisono, A. D.
ab03efb6-84fd-4ff5-aedb-e376237b9d6b
Branduardi‐raymont, G.
36295f98-922c-47dc-879b-063a8ab190a5
Altamirano, D.
d5ccdb09-0b71-4303-9538-05b467be075b
Allegrini, F.
93abdb02-39ef-4952-a0c8-663dafc651a7
Ebert, R. W.
dd164ffc-bae5-4a7e-b035-fe1e327e3177
Valek, P. W.
de37f56f-d067-4bab-acc0-c2b52be11287
Thomsen, M. F.
cf27bb0b-0abf-49cd-8707-d5c50152632c
Clark, G.
ae970e92-7b81-4c88-ae13-1fac2ff7d737
Kraft, R. P.
811e3612-4856-40dc-b9b6-c8a4812c8d25
Weigt, D. M., Jackman, C. M., Dunn, W. R., Gladstone, G. R., Vogt, M. F., Wibisono, A. D., Branduardi‐raymont, G., Altamirano, D., Allegrini, F., Ebert, R. W., Valek, P. W., Thomsen, M. F., Clark, G. and Kraft, R. P.
(2020)
Chandra observations of Jupiter's X-ray auroral emission during Juno apojove 2017.
Journal of Geophysical Research: Planets, 125 (4), [e2019JE006262].
(doi:10.1029/2019JE006262).
Abstract
Jupiter's auroral X-rays have been observed for 40 years with an unknown driver producing quasiperiodic emission, concentrated into auroral hot spots. In this study we analyze an (Formula presented.) 10-hr Chandra observation from 18:56 on 18 June 2017. We use a new Python pipeline to analyze the auroral morphology, perform timing analysis by incorporating Rayleigh testing, and use in situ Juno observations to infer the magnetosphere that was compressed during the Chandra interval. During this time Juno was near its apojove position of (Formula presented.) 112 (Formula presented.), on the dawn flank of the magnetosphere near the nominal magnetopause position. We present new dynamical polar plots showing an extended X-ray hot spot in the northern auroral region traversing across the Jovian disk. From this morphology, we propose setting a numerical threshold of (Formula presented.) 7 photons per 5° System III longitude (Formula presented.) 5° latitude to define a photon concentration of the northern hot spot region. Our timing analysis finds two significant quasiperiodic oscillations (QPOs) of (Formula presented.) 37 and (Formula presented.) 26 min within the extended northern hot spot. No statistically significant QPOs were found in the southern X-ray auroral emission. The Rayleigh test is combined with Monte Carlo simulation to find the statistical significance of any QPOs found. We use a flux equivalence mapping model to trace the possible origin of the QPOs, and thus the driver, to the dayside magnetopause boundary.
Text
Chandra_Juno_apojove_2017_accepted_manuscript
- Accepted Manuscript
More information
Accepted/In Press date: 24 February 2020
e-pub ahead of print date: 26 March 2020
Published date: 1 April 2020
Keywords:
Chandra, Juno, Jupiter, Magnetosphere, QPO, X-rays, timing analysis
Identifiers
Local EPrints ID: 438406
URI: http://eprints.soton.ac.uk/id/eprint/438406
ISSN: 2169-9100
PURE UUID: 2e7ee98f-2fc8-4d4c-bb2d-d2d8f32a4cb9
Catalogue record
Date deposited: 09 Mar 2020 17:32
Last modified: 17 Mar 2024 03:34
Export record
Altmetrics
Contributors
Author:
D. M. Weigt
Author:
W. R. Dunn
Author:
G. R. Gladstone
Author:
M. F. Vogt
Author:
A. D. Wibisono
Author:
G. Branduardi‐raymont
Author:
F. Allegrini
Author:
R. W. Ebert
Author:
P. W. Valek
Author:
G. Clark
Author:
R. P. Kraft
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics