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even for independent data. Conditions that ensure asymptotic optimality of the SCV
selected bandwidth are derived, actually, also extending time series and independent
data optimality results. Further, for the adaptive bandwidth with an estimated pilot
density, oracle properties of the resultant density estimator are obtained asymptoti-
cally as if the true pilot were known. Numerical simulations show that finite-sample
performance of the SCV adaptive bandwidth choice works rather well. It outperforms
the existing R-routines such as the ‘rule of thumb’ and the so-called ‘second-generation’
Sheather-Jones bandwidths for moderate and big data. An empirical application to a
set of spatial soil data is further implemented with non-Gaussian features significantly
identified.
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1 Introduction

Nonparametric methods have become increasingly popular in exploring spatially depen-
dent complex data. In particular, voluminous geographic data have been, and continue to
be, collected with modern data acquisition techniques such as global positioning systems
(GPS), high-resolution remote sensing, location-aware services and surveys, and internet-
based volunteered geographic information (Guo and Mennis 2009). Therefore various
data collected over the earth’s surface arise in different disciplines, including environ-
mental science, econometrics, epidemiology, image analysis, oceanography, to list a few.
Important applications and developments in the general area of spatial statistics, under
linear and/or Gaussian assumptions, can be found widely; see, e.g., Cressie (1993), Ba-
sawa (1996a; 1996b), Guyon (1995) and Gelfand et al. (2010) for comprehensive reviews.
On the other hand, it has been recognised in the literature that linear and/or Gaussian
structures may quite often be violated, or only serve as a crude approximation (c.f., Sec-
tion 5.2). Nonparametric smoothing methods have provided a powerful methodology for
circumventing these shortcomings and gaining insights into spatially dependent data; see,
for example, Tran (1990), Hallin et al. (2001, 2004a, 2004b), Gao et al. (2006), Hallin
et al. (2009), Robinson (2008, 2011) and Jenish (2012) and Lu and Tjøstheim (2014),
among others.

Effective use of nonparametric smoothing methods requires choice of a smoothing
parameter (bandwidth) (c.f., Jones et al. 1996). Arguably, it is the most important
aspect of nonparametric density estimation. In this paper, our objective is to develop
an adaptive (i.e., local data dependent) as well as a fixed non-adaptive bandwidth choice
for spatial data density estimation. The advantage of an adaptive bandwidth is that
it is attempting to enhance local, or observation-wise, smoothing, rather than a one-
bandwidth-fits-all type of smoothing. Here our attention is on spatial data observed on
a lattice. Many agricultural experimental data, such as the soil data to be analysed in
Section 5.2 below, and in particular, with modern data acquisition techniques, remotely
sensed data are on a regular grid (c.f., Zhu et al. 2010). For generality, let us consider the

data to be the observations from {Xi = (X
(1)
i , X

(2)
i , ..., X

(d)
i )}, a d-dimensional stationary

random field with index i = (i1, i2, ..., iN) ∈ ZN (N ≥ 1), which is defined on a common
probability space (Ω,F ,P). We denote by f the common density function of Xi to be
estimated, where a point i = (i1, i2, ..., iN) will be referred to as a site in ZN with Z the
set of all integers. When N = 1, one may think of the time series data case or data on a
line, including independent data, while N = 2 or 3 correspond to the data observed on a
plane or three-dimensional space.

We will propose generalising the popular cross validation (CV) idea (c.f., Stone 1974)
to the choice of adaptive bandwidth, which includes the fixed non-adaptive one as a
special case, for spatial lattice data. There do exist bandwidth selection methods that
are theoretically justified based on resampling methods for spatial data. Such methods
have targeted spectral density or variance estimation (c.f., Nordman and Lahiri (2004)).
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But these developments are concerned with second order moments or linear dependence
properties, whereas we are seeking to give a theoretical justification with accompanying
finite-sample numerical experiments for the adaptive and non-adaptive bandwidth choice
in general density based nonparametric analysis of spatial data.

In the special case of density estimation for independent or time series data, bandwidth
selection is well known to be a key question when applying any nonparametric smoother,
and this question has been addressed in many papers. According to Jones et al. (1996),
these methods can be categorised into two generations.

Cross-validation methods (c.f., Silverman (1986), Fan and Gijbels (1996), Fan and Yao
(2003)) have been classified as ‘first generation’ methods that also include Silverman’s
(1986) rule of thumb bandwidth choice. The non-adaptive CV bandwidth selection has
been extensively studied with independent and time series data; see, e.g., Hall (1983),
Stone (1984), Marron and Härdle (1986), Marron (1987), Hart and Vieu (1990), Kim and
Cox (1997), and the references therein. In the present paper, we propose extending this
idea to adaptive density estimation for spatial lattice data.

From the perspective of optimal selection of a non-adaptive bandwidth, many so-called
‘second generation’ bandwidth selection methods (e.g., Sheather and Jones (1991) and
Marron (1992)) have been proposed. These methods are basically plug-in or bootstrap
based, which rely on selection of pilot bandwidths (often by rule of thumb) and have
been shown to perform better than the ‘first generation’ methods for independent data;
see Sheather and Jones (1991), Cao et al. (1994) and Jones et al. (1996) for excellent
reviews. However, we have not seen any ‘second generation’ methods for adaptive density
estimation. This may be due to the fact that the asymptotic mean integrated squared error
(MISE) for the adaptive density estimator is more involved than that for the standard
density estimator. It therefore may appear that cross-validation is more natural than the
alternative second-generation procedures for choosing the adaptive bandwidth. In view of
our use of a pilot density, the spatial CV based adaptive bandwidth choice in this paper
may be seen as a ‘second generation’ method.

The main contributions of this paper are summarised: First, we will propose a spatial
bandwidth choice by generalising the cross validation to the dependent lattice data density
estimation. Our proposed method works for an adaptive bandwidth choice, but also
functions for a non-adaptive bandwidth choice as a special case. Second, conditions that
ensure asymptotic optimality of the spatial CV selected bandwidth in terms of various
error measures are derived, actually, also extending time series optimality results. Further,
taking a non-adaptive kernel density estimate as a pilot for an adaptive estimate of spatial
data, oracle properties for the resultant density estimate are obtained as if the pilot density
were known. Third, numerical simulations carried out will demonstrate that finite-sample
performance of the proposed spatial adaptive CV bandwidth choice works rather well. It
outperforms the existing non-adaptive R-routines such as the ‘rule of thumb’ and the
so-called ‘second-generation’ Sheather-Jones (1991) bandwidths both for moderate sizes
of spatial samples and in particular for big spatial data sets. Our empirical application
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to a set of spatial soil data will further illustrate that non-Gaussian features of the data
are more significantly identified by spatial adaptive density estimation.

These results require an essentially different theoretical approach with a modified,
albeit quite mild, set of assumptions. Fundamentally, unlike time series data in which
time is uni-directional from the past to the future, space is multi-directional. With spatial
data, the fact that the spatial sites do not have a natural ordering makes the problem
of CV bandwidth selection more challenging. A number of conditions are needed for an
asymptotic theory to be established. These are described in detail in Appendix A in
the Online Supplementary Material, but for the convenience of the reader we summarize
them here. First of all a spatial mixing condition is required. Because of the multi-
directionality the spatial mixing conditions are more elaborate than the time series strong
mixing condition, but by now there are some rather standard spatial mixing conditions as
stated in Appendix A. Further, there is a set of conditions on the spatial kernel function to
be introduced in equation (2.1). This pertains to the symmetry, continuity, boundedness,
differentiability and support (a compact support is assumed) of the kernel function, and
an integrability condition on the convolution kernel. There is also a condition on the
characteristic function of the kernel linking it to the the characteristic function of the d-
dimensional standard normal. The order r of the kernel is related to the differentiability
of the density function. The density function to be estimated is bounded, with a deviation
from the density in the independent case, which is also bounded. Moreover, there is a
boundedness condition on conditional densities. In addition there is a weight function to
be introduced in equation (3.1), this function being bounded and integrable, and having a
compact support with the density function being bounded away from zero on this support.
Finally, the bandwidth is restricted to an interval [añ−

1
2r+d , bñ−

1
2r+d ] for some constants

a and b, 0 < a < b < ∞, and with ñ being the total number of observations. All of
these conditions are quite standard. More details and a discussion of the feasibility of the
conditions are given in Appendix A.

The organization of the paper is as follows. The basic idea on spatial adaptive density
estimation for lattice data, using an adaptive bandwidth that involves a global bandwidth
h0 and an estimated pilot density f̂n, will be introduced in Section 2. In Section 3, a spatial
CV (SCV) selection of the global bandwidth h0 will be suggested, where it is noted that
a CV selection of the non-adaptive bandwidth h = h0 can be seen as a special case. The
conditions to ensure optimality results of the bandwidth selected by the SCV method, in
terms of the integrated squared error (ISE), mean integrated squared error (MISE) and
average squared error (ASE), will be established in Subsection 3.1 with a known pilot f .
The SCV selection for the global bandwidth h0 with an estimated pilot f̂n and the oracle
properties associated with spatial adaptive kernel density estimation will be presented in
Section 3.2. In Section 4, some further discussions on data involving spatial trends and
a potential extension to bandwidth choice for spatial regression will be provided. The
numerical finite-sample performances of these estimates by using both simulated and real
spatial data sets are examined in Section 5. The technical conditions on spatial mixing
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and additional regularity assumptions for the optimality theorems will be collected in
Appendix A. The technical proofs of the main results together with other supplementary
materials are relegated to Appendix B. Here some useful lemmas are given in Appendix
B1, where a moment inequality with lattice random fields established by extending that
in Gao et al (2008) will play an important role in the technical proof of the main theorems
in Appendix B2. Some supplementary figures and table to Subsection 5.1 are collected in
Appendix B3. The code used in the paper is copied in Appendix C in a separate text form
and available on a URL https://sites.google.com/site/zudiluwebsite/ while the used data
set of soil250 is available from the R package geoR (c.f., Ribeiro Jr and Diggle, 2016).

2 Spatial adaptive density estimation: Basic princi-

ples

Throughout the paper, let the random field {Xi, i ∈ ZN} be observed over a rectangular
region defined by In = {i = (i1, i2, ..., iN) ∈ ZN | 1 ≤ ik ≤ nk, k = 1, 2, ..., N}. Thus,
the total sample size in In is denoted as ñ =

∏N
k=1 nk for n = (n1, n2, ..., nN) ∈ ZN with

strictly positive integer coordinates n1, n2, ..., nN . As in Hallin et al. (2004), we write
that n→∞ if min1≤k≤N{nk} → ∞, without requiring max1≤j,k≤N{nj/nk} ≤ C for some
0 < C <∞ given in Tran (1990), allowing for multi-directional convergence in the sample
size.

The idea of adaptive density estimation is popular in application (c.f., Davies and
Hazelton (2010)), where the bandwidth (see Abramson (1982a,b) in the independent
data case) is defined adaptively depending on the sample Xi = X(i1,i2,··· ,iN ) spatially in
estimating f(x):

f̌n(x) =
1

ñ

nk∑
ik=1

∀k=1,2,··· ,N

1

hd(i1,i2,··· ,iN )

K

(
x−X(i1,i2,··· ,iN )

h(i1,i2,··· ,iN )

)
, x ∈ Rd, (2.1)

where
nk∑
ik=1

∀k=1,2,··· ,N

stands for the N -fold summations
n1∑
i1=1

n2∑
i2=1

· · ·
nN∑
iN=1

, K : Rd → R+ is a

kernel function. Here the bandwidth, being location-dependent and inversely related to
the population density f(·), is taken as (c.f., Abramson, 1982)

hi ≡ h(i1,i2,··· ,iN ) ≡ hi(h0; f, δ) =
h0

f(X(i1,i2,··· ,iN ))δγf
, (2.2)

where h0 ≡ h0n is a smoothing multiplier referred to as the global bandwidth, and

γf =

 nk∏
ik=1

∀k=1,2,··· ,N

f(X(i1,i2,··· ,iN ))
−δ


1/ñ

. (2.3)
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In adaptive estimation for independent data, it has been suggested by Abramson (1982)
that δ = 1/2 is optimal when f is second-order differentiable. For an introductory expo-
sition on the adaptive methods, the reader is referred to, e.g., Silverman (1986), Bowman
and Azzalini (1997), Pagan and Ullah (1999) and Davies and Hazelton (2010). Inclusion
of the geometric mean term γf in (2.2), as noted in Silverman (1986), is to free the band-
width factors from dependence on the scale of the data, allowing the global bandwidth h0

to be considered on the same scale as in the corresponding fixed non-adaptive bandwidth
estimate of f defined below.

In application of the adaptive density estimator (2.1), we need to have a pilot density
estimator of f required in (2.2) and resulting in a kernel density estimator f̂n used in (3.13)
below. This pilot estimator will be chosen as the traditional kernel density estimator f̂n(x)
of f , with a fixed bandwidth, which can be seen as a special case of (2.1) with δ = 0 in
(2.2) and (2.3), defined (c.f., Tran, 1990) as follows:

f̂n(x) =
1

ñhd

nk∑
ik=1

∀k=1,2,··· ,N

K

(
x−X(i1,i2,··· ,iN )

h

)
, x ∈ Rd, (2.4)

where h ≡ hn (depending on n) is used to distinguish it from h0 above, for a sequence
of fixed bandwidths tending to zero as n → ∞. The study of the asymptotic properties
for the spatial nonparametric kernel density estimator f̂n(x) is an interesting problem in
statistical inference. With a given bandwidth series, Tran (1990) may be the first paper to
establish the asymptotic normality of multivariate kernel density estimator and Carbon
et al (1996) for the kernel-type estimator with the convergence in L1, under stationary
spatial random fields satisfying mixing conditions. See also the similar issues investigated
by Hallin et al (2001, 2004a) under alternative conditions on the spatial processes, and
Lu and Tjøstheim (2014) and Harel et al. (2016) for some more recent developments. In
this paper, we will focus on the spatial mixing processes, which will be introduced with
assumptions in Appendix A.

In order to make the spatial adaptive bandwidth hi defined in (2.2) applicable for
adaptive density estimation in (2.1), we need to select the global bandwidth h0 and have
f̂n in (2.4) with a selected bandwidth h as a pilot estimate for f in (2.2) and (2.3).
Therefore the selection of h0 as well as h is what we are concerned with in the next
section, and selection of h in f̂n (c.f., (2.4)) can be seen as the selection of h = h0

corresponding to δ = 0 in (2.2). As commented in Section 1, cross-validation appears to
be more natural than the plug-in procedures for selection of h0, which will be developed
in the next section. For the pilot bandwidth h, it seems that any ‘second generation’
method such as the Sheather-Jones (1991) can also be alternatively applied, which itself,
however, need a pilot bandwidth again and will be examined in the numerical section
(Section 5).
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3 Spatial cross-validation bandwidth choice

In what follows, we are investigating selection of the bandwidths needed in the adap-
tive kernel density estimation f̌n in (2.1) by proposing a spatial cross validation (SCV)
method with choice of the adaptive bandwidths given in (2.2) and (2.3), for spatial lattice
processes (N > 1). Although some CV methods for non-adaptive bandwidth that leave
more observations out were suggested for the time series case of N = 1 in the literature
(c.f., Hart and Vieu 1990), leave-one-out CV is often preferred for its simplicity in appli-
cations. Moreover, by our experience with the real spatial data numerical example in Lu
et al.(2014) with the non-adaptive case, the performance of leave-five-out CV seems very
similar to that of the leave-one-out CV. Further, the leave-one-out CV is more popular
with spatial data (c.f., Le Rest et al. 2014), and we are mainly extending the leave-one-out
CV for bandwidth selection below.

3.1 Cross-validation choice for adaptive bandwidth with a given
pilot density

We first consider the choice of the adaptive bandwidth hi by cross-validation with a given
pilot density f in (2.2), where the choice reduces to the selection of the global bandwidth
h0. We can propose a CV bandwidth selection for the global bandwidth h0 as defined in
Section 2, by extending the leave-one-out CV criterion from time series to spatial lattice
as follows:

SCVδ(h0) ≡ CVδ(h0) =

∫
Rd
f̌ 2
n(x)w(x)dx− 2

ñ

nk∑
ik=1

∀k=1,2,··· ,N

f̌ (i)
n (Xi)w(Xi), (3.1)

where SCVδ stands for spatial cross validation for the global bandwidth h0 with a given δ
in (2.2), and f̌

(i)
n (x) is the adaptive kernel estimator of f based on X ′js, j = (j1, · · · , jN) 6=

i = (i1, · · · , iN), i.e.,

f̌ (i)
n (x) =

1

ñ− 1

nk∑
jk=1

∀k=1,2,··· ,N
∃k:jk 6=ik

1

hd(j1,j2,··· ,jN )

K
(x−X(j1,j2,··· ,jN )

h(j1,j2,··· ,jN )

)
,

with hj = h(j1,j2,··· ,jN ) ≡ hj(h0; f, δ), as defined in (2.2) and (2.3) with j replacing i,
depending on h0 (and where f is the assumed pilot density and δ is given, e.g., δ =
1/2 as explained following (2.3) for an optimal adaptive bandwidth), and w(.) is some
nonnegative weight function. Then, the extended CV optimal smoothing parameter is
defined by

ȟ0(f, δ) ≡ ȟ0 = arg min
h0∈Hn

SCVδ(h0), (3.2)
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where Hn is an interval defined in assumption (H) in Appendix A.
As noted in Section 2, the adaptive bandwidth defined above includes the fixed band-

width as a special case. When δ = 0, the adaptive KDE (2.1) reduces to the non-adaptive
(fixed bandwidth) KDE (2.4) with h = h0, which is independent of the pilot f . There-
fore, the bandwidth h of f̂n(x) in (2.4) can be selected following from (3.1) and (3.2) with
δ = 0, i.e., to minimize an estimated Integrated Squared Error defined by

SCV0(h) ≡ CV0(h) =

∫
Rd
f̂ 2
n(x)w(x)dx− 2

ñ

nk∑
ik=1

∀k=1,2,··· ,N

f̂ (i1,··· ,iN )
n (X(i1,··· ,iN ))w(X(i1,··· ,iN )),

(3.3)

where f̂
(i1,··· ,iN )
n (x) is the kernel estimator of f based on X ′js, j = (j1, · · · , jN) 6= i =

(i1, · · · , iN), i.e.,

f̂ (i1,··· ,iN )
n (x) =

1

ñ− 1

nk∑
jk=1

∀k=1,2,··· ,N
∃k:jk 6=ik

1

hd
K
(x−X(j1,j2,··· ,jN )

h

)
.

Then, the SCV optimal smoothing parameter for (2.4) is defined by

ĥ = arg min
h∈Hn

SCV0(h), (3.4)

where Hn is as defined in assumption (H) in Appendix A. Note that ĥ = ȟ0 (c.f., (3.2))
with δ = 0.

In the non-adaptive case, it has been argued (c.f., Xia and Li (2002)) that despite the
fact that in the sense of mean integrated squared error (that is data-independent), the
relative error of a CV-bandwidth may be higher than that of, for example, the plug-in
selector and the method of Ruppert et al. (1995), there is a growing body of opinion of
using performance criteria, which are not just mean-integrated squared error (c.f., Mam-
men 1990, Jones 1991, Härdle and Vieu 1992, and Loader 1999), targeting at estimating
the unknown probability density function (in the context of this paper). From this point
of view, the CV-bandwidth performs reasonably well (Hall and Johnstone 1992, page
479). In the time series context, the argument for why cross-validation is an appropriate
bandwidth selection method can be found in Hart and Vieu (1990), Kim and Cox (1997),
Quintela-del-Rio (1996) and Xia and Li (2002), among others. However, for adaptive
kernel density estimation, there has been no plug-in method seen even for independent
data in the literature. The CV-bandwidth looks a more natural and implementable op-
tion for the adaptive KDE. There has been little investigation into the issue even with
non-adaptive KDE for spatial data, except for some spatial spectral density or variance
estimation concerning second order moments properties (c.f., Nordman and Lahiri, 2004).
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We shall concretely measure the optimality of the selected bandwidth by considering
the widely used integrated squared error (ISE), mean integrated squared error (MISE)
and average squared error (ASE), defined, respectively, by

dI(f̌n, f)(h) = ISE(h) =

∫
Rd

(
f̌n(x)− f(x)

)2
w(x)dx, (3.5)

dM(f̌n, f)(h) = MISE(h) = E

∫
Rd

(f̌n(x)− f(x))2w(x)dx (3.6)

and

dA(f̌n, f)(h) = ASE(h)

=
1

ñ

nk∑
jk=1

∀k=1,2,··· ,N

[f̌n(X(j1,··· ,jN ))− f(X(j1,··· ,jN ))]
2w(X(j1,··· ,jN )), (3.7)

where f̌n(x) is the adaptive KDE defined in (2.1), with h0 = h for ease of notation below,
under a given pilot density f and δ.

We will show that the SCV selected bandwidth ȟ0 = ȟ0(f, δ) enjoys optimality for the
adaptive kernel density estimator (2.1). Before presenting the main results, we denote

R =
1

ñ

nk∑
jk=1

∀k=1,2,··· ,N

f(X(j1,··· ,jN ))w(X(j1,··· ,jN ))− Ef(X(j1,··· ,jN ))w(X(j1,··· ,jN ))

and

T = −
∫
Rd

(f(x))2w(x)dx− 2R.

All the technical assumptions are listed in Appendix A below.
First, Theorem 3.1 establishes the convergence rate of the so-called vertical error for

the nonparametric density estimation of lattice data. It demonstrates that the proposed
SCV criterion is asymptotically equivalent to the criterion of integrated squared error in
selection of bandwidth with spatial kernel density estimation, when compared with the
mean integrated squared error. Based on this result, we shall establish the appropriate
conditions under which ȟ0 and ĥ are asymptotically optimal not only in terms of the ISE
as in Hart and Vieu (1990), but also in terms of MISE and ASE, respectively, defined in
(3.5)–(3.7), thus also extending the time series results of these authors.

Theorem 3.1 (i) When δ = 0, under assumptions (K1)-(K2), (D1)-(D2), (M), (H)
and (W) listed in Appendix A, we have

|SCVδ(h)− ISE(h)− T |
MISE(h)

= OP (ñ−
d

2(2r+d) ), (3.8)
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where r is the order of the continuous differentiation of the probability density function
f , defined in assumption (D1) in Appendix A. Further, if assumption (K3) in Appendix
A is satisfied, we have

sup
h∈Hn

|SCVδ(h)− ISE(h)− T |
MISE(h)

= oP (1) (3.9)

as n→∞.
(ii) When δ > 0, in addition to the conditions in (i), if assumptions (K4) and (D3) in

Appendix A are satisfied, then the conclusions (3.8) and (3.9) hold true.
Remark: In this theorem, conditions have been derived with spatial lattice data for

the vertical error convergence needed below. (i) Note that even in the special case for
time series with N = 1 and δ = 0, our derived convergence rate is much faster than that
in the literature. For example, the convergence rate in Kim and Cox (1997, Theorem 1)
corresponding to our (3.8) is OP (nd(−1/2+r̃/µ)/(d+2r)) (in the notation of this paper), where
r̃ is a positive integer < µ/2 with µ given in the mixing assumption (M) in Appendix

A. This rate of O(nd(−1/2+r̃/µ)/(d+2r)) is much slower than our OP (ñ−
d

2(2r+d) ), the latter
being the same rate as obtained by Marron (1987) for the i.i.d. data. (ii) Moreover, our
derived conditions in the case of δ = 0 are much weaker than those in the literature. For
instance, Kim and Cox (1997, page 195) commented that one may note that the i.i.d.
convergence rates found in Marron (1987) and Marron and Hardle (1987) correspond to
the case of µ = ∞ in their Theorem 1. Interestingly, Theorem 3.1 above only requires
µ > 2Nr(2 − 2/q)/(1 − 2/q) with q > 2, roughly corresponding to µ > 8 under N = 1,
r = 2 and q =∞.

Second, the following theorem establishes that both the integrated squared error and
the averaged squared error are asymptotically equivalent to the criterion of mean inte-
grated squared error in selection of bandwidth with spatial kernel density estimation.

Theorem 3.2 (i) When δ = 0, under assumptions (K1)-(K3), (D1)-(D2), (M), (H)
and (W) listed in Appendix A, we have

sup
h∈Hn

| ISE(h)−MISE(h)

MISE(h)
|= op(1) (3.10)

and

sup
h∈Hn

| ASE(h)−MISE(h)

MISE(h)
|= op(1), (3.11)

as n→∞.
(ii) When δ > 0, in addition to the conditions in (i), if assumptions (K4) and (D3) in

Appendix A are satisfied, then the conclusions (3.10) and (3.11) hold true.
Finally, Theorem 3.3 establishes that the bandwidth ĥ selected by the suggested CV

(see (3.4)) is asymptotically optimal in terms of the criteria involving the integrated
squared error and the averaged squared error as well as the mean integrated squared error
for spatial kernel density estimation.
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Theorem 3.3 (i) When δ = 0, under the conditions for Part (i) of Theorem 3.2,
we have

d(f̌n, f)(ȟ0)

infh∈Hn d(f̌n, f)(h)
→ 1, in probability (3.12)

as n→∞, where d is any of dI , dA and dM , and f̌n(x) = f̂n(x) and ȟ0 = ĥ as defined in
(3.2) and (3.4), respectively.

(ii) When δ > 0, in addition to the conditions in (i), if assumptions (K4) and (D3) in
Appendix A are satisfied, then the conclusion (3.12) holds true.

Remark: In the case of N = 1 for time series data with δ = 0, Hart and Vieu (1990)
showed that the CV selected bandwidth is asymptotically optimal in term of the ISE.
This theorem above thus extends the time series asymptotic optimality to the ASE and
the MISE.

3.2 Cross-validation choice for adaptive bandwidth with an es-
timated pilot

In practice, for the adaptive KDE with δ > 0, we cannot apply (2.1) directly because
the true unknown density f is involved in the adaptive bandwidth via (2.2) in the above
procedure. It needs to be replaced by a pilot estimator, say f̂n given in (2.4), where a
pilot fixed-bandwidth can be selected by any reasonable method, e.g., by CV in (3.4) or
others such as Sheather-Jones (1991) plug-in method (Sheather-Jones only considered the
non-adaptive case). Thus the practical adaptive KDE can be defined as follows:

ˇ̌fn(x) =
1

ñ

nk∑
ik=1

∀k=1,2,··· ,N

1

ȟd(i1,i2,··· ,iN )

K

(
x−X(i1,i2,··· ,iN )

ȟ(i1,i2,··· ,iN )

)
, x ∈ Rd, (3.13)

where ȟ(i1,i2,··· ,iN ) = h(i1,i2,··· ,iN )(h0; f̂n, δ) with f̂n replacing f in (2.2). Then the SCV
optimal smoothing parameter is defined by

ˇ̌h0(f̂n, δ) ≡ ˇ̌h0 = arg min
h0∈Hn

ˇSCV δ(h0), (3.14)

where ˇSCV δ(h0) ≡ ČV δ(h0) is as defined in (3.1) with h(i1,i2,··· ,iN ) replaced by ȟ(i1,i2,··· ,iN )

in (2.2), and Hn is the same interval as defined in assumption (H) in Appendix A. On
the basis of Theorem 3.2, we will show that Theorem 3.4 below is true with f̂n replacing
f in (2.2).

We now state the theorem on the selected ˇ̌h0 for h0 in terms of ISE, ASE and MISE.
Theorem 3.4 Under the conditions for Part (ii) of Theorem 3.3 with supx∈Sw |f̂n(x)−

f(x)| → 0 in probability, we have

d( ˇ̌fn, f)(ˇ̌h0)

infh0∈Hn d( ˇ̌fn, f)(h0)
→ 1, in probability (3.15)
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as n→∞, where d is any of dI , dA and dM defined in (3.5)-(3.7).

This theorem confirms that the global bandwidth ˇ̌h0 selected by the suggested CV
(see (3.14)) is also asymptotically optimal in terms of the criteria involving the integrated
squared error and the averaged squared error as well as the mean integrated squared
error for the adaptive spatial kernel density estimation. Notice from Theorem 3.4 that
the CV-bandwidth for the adaptive kernel density estimate by using f̂n instead of f in
(2.2) is asymptotically optimal as that in Theorem 3.3. We call this property an oracle
property in the sense that the asymptotic optimality is achieved as if f were known. In
the simulation section (Section 5.1), we will call the CV selected ȟ0 in (3.2) with the true f
used in (2.2) the oracle CV bandwidth, while the one with f replaced by f̂n the estimated
adaptive CV bandwidth for h0, and the corresponding spatial adaptive kernel density
estimates (AKDEs) are called the oracle and the (estimated) AKDEs, respectively.

4 Some further discussion

We here provide some more discussions regarding the application of the proposed band-
width selection.

(1) For real spatial data, there may be spatial trends, which make the data non-
stationary over space (c.f., Harel et al. 2016). For instance, suppose on the plane of
N = 2 that the observed X̃i has a spatial trend, i.e., X̃i = g(si) + Xi, where i = (i1, i2)
with 1 ≤ i1 ≤ n1 and 1 ≤ i2 ≤ n2, si = (i1/n1, i2/n2), g(·) is a smooth trend function and
Xi is an unobserved stationary field. In this case, we need to estimate and remove the
spatial trends before applying the methodology given in Sections 2–3. For example, as
done in Hallin et al (2009) and Lu et al. (2014), the R package ‘sm’ can be used to remove
the spatial trends, and it can be proved that the theoretical results for the (estimated)
de-trended data, say X̂i, replacing the unobservable stationary Xi in the above sections
can still hold under some appropriate conditions (c.f., Section 3 of Hallin et al. (2009)).
This is the situation for the real soil data set in Section 5.2 below.

(2) In this paper, we have developed the CV-based adaptive bandwidth selection for
density estimation of lattice data. Similarly, with a more involved regression setting,
the ideas and techniques developed from this paper will be useful in adaptive bandwidth
selection for conditional regression of lattice data (c.f., Hallin et al. 2004). The CV-based
adaptive bandwidth selection can be extended more naturally than other procedures for
spatial regression, which is beyond the scope of this paper and will be left for future
research.

5 Numerical finite-sample performances

In the previous sections, asymptotic optimality for the CV-bandwidth based kernel and
CV-pilot adaptive kernel density estimates was presented for spatial lattice data. In this
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section, we turn to the numerical finite-sample performances of these estimates by using
both simulated and real data sets. To simplify our discussion, we are considering the
lattice data on the plane with N = 2 and d = 1, and denote Xi1,i2 by Xi,j for notational
simplicity in this section. We take δ = 0 for the usual (non-adaptive) KDE and δ = 1/2
for the adaptive KDE as in Abramson (1982) in the following numerical examples.

5.1 Monte Carlo simulation

To evaluate the performance of our CV bandwidth selection procedure with non-Gaussian
spatial data, we need to use a spatial lattice process {Xi,j} on the plane, where the
theoretical probability density function of Xi,j can be computed analytically. Therefore
we are considering a special spatial lattice process, Xi,j, that is generated through a
mixture of Gaussian spatial moving average processes, in a way similar to Step 2 of
Section 8.1 of Lu and Tjøstheim (2014), as follows:

Step 1 Generate three intermediate processes Yij,1, Yij,2 and Yij,3 from three independent
Gaussian spatial moving averages, with 1 ≤ i ≤ m1, 1 ≤ j ≤ m2, k = 1, 2, 3,

Yij,k = µk + a1,kZi−1,j;k + a2,kZi,j−1;k + a3,kZi,j;k + a4,kZi+1,j;k + a5,kZi,j+1;k, (5.1)

where Zi,j;k’s are three independent i.i.d. samples from N (0, σ2
Z,k) for k = 1, 2, 3,

respectively. We take µ1 = −1, µ2 = 0.4 and µ3 = 1.5, let am,1, am,2 and am,3 be the
mth elements of a1 = (1/5, 2/5, 3/5, 4/5,−4/5), a2 = (−1,−4/5− 3/5,−2/5,−1/5)
and a3 = (1/5, 2/5, 3/5, 4/5, 1), respectively, and σZ,1 = 0.3, σZ,2 = 0.2 and σZ,3 =
0.4. Here the marginal distribution of Yij,1 is Gaussian N (µ1 = −1, σ2

1 = 0.1656),
Yij,2 isN (µ2 = 0.4, σ2

2 = 0.088), and Yij,3 isN (µ3 = 1.5, σ2
3 = 0.352), whereN (µ, σ2)

stands for the univariate Gaussian distribution of mean µ and variance σ2.

Step 2 We then generate spatial process by first generating independent Rij = (Rij,1, Rij,2,
Rij,3) ∼ Multinomial(1, (p1, p2, p3) = (0.4, 0.3, 0.3)), 1 ≤ i ≤ m1,, 1 ≤ j ≤ m2, and
then defining

Xij = Yij,1 ×Rij,1 + Yij,2 ×Rij,2 + Yij,3 ×Rij,3, 1 ≤ i ≤ m1, 1 ≤ j ≤ m2, (5.2)

where Rij,k’s are independent of Zi,j;k’s and hence of Yij,k’s, with k = 1, 2, 3.

Note that the distribution of Xij is a mixture of normal distributions, in the form

f(x) = 0.4×φ(µ1=−1,σ2
1=0.1656)(x)+0.3×φ(µ2=0.4,σ2

2=0.088)(x)+0.3×φ(µ3=1.5,σ2
3=0.352)(x),

(5.3)
where φ(µ,σ2)(x) stands for the probability density function of normal distribution
N (µ, σ2).

We generate the simulated spatial data by using the values of the parameters in the
above models. Note, as commented by a referee, that the simulated spatial process is m-
dependent and therefore satisfying the α-mixing assumption in Appendix A. This follows
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Table 1: Summary of selected bandwidths for 100 simulations with m1 = 25,m2 = 10
Method Min. 1st Qu. Median Mean 3rd Qu. Max.
H.CV 0.0669 0.1471 0.1779 0.1732 0.1980 0.2680
H.SJ 0.1470 0.1824 0.1958 0.1989 0.2126 0.3008
H.R 0.3105 0.3302 0.3383 0.3381 0.3434 0.3747

H0.CV 0.0679 0.2104 0.2429 0.2338 0.2685 0.3242
H0.SJ 0.1055 0.2145 0.2438 0.2399 0.2689 0.3264

H0.orac 0.1024 0.2246 0.2704 0.2638 0.3052 0.4679

because the Yijk’s (and Rijk’s too) are m-dependent within k and independent across k
(with m appropriately defined), following from the simulating models (5.1) and (5.2) and
using the fact that Zi,j;1, Zi,j;2, Zi,j;3 and Rij are independent i.i.d. processes. It is also
easy to see similarly to Section 8.1 of Lu and Tjøstheim (2014) that the resultant marginal
and the joint density functions are mixture of Gaussian distributions, which satisfy the
assumptions in (D1), (D2) and (M) of Appendix A below. We repeat the simulation
100 times, with different sizes of samples of (m1,m2) = (25, 10), (m1,m2) = (20, 20),
(m1,m2) = (50, 50) and (m1,m2) = (100, 100), respectively, from smaller to larger sample
sizes.

We are examining the performance of the density estimation with the spatial CV
selection for the global bandwidth h0 in (3.2) with pilot densities of different bandwidths,
including the bandwidth h given in (3.4). We are first considering the case of (m1,m2) =
(25, 10) with total sample size n = m1m2 = 250. For the CV based bandwidth selection,
after some experiments on the bandwidth interval so that the selected bandwidths are
within the interval, we set the bandwidth interval Hn = [0.02, 0.5] in the computations
below, which roughly corresponds to taking a = 0.06, b = 1.51 with r = 2, d = 1 and
ñ = n = 250 in Assumption (H) for the case of (m1,m2) = (25, 10). (We also tried
H = [0.001, 1], having the same outcomes.) The spatial CV based global bandwidths for
adaptive density estimates of Xi,j with different pilot densities, as well as the selected
bandwidths with non-adaptive KDE, for the kernel K taken as a standard normal density
function, are summarised in Table 1 with the no-adaptive case in the upper and adaptive
case in the lower part of the table. Note that the R function ‘density’ with the default
(rule of thumb) and the Sheather-Jones (1991) bandwidths from Package stats (R Core
Team 2015) are also used for comparison. It is interesting to notice from Table 1 that
for the non-adaptive KDE method, the selected bandwidths by CV (H.CV) tend to be
smaller than those by the Sheather-Jones (SJ) method (H.SJ) while the rule of thumb
(rot) bandwidth (H.R) is much larger than both H.CV and H.SJ, which may explain that
the rule of thumb (rot) bandwidths tend to lead to a largely biased KDE (as displayed in
Figure 1 below).

For the adaptive KDEs, the spatial CV based global bandwidths for h0 either with
CV or SJ pilot KDEs (simply denoted by H0.CV and H0.SJ, which may be more clear
by H0.CVCV and H0.CVSJ, respectively) look quite similar overall in Table 1, which
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Figure 1: Mean of 100 simulated estimates of density for different selected bandwidths
of 100 simulations of sample sizes of n = m1 ∗m2: (a) (m1,m2) = (25, 10), (b) (m1,m2) =
(20, 20), (c) (m1,m2) = (50, 50) and (d) (m1,m2) = (100, 100).

shows that the adaptive KDEs corresponding to those bandwidths either with CV or SJ
pilot KDEs perform similarly (as again indicated in Figure 1 below). In Table 1, we also
provided the unpractical oracle bandwidths H0.orac (denoted by H0.or in Figure 2 below),
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i.e., the spatial CV based global bandwidths with true pilot density, for the adaptive KDE.
It follows from Table 1 that both H0.CV and H0.SJ are relatively smaller than the H0.orac.

As a benchmark comparison, we can also calculate the optimal bandwidths that min-
imise the MISEs for the non-adaptive and the adaptive KDEs, respectively, where the
optimality is in terms of the MISE as defined in (3.6). For example, given the sample
size of (m1,m2) = (25, 10), the obtained optimal bandwidth, H.op=0.1788, is the one that
minimises the MISE of the non-adaptive KDE (2.4) w.r.t. h. Similarly, the optimal band-
width, H0.op=0.2659, is the one that minimises the MISE of the adaptive KDE (2.1) with
oracle (i.e. true) pilot density f in (2.2) and (2.3), w.r.t. the global bandwidth h0. This
leads to the smallest MISE value among all the adaptive KDEs (including those with other
pilot densities, say, the CV-based or SJ-based KDE as pilot; c.f., Figure B.1). Clearly
the MISE-optimal bandwidths are theoretical quantities independent of data (given the
sample size of (m1,m2)). These theoretically MISE-optimal bandwidths, H.op (for the
non-adaptive KDE) and H0.op (for the adaptive KDE), used for benchmark only, together
with boxplots of other bandwidths summarised in Table 1, can be found in Figure 2 with
dotted horizontal lines indicated for ease of comparison of H.op and H0.op with others.

The means of the adaptive KDEs and non-adaptive KDEs corresponding to those
bandwidths in Table 1 for 100 simulations are depicted in Figure 1; see also boxplots
of those bandwidths in Figure 2. Here the true density function (5.3) together with the
upper and lower limits, say, for the mean of the CV based density estimates as an example
(by adding and subtracting respectively the double standard deviation of the CV based
density estimates of 100 simulations) is also provided for comparison. To save space and
make the figure legible, the simulated point-wise confidence interval for the mean density
estimate over 100 simulations is provided for one KDE only. The sampling variability and
simulation error are basically similar for other estimates. Further it can be observed from
Figure 1(a) that the adaptive KDEs using spatial CV based global bandwidths either
with the CV or the SJ pilot KDE (denoted by akde.cvcv and akde.cvSJ) are very similar
in the means of the 100 simulations, which are much closer to the true density (f-true)
than other (non-adaptive) KDEs such as the KDEs with the CV, the SJ and the rule of
thumb bandwidths (denoted by kde.cv, kde.SJ and density.r, respectively). Also, we can
clearly see from Panels (a)-(d) of Figure 1 that these facts remain true for the sample
sizes sufficiently large, with the adaptive KDEs outperforming the non-adaptive KDEs.
In particular, for the case of (m1,m2) = (100, 100), we cannot distinguish the means of the
akde.cvcv and the akde.cvSJ from the f-true in Panel (d). Note in Figure 2 that boxplots
of different bandwidths are provided, where the dotted (red) horizontal lines, standing for
the corresponding values of the benchmark MISE-optimal bandwidths, are plotted for ease
of comparison with other bandwidths. Interestingly, the mean and median of the CV and
the SJ selected bandwidths given in Table 1 and Figure 2 are much closer to the optimal
bandwidth (say H.op=0.1788 in Panel (a) of Figure 2) than the rule of thumb bandwidths
(the CV ones are a bit closer than the SJ’s) for the non-adaptive KDE. As expected, the
optimal bandwidth (say H0.op=0.2659 in Panel (a) of Figure 2) for the adaptive KDE
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Figure 2: Boxplot of different selected bandwidths of 100 simulations of sample sizes of
n = m1 ∗ m2: (a) (m1,m2) = (25, 10), (b) (m1,m2) = (20, 20), (c) (m1,m2) = (50, 50)
and (d) (m1,m2) = (100, 100). Here H.CV, H.SJ and H.R are the CV, SJ and R-default
(rule of thumb) bandwidths for h respectively, and H.op is the optimal bandwidth of h
minimising MISE, in KDE; H0.CV, H0.SJ and H0.or are the CV bandwidths for h0 in
AKDE with pilot estimates by the CV, the SJ and the oracle true density, respectively.
The (red) dotted horizontal lines are for the MISE-optimal H.op and H0.op of the KDE
and the AKDE with the pilot of oracle (true) density, respectively, provided for ease of
comparison with others.

appears to be quite close to the mean and median of the oracle bandwidths (H0.or), which
are similar to (only slightly larger than) those for H0.CV and H0.SJ given in Table 1. We
can also see from Figure 2 that with the sample sizes increasing, the medians for H0.CV
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and H0.SJ as well as the oracle bandwidths (H0.or) are becoming similar and close to
H0.op for the adaptive KDEs (c.f., Panel (d)).

We are now further examining the finite-sample optimality of the spatial CV based
adaptive bandwidths compared with other bandwidths in estimation of density in terms
of ISE, ASE and MISE, which are also examined in Theorem 3.3. Here, for a given
density estimator f̂n with the true density function f specified in (5.3), dI(f̂n, f)(h) =
ISE(h) and dA(f̂n, f)(h) = ASE(h) are easily calculated as defined in (3.5) and (3.7)
with d = 1 and w(x) ≡ 1 taken in this section. However, for dM(f̂n, f)(h) = MISE(h)
defined in (3.6), because of spatial dependence with the simulated random field (5.2), it
becomes very complex and cannot be calculated as simply as with independent or time
series observations. But fortunately, as a referee suggested, if ISE, as a function of h,
is easily found, then MISE can be approximated through simulation. We do this by
approximation through the average of the resultant ISE values based on 1000 simulations
and we can therefore deal with MISE for the KDE and the AKDE defined in (2.4) and
(2.1), respectively. In order to compare the performance of the estimates, AKDE (2.1)
and KDE (2.4) with different bandwidths, defined in Sections 2–3, we will consider the
AKDEs defined in (2.1) with the adaptive bandwidths given in (3.2) by using different
pilot estimates of f , including the KDE (2.4) with the CV (see (3.4)) and the ‘second
generation’ Sheather-Jones (1991, SJ hereafter) bandwidth and the oracle (true f) taken
as a benchmark, respectively. As a comparison, we have also looked at the KDE in
(2.4) with bandwidths of the CV (see (3.4)) and the Sheather-Jones (1991), respectively
(those bandwidths outperforming the R default (rule of thumb) bandwidth as shown
in Figure 1). We did not consider the ‘second generation’ bandwidth by bootstrap as
bootstrapping the dependent non-Gaussian spatial data is still quite problematic, not as
simple as for independent data (see, e.g., Faraway and Jhun (1990)).

Boxplots of the ISE’s, ASE’s and MISE’s (scaled up by 100, 300 and 150 respectively
for easy presentation) with different bandwidth based density estimates are displayed in
Figure 3 for the 100 simulations of different sample sizes of (m1,m2) as specified above
(to save space, the rule of thumb is not reported here, which performs worse than those
reported in this figure, as indicated in Figure 1 above). We have also provided boxplots
for the minimal values of the ISE’s, ASE’s and MISE’s in Figure B.1 and their corre-
sponding optimal bandwidths (i.e., the bandwidths minimising the ISE, ASE and MISE,
respectively) in Figure B.2 for the AKDEs and the KDEs of the simulated data. Here
in Figures 3, k.cv (k.SJ) is for the KDE with the CV-based (SJ-based) bandwidth, while
a.cv (a.SJ or a.o) is a simple notation for the AKDE using the spatial CV global band-
width with the pilot density being the CV-based KDE (the SJ-based KDE or the oracle
true density) in Section 3. The conclusion of all of these experiments is that in the KDE
case, CV and SJ perform similarly (with the SJ a bit better as is known). This similarity
holds true in the AKDE case as well, when CV and SJ are used in the pilot estimation
stage with the global bandwidth by the spatial CV, but the AKDE pair does significantly
better than the KDE pair.
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Figure 3: Boxplots of ISE(×100), ASE(×300) and MISE(×150) for density estimates
with 100 simulations of sample sizes of (m1,m2): (a) (m1,m2) = (25, 10), (b) (m1,m2) =
(20, 20), (c) (m1,m2) = (50, 50) and (d) (m1,m2) = (100, 100). Here k.cv and k.SJ
are for the KDE with CV and SJ-based bandwidths, and a.cv, a.SJ and a.o are for the
AKDE using the SCV global bandwidths with the CV, the SJ based KDE, and the oracle
true, pilot densities. The (red) dotted horizontal lines are for the medians of the 100
simulated ISEs, ASEs and MISEs of the AKDE with a CV-KDE pilot respectively for
ease of comparison, and the two vertical lines for separation of ISE, ASE and MISE.
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Also, as a referee suggested, we have examined the minimal ISE (ASE or MISE) values
of the KDE and the AKDE together with their corresponding optimal bandwidths, which
are provided, to save space, in Figures B.1 and B.2 in Section B3 of Appendix B. Note
that in Figure B.1, v.k stands for the minimal ISE (ASE or MISE) value of the KDE,
while the corresponding optimal bandwidth, denoted by hik (hak or hmk), minimises
with respect to h the ISE (ASE or MISE) of the KDE (in acronyms), and v.acv for the
minimal ISE (ASE or MISE) value of the AKDE using the corresponding optimal global
bandwidth, denoted by h0icv (h0acv or h0mcv), minimising with respect to h0 the ISE
(ASE or MISE) of the AKDE with the CV-based KDE as the pilot density (in acronyms)
in Figure B.2. Here v.asj (v.a0) can be defined similarly to v.acv, and h0isj, h0asj or h0msj
(h0io, h0ao or h0mo) to h0icv, h0acv or h0mcv, with the SJ-based KDE (the oracle true
density) replacing the CV-based KDE as the pilot.

It is again observed from Figure 3 and Figure B.1 that: (i) Overall the AKDEs by
using the proposed spatial CV adaptive bandwidths either with the CV or the SJ piloted
KDE outperform the KDEs with the CV-based and the SJ-based bandwidths. This
phenomenon is particularly observed in terms of MISE even with the sample sizes as
small as (m1,m2) = (25, 10), which is the sample size in the real data below, in Panel (a)
of these figures. (ii) With the sample sizes increasing, the AKDEs are clearly preferred to
the KDEs, even in terms of ISE and ASE, as obviously seen in Panel (d) of these figures.
(iii) For the AKDEs in Panels (a)–(d) of these figures, their performances by using the
proposed spatial CV adaptive bandwidths either with the CV or the SJ KDE for pilot
appear quite similar although using the SJ-KDE for pilot is sometimes slightly preferred.
But for the non-adaptive KDEs, as indicated in the literature mentioned above, the SJ-
based bandwidth is usually preferred. (iv) Note that, as expected, the impractical oracle
AKDE performs best, but with the sample size becoming large as in Panel (d) of these
figures, all the estimates have very small ISE, ASE and MISE (much smaller than those
in Panels (a)–(c)), so the performance of all the practical estimates including the AKDE
and the KDE approaches in these figures looks acceptable for the large sample sizes. Also,
it is interesting to observe from Figure B.2 that as the sample sizes increase, the optimal
global bandwidths for AKDE either with the CV-KDE or the SJ-KDE for a pilot are
approaching to that of the oracle AKDE with true density as a pilot, all of which are
larger than the optimal KDE bandwidths. This phenomenon is seen particularly clearly
under MISE in Figure B.2 (note that the asymptotic MISE is the base of the SJ bandwidth
method, c.f., Jones et al. (1996), in the non-adaptive case).

Now we can define the ratios of the left-hand side of (3.12) for dI , dA and dM , respec-
tively, by

RdI =
dI(f̂n, f)(ĥ)

infh∈Hn dI(f̂n, f)(h)
, RdA =

dA(f̂n, f)(ĥ)

infh∈Hn dA(f̂n, f)(h)
, RdM =

dM(f̂n, f)(ĥ)

infh∈Hn dM(f̂n, f)(h)

The histograms of these ratios for 100 simulations with different cases of sample sizes for
the non-adaptive KDE are depicted in Figure 4, while the histograms for the AKDE, to
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Figure 4: Histograms of RdI ’s, RdA’s and RdM ’s, and RdI.SJ ’s, RdA.SJ ’s and RdM.SJ ’s.
respectively, for the CV and the SJ selected bandwidths of 100 simulations with different
sample sizes of n = m1 ∗ m2: (a) (m1,m2) = (25, 10), (b) (m1,m2) = (20, 20), (c)
(m1,m2) = (50, 50) and (d) (m1,m2) = (100, 100).
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save space, in Figure B.3 in Section B3 of Appendix B, both of which do look very similar.
It follows from these figures that these ratios tend to be closer to 1 as the sample size
increases. In particular RdM tends to converge faster than RdI , and RdI faster than RdA,
which seem understandable as RdA is more sample dependent than RdI , and RdI than
RdM . Clearly, the proposed spatial CV based adaptive bandwidth selection (the non-
adaptive bandwidth is its special case) works reasonably well in terms of all dI , dA and
dM , and it improves with the sample size becoming larger as the asymptotic optimality
is indicated in Theorems 3.3 and 3.4 with the oracle property . In particular, in terms of
the MISE distance dM in (3.6), the spatial CV selected bandwidth (either with the CV
or SJ as a pilot) can approximate the optimal bandwidth well even for the sample size
as small as m1 = 25 and m2 = 10, the sample size of the real soil data set examined in
Section 5.2.

Before ending this subsection, we here have a simple look at the computational cost
of the approach. As can be seen from (3.1), given a pilot density, the leading order
of the cost of calculating the SCVδ in (3.1) for AKDE is O(n2), where n = m1m2 is
the total sample size of an m1 × m2 lattice data set here. Likewise, so is the leading
order for calculating the SCV0 in (3.3) with a non-adaptive KDE. Therefore, in terms
of the leading order in computational costs, the adaptive bandwidth selection by (3.14)
in Section 3.2 either with a CV- or an SJ-pilot density is of the same order O(n2). In
general, the procedure used above appears to run well in practice. The real elapsed time
for a bandwidth selection run in R by a Dell Precision 7520 laptop of COREi7 for the
simulated data sets of different sample sizes is reported in Table B.1 in Appendix B. As
is seen from this table, for the sample size of m1 ×m2 = 20× 20 = 400, the real elapsed
time needed for our proposed spatial CV procedure is about 2.5 seconds, while for the
sample size as large as m1×m2 = 100× 100 = 10, 000, the real elapsed time is about 110
seconds, which appears quite acceptable. This indicates that our spatial CV approach
can work fast for the analysis of the real soil data of sample size (m1,m2) = (25, 10) given
in the subsection below.

5.2 An application to soil data analysis

We are analysing a spatial soil data set, soil250, in the R package geoR (c.f., Ribeiro Jr
and Diggle 2016), which consists in uniformity trials with 250 undisturbed soil samples
collected at 25cm soil depth of spacing of 5 meters, resulting in a regular grid of 25× 10
points. The data consist of 250 observations on 22 variables concerning soil chemistry
properties measured on the grid. In this analysis, we only consider 8 columns of the
data table, involving the columns named Linha (the column for x-coordinate), Coluna
(the column for y-coordinate), pHKCl (soil pH by potassium chloride (KCl) solution),
Ca (calcium content), K (potassio content), H (hydrogen content), C (carbon content),
and CTC (catium exchange capability). Here the pH by KCl measures the acidity in
the soil solution, plus the reserve acidity in the colloids, and is therefore more acid than
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Figure 5: Soil data: The images of 6 soil properties variables after spatial trend removal by
sm.regression, plotted over space, (Linha, Coluna)

pH (water), although both are neutral at pH 7.0 (c.f., DAIS 2007). Zheng et al. (2010)
recently studied the spatial spectral density for the CTC variable, and Lu et al. (2014)
analysed the impacts of soil chemistry properties of pHKCl, Ca, K and C as well as other
variables on the CTC, an important soil property for soil conservation, of concern in
agriculture science.

In the original data, as shown in Lu et al. (2014), there seem to be some spatial
trends for all variables, so we apply sm.regression in the R package sm (c.f., Bowman
and Azzalini 2014) to remove the spatial trends. The resulting spatial data of these soil
chemical variables, denoted by prefix “res.” standing for residual, are plotted in Figure 5,
and appear to be stationary. We hence analyse the distribution of these variables based on
the residual data; the different density estimates are plotted in Figure 6: (a) res.pHKCl,
(b) res.Ca, (c) res.K, (d) res.H, (e) res.C, (f) res.CTC, where ‘cv.akde’ and ‘cv.akde.SJ’
are for adaptive kernel density estimate (2.1) with adaptive bandwidths combined by the
cv piloted and the Sheather-Jones (SJ) piloted densities, respectively, and ‘cv.kde’ for the
cv-based kernel density estimate (2.4) in Section 3. Here the CV selected bandwidths in
Sections 3.1 and 3.2 are given in Table 2. In addition, as benchmark comparisons, the
R function ‘density’ estimates, denoted by ‘r.density’ and ‘r.SJ’, with the default (rule of
thumb) and the SJ bandwidths, respectively, and the normal density, denoted by ‘normal’,
with the same mean and variance of the sample, are also depicted in Figure 6. It is clear
that the CV-based estimated densities of all these variables indicate that distributions
are basically non-Gaussian, where the densities of res.Ca, res.K, res.H, res.C and res.CTC
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Figure 6: Density estimation by different methods for 6 soil chemistry properties of (a)
pHKCl (b) Ca, (c) K, (d) H, (e) C and (f) CTC after spatial trends removed.

are skewed and one of them is even multi-modal (e.g., res.C). Also, from Figure 6 it is
interesting to note that the estimated densities by the proposed AKDE given in (2.1)
either with a CV-pilot or an SJ-pilot adaptive bandwidth are similar, which are more
significantly illustrating the non-Gaussianity of these residual data than the KDEs in
(2.4), including the rule of thumb, the CV and the SJ bandwidths, for the six soil variables.
Furthermore, in view of the simulation above with the sample size ofm1 = 25 andm2 = 10,
the (estimated) adaptive CV-piloted AKDE strengthens this impression, demonstrating
that nonlinear quantile analysis of res.CTC in relation to other covariates is needed, as
indicated in Lu et al. (2014), for a better understanding of the data. Furthermore, from
the estimated probability densities plotted in Figure 6, we can learn more on the soil
properties. With the possible exception of part (a) of Figure 6, the densities in this figure
are all non-Gaussian. From (a), the soil pH by potassium chloride (KCl) solution (pHKCl)
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Table 2: The CV selected bandwidths for KDE and AKDE with 6 soil variables
(a) res.pHKCl (b) res.Ca (c) res.K (d) res.H (e) res.C (f) res.CTC

h in KDE 0.04256665 0.07467 0.02776 0.12733 0.00969 0.11465
h0 in AKDE 0.06730755 0.09817 0.04451 0.15311 0.01712 0.16290

is basically symmetric around its spatial trend; from (b), relative to the spatial trend, the
calcium content (Ca) density is positively skewed with a thicker right tail; from (c), the
potassio content (K) may be seen to be basically symmetric around its spatial trend
or only slightly positively skewed; from (d), relative to the spatial trend, the hydrogen
content (H) density is obviously negatively skewed with a thicker left tail; from (e), the
property of the carbon content (C) is more complex having at least two peaks with the
negatively located peak higher than the positive one; and finally from (f), the catium
exchange capability (CTC) is basically negatively skewed around its spatial trend. These
properties would be helpful for soil management and conservation.
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Appendix A: Spatial dependence and assumptions

Differently from the time series data, spatial data become much more complex and
involved. Fundamentally, time is only uni-directional from the past to the future, while
space is multi-directional. With spatial data, the fact that the spatial sites do not have a
natural ordering makes the problem of CV bandwidth selection more challenging.

We first introduce the necessary assumptions on the spatial processes. Given the
stationary spatial lattice process {Xi} that is d-dimensional with index i = (i1, i2, ..., iN) ∈
ZN (N ≥ 1), for any set of sites S ⊂ ZN , denote by B(S) the Borel σ-field generated by
{Xi, i ∈ S}. For each couple S,S ′, let ρ(S,S ′) be the Euclidean distance between S and
S ′. We assume that {Xi, i ∈ ZN} satisfies the following spatial mixing condition: There
exists a function ϕ(t) ↓ 0 as t→∞, such that whenever S, S ′ ⊂ ZN ,

αS,S′(B(S),B(S ′)) = sup{|P(AB)− P(A)P(B)|, A ∈ B(S), B ∈ B(S ′)}
≤ ψ(Card(S), Card(S ′))ϕ(ρ(S,S ′)), (A.1)

where Card(S) denotes the cardinality of S, and ψ is a symmetric positive function from
N × N → R+ nondecreasing in each variable. For the function ψ, we assume that it
satisfies either

ψ(n,m) ≤ min{n,m} (A.2)

or
ψ(n,m) ≤ C(n+m+ 1)k (A.3)

for some k > 1 and C > 0; the same letter C is used for various positive constants,
which may take different values in different place. Obviously, if ψ ≡ 1, then random field
{Xi, i ∈ ZN} is called strongly mixing. See Doukhan (1994) for more discussion.

The concept of spatial mixing above concerns the conditions on the spatial data gener-
ating process, which is standard in the context of the problem under study. The α-mixing
condition (A.1) is similar to (A4) of Hallin et al.(2004b). This is a technical assumption
widely used in both nonlinear time series and spatial literature to characterize the data
dependence. In the serial case, many stochastic processes and time series are shown to
be strongly mixing. Withers (1981) has obtained various conditions for linear processes
to be strongly mixing. Under certain weak assumptions, autoregressive and more gen-
eral nonlinear time-series models are strongly mixing with exponential mixing rates; see
Pham and Tran (1985), Pham (1986), Tjøstheim (1990) and Lu (1998). Guyon (1987)
has shown that the results of Withers (1981) under certain conditions can be extended
to linear random fields, of the form Xn =

∑
j∈Z2 gjZn−j, with n ∈ Z2, over gridded space,

where the Zj’s are independent random variables. In addition, either (A.2) or (A.3) is
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OK for our proof; not both are needed (c.f., (B.15) in Appendix B). Here conditions (A.2)
and (A.3) are only some examples on the ψ part in (A.1), which are the same as the
mixing conditions used by Neaderhouser (1980) and Takahata (1983), respectively, and
are weaker than the uniform strong mixing condition considered by Nakhapetyan (1980).
They are satisfied by many spatial models, as shown by Neaderhouser (1980), Rosenblatt
(1985) and Guyon (1987). See also Lu and Tjøstheim (2014) for more discussion and
some examples.

In what follows, we derive the main results of this paper under some mild assumptions.
(K1) The kernel function K is a bounded function symmetric with respect to zero,

as well as Hölder continuous and compactly supported, satisfying
∫
Rd K(t)dt = 1.

(K2) For any non-negative components of (i1, i2, ..., id) with i1 + i2 + ...+ id ≤ r, denote

S(K, i1, i2, ..., id) =

∫
Rd
ti11 ...t

id
d K(t)dt,

which satisfies the properties of rth-order kernels that

S(K, i1, · · · , id) = 0, when for any j, ij < r, with i1 + i2 + ...+ id > 0,

and
0 < |S(K, i1, · · · , id)| <∞, if there is some j such that ij = r,

where r is a positive integer given in (D1) below.
(K3) The convolution of kernel function K with itself, K̃, is absolutely integrable.

(K4) The kernel function K is differentiable, and its characteristic function, ψK(t) =∫
Rd e

ιt′uK(u)du, with ι2 = −1, satisfies |ψK(t)| ≤ cK |ψN (t)|, where ψN (t) = e−t
′t/2 is

the characteristic function of d-dimensional standard normal distribution, cK > 0 is a
constant and t′ is the transpose of t ∈ Rd.

(D1) The bounded density function f is Hölder continuous with rth order continuous
differentiations.

(D2)(i) The joint probability density function fi,j(x, y) of Xi and Xj exists and satisfies
|fi,j(x, y)−f(x)f(y)| ≤ C for all x, y and all i 6= j. (ii) The conditional probability density
function f̂i1,··· ,is|j1,··· ,js(x1, · · · , xs|y1, · · · , ys) of (Xi1 , · · · , Xis) given (Xj1 = y1, · · · , Xjs =
ys) is bounded for all xk, yk ∈ Rd and all ik 6= jk, k = 1, · · · , s, with 1 ≤ s ≤ 2r.

(W) w(.) is bounded and integrable with a compact support Sw ⊂ Rd.
(D3) The density function f(·) is bounded away from zero on Sw, that is infx∈Sw f(x) ≥

cw > 0.
(H) h ∈ Hn = [añ−

1
2r+d , bñ−

1
2r+d ] for some constants a and b with 0 < a < b <∞.

(M) The mixing coefficient ϕ(t) satisfies

ϕ(t) = O(t−µ)
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with µ > 2Nr(2− 2/q)/(1− 2/q) for some q > 2.
Remarks: The assumptions above are quite mild:
(i) Assumptions (K1), (K2), (K3) and (D1) that are imposed on the kernel function K

and the density function f were used to obtain the bias of the estimator and asymptotical
equivalence of different squared errors, respectively; see, for instance, Vieu (1991), Kim
and Cox (1995, 1997), among others for details, in the non-spatial case. Assumption (K4)
is a technical one needed for the case of adaptive bandwidth choice with δ > 0, which is
easily satisfied, say K taken as the normal probability density function itself, or having a
bounded support with the constant cK > 0 being sufficiently large.

(ii) Assumption (D2) is a technical condition with uniform boundedness imposed on
the joint probability density functions to ensure a uniform consistency with respect to the
different spatial sites. It has been similarly adopted, for instance, by Masry (1986) in the
time series case, and by Tran (1990), Hallin et al. (2004b) and Lu et al. (2014) in the
gridded spatial context. Obviously, (D2)(i)(ii) are valid in independent case under (D1).

(iii) Assumption (W) is general and was adopted by Marron (1987), Kim and Cox
(1995), etc. Assumption (D3) is imposed on the lower bound of the density f on Sw,
which is a technical condition needed for the proof in the case of δ > 0 with an adaptive
KDE.

(iv) Assumption (M) requires the mixing coefficients of the spatial dependent data
tending to zero at a suitable rate, which is mild. For example, if N = 1 and r = 2
with a relatively large q taken, it follows from Assumption (M) that ϕ(t) = O(t−µ) with
µ > 2Nr(2− 2/q)/(1− 2/q) ≈ 8 is sufficient, which is much weaker than µ > 922 required
in Remark 2.1 of Hart and Vieu (1990, page 877) for the time series data.

Assumption (H) is chosen so that the vertical error (c.f. (3.8) in Theorem 3.1) con-
tracts according to the convergence order of the optimal bandwidth. Assumption (H) is
a technical assumption with Hn = [añ−1/(2r+d), bñ−1/(2r+d)] for 0 < a < b < ∞, similarly
to those used in Marron and Härdle (1986), Kim and Cox (1997), Vieu (1991) and others
in theory (c.f., Lemma B.4 in Appendix B). In practice, according to our empirical expe-
rience in the simulation and real data examples, as a can be chosen small while b may be
large, it looked that the range Hn could well include the optimal bandwidth even for the
adaptive KDE.
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Appendix B: Technical Proofs and Additional Figures and Table

We provide the proof of the theorems in Section 3. We will be mainly focusing on the
case of δ = 0 for ease of exposition below as the proofs for δ = 0 and δ > 0 are basically
similar, where for the latter case δ > 0, assumptions (K4) and (D3) in Appendix A are
additionally needed (see the Proof of Theorem 3.1 in Section B2 below). Some additional
figures and table are given in Section B3.

B1 Some useful lemmas and their proofs

In this section, we collect some necessary lemmas and their proofs, which are needed for
the proof of the main results in the next section. Here Lemmas B.2 – B.3 given below
are only stated for the case of δ = 0 for saving of space, but they are easily shown to be
true with slight modifications by taking notice of f̌n in (2.1) (instead of f̂n) and, without
loss of generality, putting hi = h/[f δ(Xi)] with h0 = h following from (2.2) for the case of
δ > 0 (under additional assumptions (K4) and (D3)).

Lemma B.1 (i) Suppose (3.1) holds. Let Lγ(F ) denote the class of F -measurable
r.v.’s X satisfying ‖X‖γ = (E|X|γ)1/γ < ∞. Let X ∈ Lγ(B(S)) and Y ∈ Lζ(B(S ′)).
Suppose 1 ≤ γ, ζ, η <∞ and γ−1 + ζ−1 + η−1 = 1, then

|EXY − EXEY | ≤ C‖X‖γ‖Y ‖ζ × {ψ(Card(S), Card(S ′))ϕ(ρ(S,S ′))}1/η. (B.1)

(ii) For r.v.’s bounded with probability 1, the right-hand side of (B.1) can be replaced by
Cψ(Card(S), Card(S ′))ϕ(ρ(S,S ′)).

Proof. See Tran (1990) and its reference.

Lemma B.2 Suppose the assumptions (K1), (D1) and (D2) hold.
(i) For any i, j ∈ In, i 6= j, we have

EKqr(
Xi −Xj

h
) = O(hd). (B.2)

(ii) For any ik, jk ∈ In, ik 6= jk and any positive integer νk’s, with k = 1, 2, · · · , s, we have

EKν1(
Xi1 −Xj1

h
)Kν2(

Xi2 −Xj2

h
)...Kνs(

Xis −Xjs

h
) = O(hds). (B.3)

Proof. (i) By (K1), (D1) and (D2), we can check that

EKqr(
Xi −Xj

h
) =

∫ ∫
Rd×Rd

Kqr(
x− y
h

)fi,j(x, y)dxdy

=

∫ ∫
Rd×Rd

Kqr(u)f̂i,j(y + uh, y)hddudy
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=

∫ ∫
Rd×Rd

Kqr(u)f̂i|j(y + uh|y)f(y)hddudy = O(hd).

(ii) The proof for this part of (B.3) is similar to that of (i) with fi,j(x, y) there replaced by
the joint probability density function f̂i1,j1,··· ,is,js(x1, y1, · · · , xs, ys) of (Xi1 , Xj1 , · · · , Xis , Xjs)
together with application of assumption (D2). The detail is omitted.

The following lemma plays a key role in the proof of the main results, and is of
independent interest.

Lemma B.3 Suppose that Assumptions (D1), (D2), (H) and (M) hold. Let
ξi,j = ξ(Xi, Xj, hn) be a measurable function of (Xi, Xj, hn), satisfying Eξi,j = 0 and

E
∏s

k=` |ξik,jk |νk = O(h
d(s−`+1)
n ), uniformly with respect to ik 6= jk ∈ In, as n→∞, where

νk ≤ 2r, for k = `, · · · , s, are positive integers, with non-negative integers ` ≤ s. Then
we have

E

( ∑
i,j∈In,i6=j

ξi,j

)2r

≤ C1ñ
2hd + C2(ñ2hd)r

+ C3(ñ2hd)r(P 2Nrhrd + h( 2
q
−1)rd

∞∑
t=P+1

t2Nr−1ϕ(t)1− 2
q
)
, (B.4)

with 1 ≤ P ≤ max{n1, n2, ...nN}.
Proof. The result together with its proof is an extension of that of Gao et al (2008) in

which the summation is only over i. With the summation over both i and j in this lemma,
the proof details become much lengthier, so we only sketch the proof here. Firstly, we
have the decomposition as follows:

E
( ∑
i,j∈In,i6=j

ξi,j
)2r

=
∑

i,j∈In,i 6=j

E[ξ2r
i, j] +

2r−1∑
s=1

∑
ν0+ν1+...+νs=2r

Vs
(
ν0, ν1, ..., νs

)
:= A+B, (B.5)

where
∑

ν0+ν1+...+νs=2r is the summation over (ν0, ν1, ..., νs) with positive integer compo-
nents satisfying ν0 + ν1 + ...+ νs = 2r, and

Vs
(
ν0, ν1, ..., νs

)
=

∑
(i0,j0)6=(i1,j1)6=... 6=(is,js)

E
(
ξν0i0,j0 .ξ

ν1
i1,j1

...ξνsis,js
)
, (B.6)

where the summation
∑

(i0,j0) 6=(i1,j1)6=... 6=(is,js)
is over sites indexes (i0, i1, ..., is) and (j0, j1, ..., js),

respectively with each index ix and jy taking value in ZN from 1 to n; and satisfying ic 6= id
for any c 6= d, and jk 6= jm, for any k 6= m, 0 ≤ c, d, k,m ≤ s.

Secondly, we treat the first term A in (B.5). By the moment condition specified in the
lemma, it follows that

A = O(ñ2hd). (B.7)
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Next, we deal with the second term B in (B.5) for 1 ≤ s ≤ r − 1. In fact, by (B.6),

Vs(ν0, ν1, ..., νs) =
∑

(i0, j0)6=(i1,j1)6=... 6=( is,js)

[E(
s∏

m=0

ξνmim, jm)−
s∏

m=0

Eξνmim, jm ]

+
∑

(i0,j0)6=(i1, j1) 6=... 6=(is, js)

s∏
m=0

Eξνmim, jm := Vs1 + Vs2. (B.8)

Obviously, by the moment condition specified in the lemma again, it follows that

|Vs2| ≤ C(ñ2hd)s+1. (B.9)

As for the first term Vs1 in (B.8), by extending the derivation of (3.9) of Gao et al (2008),
it follows that

|Vs1| ≤
s−1∑
l=0

(ñ2hd)l.
∑

(il,jl)6=... 6=(is,js)

|E[
s∏

m=l

ξνmim,jm ]− Eξνlil,jlE[
s∏

m=l+1

ξνmim,jm ]|

:=
s−1∑
l=0

(ñ2hd)lVls1. (B.10)

Thus, we need to consider that, for some P > 0,

Vls1 =
∑

0<ρ({(il,jl)},{(il+1,jl+1),(il+2,jl+2),...,(is,js)})≤P

|E[
s∏

m=l

ξνmim,jm ]− Eξνlil,jlE[
s∏

m=l+1

ξνmim,jm ]|

+
∑

0<ρ({(il,jl)},{(il+1,jl+1),(il+2,jl+2),...,(is,js)})>P

|E[
s∏

m=l

ξνmim,jm ]− Eξνlil,jlE[
s∏

m=l+1

ξνmim,jm ]|

:= Vls11 + Vls12. (B.11)

By (B.3), we have

|E[
s∏

m=l

ξνmim,jm ]− Eξνlil,jlE[
s∏

m=l+1

ξνmim,jm ]| ≤ |E[
s∏

m=l

ξνmim,jm ]|+ |Eξνlil,jlE[
s∏

m=l+1

ξνmim,jm ]|

= O(h(s−l+1)d) +O
(
hd
)
O
(
h(s−l)d) = O

(
hd(s−l+1)

)
. (B.12)

Hence, if ρ({(il, jl)}, {(il+1, jl+1), (il+2, jl+2), ..., (is, js)}) ≤ P , then it follows that

Vls11 ≤ Chd(s−l+1)

P∑
k=1

∑
k≤ρ({(il,jl)},{(il+1,jl+1),(il+2,jl+2),...,(is,js)})=t<k+1

1. (B.13)

Note that if ρ({(il, jl)}, {(il+1, jl+1), (il+2, jl+2), ..., (is, js)}) = t, then there exists some loca-
tion, say (il+1, jl+1) ∈ {(il+1, jl+1), (il+2, jl+2), ..., (is, js)} such that ρ({(il, jl)}, {(il+1, jl+1)}) =
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t, which leads to

Vls11 ≤ Chd(s−l+1) ñ2(s−(l+2)+1)

P∑
k=1

∑
k≤ρ({(il,jl)},{(il+1,jl+1)})=t<k+1

1

≤ Chd(s−l+1) ñ2(s−l−1)

P∑
k=1

ñ2k2N−1 ≤ Chd(s−l+1)ñ2(s−l)P 2N . (B.14)

If ρ({(il, jl)}, {(il+1, jl+1), (il+2, jl+2), ..., (is, js)}) = t > P , by q > 2, Lemma B.1 and (B.3),
we obtain

|E[
s∏

m=l

ξνmim, jm ]− Eξνlil, jlE[
s∏

m=l+1

ξνmim, jm ]| ≤ C{E|ξil, jl |qr}
νl
qr
(
E

s∏
m=l+1

|ξim, jm|
νmqr
2r−νl

) 2r−νl
qr α

1− 2
q

2,2(s−l)(t)

≤ Ch
dνl
qr hd(s−l) 2r−νl

qr α
1− 2

q

2,2(s−l)(t) ≤ Ch
dν̃ls
qr α

1− 2
q

2,2(s−l)(t),

where ν̃ls = νl + (s− l)(2r − νl). Thus, we have

Vls12 ≤ C
∑

ρ({(il,jl)},{( il+1,jl+1),(il+2, jl+2),...,(is,js)})=t>P

h
dν̃ls
qr α

1− 2
q

2,2(s−l)(t)

≤ Ch
dν̃ls
qr

∞∑
k=P+1

∑
k≤ρ({(il,jl)},{(il+1, jl+1),(il+2,jl+2),...,(is, js)})=t<k+1

α
1− 2

q

2,2(s−l)(t)

≤ Ch
dν̃ls
qr

∞∑
k=P+1

ñ2(s−(l+2)−1) ñ2
∑

k≤‖(i,j)‖=t<k+1

α
1− 2

q

2,2(s−l)(t)

≤ Ch
dν̃ls
qr ñ2(s−l)

∞∑
t=P+1

t2N−1ϕ1− 2
q (t). (B.15)

Note that in the last inequality of (B.15), the assumption of either (A.2) or (A.3) is
needed but they do not really make a difference in the proof. Here we need the ψ(n,m)
part in the spatial mixing of (A.1) with n = 2 and m = 2(s − l) ≤ 4r in (A.2) or
(A.3) because 0 ≤ s ≤ 2r − 1 and 0 ≤ l ≤ s with r being the positive integer given in
assumption (D1). Here ψ(n,m) ≤ min(n,m) ≤ C (generic positive constant) under (A.2)
and ψ(n,m) ≤ C(n + m + 1)k ≤ C (generic positive constant) under (A.3). In any case,
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ψ(n,m) is controlled by a positive generic constant C. Then, it follows that

|Vs1| ≤ C

s−1∑
l=0

(ñ2hd)lVls1 ≤ C
s−1∑
l=0

(ñ2hd)l[hd(s−l+1)ñ2(s−l)P 2N ]

+ C
s−1∑
l=0

(ñ2hd)l[h
dṽls
qr ñ2(s−l)

∞∑
t=P+1

t2N−1ϕ1− 2
q (t)]

≤ (ñ2hd)s+1

s−1∑
l=0

[C1(ñ2hd)l−s−1hd(s−l+1)ñ2(s−l)P 2N

+ C2(ñ2hd)l−s−1h
dṽls
qr ñ2(s−l)

∞∑
t=P+1

t2N−1ϕ1− 2
q (t)]

≤ C(ñ2hd)s+1

s−1∑
l=0

[ñ−2P 2N + ñ−2h−Qlsd
∞∑

t=P+1

t2N−1ϕ1− 2
q (t)]

= O((ñ2hd)s+1) = O((ñ2hd)r), (B.16)

where Qls = −[(l − s− 1) + ṽls/(qr)] = [(s− l)r(q − 2) + qr + νl(s− l − 1)]/(qr) > 1 for
0 ≤ l ≤ (s− 1) and q > 2.

Finally, we treat the second term B in (B.5) for r ≤ s ≤ 2r − 1, we only show
the proof for s = 2r − 1 in the case of N = 2, where we denote ik = (i1k, i

2
k) and

jk = (j1
k , j

2
k). The proof is done by extending the argument in Gao et al (2008), but

some details are different. Concretely, let us denote all different (number 2r) pairs of
locations (i0, j0), ..., (i2r−1, j2r−1) as s0, s1, ...s2r−1, where we denote sk = (i1k, i

2
k, i

3
k, i

4
k) with

i3k := j1
k and i4k := j2

k for k = 0, 1, 2, ...2r − 1, and sk 6= sl for k 6= l. Arrange each of
the s component index sets, i`0, i

`
1, ..., i

`
2r−1, for ` = 1, 2, 3, 4, in ascending orders, say, as

i0,` ≤ i1,` ≤ ... ≤ i2r−1,`. Then write the index increments

∆ik,` = ik,` − ik−1,`, ` = 1, 2, 3, 4,

for 1 ≤ k ≤ 2r − 1. Also arrange ∆i1,`,∆i2,`, ...,∆i2r−1,` in decreasing orders, for ` =
1, 2, 3, 4, respectively as (for notational simplicity, we use the same notation)

∆il`1,` ≥ ∆il`2,` ≥ ... ≥ ∆il`2r−1,`
, ` = 1, 2, 3, 4,

where (l`1, · · · , l`2r−1) is a permutation of (1, · · · , 2r − 1) for the `-th component of index
s. Take t` = ∆il`r,`, for ` = 1, 2, 3, 4, and t = max{t1, t2, t3, t4}. Without loss of generality,
assume t = t1 ≥ max{t2, t3, t4}, then it follows that

0 ≤ il1k,1 − il1k−1,1 ≤ t ≤ n1, for k ∈ S1 = {r + 1, ..., 2r − 1};
0 ≤ il2k,2 − il2k−1,2 ≤ t ≤ n2, for k ∈ S2 = {r, ..., 2r − 1};
0 ≤ il3k,3 − il3k−1,3 ≤ t ≤ n1, for k ∈ S3 = {r, ..., 2r − 1};
0 ≤ il4k,4 − il4k−1,4 ≤ t ≤ n2, for k ∈ S4 = {r, ..., 2r − 1};
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that is

il`k−1,` ≤ il`k,` ≤ t+ il`k−1,`, ` = 1, 2, 3, 4, for k ∈ S1 = {r + 1, ..., 2r − 1}.

Thus, for the term of (B.6) with s = 2r − 1, we may arrange s0 6= s1 6= ... 6= s2r−1

according to the order of i0,1 ≤ i1,1 ≤ ... ≤ i2r−1,1. Note that (i0,1, i1,1, ..., i2r−1,1) is only a
permutation of (i10, i

1
1, ..., i

1
2r−1). For notational convenience, we still denote the re-ordered

sk’s by sk’s, where if i1j corresponds to ik,1, then the original sj corresponds to the re-
ordered sk. Set I ` = {il`1,`, il`2,`, ...il`2r−1,`

}, I` = {il`1,`, il`2,`, ...il`r,`}, I c
` = I ` − I` =

{il`r+1,`
, il`r+2,`

, ...il`2r−1,`
}, and il`0,` = i0,`, for ` = 1, 2, 3, 4. We then obtain that

W =
∑

(i0,j0) 6=(i1, j1)6=... 6=(i2r−1, j2r−1)

|E[ξi0,j0 .ξi1,j1 ...ξi2r−1, j2r−1 ]|

≤ C

max{n1,n2}∑
t=1

n1∑
i
l10,1

=1

n1∑
i=1

i∈I1−{il1r,1}

i
l1
k
−1,1

+t∑
i
l1
k
,1

=i
l1
k
−1,1

k∈S1

n2∑
i
l20,2

=1

n2∑
i=1

i∈I2−{il2r,2}

i
l2
k
−1,2

+t∑
i
l2
k
,2

=i
l2
k
−1,2

k∈S2

n1∑
i
l30,3

=1

n1∑
i=1

i∈I3−{il3r,3}

i
l3
k
−1,3

+t∑
i
l3
k
,3

=i
l3
k
−1,3

k∈S3

n2∑
i
l40,4

=1

n2∑
i=1

i∈I4−{il4r,4}

i
l4
k
−1,4

+t∑
i
l4
k
,4

=i
l4
k
−1,4

k∈S4

|E[ξs0ξs1 ...ξs2r−1 ]|. (B.17)

Taking positive constant P such that 0 < P < max{n1, n2}, then the right-hand-side
of (B.17) can be divided into two parts depending on 1 ≤ t ≤ P and t > P , denoted by
W1 and W2, respectively.

For 1 ≤ t ≤ P , by (B.3), we have

W1 = C
P∑
t=1

n1∑
i
l10,1

=1

n1∑
i=1

i∈I1−{il1r,1}

i
l1
k
−1,1

+t∑
i
l1
k
,1

=i
l1
k
−1,1

k∈S1

n2∑
i
l20,2

=1

n2∑
i=1

i∈I2−{il2r,2}

i
l2
k
−1,2

+t∑
i
l2
k
,2

=i
l2
k
−1,2

k∈S2

n1∑
i
l30,3

=1

n1∑
i=1

i∈I3−{il3r,3}

i
l3
k
−1,3

+t∑
i
l3
k
,3

=i
l3
k
−1,3

k∈S3

n2∑
i
l40,4

=1

n2∑
i=1

i∈I4−{il4r,4}

i
l4
k
−1,4

+t∑
i
l4
k
,4

=i
l4
k
−1,4

k∈S4

|E[ξs0ξs1 ...ξs2r−1 ]|

≤ C(n1n
r−1
1 n2n

r−1
2 )2

P∑
t=1

t4r−1h2rd ≤ C(n1n2)2rP 4rh2rd. (B.18)

[For general N , the bound is C(n1 · · ·nN)2rP 2Nrh2rd. ]
For t > P , extending the derivation for (3.19) in Gao et al (2008, page 695), clearly,

if i1,1 and i2r−1,1 are not in the set of indices I1, there exist two successive indices,
say ik∗,1 and ik∗+1,1 in I1, or else one of i1,1 and i2r−1,1 belongs to I1. Let ρ(·, ·) be

B.6



the generic Euclidean distance. Therefore, either ρ({s0, · · · , sk∗−1}, {sk∗}) ≥ ∆ik∗,1 ≥
t, ρ({sk∗}, {sk∗+1, · · · , s2r−1}) ≥ ∆ik∗+1,1 ≥ t and ρ({s0, · · · , sk∗−1}, {sk∗ , · · · , s2r−1}) ≥
∆ik∗+1,1 ≥ t, or ρ({s0}, {s1, · · · , s2r−1}) ≥ ∆i1,1 ≥ t, or ρ({s0, · · · , s2r−2}, {s2r−1}) ≥
∆i2r−1,1 ≥ t. Set Ask∗−1

:= ξs0ξs1 · · · ξsk∗−1
, Bsk∗+1

:= ξsk∗+1
· · · ξs2r−1 . Then for the case of

ik∗ and ik∗+1 in I1, by (B.3) and noting that Eξsk∗ = 0,

Eξs0ξs1 · · · ξs2r−1 = EAsk∗−1
ξsk∗Bsk∗+1

= cov(Ask∗−1
, ξsk∗Bsk∗+1

) + EAsk∗−1
Eξsk∗Bsk∗+1

≤ (E(Ask∗ )
q)1/q(E(ξsk∗Bsk∗+1

)q)1/qα
1−2/q
k∗,2r−k∗(t)

+ EAsk∗−1
(Eξqsk∗ )

1/q(EBq
sk∗+1

)1/qα
1−2/q
1,2r−k∗−1(t)

≤ C(hd{k
∗/q+(2r−k∗)/q}ϕ1−2/q(t) + C(hd{k

∗+1/q+(2r−k∗−1)/q}ϕ1−2/q(t) ≤ Ch2rd/qϕ1−2/q(t);

and for the case of i1 or i2r−1 in I1, the same can be got more easily. Note that

W2 = C

max{n1,n2}∑
t=P+1

n1∑
i
l10,1

=1

n1∑
i=1

i∈I1−{il1r,1}

i
l1
k
−1,1

+t∑
i
l1
k
,1

=i
l1
k
−1,1

k∈S1

n2∑
i
l20,2

=1

n2∑
i=1

i∈I2−{il2r,2}

i
l2
k
−1,2

+t∑
i
l2
k
,2

=i
l2
k
−1,2

k∈S2
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n1∑
i
l30,3

=1

n1∑
i=1

i∈I3−{il3r,3}

i
l3
k
−1,3

+t∑
i
l3
k
,3

=i
l3
k
−1,3

k∈S3

n2∑
i
l40,4

=1

n2∑
i=1

i∈I4−{il4r,4}

i
l4
k
−1,4

+t∑
i
l4
k
,4

=i
l4
k
−1,4

k∈S4

|E[ξs0ξs1 ...ξs2r−1 ]|.

Therefore, we have

W2 ≤ C(n1n2)2r

∞∑
t=P+1

t4r−1h2rd/qϕ1−2/q(t) = C(n1n2)2rh2rd/q

∞∑
t=P+1

t4r−1ϕ1−2/q(t). (B.19)

[For generalN , the bound is C(n1 · · ·nN)2rh2rd/q
∑∞

t=P+1 t
2Nr−1ϕ1−2/q(t).] Thus, by (B.17),

(B.18) and (B.19), for N = 2, it follows that

W ≤ C(n2
1n

2
2h

d)r
(
P 4rhrd + h( 2

q
−1)rd

∞∑
t=P+1

t4r−1ϕ(t)1− 2
q
)
.

Similarly, for general N , we can have

W ≤ C(ñ2hd)r(P 2Nrhrd + h( 2
q
−1)rd

∞∑
t=P+1

t2Nr−1ϕ(t)1− 2
q
)
. (B.20)

Hence, by (B.7), (B.8), (B.9),(B.16) and (B.20), (B.4) is valid.

B2 Proofs of the main results

In this section, we present the proofs of the main results. We need the following lemma
for the main proofs.

Lemma B.4 (i) In the case of δ = 0, if the assumptions (K1)-(K3), (W) and (M)
hold, then we have

MISE(h) = E

∫
(f̂n(x)− f(x))2w(x)dx = h2r

∫
Rd
B2
f (x)w(x)dx+ o(h2r)

+
1

ñhd

∫
Rd
f(x)w(x)dx.

∫
Rd
K2(u)du+ o(

1

ñhd
), (B.21)

where Bf (x) =
∑d

i=1C
(i)
1 (K)T

(i)
f,r(x), with C

(i)
1 (K) = 1

r!

∫
Rd t

r
iK(t)dt and T

(i)
f,r(x) = ∂rf(x)

∂xri
,

for x = (x1, x2, ..., xd), t = (t1, t2, ..., td) and i = 1, 2, ..., d.
(ii) In the case of δ > 0, for hi = h/[f δ(Xi)] with h0 = h, in addition to the assumptions

in (i), if Assumptions (K4)) and (D3) hold, then we have

MISE(h) = E

∫
(f̌n(x)− f(x))2w(x)dx = h2r

∫
Rd
B2
f (x)w(x)dx+ o(h2r)

+
1

ñhd

∫
Rd

(f(x))1+dδw(x)dx.

∫
Rd
K2(u)du+ o(

1

ñhd
), (B.22)
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where Bf (x) = (1− rδ)f(x)−rδ
∑d

i=1
∂rf(x)
∂xri

C
(i)
1 (K). Note that under the optimal δ = 1/r,

Bf (x) ≡ 0.
Proof. (i) First, we note that MISE(h) admits the variance-bias square decomposi-

tion as follows:

MISE(h) =

∫
Rd
V ar(f̂n(x))w(x)dx+

∫
Rd

(Ef̂n(x)− f(x))2w(x)dx. (B.23)

Second, by stationarity, we have

Ef̂n(x) =
1

hd
EK

(x−X1

h

)
=

∫
Rd

1

hd
K
(x− y

h

)
f(y)dy =

∫
Rd
K
(
y
)
f(x− yh)dy.

Then, by (K1), (K2) and (K3), applying Lemma 9.1 of Vieu (1991) to µ = f leads to

Bn(x) := Ef̂n(x)− f(x) = hrBf (x) + o(hr). (B.24)

Hence, together with assumption (W), we obtain∫
Rd

(Ef̂n(x)− f(x))2w(x)dx = h2r

∫
Rd
B2
f (x)w(x)dx+ o(h2r) (B.25)

On the other hand, by (M) with ϕ(t) = t−µ, it follows that
∑∞

t=1 t
N−1(ϕ(t))1− 2

q < ∞ for
µ > N/(1− 2/q) and q > 2. Applying Lemma 2.2 of Tran (1990), we have

lim
n→∞

ñhdV ar(f̂n(x)) = f(x)

∫
Rd
K2(u)du,

which implies∫
Rd
V ar(f̂n(x))w(x)dx =

1

ñhd

∫
Rd
f(x)w(x)dx.

∫
Rd
K2(u)du+ o(

1

ñhd
). (B.26)

Finally, by (B.23), (B.25) and (B.26), (B.21) is valid.
(ii) For δ > 0, notice that the only difference between this proof and that of (i) is to

replace h−dK
(
x−Xi

h

)
in KDE with (i) by h−di K

(
x−Xi

hi

)
in ADKE for this part with hi =

h(f(Xi))
−δ (without loss of generality). With this in mind, for example, corresponding to

(B.24), by assumptions (K1), (K2), (K3), (W) and (D1) together with assumptions (K4)
and (D3),

Eh−di K

(
x−Xi

hi

)
= Eh−di K

(
Xi − x
hi

)
= h−d

∫
(f(u))dδK

(
(u− x)(f(u))δ

h

)
f(u)du

=

∫
(f(x+ hu))1+dδK

(
uf δ(x+ hu)

)
du,

B.9



and then we can show that

Bn(x) := Eh−di K

(
x−Xi

hi

)
− f(x)

=

∫ [
(f(x+ hu))1+dδK

(
uf δ(x+ hu)

)
− (f(x))1+dδK

(
uf δ(x)

)]
du

=

∫
[Ju(f(x+ hu))− Ju(f(x))] du, (B.27)

where Ju(y) = K(yδu)y1+dδ. Then, note that J
(1)
u (y) =

∑d
i=1Ki(y

δu)δyδ−1uiy
1+dδ +

K(yδu)(1 + dδ)y1+dδ−1 = ydδ[δ
∑d

i=1Ki(y
δu)yδui + (1 + dδ)K(yδu)] and by assumption

(D1)

En(u) ≡ f(x+ hu)− f(x) =
r−1∑
j=1

1

j!

d∑
i1=1

· · ·
d∑

ij=1

fi1···ij(x)hjui1 · · ·uij

+
1

r!

d∑
i1=1

· · ·
d∑

ir=1

fi1···ir(x+ thu)hrui1 · · ·uir , (B.28)

where |t| ≤ 1, and Ki(x) and fi1···ij(x) stand for the first order partial derivative of K(x)
with respect to xi and the j-order partial derivative of f(x) with respect to xi1 , · · · , xij ,
respectively. We then have with application of Taylor’s expansion that

Ju(f(x+ hu))− Ju(f(x)) = J (1)
u (f(x) + t1En(u))(En(u)), (B.29)

where |t1| ≤ 1. Thus as done in Abramson (1982a, page 1220), by assumption (K2), it
easily follows from (B.27)–(B.29) that

Bn(x) : =

∫
[Ju(f(x+ hu))− Ju(f(x))] du

= (1 + o(1))f(x)(1+d)δδ

d∑
i=1

∂rf(x)

∂xri

d∑
j=1

∫
Kj(uf

δ(x))uju
r
idu

hr

r!

+ (1 + o(1))(1 + δd)f(x)dδ
d∑
i=1

∂rf(x)

∂xri

∫
K(uf δ(x))uridu

hr

r!

= (1 + o(1))f(x)(1+d)δδ
d∑
i=1

∂rf(x)

∂xri

d∑
j=1

∫
Kj(v)

vj
f δ(x)

vri
f rδ(x)

1

fdδ(x)
dv

hr

r!

+ (1 + o(1))(1 + δd)f(x)dδ
d∑
i=1

∂rf(x)

∂xri

∫
K(v)

vri
f rδ(x)

1

fdδ(x)
dv

hr

r!

= (1 + o(1))f(x)−rδδ
d∑
i=1

∂rf(x)

∂xri
(−(r + 1)− (d− 1))

∫
K(v)vri dv

hr

r!
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+ (1 + o(1))(1 + δd)f(x)−rδ
d∑
i=1

∂rf(x)

∂xri

∫
K(v)vri dv

hr

r!

= (1 + o(1))(1− rδ)f(x)−rδ
d∑
i=1

∂rf(x)

∂xri

∫
K(v)vri dv

hr

r!
=: hrB∗(x), (B.30)

and hence the bias term (B.24) is still true (and actually of order o(hr) when taking the
optimal δ = 1/r in the context of Section 3.1, which is an extension of Abramson (1982a)
who considered r = 2). For the asymptotic variance, similarly to Lemma 2.2 of Tran
(1990), we have

lim
n→∞

ñhdV ar(f̌n(x)) = lim
n→∞

hdEh−2d
i K2

(
x−Xi

hi

)
= lim

n→∞
hd
∫
Rd

1

h2d
f 2dδ(y)K2

(x− y
h

f δ(y)
)
f(y)dy = f 1+dδ(x)

∫
Rd
K2(u)du.

Now (B.22) easily follows as done for Part (i) above.
Proof of Theorem 3.1: Note that without loss of generality we put hi = h/[f δ(Xi)]

with h0 = h. Define

Ui,j :=
1

hdi
K(

Xi −Xj

hi
)w(Xj)−

∫
Rd

1

hdi
K(

Xi − x
hi

)f(x)w(x)dx− f(Xj)w(Xj)

+

∫
Rd
f(x)2w(x)dx, (B.31)

Wj :=
1

hd

∫
Rd
fdδ(u)K(

u−Xj

h
f δ(u))w(Xj)f(u)du

− 1

hd

∫ ∫
Rd×Rd

fdδ(u)K(
u− x
h

f δ(u))f(x)f(u)w(x)dxdu

− f(Xj)w(Xj) +

∫
Rd
f(x)2w(x)dx (B.32)

and
Vi,j := Ui,j −Wj (B.33)

for all i, j ∈ In and i 6= j.
Then, by simple arithmetical calculations, we have

|CVδ(h)− ISE(h)− T | = 2

ñ(ñ− 1)
|
∑

i,j∈In,i6=j

Ui,j|. (B.34)

Hence, by (B.33) and (B.34), it is sufficient to show that the following equalities hold:

1

ñ(ñ− 1)
MISE−1(h)|

∑
i,j∈In,i6=j

Vi,j| = Op(bn) (B.35)
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and
1

ñ
MISE−1(h)|

∑
j∈In

Wj| = Op(bn), (B.36)

respectively, where bn = ñ−
d

2(2r+d) .

Verification of (B.35): In the non-spatial case (N = 1), the argument given by Hart
and Vieu (1990, page 885) for a similar result to (B.35) heavily depends on the natural
ordering of i and j of one dimension (c.f., (4.6) of Hart and Vieu (1990)), so their argument
cannot simply apply to our spatial case (N > 1) where i and j lack a natural ordering
between them. Also note that the argument by Marron (1987, page 159) does not work
as E(Vi,j) 6= 0 and hence E(Vi,j|Xi) 6= 0 owing to spatial dependence between Xi and Xj

in our case.
First, we deal with EVi,j. By Lemma B.2, EVi,j = O(1), and also note that

EVi,j =
1

hd

∫ ∫
Rd×Rd

fdδ(u)K(
u− x
h

f δ(u))[fi,j(u, x)− f(u)f(x)]w(x)dxdu

=
1

hd

∫ ∫
Rd×Rd

fdδ(u)
1

(2π)d

∫
e−ιt

′ u−x
h
fδ(u)ψK(t)[fi,j(u, x)− f(u)f(x)]w(x)dtdxdu

=

∫ ∫
Rd×Rd

1

(2π)d

∫
e−ιt

′(u−x)ψK(ht/f δ(u))[fi,j(u, x)− f(u)f(x)]w(x)dtdxdu

=
1

(2π)d

∫
cov

(
e−ιt

′XiψK(hit), e
ιt′Xjw(Xj)

)
dt,

where ψK(t) =
∫
Rd e

ιt′uK(u)du, with ι2 = −1 and t′ is the transpose of t ∈ Rd.
We first look at the case of δ = 0, i.e., hi ≡ h (fixed). Then by Lemma B.1(ii),

|cov
(
e−ιt

′XiψK(hit), e
ιt′Xjw(Xj)

)
| = |ψK(ht) cov

(
e−ιt

′Xi , eιt
′Xjw(Xj)

)
|

≤ C|ψK(ht)|ϕ(‖i− j‖),

and therefore

∑
i,j∈In,i6=j

|EVi,j| ≤
P∑
k=1

∑
i,j∈In

k≤‖i−j‖=t<k+1

O(1) +
∞∑

k=P+1

∑
i,j∈In

k≤‖i−j‖=t<k+1

Cϕ(‖i− j‖)
∫
|ψK(ht)|dt

≤ C

[
ñPN + ñh−d

∞∑
k=P

kN−1ϕ(k)

]
. (B.37)

For the case δ > 0, by assumptions (D1) and (K4), it follows that hi = h/f δ(Xi) ≥
h/cδf with cf > 0 standing for the upper bound of f due to (D1), and |ψK(hit)| ≤
cK |ψN (hit)| = cKe

−h2i t
′t/2 ≤ cKe

−h2t′t/(2c2f ) = ψ∗K(ht), with ψ∗K(t) = cKe
−t′t/(2c2f ), by which
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together with Lemma B.1(i) with γ →∞, ζ →∞ and η → 1, we easily have

|cov
(
e−ιt

′XiψK(hit), e
ιt′Xjw(Xj)

)
| ≤ C‖e−ιt′XiψK(hit)‖∞‖eιt

′Xjw(Xj)‖∞ϕ(‖i− j‖)

≤ C|ψ∗K(ht)|ϕ(‖i− j‖).

Thus replacing ψK(ht) in (B.37) by ψ∗K(ht), we easily see that (B.37) still holds true.
Therefore 1

ñ(ñ−1)
MISE−1(h)|

∑
i,j∈In,i6=jEVi,j| ≤ C[hdPN +

∑∞
k=P k

N−1ϕ(k)] = O(bn),

under PN
∑∞

k=P k
N−1ϕ(k) = O(1) as P → ∞, where we take P = bb−1/N

n c and bn =
O(hd/2), and bbc stands for the integer part of b.

Now, to verify (B.35), we only need to show

ñ−2MISE−1(h)

∣∣∣∣∣ ∑
i,j∈In,i6=j

(Vi,j − EVi,j)

∣∣∣∣∣ = OP (bn). (B.38)

Set ηi,j = K(
Xi−Xj

hi
)w(Xj)−EK(

Xi−Xj

hi
)w(Xj), ηi =

∫ (
K(x−Xi

hi
)− EK(x−Xi

hi
)
)
w(x)f(x)dx,

ηj =
∫ (

K(
u−Xj

h/fδ(u)
)w(Xj)− EK(

u−Xj

h/fδ(u)
)w(Xj)

)
f(u)du. Then note that ξi,j := hdi (Vi,j −

EVi,j) = ηi,j − ηi − ηj.
We first consider the case δ = 0, i.e. hi = h. Then by Assumptions (K1) and (D1), it

easily follows that |ηi| ≤ Chdn and |ηj| ≤ Chdn. We now check the moment conditions for ξi,j
specified in Lemma B.3. Obviously Eξi,j = 0. Further, together with Lemma B.2, for any
positive integers νk ≤ 2r, |ξik,jk |νk ≤ C(|ηik,jk |νk + |ηik |νk + |ηjk |νk) ≤ C(|Kik,jk |νk + Chdn),

for k = `, · · · , s, where Ki,j = K(
Xi−Xj

h
). Then by Lemma B.2, it follows that, as n→∞,

E

s∏
k=`

|ξik,jk |νk ≤ E
s∏
k=`

C(|Kik,jk |νk + Chdn) = O(hd(s−`+1)
n ). (B.39)

Similarly, for δ > 0 with hi = h/f δ(Xi), by Assumptions (K1), (D1), (W) and (D3),

it easily follows that
∫ (

K(x−Xi

hi
)
)
w(x)f(x)dx =

∫
(K(y))w(Xi + hiy)f(Xi + hiy)hdi dy =

O(hd) owing to hi ≤ h/cw for Xi ∈ Sw by assumption (D3). Thus

|ηi| ≤
∫ (

K(
x−Xi

hi
) + EK(

x−Xi

hi
)

)
w(x)f(x)dx ≤ Chdn,

and |ηj| ≤ Chdn. With Kw
i,j = K(

Xi−Xj

hi
)w(Xj) replacing Ki,j above, it similarly follows

that (B.39) holds true.
Thus by Lemma B.3 together with (B.39) we have

E

( ∑
i,j∈In, i 6=j

ξi,j

)2r

≤ C1ñ
2hd + C2( ñ2hd)r

+ C3( ñ2hd)r

(
P 2Nrhrd + h( 2

q
−1)rd

∞∑
t=P+1

t2Nr−1ϕ(t)1− 2
q

)
= O( ñ2hd)r, (B.40)
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where P = bh( 2
q
−2)rd/[µ(1−2/q)]c for µ > 2Nr(2 − 2/q)/(1 − 2/q) with q > 2, under which

P 2Nrhrd = O(1) and h( 2
q
−1)rd∑∞

t=P+1 t
2Nr−1ϕ(t)1− 2

q = O(1) with ϕ(t) = O(t−µ) in as-
sumption (M).

To show (B.38), by Chebyschev inequality, Lemma B.4 and (B.40), we have

P

(
ñ−2MISE−1(h)

∣∣∣∣∣ ∑
i,j∈In,i6=j

(h−dξi,j)

∣∣∣∣∣ > εbn

)

≤ (εbn)−2rñ−4rh−2dr(MISE(h))−2rE

( ∑
i,j∈In,i6=j

ξi,j

)2r

≤ C(εbn)−2rñ−2rE

∣∣∣∣∣ ∑
i,j∈In,i6=j

ξi,j

∣∣∣∣∣
2r

≤ C(εbn)−2rñ−2r
[
(ñ2hd)r

]
≤ C(εbn)−2rhdr → 0 (B.41)

as ε → ∞, with bn = O(hd/2), i.e., bn = ñ−
d

2(2r+d) under assumption (H). Then, (B.35)
follows from (B.41).

Verification of (B.36): When δ = 0, for x ∈ Rd, write

Bn(x) := Ef̂n(x)− f(x) =

∫
Rd
K(y)[f(x+ yh)− f(x)]dy

=
1

r!
hr

d∑
i=1

∫
Rd
K(y)[f

(r)
ir (x+ ζhy)yri ]dy := hrB∗n(x), (B.42)

by application of Taylor’s expansion together with assumptions (K1), (K2) and (D1),

where f
(r)
ir (x) = f

(r)
i1=i,··· ,ir=i(x) and f

(j)
i1,··· ,ij(x) is the j-th order partial differentiation of

f(x) w.r.t. (xi1 , · · · , xij), with xi the i-th component of x ∈ Rd and |ζ| < 1.
Similarly, when δ > 0, it follows from (B.30) that

Bn(x) := Ef̌n(x)− f(x)

=
1

hd

∫
Rd
fdδ(y)K(

y − x
h

f δ(y))f(y)dy − f(x) := hrB∗n(x),

which is still of a similar form to (B.42).
Then by (B.42) note

Wj = Bn(Xj)w(Xj)−
∫
Rd
Bn(x)f(x)w(x)dx

= hr[B∗n(Xj)w(Xj)−
∫
Rd
B∗n(x)f(x)w(x)dx] (B.43)

with EWj = 0 and |Wj| ≤ C by the assumptions (K1), (D1), (W). Similar to the proof of
Lemma B.3, it is easy to show that E(

∑
j∈In Wj)

2 = O(ñh2r) as n→∞. Then

P (n−1MISE−1(h)|
∑
j∈In

Wj| > εbn) ≤ (εbn)−2(ñMISE(h))−2E(
∑
j∈In

Wj)
2

≤ (εbn)−2h2dO(ñh2r)→ 0 (B.44)
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as ε → ∞, with bn = O(hd/2) = ñ−
d

2(2r+d) under assumption (H). Thus, (B.36) follows
from (B.44).

Finally, we can, by (3.8), have (3.9) converging to zero in probability uniformly with
respect to h ∈ Hn by a similar argument to the proof of Theorem 3.2 (as shown for
(B.46)–(B.48)) below, the detail of which is omitted here.

Proof of Theorem 3.2. As seen in the proof of Theorem 3.1 above, the proof in the
case of δ > 0 is similar to that for δ = 0 under the additional assumptions (K4) and (D3).
To save space, only the proof for δ = 0 in this theorem is provided below. Theorem 3.2
corresponds to Lemma B of Marron (1985, page 1018) under independent data. We only
sketch the proof of this theorem with the difference of spatial dependence highlighted.

Let δ∗h(x,Xj) = K(
x−Xj

h
)−hdf(x) (we shall define δ∗h(x,Xj) = K(

x−Xj

h
f δ(Xj))f

dδ(Xj)−
hdf(x) in the case of δ > 0). Then

f̂n(x)− f(x) =
1

ñhd

∑
j∈In

δ∗h(x,Xj) := f̂ ∗n, (B.45)

and MISE(h) = dM(f̂ ∗n, 0)(h), ISE(h) = dI(f̂
∗
n, 0)(h). First, notice the decomposition

ISE(h)−MISE(h) =

∫
Rd
{f̂ ∗n}2w(x)dx− E

∫
Rd
{f̂ ∗n}2w(x)dx

=

∫
Rd

(f̂ ∗n − Ef̂ ∗n)2w(x)dx+ 2

∫
Rd

(f̂ ∗n − Ef̂ ∗n)Ef̂ ∗nw(x)dx

−
∫
Rd
E(f̂ ∗n − Ef̂ ∗n)2w(x)dx = T1 + T2 + 2T3 − T4 − T5,

where

T1 = (ñhd)−2

∫
Rd

∑
i∈In

[δ∗h(x,Xi)− Eδ∗h(x,Xi)]
2w(x)dx,

T2 = (ñhd)−2

∫
Rd

∑
i,j∈In,i6=j

[δ∗h(x,Xi)− Eδ∗h(x,Xi)][δ
∗
h(x,Xj)− Eδ∗h(x,Xj)]w(x)dx,

T3 =

∫
Rd

(f̂ ∗n − Ef̂ ∗n)Ef̂ ∗nw(x)dx =
1

ñhd

∑
j∈In

∫
Rd
R∗j (x)(Ef̂n(x)− f(x))w(x)dx,

T4 = ( ñhd)−2

∫
Rd
E
∑
i∈In

[δ∗h(x,Xi)− Eδ∗h(x,Xi)]
2w(x)dx,

T5 = (ñhd)−2

∫
Rd
E

∑
i,j∈In,i6=j

[δ∗h(x,Xi)− Eδ∗h(x,Xj)]w(x)dx.

We will show that: as n→∞,

sup
h∈Hn

| T1 − T4

MISE(h)
| → 0 in probability, (B.46)

B.15



sup
h∈Hn

| T3

MISE(h)
| → 0 in probability, (B.47)

sup
h∈Hn

| T2 − T5

MISE(h)
| → 0 in probability. (B.48)

Similarly to Marron (1985, section 8, page 1019) and Marron and Härdle (1986), by
the Hölder continuity of K and f under assumptions (K1) and (D1), note that it is
straightforward to extend to the supremum over Hn in (B.46) - (B.48) if they hold for the
supremum taken over any finite set (⊂ Hn) of h whose cardinality increases algebraically
fast with the sample size, the proof of which is outlined. For this, we can take the finite
set Bn ⊂ Hn consisting of the end points of the sub-intervals by partitioning Hn into
bñΞc sub-intervals for some Ξ > 0, with Card(Bn) = O(ñΞ).

Now, for (B.46), it suffices to show that

ñΞ sup
h∈Bn

MISE(h)−2rE|T1 − T4|2r → 0. (B.49)

Note that
T1 − T4 = (ñhd)−2

∑
i∈In

Z∗i , (B.50)

where Z∗i =
∫
Rd Yi(x)w(x)dx, with Yi(x) = (δ∗h(x,Xi) − Eδ∗h(x,Xi))

2 − E(δ∗h(x,Xi) −
Eδ∗h(x,Xi))

2. Obviously, EZ∗i = 0, and by the assumptions (K1), (D1) and (W), |Yi(x)| ≤
K2((Xi − x)/h) + Chdn and hence |Z∗i | ≤ Chdn. We can deal with the spatial dependence
of Z∗i by using the similar techniques in the proof of Lemma B.3 above to show that

E(
∑
i∈In

Z∗i )2r ≤ C1ñh
d + C2(ñhd)r

+ C3(ñhd)r

(
PNrhrd + h( 2

q
−1)rd

∞∑
t=P+1

tNr−1ϕ(t)1− 2
q

)
= O((ñhd)r),

where the last equality holds as shown in (B.40). Thus, by (B.50), it follows that

ñΞ|MISE(h)|−2rE|T1 − T4|2r ≤ CñΞ(ñhd)−2rE(
∑
i∈In

Z∗i )2r

≤ ñΞ(ñhd)−2r(ñhd)r = ñΞ(ñhd)−r = ñΞ(ñ)−2r2/(2r+d) → 0 (B.51)

as n→∞ when 0 < Ξ < 2r2

2r+d
under assumption (H), and hence (B.49) holds.

Second, for (B.47), it suffices to show that

ñΞ sup
h∈Bn

MISE(h)−2E|T3|2 → 0. (B.52)

In fact, writing T ∗j :=
∫
Rd R

∗
j (x)Bn(x)w(x)dx, with R∗j (x) = δ∗h(x,Xj) − Eδ∗h(x,Xj)

and Bn(x) = Ef̂n(x) − f(x) = hrB∗n(x) (c.f. (B.42)), we have T3 = 1
ñhd

∑
j∈In T

∗
j =
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1
ñhd

hr
∑

j∈In T
∗∗
j , where T ∗∗j :=

∫
Rd R

∗
j (x)B∗n(x)w(x)dx. Note that ER∗j (x) = 0. Thus,

ET ∗∗j = 0 and |T ∗∗j | ≤ C
∫
Rd |R

∗
j (x)|w(x)dx ≤ Chd. Further, E

(∑
j∈In T

∗∗
j

)2

= T3,1+T3,2,

where T3,1 =
∑

j∈In E(T ∗∗j )2 and T3,2 =
∑

i6=j∈In cov(T ∗∗i , T ∗∗j ). Note that E(T ∗∗j )2 =∫
Rd
∫
Rd ER

∗
j (x)R∗j (y)B∗n(x)B∗n(y)w(x)w(y)dxdy = O(h2d), and hence T3,1 = O(ñh2d). Ex-

tending the derivation for the cross terms in the proof of Lemma B.3 and Gao et al.
(2008), we can have T3,2 = O(ñh2d). It then follows that

ñΞ sup
h∈Bn

MISE(h)−2E|T3|2 ≤ ñΞ sup
h∈Bn

h2rE

(∑
j∈In

T ∗∗j

)2

≤ CñΞ sup
h∈Bn

h2r(ñh2d) ≤ CñΞ(ñ)−d/(2r+d) → 0 (B.53)

as n→∞ when 0 < Ξ < d
2r+d

under assumption (H), and hence (B.52) holds.
Finally, for (B.48), it suffices to show that

ñΞ sup
h∈Bn

MISE(h)−2E|T2 − T5|2 → 0. (B.54)

Denote

Si,j :=

∫
Rd

(δ∗h(x,Xi)− Eδ∗h(x,Xi))(δ
∗
h(x,Xj)− Eδ∗h(x,Xj))w(x)dx

=

∫
Rd
Ki(x)Kj(x)w(x)dx,

where Ki(x) := K(x−Xi

h
)− EK(x−Xi

h
). Then we have

T2 − T5 = (ñhd)−2
∑

i,j∈In,i6=j

(Si,j − ESi,j). (B.55)

Set ξi,j = Si,j − ESi,j. Then, E
(∑

i,j∈In,i6=j ξi,j

)2

= S∗1 + S∗2 , where S∗1 =
∑

i,j∈In,i 6=jEξ
2
i,j

and S∗2 =
∑

i,j∈In,i6=j

∑
i′,j′∈In,i′ 6=j′,(i,j)6=(i′,j′) Eξi,jξi′,j′ . Note that Eξ2

i,j ≤ C(ES2
i,j + (ESi,j)

2),

ESi,j = O(h2d) and ES2
i,j ≤ C(

∫ ∫ ∫ ∫
K((x − u)/h)K((x − v)/h)K((y − u)/h)K((y −

v)/h)fi,j(u, v)w(x)w(y)dudvdxdy + O(h4d)) = O(h4d). Hence Eξ2
i,j = O(h4d) and S∗1 =

O(ñ2h4d). Similarly to the proof of Lemma B.3, it can be shown that S∗2 = O(ñ2h4d).

Thus E
(∑

i,j∈In,i6=j ξi,j

)2

= O(ñ2h4d). Thus it follows together with (B.55) that

ñΞ sup
h∈Bn

MISE(h)−2E|T2 − T5|2 ≤ ñΞ sup
h∈Bn

(ñhd)−2O(ñ2h4d)

≤ CñΞ sup
h∈Bn

h2d ≤ CñΞñ−2d/(2r+d) → 0

as n→∞, when 0 < Ξ < 2d/(2r + d), under assumption (H). Therefore (B.54) holds.

B.17



Thus, (B.49), (B.52) and (B.54) hold provided 0 < Ξ < min{ d
2r+d

, 2r2

2r+d
}. This com-

plete the proof of the theorem.

Proof of Theorem 3.3 As seen in the proof of Theorem 3.1 above, the proof in
the case of δ > 0 is similar to that for δ = 0 under the additional assumptions (K4) and
(D3). To save space, only the proof for δ = 0 in this theorem is provided below, where
we note that f̌n(x) = f̂n(x).

The proof is easily done by applying Theorems 3.1 and 3.2. We just prove the result
for d(f̂n, f)(h) = dI(f̂n, f)(h) (we shall replace f̂n by f̌n with h0 = h as above in the case
of δ > 0). Let h∗ = arg infh∈Hn dI(f̂n, f)(h), then it is sufficient to show that

|dI(f̂n, f)(ĥ)− dI(f̂n, f)(h∗)|
dI(f̂n, f)(h∗)

→ 0 in probability. (B.56)

Since dI(f̂n, f)(h) ≥ dI(f̂n, f)(h∗) and CVδ(h
∗) ≥ CVδ(ĥ), then (B.56) will follow from

|dI(f̂n, f)(ĥ)− dI(f̂n, f)(h∗) + CVδ(h
∗)− CVδ(ĥ)|

dI(f̂n, f)(h∗)
→ 0 in probability, (B.57)

which, in turn, is implied by

|dI(f̂n, f)(ĥ)− CVδ(ĥ)− T − (dI(f̂n, f)(h∗)− CVδ(h∗)− T )|
dI(f̂n, f)(h∗)

→ 0 in probability.

(B.58)
Note that

CVδ(ĥ) + T − dI(f̂n, f)(ĥ)

dI(f̂n, f)(ĥ)
≤ CVδ(ĥ) + T − dI(f̂n, f)(ĥ)

dI(f̂n, f)(h∗)
≤ CVδ(h

∗) + T − dI(f̂n, f)(h∗)

dI(f̂n, f)(h∗)
.

Thus the relation (B.58) follows directly from (3.9) and (3.10). Hence, the proof is com-
pleted.

Proof of Theorem 3.4 The proof of this theorem can be done similarly to that
of Theorem 3.3 with details checked. We only give the proof for the case of distance

dI , which can be verified by showing that suph∈Hn

|dI( ˇ̌fn,f)(h)−dI(f̌n,f)(h)|
MISE(h)

= oP (1) and

suph∈Hn

|ČV δ(h)−CV δ(h)|
MISE(h)

= oP (1) as n→∞, together with Theorems 3.1 and 3.2. Here ˇ̌fn

and ČV δ(h) with h0 = h are defined in Section 3.2 and MISE(h) is in (3.6) for f̌n.
Here notice that the only difference between this proof and that of Theorem 3.3 is to

replace h−di K
(
x−Xi

hi

)
in AKDE with hi = h(f(Xi))

−δ in Theorem 3.3 by ĥ−di K
(
x−Xi

ĥi

)
in ADKE for this theorem with ĥi = h(f̂(Xi))

−δ and h0 = h (without loss of generality).
With this in mind, note from (2.1) and (3.13) that, by Taylor’s expansion together with
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assumption (K4),

ˇ̌fn(x)− f̌n(x) =
1

ñhd

∑
i∈In

[f̂dδ(Xi)K(
Xi − x
h

f̂ δ(Xi))− fdδ(Xi)K(
Xi − x
h

f δ(Xi))]

=
1

ñhd

∑
i∈In

[J∗Xi−x
h

(f̂(Xi))− J∗Xi−x
h

(f(Xi))]

=
1

ñhd

∑
i∈In

[J∗Xi−x
h

(1)(f(Xi) + t(f̂(Xi)− f(Xi))) (f̂(Xi)− f(Xi))], (B.59)

where |t| < 1, J∗u(y) = ydδK(uyδ), and

J∗u
(1)(y) = dδydδ−1K(uyδ) + ydδ

d∑
j=1

Kj(uy
δ)ujδy

δ−1 = δydδ−1K∗(uyδ), (B.60)

with Kj(x) being the partial derivative of K(x) with respect to the j-th component xj
of x ∈ Rd, and K∗(x) = d K(x) +

∑d
j=1 Kj(x)xj. Let Di(u; g) = J∗u

(1)(f(Xi) + t(g(Xi)−
f(Xi))) (g(Xi) − f(Xi)). Thus, by (B.59) together with (K4) and the assumption that
supx∈Sw |f̂(x)− f(x)| → 0 as n→∞,

∫
( ˇ̌fn(x)− f̌n(x))2w(x)dx =

∫ {
1

ñhd

∑
i∈In

Di(
Xi − x
h

; f̂)

}2

w(x)dx

=

∫
(

1

ñhd
)2

{∑
i∈In

D2
i (
Xi − x
h

; f̂) +
∑

i,j∈In,i6=j

Di(
Xi − x
h

; f̂)Dj(
Xj − x
h

; f̂)

}
w(x)dx

=

∫
(

1

ñhd
)2

{∑
i∈In

D2
i (u; f̂)w(Xi − uh) +

∑
i,j∈In,i6=j

Di(u; f̂)Dj(
Xj −Xi

h
+ u; f̂)w(Xi − uh)

}
hddu

= (1 + oP (1))

∫
(

1

ñhd
)2

{∑
i∈In

[J∗u
(1)(f(Xi))]

2(f̂(Xi)− f(Xi))
2w(Xi)

+
∑

i,j∈In,i6=j

J∗u
(1)(f(Xi))J

∗
u+Xjih

(1)(f(Xj))(f̂(Xi)− f(Xi))(f̂(Xj)− f(Xj))w(Xi)

}
hddu

= (1 + oP (1))

{
1

ñ2hd

∑
i∈In

∫
[J∗u

(1)(f(Xi))]
2du (f̂(Xi)− f(Xi))

2w(Xi)

+
1

ñ2hd

∑
i,j∈In,i6=j

∫
J∗u

(1)(f(Xi))J
∗
u+Xjih

(1)(f(Xj))du (f̂(Xi)− f(Xi))(f̂(Xj)− f(Xj))w(Xi)

}
:= (1 + oP (1)) {Dn1 +Dn2} , (B.61)

where Xjih =
Xj−Xi

h
.
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By the assumption that Υn := supx∈Sw |f̂(x)− f(x)| = oP (1) as n→∞, it is obvious
by Lemma B.4 that

Dn1

MISE(h)
≤ Υ2

n

1/(ñhd)

MISE(h)

1

ñ

∑
i∈In

∫
[J∗u

(1)(f(Xi))]
2du w(Xi) = oP (1), (B.62)

where MISE(h) is given in Lemma B.4 for f̌n(x), and oP holds uniformly with respect
to h ∈ Hn by assumption (H).

Also, by the assumption that Υn := supx∈Sw |f̂(x) − f(x)| = oP (1) together with the
bounded supports for K(·) and w(·) in assumptions (K1) and (W),

Dn2 =
1

ñ2hd

∑
i,j∈In,i6=j

∫
J∗u

(1)(f(Xi))J
∗
u+Xjih

(1)(f(Xi + hXjih))du

× (f̂(Xi)− f(Xi))(f̂(Xi + hXjih)− f(Xi + hXjih))w(Xi)

= oP (1)
1

ñ2hd

∑
i,j∈In,i6=j

∫
J∗u

(1)(f(Xi))J
∗
u+Xjih

(1)(f(Xi + hXjih))du w(Xi)

= oP (1)
1

ñ2hd

∑
i,j∈In,i6=j

∫
J∗u

(1)(f(Xi))J
∗
u+Xjih

(1)(f(Xj))du w(Xi)

= oP (1)
1

ñ2hd

∑
i,j∈In,i6=j

∫
J∗u+Xi/h

(1)(f(Xi))J
∗
u+Xj/h

(1)(f(Xj))du w(Xi)

= oP (1)

{
1

ñ2hd

∑
i,j∈In,i6=j

[D2ji − ED2ji] +
1

ñ2hd

∑
i,j∈In,i6=j

ED2ji

}
:= oP (1) {Dn21 +Dn22} , (B.63)

where J∗u
(1)(y) = δydδ−1K∗(uyδ), defined in (B.60), and

D2ji =

∫
J∗u+Xi/h

(1)(f(Xi))J
∗
u+Xj/h

(1)(f(Xj))du w(Xi).

Then for Dn21, we can easily apply Lemma B.3 with ξji = D2ji − ED2ji to obtain

ED2
n21 = E

{
1

ñ2hd

∑
i,j∈In,i6=j

ξji

}2

=

{
1

ñ2hd

}2

O(ñ2hd) = O

(
1

ñ2hd

)
,

and hence

Dn21 = OP

(
hd/2

ñhd

)
. (B.64)

Now for Dn22, letting J1i(u) = J∗u+Xi/h
(1)(f(Xi))w(Xi) and J2j(u) = J∗u+Xj/h

(1)(f(Xj)),
we note that

ED2ji =

∫
[cov(J1i(u), J2j(u)) + EJ1i(u)EJ2j(u)]du.
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Hence

Dn22 =

∫ [
1

ñ2hd

∑
i,j∈In,i6=j

cov(J1i(u), J2j(u)) +
1

ñ2hd

∑
i,j∈In,i6=j

EJ1i(u)EJ2j(u)

]
du

:=

∫
[Dn221(u) +Dn222(u)] du (B.65)

It is easy to show that

E|J1i(u)|q ≤ Chd(f(−u))(dδ−1)(q−1)w(−u), E|J2j(u)|q ≤ Chd(f(−u))(dδ−1)(q−1),

and by Lemma B.1, |cov(J1i(u), J2j(u))| ≤ (E|J1i(u)|q)1/q(E|J2j(u)|q)1/qϕ1−2/q(‖j− i‖) for
q > 2, and |cov(J1i(u), J2j(u))| ≤ (E|J1i(u)|2)1/2(E|J2j(u)|2)1/2. Thus

|Dn221(u)| = (f(−u))(dδ−1)w1/2(−u)
1

ñ2hd

∑
i,j∈In,0<‖i−j‖≤P

O(hd)

+ (f(−u))2(dδ−1)(q−1)/qw1/q(−u)
1

ñ2hd

∑
i,j∈In,‖i−j‖≤P

O(h2d/q)ϕ1−2/q(‖j− i‖)

= (f(−u))(dδ−1)w1/2(−u)
1

ñ2hd
ñPNO(hd)

+ (f(−u))2(dδ−1)(q−1)/qw1/q(−u)
1

ñ2hd
ñ

∞∑
t=P+1

tN−1ϕ1−2/q(t)O(h2d/q)

= O(
hd/2

ñhd
)[w1/2(−u) + w1/q(−u)], (B.66)

which easily follows by taking P = h−d/(2N) together with assumptions (D1) and (D3).
Moreover, by noticing that

∫
K∗(x)dx = 0 and assumptions (W), (D1) and (D3), we have

EJ1i(u) = EJ∗u+Xi/h
(1)(f(Xi))w(Xi)

= Eδfdδ−1(Xi)K
∗((u+Xi/h)f δ(Xi))w(Xi)

= δ

∫
fdδ−1(x)K∗((u+ x/h)f δ(x))w(x)f(x)dx

= δhd
∫
fdδ(xh− u)K∗(xf δ(xh− u))w(xh− u)dx

= (1 + o(1))w(−u)δhd
∫

[fdδ(xh− u)K∗(xf δ(xh− u))− fdδ(−u)K∗(xf δ(−u))]dx

= (1 + o(1))w(−u)δhd
∫

[J∗∗x (f(xh− u))− J∗∗x (f(−u))]dx = w(−u)O(hd+r), (B.67)

the last equality of which follows by a similar argument to (B.30), where J∗∗x (y) =
ydδK∗(xyδ). Similarly to (B.67), EJ2j(u) = O(hd+r). Thus together with (B.64), (B.65)
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and (B.66), it follows from Lemma B.4(ii) that Dn21 + Dn22 = O(h
d/2

ñhd
) + O(hd+2r) =

O(hd/2)MISE(h), where MISE(h) is given in Lemma B.4 for f̌n(x). Hence, by (B.63)
with a similar argument to that in the proof of Theorem 3.2, we have

sup
h∈Hn

Dn2

MISE(h)
= oP (1). (B.68)

Finally it follows from (B.61), (B.62) and (B.68) that

sup
h∈Hn

∫
( ˇ̌fn(x)− f̌n(x))2w(x)dx

MISE(h)
= oP (1). (B.69)

By (B.69) together with Theorem 3.2, it easily follows that

sup
h∈Hn

|dI( ˇ̌fn, f)(h)− dI(f̌n, f)(h)|
MISE(h)

= oP (1), sup
h∈Hn

|dI( ˇ̌fn, f)(h)− dI(f̌n, f)(h)|
dI(f̌n, f)(h)

= oP (1).

(B.70)

Now we are showing suph∈Hn

|ČV δ(h)−CV δ(h)|
MISE(h)

= oP (1) as n → ∞, which, by (B.70), is
equivalent to showing

Cn := sup
h∈Hn

|ČV δ(h)− CV δ(h)− ( ˇISE(h)− ISE(h))|
MISE(h)

= sup
h∈Hn

|ČV δ(h)− ˇISE(h)− T − (CV δ(h)− ISE(h)− T )|
MISE(h)

= oP (1), (B.71)

where ˇISE(h) = dI(
ˇ̌fn, f)(h) and ISE(h) = dI(f̌n, f)(h). By (B.34), in order to have

(B.71), it suffices to show that

Cn = sup
h∈Hn

| 2
ñ(ñ−1)

∑
i,j∈In,i 6=j(Ǔi,j − Ui,j)|
MISE(h)

= oP (1), (B.72)

where recall we put ĥi = h/[f̂ δ(Xi)] with h0 = h, and

Ǔi,j :=
1

ĥdi
K(

Xi −Xj

ĥi
)w(Xj)−

∫
Rd

1

ĥdi
K(

Xi − x
ĥi

)f(x)w(x)dx− f(Xj)w(Xj)

+

∫
Rd
f(x)2w(x)dx.

Recalling the definition of Ui,j in (B.31), it follows that

2

ñ( ñ− 1)

∑
i,j∈In,i6=j

(Ǔi,j − Ui,j)

=
2

ñ(ñ− 1)hd

∑
i,j∈In,i6=j

[
J∗Xi−Xj

h

(f̂ δ(Xi))− J∗Xi−Xj
h

(f δ(Xi))

]
w(Xj)

− 2

ñ(ñ− 1)hd

∑
i,j∈In,i6=j

∫ [
J∗Xi−x

h

(f̂ δ(Xi))− J∗Xi−x
h

(f δ(Xi))
]
w(x)f(x)dx
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:= Cn1(h)− Cn2(h). (B.73)

It follows from (B.59) together with (3.1) and the assumption supx∈Sw |f̂(x)− f(x)| =
oP (1) that, for some |t̃| < 1,

Cn1(h) =
2

ñ

1

(ñ− 1)hd

∑
i,j∈In,j6=i

[J∗Xi−Xj
h

(1)(f(Xi) + t̃(f̂(Xi)− f(Xi))) (f̂(Xi)− f(Xi))]w(Xj)

=
2

ñ

1

(ñ− 1)hd

∑
i,j∈In,j6=i

[J∗Xjih

(1)(f(Xi) + t̃(f̂(Xj + hXijh)− f(Xj + hXijh)))

× (f̂(Xj + hXijh)− f(Xj + hXijh))]w(Xj)

= oP (1)
2

ñ

1

(ñ− 1)hd

∑
i,j∈In,j6=i

[J∗Xijh

(1)(f(Xi))]w(Xj), (B.74)

and similarly,

Cn2(h) =
2

ñhd

∑
i∈In

∫
[J∗Xi−x

h

(1)(f(Xi) + t̃(f̂(Xi)− f(Xi))) (f̂(Xi)− f(Xi))]w(x)f(x)dx

= oP (1)
2

ñhd

∑
i∈In

∫
[J∗Xi−x

h

(1)(f(Xi))]w(x)f(x)dx. (B.75)

Then, by (B.74) and (B.75),

Cn1(h)− Cn2(h) = oP (1)
2

ñhd

∑
i∈In

{
1

ñ− 1

∑
j∈In,j6=i

[J∗Xijh

(1)(f(Xi))]w(Xj)

−
∫

[J∗Xi−x
h

(1)(f(Xi))]w(x)f(x)dx

}
. (B.76)

Let J∗ij = [J∗Xijh

(1)(f(Xi))]w(Xj) and J∗i =
∫

[J∗Xi−x
h

(1)(f(Xi))]w(x)f(x)dx. Set ψK∗(t) =∫
Rd e

ιt′uK∗(u)du. Then note that

J∗ij = δfdδ−1(Xi)K
∗
(
Xi −Xj

h
f δ(Xi)

)
w(Xj)

= δfdδ−1(Xi)

(
1

2π

)d ∫
Rd
e−ιt

′Xi−Xj
h

fδ(Xi)ψK∗(t)dt w(Xj)

= δ

(
1

2π

)d ∫
Rd
f−1(Xi)e

−ιt′Xi/hψK∗(t/f
δ(Xi)) e

ιt′Xj/hw(Xj)dt

= δ

(
1

2π

)d
hd
∫
Rd
J∗1i(t) J

∗
2j(t)dt,
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where J∗1i(t) = f−1(Xi)e
−ιt′XiψK∗(ht/f

δ(Xi)) and J∗2i(t) = eιt
′Xjw(Xj), and similarly

J∗i = δ

(
1

2π

)d
hd
∫
Rd
J∗1i(t) EJ

∗
2j(t)dt.

Thus it follows from (B.76) that

Cn1(h)− Cn2(h) = oP (1)
2

ñhd
1

ñ− 1
δ

(
1

2π

)d
hd
∑
i∈In

∑
j∈In,j6=i

[∫
Rd
J∗1i(t) (J∗2j(t)− EJ∗2j(t))dt

]

= oP (1)2δ

(
1

2π

)d ∫
Rd

[
1

ñhd
1

ñ− 1

∑
i∈In

∑
j∈In,j 6=i

(ξij(t)− Eξij(t) + Eξij(t))

]
dt, (B.77)

where ξij(t) = hdJ∗1i(t) (J∗2j(t) − EJ∗2j(t)). Then, similarly to (B.64), by Lemma B.3, we
can show that

Cn11(h) =

∫
Rd

[
1

ñhd
1

ñ− 1

∑
i∈In

∑
j∈In,j6=i

(ξij(t)− Eξij(t))

]
dt = OP

(
hd/2

ñhd

)
, (B.78)

and, similarly to (B.37), we can show

Cn12(h) =

∫
Rd

[
1

ñhd
1

ñ− 1

∑
i∈In

∑
j∈In,j6=i

Eξij(t)

]
dt

=
1

ñhd
1

ñ− 1
hd

∑
i,j∈In,j6=i

∫
Rd

cov(J∗1i(t), J
∗
2j(t))dt

≤ C
1

ñhd
1

ñ− 1
hd

[
ñPN + ñh−d

∞∑
k=P

kN−1ϕ(k)

]
= OP

(
hd/2

ñhd

)
, (B.79)

by taking PN = O(h−d/2). It follows from (B.77), (B.74) and (B.75) that Cn1(h)−Cn2(h) =
O(hd/2)MISE(h), where MISE(h) is given in Lemma B.4 for f̌n(x). Hence, by a similar
argument to that in the proof of Theorem 3.2, we have

sup
h∈Hn

|Cn1(h)− Cn2(h)|
MISE(h)

= oP (1),

by which, together with (B.73), we can easily see that (B.72) and hence (B.71) hold true.
The proof is done.

B3 Supplementary figures and table

B.24



(a) m1 = 25, m2 = 10
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Figure B.1: Boxplots of optimal ISE, ASE and MISE values with kernel and adaptive
kernel density estimates for 100 simulations of different sample sizes of (m1,m2): (a)
(m1,m2) = (25, 10), (b) (m1,m2) = (20, 20), (c) (m1,m2) = (50, 50) and (d) (m1,m2) =
(100, 100).
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(a) m1 = 25, m2 = 10
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(b) m1 = 20, m2 = 20
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(d) m1 = m2 = 100
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Figure B.2: Boxplots of optimal bandwidths h or h0 under ISE, ASE and MISE, re-
spectively, with kernel and adaptive kernel density estimates for 100 simulations of dif-
ferent sample sizes of (m1,m2): (a) (m1,m2) = (25, 10), (b) (m1,m2) = (20, 20), (c)
(m1,m2) = (50, 50) and (d) (m1,m2) = (100, 100). The horizontal lines are for the MISE-
optimal bandwidths of h and h0 for the non-adaptive KDE and the AKDEs with the
pilots of CV- and SJ-based KDEs and oracle (true) density, respectively.
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(a) m1 = 25,m2 = 10 (b) m1 = m2 = 20
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(c) m1 = m2 = 50 (d) m1 = m2 = 100
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Figure B.3: Histograms of RdI ’s and RdA’s, respectively, for the CV selected h0 in the
adaptive bandwidth of the CV, SJ and oracle pilot estimates with 100 simulations of
different sample sizes of (m1,m2): (a) (m1,m2) = (25, 10), (b) (m1,m2) = (20, 20), (c)
(m1,m2) = (50, 50) and (d) (m1,m2) = (100, 100).
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Table B.1: The real elapsed time for bandwidth selection run in R by a Dell Precision
7520 laptop of COREi7. Note: H0.SJ is a shorthand notation for H0.CVSJ, denoting spatial CV

for h0 in the AKDE with a pilot density estimate by a SJ (plug-in) h; H0.CV is a shorthand notation

for H0.CVCV, denoting spatial CV for h0 in the AKDE with a pilot density estimate by a CV h; H.CV

denotes a CV for h in the (non-adaptive) kernel density estimate.

Method sample size elapsed time (in seconds)
H0.SJ m1*m2=20*20=400 2.12

m1*m2=50*50=2500 22.75
m1*m2=100*100=10000 106.39

H0.CV m1*m2=20*20=400 2.17
m1*m2=50*50=2500 15.69

m1*m2=100*100=10000 108.01
H.CV m1*m2=20*20=400 2.50

m1*m2=50*50=2500 10.96
m1*m2=100*100=10000 50.59
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