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ABSTRACT: Acid-catalyzed condensation of pyrrole, 4-trifluoromethylbenzalde-
hyde, and azulene, followed by DDQ oxidation, has resulted in the isolation of the
novel macrocycle azulicorrole, arguably the first example of a carbacorrole aside
from N-confused corrole. Despite poor yields (<1%), the free ligand could be
structurally characterized and converted to the formal Cu(III) and Au(III)
derivatives, of which the Cu(III) complex could also be structurally characterized.
Both the free base and the two metal complexes exhibit richly structured UV—vis
spectra that extend well into the near-infrared, suggesting potential applications in

bioimaging and photodynamic therapy.

1. INTRODUCTION

Over the last quarter century, pyrrole—aldehyde condensations
have served as a prolific wellspring of new porphyrinoid
macrocycles, including N-confused porphyrins, corroles,
sapphyrins, and both expanded and contracted porphyrins.'
An even wider range of macrocycles is potentially obtainable
by including reactive arenes in the reaction mixture, as
exemplified by the synthesis of an azuliporphyrin®’ under
Lindsey®” conditions. Both N-confused porphyrins® and
azuliporphyrins’ are pre-eminent members of the carbapor-
phyrinoid family and give rise to a wide range of organo-

. 10,11
metallic complexes.

As long-time practitioners of corrole
chemistry,'” we were intrigued by the possibility that
carbacorroles'” might arise in the course of quasi-one-pot
condensation—oxidation protocols.

As shown in Chart 1, both regioisomers of a simple
carbacorrole feature an exceedingly crowded central cavity with
four central hydrogens. Carbacorrole variants such as N-
confused corrole and the as yet experimentally unknown
azulicorrole partially alleviate such crowding by incorporating
only three central nitrogens. In an exploratory computational
study of the two Au azulicorrole regioisomers,'* isomer A was
found to be more stable by about 2.7 kcal/mol. Herein, we
describe for the first time the isolation of a free-base
azulicorrole and its complexation with Cu and Au. Although
the compounds are only available in milligram quantities, we
were able to accomplish two single-crystal X-ray structure
determinations as well as 'H NMR and UV—vis measurements,
which yielded some of the first insights into the properties of
the novel macrocycle.

-4 ACS Publications  © 2019 American Chemical Society

Chart 1. Selected Free-Base Carbaporphyrinoids

carbaporphyrin azuliporphyrin

carbacorrole A carbacorrole B

azulicorrole A azulicorrole B

2. RESULTS AND DISCUSSION

2.1. Synthesis and Proof of Composition. Our early
attempts at finding new routes to azuliporphyrinoids were
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thwarted by the immediate formation of calix[4]azulenes via
acid-catalyzed condensation of azulene and various aromatic
aldehydes. Thus, adding azulene to Gryko’s “water—methanol”
protocol led to calix[4]azulenes as the main isolable product.
To our pleasant surprise, adding azulene to the reaction
mixture of a standard solvent-free, trifluoroacetic acid (TFA)-
catalyzed corrole synthesis'>~"” resulted in mass spectrometric
evidence for the formation of a meso-triarylazulicorrole,
hereafter abbreviated as H;[AzuC] (Scheme 1). Upon careful

Scheme 1. One-Pot Synthesis of a Free-Base Azulicorrole,
H;[AzuC]

1.TFA, 1h

2. DDQ, CH,Cl,/THF, 30 min

optimization of the relative amounts of pyrrole, aldehyde,
azulene, and DDQ, we were finally able to isolate the pure
compound, albeit in disappointingly low yields (<1%).
Substantial amounts of meso-triarylcorrole were also isolated,
along with a large quantity of azulene—aldehyde oligomers,
which were not characterized in detail. Fortunately, free-base
H;[AzuC] could be readily derivatized to the formal
copper(I1I) and gold(III) complexes.

Besides high-resolution electrospray ionization (HR-ESI)
mass spectra, proof of composition also came from fully
assigned 'H NMR spectra in CDCly (Figure 1). The azulene-
2' doublet at ~9.0—9.3 ppm is well separated from other
signals and is also the only nonpyrrole proton that couples with
a pyrrole 8 proton (at C18). Once these two protons were
identified, all others could be assigned by a combination of
TOCSY and nuclear Overhauser enhancement spectroscopy
analyses (see the Supporting Information for detail).
Unfortunately, *C NMR spectra of acceptable quality could
not be obtained because of the limited solubility of the
compounds.

2.2. Single-Crystal X-ray Structures. Unambiguous
proof of the structure came from two single-crystal X-ray
structures (Table 1), one for H;[AzuC] (Figure 2) and the
other for Cu[AzuC] (Figure 3). The azulene moiety in the
free-base structure was found to be distinctly tilted relative to
the remainder of the macrocycle, clearly a reflection of the
steric interactions among the three central hydrogens. For the
two symmetry-unique H;[AzuC] molecules, the azulene ten-
carbon plane was found to be tilted by 36.56(3) and 40.90(2)°
relative to the mean C;sNj plane of the remainder of the
macrocycle. In contrast, an essentially planar macrocycle,
including an in-plane Cu atom, was found for Cu[AzuC]. The
short Cu—N/C bond lengths (1.86—1.90 A) are similar to
those observed for Cu corroles.'* ** Scalar-relativistic DFT
geometry optimization (OLYP-D3/ZORA-STO/TZ2P; see ref
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14 for details) of unsubstituted Au azulicorrole also indicated a
rigorously planar macrocycle with short Au—N/C distances:
Au—C21 1.980, Au—N22 2.021, Au—N23 2.040, and Au—N24
2.013 A.

Careful examination of the individual skeletal bond distances
in H3[AzuC] and Cu[AzuC] revealed interesting differences in
bond-length alternation between the two compounds. Thus,
while H;[AzuC] shows relatively little bond-length alternation
in the seven-membered ring and significantly larger bond-
length alternation in the inner fifteen-membered C,,Nj; ring of
the carbacorrole, the reverse is observed for Cu[AzuC]. This
observation appears to argue for a comparatively higher
tropylium character in the free base relative to the Cu complex
and higher macrocyclic aromaticity (i.e., a higher global
diatropic current) in the Cu complex relative to the free base.
Such a conclusion is in line with calculated magnetically
induced current intensity patterns of porphyrinoids, partic-
ularly carbaporphyrinoids, and their metal complexes.

Another interesting observation concerns the strict planarity
of the macrocycle in Cu[AzuC], which may be contrasted with
the invariably saddled geometry of Cu corroles. Several lines of
evidence indicate that saddling in Cu corroles is driven by a
Cu(d,,-,,
substantial Cu"—corrole*>” character to the complexes.
The stronger o-donor character of the azulicorrole ligand in
contrast appears to stabilize a d® Cu(III) center in square
planar environment, a scenario that is also indicated for Cu N-
confused corrole by X-ray absorption spectroscopic measure-
ments.”” It may be worth noting in this connection that strong
saddling is not observed for Au corroles, presumably reflecting
the high energy of the relativistically destabilized Au(5d

)—corrole(z) orbital interaction, which imparts
12,18—24

xz—yz)
orbital, which discouraéges effective interaction with the corrole
7 orbital in question.”**°

2.3. Electronic-Structural Insights. Standard physical
measurements have afforded significant insights into key
electronic-structural characteristics of the azulicorrole macro-
cycle.

The 'H NMR spectrum of H;[AzuC] in CDCl, revealed /-
protons resonating in the range 7.21—7.95 ppm and core
protons resonating at 3.19 (CH) and 3.47 ppm (NH). For the
analogous meso-triarylcorrole, the f-H’s resonate between 8.37
and 8.73 ppm and NH’s between —2.0 and —4.5 ppm.”" These
chemical shifts clearly indicate a significantly lower global
diatropic current for H;[AzuC] relative to aromatic porphyrins
and corroles.

To find evidence for a significant tropylium character for
H,[AzuC], we measured the 'H NMR spectrum of H;[AzuC]
in solvents of different polarities, including benzene-d,, CDCI;,
and DMSO-d,. Unfortunately, low solubility hampered the
assignment of the spectra in benzene or dimethyl sulfoxide
(DMSO), so we could only compare the chemical shifts of
some of the azulene protons across different solvents. Thus,
the azulene-2' proton was found to move from 8.97 ppm in
benzene-dg to 9.3 ppm in CDCl; and to 9.51 ppm in DMSO-
dg, respectively. In the same vein, the azulene triplets range
between 6.29 and 6.81 ppm in benzene-dg and between 7.09
and 7.59 ppm in CDCl;, while a single triplet was observed in
DMSO at 7.92 ppm. The downfield shifts of the azulene
protons with increasing solvent polarity appear to be consistent
with a significant tropylium character of the seven-membered
ring, as in the dipolar resonance form depicted in Scheme 2.

DOI: 10.1021/acsomega.9b00275
ACS Omega 2019, 4, 6737—6745


http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b00275/suppl_file/ao9b00275_si_001.pdf
http://dx.doi.org/10.1021/acsomega.9b00275

ACS Omega

200

100

-0

r T T T T T T T
3.50 3.45 3.40 3.35 3.30 3.25 3.20 3.15
1 (ppm)

r 1000

F900

800

700

600

500

400

300

200

100

8.8 8.4 8.2

8.1
f1 (ppm)

1500

1000

500

T T T T T T T T T T T T T T
8.4 8.2 8.1 8,
1 (ppm)

.0

1500

1000

500

T T T T T T T T T T T T T T
9.3 84 83 82 81 8
f1 (ppm)

.0

T T T T T T T T T T T
79 7.8

Figure 1. '"H NMR spectra in CDCl for H;[AzuC] (top; inset displays core protons), Cu[AzuC] (middle), and Au[AzuC] (bottom).

The optical spectra of the new compounds (Figures 4—6)
proved complex and richly structured, with absorption features
extending well into the near-infrared (850—900 nm),
suggesting a highest occupied molecular orbital-lowest
unoccupied molecular orbital (HOMO-LUMO) gap of
around 1.5 eV. In particular, the UV—vis—NIR spectrum of
H;[AzuC] was found to undergo dramatic changes upon
exposure to TFA, with the growth of new, intense NIR
features. The new features indicate a lowering of the HOMO—
LUMO gap, consistent with a strongly nonplanar macrocycle,
as expected for the centrally tetraprotonated macrocycle,
{H,[AzuC]}*. Unfortunately, a '"H NMR analysis of this
species proved impossible because of tremendous peak
broadenings.

Electrochemical measurements led to complex cyclic
voltammograms (CV) for the free-base and Cu derivatives
with a multitude of irreversible features that are yet to be
assigned. Fortunately, Au[AzuC] yielded relatively simple CV
(Figure 7) including reversible oxidation, irreversible two-
electron reduction, and an electrochemical HOMO—-LUMO
gap (1.63 eV) in fair agreement with that estimated from the
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optical spectrum. Unsurprisingly, this HOMO—-LUMO gap is
significantly smaller than that of an Au triarylcorrole (~2.2
V),*”** consistent with the complex cross-conjugated nature of
the azulicorrole ring system. According to the aforementioned
DFT calculations, the HOMO and HOMO 1 of
unsubstituted Au azulicorrole resemble the a,, and a;,
HOMOs of typical closed-shell porphyrins and corroles;*> ™"
the LUMO and LUMO + 1, on the other hand, have
considerable azulene character (Figure 8). Calculations on
cationic and anionic states of the compound also clearly
assigned them as pure z-radical states (Figure 8); the
electrochemical HOMO—-LUMO gap thus appears to
correspond to the 7—7* gap of the azulicorrole macrocycle.

3. CONCLUSIONS

Adding azulene to a standard solvent-free corrole synthesis led
to the isolation of an azulicorrole, arguably the first example of
a “true” carbacorrole with the exception of N-confused
corroles. In spite of poor yields, the free ligand could be
readily derivatized to formal Cu(IlI) and Au(III) complexes.
Furthermore, single-crystal X-ray structures could be obtained
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Table 1. Crystallographic Data for H;[AzuC] and Cu[AzuC]

sample H;[AzuC]-benzene Cu[AzuC]-toluene
chemical formula CogHssF 5Ny C9.50H,7CuFgN5
formula mass 1661.50 898.28

crystal system monoclinic monoclinic
crystal size (mm?) 0.260 X 0.030 x 0.010 0.100 X 0.090 X 0.040
space group P2,/n P2,/c

2 (A) 0.7288 0.7288

a(A) 17.1182(19) 17.5930(12)

b (A) 15.1767(17) 18.0587(12)

c (A) 30.383(3) 11.9975(8)

a (deg) 90 90

B (deg) 99.8990(10) 96.358(2)

7 (deg) 90 90

z 4 4

vV (A%) 7775.8(15) 3788.2(4)
temperature (K) 100(2) 100(2)

density (g/cm?®) 1.419 1.575

measured reflections 163 422 122 388

unique reflections 23766 9430

parameters 1135 624

restraints 24 91

Ry, 0.0618 0.0557

0 range (deg) 1.543-31.419 2.313-29.145
R,, wR, all data 0.0835, 0.1895 0.0516, 0.1159

S (GooF) all data 1.054 1.028

max/min res. dens. 0.753/-0.624 1.498/-0.537

(e/A%)

for the free-base and Cu(IIl) derivatives, affording detailed
insights into the structural characteristics of these compounds.
The optical spectra proved richly structured, with absorption
features extending well into the near-infrared region. Current
efforts in our laboratory are aimed at uncovering higher-
yielding routes toward azulicorroles with different meso-
substituents. Should these efforts prove successful, applications
vis-a-vis bioimagin§ and photodynamic therapy remain an
exciting possibility.”*®

4. EXPERIMENTAL SECTION

4.1. Materials. All reagents, except pyrrole, were purchased
from Sigma-Aldrich and used as received. Pyrrole was passed
through basic alumina until blank and stored in the freezer.
Aluminjum oxide 60, active basic activity I (0.063—0.200 mm
particle size, 70—230 mesh, Merck), and silica gel 60 (0.04—
0.063 mm particle size, 230—400 mesh, Merck) were
employed for flash chromatography.

4.2. General Instrumental Methods. UV—visible spectra
were recorded on an HP 8453 spectrophotometer. '"H NMR
spectra were recorded on a 400 MHz Bruker AVANCE III HD
spectrometer equipped with a S mm BB/1H SmartProbe and a
600 MHz Bruker AVANCE III HD equipped with a 5 mm
inverse triple resonance TCI cryoprobe ('H/*C/"N/*H)
with cooled pre-amplifiers for 'H, '*C, and *H and referenced
to residual CHCl; at 7.26 ppm (or to residual benzene at 7.16
ppm and residual DMSO at 2.5 ppm). HR-ESI mass spectra
were recorded on an LTQ Orbitrap XL spectrometer, using
methanolic solutions and typically in the positive ion mode.

Cyclic voltammetry was carried out at 298 K with an EG&G
model 263A potentiostat equipped with a three-electrode
system: a glassy carbon working electrode, a platinum wire
counter electrode, and a saturated calomel reference electrode
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(SCE). Tetra(n-butyl)ammonium perchlorate, recrystallized
twice from absolute ethanol and dried in a desiccator for at
least 2 weeks, was used as the supporting electrolyte.
Anhydrous CH,Cl, (Aldrich) was used as the solvent. The
reference electrode was separated from the bulk solution by a
fritted-glass bridge filled with the solvent/supporting electro-
lyte mixture. The electrolyte solution was purged with argon
for at least 2 min prior to all measurements, which were carried
out under an argon blanket. All potentials were referenced to

the SCE.

5. SYNTHETIC METHODS

5.1. H3[AzuC]. To a solution of azulene (186.2 mg, ~1, S
mmol) in a mixture of pyrrole (313 uL, 4.5 mmol) and 4-
trifluoromethylbenzaldehyde (342 uL, 2.5 mmol) was added a
solution of 10% TFA in dichloromethane (40 uL). After
stirring at room temperature for 1 h, the mixture was dissolved
in dichloromethane (50 mL), quenched with DDQ (337.8 mg,
~1.5 mmol) dissolved in tetrahydrofuran (10 mL), and stirred
for an additional 0.5 h. The reaction mixture was then washed
in a separatory funnel with aqueous sodium chloride and back-
extracted with chloroform until the aqueous phase was no
longer yellow. The combined organic phases were rotary-
evaporated to dryness and the residue was chromatographed
on a basic alumina column starting with 9:1 pentane/
dichloromethane as the eluent. The polarity of the eluent
was gradually increased until a green fraction was collected
with 3:1 pentane/dichloromethane and evaporated to dry-
ness.””*® The resulting solid upon washing with a minimum
amount of pentane yielded pure H;[AzuC] as a dark bluish-
green solid. Yield: 3.9 mg (0.34% relative to azulene). UV—vis
(CH,CL) 4., (nm), € X 107 (M~ cm™): 375 (3.73), 478
(2.64), 503 (2.45), 628 (1.91); UV—vis (CH,Cl, + 1% TFA)
A (nm), € X 107 (M™! em™): 399 (4.02), 522 (3.33), 639
(2.07), 857 (1.78). 'H NMR (600 MHz, CDCL, §; see
Scheme 1 for atom numbering): § 9.30 (d, ] = 9.7 Hz, 1H,
azulene-2'), 8.07 (d, J = 7.8 Hz, 2H, 5-0-Ph), 8.01 (d, J = 7.8
Hz, 2H, 15-0-Ph), 7.95 (d, J = 3.9 Hz, 1H, f-H), 7.94—7.89
(m, 3H, overlapping S-m-Ph and -H), 7.88 (d, ] = 7.9 Hz, 2H,
15-m-Ph), 7.86—7.80 (m, SH, overlapping 10-0-Ph, 10-m-Ph
and azulene-3'), 7.64 (d, ] = 4.5 Hz, 1H, -H), 7.61-7.56 (m,
2H, overlapping f-H and azulene-2?), 7.45-7.39 (m, 2H,
overlapping -H and azulene-2%), 7.21 (d, ] = 4.5 Hz, 1H, S-
H), 7.09 (t, ] = 9.9 Hz, 1H, azulene-3?), 3.47 (s, 1H, core NH),
3.19 (s, 1H, core CH). 'H NMR (400 MHz, C(D,, 5): 8.97 (d,
J = 9.4 Hz, 1H, azulene-2'), 7.81-7.76 (m, 3H), 7.74 (d, ] =
3.9 Hz, 1H, -H), 7.70-7.60 (m, 8H), 7.59—7.52 (m, SH),
7.38 (d, ] = 4.6 Hz, 1H, -H), 7.27 (d, ] = 5.3 Hz, 1H, f-H),
6.81 (t, ] = 9.5 Hz, 1H, azulene), 6.74 (t, ] = 9.5 Hz, 1H,
azulene), 6.29 (t, ] = 9.7 Hz, 1H, azulene), 3.45 (s, 1H, core
NH), 3.09 (s, 1H, central CH). "H NMR (400 MHz, DMSO-
dg, 6): 9.51 (d, J = 9.8 Hz, 1H, azulene-2'), 8.30—8.25 (m,
1H), 8.20—8.10 (m, 3H), 8.10-8.00 (m, 6H), 7.99—7.87 (m,
4H), 7.82—7.72 (m, 2H), 7.68—7.58 (m, 3H), 7.42 (d, ] = 4.9
Hz, 1H, f-H), 7.29 (t, ] = 9.8 Hz, 1H, azulene), 7.16 (d, J = 5.1
Hz, 1H, f-H). ESLMS m/z: caled for C,oH, N, FoH, 792.2067
[M + H']; found, 792.2033.

5.2. Cu[AzuC]. Free-base H;[AzuC] (2.2 mg) and
Cu(OAc), H,0 (1 equiv) were dissolved in pyridine (10
mL) and stirred for 1 h. The solvent was removed under
vacuum and the residue was chromatographed on a silica gel
column with 5:1 pentane/dichloromethane as the eluent. The
first green fraction was collected and evaporated to dryness.

DOI: 10.1021/acsomega.9b00275
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Figure 2. Thermal ellipsoid plots (50%) of H;[AzuC]: top view (above), including selected skeletal bond distances (A), and side view (below).

The residue upon washing with methanol yielded pure
Cu[AzuC] as a bright-green solid. Yield 2.1 mg (88.7%).
UV—vis (CH,CL) A, (nm), [e X 107* (M~ ecm™)]: 385
(1.73), 430 (1.12), 453 (1.26), 494 (1.04), 614 (1.50), 753
(0.16). '"H NMR (400 MHz, CDCl,, §): 9.15 (d, J = 9.8 Hz,
1H, azulene-2'), 8.19 (d, ] = 4.3 Hz, 1H, f-H) 8.11 (d, ] = 7.9
Hz, 2H, 10/15-0-Ph), 7.99 (d, ] = 7.9 Hz, 2H, 5/10/15-0-Ph),
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7.97—7.92 (m, SH, overlapping #-H and Ph), 7.90 (d, ] = 8.4
Hz, 2H, 5/10/15-m-Ph), 7.88 (d, ] = 8.1 Hz, 2H, 5/10/15-m-
Ph), 7.84 (d, ] = 9.6 Hz, 1H, azulene-3'), 7.74—7.71 (m, 2H,
overlapping #-H), 7.66 (d, ] = 5.2 Hz, 1H, f-H), 7.59-7.51
(m, 2H, overlapping f-H and azulene-2%), 7.43 (t, ] = 9.5 Hz,
1H, azulene-2%), 7.05 (t, ] = 9.9 Hz, 1H, azulene-3?). MS (ESI)

DOI: 10.1021/acsomega.9b00275
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Figure 3. Thermal ellipsoid plot (50%) of Cu[AzuC].
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Scheme 2. Dipolar Resonance Form of H;[AzuC]

m/z: caled for C,H,;N;F,Cu, 851.1050 [M*]; found,
851.1031.

5.3. Au[AzuC]. Free-base H;[AzuC] (9.3 mg) and
Au(OAc); (S equiv) were dissolved in pyridine (10 mL) and
stirred overnight. The solvent was removed under vacuum and
the residue was chromatographed on a silica gel column with
5:1 pentane/dichloromethane as the eluent. The first green
fraction was collected and evaporated to dryness. The residue
upon washing with methanol yielded pure Au[AzuC] as a
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Figure 4. UV—visible—NIR spectra of H;[AzuC] in dichloromethane
with and without 1% TFA.

bright-green solid. Yield 3.7 mg (32.0%). UV—vis (CH,CL,)
Ay (nm), [€ X 107* (M~ ecm™)]: 351 (0.62), 382 (0.69),
399 (0.73), 450 (0.54), 499 (0.46), 610 (0.40), 761 (0.11),
837 (0.08). '"H NMR (400 MHz, CDCl,, 6): 9.00 (d, ] = 9.9
Hz, 1H, azulene-2'), 8.15—8.09 (m, 3H, overlapping -H and

DOI: 10.1021/acsomega.9b00275
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Figure 7. CV of Au[AzuP] (top) and the analogous Au meso-tris(4-

trifluoromethylphenyl)corrole (bottom) in CH,Cl, containing 0.1 M
TBAP. Scan rate = 100 mV/s.

10-0-Ph), 8.00 (d, ] = 8.0 Hz, 2H, 5/15-0-Ph), 7.97 (d, ] = 8.2
Hz, 2H, 5/15-0-Ph), 7.94 (d, ] = 8.3 Hz, 2H, 10-m-Ph), 7.93—
7.89 (m, 4H, overlapping S-m-Ph and 15-m-Ph), 7.88 (d, J =
3.2 Hz, 1H, -H), 7.74—7.71 (m, 3H, overlapping -H), 7.66—
7.62 (m, 2H, overlapping #-H and azulene-3'), 7.49 (t, ] = 9.5
Hz, 1H, azulene-2?), 7.39 (t, ] = 9.5 Hz, 1H, azulene-2%), 6.97
(t, ] = 9.3 Hz, 1H, azulene-3%). MS (ESI) m/z: calcd for
CysH,3N3FoAu, 985.1419 [M*]; found, 985.1374.

5.4. X-ray Structure Determination. Suitable crystals
were obtained by diffusion of methanol vapor into a
concentrated solution of H;[AzuC] in benzene and Cu[AzuC]
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Figure 8. Selected MO and spin density plots for Au[AzuC].

in toluene. X-ray data were collected on beamline 12.2.1 at the
Advanced Light Source of Lawrence Berkeley National
Laboratory, Berkeley, California. The samples were mounted
on MiTeGen kapton loops and placed in a 100(2) K nitrogen
cold stream provided by an Oxford Cryostream 700 Plus low-
temperature apparatus on the goniometer head of a Bruker D8
diffractometer equipped with a PHOTON II CPAD detector.
Diffraction data were collected using synchrotron radiation
monochromated with silicon (111) to a wavelength of
0.7288(1) A. In each case, an approximate full-sphere of data
was collected using 1° @ scans. Absorption corrections were
applied using SADABS.” The structure was solved by intrinsic
phasing (SHELXT)* and refined by full-matrix least squares
on F* (SHELXL-2014)*' using the ShelXle GUL* Appro-
priate scattering factors were agplied using the XDISP*
program within the WinGX suite.”* All non-hydrogen atoms
were refined anisotropically. Hydrogen atoms were geometri-
cally calculated and refined as riding atoms.
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