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Abstract

It is vital to elucidate the subtle relationship between vascular network structure and mass transport to predict

and improve the efficacy of anti-cancer treatments. In this paper, mathematical homogenization is used to derive

a new multiscale continuum model of blood and chemotherapy transport in the arteriole, capillary and venule net-

works, and interstitium of a vascular tumour. This model and framework enables information at a range of vascular

hierarchies to be fed into an effective description on the length scale of the tumour. The model is explored in a case

study of a simple geometry representative of a tumour in a dorsal skinfold geometry setup. Specifically, we explore

the role of vascular network architecture in influencing fluid and drug perfusion on the length scale of the chamber.

A single parameter, P , is identified that relates tumour-scale fluid perfusion to the permeability and density of the

capillary bed. By fixing the topological and physiological properties of the arteriole and venule networks, an optimal

value for P is identified which maximises tumor fluid transport and is thus hypothesized to benefit chemotherapy

delivery. We calculate the values for P for eight explicit network structures; in each case vascular intervention by

either decreasing the permeability, or increasing the density, of the capillary network would increase fluid perfusion

through the cancerous tissue. Chemotherapy delivery via either a single injection or constant perfusion in a idealised,

two-dimensional tumour, representative of an in vivo testing setup, is compared; single injection is consistently more

successful compared to constant perfusion, and the model outputs predict when to deliver a second dose. These results

highlight the potential of computational modelling to elucidate the link between vascular architecture and fluid, drug

distribution in tumours.
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1 Introduction

Solid tumours are characterized by an abnormal microenvironment that distinguishes them from healthy tissue and

reduces drug delivery to the cancerous tissue. This is a consequence of numerous factors that include a poorly organized

vascular architecture, irregular blood flow and the compression of blood and lymphatic vessels by cancer cells [11]. The

spatial and temporal heterogeneities in blood supply coupled with variations in the vascular morphology at both

microscopic and macroscopic levels cause the spatial distribution of therapeutic agents in tumours to be heterogeneous.

Drug treatments (mainly antiangiogenics such as avastin, but also vascular disrupting and regularising agents such as

combretastatins and nelfinavir, respectively) have been developed specifically to target the abnormal vasculature in

tumours; however, their impact is hard to predict as the relationship between network structure and the functional

parameters that determine mass transport is subtle. For example, increasing the number or diameter of vessels can

impair the blood flow distribution, whilst inhibiting angiogenesis is hypothesized to improve circulation [20]; in addition,

tumours have been shown to display resistance to vascular disruption therapy via physical mechanisms, such network

connectivity and redundancy [7].

The quality and volume of data characterizing tissue vascular architecture is increasing, and it is now possible

to describe vascular structure in a highly detailed way. As the resolution of this data continues to increase, it may

become too computationally intensive to simulate flow and mass transport in the entire vascular tree using a discrete

approach where vessels are treated individually. In addition, in order to interpret the results they must not be too

sensitive to the full vascular geometry, but only to some key characteristics of it. One approach is to employ continuum

models in which imaging data are used to deduce functional properties relevant to blood and mass transport. The

mathematical process of homogenization [19] is one candidate for developing these continuum models, as it enables

spatial heterogeneities at different scales to be transformed into a tractable tissue-scale model. Macro-(or tissue-)scale

equations are derived by using a mathematical averaging process to incorporate the relevant micro-scale topological and

model properties. The final macro-scale equations can be solved numerically, and are far less computationally expensive

than solving the microscale equations throughout the domain. A well known example of mathematical homogenization

in practice is Darcy’s law; although it was first proposed as an empirical law by Darcy in 1856 (based on water flow

experiments through beds of sand) [6], it was subsequently derived from the Stokes equations using homogenization

techniques [9]. This homogenization approach enabled the influence of exact particle shape on hydraulic permeability

to be determined.

The hierarchy of healthy vasculature consists of branching arterioles and venules, interconnected by a mesh-like

network of capillaries embedded in the interstitium (comprised of cells, and extra-cellular and extra-vascular space).

However, the hierarchical structure of arterioles and venules evident in healthy tissue is disrupted in tumors where it

is well-established that tumour blood vessels are heterogeneous with regard to topology, function and structure [16].

Instead a complex tortuous network of angiogenic blood vessels exists which are fed and drained by large, often tortuous
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blood vessels [17] which results in elevated interstitial fluid pressure [25] and poor drug penetration to the core of a

tumor [10, 11, 7]. Here we use mathematical methods to explore this abnormal tumor microenvironment.

The method of homogenization is applicable to vascular networks with periodic micro-structure, and with disparate

length scales apparent across tissue. This enables us to make progress towards a computationally tractable model whilst

retaining key architectural information. Darcy’s law has also been shown to provide good predictivity of macroscale

fluid mechanics for non-periodic structures, even if the multiscale derivation assumes periodicity [4, 5]. Figure 1 shows

representations of both the capillary or micro-scale, and the tissue- or macro-scale. On the micro-scale, both the

capillaries and interstitium are identifiable, and are illustrated by periodic changes of dark and light purple regions,

respectively. An example periodic unit cell is circled in red, which repeats in all directions (although the structure

must be periodic in this sense, there is no other assumption of homogeneity within this unit). The capillary length

scale is given by the typical inter-capillary distance, d. If the ratio between the capillary length scale, d, and the

tumour or macro-scale, L is small, i.e. ε = d/L� 1, it is possible to derive an effective macroscopic model describing

both the capillaries and the interstitium. In the schematic on the left-hand side of Figure 1 the heterogeneities can be

distinguished. By comparison, viewed from a distance, or from the tumour or macro-scale, the heterogeneities average

out as shown in the right-hand side of Figure 1. Here, both the capillary network and interstitium can be represented

as continua; therefore, the distribution of fluid in the two can be represented as a ‘grey-scale’. This averaging to a

continuum is exactly what the mathematical process of homogenization achieves. The space variable x = (x, y, z)

reveals the properties of the system on the length scale of the tumour. Scaling x with ε−1 defines a new space variable

X = (X,Y, Z) = ε−1x which reflects the system properties at the capillary scale. One of the fundamental assumptions

of homogenization is that ε is sufficiently small that the length variables x and X are disparate and can be treated as

two independent variables [19].

In this paper we use multiscale mathematical models to investigate the dependence of fluid perfusion and drug

distribution properties on vascular structure under two key assumptions. First of all we discretise the vascular tree

according to vessel dimension, although in reality the topological properties of healthy vessels are continuously dis-

tributed from the arteries to the capillary bed, and to the veins. We divide the vascular tree into a supplying artery and

draining vein, together with arteriole, venule and capillary networks, and categorise these networks by three different

length scales. These are the length scale of the tissue, the arterioles and venules (a typical inter-arteriole or inter-venule

separation), and the capillaries (a typical inter-capillary separation). In this way, the dependence of tumour-scale fluid

and drug perfusion properties on vasculature structure can be seen as occurring through the interaction of the various

length scales under consideration.

Second, we assume that the structure is spatially periodic on the capillary, arteriole and venule length scales. For

example, on the length scale of the capillaries the tumour is comprised of a periodic array of capillaries embedded in

the interstitium, as depicted in Figure 1. Although this is a simplifying assumption, the hierarchical vascular structure

evident in healthy tissue rarely occurs in vascular tumors [16, 17]. Therefore, we assume an unstratified, periodic tumor
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vasculature enabling continuum mathematical models to be derived using homogenization. These continuum models

are computationally tractable compared to simulations throughout the vascular tree, and enable the impact of varying

vascular structure on tumour-scale fluid perfusion and mass transport to be tested, without re-deriving the models

each time. In the long-term, this will help to both elucidate the mechanisms underlying transport, and to quantify the

impact of vascular structure on tumour-scale fluid and drug perfusion.

In [2, 23], we used homogenization to derive effective fluid and drug perfusion models for a capillary bed and

surrounding interstitium. The final fluid equations comprised a double porous medium, with coupled Darcy flow

through the interstitium and vasculature, whereas the drug equations comprised advection-reaction equations; in each

case the dependence of the transport coefficients on the vascular geometry was determined by solving capillary-scale

cell problems. In this paper we extend that approach to a four-component tissue structure, so that vascular hierarchy

may be accounted for in the models. We derive a new set of effective equations for fluid and drug distribution, and

explore the role of vascular architecture in determining tissue-scale fluid and drug perfusion using an example case

study of a rodent model for monitoring of microvascular pathophysiology in vivo (a dorsal skinfold chamber.

2 The Model Setup

A dorsal skinfold chamber is the chronic implantation of an observation chamber on the dorsal skinfold of rodents which

enables repeated, intravital microscopic observations [14]. These chambers are a common tool for therapy development,

particularly for cancers. In this paper, we use a simplified representation of this chamber structure as a case study

to explore implementation of the four-component transport model, and to explore the role of vascular architecture

in determining effective parameters relating to fluid and drug delivery. Blood flow through a chamber containing

cancerous tissue is captured by considering four separate components: the arteriole, venule and capillary networks,

and the interstitium (comprised of cells, and extra-cellular and extra-vascular space). We assume that fluid flows from

a seeded feeding artery, through the arterioles into the capillaries, then into the venules before leaving the chamber

via a seeded draining vein. Since the capillaries are leaky there may also be fluid exchange between the capillaries

and the interstitium. In our model, it is not possible for fluid to travel directly from the arterioles into the venules

bypassing the capillaries. The fluid pathway is summarized in Figure 2. Throughout this paper, we assume that dorsal

skinfold chambers do not have functioning lymphatics due to clamping of the chamber to the skin and general lack of

lymphatics in tumors, and therefore neglect this aspect in the fluid transport models. Further, whilst difficulties exist

in categorising blood vessels into distinct groups [17], for convenience, we divide the tumour vasculature into three

separate components: arteriole, capillary and venule networks.

The model structure explained above can be described using three different length scales. The finest scale is referred

to as the “micro-scale” or the “capillary length scale” and describes the capillaries and interstitium, characterized by a

typical inter-capillary separation d ≈ 50µm. The most course scale is referred to as the “chamber-scale” and describes
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the scale of the entire chamber i.e. L ≈ 104µm = 1cm. In between these scales, we introduce a third length-scale which

relates to the separate arteriole or venule networks, characterized by a typical vessel separation s ≈ 103µm. These

three length scales are depicted in Figure 4, and interact through two dimensionless ratios

ν =
d

s
≈ 5× 10−2 , η =

s

L
≈ 10−1. (1)

On the chamber-scale, none of the arterioles, venules, capillaries or interstitium are distinguishable; however, a seeded

artery and vein supply a pressure gradient across the vasculature. Zooming into any point on the chamber-scale reveals

the arteriole and venule-scales. Here blood flows through the arterioles or venules and seeps into a porous tissue matrix

comprised of capillaries and interstitium. Finally, zooming into a point in the tissue on the length scale of the arterioles

and venules reveals the capillary-scale. Here blood flows through the capillary network and seeps into the interstitium.

As ν � 1 the micro and arteriole/venule length scales are well-separated. Therefore, it is possible to use asymptotic

homogenization to move from the micro- to the arteriole/venule descriptions and derive the porous medium equations

for the capillary network and interstitium on the length scale of the arterioles and venules. Similarly η � 1, so we

can move from the arteriole/venule to the chamber descriptions and derive the coupled porous medium equations that

describe fluid transport in the arterioles, venules, capillaries and interstitium on the scale of the chamber.

Next we consider fluid and drug transport in turn. We present and analyse the fluid and drug transport problems

on the length scale of the chamber, as well as a summary of the derivation steps using homogenization, including

parameter estimation on each of the length scales described above.

2.1 Fluid Transport Model

We denote the fluid pressure by p and the velocity by u, with subscripts a, v, c or t denoting the values of p or u in

the arterioles, venules, capillaries and interstitium, respectively.

2.1.1 Fluid Transport on the Scale of the Capillaries

The capillaries of a tumour are embedded in the interstitium, which is itself comprised of cells and extra-cellular space.

We assume the tumour occupies a 3-dimensional volume and can be described as spatially periodic on the capillary-

scale. This structure is depicted by a 2D schematic in Figure 1, where a single periodic unit cell is highlighted in

red. We denote the total volume of a unit cell by V , the volume of the capillaries in a unit by Vc, and the volume

of the interstitium by Vt. We denote the fluid velocity by u and the pressure by p, with subscripts t or c denoting

the interstitium or capillaries respectively. We assume that the flow in both the interstitium and the capillaries is

incompressible. The interstitium is comprised of cells surrounded by extra-cellular space. However, the capillaries are

much larger than the inter-cell separation of the interstitium, and so we treat the interstitium as an isotropic porous
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medium and describe fluid flow through it by Darcy’s law (e.g. [27, 28]). Therefore, in the interstitium

∇ · ut = 0, ut = −k
int

µ
∇pt, (2)

where kint is the interstitial permeability and µ is the viscosity of blood plasma.

Blood flow in the capillaries of the microcirculation is a highly complex process. Healthy human blood is a

concentrated suspension containing red blood cells (RBCs) at a concentration (haematocrit) of 40–45 %. In vessels

much larger than the RBCs (i.e. with diameter much larger than ≈ 8µm), blood can be treated as a continuum with a

viscosity that is approximately constant. In vessels smaller than this, the finite size of RBCs results in non-continuum

behaviour and complex rheology that causes several important effects e.g. the F̊ahraeus [29] and F̊ahraeus-Lindqvist

[30, 38] effects, and phase separation at diverging bifurcations [37, 39]. Empirical laws have been developed to describe

these non-Newtonian effects [38, 39] ,and these have also been incorporated into homogenization frameworks (for exam-

ple, [44]). The introduction of more realistic haemodynamic descriptions of blood are important to predict tissue-scale

fluid mechanics, and would result in an effective and spatially-dependent tissue-scale viscosity.

Due to the additional computational expense of incorporating non-Newtonian haemodynamics, and the emphasis

here on the development and application of a new modelling framework, we neglect non-Newtonian effects here and

assume that the fluid flow in the capillaries is described by the Navier-Stokes’ equations for a fluid of constant viscosity.

Therefore, in the capillaries we have

∇ · uc = 0, ρ

(
∂uc

∂t
+ (uc ·∇)uc

)
= −∇pc + µ∇2uc (3)

where ρ is the fluid density. The leakage from the capillaries into the interstitium is given by Starling’s law, qe =

Lp (pc − pt)n, where qe is the leakage flux, Lp is the vascular permeability (assumed constant), n is the unit outward

pointing normal to the capillary surface, and pc, pt are evaluated on the interior and exterior sides of the capillary wall

respectively. Given this, we impose continuity of mass flux across the capillary walls, so that

ut · n = uc · n = Lp (pc − pt) on the capillary walls. (4)

Finally, we impose a no-slip condition on the capillary walls so that

uc · τ = 0 on the capillary walls, (5)

where τ is a unit tangential vector to the capillary wall. In practice there is slip at the capillary surface, and it is

determined by the microvascular rheology, in particular the structure of the endothelial glycocalyx. Given that we have

neglected non-Newtonian effects here, it is sensible to simplify to the no-slip boundary condition (5).
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2.1.2 Parameter Estimation

Geometrical Parameters Geometrical data on capillaries are presented in [34, 35], with data on the capillaries, arterioles

and venules in a dorsal skinfold chamber summarized in Table 1. A typical intercapillary distance d is 50µm, whilst

a representative mean inter-arteriole or inter-venule distance s is 103µm. This gives a typical value of ν as 5 × 10−2,

justifying the assumption ν � 1.

Physiological Parameters Experimental values of the hydraulic conductivity kint/µ are determined in [31, 32, 43] for

rat squamous cell tissue, hepatoma in vitro, mouse mammary carcinoma and rat hepatocarcinoma tissue; values lie in

the range 10−9 to 10−6 cm3 s kg−1. However, these values are obtained by applying Darcy’s law to in vitro filtration

data; measuring the hydraulic conductivity in vivo is very difficult. The blood viscosity, µ, depends on the hematocrit

(the density of red blood cells) and the temperature, and (though we are approximating blood as a Newtonian fluid)

also on the shear rate. Nevertheless, for a normal 40% hematocrit and 37◦C, µ ≈ 4 × 10−3 kg m−1s−1 [40]. On this

basis, the interstitial permeability kint lies between 4 × 10−14 and 4 × 10−11 cm2, although the range in practice is

likely to be much larger, and highly dependent on the tissue type.

The vascular hydraulic permeability Lp can be difficult to estimate. In [42], the authors attempt to address this

by measuring the capillary filtration coefficient. Using this technique, values for Lp can be extracted from the data in

[32, 41] for mouse mammary carcinoma and healthy rat hindquarter tissue, and are about 10−6 cm2 s kg−1. Finally,

the blood density ρ ≈ 1040 kg m−3 [33] and we assume a typical velocity in the capillaries is U ≈ 25 µm s−1.

There are three dimensionless parameters that characterize the fluid transport problem. First of all, the Reynolds

number, Re = ρUd/µ represents the ratio of inertial to viscous forces in the capillaries. Therefore if inertia dominates

over viscosity, Re is large, whereas if viscosity dominates over inertia, Re is small. Here we find that Re ≈ 3.3× 10−4,

and therefore the importance of inertia is negligible on the micro-scale. The final two dimensionless parameters are

κ =
kints

d3
and R =

µLps
3

d4
, (6)

which represent the relative permeability of the interstitium and capillary walls, respectively, in comparison to fluid

transport. We find that R ≈ 6.4 × 10−5 and κ lies in the range 3.2 × 10−8 to 3.2 × 10−5. The relative sizes of these

parameters are important for the homogenization analysis. Specifically, the average fluid velocity on the length scale

of the arterioles and venules will be dominated by that in the capillaries, and the contribution of the interstitium to

the average fluid velocity is of size ν.

2.1.3 Fluid Transport on the Scale of the Arterioles and Venules

We homogenize the model for fluid transport in the capillaries and interstitium, given by equations (2)–(5), to give a

description for transport in the capillaries and interstitium on the scale of the arterioles and venules. The homogeniza-

tion steps are detailed in [23, 22] and may be summarised as (a) assuming length scale separation between the micro-
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and arteriole/venule- length scales by substituting ∇ = ∇micro + ν∇arteriole/venule in equations (2)–(5), (b) expand-

ing all variables asymptotically in powers of ν, (c) equating coefficients of powers of ν in (2)–(5), (d) decomposing the

fluid velocity u into components that vary on the micro- and arteriole/venule-scales, with the component relating to

the micro problem being defined through a cell problem on the micro-scale geometry, (e) averaging over the micro-scale

to derive the arteriole/venule-scale relationships. On the arteriole/venule length scale, the capillaries and interstitium

appear as continua, and behave as a double porous medium with coupled Darcy flow between the two. The equations

for fluid transport in the capillaries and interstitium, on this length scale, are

uc = − η
µ
K ·∇pc , ∇ · (K ·∇pc) = 0, ut = −νη

µ
E ·∇pt , ∇ · (E ·∇pt) =

RSd

Vt
(pt − pc) , (7)

where R (which is dimensionless) represents the leakiness of the capillary walls (and is given in (6)), and S/Vt is the

ratio of the surface area of the capillaries to the volume of interstitium. Further, K and E are the fluid permeability

tensors associated with the capillary network and interstitium, and are determined by the homogenization process.

They are given explicitly at the end of this section in terms of two cell problems that must be solved on the length

scale of the capillaries, once the capillary-scale geometry has been specified. It is precisely these permeability tensors

K and E that relate transport on courser length scales to the geometry and transport properties on the capillary-scale.

On the length scale of the arterioles and venules, fluid flows from the arterioles into the porous tissue matrix

(comprised of the capillary network and interstitium), and then into the venules; a schematic of this setup is shown

in Figure 3. We denote the volume of arterioles and venules in a unit by Va and Vv respectively, and the volume of

porous tissue matrix by Vp. Equations (7) describe the fluid transport in the porous tissue matrix. We use subscripts

a and v to denote the arterioles and venules, respectively, and describe blood flow in the arterioles and venules using

the Navier-Stokes equations so that

∇ · ui = 0, ρ

(
∂ui

∂t
+ (uc ·∇)ui

)
= −∇pi + µ∇2ui, (8)

where i = a, v distinguishes between the arterioles and venules. Fluid flows from the arterioles into the capillary

bed (and from the capillary bed into the venules) due to a pressure drop across the vascular tree. Therefore, on

the boundaries of the arterioles and porous tissue matrix, and the venules and porous tissue matrix, we impose the

boundary conditions

ua · na = uc · na = La (pa − pc) , uv · nv = uc · nv = Lv (pv − pc) , (9)

respectively, where La and Lv represent the ‘leakage’ of fluid from the arterioles into the porous tissue matrix, and

from the porous tissue matrix into the venules, respectively, and na, nv are the unit outward pointing normals to the

arteriole and venule boundaries, respectively. Finally, to close the model, we impose no slip on the arteriole/porous

tissue matrix and venule/porous tissue matrix boundaries, so that ua · τ a = 0 and uv · τ v = 0 on the appropriate
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boundaries, where τ a, τ v are the unit tangential vectors to the arteriole and venule boundaries.

2.1.4 Parameter Estimation

Geometrical Parameters A representative mean inter- arteriole/venule distance is 103 µm, and the typical size of a

dorsal skinfold chamber is 1 cm. This gives a typical value of η = s/L of 10−1, justifying the assumption η � 1.

Physiological Parameters There are two key physiological parameters that are not measured experimentally, to the best

of our knowledge; these are La and Lv, which represent the ‘leakage’ of fluid from the arterioles into the porous tissue

matrix, and from the porous tissue matrix into the venules, respectively. We define dimensionless parameters Ra and

Rv that capture these leakage factors and are defined by Ra = µLaL
4/s5, Rv = µLvL

4/s5. Finally, to complete the

homogenization process we must relate the magnitude of the blood velocity in the capillaries to that in the arterioles

or venules. If V is a typical blood velocity in the arterioles or venules, then V is certainly larger than U . We let the

ratio V/U be of size 1/η (which is large, as η � 1), so that V/U = V ?/η, where V ? = s4/d2L2 ≈ 4.

2.1.5 Fluid Transport on the Chamber-Scale

Finally, we homogenize from the arteriole/ venule-scale to the chamber length scale to derive the effective model on

the length scale of the chamber. The steps here are analogous to those detailed in [23, 22], and also comprise the

counterpart to those steps described in Section 2.1.3 for averaging from the micro- to the arteriole/venule scale. This

process yields the following model for pressure in the arterioles, venules, capillaries and interstitium,

∇ · (Ka ·∇pa) =
ηRaSas

Va
(pa − pc) , ∇ · (Kv ·∇pv) =

ηRvSvs

Vv
(pv − pc) , (10)

∇ · (F ·∇pc) =
RaSas

Vp
(pc − pa) +

RvSvs

Vp
(pc − pv) , pt = pc, (11)

where the fluid velocities are given by

ua = − 1

µ
Ka ·∇pa, uv = − 1

µ
Kv ·∇pv, uc = − η

µ
F ·∇pc, ut = −νη

2

µ
E ·∇pt. (12)

On this length scale of the chamber, the arterioles, venules, capillary bed and interstitium behave as porous media, with

coupled flow between the four. As described above, Sa/Va is the ratio of arteriole surface area to its volume, Sv/Vv is

the ratio of the venule surface area to its volume, Sa/Vp is the ratio of arteriole surface area to porous tissue volume,

and Sv/Vp is the ratio of venule surface area to porous tissue volume. The parameters Ra and Rv are dimensionless

and represent the ‘leakage’ of fluid from the arterioles into the porous tissue matrix, and from the porous tissue matrix

into the venules, respectively. All parameters are defined in Table 1. The fluid permeability tensors Ka, Kv and F for

the arterioles, venules and capillaries, respectively, on the length scale of the chamber are given in terms of three cell
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problems as defined next.

Permeability Tensors for the Interstitial and Capillary Domains

The fluid permeability tensors E and K associated with the interstitial and capillary domains are given by

Eij = δij +
1

Vt

∫

capillary boundary
P j
t ni dS , Kij =

1

Vc

∫

Vc

wj
ci dV, (13)

where P j
t and wj

c,i solve the cell problems

∇2P j
t = 0 in the interstitium, n ·∇P j

t = n · ej on the capillary walls, (14)

and

∇ ·wj
c = 0, ∇P j

c = ∇2
Xwj

c + ej in the capillaries, n ·wj
c = 0, wj

c · τ = 0 on the capillary walls. (15)

Permeability Tensors Associated with the Arteriolar and Venular Domains

The fluid permeability tensors F, Ka, Kv are given by

Fkj =

[
δik +

1

Vp

∫

porous matrix boundary
P k
p ni dS

]
Kij , Ka

ij =
1

Va

∫ ∫ ∫

Va

wj
a,i dV , Kv

ij =
1

Vv

∫ ∫ ∫

Vv

wj
v,i dV .

(16)

The vector Pp solves the cell problem

∇ · (K ·∇P k
p

)
= 0, (17)

in the porous matrix of the arteriole/venule-scale, with

(
K ·∇P k

p

)
· ni = −KT · ni, (18)

for i = a, v on the arteriole/porous matrix and venule/porous matrix boundaries. Additionally, Pp must be periodic

and satisfy the uniqueness condition ∫ ∫ ∫

Vp

Pp dV = 0. (19)

Finally, wj
a and wj

b are solutions of the cell problem,

∇ ·wj = 0, ∇P j = ∇2wj + ej , in the arterioles/venules with ni ·wj = 0, wj · τ i = 0 on the boundaries, (20)

with wj and P j periodic on the arteriole/venule length scales.
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2.1.6 Discussion

The chamber-scale model (10)–(12) assumes that fluid flow on the length scale of the chamber is dominated by the

arterioles and venules, followed by the capillaries and interstitium in turn (the fluid velocities in the arterioles and

venules are largest, whereas those in the capillaries and interstitium are order η and order νη2 smaller, respectively).

The arteriole and venule pressures are coupled to that in the capillaries; indeed, the arteriole and venule pressure appear

as sink terms in the capillary pressure equation (11), whereas the capillary pressure appears as a sink in both the arteriole

and venule pressure equations (10). Finally, the capillary and interstitial fluid pressures are indistinguishable on the

length scale of the chamber, but their associated velocities differ due to the different permeability tensors for transport

through the capillary bed and interstitium.

The permeability tensors Ka, Kv, F and E can be determined by either comparing predictions of the model

(10)–(12) to medical imaging data, or by solving explicitly the four unit cell problems (13)–(20) that must be solved

on the length scale of the arterioles, venules and capillaries, once the geometry of these networks has been specified.

Essentially, the calculation of Ka, Kv, F and E involves averaging the counterpart local flow variations over their

representative unit cell.

We employ this model to investigate the key architectural and functional features that influence fluid perfusion in

the capillaries, in a case study relating to a simplified representation of a dorsal skinfold chamber. To simplify the model

to one which is sufficiently computationally tractable to explore the impact of key vascular parameters on the model

predictions, first of all we assume that the arteriole and venule networks have identical topological and physiological

properties (i.e. Ka = Kv, Sa = Sv, Va = Vv and Ra = Rv), and that all networks are isotropic so that permeability

tensors are proportional to the identity matrix. Specifically we let Ka = Kv = hI, F = (k/V ?) I, and E =
(
κs2/V ?

)
I.

Here V ? = η2/ν2 relates the magnitude of the blood velocity in the capillaries to that in the arterioles or venules

(specifically if V is a typical blood velocity in the arterioles or venules, and U is a typical capillary blood velocity, then

V/U = V ?/η), and κ = kints/d3 is the dimensionless interstitial permeability on the length-scale of the capillaries.

These relationships are a direct consequence of the homogenization approach. Now the pressure and velocity equations

can be written in terms of parameters that depend purely on the arteriole and venule network, and those that depend

on the capillary network properties,

∇2pa =
ηr

hn
(pa − pc) , ∇2pv =

ηr

hn
(pv − pc) , ∇2pc =

r

P
(2pc − pa − pv) , pt = pc, (21)

and

ua = −h
µ
∇pa, uv = −h

µ
∇pv, uc = −ηP

µ
∇pc, ut = −η

2C

µ
∇pt. (22)

Here, n and r depend purely on the arteriole and venule network properties; n is the volume ratio of arterioles (or

venules), as a proportion of the volume of the porous tissue, n = Va/Vp = Vv/Vp, whilst r depends on the arteriole and
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venule length scale, s, and the chamber length scale, L, together with the geometrical and physiological properties of

the arteriole and venule networks, through r = RasSa/Vp = RvsSv/Vp.

The parameter C = kintL2/s2 depends on the arteriole and venule length scale, s, and chamber length scale, L,

together the with permeability of the interstitium, kint. Finally, P = kν2/η2 is the key parameter that depends on the

capillary permeability, k, and capillary length scale, d (note that varying d is equivalent to changing the density of the

capillary network). The parameter P is a measure of the capillary permeability, multiplied by the ratio of the capillary

to arteriole with respect to the arteriole to tumour length scales.

2.2 Drug Transport Model

We denote the drug concentration by c, with subscripts a, v, c and t denoting the arterioles, venules, capillaries and

interstitium, respectively. Here we focus on vinblastine, a widely used cell-cycle specific chemotherapy drug for which

the transport kinetics were characterised in [36]; however, our models are applicable to any tracer molecule, and can

be extended to include different drug kinetics. Vinblastine is advected and diffuses in the arterioles, venules, capillaries

and interstitium, and the Péclet number (which represents the ratio of diffusive to convective timescales) is a good way

to compare the relative importance of these transport mechanisms. The Péclet number for transport in the capillaries

is Ud/Dc ≈ 3.8, where U ≈ 25µm s−1 is the blood velocity and Dc ≈ 3.3 × 10−6 cm2s−1 is the diffusion coefficient

[36]; therefore, advection and diffusion are in balance on the length scale of the capillaries. On the length scale of the

chamber, the Péclet number for transport in the capillaries is UL/Dc ≈ 7.6× 103 indicating that advection dominates

over diffusion. Advection also dominates in the arterioles and venules on the length scale of the chamber.

We describe transport from the vessels into the tissue using a membrane law that relates the jump in concentration

flux across the membrane, [J · n]
+
− (where J denotes the concentration flux, n is the unit outward pointing normal to

the vessel / tissue boundary, and ‘−’ and ‘+’ denote either side of this boundary), to the concentration jump across it,

[c]
+
−, via [J · n]

+
− = r [c]

+
−, where r is the boundary permeability (units cm s−1) [10]. To give an example, we describe

drug transport on the micro-scale by

∂c

∂t
+ (u ·∇) c = D∇2c, (23)

where D takes the value Dc within the capillary domain, and Dt within the interstitial domain, with

(ccuc −Dc∇cc) · n− (ctut −Dt∇ct) · n = r (cc − ct) , on the capillary walls, (24)

subject to an initial condition on the drug concentration field. As for the fluid transport problem reported in Section

2.1, we proceed by first homogenizing from the micro- to the arteriole/venule-scale, and then to the chamber-scale to

derive an effective model for drug transport. Full details of this process are not reported for succinctness, but also
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closely follow the approaches in [23, 22]. The key steps involve (for the example of homogenizing from the micro-

to the arteriole/venule-scale): (a) assuming length scale separation so that ∇ = ∇micro + ν∇arteriole/venule in

equations (23–24), (b) move onto the timescale for advection on the arteriole/venule length scale by rescaling t = t/ν,

(c)expanding all variables asymptotically in powers of ν, (c) equating coefficients of powers of ν in (23)–(24), averaging

over the micro-scale to derive the arteriole/ venule-scale relationships.

This process determines the following transport model for vinblastine on the chamber-scale are

∂ca
∂t

+ ∇ · (caua) = −SaTa
Va

(ca − cc) ,
∂cv
∂t

+ ∇ · (cvuv) = −SvTv
Vv

(cv − cc) , (25)

∂cc
∂t

+ ∇ · (ccuc) =
SaTa
Vp

(ca − cc) +
SvTv
Vp

(cv − cc) , (26)

where the fluid velocities ua, uv and uc are given by (22), and Ti for i = a, v are coefficients given by Ta = ra/η
2,

Tv = rv/η
2 that represent drug transport from the arterioles (or venules) into the porous tissue matrix comprised

of capillaries and interstitium. The drug concentration in the interstitium and capillaries are indistinguishable on the

chamber scale so that ct = cc. This is a direct consequence of the fact that (a) advection and diffusion of vinblastine are

balanced in the capillaries and interstitium (the concentration of vinblastine is well-mixed over the distances relevant

here) and (b) vinblastine is a tracer, so there is no uptake to introduce spatial gradients in concentrations.

3 Fluid Transport Results

We investigate the impact of varying the properties of the capillary bed on fluid perfusion in a case study of a sim-

plified geometry representative of a dorsal skinfold chamber, by solving the fluid transport equations (21)–(22) using

the finite element package COMSOL Multiphysics. To achieve this, we fix the geometry of the chamber, the topology

and physiological properties of the arteriole and venule networks (i.e. the parameters n and r), and the interstitial

permeability (i.e. the parameter C), and test the impact of varying the capillary configuration which explicitly means

varying the parameter P .

Experimentally chambers are imaged in 2D slices through their centre, so we simplify the investigation by assuming

a 2D setup. The chamber is represented in 2D by a square of dimensions L cm ×L cm with a central circle of cancerous

tissue (region 1), as depicted in Figure 6. A source artery and sink vein are seeded in region 1, and are represented by a

circle, where the upper half-circle is the artery, and the lower half-circle is the vein (this mimics the typical experimental

scenario where the tumour mass is connected to the host blood supply through seed ing an artery and vein into the

region). The remainder of the chamber is comprised of malignant tissue (region 2). Throughout the chamber we solve

equations (21) for the arteriole and venule pressures; we impose a pressure drop across the vasculature by applying

pa = 50 mmHg on the artery boundary and pv = 10 mmHg on the vein boundary. We also apply no flux of pa and pv

across the outer boundary of the chamber, and no flux jump across the interface between regions 1 and 2. In region
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2, we fix the value of P at P2 = k2L
2d2

2/s
4. We impose no flux of pc through the outer boundary of the chamber, and

no flux jump across any internal boundaries. Finally, for simplicity, we assume that the arteriole, venule and capillary

networks in region 2 each have a hexagonal structure, as shown in Figure 8 (b). This allows us to test the perfusion

sensitivity in response to variation in the capillary structure in region 1. Table 1 provides a summary of the fixed

parameters.

To test the impact of varying P on fluid perfusion in the capillaries and interstitium, we evaluate the flux of fluid

in the capillaries and interstitium that travels from region 1 into region 2,

Qc =

∫
uc · ndS = − η

µ
P

∫

Γ

∇pc · n dS, Qt =

∫
ut · ndS = −η

2C

µ

∫

Γ

∇pt · ndS =
ηC

P
Qc, (27)

where Γ is the interface between both regions and n is the unit outward pointing normal to Γ.

The results presented here are for a fixed value of Ra = Rv = 10−2. These parameters characterise the leakage of

fluid from the arterioles and venules into the capillary bed and are not measured experimentally. Model outcomes are

only sensitive to the value of Ra = Rv when this leakage coefficient is small (representing the physiologically unrealistic

situation of the arterioles and venules short-circuiting the capillary bed). Otherwise, model predictions are much more

sensitive to the value of P which captures the capillary bed properties.

Figure 5 shows how the fluxes Qc and Qt vary as a consequence of changes in the permeability and density of the

region 1 capillary network (through P ). For the smallest value of P tested (P = 10−16 m2), Qc and Qt are small and

positive, corresponding to a net flux of fluid from region 1 to region 2. As P increases, so do Qc and Qt until maxima

are reached when P ≈ 1.25× 10−12 m2 (here Qc = 1.45× 104 µm2 s−1 and Qt = 6.18× 103 µm2 s−1, respectively). As

P now increases from 1.25× 10−12 m2, Qc and Qt decrease and are negative for P > 5.2× 10−6 m2, corresponding to

a net flux of fluid from region 2 to region 1.

Figures 6 show the arteriole and venule fluid pressures throughout the chamber for an example value P = 10−14 m2.

Given that the arteriole and venule properties are fixed, arteriole and venule pressure distributions is similar for all

values of P ; however, the precise pressure drop across the arteriole and venous networks does vary as the underlying

capillary bed properties are varied (results not shown).

Figure 7 (a) shows the capillary pressure distribution when P = 10−14 m2. This low value of P corresponds to either

a low capillary network permeability, k, or high density (through the capillary length scale d) in region 2. The capillary

pressure is highest (or lowest) in the immediate vicinity of the source artery (or sink vein), but decays relatively quickly

to a background value of around 31 mmHg. Indeed, the capillary pressure in most of the chamber is approximately

constant. This results in gradients in pc from the immediate vicinity of the source artery/sink vein, and the consequent

positive values of Qc and Qt at this value of P .

Figure 7 (b) shows the pressure distribution for P = 1.25× 10−12 m2, corresponding to the maxima of Qc and Qt
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(see Figure 5). The spatial gradients in the capillary pressure throughout the chamber are larger, resulting in larger

capillary and interstitial fluid velocities, and the consequent high values of Qc and Qt. This increase in P relative to

Figure 7a could be achieved by either increasing the permeability of the region 1 capillary network, or decreasing its

density.

As P increases from 1.25 × 10−12 m2, Qc and Qt progressively decrease and are negative for P > 5.2 × 10−12 m2,

corresponding to a net flux of fluid from region 2 to region 1. The consequence of increasing P (from 1.25× 10−12 m2)

on the pressure distributions can be seen in Figures 7 (c)–(e). As a result of the asymmetrical position of the seeded

artery and vein (and the value of P relative to P2 = 9.36 × 10−12 m2), as P increases a localised region of high/low

capillary pressure develops in the top/bottom left hand corner of the chamber, and the capillary pressure in region 1

approaches constant. Therefore, although there is a net flow from the region 2 to region 1, the capillary and interstitial

fluid velocities within region 1 become very small, and drugs will accumulate in the tumour periphery as opposed to

being transported throughout the tumour.

Larger capillary and interstitial velocities in region 2 are beneficial to distribute drugs by advection to the can-

cerous cells. This analysis indicates that an optimal P -value of 1.25 × 10−12 m2 will achieve this, and can be realized

by varying the permeability or density of the capillary bed. For example, if the P -value of region 1 is larger than

1.25× 10−12 m2, vascular intervention that reduces the P -value would benefit drug distribution, and could be achieved

by either reducing the permeability or increasing the density of the capillary network. Similarly, if P < 1.25×10−12 m2,

vascular intervention that increases the P -value would benefit drug distribution.

Finally, we investigate some explicit network examples. We test 8 different structures for the region 1 capillary

network; the unit cells for these networks are shown in Figure 8. Figures 8 (a) and (b) are two examples of regular

networks (a grid and hexagonal structure, motivated by the honeycomb structures imaged in [34]), whereas the re-

maining 6 structures are more irregular (the networks in Figure 8 (e)–(h) have identical inlets and outlets to the grid

network, and are formed by progressively removing one link of the network each time). Figure 9 shows the values of

the permeability tensor F = Fij (µm2) which are determined by solving the full cell problems given in Section 2.1.5

using COMSOL Multiphysics. We assume that the arteriole and venule networks, and the region 2 capillary network,

take the hexagonal structure of Figure 8 (b). We also take d = 50µm in both regions.

The P -values and corresponding values of Qc and Qt for each network are summarized by bar charts in Figures

9. The P–values for these networks lie in the range 9.52 × 10−12 m2 to 6.98 × 10−10 m2, and increase from smallest

to largest in the order Hexagonal, Irregular-II, Irregular-I, Grid, Grid-III, Grid-I, Grid-II, Grid-IV (see Table 2). If

we exclude the Hexagonal case, all P -values lie in the range 3.13 × 10−11 m2 to 6.98 × 10−10 m2, and correspond to

virtually constant capillary pressure in region 1. These values are larger than the optimal value of P = 1.25× 10−12 m2

identified earlier, indicating that vascular intervention to decrease the P -value would benefit anticancer drug distribution

throughout region 1. This decrease in P -value could be achieved by either decreasing the permeability of the networks
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(i.e. decreasing the matrix components Fij), or by increasing the density of the capillary bed by decreasing d.

4 Vinblastine Distribution Results

Vinblastine is a chemotherapeutic drug frequently used to treat various cancers via intravenous delivery. As its prop-

erties are well-characterised [18], we next investigate vinblastine perfusion in a dorsal skinfold chamber, by solving

the equations for vinblastine transport given by equations (25)–(26) using the finite element package COMSOL Mul-

tiphysics. To facilitate the computation, the equations (25)–(26) are solved with an additional numerical diffusion

constant of value O
(
η2
)

in keeping with the next order corrections to the transport model which are neglected. Vin-

blastine is delivered exclusively intravenously to a patient using either (i) a single injection, or (ii) constant perfusion of

the drug to the patient over a long time period. These correspond to two different boundary conditions for the arteriole

concentration, ca, on the artery wall. The functional form for this boundary condition is denoted by σ and discussed

in more detail below. On the external boundaries of the chamber, we apply no flux condition for each concentration

component, with no flux jump on the internal boundaries.

Treatment Through a Single Injection A dose of drug delivered by injection will be metabolized in the bloodstream

as time progresses. For vinblastine this metabolism occurs over four phases [18], namely an initial fast phase which

represents the distribution of the blood through the body, and three further slow phases representing the redistribution

and metabolism of the drug in different organs of the body. This can be represented mathematically by the function

σ (t) = Ae−k1t +Be−k2t + Ce−k3t +De−k4t , (28)

where the ki (i = 1, 2, 3, 4) represent the half lives of the four separate phases, and A, B, C and D are constants to be

determined for a specific individual. The half lives for the four distribution/metabolism phases are 1 sec, 4 sec, 53 sec

and 1173 sec respectively, giving k1 = 41.6 min−1, k2 = 0.17 min−1, k3 = 1.3× 10−2 min−1, and k4 = 5.9× 10−4 min−1.

The constants A, B, C, and D are determined from the initial dose, together with three conditions on the level

of metabolism after each phase’s half life [18]. We consider an initial dose of 2700 nM; for a person of weight 64 kg

(and blood volume ≈ 4.4 litres) the remaining conditions are σ (t = 4min) = 700 nM, σ (t = 53 min) = 150 nM and

σ (t = 1173 min) = 10 nM which give A = 1557 nM, B = 862 nM, C = 261 nM, and D = 20 nM.

Treatment through Constant Perfusion An alternative regime involves maintaining a constant concentration of vinblas-

tine in the bloodstream over a longer time period. To limit damage to the patient, the achievable concentration is lower

than the initial injection concentration; indicative values are a concentration of 8nM applied constantly to the patient
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over a period of 5 days [3]. The boundary condition on the artery wall is therefore

σ (t) =





8 nM for 0 ≤ t ≤ 120 hours

0 for t > 120 hours
. (29)

Next we solve equations (25)–(26) to test whether treatment through a single injection or constant perfusion is

more efficient at killing tumour cells in a dorsal skinfold chamber. To the best of our knowledge there are no data

available on ra and rv, which represent the timescale for vinblastine transfer between the arterioles and capillary bed,

and between the capillary bed and venules. Here we fix ra = rv = 23.1 × 10−12 s−1 based on our order of magnitude

estimates using homogenization theory. Varying ra = rv influences the time delay before the maximum value of the

capillary/interstitial concentration, together with the values at the peak. It does not, however, alter the qualitative

conclusions that will be made.

We evaluate the cell kill rate as a consequence of the vinblastine treatment. The maximum kill rate is 1/24 hours−1

[21], whereas the concentration of vinblastine required to kill cells at the half-maximal kill rate is 2 nM [8]. Finally

the cell kill rate is proportional to concentration for low drug concentrations so we assume that the cell-kill rate,

Mc (ct) =
ρ1ct
ρ2 + ct

where ρ1 = 1/24 hr−1, ρ2 = 2 nM.

We test the impact of the cell-kill rate on the interstitial volume fraction by modelling the time-dependent changes

in this volume fraction using a partial differential equation, where we explicitly focus on the competition between cell

proliferation and death, with the latter determined as a function of the local concentration of drug. This serves as a

first approximation to the impact of the treatment therapy, as there is no mechanism for volume change due to tumour

growth or regression in the models presented here, but provides an illustrative example of the utility of the model. We

denote the interstitial volume fraction by φ, and capture changes in this volume fraction through

∂φ

∂t
(x, t) = Kφ (x, t)−Mc (ct (x, t))φ (x, t) , (30)

subject to the initial condition φ(x, 0) = nt, where K is the net cell proliferation rate and depends on the cell line used.

We note that equation (30) assumes that the cell proliferation and cell kill rates are proportional to the interstitial vol-

ume fraction, following similar approaches in the literature. Finally we assess cell kill by evaluating the spatial average

of φ, given by

φav (t) =
1

Area of Region 1

∫

Region 1

φ (x, t) dV, (31)

where the area of the region 1 is 0.4948 cm2 for the simulations in this paper. We present results for three cases of the

cell proliferation rate K = 1/29, 1/31, 1/33 hours−1.

The individual average vinblastine concentrations in the arterioles, venules, capillaries and interstitium are shown

in Figures 11, 12. For both treatment through injection or constant perfusion the concentrations in the arterioles closely
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mimic the treatment profile. Variation due to the capillary structure in region 1 is barely detectable as the timescale for

vinblastine transport is much faster than that for uptake or proliferation. Indeed for constant perfusion the vinblastine

concentration is constant (to 3 significant figures) across the entire chamber within 3.5 hours (the simulation length is

712 hours).

The value of φav increases and decreases from the initial value due the balance of cell kill and proliferation, as

described by equations (30)–(31). Given that the concentration of vinblastine is uniform throughout the chamber after

about 3.5 hours, the only dependence of φav on vascular structure occurs through the initial condition φ (x, 0) = nt. A

comparison of treatment through single injection and constant perfusion is shown in Figure 10 for three different cases

of the cell proliferation rate K = 1/29, 1/31, 1/33 hours−1. The concentration of vinblastine delivered to the chamber

is much lower for constant perfusion than for a single injection, but is maintained for a longer period of time. This does

not appear to have a significant cumulative effect. For example when the rate of cell proliferation K = 1/29 hours−1,

the final values of φav were in the range (1.4936, 2.0616) for a single injection, and the range (9.2587, 12.7797) for

constant perfusion. This pattern of behaviour is replicated for other values of the rate of cell proliferation, K.

The modelling outputs can also predict the timing of a second injection of vinblastine. This decision could be made

based on various criteria such as when the value of φav reaches a minimum value, or when the vinblastine concentration

in the capillaries drops to a prescribed value. For example, when the cell proliferation rate K = 1/31 hours−1 the

minimum value of φav is achieved after 14.8 days and could motivate a two-week cycle of vinblastine treatment. We note

that this framework neglects multiple features necessary to quantitatively predict drug treatment efficacy (for example,

tumour growth, toxicity, etc); however, this case study does enable the behaviour of the new four-compartment model

to be explored. We also note that a much more marked dependence on vascular architecture would be expected for

drugs which decay and are metabolised, due to the impact of spatial gradients in the drug profile at the scale of the

capillaries.

5 Conclusions

We have presented a new four-component model to investigate fluid and vinblastine perfusion in a dorsal skinfold

chamber. The model incorporated arteriole, capillary, and venule networks, together with the interstitium, and pro-

vides a framework for incorporating the impact of these hierarchical structures on fluid and drug perfusion to tumours.

The impact of treatment through a single injection and through constant perfusion were tested, and the dependence

of both the fluid and vinblastine perfusion results on the vascular network were highlighted.

The multiscale model of blood transport was used to identify a single parameter (P in this paper) which relates

chamber-scale fluid perfusion to the capillary bed properties (specifically the permeability and density of the capillary

network). By fixing the topological and physiological properties of the arteriole and venules networks, a P -value of

1.25× 10−12 m2 was identified that maximises fluid perfusion through the tumour region of the chamber.
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The multiscale model of vinblastine transport was used to explore the effectiveness of treatment via a single injection

or constant perfusion of the drug, when the cancer cell proliferation rate in chamber was K = 1/29, 1/31, 1/33 hours−1.

In each case, treatment through injection was significantly more effective than that through constant perfusion, although

we note the necessity for more complexity to be incorporated, and model validation, before these predictions could be

taken forward. In addition, it was demonstrated how to use the model outputs to predict when to deliver a second

course of chemotherapy.

There are numerous opportunities for further extension of the approach in this paper, spanning incorporating more

complexity into the modelling frameworks, and validation of the model predictions again real world data. The current

work focuses on the development of a new four-component model that incorporates relevant transport information on

a hierarchy of length scales, and its implementation in a case study to explore fluid and drug perfusion in a relevant

experimental setup. Further opportunities for model development include extension to realistic, 3D vascular geometries

and tumour architectures acquired using medical imaging, including more realistic haemodynamic descriptions at the

capillary scale, the incorporation of more sophisticated drug kinetics (for example decay and metabolism, which will

involve a different homogenised model), and also tumour growth. There is an outstanding need for more sophisticated

descriptions of tumour perfusion, growth and response to treatment to inform therapy developments for cancer. This

would require extensive validation of the assumptions and predictions of the model against measurable data. We leave

these as important next steps to develop the utility of this approach in informing tumour treatment strategies.
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Glossary of Terms

Symbol Definition Units
Dimensional Parameters
d Inter-capillary separation µm
s Inter-arteriole and inter-venule separations µm
L Chamber length scale cm
u Fluid velocity cm s−1

p Fluid pressure mmHg
Ka and Kv Arteriole and venule fluid permeability tensors m2

F and E Capillary and interstitial fluid permeability tensors m2

Sa and Sv Arteriole and venule surfaces areas in contact with
porous tissue matrix m2

Va, Vv and Vp Arteriole, venule and porous tissue matrix volumes m3

µ Viscosity of blood Pa s
h Isotropic component of arteriole and venule

permeability tensors m2

k Isotropic component of capillary permeability tensor m2

kint Interstitial permeability m2

P = kν2/η2 Parameter that captures the region 2 capillary
network properties m2

C = kint/η2 Parameter that captures the interstitial permeability m2

c Vinblastine concentration nM
U Typical capillary velocity µm s−1

Dc Vinblastine diffusivity in the capillaries cm2 s−1

r Membrane permeability to vinblastine transport s−1

Ta = ra/η
2 Parameter representing drug transport from the

arterioles into the porous tissue matrix s−1

Tv = rv/η
2 Parameter representing drug transport from the

arterioles into the porous tissue matrix s−1

Qc Flux of fluid in the capillaries from region 1 to
region 2 µm2 s−1

Qt Flux of fluid in the interstitium from region 1 to
region 2 µm2 s−1

σ (t) Vinblastine treatment boundary condition on the
artery wall nM

Mc Functional form for cell kill rate due to vinblastine nM hr−1

K Net cell proliferation rate s−1

Dimensionless Ratios
ν = d/s Ratio of capillary to arteriole/venule length scales -
η = s/L Ratio of arteriole/venule to chamber length scales -
Ra and Rv Dimensionless parameters that represent fluid

‘leakage’ from the arterioles and venules into the
porous tissue matrix -
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n = Va/Vp = Vv/Vp Volume ratio of arterioles (and venules) as a
proportion of the volume of the porous tissue -

r = RasSa/Vp = RvsSv/Vp Dimensionless parameter that depends on the
geometrical and physiological properties of the
arteriole and venule networks -

na Volume fraction of arterioles -
nv Volume fraction of venules -
np Volume fraction of porous tissue matrix -
nc Volume fraction of capillaries -
nt Volume fraction of interstitium -
φ (x, t) Interstitial volume fraction -
φ (t)av Volume-averaged interstitial volume fraction -
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6 Tables

Parameter Value Units Formula Description

Geometrical and Physiological Parameters
s 100 µm / Arteriole and venule length scale
L 1 cm / Chamber length scale
d2 50 µm / Capillary length scale

(region 2)
µ 4× 10−3 kg/m/s / Viscosity of blood
kint 0.4 µm2 / Permeability of the interstitium

Ra = Rv 10−2 / / “Leakiness” of the arterioles
and venules

k2 37.4 µm2 / Permeability of the region 2
capillary network

h 37.4 µm2 / Permeability of the arteriole
and venule networks

Sa/Va = Sv/Vv 6.47× 10−4 µm−1 / Surface area to volume ratio
Sa/Vp = Sv/Vp 9.86× 10−5 µm−1 / Surface area to volume ratio
Length Scale Ratios

ν 5× 10−2 / d/s Length scale ratio
η 0.1 / s/L Length scale ratio

Modelling Parameters
n 0.152 / Va/Vp Volume ratio
r 0.986 / µLaL

4Sa/Vps
4 Modelling ratio

C 4× 10−9 m2 kintL2/s2 Modelling ratio
Pmal 9.36× 10−12 m2 kmalL

2d2mal/s
4 Modelling ratio

Table 1: A table of the fixed parameters

Network Grid-I Grid-II Grid-III Grid Irregular-II Irregular-I Grid-IV Hexagons
Vt/Vc 1.6933 2.4458 3.6812 4.2632 4.4358 6.0295 6.0571 6.5651

Table 2: The values of Vt/Vc for each explicit network under consideration

26



7 Figures

Capillary or 
Micro-Scale
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d L
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y

Interstitium with 
volume Vt in a 

unit cell

Capillaries with 
volume Vc in a 

unit cell

Tissue or

Figure 1: On the left-hand side is a 2D schematic of a cross-section through a tissue on the capillary or
micro- length scale. The capillaries and interstitium are dark and light purple, respectively. A single
periodic unit is highlighted in red. The total volume of this unit is denotes V , whilst the capillary
and interstitial volumes are Vc and Vt, respectively. The right-had side depicts the macro-scale, where
the distribution of fluid and mass appears as a ‘grey-scale’ and can be modelled as a continuum.

SOURCE 
ARTERY ARTERIOLES

VENULES
SINK 
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CHAMBER-SCALE ARTERIOLE/VENULE-SCALE MICRO-SCALE

Figure 2: The fluid pathway. Fluid flows from a source artery, through the arterioles into the capil-
laries, and then out of the chamber through a sink vein via the venules. Since the capillaries are leaky
there may also be fluid exchange between the capillaries and the interstitium.
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venules will be dominated by that in the capillaries, and
the contribution of the interstitium to the average fluid
velocity is of order ν.

3.3. Fluid Transport on the Scale of the Arterioles and
Venules

We homogenize the model for fluid transport in the
capillaries and interstitium, given by equations (2)–(7),
to give a description for transport in the capillaries and
interstitium on the scale of the arterioles and venules. On
this length scale, the capillaries and interstitium appear
as continua, and behave as a double porous medium with
coupled Darcy flow between the two. The equations for
fluid transport in the capillaries and interstitium, on this
length scale, are

uc = − η

µ
K · ∇pc , ∇ · (K · ∇pc) = 0, (10)

ut = −νη

µ
E · ∇pt , ∇ · (E · ∇pt) =

RSd

Vt
(pt − pc) ,

(11)

where R represents the leakiness of the capillary walls (and
is given in (9)), and S/Vt is the ratio of the surface area of
the capillaries to the volume of interstitium. Further, K
and E are the fluid permeability tensors associated with
the capillary network and interstitium, and are determined
by the homogenization process. They are given explicitly
in Appendix A.1 in terms of two cell problems that must
be solved on the length scale of the capillaries, once the
geometry has been specified. It is precisely these perme-
ability tensors K and E that relate transport on courser
length scales to the geometry and transport properties on
the length scale of the capillaries.

On the length scale of the arterioles and venules, fluid
flows from the arterioles into the porous tissue matrix
(comprised of the capillary network and interstitium), and
then into the venules; a schematic of this setup is shown
in Figure 6. Equations (10)–(11) describe the fluid trans-
port in the porous tissue matrix. We use subscripts a and
v to denote the arterioles and venules, respectively, and

s
venules with 

volume Vv in the 
unit cell

arterioles with 
volume Va in 
the unit cell porous tissue 

matrix with 
volume Vp in the 

unit cell

Figure 6: A schematic of a cross-section through the tumour on the
length scale of the arterioles and venules. The arterioles, venules
and porous tissue matrix (comprised of the capillary bed and in-
terstitium) are in red, blue and white, respectively. The arteriole,
venule and porous tissue volumes in a unit cell are denoted Va, Vv

and Vp, respectively

describe blood flow in the arterioles and venules using the
Navier-Stokes equations so that

∇ · ui = 0, (12)

ρ

(
∂ui

∂t
+ (uc · ∇)ui

)
= −∇pi + µ∇2ui, (13)

where i = a, v distinguishes between the arterioles and
venules. Fluid flows from the arterioles into the capillary
bed (and from the capillary bed into the venules) due to
a pressure drop across the vascular tree. Therefore, on
the boundaries of the arterioles and porous tissue matrix,
and the venules and porous tissue matrix, we impose the
boundary conditions

ua · na = uc · na = La (pa − pc) , (14)

uv · nv = uc · nv = Lv (pv − pc) , (15)

respectively, where La and Lv represent the ‘leakage’ of
fluid from the arterioles into the porous tissue matrix, and
from the porous tissue matrix into the venules, respec-
tively, and na, nv are the unit outward pointing normals
to the arteriole and venule boundaries, respectively. Fi-
nally, to close the model, we impose no slip on the arteri-
ole/porous tissue matrix and venule/porous tissue matrix
boundaries, so that

ua · τ a = 0, uv · τ v = 0, (16)

on the appropriate boundaries, where τ a, τ v are the unit
tangential vectors to the arteriole and venule boundaries.

3.4. Parameter Estimation

Ra =
µLaL4

s5
, Rv =

µLvL4

s5
, (17)

V =
1

η
U (18)

V

U
=

V !

η
(19)

V ! =
s4

d2L2
≈ 4. (20)

3.5. Fluid Transport on the Scale of the Chamber

We homogenize the model for fluid transport on the
length scale of the arterioles and venules, to give a descrip-
tion on the length scale of the chamber. On the chamber
length scale, each of the arterioles, venules, capillaries and
interstitium appear as continua, and behave as coupled
porous media. The equations for the fluid pressures in

8

Figure 3: A schematic of a cross-section through the tumour on the length scale of the arterioles
and venules. The arterioles, venules and porous tissue matrix (comprised of the capillary bed and
interstitium) are in red, blue and white, respectively. The arteriole, venule and porous tissue volumes
in a unit cell are denoted Va, Vv and Vp, respectively.

Chamber-Scale

Arteriole-Scale

Venule-Scale

Capillary-Scale

L

s

d

ν = d/s

ν = d/s

η = s/L

η = s/L

Arterioles Porous tissue Porous tissueVenules Capillaries Interstitium

Figure 4: The three characterizing length scales are the micro-scale of the capillaries (d ≈ 50µm), the
arteriole/venule-scale (s ≈ 103µm), and the chamber-scale (L ≈ 104µm). These three length scales
interact through the dimensionless ratios ν = d/s and η = s/L.
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Figure 5: A plot of Qc and Qt (both measured in µm2/s) against the parameter P (measured in m2)
that captures the permeability and density of the capillary network.

(a) pa (b) pv

Figure 6: The solutions for pa and pv when P = 1× 10−14 m2. Chamber dimensions are metres, and
all pressures are given in units of mmHg.
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(a) P = 1× 10−14 (b) P = 1.25× 10−12

(c) P = 5.2× 10−12 (d) P = 1× 10−10

(e) P = 1× 10−8

Figure 7: The solutions for pc = pt for various values of P . Chamber dimensions are metres, and
the arrows represent uc (arrow length is proportional to the magnitude of the velocity vector). All
pressures are given in units of mmHg.
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(a) Grid Network (b) Hexagonal Network
(a) Grid Network (b) Irregular I Network

(c) Grid I Network (d) Grid II Network

Figure 5.5: The Grid, Irregular I, Grid I and Grid II Networks

Multiphysics’ 1. In practice, the chambers are imaged in 2D slices through their

centre, so we simplify the system (and in particular the geometries) by assuming

a 2D setup. A key ingredient of the effective models derived in this thesis is that

the homogenization approach determines the explicit dependence of the transport

coefficients on the vascular geometry. Therefore, it is possible to test the impact

of vascular morphology on the effective properties of dorsal skinfold chambers. We

achieve this by using a fractal or tortuosity index to quantitatively characterize

vascular networks, as outlined below.

1Developed and distributed by COMSOL Inc. Full details available online at
http://www.comsol.com/.
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(c) Irregular-I Network

(d) Irregular-II Network (e) Grid-I Network (f) Grid-II Network

(a) Grid III Network (b) Grid IV Network

(c) Irregular II Network (d) Hexagonal Network

Figure 5.6: The Grid III, Grid IV, Irregular II and Hexagonal
Networks

5.2.1 Characterization of Vascular Networks Using a Tor-

tuosity Index

Fractal analysis has been applied sporadically to the study of vascular networks

with few meaningful results. However, measurement of the scale-invariant proper-

ties of vascular networks is potentially useful in revealing the determinants of vas-

cular network formation because different statistical growth processes yield struc-

tures with different fractal dimensions. The first systematic analysis of the scale-

invariant properties of different types of vascular networks was carried out in [62]

for a variety of normal and tumour vascular networks grown in mice bearing dor-

sal skinfold chambers. We extend their approach here by using the box-counting

135

(g) Grid-III Network
(a) Grid III Network (b) Grid IV Network

(c) Irregular II Network (d) Hexagonal Network

Figure 5.6: The Grid III, Grid IV, Irregular II and Hexagonal
Networks

5.2.1 Characterization of Vascular Networks Using a Tor-

tuosity Index

Fractal analysis has been applied sporadically to the study of vascular networks

with few meaningful results. However, measurement of the scale-invariant proper-

ties of vascular networks is potentially useful in revealing the determinants of vas-

cular network formation because different statistical growth processes yield struc-

tures with different fractal dimensions. The first systematic analysis of the scale-

invariant properties of different types of vascular networks was carried out in [62]

for a variety of normal and tumour vascular networks grown in mice bearing dor-

sal skinfold chambers. We extend their approach here by using the box-counting
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(h) Grid-IV Network

Figure 8: Some explicit network examples.
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Figure 9: The P-values and corresponding values of Qc and Qt for each of the explicit networks of
Figure 8.
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(a) K = 1/29 hours−1: Single Injection
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(b) K = 1/29 hours−1: Constant Perfusion
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(c) K = 1/31 hours−1: Single Injection
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(d) K = 1/31 hours−1: Constant Perfusion
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(e) K = 1/33 hours−1: Single Injection
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(f) K = 1/33 hours−1: Constant Perfusion

Figure 10: The variation of the average interstitial volume fraction as a function of time.
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(a) Average vinblastine concentration in the arterioles
as a function of time
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(b) Average vinblastine concentration in the capillar-
ies as a function of time
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(c) Average vinblastine concentration in the intersti-
tium as a function of time
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(d) Average vinblastine concentration in the venules
as a function of time

Figure 11: The average vinblastine concentration in each of the arterioles, capillaries, interstitium
and venules for a single injection.
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(a) Average vinblastine concentration in the arterioles
as a function of time
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(b) Average vinblastine concentration in the capillar-
ies as a function of time
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(c) Average vinblastine concentration in the intersti-
tium as a function of time
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(d) Average vinblastine concentration in the venules
as a function of time

Figure 12: The average concentration in each of the arterioles, capillaries, interstitium and venules
for constant perfusion.
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