Optimized self-localization for SLAM in dynamic scenes using probability hypothesis density filters
Optimized self-localization for SLAM in dynamic scenes using probability hypothesis density filters
In many applications, sensors that map the positions of objects in unknown environments are installed on dynamic platforms. As measurements are relative to the observer's sensors, scene mapping requires accurate knowledge of the observer state. However, in practice, observer reports are subject to positioning errors. Simultaneous localization and mapping addresses the joint estimation problem of observer localization and scene mapping. State-of-the-art approaches typically use visual or optical sensors and therefore rely on static beacons in the environment to anchor the observer estimate. However, many applications involving sensors that are not conventionally used for Simultaneous Localization and Mapping (SLAM) are affected by highly dynamic scenes, such that the static world assumption is invalid. This paper proposes a novel approach for dynamic scenes, called GEneralized Motion (GEM) SLAM. Based on probability hypothesis density filters, the proposed approach probabilistically anchors the observer state by fusing observer information inferred from the scene with reports of the observer motion. This paper derives the general, theoretical framework for GEM-SLAM, and shows that it generalizes existing Probability Hypothesis Density (PHD)-based SLAM algorithms. Simulations for a model-specific realization using range-bearing sensors and multiple moving objects highlight that GEM-SLAM achieves significant improvements over three benchmark algorithms.
863-878
Evers, Christine
93090c84-e984-4cc3-9363-fbf3f3639c4b
Naylor, Patrick
8c20a1a0-4507-4a0f-8324-f3075354dc52
15 February 2018
Evers, Christine
93090c84-e984-4cc3-9363-fbf3f3639c4b
Naylor, Patrick
8c20a1a0-4507-4a0f-8324-f3075354dc52
Evers, Christine and Naylor, Patrick
(2018)
Optimized self-localization for SLAM in dynamic scenes using probability hypothesis density filters.
IEEE Transactions on Signal Processing, 66 (4), .
(doi:10.1109/TSP.2017.2775590).
Abstract
In many applications, sensors that map the positions of objects in unknown environments are installed on dynamic platforms. As measurements are relative to the observer's sensors, scene mapping requires accurate knowledge of the observer state. However, in practice, observer reports are subject to positioning errors. Simultaneous localization and mapping addresses the joint estimation problem of observer localization and scene mapping. State-of-the-art approaches typically use visual or optical sensors and therefore rely on static beacons in the environment to anchor the observer estimate. However, many applications involving sensors that are not conventionally used for Simultaneous Localization and Mapping (SLAM) are affected by highly dynamic scenes, such that the static world assumption is invalid. This paper proposes a novel approach for dynamic scenes, called GEneralized Motion (GEM) SLAM. Based on probability hypothesis density filters, the proposed approach probabilistically anchors the observer state by fusing observer information inferred from the scene with reports of the observer motion. This paper derives the general, theoretical framework for GEM-SLAM, and shows that it generalizes existing Probability Hypothesis Density (PHD)-based SLAM algorithms. Simulations for a model-specific realization using range-bearing sensors and multiple moving objects highlight that GEM-SLAM achieves significant improvements over three benchmark algorithms.
Text
08116669
- Version of Record
More information
Accepted/In Press date: 1 April 2016
e-pub ahead of print date: 21 November 2017
Published date: 15 February 2018
Identifiers
Local EPrints ID: 438598
URI: http://eprints.soton.ac.uk/id/eprint/438598
ISSN: 1053-587X
PURE UUID: 274b20eb-30c1-4c82-ba06-44d050d3ee75
Catalogue record
Date deposited: 18 Mar 2020 17:30
Last modified: 17 Mar 2024 04:01
Export record
Altmetrics
Contributors
Author:
Christine Evers
Author:
Patrick Naylor
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics