
UNIVERSITY OF SOUTHAMPTON

Channel coding algorithms for
Ultra-Reliable Low Latency

Communication

by

Luping Xiang

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

December 2019

http://www.soton.ac.uk
mailto:lx1g15@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Luping Xiang

The Ultra-Reliable Low Latency Communication (URLLC) concept has been conceived
for the emerging Fifth Generation (5G) systems, targeting a round-trip end-to-end la-
tency of less than 1 ms in conjunction with ultra-high reliability. Therefore, this thesis
proposes several novel channel coding schemes in order to meet the latency requirements
of the URLLC mobile communication standard.

First, an Arbitrarily Parallel Turbo Decoder (APTD) is proposed to support an arbitrarily-
high degree of parallel processing, facilitating significantly higher processing throughputs
and substantially lower processing latencies than the State-of-the-art (SOTA) Long Ter-
m Evolution (LTE) turbo decoder. As in conventional turbo decoding algorithms, the
proposed APTD decomposes each block of information bits into a sequence of windows,
where the bits within different windows are processed simultaneously using forward and
backward recursions in a serial manner. However, in contrast to conventional turbo de-
coding algorithms, the APTD does not require the different windows to be composed
of an identical number of bits. This allows the use of an arbitrary number of windows
and hence an arbitrary degree of parallelism, when decoding information bits of an ar-
bitrary block length. Furthermore, conventional turbo decoding algorithms alternate
between simultaneously processing the windows in the upper decoder and those in the
lower decoder. By contrast, the APTD processes the odd-indexed windows in the upper
decoder at the same time as the even-indexed windows in the lower decoder and alter-
nates between this and the reversed arrangement, hence further improving the decoding
throughput and latency. Furthermore, the APTD achieves a reduced hardware resource
requirement by calculating the extrinsic information based only on the outputs of the
forward recursions, rather than being based on both the forward and backward recur-
sions of conventional turbo decoding algorithms. We demonstrate that the proposed
APTD achieves superior latency, throughput and computational efficiency compared to
the SOTA LTE turbo decoder at all block lengths, but particularly at the short block
lengths that are typically used in URLLC approaches.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:lx1g15@ecs.soton.ac.uk

iv

For example, at a block length of N = 504 bits, the proposed APTD achieves an Block
Error Rate (BLER) of 10−5 at the same Eb/N0 as I = 8 iterations of a conventional
turbo decoder, but with a computational efficiency that is 6 times higher than that of
the SOTA turbo decoder, while achieving a latency and throughput that are 0.7 and 1.4

times those of the SOTA decoder, respectively.

Additionally, the URLLC service requires an order of magnitude improvements in all lay-
ers of the wireless communication stack. This is a particular challenge for the physical
layer, where typically a processing time of the order of microseconds is required for the
computationally intensive demodulation and error correction processing, among other
operations. Conventionally, the reception of signals, the demodulation processing and
the error correction processing are performed consecutively at the receiver. However, this
approach is associated with processing times on the order of hundreds of microsecond-
s, preventing URLLC. Therefore, this paper proposes a novel processing architecture,
which is capable of performing reception, Orthogonal Frequency-Division Multiplex-
ing (OFDM) demodulation and turbo decoding concurrently, rather than consecutively,
hence significantly reducing the processing time. In order to achieve concurrent op-
eration, the OFDM demodulation is performed using a novel cumulative Fast Fourier
Transform (FFT), which produces successively more reliable estimates of all transmitted
symbols in each successive clock cycle. At the same time, a Fully-Parallel Turbo De-
coder (FPTD) is used to recover successively more reliable estimates of all bits in each
successive clock cycle.

Then, a detailed tutorial on the Cyclic Redundancy Check (CRC)-aided Logarithmic
Successive Cancellation Stack (Log-SCS) algorithm conceived for polar codes is provided,
followed by a pair of refinements for improving the error correction performance. We also
apply these algorithms for the ultra-reliable decoding of polar codes, which has relevance
for the control channels of the URLLC version of the 3rd Generation Partnership Project
(3GPP) New Radio (NR). In contrast to the bit probabilities of all previous work
on SCS polar decoding, the Log-SCS algorithm operates on the basis of Logarithmic-
Likelihood Ratios (LLRs), which facilitates low-complexity fixed point implementation
and reduced storage requirements. Furthermore, we extend the computation to consider
frozen bits in stack decoding when determining the most likely sequence of information
bits, which improves the error correction performance despite reducing the decoding
complexity. During the exploitation of the CRC codes, for improving the error correction
performance, we propose a novel technique which limits the number of CRC checks
performed, in order to maintain a consistent error detection performance. Additionally,
a pair of techniques for further improving the performance of the Log-SCS polar decoder
are proposed and we demonstrate that the proposed S = 128 Improved Log-SCS decoder
achieves a similar error correction capability as a Logarithmic Successive Cancellation
List (Log-SCL) decoder having a list size of L = 128 across the full range of block lengths
supported by the 3GPP NR Physical Uplink Control Channel (PUCCH). This is achieved

v

without increasing its memory requirement, while dramatically reducing its complexity,
which becomes up to seven times lower than that of a L = 8 Log-SCL decoder.

Following the Improved Log-SCS algorithm, a novel fast Log-SCS polar decoder is pro-
posed, which employs several techniques that is previously considered by the fast SCL
decoder. This Log-SCS polar decoder is capable of attaining a decoding latency that is
lower than that of the SOTA fast SCL polar decoders without the loss of error correction
performance. First, a 32-bit fixed point Log-SCS polar decoder is achieved in this paper,
which is capable of maintaining the same BLER as that of the floating-point Log-SCS
polar decoder, allowing the software implementation on x86 processors. In addition,
the simplified path-metric computation of the rate-0, rate-1 and repetition subgraphs is
applied in the proposed fast Log-SCS decoder which reduces the decoding complexity
by 50% on average. In addition, the software implementation of the fast Log-SCS polar
decoder is achieved on the x86 processors that support Single Instruction Multiple Data
(SIMD) instructions with 512-bit Advanced Vector Extensions (AVX-512) for the first
time, satisfying the low-latency requirements of Software-Defined Radio (SDR) systems.
By implementing the 32-bit fast Log-SCS polar decoder into the x86 processors in con-
junction with AVX-512 SIMD instructions, a maximum parallelization degree of 16 may
be attained, and an 80% latency reduction may be achieved.

Dedicated to my beloved family and friends . . .

vii

Contents

Acknowledgements xiii

1 Introduction 1
1.1 Ultra-Reliable Low Latency Communication 2
1.2 Turbo codes for LTE URLLC . 3
1.3 Polar codes for 5G NR URLLC . 5
1.4 Contributions and thesis structure . 6

2 Arbitrarily Parallel Turbo Decoder 11
2.1 Introduction . 11
2.2 LTE turbo codes overview . 16

2.2.1 Turbo Encoder . 16
2.2.2 Turbo Decoders . 17

2.2.2.1 State-of-the-art LTE turbo decoder 17
2.2.2.2 Fully-parallel turbo decoder 22

2.3 Arbitrarily Parallel Turbo Decoder . 24
2.3.1 APTD employing equal window lengths 24
2.3.2 APTD employing unequal window lengths 28

2.4 Performance analysis . 30
2.5 Complexity analysis . 34
2.6 Conclusions . 40

3 Concurrent OFDM Demodulation and Turbo Decoding Architecture 43
3.1 Introduction . 43
3.2 Fast Fourier Transform . 46
3.3 Proposed turbo-coded OFDM scheme . 49

3.3.1 Transmitter . 49
3.3.2 Receiver . 50

3.4 Validation . 53
3.5 Performance analysis . 56
3.6 System refinements . 57

3.6.1 Staggered receive approach . 57
3.6.2 Scaled approach . 59

3.7 Conclusions . 60

4 CRC-aided Logarithmic Stack Decoding of Polar Codes 61
4.1 Introduction . 61
4.2 Overview of the 3GPP NR Uplink Polar Codes 66

ix

x CONTENTS

4.2.1 Code block segmentation and concatenation 68
4.2.2 CRC generation and appending . 68
4.2.3 Frozen bit insertion and removal 69
4.2.4 Polar encoding and decoding core 71
4.2.5 Rate matching and dematching . 78
4.2.6 Channel interleaving and deinterleaving 78

4.3 Performance, complexity and memory analysis 79
4.3.1 Error correction and error detection performance 79
4.3.2 Computational complexity . 80
4.3.3 Memory requirement . 84

4.4 Improvements of the CRC-aided Log-SCS polar decoder 87
4.4.1 Referenced Log-SCS polar decoder 87
4.4.2 Restricted Log-SCS polar decoder 88
4.4.3 Performance of the Improved CRC-aided Log-SCS polar decoder . 89

4.5 Conclusions . 89

5 Fast Log-SCS Polar Decoder and its Software Implementation 95
5.1 Introduction . 95
5.2 Review of Logarithmic successive cancellation stack decoding 98
5.3 Fast Log-SCS decoder . 99

5.3.1 Fixed-point implementation . 100
5.3.2 Rate-0 sub-graph computation . 101
5.3.3 Rate-1 sub-graph computation . 102
5.3.4 Repetition sub-graph computation 103
5.3.5 Error correction performance . 103
5.3.6 Computational complexity . 104

5.4 SIMD implementation of the proposed Fast Log-SCS decoder 105
5.4.1 f and g functions computation . 105
5.4.2 Latency, Throughput and Memory requirement 109

5.5 Conclusions . 112

6 Conclusions and Future Research 113
6.1 Design Guidelines . 115
6.2 Future Work . 116

A 119
A.1 . 119

Bibliography 127

Subject Index 137

Author Index 139

List of Publications

1. L. Xiang, M. Brejza, R. Maunder, B. Al-Hashimi and L. Hanzo, "Arbitrarily
Parallel Turbo Decoding for Ultra-Reliable Low Latency Communication in 3GPP
LTE," IEEE Journal on Selected Areas in Communications, vol. 37, no. 4, pp.
826-838, 2019

2. L. Xiang, Z. Egilmez, R. Maunder and L. Hanzo, "CRC-Aided Logarithmic Stack
Decoding of Polar Codes for Ultra Reliable Low Latency Communication in 3GPP
New Radio," IEEE ACCESS, vol. 7, pp. 28559-28573, 2019

3. L. Xiang, R. Maunder and L. Hanzo, "Concurrent OFDM Demodulation and Tur-
bo Decoding for Ultra Reliable Low Latency Communication," IEEE Transactions
on Vehicular Technology, accepted, 2019

4. L. Xiang, R. Maunder and L. Hanzo, "Fast Log-SCS polar decoder and software
implementation," in preparation, 2019

5. Z. Babar, Z. Egilmez, L. Xiang, D. Chandra, R. Maunder, S. Ng and L. Hanzo,
"Polar Codes and Their Quantum-Domain Counterparts," IEEE Communications
Surveys & Tutorials, accepted, 2019

6. A. Li, L. Xiang, T. Chen, R. Maunder and L. Hanzo, "VLSI Implementation of
Fully Parallel LTE Turbo Decoders," IEEE ACCESS, vol. 4, pp. 323-346, 2016

7. Z. Egilmez, L. Xiang, R. Maunder and L. Hanzo, "The Development, Opera-
tion and Performance of the 5G Polar Codes," IEEE Communications Surveys &
Tutorials, accepted, 2019

xi

DECLARATION OF AUTHORSHIP

I, Luping Xiang, declare that the thesis entitled Channel coding algorithms for
Ultra-Reliable Low Latency Communication and the work presented in the thesis
are both my own, and have been generated by me as the result of my own original
research. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at
this University;

• Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

• Where I have consulted the published work of others, this is always clearly at-
tributed;

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly What was done by others and what I have contributed myself;

• Parts of this work have been published in the provided list of publications

Signed: .

Date: .

xiii

xiv CONTENTS

Acknowledgements

I would like to first express my sincere gratitude to my supervisor Prof. Robert G.
Maunder for his professional supervision, his generous support and great patience with
me throughout my research. At the earlier stage of my PhD research, he introduced
me the field of channel coding and helped me to discover my potential at research with
constructive discussions and encouragements. I cannot complete this thesis without him.

I would also like to thank my supervisor Prof. Lajos Hanzo for his guidance throughout
the past four years. His passion towards research, diligence and positive altitudes towards
life inspired me a lot and would constantly encourage me in the future.

Many thanks my colleagues and all the staffs of the Next Generation Wireless Research
Group for their useful discussions and comments throughout my research. Special thanks
to Prof. Lie-Liang Yang, Dr. Soon X. Ng, Mr. Shuai Shao, Mr. Yanqing Zhang, Mr.
Xiaoyu Zhang Miss. Zeynep Egilmez and Miss Yusha Liu, for their technical support
and collaborative work.

I would like to express my warmest gratitude to my parents for the lifelong under-
standing and support. Finally, I would like to greatly thank my girlfriend, Miss. Yusha
Liu, for her insightful advice, encouragement and support.

List of Symbols

General notation

• The superscript ∗ represents complex conjugate.

• The superscript H represents complex conjugate transpose operation

• The operator Ai represents the ith entry of A.

Special symbols

Chapter 2

N Block length
P The number of processors
p The number of active processors
I The number of iterations
bu
1 Message block

bu
2 Upper parity block

bu
3 Upper systematic block

bl
1 Interleaved message block

bl
2 Lower parity block
R Coding rate

M The number of states of in the transition dia-
gram

K The number of transitions per state
S Encoder state
b̄a
2 Parity a priori LLRs

b̄a
3 Systematic a priori LLRs

b̄e
1 Extrinsic LLRs

b̄a
1 A priori LLRs

xv

xvi CONTENTS

ᾱ Forward state metrics
β̄ Backward state metrics
L The number of algorithmic units in a processor
γ̄ a priori transition metrics
f Scaling factor

Chapter 3

K The number of message bits
T The number of encoded bits
N The number of transmit symbols
X Encoded signal
x OFDM signal
M Constellation size
S Constellation set
L The number of cyclic prefix symbols
h Channel Impulse Response
n Additive White Gaussian Noise
Hk Single tap channel gain of the QAM symbol Xk

C The number of clock cycles
Y Received signal in the frequency domain
y Received signal in the time domain
γ Singal-to-noise ratio
σ2 Varaince of AWGN noise

Chapter 4 & chapter 5

L List size
S Stack size
A Information block length
A′ Segmented information block length
K The number of information bits and CRC bits
N Information block length
G Encoded block length
u Information bits
x Encoded bits
û Estimated information bits
φi Path metric at the ith bit
x̃i LLR for the ith bit

CONTENTS xvii

y Received LLRs
S Stack with a single entry `ST

P CRC length

R The maximum times that each of the N bits in
the code tree may be visited

Chapter 1

Introduction

Channel coding has been used for correcting transmission errors over diverse channels
incurred by noise, fading or interference. The venture into channel coding started with
Shannon’s groundbreaking paper in 1948 [1], where he quantifies the channel capacity
over the Additive White Gaussian Noise (AWGN) channel. Since then, different capacity-
approaching channel coding schemes have been proposed for wireless communication
systems. More specifically, a channel encoder is employed in the transmitter to convert
information bits into a longer bit sequence by concatenating redundant bits. In this
way, the redundant bits protect the information bits in the transmission over different
channels. At the receiver, a channel decoder recovers the original information bits.

In the Fourth Generation (4G) communications, turbo codes [2–4] and convolutional
codes [5] have been adopted in the 3rd Generation Partnership Project (3GPP) Long
Term Evolution (LTE) standard for mobile communication [6], whereas the 3GPP’s group
has standardised the Low-Density Parity-Check (LDPC) code [7] and polar code [8] as
the channel coding schemes for the data channel and control channel, respectively, in the
Fifth Generation (5G) New Radio (NR).

Table 1.1: Channel coding schemes employed in 4G LTE and 5G NR communication
systems.

LTE NR

Control Channel Convolutional Polar

Data Channel Turbo LDPC

The three main 5G NR applications, namely the Ultra-Reliable Low Latency Communi-
cation (URLLC), enhanced Mobile Broadband (eMBB) communication, and the massive
Machine-Type Communications (mMTC), aim for providing significantly improved us-
er experience for cellular communications. The particular requirements of these three
scenarios are highlighted in Figure 1.1. For example, eMBB communication aims for

1

2 Chapter 1 Introduction

achieving a maixmum throughput of 20 Gbps, which is 20 times higher compared to
that of 4G LTE. In addition, URLLC targets a Block Error Rate (BLER) below 10−5

with an end-to-end latency within 1 ms. This is in contrast to the 10−4 BLER within
20 ms achieved by 4G LTE standard. This ultra-low latency requirement may hardly be
satisfied employing the State-of-the-art (SOTA) transmission and receiving schemes [9].
A smooth progress towards 5G URLLC services will be based on the LTE URLLC mod-
e [10] with several enhancements, with a particular focus on latency and error correction
capability. Under this development, turbo codes require further exploitation to satisfy
the latency and reliability requirement of LTE URLLC service. In addition, the tur-
bo codes adopt the advantage of lower decoding complexity and better error-correction
performance compared to the LDPC codes at low coding rates that are motivated in
URLLC for the sake of ensuring ultra-low latency and ultra-high reliability [11,12].

In the case of 5G NR, both LDPC and polar codes are employed for protecting the
channel. However, in contrast to LDPC codes that have been excessively investigated,
polar codes are far less mature. More specifically, while a better BLER performance
has been demonstrated for polar codes in case of short block lengths, the throughput
bottleneck of polar decoding has prevented its application in the 5G NR data channel.

Against this background, this thesis aims to design low-latency decoding algorithms that
satisfies the requirements of the URLLC and joint decoding and demodulation schemes
that could further reduce the decoding latency. To build upon this further, this chapter
briefly overviews the challenges of our work and outlines the contributions of this thesis.

1.1 Ultra-Reliable Low Latency Communication

URLLC, as one of the three typical scenarios of the 5G communications, targets a
99.999% transmission reliability below 10−5 with an end-to-end latency within 1 ms.
As shown in Figure 1.1, the eMBB and mMTC modes aim for maximizing the data rate
at a moderate reliability of 10−3, and for supporting massive connection in grant-free
access, respectively. By contrast, the URLLC service focuses on ultra-reliable commu-
nications, where designing an outstanding channel coding scheme becomes one of the
key targets in the forthcoming years. This motivates our research of designing practical
channel coding schemes that have potential of satisfying the URLLC requirements.

In order to achieve a smooth transition, the initial roll-out of 5G will be based on the
3GPP’s non-stand alone NR, which is built upon a foundation offered by 3GPP LTE [6].
Therefore, the 3GPP is currently standardising a URLLC mode for the LTE standard for
mobile communication as part of the 5G development [10,13–15]. Several enhancements
have been introduced by 3GPP LTE URLLC, aiming for meeting the 1 ms latency and
10−5 reliability requirements [13]. To be more specific, LTE Release 15 has introduced
the shortened Transmission Time Interval (sTTI) technique, which imposes a 7-fold

Chapter 1 Introduction 3

eMBB

Processing
Throughput

mMTC

Implementation

Complexity

URLLC

Error Correction Capability

Latency

Flexibility

Figure 1.1: The requirements for different 5G target scenarios.

reduction upon the signal processing time available at the User Equipment (UE) and
evolved Node B (eNB) base station, namely a reduction from 3 ms in Release 14, to
0.43 ms in Release 15 [16, 17]. Within this 0.43 ms, several signal processing tasks
must be completed, including receive buffering, Fast Fourier Transform (FFT), channel
decoding, Inverse Fast Fourier Transform (IFFT) and transmit power control [14, 15].
In order for an eNB to support the processing of multiple users’ transmissions within
this processing time without employing a unique, user-specific set of signal processing
hardware per user, each of these tasks must be completed in much less than 0.43 ms.
This significant reduction in the decoding latency requirement motivates the design of
new low-latency channel decoding techniques.

1.2 Turbo codes for LTE URLLC

Turbo codes have been widely applied in the 4G LTE communication systems. In order
to achieve the latency requirement of LTE URLLC, it will be necessary to complete the
turbo decoder processing in tens of microseconds [18], motivating the replacement of the
Logarithmic Bahl-Cocke-Jelinek-Raviv (Log-BCJR) algorithm in the associated turbo
decoding [2–4, 19], which imposes strict data dependencies. More specifically, a turbo
decoder comprises an upper-branch and a lower-branch convolutional decoder, which may
operate alternately using the Log-BCJR to generate extrinsic information exchanged via
an interleaver. However, the data dependencies of the Log-BCJR algorithm require the
processing to be performed one step at a time, using forward and backward recursions
alternately along the entire length of the interleaved information frame. This serial
nature of the Log-BCJR algorithm imposes a bottleneck upon the throughput and results
in processing latencies of hundreds of micro seconds for the turbo decoding process [19],
unless parallel processing techniques are employed.

4 Chapter 1 Introduction

For the application of turbo codes in the 4G LTE system, several refinements of the
Log-BCJR turbo decoder have been previously proposed for improving both the through-
put and latency, such as the Radix-4 transform of [20, 21] and non-sliding window tech-
nique of [22]. To be more specific, the Radix-4 transform allows two steps of the
Log-BCJR algorithm’s forward and backward recursions to be completed at a time,
therefore doubling the throughput and halving the latency, albeit at the cost of sig-
nificantly increasing the hardware resource requirements. Meanwhile, the non-sliding
window based technique of [23] decomposes each information frame of N bits into P
number of windows, which can be processed simultaneously using separate parallel pro-
cessors. Furthermore, the forward and backward recursions of the Log-BCJR can be
completed simultaneously, rather than one after the other, hence further doubling the
throughput and halving the latency. Using these techniques, a turbo decoder having 64
parallel processors has been proposed in [23].

However, the Log-BCJR turbo decoder is only able to fully exploit this parallelism for the
longest frame lengths and disables up to 56 of the parallel processors at the short frame
lengths that are common in URLLC applications, leading to poor hardware efficiency.
Recently, a Fully-Parallel Turbo Decoder (FPTD) has been proposed for significantly
increasing the grade of parallelism in the LTE turbo decoder, hence reducing the latency
[24]. The employment of odd-even interleavers [25, 26] in LTE allows the FPTD to
alternate between processing all odd-indexed bits in the upper decoder at the same
time as all even-indexed bits in the lower decoder, and vice-versa, hence completing
each decoding iteration in two clock cycles. However, the hardware requirement of the
FPTD is dictated by the longest supported frame length. Since none of these hardware
improvements can be exploited for shorter frame lengths, the hardware efficiency and
flexibility of the FPTD remains limited. Therefore, a superior decoding algorithm which
is able to simultaneously satisfy the latency and the reliability requirement, and, in the
meantime, achieve higher hardware efficiency is required for URLLC. This challenge is
addressed in this thesis.

In addition to improving the channel coding operation of LTE, exploiting diversity is
another way of improving the reliability. The current LTE physical layer achieves a
high throughput and reliability by employing the classic Orthogonal Frequency-Division
Multiplexing (OFDM) technique [27, 28] for mitigating echoes in the wireless channel,
as well as a turbo code for correcting any remaining transmission errors [2, 3, 29, 30].
However, these techniques impose a high signal processing complexity upon the physical
layer, particularly in the receiver, which fails to meet the� 0.43 ms latency requirement
of the URLLC scenario. Therefore, this thesis proposes a concurrent receiving, processing
and decoding scheme, which may achieve a threefold reduction in the associated latency.

Chapter 1 Introduction 5

1.3 Polar codes for 5G NR URLLC

While turbo and LDPC codes have been exploited for decades and have been applied
in different wireless communications scenarios, polar codes [8, 31] have been developed
only within the past decade and have already demonstrated superior error correction
performance at short block lengths compared to turbo codes. While polar coding has
already been selected by 3GPP for protecting the eMBB control channels in 5G NR
mobile communications [32], it still has promising application to the URLLC service,
where the short block lengths dominate the transmission patterns.

Polar decoding algorithms of the polar codes fall into two categories, which either operate
on the basis of Successive Cancellation (SC) [8, 33] or Belief Propagation (BP) [34–36].
Originally, the low-complexity SC [8,33] decoding algorithm was originally proposed for
polar codes, and was simplified in [37] to further reduce the complexity and the laten-
cy. However, more sophisticated decoding algorithms [38–45] are required for achieving
near capacity performance in practical wireless channels. Rather than considering only
the locally most-likely value for each successive bit, as in SC decoding, the Successive
Cancellation List (SCL) decoder [39–41] uses a breadth-first search for identifying the L
number of locally most-likely bit values, allowing it to more frequently spot the globally
most-likely values. By contrast, the Successive Cancellation Stack (SCS) decoder [42] us-
es a depth-first approach to directly search for the globally most-likely values, although
its ability to achieve this depends on the number of decoding candidates S that can
be stored within the memory available for the stack. Note that while all L decoding
candidates will have the same length in the SCL algorithm at high channel Signal to
Noise Ratios (SNRs), many of the S candidates in the SCS algorithm tend to have much
shorter lengths, hence reducing the complexity of the SCS algorithm below that of the
SCL algorithm, approaching that of the SC algorithm.

In order to adapt to hardware implementations, the authors of [46] proposed a Logarithmic
Successive Cancellation List (Log-SCL) decoder that operates on the basis of Logarithmic-
Likelihood Ratios (LLRs), rather than bit probabilities as in the SCL decoder, which en-
ables low-complexity fixed point implementation and reduced storage requirements, ow-
ing to the low dynamic range of LLRs [47–50]. In addition, [51] proposed a Logarithmic
Successive Cancellation Stack (Log-SCS) decoder, which uses LLRs to bring the same
advantages to the SCS decoder. However, when attaining similar BLER performance to
that of SCL decoder, the Log-SCS decoder suffers from requiring massive stack size, and
hence a massive amount of memory. Therefore, novel techniques are required to reduce
the stack size while maintaining the BLER performance. In addition, the latency bot-
tleneck is hard to break when employing the SOTA polar decoders, owing to the strict
data dependencies of successive cancellation. Therefore, novel operations and decoding
algorithms are required for meeting the latency requirement of the URLLC service.

6 Chapter 1 Introduction

Table 1.2: Contributions of each chapter to URLLC requirements

Error correction performance Latency Complexity Flexibility

Chapter 2 X X X X

Chapter 3 X X

Chapter 4 X X

Chapter 5 X X X X

1.4 Contributions and thesis structure

Chapter 1

Introduction

Chapter 2

Turbo code

Chapter 4

Polar code

Chapter 3

Concurrent OFDM

Chapter 5
Implementation

Chapter 6

Conclusion

Turbo code for LTE URLLC Polar code for 5G NR URLLC

Figure 1.2: Thesis structure.

In this section, the thesis structure is outlined along with the novel contributions in each
chapter. Figure 1.2 summarises the topics that are covered in this thesis, whereas Table
1.2 highlights the major contribution of our design towards the realisation of URLLC
services. To start with, Chapter 2 reviews several LTE turbo decoder implementations
and proposes a novel turbo decoding algorithm, referred to as Arbitrarily Parallel Turbo
Decoder (APTD), which aims for achieving both high processing throughput and low
processing latencies, while maintaining a high grade of flexibility. The novel contributions
of the APTD are as follows.

• First, the APTD algorithm allows the parallel operation of an arbitrary number
P of processors, which is not limited to an integer factor of the frame length N ,
nor to N itself. The first of two versions of the proposed APTD decomposes the
frame into the highest possible number of windows that can support equal window
lengths, where some processors are disabled as in the non-sliding window based and
FPTD algorithms, respectively. For many frame lengths, this facilitates a grade
of parallelism in excess of 64, which is the highest achieved previously in the lit-
erature owing to the requirement for P having to be a common divisor of many
supported frame lengths N . In this first version of the APTD, the processors op-
erate on the basis of windows of equal length, benefitting from the contention-free
property of the LTE quadratic permutation polynomial interleaver. However, in a
second version of the APTD, all processors are activated for all but the shortest

Chapter 1 Introduction 7

of frame lengths. Here, the different processors operate on windows of slightly
different lengths. This breaks the contention-free property of the LTE quadratic
permutation polynomial interleaver [52, 53], but we show that contention can be
avoided by rescheduling the interleaver operation independently from the genera-
tion of extrinsic information, hence achieving even higher throughput.

• Furthermore, rather than operating the upper and lower decoder alternately like
in conventional turbo decoding algorithms, the arbitrarily parallel turbo decoding
algorithm employs odd-even operation, in a similar fashion to the FPTD of [24].
More specifically, the APTD alternates between processing the odd-indexed win-
dows of the upper decoder at the same time as the even-indexed windows of the
lower decoder, and vice versa. We will show that for short frame lengths, this odd-
even operation gives superior BLER performance compared to the upper-lower
operation.

• As a further contribution, we conceive and compare two techniques for provid-
ing systematic information to the APTD, namely the interleaved, and the non-
interleaved systematic approaches. In the interleaved systematic approach, the
systematic information is entered into the upper decoder, but additionally it is al-
so interleaved and entered to the lower decoder. By contrast, in the non-interleaved
systematic approach, the systematic information is only entered directly into the
upper decoder, but it is also added into the upper decoder’s extrinsic information,
which is then interleaved and entered into the lower decoder. The benefit of the
latter is that this reduces the number of interleavers that are required at the cost
of a slightly degraded BLER performance.

• Finally, while conventional turbo decoders compute their extrinsic information in
both the forward and backward recursions of the Log-BCJR algorithm in the pro-
posed design, the extrinsic information is calculated only in the forward recursions
of the APTD. We will show that this further reduces the proposed APTD’s de-
coding complexity and its interleaving complexity, albeit at the cost of requiring
slightly more decoding iterations to maintain the same BLER performance.

Chapter 3 also targets the latency requirements of URLLC but extends the turbo decod-
ing work of Chapter 2 by also exploiting the frequency diversity. More specifically, the
turbo decoding algorithm is jointly designed with an OFDM demodulation scheme, so
that the physical layer latency can be significantly further reduced. In Chapter 3, a new
architecture, in which the physical layer receiver components are operated concurrently,
rather than consecutively, is proposed to potentially facilitate sub-microsecond physical
layer latencies in the case of low-latency capital market trading. The novel contributions
of Chapter 3 are as follows.

8 Chapter 1 Introduction

• We propose a novel cumulative FFT technique, which is processed incrementally
and concurrently with the FPTD of [24], throughout the process of receiving a
single OFDM symbol. Since the information carried by each turbo encoded bit
is spread throughout the duration of the OFDM symbol, the proposed concurrent
FFT can obtain some information about each bit as soon as the reception of the
OFDM symbol begins, allowing turbo decoding to start immediately. As more and
more of the OFDM symbol is received with passing time, the cumulative FFT can
obtain more and more information about the turbo encoded bits, which can be fed
into the concurrent turbo decoding process.

• We show that if the turbo decoder can complete a sufficient number of iterations
within the duration of the OFDM symbol, then it can achieve the same error
correction performance as if the turbo decoding process had only began after the
reception of the OFDM symbol had been completed.

• In the case of the URLLC communications [6, 54, 55], the proposed approach can
reduce the associated latency from 210 µs to 70 µs, which is far less than the 100 µs
latency target of the Tactile Internet [56]. This leaves 30 µs for propagation and for
the remaining, lower-complexity physical layer components, including channel es-
timation, Multiple-Input and Multiple-Output (MIMO) detection and transmitter
processing.

Later in Chapter 4, we expand our scope to a less mature but promising channel code,
the polar code, and aim for improving the error correction performance for satisfying
the URLLC requirements highlighted in Figure 1.1. In this chapter, a tutorial of the
uplink polar encoding and decoding process is detailed under the 5G NR standard and
several enhancements are proposed to further increase the error correction performance
of Log-SCS polar decoder of [51]. The novel contributions of Chapter 4 are as follows.

• We apply the Log-SCS algorithm to the polar code of the Physical Uplink Control
Channel (PUCCH) and Physical Uplink Shared Channel (PUSCH) of the recently
standardised URLLC version of 3GPP NR [57]. We provide a tutorial on how the
Log-SCS algorithm may be obtained by transforming the computations of the SCS
algorithm into the logarithmic domain, such that it can operate on the basis of
LLRs.

• We provide a tutorial on how the Log-SCS algorithm improves on the SCS by con-
sidering the frozen bits, when determining the most likely sequence of information
bits, which improves the error correction performance and reduces the decoding
complexity.

• During the exploitation of the Cyclic Redundancy Check (CRC) codes to improve
the error correction performance, we propose a novel technique for limiting the

Chapter 1 Introduction 9

number of CRC checks performed in stack decoding, in order to maintain a con-
sistent error detection performance. In this application, we demonstrate that the
application of the Log-SCS decoder to the 3GPP NR polar code of PUCCH and
PUSCH offers as much as 0.5 dB improved error correction performance, compared
to the previous SCS algorithm using the same stack size of S = 8.

• We propose a pair of novel techniques for further improving the performance of
the Log-SCS polar decoder. We show that across the full range of block lengths
supported by NR PUCCH and PUSCH, the proposed S = 128 Improved Log-SCS
decoder achieves a similar error correction capability as the L = 128 Log-SCL
decoder. This is achieved despite dramatically reducing its complexity by up to
seven times compared to a L = 8 Log-SCL decoder and without increasing its
memory requirement. Owing to this, the proposed Improved Log-SCS decoder
offers practical ultra-reliable error correction within as little as 0.5 dB of the channel
capacity bound. Hence, it is particularly well-suited to the URLLC mode of 3GPP
NR.

Chapter 5 proposes and characterises a the software implementation of the Improved
Log-SCS decoder of Chapter 4, with a focus on the latency improvement and complexity
reduction. The novel contributions of Chapter 5 are as follows.

• We propose a novel CRC Aided (CA) fast Log-SCS decoder that employs several
techniques that were previously considered by the fast Simplified Successive Can-
cellation List (SSCL) decoder [58], attaining a decoding latency level that is lower
than the SOTA fast SCL polar decoders of [58].

• Each LLR that is input to the decoder is quantised using 32 bits, enabling the
fixed-point implementation. In addition, a simplified path-metric computation of
the rate-0, rate-1 and repetition subgraphs is applied in the proposed fast Log-SCS
decoder which reduces the decoding complexity by 50% on average.

• The software implementation on x86 CPUs with Single Instruction Multiple Da-
ta (SIMD) instructions is demonstrated for the first time. In contrast to [59] which
exploits the inter-block parallelism of the polar codes, the fast Log-SCS decoder
considers only the intra-block parallelism. This guarantees the low-latency imple-
mentation in the Software-Defined Radio (SDR) systems. By implementing the
32-bit fast Log-SCS polar decoder into the x86 processors with 512-bit Advanced
Vector Extensions-512 (AVX-512) SIMD instructions, a maximum parallelism de-
gree of 16 may be achieved, and a 50% improvement in latency may be attained.

Finally, Chapter 6 summarises the main conclusions of the thesis and suggests potential
research interest in channel coding schemes for URLLC.

Chapter 2

Arbitrarily Parallel Turbo Decoder

2.1 Introduction

As introduced in Section 1.1, the Fifth Generation (5G) Ultra-Reliable Low Latency
Communication (URLLC) service targets a Block Error Rate (BLER) below 10−5 with
an end-to-end latency within 1 ms. The initial roll-out of 5G will be based on the 3rd
Generation Partnership Project (3GPP) non-standalone New Radio (NR), which is built
upon a foundation offered by 3GPP Long Term Evolution (LTE) [6]. Therefore, the
3GPP is currently standardising a URLLC mode as part of the 5G development [10,13–
15]. Several enhancements have been proposed in LTE Release 15, aiming for meeting
the latency and reliability requirements [13]. To be more specific, LTE Release 15 has
introduced the shortened Transmission Time Interval (sTTI) technique, which requires
a seven-fold signal processing time reduction at the User Equipment (UE) and evolved
Node B (eNB) basestation, namely a reduction from 3 ms in Release 14, to 0.43 ms
in Release 15 [16, 17, 57]. Within this 0.43 ms, several signal processing tasks must be
completed, including receive buffering, Fast Fourier Transform (FFT), channel decoding,
Inverse Fast Fourier Transform (IFFT) and transmit power control [14,15]. In order for
an eNB to support the processing of multiple users’ transmissions within this processing
time without employing a unique, user-specific set of signal processing hardware per user,
each of these tasks must be completed in much less than 0.43 ms.

Owing to their near-capacity error-correction performance, turbo codes [2–4] have been
widely adopted in the LTE standard for mobile communication [6]. Therefore, in order
to achieve the LTE URLLC mode, the implementation of turbo codes requires much
less latency in the decoding process than that of the existing decoding approaches in the
literature. It is reasonable to assume that a 7-fold reduction from the 52 µs latency of the
commercial implementations of 3GPP Release 14 [60] is required, giving a specification
of 7.4 µs for 3GPP Release 15. This significant reduction in the turbo decoding latency
requirement motivates the design of new low-latency turbo decoding techniques.

11

12 Chapter 2 Arbitrarily Parallel Turbo Decoder

The latency of a turbo decoder is dictated by the data dependencies imposed by the
Logarithmic Bahl-Cocke-Jelinek-Raviv (Log-BCJR) algorithm [19], which is typically
employed for the iterative decoding of turbo codes [2–4]. More specifically, a turbo
decoder comprises an upper-branch and a lower-branch convolutional decoder, which
may operate alternately using the Log-BCJR to generate extrinsic information exchanged
via an interleaver. However, data dependencies of the Log-BCJR algorithm require the
processing to be performed one step at a time, using forward and backward recursions
alternately along the entire length of the interleaved information block. This serial nature
of the Log-BCJR algorithm imposes a bottleneck upon the throughput and results in
processing latencies of hundreds of micro seconds of the turbo decoding process [19],
unless parallel processing techniques are employed.

Several sophisticated approaches have been proposed for improving both the throughput
and latency of the Log-BCJR turbo decoder. For example, the forward and backward
recursions of the Log-BCJR can be completed simultaneously [22], rather than one after
the other, hence doubling the throughput and halving the latency. Furthermore, the
Radix-4 transform of [20,21] allows two steps of the Log-BCJR algorithm’s forward and
backward recursions to be completed at a time, therefore further doubling the through-
put and halving the latency, albeit at the cost of significantly increasing the hardware
resource requirements. Meanwhile, the non-sliding window based technique of [23] de-
composes each information block of N bits into P number of windows, which can be
processed simultaneously using separate parallel processors. However, the combination
of these techniques requires as many as 4P extrinsic values to be interleaved at a time.
The interleaver has to simultaneously read and write these extrinsic values from and to
memories associated with the parallel processors, causing contentions when attempting
to make more than one access to a particular memory at any instant. This contention
problem is solved in the LTE standards by the employment of the quadratic permutation
polynomial interleavers of [52, 53], which inherently avoid contention provided that the
P number of windows in each of the upper and lower decoder is an integer factor of the
information block length N , hence ensuring that each window is composed of an equal
number of N/P bits. Motivated by this, conventional implementations of the LTE turbo
decoder [60] typically employ a parallelism of P = 8, since this is the Greatest Common
Divisor (GCD) of the LTE turbo code’s 188 supported block lengths N , which are in the
range 40 to 6144 bits. It is using the combination of techniques described above, that the
commercial Field-Programmable Gate Array (FPGA) implementation of the LTE turbo
decoder of [60] achieves processing latencies of up to 52 µs.

In order to achieve the 7-fold improvement to turbo decoding latency required for URLL-
C, the parallelism may be increased to P = 64, as in the State-of-the-art (SOTA) turbo
decoder of [23]. However, this decoder is only able to fully exploit this parallelism for the
longest block lengths and disables up to 56 of the parallel processors at the short block
lengths that are common in URLLC applications, leading to poor hardware efficiency.

Chapter 2 Arbitrarily Parallel Turbo Decoder 13

Recently, a Fully-Parallel Turbo Decoder (FPTD) has been proposed for significantly
increasing the grade of parallelism in the LTE turbo decoder to p = N , hence reducing the
latency [24]. The employment of odd-even interleavers [25,26] in LTE allows the FPTD
to alternate between processing all odd-indexed bits in the upper decoder at the same
time as all even-indexed bits in the lower decoder, and vice-versa, hence completing each
decoding iteration in two clock cycles. However, the hardware requirement of the FPTD
is dictated by the longest supported block length, leading to poor hardware efficiency at
short block lengths.

URLLC requirements

latency complexityerror correction
performance

flexibility

Figure 2.1: The contribution of Chapter 2.

The low hardware efficiency of SOTA non-sliding window based techniques [23] and the
FPTD [24] motivates the novel Arbitrarily Parallel Turbo Decoder (APTD) concept we
propose in this chapter for achieving both high processing throughputs and low processing
latencies, while maintaining a high grade of hardware efficiency flexibility across all block
lengths, as highlighted in Figure 2.1. Our APTD owns the following properties.

• First, our APTD algorithm allows the parallel operation of an arbitrary number P
of processors, which is not limited to an integer factor of N , nor to N itself. The
first of two versions of the proposed APTD decomposes the block into the highest
possible number of windows that can support equal window lengths, where some
processors are disabled as in the non-sliding window based and FPTD algorithms,
respectively, when processing a block length of N . For many block lengths, this
facilitates a grade of parallelism in excess of 64, which is the highest achieved
previously in the literature owing to the requirement for P having to be a common
divisor of many supported block lengths N . In this first version of the APTD, the
processors operate on the basis of windows of equal length, benefitting from the
contention-free property of the LTE quadratic permutation polynomial interleaver.
However, in a second version of the APTD, all processors are activated for all but
the shortest of block lengths. Here, the different processors operate on windows
of slightly different lengths for block lengths N . This breaks the contention-free
property of the LTE quadratic permutation polynomial interleaver [52, 53], but
we show that contention can be avoided by rescheduling the interleaver operation
independently from the generation of extrinsic information, hence achieving even
higher throughputs.

14 Chapter 2 Arbitrarily Parallel Turbo Decoder

• Furthermore, rather than operating the upper and lower decoder alternately like
in conventional turbo decoding algorithms, the arbitrarily parallel turbo decoding
algorithm employs odd-even operation, in a similar fashion to the FPTD. More
specifically, the APTD alternates between processing the odd-indexed windows of
the upper decoder at the same time as the even-indexed windows of the lower
decoder, and vice versa. We will show that for short block lengths, this odd-
even operation gives superior BLER performance compared to the upper-lower
operation.

• As a further contribution, we conceive and compare two techniques for provid-
ing systematic information to the APTD, namely the interleaved, and the non-
interleaved systematic approaches. In the interleaved systematic approach, the
systematic information is entered into the upper decoder, but additionally it is al-
so interleaved and entered to the lower decoder. By contrast, in the non-interleaved
systematic approach, the systematic information is only entered directly into the
upper decoder, but it is also added into the upper decoder’s extrinsic information,
which is then interleaved and entered into the lower decoder. The benefit of the
latter is that this reduces the number of interleavers that are required at the cost
of a slightly degraded BLER performance.

• Finally, while conventional turbo decoders compute their extrinsic information in
both the forward and backward recursions of the Log-BCJR algorithm in the pro-
posed design, the extrinsic information is calculated only in the forward recursions
of the APTD. We will show that this further reduces the proposed APTD’s de-
coding complexity and its interleaving complexity, albeit at the cost of requiring
slightly more decoding iterations to maintain the same BLER performance.

When combining the proposed techniques described above, the proposed APTD achieves
superior latency, throughput and computational efficiency than the SOTA LTE turbo
decoder at all block lengths, but particularly at the short block lengths that are typically
used in URLLC approaches. For example, at a block length ofN = 504 bits, the proposed
APTD achieves an BLER of 10−5 at the same Eb/N0 as I = 8 iterations of a conventional
turbo decoder, but with a computational efficiency that is 6 times higher than that of
the SOTA turbo decoder, while achieving a latency and throughput that are 0.7 and 1.4

times those of the SOTA decoder, respectively. Note however that this is achieved at
the cost of increasing the computational complexity by 2.3 times compared to the SOTA
decoder of N = 504.

The proposed APTD algorithm offers particular benefits at short block lengths, which is
also the particular focus of the URLLC service. This is because the conventional approach
to parallel processing is limited by the greatest common divisor of the Quadratic Per-
mutation Polynomial (QPP) or Almost Regular Permutation (ARP) interleaver lengths,
which tends to be low for short block lengths. For example, the information block lengths

Chapter 2 Arbitrarily Parallel Turbo Decoder 15

supported by the LTE turbo code in the range of 40 to 512 bits are all multiples of 8
bits, limiting the degree of parallel processing to 8 in conventional implementations. By
contrast, the proposed APTD can usefully apply significantly higher degrees of parallel
processing, leading to significant improvements in throughput and latency.

Furthermore, in [61], a 6144-bit FPTD was found to occupy a chip area of 109 mm2,
when using Taiwan Semiconductor Manufacturing Company (TSMC) 65 nm process
technology. However, this design has only limited flexibility to support shorter block
lengths and it may be expected that a significantly greater chip area would be required
to support all 188 block lengths of the LTE turbo code. Hence, the chip area requirements
of the FPTD may be deemed excessive for LTE applications. In contrast to this, the
proposed APTD allows the degree of parallelism to be arbitrarily flexible between fully-
serial and fully-parallel turbo decoding. In this way, the parallelism of the proposed
APTD may be carefully selected in order to meet the strict latency and throughput
requirements of URLLC LTE, but with minimum chip area.

Chapter 1

Introduction

Chapter 2

Turbo code

Chapter 4

Polar code

Chapter 3

Concurrent OFDM

Chapter 5
Implementation

Chapter 6

Conclusion

Motivation: latency bottleneck

Review of LTE turbo codes

Encoding

Decoding
Log-BCJR

FPTD

Details of APTD

equal length

unequal length

Performance analysis (BLER, latency, throughput, complexity and hardware efficiency)

Figure 2.2: The development of Chapter 2.

As shown in Figure 2.2, this chapter is structured as follows. Section 2.2 gives a brief
overview of LTE turbo decoding, including both the SOTA turbo decoder, also known
as a non-sliding window decoder [23], and of the FPTD. Following this, both versions
of the APTD are proposed in Section 2.3. Section 2.4 characterises the BLER perfor-
mance associated with the techniques employed by the APTD, both individually and in
combination. Then the SOTA LTE turbo decoder, the FPTD and the proposed APTD
are compared in terms of their latency, throughput, complexity and hardware resource

16 Chapter 2 Arbitrarily Parallel Turbo Decoder

requirement in Section 2.5. Finally, our conclusions and future work ideas are discussed
in Section 2.6.

2.2 LTE turbo codes overview

This section provides an overview of LTE turbo encoding and decoding process, as well
as defining the notation employed in the following sections. Sections 2.2.1 and 2.2.2.1
describe the encoding and decoding process of the SOTA LTE turbo codes, while the
FTPD of [24] is highlighted in Section 2.2.2.2.

2.2.1 Turbo Encoder

In an LTE transmitter, each block of information bits has one of 188 legitimate lengths
N in the range of 40 to 6144 bits, which are turbo encoded before being modulated and
transmitted over the wireless channel. To be more specific, a message block bu

1 = [bu1,k]
N
k=1

comprising N bits, where b1,k is a binary value, bu1,k ∈ {0, 1} is first encoded by the upper
convolutional encoder in Figure 2.3, generating two N -bit encoded blocks, referred to
as the upper parity block bu

2 = [bu2,k]
N
k=1 and an upper systematic block bu

3 = [bu3,k]
N
k=1,

respectively. Furthermore, the message block bu
1 is interleaved by an odd-even interleaver,

obtaining the N -bit interleaved message block bl
1 = [bl1,k]

N
k=1, as shown in Figure 2.3.

The interleaved message block bl
1 is then forwarded to a lower convolutional encoder,

which generates another N -bit encoded block, referred to as the lower parity block bl
2 =

[bl2,k]
N
k=2. Note that the superscripts ‘u’ and ‘l’ imply the upper and lower convolutional

encoders, respectively. However, these two superscripts will be omitted in the following
discussions when the corresponding analysis applies equally to both upper and lower
encoders. It is notable that the N bits of the message block bu

1 are encoded into three
encoded blocks through the turbo encoder, so the total number of encoded bits is 3N ,
resulting in a coding rate of R = 1/3.

Both the upper and lower convolutional encoders operate in the same manner, based
on a state transition diagram. We illustrate the operations of the pair of convolutional
encoders using the example of the LTE state transition diagram, which has M = 8

states, and K = 2 transitions per state, as shown in Figure 2.4. At the start of the
encoding process, the convolutional encoder begins with the initial state S0 = 0 and
transits successively into the subsequent states Sk ∈ {0, 1, 2, ...,M − 1} on the basis of
the successive message bits b1,k. Since the message bits are binary values, b1,k ∈ {0, 1},
there are K = 2 possible values for the current state Sk, which can be reached from the
selected previous state Sk−1. In the case of the LTE transition diagram of Figure 2.4,
the previous state Sk−1 = 0 indicates the possible subsequent state Sk is either 0 or 4.
We use the notation c(0, 0) = 1 and c(0, 4) = 1 in this example, where c(Sk−1, Sk) = 1

Chapter 2 Arbitrarily Parallel Turbo Decoder 17

means that the subsequent state Sk can be transited from the previous state Sk−1, while
c(Sk−1, Sk) = 0 indicates an illegitimate transition pair. For K = 2 possible values, the
value of Sk is chosen such that b1(Sk−1, Sk) = b1,k. Take the example in Figure 2.4,
where b1,k = 1 corresponds to a transition from Sk−1 = 0 to Sk = 4. Similarly, the
binary bits selected for the corresponding bits in parity block b2 and systematic block
b3, based on b2,k = b2(Sk−1, Sk) and b3,k = b3(Sk−1, Sk), respectively. For LTE turbo
encoder, Sk−1 = 0 and Sk = 0 gives b2,k = 0 and b3,k = 0 whereas Sk−1 = 0 and Sk = 4

gives b2,k = 1 and b3,k = 1.

Following turbo encoding, the encoded blocks are modulated into a wireless channel and
transmitted to the receiver.

Upper convolutional encoder

bu1,1

bu2,1 bu3,1 bu2,2 bu3,2 bu2,3 bu3,3 bu2,N bu3,N

bu1,2
bu1,3

bl1,1 bl1,2 bl1,3 bl1,N

bl2,Nbl2,3bl2,2bl2,1

bu1,N

Interleaver

Lower convolutional encoder

Figure 2.3: Schematic of a Turbo Encoder

2.2.2 Turbo Decoders

2.2.2.1 State-of-the-art LTE turbo decoder

After demodulation in the receiver, soft information pertaining for the turbo encoded bits
is provided to the turbo decoder in the form of Logarithmic-Likelihood Ratios (LLRs).
Here, we define the LLR b̄ pertaining to a bit b ∈ {0, 1} as

b̄ = ln
Pr(b = 1|y)

Pr(b = 0|y)
, (2.1)

where y is the received signal vector.

18 Chapter 2 Arbitrarily Parallel Turbo Decoder

Sk−1 Sk

0

1

2

3

4

5

6

7

1

0

2

3

4

5

6

7

b1(Sk−1, Sk) = 0
b2(Sk−1, Sk) = 0
b3(Sk−1, Sk) = 0

b1(Sk−1, Sk) = 0
b2(Sk−1, Sk) = 1
b3(Sk−1, Sk) = 0

b1(Sk−1, Sk) = 1
b2(Sk−1, Sk) = 0
b3(Sk−1, Sk) = 1

b1(Sk−1, Sk) = 1
b2(Sk−1, Sk) = 1
b3(Sk−1, Sk) = 1

Figure 2.4: State transition diagram of the LTE turbo code

L

· · · · · · · · · · · ·· · ·

Interleaver

· · · · · · · · · · · ·· · ·b̄l,a2,k

ᾱl
kᾱl

k−1

β̄
l
kβ̄

l
k−1

ᾱu
kᾱu

k−1

β̄
u
kβ̄

u
k−1b̄l,e1,k b̄

l,a
1,k

b̄u,a1,k b̄
u,e
1,k

b̄u,a2,k

L L L

LLLL

b̄u,a3,k

Figure 2.5: Schematic of the State-of-the-art (SOTA) turbo decoder.

As depicted in Figure 2.5, the upper and lower decoder each comprises a row of N
algorithmic units. Each units in the upper decoder is associated with the corresponding
one of the parity a priori LLRs [b̄u,a2,k]Nk=1 and the corresponding one of the systematic a
priori LLRs [b̄u,a3,k]Nk=1, which are provided by the demodulator. Likewise, the demodulator
provides each unit in the lower decoder with the corresponding one of the parity a priori
LLRs [b̄l,a2,k]

N
k=1. Note that the demodulator also provides LLRs pertaining to twelve

termination bits [62], although we do not discuss these further for the sake of simplicity.

The upper and lower decoders operate alternately, where each algorithmic unit generates
the corresponding one of the extrinsic LLRs [b̄u,e1,k]

N
k=1 or [b̄l,e1,k]

N
k=1, which are interleaved to

provide a priori LLRs [b̄u,a1,k]Nk=1 or [b̄l,a1,k]
N
k=1 for the next operation of the other decoder.

In addition to the LLRs described above, each processor is provided with a vector of
forward state metrics ᾱu

k−1 or ᾱl
k−1, expressed in (2.2) as well as a vector of backward

Chapter 2 Arbitrarily Parallel Turbo Decoder 19

state metrics β̄
u
k or β̄

l
k, expressed in (2.3), which are used for initiating forward and

backward processing recursions, respectively.

ᾱk(Sk) = max*

{Sk−1|c(Sk−1,Sk)=1}
[γ̄k(Sk−1, Sk) + ᾱk−1(Sk−1)] , (2.2)

β̄k−1(Sk−1) = max*

{Sk|c(Sk−1,Sk)=1}

[
γ̄k(Sk−1, Sk) + β̄k(Sk)

]
. (2.3)

Here, the max* operation may be approximated by the Jacobian approximation expressed
as

max*(a, b) = max(a, b) + log[1 + exp−|a+b|] (2.4)

≈max(a, b), (2.5)

and the γ̄ values in (2.2) and (2.3) are a priori transition metrics that can be obtained
by (2.6).

γ̄k(Sk−1, Sk) =
L∑
j=1

[
bj(Sk−1, Sk) · b̄aj,k

]
. (2.6)

All algorithmic units in Figure 2.5 operate in an identical manner. The SOTA turbo de-
coder performs this processing by activating P parallel processors, where each alternates
between processing the corresponding window of L = N/P algorithmic units in the up-
per and lower decoder, as shown in Figure 2.5. For example, the first processor performs
the processing for the first L algorithmic units of the upper decoder, then performs the
processing for the first L algorithmic units of the lower decoder, before repeating the
process in each successive decoding iteration. Here, we define the time required for one
of the algorithmic units as one clock cycle. Although the SOTA LTE turbo decoder
comprises p = 64 parallel processors in total, different numbers P of these p processors
are activated for different block lengths N , according to [23].

P =

8, N ∈ [40, 48, 56, ..., 504];

16, N ∈ [512, 528, 544, ..., 1008];

32, N ∈ [1024, 1056, 1088, ..., 2016];

64, N ∈ [2048, 2112, 2176, ..., 6144].

(2.7)

Note that some of the p = 64 parallel processors are unused when shorter block lengths
are decoded, in order to ensure that all windows have an equal length L. This is necessary
for exploiting the contention-free property of the LTE interleaver [6,52]. More specifically,
if all windows have an equal length, their processing can then be scheduled so that none
of the parallel processor is provided with more than one a priori LLR at a time by the
LTE interleaver. This allows the processors to have simple input/output interfaces.

20 Chapter 2 Arbitrarily Parallel Turbo Decoder

The scheduling of these recursions over several successive clock cycles is depicted in Figure
2.6 for the non-sliding window technique of [23]. During the forward recursion, each
successive algorithmic unit in a left-to-right ordering is processed in each successive clock
cycle. Simultaneously, the backward recursion processes the successive algorithmic units
in a right-to-left ordering in the successive clock cycles. Each successive algorithmic unit
passes a vector of state metrics ᾱu

k, ᾱ
l
k, β̄

u
k−1 or β̄l

k−1 values to the next algorithmic unit
in the forward or backward recursion, respectively. The requirement to exchange these
state metrics between successive algorithmic units imposes data dependencies, which
requires the forward and backward recursions. Furthermore, once the two recursions
have crossed over, as shown in Figure 2.6, the algorithmic units generate the extrinsic
LLRs b̄ej,k mentioned above, based on both the forward and the backward state metrics,
as expressed in (2.8).

b̄ej,k =

[
max*

{(Sk−1,Sk)|bj(Sk−1,Sk)=1}

[
δ̄k(Sk−1, Sk)

]]
−[

max*

{(Sk−1,Sk)|bj(Sk−1,Sk)=0}

[
δ̄k(Sk−1, Sk)

]]
− b̄aj,k, (2.8)

where

δ̄k(Sk−1, Sk) =γ̄k(Sk−1, Sk) + ᾱk−1(Sk−1) + β̄k(Sk). (2.9)

Each iteration comprises a total of 2N/P clock cycles, with N/P clock cycles used by
each of the upper and lower decoders. Here, I = 8 iterations may be required in order to
achieve iterative decoding convergence towards the best possible BLER, corresponding
to hundreds or thousands of clock cycles.

The Radix-4 [20, 21] further improves both the throughput and latency of the SOTA
LTE turbo decoder, by merging the trellis stages within each pair of adjacent algorithmic
units and processing them at the same time, as shown in Figure 2.7 (b). Therefore, in
contrast to the Radix-2 operation depicted in Figure 2.7 (a), where two extrinsic LLRs are
calculated simultaneously once the forward and backward recursions have crossed over,
the non-sliding window technique calculates four LLRs at a time once the forward and
backward recursions have crossed over, when we employ Radix-4 technique. In this way,
the Radix-4 technique further doubles the throughput and halves the latency, although
at the cost of significantly increasing the hardware resource requirement.

As shown in Figure 2.8 (a), the extrinsic LLRs b̄u,e1,k and b̄l,e1,k may be scaled in order to
improve the BLER when employing the Max-Log-MAP algorithm [61,63]. Here, typically
a scaling factor of f = 0.75 is selected, owing to its ease of implementation when using
fixed point numbers to represent the LLRs. Figure 2.8 (a) also shows that the upper
decoder can benefit from the systematic LLRs b̄u,a3,k by adding them into the a priori

Chapter 2 Arbitrarily Parallel Turbo Decoder 21

β̄
l
k

ᾱl
k

b̄l,e1,k

β̄
u
k

ᾱu
k

b̄u,e1,k

L

L

p
ro

ce
ss

o
r

1

A
lg

or
it

h
m

ic
u

n
it

k

2

Upper component decoder

Lower component decoder

clock cycle T

β̄
u
k

ᾱu
k

b̄u,e1,k

β̄
l
k

ᾱl
k

b̄l,e1,k

β̄
u
k

ᾱu
k

b̄u,e1,k

β̄
u
k

ᾱu
k

b̄u,e1,k

β̄
l
k

ᾱl
k

b̄l,e1,k

β̄
l
k

ᾱl
k

b̄l,e1,k

0

L

Figure 2.6: Schedule of the forward and backward recursions for the non-sliding
window technique, which uses equal window lengths, upper-lower processing Radix-4
operation, and calculates four extrinsic LLRs at a time once the forward and backward

recursions have crossed over.

Sk−2 Sk−1 Sk
0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Sk−2 Sk

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

(b)

0

1

(a)

Figure 2.7: Trellis diagram of (a) Radix-2 computation, and (b) Radix-4 computation.

LLRs b̄u,a1,k. A similar approach can be used for ensuring that the lower decoder can
benefit from these systematic LLRs. However, since the upper decoder’s operations are
processed before the lower decoder in the SOTA turbo decoder, the systematic LLRs
b̄u,a3,k can be delivered to the lower decoder by adding them into the upper decoder’s
extrinsic LLRs b̄u,e1,k, which are interleaved to become the lower decoder’s a priori LLRs
b̄l,a1,k. This avoids the hardware requirement to employ a separate interleaver to interleave
the systematic LLRs b̄u,e3,k, so that they can be added to the a priori LLRs of the lower
decoder b̄l,a1,k, as shown in Figure 2.8 (b).

22 Chapter 2 Arbitrarily Parallel Turbo Decoder

ᾱu
k−1 ᾱu

k

β̄
u
k−1 β̄

u
k

Uk

+

b̄u,a2,k

b̄u,a3,k

b̄u,a1,k b̄u,e1,k

ᾱu
k−1 ᾱu

k

β̄
u
k−1 β̄

u
k

Lk

b̄l,a1,k

b̄l,a2,k

+

b̄p1,k+

b̄u,a3,k

Interleaver

f

b̄l,e1,k

(a)

ᾱu
k−1 ᾱu

k

β̄
u
k−1 β̄

u
k

Uk

+

b̄u,a2,k

b̄u,a3,k

b̄u,a1,k b̄u,e1,k

ᾱu
k−1 ᾱu

k

β̄
u
k−1 β̄

u
k

Lk

b̄l,a1,k

b̄l,a2,k

b̄p1,k+

b̄u,a3,k

b̄l,e1,k

(b)

+ Interleaver

b̄u,a3,k

Interleaver

f f

f

Figure 2.8: (a) Non-interleaved systematic LLRs. (b) Interleaved systematic LLRs.

2.2.2.2 Fully-parallel turbo decoder

In the SOTA LTE turbo decoder of [23], the data dependencies of the forward and
backward recursions require the turbo-encoded bits to be processed serially, spread over
numerous consecutive clock cycles. As a result, hundreds or thousands of clock cycles
are required for completing the iterative decoding process, hence limiting the achievable
processing throughput and latency. In order to address this problem, a FPTD algorithm
was proposed in [24], which operates based on (2.10) to (2.14) and dramatically increases
the grade of parallelism in the decoding process. The full parallelism is achieved by
dispensing both with the recursions of the Log-BCJR algorithm and with the associated
data dependencies, allowing a much higher number of parallel processors to be used.
Indeed, the FPTD algorithm is capable of processing all LLRs corresponding to both the
upper and lower decoders at the same time, as detailed below [24].

γk(sk−1, sk) =b1(sk−1, sk) · ba1,k + b2(sk−1, sk) · ba2,k + b3(sk−1, sk) · ba3,k (2.10)

Chapter 2 Arbitrarily Parallel Turbo Decoder 23

αk(sk) = max*

{allsk−1}

[
γtk(sk−1, sk) + αk−1(sk−1)

]
(2.11)

βk−1(sk−1) = max*

{allsk−1}

[
γtk(sk−1, sk) + βk(sk)

]
(2.12)

be1,k =

[
max*

{(s′,s)|b1(s′,s)=1}

[
γk(s

′, s) + αk−1(s
′) + βk(s)

]]
−[

max*

{(s′,s)|b1(s′ ,s)=0}

[
γk(s

′, s) + αk−1(s
′) + βk(s)

]]
−[

ba1,k + ba3,k
]

(2.13)

b̂1,k =(ba1,k + be1,k + ba3,k). (2.14)

While a dedicated processor could be employed for each of the 2N algorithmic units, our
previous work demonstrated that the same processing throughput and latency can be
achieved using just N parallel processors. More specifically, in contrast to the alternated
operation of the upper and lower decoders in the non-sliding window technique of the
SOTA turbo decoder, the FPTD exploits the odd-even property of the LTE interleaver
to enable an odd-even processing schedule for the algorithmic units. To be more specific,
the LTE interleaver of all 188 supported block lengths only connects the algorithmic units
of the upper decoder having an odd index k to algorithmic units in the lower decoder
that also have an odd index k. Likewise, even-indexed algorithmic units in the upper
decoder are only connected to algorithmic units with even indices in the lower decoder.
As a result, the algorithmic units can be grouped into two sets, where no two units in
the same set have connections to each other. To be more explicit, the first set consists
of all the odd-indexed units in the upper decoder, along with all even-indexed units in
the lower decoder. Likewise, the second set is composed of the remaining units, namely
of the even-indexed units in the upper decoder, together with the odd-indexed units
in the lower decoder. Accordingly, the exchange of extrinsic LLRs and state metrics
among the whole set of 2N algorithmic units in the iterative decoding process can now
be considered as an iterative exchange process between the two sets. This allows the
processing of the 2N algorithmic units to be mapped onto N processors, which alternate
between the processing of the two sets. In this odd-even FPTD operation, each iteration
requires only two clock cycles, but more iterations are needed than by the conventional
Log-BCJR decoders in order to achieve the same BLER. However, the total number of
clock cycles required in order to achieve iterative decoding convergence decreases from
the hundreds or thousands in the SOTA LTE turbo decoder to just tens of clock cycles.

24 Chapter 2 Arbitrarily Parallel Turbo Decoder

· · ·

Interleaver

· · ·b̄l,a2,k

ᾱl
kᾱl

k−1

β̄
l
kβ̄

l
k−1

b̄l,e1,k b̄
l,a
1,k

ᾱu
kᾱu

k−1

β̄
u
kβ̄

u
k−1

b̄u,a1,k b̄
u,e
1,k

b̄u,a2,k b̄
u,a
3,k

Figure 2.9: Schematic of the Fully-Parallel Turbo Decoder (FPTD).

2.3 Arbitrarily Parallel Turbo Decoder

As discussed in Section 2.2, both the SOTA turbo decoding algorithm and the FPTD
algorithm have their own restrictions. To be more specific, a large number of processors
remain idle when decoding short block lengthsN in the SOTA turbo decoder. Meanwhile,
a block having a length of N must be decoded using N numbers of FPTD processors,
which limits flexibility. Motivated by this, we propose a novel APTD algorithm in
this section, which can employ an arbitrary number p of processors and exploit them
flexibly across all of the LTE interleaver lengths. Two versions of the APTD will be
proposed separately in Section 2.3.1 and 2.3.2, respectively. The first version of the
APTD decomposes the block into the highest number of windows that can support equal
window lengths, exploiting the contention-free property of the LTE interleaver, as it will
be detailed in Section 2.3.1. However, some idle processors still remain for some block
lengths in this version. By contrast, the second version of Section 2.3.2 does not rely on
the contention-free property of the LTE interleaver, allowing different windows to adopt
different lengths. This enables all processors to be exploited for all but the shortest block
lengths, which is achieved by decomposing the block into the same number of windows
as there are processors.

2.3.1 APTD employing equal window lengths

The first version of the APTD employs an arbitrary number p of processors in total, but
activates only a subset P of these depending on the block length N . When decoding
blocks of length N , the number of activated processors P is given by the greatest integer
factor (gif) of N that is also smaller than the number of processors p, which can be
expressed as P = gif(N, p). Figure 2.10 (a) illustrates the relationship between the
number of activated processors P and the block lengths N when employing a total
number of p = 64 or p = 128 processors, as compared to the SOTA turbo decoders and
FPTD discussed above. Each processor alternates between processing a window from the

Chapter 2 Arbitrarily Parallel Turbo Decoder 25

upper decoder and the corresponding window from the lower decoder. Likewise, Figure
2.10 (b) shows the relationship between the window length L = N/P = N/gif(N, p)

and the block length N , for p = 64 and p = 128. Note that for shorter block lengths
N ≤ p, the APTD operation becomes identical to that of the FPTD, where each window
effectively has a length L of one bit.

Like the FPTD, the APTD relies on odd-even operation, as depicted in Figure 2.11.
However, rather than alternating the operation of odd- and even-indexed algorithmic
units, the odd-even operation is performed at the window level in the APTD algorithm.
To be more specific, the odd-indexed windows in the upper decoder and the even-indexed
windows in the lower decoder operate at the same time. This alternates with operating
the even-indexed windows in the upper decoder at the same time as the odd-indexed
windows in the lower decoder. A total number of 2L clock cycles have to be completed
in one iteration. The forward state metrics ᾱu

k, ᾱl
k and the backward state metrics

β̄
u
k−1, β̄

l
k−1 are calculated according to the forward and backward recursions that are

synchronised among all windows processed at the same time. Note that the odd-even
operation ensures that the end of the recursions of the odd-indexed windows seamlessly
leads to the beginning of the adjacent even-indexed windows, and vice versa. This
allows information to more quickly propagate along the upper and lower decoder than in
the upper-lower operation. Radix-4 operation [20, 21] is also employed in the proposed
APTD, which further doubles the decoding throughput. However, since the Radix-4
operation processes a pair of trellis stages at a time, a special solution is required when
the window length L is not an even integer. More specifically, the final algorithmic unit
in each window may be processed using Radix-2 operation.

The APTD calculates two extrinsic LLRs at a time alongside the forward recursion,
when using Radix-4 operation. During the first half of each forward recursion, the β̄

values calculated during the previous iteration are recalled and are used for calculating
the extrinsic LLRs. Once the forward and backward recursions have crossed over in the
second half of the recursions, the β̄ values calculated during the first half of the backward
recursion are used. This is in contrast to the SOTA LTE turbo decoder, which calculates
four LLRs at a time, during the second half of the forward and backward recursions once
they have crossed over. Our approach requires only two extrinsic LLR calculators and
two interleavers that are used all the time, rather than four LLR calculators and four
interleavers that are only used in the second half of the recursions, which is less efficient.

Note that a particular extrinsic LLR in an odd-indexed window of one component decoder
may become an a priori LLR for an even-indexed window of the other component decoder
or vice versa in the proposed FPTD. Since these windows are processed at the same time
in the FPTD, some interesting interactions may arise. In some cases, the extrinsic LLR
may be generated and interleaved before it is used as an a priori LLR in the same
iteration, depending on the position of these LLRs in the windows. This is advantageous
compared to the classic upper-lower operation, which must always wait until the next

26 Chapter 2 Arbitrarily Parallel Turbo Decoder

1

2

4

8

16

32

64

128

256

512

1024
W

in
d

o
w

le
n

g
th

L

40 64 128 256 512 1024 2048 4096 6144

Block length N

FPTD

SOTA

APTD 1(64)

APTD 2(64)

APTD 1(128)

APTD 2(128)

1

2

4

8

16

32

64

128

256

512

1024

2048

4096
6144

N
u

m
b

er
o

f
ac

ti
v
at

ed
p

ro
ce

ss
o

rs
P

40 64 128 256 512 1024 2048 4096 6144

Block length N

FPTD

SOTA

APTD 1(64)

APTD 2(64)

APTD 1(128)

APTD 2(128)

(a)

(b)

Figure 2.10: (a) The relationship between window length L and block length N , for
various turbo decoders; (b) The relationship between the number of activated processors
P and the block length N for various turbo decoders. Note that in the SOTA turbo
decoder, FPTD and the first version of the APTD algorithms, all windows have the
same length, since the number of activated processors P is chosen as an integer factor
of N in these schemes. By contrast, some windows have a length dNP e and others have
the length bNP c in the second version of APTD algorithm. In this case, the average

window lengths is plotted.

Chapter 2 Arbitrarily Parallel Turbo Decoder 27

L

L

p
ro

ce
ss

o
r

1

A
lg

or
it

h
m

ic
u

n
it

k

Upper component decoder

Lower component decoder

clock cycle T0

β̄
u
k

ᾱu
k

b̄u,e1,k

β̄
u
k

ᾱu
k

b̄u,e1,k

β̄
u
k

ᾱu
k

b̄u,e1,k

β̄
u
k

ᾱu
k

b̄u,e1,k

β̄
u
k

ᾱu
k

b̄l,e1,k

β̄
u
k

ᾱu
k

b̄l,e1,k

β̄
u
k

ᾱu
k

b̄l,e1,k

β̄
u
k

ᾱu
k

b̄l,e1,k

2 L

Figure 2.11: Schedule of the forward and backward recursions for the first version of
the APTD, which uses equal windows lengths, Radix-4 operation, odd-even processing

and calculates two extrinsic LLRs at a time alongside the forward recursion.

half iteration before an interleaved LLR can be exploited. Other times, however, the
extrinsic LLR may be delivered too late to be used in the same iteration, but can be
saved for use in the next iteration. This is a disadvantage compared to the upper-lower
operation, since the delay before the interleaved LLR can be exploited is extracted in
this case. Overall, the advantage of sometimes being able to exploit an interleaved LLR
immediately and the disadvantage of sometimes having to wait until the next iteration
may be expected to cancel out. However, the advantage of quicker ᾱ and β̄ propagation
can be exploited in the APTD versions, as we will demonstrate for short blocks in Section
2.4.

In addition to the non-interleaved systematic approach discussed in Section 2.2.2.1, we
also consider an interleaved systematic approach, as shown in Figure 2.8 (b). As described
in Section 2.2.2.1, the non-interleaved systematic approach has the advantage of avoiding
the requirement for a separate interleaver for the systematic LLRs b̄u,a3,k. In the upper-
lower schedule, there is no disadvantage compared to the non-interleaved systematic
selection, since the lower decoder is not activated until after the systematic LLRs b̄u,a3,k are
combined with the extrinsic LLRs b̄u,e1,k and passed through the interleaver by the upper
decoder. However, in the case of our odd-even schedule, some units in the lower decoder
are activated in the first half of the first iteration, before the systematic LLRs can be
passed through the interleaver by the upper decoder. This motivates the consideration of
the interleaved systematic approach, which improves the BLER by providing systematic
LLRs for these units in the lower decoder at the start of the iterative decoding process,
albeit at the cost of requiring an additional interleaver.

28 Chapter 2 Arbitrarily Parallel Turbo Decoder

2.3.2 APTD employing unequal window lengths

In a second version of the APTD algorithm, block lengths N that are not divisible by
the number of processors p are handled in a different way. Rather than activating only
a subset P of the processors, so that each process has an equal window length, this
second version activates all processors for block lengths N ≥ p, where some process
windows having a slightly shorter length, while others process windows have a slightly
longer window. More specifically, the first [P − mod(N,P)] windows have a length
of L = bN/P c trellis stages, while the remaining mod(N,P) windows have a length of
L + 1 = dN/P e, as shown in Figure 2.12. Indeed, for block lengths N lower than the
number of processors p, this version of the APTD also operates identically to the FPTD,
as discussed in Section 2.3.1.

· · · · · · · · ·· · · · · · · · · · · ·· · ·· · ·

Interleaver

· · · · · · · · ·· · · · · · · · · · · ·· · ·· · ·b̄l,a2,k

ᾱl
kᾱl

k−1

β̄
l
kβ̄

l
k−1

b̄l,e1,k b̄
l,a
1,k

ᾱu
kᾱu

k−1

β̄
u
kβ̄

u
k−1

b̄u,a1,k b̄
u,e
1,k

b̄u,a2,k

L L L

LLL

L+ 1 L+ 1 L+ 1

L+ 1 L+ 1 L+ 1

b̄u,a3,k

Figure 2.12: Schematic of the second version of the proposed Arbitrarily Parallel
Turbo Decoder (APTD) with unequal window lengths.

Figure 2.13 illustrates the scheduling of the forward and backward recursions in the sec-
ond version of the APTD. Each processor alternates between processing the correspond-
ing window in the upper decoder and the corresponding window in the lower decoder.
As in the first version of the APTD, the extrinsic LLRs are calculated alongside the
forward recursions. Note that the windows having length L are grouped together and
are scheduled independently of the windows having lengths L+ 1, because they require
different numbers of clock cycles to complete each iteration. As a result, the two groups
of windows become de-synchronised as the decoding process proceeds. More specifically,
the forward recursion of the last processor for the shorter windows does not seamlessly
lead into the forward recursion of the first processor for the longer windows, since a one-
clock-cycle delay exists between the two groups. Likewise, the backward recursion does
not seamlessly flow across the boundary between the processors of the shorter windows
and those of the longer windows. Instead, the boundary state metrics may be written
into memory when generated by a processor on one side of the boundary, and read from
that memory later upon initialising a recursion on the other side of the boundary.

Since not all window lengths are identical in the second version of the APTD algorithm,
interleaving the extrinsic LLRs b̄u,e1,k, b̄

l,e
1,k according to the schedule at which they are

generated does not benefit from the LTE interleaver’s contention free property. More
specifically, some processors would be provided with more than one a priori LLR in some

Chapter 2 Arbitrarily Parallel Turbo Decoder 29

L

L

0

...

...

.. .

. . .

. . .

. . .

. . .

. . .

L + 1

L + 1

Upper component decoder

Lower component decoder

A
lg

o
ri

th
m

ic
u
n
it

k

p
ro

ce
ss

or
1

A
n
o
th

er
p
ro

ce
ss

o
r

β̄
u
k

ᾱu
k

b̄u,e1,k

β̄
u
k

ᾱu
k

b̄u,e1,k

β̄
u
k

ᾱu
k

b̄u,e1,k

β̄
u
k

ᾱu
k

b̄u,e1,k

β̄
u
k

ᾱu
k

b̄l,e1,k

β̄
u
k

ᾱu
k

b̄l,e1,k

β̄
u
k

ᾱu
k

b̄l,e1,k

β̄
u
k

ᾱu
k

b̄l,e1,k

β̄
u
k

ᾱu
k

b̄u,e1,k

β̄
u
k

ᾱu
k

b̄u,e1,k

β̄
u
k

ᾱu
k

b̄u,e1,k

β̄
u
k

ᾱu
k

b̄u,e1,k

β̄
u
k

ᾱu
k

b̄l,e1,k

β̄
u
k

ᾱu
k

b̄l,e1,k

β̄
u
k

ᾱu
k

b̄l,e1,k

β̄
u
k

ᾱu
k

b̄l,e1,k

2 L
clock cycle T

Figure 2.13: Schedule of the forward and backward recursions for the second version
of the APTD, which uses unequal window lengths, odd-even processing and calculates

two extrinsic LLRs at a time alongside the forward recursion.

clock cycles by the LTE interleaver, hence requiring a complex input/output interface.
However, we note that when interleaving the LLRs according to this schedule, many of
the resultant a priori LLRs b̄u,a1,k, b̄

l,a
1,k do not get used by the other decoder for a number

of clock cycles later, when they are reached by the forward or backward recursions. This
illustrates that the interleaving of some extrinsic LLRs can be delayed by a number
of clock cycles without having any effect on the operation of the turbo decoder. Note
however that the operation is adversely affected if the interleaving of an extrinsic LLR
is delayed beyond the time when the resultant a priori LLRs are first used by the
other decoder, requiring it to instead use an out-of-date LLR from a previous iteration.
Motivated by this, our future work will address the contention problem in the second
version of the APTD algorithm by designing schedules for the interleaving of the extrinsic
LLRs, so that only one extrinsic LLR is delivered to each processor at a time, enabling
the employment of a simple input/output interface. In the meantime, Section 2.4 will

30 Chapter 2 Arbitrarily Parallel Turbo Decoder

investigate the effect of delaying the interleaving of the extrinsic LLRs in the second
version of the APTD.

2.4 Performance analysis

In this section, we characterise the error correction performance associated with the
different techniques of Section 2.3 individually, as well as in combination with the tech-
niques employed by the two versions of the APTD, which include odd-even operation,
non-interleaved systematic LLRs and the calculation of the extrinsic values alongside the
forward recursion.

I=8, P=64, AWGN channel, BPSK

10
-5

10
-4

10
-3

10
-2

10
-1

1

B
L

E
R

-1 0 1 2 3 4 5 6 7 8 9

SNR per bit Eb/N0 (dB)

O-E, NIn, Ext on Both

O-E, In, Ext on Both

U-L, NIn, Ext on Both

N=64

N=512

N=6144

CMCC Capacity

DCMC Capacity

EXIT Chart Bound

Figure 2.14: BLER performance of the APTD algorithm for the N = 64, 512 and
6144-bit LTE turbo code, employing P = 64 processors, I = 8 iterations, Radix-4
operation, interleaved (In) or non-interleaved (NIn) systematic, upper-lower (U-L) or
odd-even (O-E) operation, where the extrinsic LLRs are calculated four at a time once

the forward and backward recursions have crossed over (Ext on Both).

The error correction performance achieved is characterised in Figures 2.14 to 2.17, which
present a range of capacity bounds that provide references for the attainable performance
of turbo codes. More specifically, given a code rate of R = 1/3 and QPSK modulation,
upon communicating over an AWGN channel, the Continuous-input Continuous-output
Memoryless Channel (CCMC) capacity of Eb/N0 = −0.49 dB is obtained according

Chapter 2 Arbitrarily Parallel Turbo Decoder 31

I=8, P=64, AWGN channel, BPSK

10
-5

10
-4

10
-3

10
-2

10
-1

1

B
L

E
R

-1 0 1 2 3 4 5 6 7 8 9

SNR per bit Eb/N0 (dB)

O-E, NIn, Ext on F

U-L, NIn, Ext on F

U-L, NIn, Ext on Both

N=64

N=512

N=6144

CMCC Capacity

DCMC Capacity

EXIT Chart Bound

Figure 2.15: BLER performance of the APTD algorithm for the N = 64, 512 and
6144-bit LTE turbo code, employing P = 64 processors, I = 8 iterations, Radix-4
operation, NIn, U-L or O-E operation, where the extrinsic LLRs are either obtained
two at a time alongside the forward recursions (Ext on F), or four at a time once the

forward and backward recursions have crossed over (Ext on Both).

to [64]. The corresponding modulation-specific Discrete input Continuous-output Mem-
oryless Channel (DCMC) capacity of Eb/N0 = −0.51 dB was derived in [65]. Additional-
ly, the EXtrinsic Information Transfer (EXIT) chart capacity band of −0.07 dB derived
in [66] is the lowest Eb/N0 value for which an open tunnel can be created between the
two mutual information curves of the pair of convolutional decoders in the EXIT chart.
We note that in all cases considered, the various turbo decoders do not present any error
floors above an BLER of 10−5, indicating that the quality of service requirements of
URLLC LTE are indeed met.

Figure 2.14 compares the BLER performance of the APTD for the LTE turbo code
employing P = 64 processors, I = 8 iterations, Radix-4 operation, odd-even (O-E) and
the conventional upper-lower (U-L) operation, in cases of short, medium and long block
lengths of N = 64, 512 and 6144 bits, where the non-interleaved systematic LLRs (NIn)
are employed and the extrinsic LLRs are calculated four at a time, once the forward
and backward recursions have crossed over (Ext on Both). Note that the combination of
U-L, NIn and Ext on Both is as employed in the SOTA approach. For the short block
length of N = 64 bits, Figure 2.14 shows that a 2dB gain is achieved at a BLER of 10−5

32 Chapter 2 Arbitrarily Parallel Turbo Decoder

by employing O-E, rather than U-L. However, this gain decreases as the window length
L = N/P is increased. This is because the advantage offered by having the recursions
of one window seamlessly leading into those of its neighboring window becomes less
significant, when the windows are longer. Furthermore, Figure 2.14 shows that NIn
degrades the BLER performance by 0.2 dB associated with O-E compared to In in the
case of short block lengths N , but no degradation is observed for longer block lengths.
This represents a small price to pay for the benefit of eliminating the requirement for an
additional interleaver. Note that In and NIn attain an identical BLER performance for
U-L, as discussed in Section 2.3.

Recall from Section 2.3, that the proposed APTD algorithm calculates the extrinsic
LLRs two at a time alongside the forward recursions (Ext on F), hence resulting in
a significant reduction in hardware resources, compared to schemes that calculate the
extrinsic LLRs four at a time, once the forward and backward recursions have crossed
over (Ext on Both). However, this hardware reduction is achieved at the cost of a slight
BLER degradation for medium and long block lengths, as shown in Figure 2.15. Note
that the BLER degradation associated with Ext on F is higher when employing U-L,
demonstrating a further benefit of O-E.

Based on Figures 2.14 and 2.15, we may conclude that the combination of O-E, Nln and
Ext on F results in an attractive APTD algorithm, since it achieves significantly reduced
complexity at the cost of only slight BLER performance degradation, compared to the
SOTA LTE turbo decoder. In the following discussions, we will employ this combination
for investigating the BLER performance of the two versions of the APTD algorithms.

In order to better demonstrate the difference in operation between the two versions of
the proposed APTD algorithm, we employ p = 56 processors in the following discussions,
rather than p = 64 as in our discussions above. Since 56 is not divisible by the block
lengths of N = 64, 512 or 6144, this choice will result in different schedules between the
two versions of the APTD. More specifically, the first version will activate P = 32, 32

and 48 of the p = 56 processors, when N = 64, 512 and 6144, respectively, in order
to ensure that each of the P windows has the same length L. By contrast, the second
version will activate all p = 56 processors for all block lengths N by employing windows
having different lengths. Figure 2.16 shows that the second version achieves the best
BLER performance among the four different turbo decoders at the same number of clock
cycles T , especially for the short block lengths. We can see that while the conventional
and SOTA decoder suffer from bad reliability, which may result in poor quality of service
(QoS), the second version is capable of achieving the URLLC BLER requirement of 10−5.
Note that when a block length of N = 6144 is employed, the SOTA turbo decoder slightly
outperforms both versions of the APTD. However, this gain is negligible compared to
the gap between the BLER performance and the capacity bounds.

Chapter 2 Arbitrarily Parallel Turbo Decoder 33

P=56, AWGN channel, BPSK

10
-5

10
-4

10
-3

10
-2

10
-1

1

B
L

E
R

-1 0 1 2 3 4 5 6 7 8 9

SNR per bit Eb/N0 (dB)

APTD-1

APTD-2

SOTA

Conventional

N=64, T=16

N=512, T=256

N=6144, T=4096

CMCC Capacity

DCMC Capacity

EXIT Chart Bound

Figure 2.16: BLER performance of the conventional and SOTA LTE turbo decoder
and both versions of the proposed APTD for the N = 64, 512 and 6144 bits LTE
turbo code that employs T = 16, 256 and 4096 clock cycles, respectively. The proposed
APTD employs P = 56 processors, Radix-4 operation, NIn systematic approach, O-E
operation, and the extrinsic values are obtained from forward recursions only (Ext on

F).

In order to facilitate the practical implementation of the second version of the APTD, it
is necessary to solve the contention problem, which occurs when more than one processor
attempts to pass LLRs through the interleaver to the same processor at the same time. A
measure that may be taken to avoid contention in the second version of the APTD is to
reschedule the operation of the interleaver, by delaying the interleaving of some LLRs that
would otherwise cause contention. This approach is motivated since many a priori LLRs
are not used in O-E until a number of clock cycles after they are generated. However, in
some cases, the contention may only be eliminated by delaying the interleaving of some
LLRs until after they would have otherwise been used. In this case, the LLRs generated
in the most recent previous iteration may be used instead, albeit at the cost of degraded
BLER. In our investigations, we found that 1/3 of the LLRs must be rescheduled, in
order to avoid contention in the second version of the APTD. However, in order to
investigate the worst-case BLER degradation that may be imposed, we quantify the
impact of delaying the interleaving of all LLRs, rather than just that of the subset which
causes contention. Figure 2.17 characterises the BLER when ω clock cycles of delay is

34 Chapter 2 Arbitrarily Parallel Turbo Decoder

P=56, AWGN channel, BPSK, APTD Version 2

10
-5

10
-4

10
-3

10
-2

10
-1

1
B

L
E

R

-1 0 1 2 3 4 5 6 7 8 9

SNR per bit Eb/N0 (dB)

=0

=1

=2

=4

=8

N=64, T=16

N=512, T=256

N=6144, T=4096

CMCC Capacity

DCMC Capacity

EXIT Chart Bound

Figure 2.17: BLER performance for second version of the APTD algorithm for N =
64, 512, 6144, with T = 16, 256 and 4096 clock cycles, respectively, activating P = 56
processors when different delays are imposed. Here, NIn systematic and O-E operation
are employed and the extrinsic values are obtained from forward recursions only (Ext

on F).

imposed on the interleaving of the LLRs. By comparing Figures 2.16 and 2.17, it may
be seen that the second version of the APTD offers superior BLER over the first version,
even if 1 or 2 clock cycles of delay are applied to all LLRs. Since contention can be
eliminated by delaying only a subset of the LLRs, we may conclude that the second
version is superior.

2.5 Complexity analysis

This section compares the proposed APTD employing p = 64 processors to the conven-
tional LTE turbo decoder of [60] employing p = 8 processors, to the SOTA LTE turbo
decoder of [23] employing p = 64 processors, and to the FPTD of [24] employing p = 6144

processors, both in terms of the number of clock cycles required for achieving a low BLER
and in terms of the complexity of each processor. These are used for characterising the
latency, throughput and hardware resource requirements that may be expected by these
turbo decoder algorithms.

Chapter 2 Arbitrarily Parallel Turbo Decoder 35

T
a
bl

e
2.

1:
C
om

pl
ex
it
y
an

al
ys
is

of
di
ffe

re
nt

tu
rb
o
de
co
de
rs

C
on

ve
nt
io
na

l

N
∈

[4
0,

61
44

]

SO
T
A

N
∈

[4
0,

61
44

]

F
P
T
D

N
∈

[4
0
,6

14
4]

A
P
T
D
N
∈

[4
0
,6

14
4]

V
er
si
on

1
V
er
si
on

2

W
in
do

w
le
ng

th
(L

)
N
/8

N
/P

1
2

N
g
if
(N
,p
)
bN
/P
c
or
dN
/P
e

O
ve
ra
ll
la
te
nc
y
(T

)
T

C
T

S
T

F
T

A
1

T
A

2

O
ve
ra
ll
th
ro
ug

hp
ut

(1
/
T
)

1 T
C

1 T
S

1 T
F

1
T
A

1
1
T
A

2

C
om

pl
ex
it
y
pe

r
pr
oc
es
so
r

pe
r
cl
oc
k
cy
cl
e
(C

)
32

0
32

0
15

5
32

0

In
te
rl
ea
ve
d
LL

R
s
by

ea
ch

P
E

at
a
ti
m
e

4
4

1
2

O
ve
ra
ll
co
m
pl
ex
it
y
(T
C
P
)

25
60
T

C
32

0
T

S
P

15
5
T

F
N

32
0
T

A
1P

32
0
T

A
2P

C
om

pu
ta
ti
on

al
effi

ci
en
cy

(1
/T
C
p
)

1
3
2
0
T
C
p

1
3
2
0
T
S
p

1
1
5
5
T
F
p

1
3
2
0
T
A

1
p

1
3
2
0
T
A

2
p

36 Chapter 2 Arbitrarily Parallel Turbo Decoder

Table 2.1 summarises our comparisons of the proposed APTD with the conventional LTE
turbo decoder, with the FPTD, and with the SOTA LTE turbo decoder. In contrast to
the Radix-2 operation of the FPTD, the conventional turbo decoder, the SOTA LTE
turbo decoder and the APTD use Radix-4 processing [20, 21], allowing two algorithmic
units to be processed per clock cycle. For example, in the case of a block length of
N = 504 bits, the conventional and the SOTA LTE turbo decoder decomposes the block
into P = 8 windows and processes them using 8 processors. In the case of the SOTA
decoder, its other 56 processors remain disabled. Here, each window in the conventional
or the SOTA LTE turbo decoder comprises L = 63 bits, requiring 63 clock cycles to
complete the processing of the whole block length, when using Radix-4 processing. By
contrast, when N = 504, the first and the second version of our APTD activate P = 63

and 64 processors, respectively. In both schemes, 8 clock cycles are used for processing the
entire 504 bits once, which is an eight-fold delay reduction. Indeed, the second version
of the APTD activates all processors for all block lengths that satisfy N ≥ P , hence
avoiding wasted hardware, as discussed in Section 2.3.2. Since the FPTD processes the
entire block simultaneously, alternating between the odd- and even-indexed algorithmic
units, its window length L is consistently 2, regardless of the block length N .

The overall latency may be compared in terms of the number of clock cycles required
for each turbo decoder to perform sufficient iterations to achieve a BLER of 10−5 at
the same Eb/N0 as the conventional turbo decoder using I = 8 iterations. Meanwhile,
the overall throughput is proportional to the reciprocal of the decoding latency. Figures
2.18 and 2.19 characterise the latency and the throughput as functions of block length
N ∈ [40, 6144] for both versions of the proposed APTD and compare them to those of
the conventional, FPTD and the SOTA turbo decoders. In the case of N = 504 bits,
a total of TC = TS = 1008 clock cycles are required for the conventional and SOTA
LTE turbo decoder to complete I = 8 iterations. By contrast, the first and second
version of the APTD require 320 and 296 clock cycles, respectively. The APTD achieves
this latency improvement of at least 2.23 times by activating all of its 64 processors,
while the conventional and SOTA decoder activate only 8 processors at N = 504. In
a hardware implementation operating at the same clock frequency of 250 MHz used in
the commercial LTE turbo decoder implementation of [60], the corresponding processing
latency of the APTD would become around 3.6 µs, achieving a 14-times improvement
compared to the 52 µs demonstrated in [60]. Hence, the proposed APTD is capable of
meeting the 7.4 µs latency requirement of LTE URLLC, even in the case of the longest
N = 6144-bit blocks. Meanwhile, at the longest block length of N = 6144 bits a total
of 12288 clock cycles are required for the conventional turbo decoder to complete I = 8

iterations, while the proposed APTD requires only 890 clock cycles to achieve the same
BLER performance.

1The number of activated processors P for different block lengths N of the SOTA LTE turbo decoder
is given in (2.7).

Chapter 2 Arbitrarily Parallel Turbo Decoder 37

10

2

5

10
2

2

5

10
3

2

5

10
4

L
at

en
cy

T

40 64 128 256 512 1024 2048 4096 6144

Block length N

Conventional

SOTA

FPTD

APTD Version 1

APTD Version 2

Figure 2.18: The number of clock cycles required for all block lengths N ∈ [40, 6144]
to achieve a BLER of 10−5 at the same Eb/N0 as the conventional turbo decoder using

I = 8 iterations in different turbo decoders.

The computational complexity may also be used for characterizing both the energy con-
sumption and the hardware resource requirement of a practical hardware implementation.
In [24], the complexity C per processor per clock cycle imposed by the SOTA LTE tur-
bo decoder and by the FPTD was given as 320 and 155 Add Compare Select (ACS)
operations, respectively. For the conventional LTE turbo decoder and both versions of
the APTD algorithm, the number of ACS operations performed per processor per clock
cycle is also C = 320, as in the SOTA turbo decoder, since they also employ Radix-4
processing.

As discussed in Section 2.2, the maximum number of LLRs that must be interleaved at a
time by each PE varies among the decoding algorithms compared in Table 2.1. Since the
proposed APTD algorithm obtains extrinsic LLRs alongside the forward recursions, its
PEs generate two extrinsic LLRs for interleaving in each clock cycle when using Radix-
4 processing. Similarly, the PEs of the FPTD algorithm process windows comprising
only a single trellis stage, and so they generate only one extrinsic LLR for interleaving
at a time. By contrast, the conventional and the SOTA LTE turbo decoder generates
four extrinsic LLRs at a time once the forward and backward recursions have crossed
over, when using Radix-4 processing. The requirement for the conventional and the

38 Chapter 2 Arbitrarily Parallel Turbo Decoder

10
-4

2

5

10
-3

2

5

10
-2

2

5

10
-1

2

5

1

T
h
ro

u
g
h
p
u
t

1
/T

40 64 128 256 512 1024 2048 4096 6144

Block length N

Conventional

SOTA

FPTD

APTD Version 1

APTD Version 2

Figure 2.19: The reciprocal of the number of clock cycles required for all block lengths
N ∈ [40, 6144] to achieve a BLER of 10−5 at the same Eb/N0 as the conventional turbo
decoder using I = 8 iterations in different turbo decoders in different turbo decoders.

SOTA turbo decoder to interleave four extrinsic LLRs at a time represents a significant
hardware overhead, causing the interleaver to occupy 15.3% of the chip area in the turbo
decoder implementation [67].

Combining the above-mentioned design considerations, the energy consumption of a tur-
bo decoder implementation may be characterised by its overall computational complexity,
as shown in Table 2.1. The overall complexity is defined as the product of the number
T of clock cycles required to achieve a BLER of 10−5 at the same Eb/N0 as the conven-
tional LTE turbo decoder using I = 8 iterations, the computational complexity C per
processor per clock cycle and the number of activated processors P . Figure 2.20 shows
the overall complexity associated with all block lengths N ∈ [40, 6144] for the various
turbo decoders considered in this section. In the example of N = 504 bits, the overall
complexity of the second version of the proposed APTD employing P = 64 PEs is 2.3

times that of the conventional and the SOTA LTE turbo decoders, which employ 8 pro-
cessors. However, its complexity is 1.3 times higher than that of the FPTD in this case.
Note that for block lengths in excess of N = 2048, the number of activated processors
and the overall latency are the same in the SOTA LTE turbo decoder and both versions
of the APTD, so the overall computational complexity remains identical.

Chapter 2 Arbitrarily Parallel Turbo Decoder 39

5

10
6

2

5

10
7

2

5

10
8

C
o

m
p

le
x

it
y

(T
C

P
)

40 64 128 256 512 1024 2048 4096 6144

Block length N

Conventional

SOTA

FPTD

APTD Version 1

APTD Version 2

Figure 2.20: The overall complexity in different turbo decoders as a function of the
block length N .

In addition to the computational complexity TCP , we also compare the decoders in terms
of their hardware efficiency 1/(TCp). Note that while the computational complexity
depends on the number P of activated processors, the hardware efficiency considers the
total number p of processors employed in the decoder, as summarised in Table 2.1. This is
because all processors occupy a certain chip-area, regardless whether they are activated
or not. Figure 2.21 characterizes the hardware efficiency of the three turbo decoders
discussed in this chapter, as functions of the block length N ∈ [40, 6144]. In the example
of N = 504 bits, the second version of the APTD employing p = 64 processors achieves
a 7-times efficiency improvement compared to the SOTA turbo decoder employing p =

64 processors. Note that for block lengths in excess of N = 2048, the computational
efficiency is similar in both versions of the APTD and the SOTA turbo decoder. In the
case of the FPTD, it is assumed that p = 6144 processors are employed and that P = N

processors are activated when decoding blocks of length N . Owing to this, the hardware
efficiency of the FPTD is poor, especially when the block length N is small compared
to p. In the case of N = 504 bits, the second version of the APTD employing P = 64

processors achieves a 22-times efficiency improvement compared to the FPTD decoder.

40 Chapter 2 Arbitrarily Parallel Turbo Decoder

10
-8

2

5

10
-7

2

5

10
-6

2

C
o

m
p

u
ta

ti
o

n
al

E
ffi

ci
en

cy
(1

/T
C

p
)

40 64 128 256 512 1024 2048 4096 6144

Block length N

Conventional

SOTA

FPTD

APTD Version 1

APTD Version 2

Figure 2.21: The overall computational efficiency in different turbo decoders as a
function of the block length N .

2.6 Conclusions

Table 2.2: Latenct and complexity analysis of different turbo decoders in the case of
N = 504.

Conventional SOTA FPTD APTD

Overall latency (T) 1008 1008 60 704

Overall complexity (TCP) (×10−6) 2.6 2.6 4.7 6.1

This chapter proposed a novel APTD algorithm, which facilitates an arbitrarily high
degree of turbo decoding parallelism for the first time, enabling significantly improved
throughput, latency, and computational efficiency in comparison to the SOTA turbo de-
coder while meeting the requirements of LTE URLLC. More specifically, conventional
commercial implementations of the LTE turbo decoder have latencies of up to 52 µs,
which are not able to meet the 7.4 µs requirements of LTE URLLC. By contrast, the
proposed APTD can achieve the same error correction performance as the conventional
decoder down to BLERs of 10−5, but with latencies of no more than 3.6 µs, meeting the
requirements of LTE URLLC. Furthermore, the APTD achieves a significant reduction

Chapter 2 Arbitrarily Parallel Turbo Decoder 41

in complexity in long block lengths, compared to FPTD. In particular, none of the pro-
cessors in our proposed algorithm remain idle for any block length N ≥ p, leading to
better BLER performance than the SOTA turbo decoder in cases of short block lengths.
For instance, when p = 56 processors and 16 clock cycles are employed for decoding a
block length N = 64, our APTD achieves a coding gain of 3.5 dB compared to the SOTA
LTE turbo decoder at a BLER level of 10−3, as shown in Figure 2.16, whereas only slight
improvements can be observed when decoding a block length of N = 6144 employing the
same number of p = 56 processors with 4096 clock cycles. We have proposed an odd-
even processing of windows in the upper and lower decoder, which achieves better BLER
performance for short block lengths, compared to conventional upper-lower processing.
Furthermore, we reduce the interleaving complexity by generating extrinsic LLRs along-
side the forward recursion, at the cost of slightly degraded BLER performance. Like
the FPTD, the proposed APTD is capable of achieving the same error correction perfor-
mance as a conventional LTE turbo decoder, at all block lengths. However, our APTD
achieves this using significantly fewer decoding iterations and hence a lower complexity
at long block lengths. As shown in Figures 2.18 to 2.21, the proposed APTD achieves
superior latency, throughput and computational efficiency than the SOTA LTE turbo
decoder at all block lengths, but particularly at the short block lengths that are typi-
cally used in URLLC approaches. For example, at a block length of N = 504 bits, the
proposed APTD achieves an BLER of 10−5 at the same Eb/N0 as I = 8 iterations of a
conventional turbo decoder, but with a computational efficiency that is 6 times higher
than that of the SOTA turbo decoder, while achieving a latency and throughput that are
0.7 and 1.4 times those of the SOTA decoder, respectively, as shown in Table 2.2. Note
however that this is achieved at the cost of increasing the computational complexity by
2.3 times compared to the SOTA decoder of N = 504.

Chapter 3

Concurrent OFDM Demodulation

and Turbo Decoding Architecture

3.1 Introduction

As we discussed in Chapter 1, a significant reliability and latency improvement is required
for the Ultra-Reliable Low Latency Communication (URLLC) service in the upcoming
Fifth Generation (5G) New Radio (NR). However, achieving a significantly increased
throughput and reliability as well as a significant reduction in latency represents a sub-
stantial challenge [68–70], having no simple solutions. However once realised, this URLL-
C paradigm will allow humans or machines to communicate with remote mobile devices
and control them seamlessly, without suffering from the lag that prevents accurate con-
trol using wireless communication systems [71]. This will enable a wide variety of new
applications in remote surgery, automated driving, and virtual reality, having significant
economic and societal impact [72–76]. However, the end-to-end latency of a wireless com-
munication system is fundamentally limited by its physical layer [56,77], which performs
demodulation and error correction, among other tasks. Therefore, our main concern in
this chapter lies in the low-latency receiver design, as illustrated in Figure 3.1.

Different future applications of the URLLC mode will impose different demands on the
physical layer latency. For example, machine-automated low-latency capital market trad-
ing relies on multi-hop wireless communication links, where financial institutions use
algorithms running on their own computers for automatically buying and selling stocks,
whenever they momentarily have different values on stock exchanges in different cities.

43

44 Chapter 3 Concurrent OFDM Demodulation and Turbo Decoding Architecture

URLLC requirements

latency complexityerror correction
performance

flexibility

Figure 3.1: The contribution of Chapter 3.

In this application, each relay has in these links to have a sub-microsecond physical layer
latency [78], not including the propagation delay associated with each hop. By contrast,
the so-called Tactile Internet [56, 79] will allow humans to seamlessly control remote
devices, provided that a physical layer latency of below 100 µs can be achieved.

However, State-of-the-art (SOTA) wireless communication systems have physical layer
latencies that are significantly higher than these targets. For example, the world’s fastest
low-latency capital market trading links impose a physical layer latency of around 5 µs
per hop, not including propagation latency. Meanwhile, SOTA implementations of the
Long Term Evolution (LTE) cellular telephony standard have a physical layer latency,
which significantly exceeds the 100 µs target of the Tactile Internet [56, 80]. To elab-
orate, the LTE physical layer achieves a high throughput and reliability by employing
the Orthogonal Frequency-Division Multiplexing (OFDM) technique [27,28] for mitigat-
ing echoes in the wireless channel, as well as a turbo code for correcting any remaining
transmission errors [2, 3, 29, 30]. However, these techniques impose a high signal pro-
cessing complexity upon the physical layer, particularly in the receiver. As shown in
Figure 3.2(a), the processing of the receiver’s Fast Fourier Transform (FFT) [81,82] can-
not begin until the whole message block has been received, since each of its outputs is
a function of the whole received block. Owing to this, the FFT produces all of its out-
puts simultaneously, preventing the turbo decoding process from beginning until after
the FFT has been completed. In practical LTE deployments, the transmission latency
incurred while receiving, the processing latency incurred while performing the FFT and
the processing latency incurred while performing turbo decoding are each around 70
µs [29, 56], allowing pipelining as shown in Figure 3.2(a). The sum of these latencies is
210 µs, which already exceeds the above-mentioned 100 µs target, even without consid-
ering the latency associated with propagation, channel estimation, Multiple-Input and
Multiple-Output (MIMO) detection and transmitter processing.

This motivates our new architecture, in which the physical layer receiver components are
operated concurrently, rather than consecutively. This approach is exemplified by Fig-
ure 3.2(b), in which the reception, FFT processing and turbo decoding of each block is
performed concurrently, potentially facilitating sub-microsecond physical layer latencies
in the case of low-latency communications in 5G. In the case of the URLLC commu-
nications [6, 54, 55], this approach can reduce the associated latency from 210 µs to 70
µs, which is within the above-mentioned 100 µs latency target of the Tactile Internet.

Chapter 3 Concurrent OFDM Demodulation and Turbo Decoding Architecture 45

N N N

N N N

N N N

N

N

N N N

Turbo decode

FFT

block k

block k + 1
FFT

Receive
block k

Receive
block k + 1

(a) Serial receive, FFT and turbo decode

Receive
block k + 2

block k − 2
Turbo decode

Receive
block k − 1

Receive

block k
FFT

block k + 1

block k
Turbo decode

Turbo decode
block k − 1

FFT
block k + 1

block k − 1
Turbo decode

Latency

Latency

Turbo decode
block k + 1

Receive
block k

Time

Concurrent receive, FFT and turbo decode

FFT
block k

FFT
block k − 1

(b)

Time

block k − 1

Figure 3.2: Timing diagram for (a) the conventional approach and (b) the proposed
ultra-low-latency approach.

46 Chapter 3 Concurrent OFDM Demodulation and Turbo Decoding Architecture

This leaves 30 µs for propagation and for the remaining, lower-complexity physical layer
components, including channel estimation, MIMO detection and transmitter processing.
Indeed, it may be expected that the proposed technique can be extended to perform some
of these operations concurrently with those of Figure 3.2(b), within the same 70 µs. In
addition, the turbo codes adopt the advantage of lower decoding complexity and better
error-correction performance compared to the Low-Density Parity-Check (LDPC) codes
at low coding rates that are motivated in mission-critical vehicular communications for
the sake of ensuring low Bit Error Ratio (BER) and ultra-high reliability [11, 12]. Our
new contributions are as follows.

• we propose a novel cumulative FFT, which is processed incrementally and concur-
rently with the Fully-Parallel Turbo Decoder (FPTD) that is reviewed in Section
2.2.2.2, throughout the process of receiving a single OFDM symbol. Since the
information carried by each turbo encoded bit is spread throughout the duration
of the OFDM symbol, the proposed concurrent FFT can obtain some information
about each bit as soon as the reception of the OFDM symbol begins, allowing turbo
decoding to start immediately. As more and more of the OFDM symbol is received
with passing time, the cumulative FFT can obtain more and more information
about the turbo encoded bits, which can be fed into the concurrent turbo decoding
process.

• We show that if the turbo decoder can complete a sufficient number of iterations
within the duration of the OFDM symbol, then it can achieve the same error
correction performance as if the turbo decoding process had only began after the
reception of the OFDM symbol had been completed.

As shown in Figure 3.3 this chapter is structured as follows. Section 3.2 provides a
brief overview of the FFT technique that is employed to implement OFDM. Following
this, the proposed concurrent OFDM demodulation and turbo decoding architecture is
proposed and detailed in Section 3.3. The validation of this architecture is presented in
Section 3.4, while its error correction performance and extensions to manage the trade-
offs between latency, reliability and complexity are presented in Section 3.5. Finally, we
offer our conclusions in Section 3.7.

3.2 Fast Fourier Transform

In OFDM, a bit stream is decomposed into several parallel bit streams, each of which has
much a proportionately reduced bit rate and is modulated onto a different subcarrier.
In this way, rather than using a serial Time Domain (TD) bit stream, OFDM uses many
low-rate parallel Frequency Domain (FD) bit streams, which are less prone to dispersion.

Chapter 3 Concurrent OFDM Demodulation and Turbo Decoding Architecture 47

Chapter 1

Introduction

Chapter 2

Turbo code

Chapter 4

Polar code

Chapter 3

Concurrent OFDM

Chapter 5
Implementation

Chapter 6

Conclusion

Motivation: latency bottleneck

Review FFT

Novel concurrent FFT

Concurrent system architecture

Performance analysis (BER and latency)

Refinement for better BER performance

Figure 3.3: The development of Chapter 3.

Typically, OFDM schemes are implemented using Discrete Fourier Transform (DFT)
techniques [83–85]. To be more specific, the Inverse Discrete Fourier Transform (IDFT)
is performed in the transmitter to generate a single TD OFDM symbol to represent
the set of the FD bit streams, each of which typically carries a Quadrature Amplitude
Modulation (QAM) symbol. Meanwhile, the corresponding DFT is performed at the
receiver to recover the QAM symbols carried by the sub-carriers of the OFDM symbol.
In the receiver, a N -point DFT can be defined as

Yz =

N−1∑
n=0

ynW
nz
N , 0 6 z 6 N − 1, (3.1)

where WN = exp(−j2π/N). Here, yn is the nth sample of the received TD OFDM sym-
bol, where the set of N samples are received consecutively, spread over time. Meanwhile,
Yz is the zth FD subcarrier’s QAM symbol, where each of the N FD QAM symbols is
dependent on all N TD samples of the TD OFDM symbol.

Note that in practice, the demodulator’s DFT is typically implemented using the FFT,
which has a significantly reduced complexity if N is high [81,82]. If N is a power of 2, a
Radix-2 FFT is achieved by recursively partitioning Yz into odd- and even-indexed terms,

48 Chapter 3 Concurrent OFDM Demodulation and Turbo Decoding Architecture

across v = log2(N) stages. The odd and even terms in Yz can be expressed respectively
as

Y2z =

N/2−1∑
n=0

(
yn + yn+N/2

)
Wnz
N/2, 0 6 z 6

N

2
− 1, (3.2)

Y2z+1 =

N/2−1∑
n=0

[(
yn − yn+N/2

)
Wn
N

]
Wnz
N/2, 0 6 z 6

N

2
− 1. (3.3)

Here, each of (3.2) and (3.3) can be considered to be a DFT in its own right. This allows
each of (3.2) and (3.3) to be further decomposed into two DFTs, comprising the odd and
even elements, respectively. This may be repeated recursively, until the DFT has been
fully decomposed into an individual radix-2 structure, completing the FFT.

The block diagram for the example of a N = 16-point radix-2 FFT with v = 4 compu-
tation stages is depicted in Figure 3.4. The inputs on the left-hand edge of Figure 3.4
represent TD samples. These inputs are first interleaved into a bit reversed ordering,
separating the odd terms and even terms. The TD samples are passed through v = 4

stages of radix-2 butterflies, each of which performs a radix-2 FFT calculation, as shown
in Figure 3.5. Following the final stage of radix-2 butterflies, the N = 16 FD samples
are obtained.

radix-2
butterfly

radix-2
butterfly

radix-2
butterfly

radix-2
butterfly

radix-2
butterfly

radix-2
butterfly

radix-2
butterfly

radix-2
butterfly

In
p

u
t

in
te

rl
ea

v
er

2©

radix-2
butterflies

Two

radix-2
butterflies

radix-2

butterflies

1©

3©

4©

Four

Eight

radix-2
butterflies

Two

radix-2
butterflies

Two

radix-2
butterflies

Two

radix-2
butterflies

Four

y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

y0

y8

y4

y12

y2

y10

y6

y14

y1

y9

y5

y13

y3

y11

y7

y15

Example of inputs available in each of four successive clock cycles
Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

Y10

Y11

Y12

Y13

Y14

Y15

Figure 3.4: The FFT block diagram.

Chapter 3 Concurrent OFDM Demodulation and Turbo Decoding Architecture 49

y0

-1W z
N

y1

y0 +W z
Ny1

y0 −W z
Ny1

Figure 3.5: The radix-2 FFT calculation.

In the conventional approach, reception and demodulation are performed serially, where
the FFT operation does not begin until after all the transmitted TD samples are received.
However, in our concurrent approach, the demodulation process is started promtly after a
small number of samples have been received. Successively more TD samples are received
in each of a series of successive clock cycles. In a naive approach, the full-length N -
sample FFT may be replaced in each clock cycle, using all TD samples received so far
and assuming zero values for all TD samples not yet received, as shown in Figure 3.4.
In order to significantly reduce the complexity of repeating the N -point FFT in each
clock cycle, we propose an efficient cumulative FFT in Section 3.3.2. This eliminates
all redundant calculations associated with zero-valued samples and reuses calculations
from one clock cycle to the next. More specifically, an incremental part of the FFT is
calculated in each clock cycle and these are accumulated across the series of clock cycles.

3.3 Proposed turbo-coded OFDM scheme

The proposed concurrent turbo-coded OFDM scheme is discussed in this section. Section
3.3.1 introduces our notation and details the proposed scheme’s transmitter, which is
the same as in a conventional turbo-coded OFDM scheme. Following this, the proposed
concurrent detection, FFT and turbo decoding approach of the proposed receiver is
detailed in Section 3.3.2.

3.3.1 Transmitter

In the turbo-coded OFDM transmitter of Figure 3.6, the K number of message bits
bu
1 = [b1,k]

K−1
k=0 are encoded by an LTE turbo encoder. To be more specific, the vector

of message bits bu
1 is interleaved to obtain the vector of interleaved message bits bl

1.
These two vectors are encoded by two identical Convolutional Encoders (CEs), referred
to as the upper and lower encoders, respectively. The resultant parity bit vectors bu

2 and
bl
2 are interleaved with the systematic bit vector bu

3 , which is a replica of the message
bit vector bu

1 . The resultant bit vector is punctured or repeated depending on the code
length and then output as the turbo-encoded bit vector b4 = [b3,k]

T−1
t=0 , which comprises

T bits. The T turbo-encoded bits are then converted into N = T/ log2M symbols

50 Chapter 3 Concurrent OFDM Demodulation and Turbo Decoding Architecture

X = [Xn]N−1n=0 , using an M -ary Quadrature Amplitude Modulation (MQAM) mapper.
Here, the MQAM symbols are selected from a set of M complex constellation points
S = {s0, s1, · · · sM−1}, which satisfy

∑M−1
i=0 |si|2 /M = 1, where each QAM symbol

carries b = log2M bits. Following this, a Serial to Parallel Converter (SPC) is used
to convert the series of N symbols X = [Xn]N−1n=0 into the input of the Inverse Fast
Fourier Transform (IFFT), which obtains a corresponding set of N complex TD samples
of the OFDM symbol x = [xn]N−1n=0 . Next, the TD OFDM symbol x is concatenated
with L samples provided by the corresponding Cyclic Prefix (CP) [xn]N+L−1

n=N , in order
to avoid the inter-symbol interference associated with dispersive channels [27]. Finally,
the resultant turbo-encoded, OFDM-modulated symbol is passed through a Parallel to
Serial Converter (PSC) and transmitted using a Digital to Analogue Converter (DAC)
and a Radio Frequency (RF) front end.

π

S
P
Cbu

1

Upper
convolutional

encoder

Lower
convolutional

encoder

bl
1

b4

...

X0

X1
IF

F
T ...

x0

x1

XK−1

xK−1

...
xK

xK+L−1

CP

bu
3

bu
2

Mapper
X

DAC RF

p
u
n
ct
u
re
r

bl
2

P
S
C

Figure 3.6: Transceiver schematic of a turbo-coded OFDM communication system.

3.3.2 Receiver

The proposed receiver schematic is depicted in Figure 3.7, where the signal is received
using a RF front end, an Analogue to Digital Converter (ADC), a CP remover, and
a SPC. These components have naturally low latencies compared to the rest of the
schematic, which comprises a novel cumulative FFT, a bank of N novel QAM demappers
and the FPTD [24]. The operations of the cumulative FFT, the N QAM demappers and
the FPTD are spread over a total of C clock cycles. Figure 3.7 illustrates a ’toy’ example,
in which C = 4 clock cycles are used to recover K = 8 bits from N = 16 samples of the
4QAM-modulated OFDM symbol.

After the removal of the CP, the received samples of the OFDM symbol can be expressed
as

y = h ∗ x + n, (3.4)

where h = [hn]N−1n=0 is the Channel Impulse Response (CIR) and n = [nn]N−1n=0 is the
Additive White Gaussian Noise (AWGN), which has a zero mean and a variance of
σ2 = 1/(2γ), where γ denotes the Signal to Noise Ratio (SNR). The corresponding FD

Chapter 3 Concurrent OFDM Demodulation and Turbo Decoding Architecture 51

Interleaver

Interleaver

Fully-parallel turbo decoder

8
ra

d
ix

-2
F

F
T

b
u

tt
er

fl
ie

s

QPSK

QPSK

QPSK

QPSK

QPSK

QPSK

QPSK

QPSK

4
ra

d
ix

-2
F

F
T

b
u

tt
er

fl
ie

s
4

ra
d

ix
-2

F
F

T
b

u
tt

er
fl

ie
s

PE PE PE PE PE PE PE PE

PEPEPEPEPEPEPEPE

SPC

RF

ADC

CP
removal

YN−1

Y0 b̃4,0

b̃4,2N−1

b̂1,0 b̂1,N−1

Cumulative FFT

QPSK

QPSK

QPSK

QPSK

QPSK

QPSK

QPSK

QPSK

Figure 3.7: A toy example of the proposed ultra-low-latency architecture for the
concurrent receive, FFT and turbo decode approach of Figure 3.2(b).

signal obtained after the FFT operation can be expressed as

Y =FFF{h ∗ x + n}
=HX + N. (3.5)

Here, for the kth element in Y, we have Yk = HkXk + Nk, where Hk is the single tap
channel gain of the corresponding QAM symbol Xk. However, instead of waiting to
receive all N samples of the OFDM symbol before performing the FFT operation, the
novel approach of Figure 3.7 performs the cumulative FFT during each clock cycle, while
the TD samples are still being received. The N/C samples of the OFDM-modulated
symbol received in each clock cycle comprises the fraction 1/C of the total number
of samples N . Within the same clock cycle, these N/C TD samples are immediately
forwarded to the cumulative FFT, which updates its output symbols Y by incorporating
these samples. More specifically, the cumulative FFT effectively calculates an FFT of
all samples received so far, while assuming zero values for the remaining samples in the
OFDM symbol that have not yet been received. The operation of the cumulative FFT
may be understood by decomposing (3.1) in terms of the TD samples received in each
clock cycle, as follows.

Yz =
N−1∑
n=0

yne
−j2πnz/N

=

C−1∑
c=0

N/C−1∑
m=0

yN
C
c+me

−j2πz(N
C
c+m)/N

=

C−1∑
c=0

e−j2πzc/C
N/C−1∑
m=0

yN
C
c+me

−j2πzm/N (3.6)

52 Chapter 3 Concurrent OFDM Demodulation and Turbo Decoding Architecture

where yN
C
c+m is the mth TD sample received in the cth clock cycle. This decomposition

reveals that the operation of the FFT over all the N received symbols is equivalent to
performing an N/C-point FFT over each set of N/C TD samples received in each clock
cycle and performing a weighted sum of the results across the C clock cycles.

Figure 3.5 shows that if either of the two inputs of a radix-2 butterfly adopts a value of
zero, then its two applied outputs adopt the value of the other input, but with different
phase shifts. This observation is exploited in the proposed cumulative FFT, where the
N/C TD samples received in each clock cycle are evenly distributed by the input inter-
leaver to provide only one non-zero value among each set of C adjacent nodes. Therefore,
the output of the first log2C stages would simply be the replicas of the non-zero values,
but with different phase shifts applied. By exploiting this, only log2(N/C) layers of
radix-2 butterflies are required in order to perform the N -point FFT operation, where
multipliers are employed to shift the phase e−j2πzc/N of the N resultant symbols.
Following this, adders and registers are used to accumulate the results obtained
in each successive clock cycle. The proposed cumulative FFT behaves as an SPC, with
each successive clock cycle providing N QAM-modulated symbols of progressively higher
quality, containing a diminishing level of Inter-Carrier Interference (ICI).

Each of the N QAM demappers of Figure 3.7 processes the corresponding M = 4QAM-
modulated symbol using a novel technique, which approximately models the ICI as addi-
tional Gaussian-distributed noise. More specifically, the detection of symbols modulated
using a set S ofM constellation points begins by equalising the symbol that it is provided
with in each clock cycle, converting it into soft LLRs. The a priori probability of the
ith bit b4,i in symbol Xk ∈ S being 0, given the kth received symbol Yk, is

P (b̃4,i = 0|Yk) =
∑

Xk∈S|Xk,i=0

P (Xk|Yk) (3.7)

According to Bayes’ rule, we have

P (Xk|Yk) =
P (Xk)P (Yk|Xk)

P (Yk)
(3.8)

For the case of the single tap channel characterised in (3.5), we have

P (Yk|Xk) =
1√

2πσr
exp

(
− 1

2σ2r
‖Yk −HkXk‖2

)
∝ exp

(
− 1

2σ2r
‖Yk −HkXk‖2

)
, (3.9)

Chapter 3 Concurrent OFDM Demodulation and Turbo Decoding Architecture 53

where σ2r =
N+(N−D)γ

∑N−1
k=0 ‖Hk‖2

2Dγ , as shown in Appendix A. Here, D denotes the number
of QAM symbols received in each clock cycle. The LLR of the ith bit in symbol Xk can
now be expressed as

LLR(b̃4,i) = log
P (b̃4,i = 0|Yk)
P (b̃4,i = 1|Yk)

= log

∑
Xk,0∈S0

1
Mσr

exp(− 1
2σ2

r
‖Yk −HkXk,0‖)∑

Xk,1∈S1
1

Mσr
exp(− 1

2σ2
r
‖Yk −HkXk,1‖)

, (3.10)

where the symbol set S0 comprises all constellation points in S that imply 0 values for
the ith bit b̃4,i, while S1 comprises the constellation points that imply a value of 1 for the
ith bit b̃4,i. The max∗ operator [19] may then be employed to simplify the calculation of
(3.10), according to

max∗(a, b) = log(ea + eb)

= max(a, b) + log(ea + eb)

≈ max(a, b). (3.11)

Therefore, the LLR of b4,i can be expressed as

LLR(b̃4,i) = max
Xk,0∈S0

∗
(
− 1

2σ2r
‖Yk −HkXk,0‖

)
− max
Xk,1∈S1

∗
(
− 1

2σ2r
‖Yk −HkXk,1‖

)
.

(3.12)

Then, the resultant set of N log2M LLRs is distributed among the inputs of the FPTD
by its interleaver of Figure 3.7. As described in [24], the FPTD comprises two rows of
N concurrently-operated Processing Elements (PEs), allowing it to process all N log2M

LLRs provided in each clock cycle, in contrast to a conventional turbo decoder. Each
PE uses registers to iteratively exchange LLRs with its neighbouring PEs in the same
row, as well as with a corresponding PE in the other row, via a second interleaver. The
quality of the iteratively exchanged LLRs improves in each clock cycle, until final LLR
decisions are obtained for the N bits, with K being the number of message bits, using
additions in the final clock cycle.

3.4 Validation

In this section, we validate the correctness of our cumulative FFT and ICI-aware soft
QAM demapper by confirming that the resultant LLRs satisfy the consistency condition

54 Chapter 3 Concurrent OFDM Demodulation and Turbo Decoding Architecture

given in [66]. More specifically, given 2 real values random variablesX and Y , the Mutual
Information (MI) between X and Y is defined as

I(X;Y) =

∫ ∫
f(x, y) log

f(x)

f(x)
dxdy, (3.13)

with I(X;Y) = H(Y)−H(Y |X), where

H(Y |X) =

∫ ∫
f(x, y) log

1

f(y|x)
dxdy, (3.14)

Turbo Encoder QAM Mapper OFDM

Fading Channel

CumulativeSoft-DemapperTurbo Decoder

Histogram MI

Averaging MI

FFT

K Bits

I1

I2

K Bits

Validation

LLRs

Figure 3.8: Validation using the histogram and averaging methods of MI calculation.

Two methods for measuring the MI of LLRs are proposed in [66], referred to as the aver-
aging method and the histogram-based method. While the histogram method computes
the MI of LLRs by comparing them to the correct bit values, the averaging method
does not consider the correct bit values. Instead, it assumes that the LLRs satisfy the
consistency condition and that the MI can be correctly computed based on the magni-
tudes of the LLRs alone. If a vector of LLRs satisfies the consistency condition, then
the averaging method will measure the same MI value as the histogram method, which
does not assume consistency. Figure 3.8 illustrates the employment of the averaging and
histogram methods of calculating the MI to validate our proposed approach. The results
of the comparisons are shown in Figures 3.9 and 3.10, where 4QAM and 16QAM are em-
ployed, respectively. As shown in Figures 3.9 and 3.10, both methods of measuring the
MI give similar results across a variety of different Eb/N0 values, and as successively more
symbols D are received. This confirms that the LLRs satisfy the consistency condition
and validates the accuracy of the proposed approach. As expected, higher Eb/N0 values
and more received symbols D result in higher LLR reliability, whereas higher-order QAM
decreases the LLR reliability, at a given Eb/N0 value.

Chapter 3 Concurrent OFDM Demodulation and Turbo Decoding Architecture 55

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
I

0 128 256 512 1024 2048

Number of TD samples D received so far

Average

Histogram

Eb/N0=7dB

Eb/N0=3dB

Eb/N0=0dB

Figure 3.9: MI calculated by histogram and averaging methods, when employing a
punctured LTE turbo code, Gray-coded 4QAM, OFDM and a quasi-static Extended
Typical Urban model (ETU) Rayleigh fading channel, where K = 1376 and N = 2048.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
I

0 128 256 512 1024

Number of TD samples D received so far

Average

Histogram

Eb/N0=7dB

Eb/N0=3dB

Eb/N0=0dB

Figure 3.10: MI calculated by histogram and averaging methods, when employing
a punctured LTE turbo code, Gray-coded 16QAM, OFDM and a quasi-static ETU

Rayleigh fading channel, where K = 1376 and N = 1024.

56 Chapter 3 Concurrent OFDM Demodulation and Turbo Decoding Architecture

3.5 Performance analysis

In this section, we present and benchmark the performance of the proposed concurrent
OFDM demodulation and turbo decoding architecture. Figures 3.11 and 3.12 charac-
terise the performance of the proposed scheme and that of a benchmarker for the case
of a punctured LTE turbo code, Gray-coded QAM, OFDM and a quasi-static Extended
Typical Urban model (ETU) Rayleigh fading channel [86], where K = 1376, N = 2048

for 4QAM, as shown in Figure 3.11 and N = 1024 for 16QAM, as shown in Figure 3.12.
Here, the concurrent receive, FFT and turbo decode approach of Figure 3.2(b) employs
the architecture proposed in Figure 3.7 and C ∈ {128, 256, 512, 1024} clock cycles. This
is compared to a benchmarker employing the serial receive, FFT and turbo decode ap-
proach of Figure 3.2(a), when employing a conventional turbo decoder. As the number
of clock cycles C is increased, the BER performance of the proposed scheme can be seen
to converge to that of the benchmarker, proving the concept of the concurrent receive,
FFT and turbo decode approach. A similar result may be observed when employing the
higher-order QAM, where higher bandwidth efficiency is obtained at the cost of degraded
BER performance. However, for the 4QAM modulation scheme, the proposed architec-
ture requires up to C = 1024 clock cycles in order to closely match the performance of
the benchmarker, while even more clock cycles are required for the 16QAM scheme to
approach the benchmarker. A significant reduction in processing energy consumption
could be achieved upon employing only C = 128 clock cycles, although this is associated
with a performance loss of up to 2.5 dB, compared to the benchmarker.

10
0

10
-1

10
-2

10
-3

10
-4

10
-5

B
E

R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Eb/N0 (dB)

N=1024

N=2048

C=128

C=256

C=512

C=1024

benchmarker

Figure 3.11: BER of the proposed concurrent architecture, when using C ∈ {128, 256,
512, 1024} and employing a punctured LTE turbo code, Gray-coded QAM, OFDM and

a quasi-static ETU Rayleigh fading channel, where K = 1376, N = 1024, 2048.

Chapter 3 Concurrent OFDM Demodulation and Turbo Decoding Architecture 57

10
0

10
-1

10
-2

10
-3

10
-4

10
-5

B
E

R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Eb/N0 (dB)

N=512

N=1024

C=128

C=256

C=512

benchmarker

Figure 3.12: BER of the proposed concurrent architecture, when using C ∈ {128,
256, 512} and employing a punctured LTE turbo code, Gray-coded 16QAM, OFDM
and a quasi-static ETU Rayleigh fading channel, where K = 1376, N = 512, 1024.

3.6 System refinements

In order to mitigate this performance loss, the architecture of Figure 3.7 may be further
refined. Therefore, in the following subsections, we propose a pair of refinements for
improving the BER performance of the proposed architecture, referred to as the staggered
receive approach and scaled approach, respectively.

3.6.1 Staggered receive approach

In our first refinement, referred to as the staggered receive, FFT and turbo decode
approach, the operation of the FPTD may be staggered relative to that of the cumulative
FFT of Figure 3.7. More specifically, the operation of the FPTD maybe delayed until
S ∈ [0, N] symbols have been received, facilitating a gradated trade-off between latency
and processing energy consumption. Figures 3.13 and 3.14 show that upon adopting
this approach, C = 128 clock cycles and a stagger of S = 3N/8 symbols is sufficient
for closely matching the BER performance of the benchmarker, when employing both
4QAM and 16QAM.

58 Chapter 3 Concurrent OFDM Demodulation and Turbo Decoding Architecture

10
0

10
-1

10
-2

10
-3

10
-4

10
-5

B
E

R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Eb/N0 (dB)

N=1024

N=2048

S=0

S=256

S=512

S=1024

benchmarker

Figure 3.13: BER of the staggered architecture, when using C = 128 and S ∈
{0, 256, 512, 1024}, employing a punctured LTE turbo code, 4QAM, OFDM and a quasi-

static ETU Rayleigh fading channel, where K = 1376, N = 1024, 2048.

10
0

10
-1

10
-2

10
-3

10
-4

10
-5

B
E

R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Eb/N0 (dB)

N=512

N=1024

S=0

S=256

S=512

benchmarker

Figure 3.14: BER of the staggered architecture, when using C = 128 and S ∈
{0, 256, 512}, employing a punctured LTE turbo code, 16QAM, OFDM and a quasi-

static ETU Rayleigh fading channel, where K = 1376, N = 512, 1024.

Chapter 3 Concurrent OFDM Demodulation and Turbo Decoding Architecture 59

3.6.2 Scaled approach

In a second refinement, referred to as the scaled concurrent receive FFT and turbo decode
approach, the BER performance loss can also be mitigated by reducing the weighting of
the ICI-dominated LLRs provided by the soft demappers during the early clock cycles.
This can be achieved by applying a gradually increasing scaling factor approached to the
LLRs in successive clock cycles according to an exponential function y = expx. When
the scaled approach is applied together with the staggered reception, Figure 3.15 shows
that decreasing the weighting of LLRs provided in early cycles improves the overall BER
performance by 0.2 dB at a BER level of 10−5.

10
-5

10
-4

10
-3

10
-2

10
-1

1

B
E

R

0 1 2 3 4 5 6 7 8 9 10

Eb/N0 (dB)

original

scaling function

S=0

S=256

S=512

benchmarker

4QAM

16QAM

Figure 3.15: BER of the proposed architecture with an exponential scaling factor
function, when using S ∈ {0, 256, 512} and employing a punctured LTE turbo code,
Gray-coded QAM, OFDM and a quasi-static ETU Rayleigh fading channel, where

K = 1376, N = 2048 for 4QAM and N = 1024 for 16QAM.

By designing the proposed architecture of Figure 3.7 to implement the staggered and/or
scaled receive, FFT and turbo decode approach using C = 128 and a clock frequency of at
least 176 MHz, sub-microsecond physical layer latencies will be facilitated for applications
such as low-latency capital market trading or robotic cars. In applications such at LTE,
where a transmission latency of 70 µs is imposed, the operation of the cumulative FFT
and the FPTD can be spread over this duration, in order to achieve a significantly
improved hardware resource efficiency or processing energy consumption.

60 Chapter 3 Concurrent OFDM Demodulation and Turbo Decoding Architecture

3.7 Conclusions

Table 3.1: Comparison of different receiving approaches in terms of BER performance
and latency.

BER performance Latency

Serial approach benchmarker Good 210 µs

Concurrent approach without scaling Up to 2.5 dB loss 70 µs

Concurrent approach with scaling Approaching benchmarker 70 µs

In this chapter, we proposed a concurrent OFDM demodulation and turbo decoding
architecture for significantly reducing the associated processing latency. Rather than
completing the reception, FFT and turbo decoding operations one after another, these
three processes are performed concurrently in the proposed approach. In this way, the
latency requirement of URLLC for the next generation communication can be satisfied,
enabling the URLLC applications in different fields such as remote surgery, automated
driving, and virtual reality, as summarised in Table 3.1. In order to allow the trade
off between latency and complexity to be adjusted and to improve the associated BER
performance, we proposed staggered and scaled refinements to the proposed approach.

Chapter 4

CRC-aided Logarithmic Stack

Decoding of Polar Codes

4.1 Introduction

URLLC requirements

latency complexityerror correction
performance

flexibility

Figure 4.1: The contribution of Chapter 4.

While the turbo codes of Chapters 2 and 3 and Low-Density Parity-Check (LDPC) codes
require iterative decoding techniques to achieve near-capacity communication, Arikan’s
polar transform allows the capacity to be achieved using simple encoder and decoder
operations, having O(N logN) complexity, where N denotes the length of a polar code.
The power of polar codes is a benefit of the polarization phenomenon: in contrast to
conventional communication channels that have capacities somewhere between 0 or 1,
Arikan’s polar transform synthesises channels that have capacities converging to either
0 or 1, where coding becomes trivial. With the aid of the Cyclic Redundancy Check
(CRC) codes and advanced decoding algorithms, polar codes can attain superior error-
correction performance than the more complex turbo and LDPC codes, particularly
at short block lengths N . Owing to their attractive error correction performance at

61

62 Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes

short block lengths, polar codes [8, 31] have been selected for protecting the control
channels of the 3rd Generation Partnership Project (3GPP) New Radio (NR) candidate
for Fifth Generation (5G) mobile communications [32]. However, compared to turbo
and LDPC codes, polar codes are far less mature and a de-facto standard approach to
their implementation has not yet emerged. In particular, the application of polar codes
to wireless fading channels at ultra high throughputs and with strong error-correction
remains unsolved, which has prevented the application of polar codes in the 5G data
channels. More specifically, the construction of a polar code involves the identification of
channel reliability values associated with each bit to be encoded. This identification can
be effectively performed given a code length and a specific Signal to Noise Ratio (SNR).
However, within the 5G framework, various code lengths, rates and channel conditions
are foreseen, and having a different reliability vector for each parameter combination is
infeasible. This makes it difficult to implement flexible, high performance polar decoders.

The existing decoding algorithms of the polar codes fall into two categories, which operate
either on the basis of Successive Cancellation (SC) [8, 33], or Belief Propagation (BP)
[34–36,87]. Originally, the low-complexity SC [8,33] decoding algorithm was proposed for
polar codes, and was simplified in [37] to further reduce the complexity and the latency.
However, more sophisticated decoding algorithms [39,42,44,46,47,51,88–97] are required
for achieving near capacity performance in practical wireless channels, as summarised in
Figure 4.2. Rather than considering only the locally most-likely value for each successive
bit, as in SC decoding, the Successive Cancellation List (SCL) decoder [39–41] uses a
breadth-first search for identifying the L number of locally most-likely bit values, allowing
it to more frequently spot the globally most-likely values. By contrast, the Successive
Cancellation Stack (SCS) decoder [42,92] uses a depth-first approach to directly search for
the globally most-likely values, although its ability to achieve this depends on the number
of decoding candidates S that can be stored within the memory available for the stack.
Note that while all L decoding candidates will grow to the same full length during the
processing of the SCL algorithm at high channel Signal to Noise Ratios (SNRs), many
of the S candidates in the SCS algorithm typically only reach much shorter lengths,
hence reducing the complexity of the SCS algorithm below that of the SCL algorithm,
approaching that of the SC algorithm. Typical benchmarkers of the SC-based decoders
are listed in in Table 4.1.

The error correction performance of polar codes can be further improved by concatenating
them with CRC codes [40, 88, 93, 96, 98–104], as in 3GPP NR. During SCL or SCS
decoding, the specific decoding candidates that do not satisfy the CRC can be discarded,
even if this would otherwise appear to offer the globally most likely bit values. As an
additional benefit, the CRC can enable error detection, although this ability is degraded
by using the CRC to aid error correction in the manner described above. Furthermore,
the distributed CRC technique allows early termination of the SCL or SCS decoding,
further reducing the decoding complexity [91,92,105].

Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes 63

2009

2019

E. Arikan proposed the Successive Cancellation (SC) polar decoder
[8]

C. Leroux et al. proposed the Logarithmic Likelihood Ratio
(LLR)-based SC polar decoder for efficient hardware implemen-
tation in the logarithmic domain [33].

2011

I. Tal et al. proposed the Successive Cancellation List (SCL) polar
decoder and appended CRC codes to further improve error correc-
tion performance. [39].
K. Niu et al. proposed the Successive Cancellation Stack (SCS)
decoder, having similar decoding complexity to that of SC in good
channel conditions [42].

2012
B. Li et al. conceived an adaptive CRC-aided (CA) SCL decoder,
for further reducing the decoding complexity [88].

K. Chen et al. combined the SCL as well as SCS decoder and pro-
posed the Successive Cancellation Hybrid (SCH) polar decoder
[44].

2013
C. Xiong et al. proposed the symbol-based SC and SCL decoder to
reduce the decoding latency [89].

2014
A. Balatsoukas-Stimming et al. proposed the LLR-based SCL de-
coder for efficient hardware implementation [46].

2015

G. Sarkis et al. proposed a reduced-complexity SCL polar decoder
which also reduced the decoding latency [47].

2016

Z. Huayi et al. proposed the segmented CA SCL polar decoder for
improving the BLER vs. complexity trade-off [91].

W. Song et al. applied the segmented CA SCL decoder of [91] to
the SCS decoder of [42] and proposed the segmented CA SCS po-
lar decoder [92].
X. Liang et al. proposed BCH-CRC-aided segmented SCL decod-
ing (BC-SCL) polar decoder to further improve the BLER perfor-
mance [93].2017

S. Li et al. introduced the ‘reused-public-path’ SCL polar decoder
for reducing the decoding complexity of the SCL decoder [94].

P. Giard et al. improved the SSC decoder of [37] and proposed the
fast-SSC-flip polar decoder [95].

2018

X. Liu et al. improved the SCL polar decoder by involving a CRC
scheme [96].

C. Leroux et al. proposed the Logarithmic SCS (Log-SCS) polar
decoder for efficient software implementation of the SCS decoder
[51].

P. Chen et al. proposed hash-polar codes and investigated the ap-
plication in 5G systems [97].

Figure 4.2: Timeline of the development of SC-based polar decoders.

64 Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes

T
a
ble

4.1:
Sum

m
ary

of
the

error
correction

capability,
com

putational
com

plexity
and

m
em

ory
requirem

ent
of

various
polar

decoding
algorithm

s.
Specific

m
easurem

ents
are

provided
for

the
exam

ple
of
A

=
8
4,G

=
2
7
2,w

here
the

error
correction

capability
is

m
easured

by
the

E
s /N

0
gap

to
the

finite
block-length

capacity
bound

at
B
LE

R
of

1
0
−
3,

w
hile

the
com

putational
com

plexity
is

m
easured

by
the

num
ber

of
f,
g
and

φ
operations.

In
term

s
of

the
m
em

ory
requirem

ent,
1
byte

is
assum

ed
for

the
storage

of
each

bit
probability

and
LLR

.

N
ovelty

E
rror

correction

capability

C
om

putational

com
plexity

M
em

ory

requirem
ent

SC
[8]

O
riginally

proposed
for

polar
decoding

poor

(gap:
2
.4
6

dB
)

low

(2048
operations)

low

(0.56
K

B
)

SC
L
[39]

(L
=

8)
B
readth-first

search
for

L
candidates

good

(gap:
0
.8
6

dB
)

high

(6
.3
4

tim
es

higher

than
the

SC
)

m
edium

(4
.9
1

tim
es

higher

than
the

SC
)

SC
S
[42]

(S=
1024)

D
epth-first

search
for

S
candidates

good

(gap:
0.85

dB
)

m
edium

(3.17
tim

es
higher

than
the

SC
)

high

(571.88
tim

es
higher

than
the

SC
)

Log-SC
L
[46]

(L
=

128)
E
xtend

the
SC

L
to

the
logarithm

ic
dom

ain
good

(gap:
0.70

dB
)

high

(174995
operations)

m
edium

(40.25
K

B
)

Log-SC
S
[51]

(S=
1024)

E
xtend

the
SC

S
to

the
logarithm

ic
dom

ain
good

(gap:
0.71

dB
)

m
edium

(21.31
tim

es
low

er

than
the

L
og-SC

L
)

high

(6.97
tim

es
higher

than
the

L
og-SC

L
)

Im
p
roved

L
og-S

C
S

(S=
128)

T
w

o
tech

n
iqu

es
to

fu
rth

er
red

u
ce

th
e

m
em

ory
requ

irem
ent

an
d

com
p
lexity

good

(gap:
0.71

dB
)

low

(41.67
tim

es

low
er

than
L
og-SC

L
)

m
edium

(sam
e

as
the

L
og-SC

L
)

Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes 65

However, the conventional SCL [39] and SCS [42] decoders operate on the basis of bit
probabilities, which have a high dynamic range and suffer from poor numerical stability,
even in double precision floating point implementations. In order to address this prob-
lem, the authors of [46] proposed a Logarithmic Successive Cancellation List (Log-SCL)
decoder that operates on the basis of Logarithmic-Likelihood Ratios (LLRs), which en-
ables low-complexity fixed point implementation and reduced storage requirements, ow-
ing to the low dynamic range of LLRs [47–50]. In addition, [51] proposed a Logarithmic
Successive Cancellation Stack (Log-SCS) decoder, which uses LLRs to bring the same
advantages to the SCS decoder.

Motivated by this, we apply the Log-SCS algorithm to the polar code of the Physical
Uplink Control Channel (PUCCH) and Physical Uplink Shared Channel (PUSCH) of the
recently standardised Ultra-Reliable Low Latency Communication (URLLC) version of
3GPP NR [57]. Similar to [51], we provide a tutorial on how the Log-SCS algorithm may
be obtained by transforming the computations of the SCS algorithm into the logarithmic
domain, such that it can operate on the basis of LLRs. Furthermore, we provide a tutorial
on how the Log-SCS algorithm improves on the SCS by considering the frozen bits,
when determining the most likely sequence of information bits, which improves the error
correction performance and reduces the decoding complexity. In addition, during the
exploitation of the CRC codes to improve the error correction performance, we propose
a novel technique for limiting the number of CRC checks performed in stack decoding,
in order to maintain a consistent error detection performance. In this application, we
demonstrate that the application of the Log-SCS decoder to the 3GPP NR polar code of
PUCCH and PUSCH offers as much as 0.5 dB improved error correction performance,
compared to the previous SCS algorithm using the same stack size of S = 8.

Additionally, we propose a pair of novel techniques for further improving the performance
of the Log-SCS polar decoder. We show that across the full range of block lengths sup-
ported by NR PUCCH and PUSCH, the proposed S = 128 Improved Log-SCS decoder
achieves a similar error correction capability as the L = 128 Log-SCL decoder. This is
achieved despite dramatically reducing its complexity by up to seven times compared to
a L = 8 Log-SCL decoder and without increasing its memory requirement. Owing to
this, the proposed Improved Log-SCS decoder offers practical ultra-reliable error correc-
tion within as little as 0.5 dB of the channel capacity bound. Hence, it is particularly
well-suited to the Ultra-Reliable Low Latency Communication (URLLC) mode of 3GPP
NR.

As shown in Figure 4.3, this chapter is structured as follows. Section 4.2 provides a
tutorial on the construction and the Log-SCS decoding of the 3GPP NR polar code for
PUCCH and PUSCH. Following this, the performance versus complexity and memo-
ry requirements of the CRC-aided Log-SCS decoder are compared to those of several
benchmarkers in Section 4.3. Then, our two novel improvements of the CRC-aided Log-
SCS decoder are proposed in Section 4.4, where the error correction performance versus

66 Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes

Chapter 1

Introduction

Chapter 2

Turbo code

Chapter 4

Polar code

Chapter 3

Concurrent OFDM

Chapter 5
Implementation

Chapter 6

Conclusion

Motivation: Exploring the potential of polar code

Tutorial of 5G NR polar code

Performance

BLER

Memory

Refinements of the Log-SCS

Computational complexity

Referenced Log-SCS

Restricted Log-SCS

Performance of the improved Log-SCS

Figure 4.3: The development of Chapter 4.

complexity and memory resource requirement of the Improved Log-SCS decoder are also
compared to those of the SCS and log-SCL decoders. Finally, we offer our conclusions
and suggest avenues for future work in Section 4.5.

4.2 Overview of the 3GPP NR Uplink Polar Codes

This section provides an overview of the 3GPP NR uplink polar codes [57], with a
particular focus on the CRC-aided code used in the PUCCH and PUSCH channels, when
the information block length is in the range of A ∈ [20, 1706] bits1. Figure 4.4 illustrates
the components of the 3GPP NR uplink polar encoder and decoder, each of which is
discussed in the following subsections. More specifically, Sections 4.2.1 to 4.2.6 detail the
code block segmentation and concatenation, CRC generation, appending and CRC check,
frozen bit insertion and removal, polar encoder and decoder core operation, rate matching
and dematching, as well as channel interleaving and deinterleaving, respectively.

1Note that a Parity Check (PC) code is concatenated with the polar code in the case of PUCCH and
PUSCH with information block lengths in the range A ∈ [12, 19] bits [57]. We will apply our proposed
Log-SCS to this case in future work.

C
hapter

4
C

R
C

-aided
Logarithm

ic
Stack

D
ecoding

of
P
olar

C
odes

67

Code
block

segmentation

Information
block

A A′

Generate and
append

CRC bits K

Insert frozen
bits

information
block

Core

N

Polar
encoder
core

encoded
block

Core

N

Rate
matching

Channel
interleaving

E E

Code
block

concatenation

Encoded
block

G

(a) Polar encoder in transmitting user equipment

Code
block

concatenationA

Recovered
information

A′

block
CRC-aided polar decoder core

N

Soft core
encoded
block De-rate

matching
Channel

deinterleaving

Code
block

segmentation
G

Soft encoded
block

E E

(b) Polar decoder in receiving base station

Information
block

Figure 4.4: Schematic of the 3GPP NR uplink polar encoder and decoder.

68 Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes

4.2.1 Code block segmentation and concatenation

If the information block length A and the encoded block length G satisfy A ≥ 1013 OR
(A ≥ 360 AND G ≥ 1088), then the information block input to the polar encoder of
Figure 4.4 is first decomposed into two segments, as shown in Figure 4.5, for halving
the decoding latency. Here, the first segment comprises the first bA/2c bits of the
information block, but prepended with an additional zero-valued padding bit if A is
odd, giving a total of A′ = dA/2e bits. Meanwhile, the second segment is comprised of
the remaining A′ = dA/2e bits from the information block. The two information block
segments are appended with CRC bits, inserted with frozen bits, encoded, rate matched
and interleaved independently as discussed in the following sections. This results in a
pair of encoded block segments, each comprising E = bG/2c bits, which are concatenated
together and input to the modulator. If G adopts an odd value, then an additional zero-
valued padding bit is appended to the block, to give a total of G bits. If A ≥ 1013 OR
(A ≥ 360 AND G ≥ 1088) is not satisfied, then the information block is processed as
a single segment, as shown in Figure 4.5, with A′ = A and E = G. The code block
segmentation strictly limits the core block length to be 1024 bits but facilitates support
for the largest required information block length of A = 1076. In this way, the decoding
complexity that increases with N log(N) is further reduced. Note that the maximum
value of G supported in the NR standard is G = 8192 for the one-segment scenario
and G = 16385 for the two-segment scenario. The corresponding inverse operations are
performed in the polar decoder of Figure 4.4, where the padding bits are discarded.

4.2.2 CRC generation and appending

The polar code used in the NR uplink control channels for information blocks having
lengths A in the range [20, 1706] is protected by an 11-bit CRC code2, having the gen-
erator polynomial D11 + D10 + D9 + D5 + 1. A set of 11 CRC bits are generated as a
function of the A′ information bits in each information block segment and are appended
to give a sequence of K = A′ + 11 bits [57], as shown in Figure 4.4.

Whenever the decoding core that will be detailed in Section 4.2.4 obtains a decoding
candidate comprising a full set of N bits, then a CRC check may be performed in order
to detect errors within the decoding candidate. If the CRC check succeeds, then the
decoding candidate is output and the algorithm is terminated. However, if the CRC
check fails, then a counter j that has an initial value of zero is incremented and the
decoding candidate is eliminated from the candidate sets. In this chapter, we propose a
novel technique of terminating the decoding algorithm if the counter reaches a value of
j = C = 8, upon which a decoding failure is declared as will be detailed in Section 4.2.4.

2Note that a 6-bit CRC having the polynomial D6 +D5 + 1 is used to aid the PC polar code used
for A ∈ [12, 19] in 3GPP NR PUCCH and PUSCH.

Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes 69

Polar core block length (N) for PUCCH and PUSCH

64128 256 512 1024 2048

Encoded block length G

64

128

256

512

1024

2048

In
fo

rm
a

ti
o

n
 b

lo
c
k
 l
e

n
g

th
 A

Zoom in

0 4 8 16 32 64
0
4
8

16

32

64

0

N=256

N=512

N=1024

N=128

N=64

N=32 PC-Polar

 code

Polar code

One code block segment

for A<360 OR

(A<1013 AND G<1088)

Two code block segments

(a)

Figure 4.5: Polar code block segmentation and core block length N for different
combinations of information and encoded block lengths in PUCCH and PUSCH of

3GPP NR.

Note that this is in contrast to the CRC-aided SCS algorithm of [98], which continues
considering successive CRCs indefinitely, until a pass is found, hence resulting in a high
prevalence of undetected block errors.

4.2.3 Frozen bit insertion and removal

Before invoking the polar encoder core, zero-valued frozen bits are inserted into the
sequence of K information and CRC bits, in order to obtain a longer bit vector u com-
prising N bits, as shown in Figure 4.4. Here, N is a power of 2 that is higher than (or in

70 Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes

Rate matching modes for PUCCH and PUSCH

64128 256 512 1024 2048

Encoded block length G

64

128

256

512

1024

2048

In
fo

rm
a

ti
o

n
 b

lo
c
k
 l
e

n
g

th
 A

Zoom in

0 4 8 16 32 64
0
4
8

16

32

64

0

PC-Polar

 code

Polar code

(b)

Repetition

Puncturing

Shortening

Figure 4.6: Rate matching modes for different combinations of information and en-
coded block lengths in PUCCH and PUSCH of 3GPP NR.

principle, equal to) K, which may adopt values up to Nmax = 1024 in the NR PUCCH
and PUSCH, as shown in Figure 4.6. Each of the N bits can be thought of as a polarised
channel. Depending on the operation of the rate matching discussed in Section 4.2.5 and
detailed in [57], the K most reliable channels are used to transmit the set of K infor-
mation and CRC bits, while the frozen bits are mapped to the remaining (N −K) least
reliable channels [57]. In the receiver, the knowledge that the frozen bits have values of
zero is exploited for aiding polar decoding, as will be detailed in Section 4.2.4. Following
polar decoding, the information bits are extracted from among the frozen bits, as shown
in Figure 4.4.

Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes 71

4.2.4 Polar encoding and decoding core

As shown in Figure 4.4, the vector u of N = 2n bits may be polar encoded into a vector
x of N encoded bits, according to the modulo-2 matrix multiplication

x = uF⊗n2 . (4.1)

Here, F⊗n2 is the generator matrix, where the superscript ⊗n represents the nth Kronecker
power of the kernel matrix F2, which is given by

F2 =

[
1 0

1 1

]
.

This operation may be represented graphically by the polar code graph of Figure 4.7,
where the core information block is input on the left-hand edge of the graph and the
successive stages of eXclusive-OR (XOR) operations produce the core encoded block on
its right-hand edge.

Frozen bit

Frozen bit

Frozen bit

Info bit 0

Frozen bit

Info bit 1

Info bit 2

Info bit 3

0

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

Encoded bit 1

Encoded bit 2

Encoded bit 3

Encoded bit 4

Encoded bit 5

Encoded bit 6

Encoded bit 7

Encoded bit 8

Figure 4.7: The XOR operations performed in the polar encoder core, for an example
where K = 4 information bits [0100] are converted into N = 8 core encoded bits

[11001100].

The corresponding decoding process of NR uplink polar codes may be completed by
employing various algorithms including Log-SCL, SCS and Log-SCS. The operation of
the Log-SCL decoding algorithm in the logarithmic domain may be applied to SCS
decoding, by employing several modifications. The CRC-aided Log-SCS decoder is sum-
marised in Algorithm 1 and compared to the SCS and Log-SCL algorithms in Figures 4.8
to 4.10. The Log-SCS decoder of [51] benefits from an improved error correction capa-
bility, despite its reduced complexity and other practical advantages compared to the
CRC-aided SCS decoders of [42, 98]. These benefits are achieved in three ways. Firstly,

72 Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes

the CRC-aided Log-SCS decoder of [51] operates on the basis of LLRs rather than the
bit probabilities of the CRC-aided SCS decoders of [42, 98]. These LLRs have improved
numerical stability and reduced dynamic range compared to bit probabilities, hence fa-
cilitating fixed point implementation and other practical benefits [47–49]. Furthermore,
in contrast to the SCS algorithm, the Log-SCS algorithm considers not only informa-
tion and CRC bits, but also frozen bits, when determining the most likely sequence of
information bits, as shown in Figure 4.8. As we shall demonstrate in Section 4.3, this
decreases the decoding complexity and improves the error correction performance. As an
additional refinement, this section proposes the novel technique of limiting the number
of CRC checks performed during the exploitation of the CRC codes to improve the error
correction performance, in order to maintain a consistent error detection performance,
as detailed below.

bit 4

bit 5

bit 6

bit 7

bit 8

bit 3

bit 1

bit 2

visited node

non-visited node

0
1
top of stack

0

0 3.61

3.410.71

3.80
8.85

3.12

Log-SCS polar decoder example

3.90

21.733.88

depth-first

Figure 4.8: Code tree in S = 2 Log-SCS polar decoder when decoding the example
K = 4 information bits from the N = 8 core encoded bits of Figure 4.7, using the exact

f and φ functions of (4.2a) and (4.5a).

Like the Log-SCL decoder, the Log-SCS decoder operates on the basis of LLRs, where
LLR = ln Pr(bit=0)

Pr(bit=1) . These LLRs are combined in order to compute Path Metrics (PMs)
that quantify the likelihood associated with a particular corresponding candidate se-
quence [ûi]

N
i=1 of the N core information bits. Note that all frozen bits will adopt a value

of 0 in any decoding candidate, but the information and CRC bits can adopt values of
either 0 or 1. In both the Log-SCL and the Log-SCS decoders, the N bits in a decoding
candidate are considered in sequential order, one at a time, with each successive bit

Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes 73

bit 4

bit 5

bit 6

bit 7

bit 8

bit 3

bit 1

bit 2

1

0.65 0.35

0.450.20

0.30 0.15

0.020.28

0.65 0.35

0.25 0.10

SCS polar decoder example

visited node

non-visited node

0
1
top of stack depth-first

Figure 4.9: Code tree in S = 2 SCS polar decoder when decoding the example K = 4
information bits from the N = 8 core encoded bits of Figure 4.7, using the exact f and

φ functions of (4.2a) and (4.5a).

updating the corresponding PM. During this process, the LLRs input at the right-hand
edge of the polar code-graph of Figure 4.7 are combined by the XORs of the graph [106],
as shown in Figure 4.11. More specifically, there are three types of computations that
can be performed by a particular XOR in the graph, depending on the availability of
LLRs provided on the connections at its right-hand side, as well as upon the availability
of bits provided on the connections at its left-hand side [8].

The first occasion when an XOR can contribute to the processing of a decoding candidate
is when an LLR has been provided for both of the connections at its right-hand side,
referred to as x̃a and x̃b, respectively, as illustrated in Figure 4.11(a). This enables the
XOR to compute a new LLR x̃c for the first of the two connections at its left-hand side,

74 Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes

bit 4

bit 5

bit 6

bit 7

bit 8

bit 3

bit 1

bit 2

visited node

non-visited node

0
1

0

0 3.61

3.410.71

3.80 8.85

21.733.88

3.12 3.90

4.15 14.32

4.5 12

Log-SCL polar decoder example

11.214.71

breath-first

Figure 4.10: Code tree in L = 2 Log-SCL polar decoder, when decoding the example
K = 4 information bits from the N = 8 core encoded bits of Figure 4.7, using the exact

f and φ functions of (4.2a) and (4.5a).

(a)

x̃a

x̃b

(b)

x̃a

x̃b

ûa

x̃d = g(x̃a, x̃b, ûa)

x̃c = f (x̃a, x̃b)

(c)

ûd = ûbûb

ûa ûc = XOR(ûa, ûb)

Figure 4.11: The three computations that can be performed for an XOR in the polar
code graph: (a) the f function, (b) the g function and (c) partial sum calculation.

Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes 75

according to the f function [106], which can be expressed as

x̃c = f(x̃a, x̃b)

= 2 tanh−1
(

tanh

(
x̃a
2

)
tanh

(
x̃b
2

))
(4.2a)

= f̃(x̃a, x̃b) + log(1 + exp(− |x̃a + x̃b|))
− log(1 + exp(− |x̃a − x̃b|)) (4.2b)

≈ f̃(x̃a, x̃b), (4.2c)

where we have f̃(x̃a, x̃b) , sign (x̃a) sign (x̃b) min (|x̃a| , |x̃b|), and where (4.2b) is a nu-
merically stable calculation of (4.2a), which may be further simplified to (4.2c).

Later in the decoding process, the hard bit decision ûa will be provided to the first of the
two connections on the left-hand side of the XOR, as shown in Figure 4.11(b). Note that
for the left-most XORs in the polar code graph, the corresponding hard bit decision will
be provided by the corresponding bit of the decoding candidate under consideration. The
hard bit decision ûa may be combined with the LLRs x̃a and x̃b in order to compute a
new LLR x̃d for the second connection on the left-hand side, according to the g function
of [106]

x̃d = g(x̃a, x̃b, ûa)

= (−1)ûa x̃a + x̃b. (4.3)

Later still, a bit ûb will be provided on the second of the connections on the left-hand side
of the XOR, as shown in Figure 4.11(c). Again, this is provided by the corresponding bit
of the decoding candidate, in the case of the left-most XORs. Together with ûa, we can
perform the partial sum computation [106] of the bits ûc and ûd for the first and second
connections on the right-hand side of the XOR, where we have

ûc = XOR(ûa, ûb)

ûd = ûb. (4.4)

By performing the three types of XOR computations in a prescribed SC schedule [46], an
LLR may be obtained for each of the N connections on the left-hand edge of the polar
code graph, one at a time in sequential order from top to bottom. When the ith LLR
in this sequence [x̃i]

N
i=1 is obtained, a PM may be updated for the decoding candidate

76 Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes

according to [46]

φi =φi−1 + ln (1 + exp [− (1− 2ûix̃i)]) (4.5a)

≈
{

φi−1, if ûi = 1
2 [1− sign(x̃i)] ;

φi−1 + |x̃i| , otherwise,
(4.5b)

where φ0 = 0. Here, the PM quantifies the likelihood of the decoding candidate sequence
of bits up to the index i, where having lower PMs implies higher likelihoods. Note that
frozen bits contribute to the PM of both the Log-SCL and the Log-SCS algorithm,
particularly when the corresponding LLR is negative. This is in contrast to the SCS
algorithm of [42], where frozen bits do not impact the metrics used for selecting decoding
candidates.

However, in contrast to the breadth-first approach of the Log-SCL algorithm, the Log-
SCS algorithm adopts a depth-first approach. More specifically, the Log-SCL algorithm
constructs a list of L candidate decoded bit sequences that are built one bit at a time
in parallel, as shown in Figure 4.10. By contrast, the Log-SCS algorithm exemplified
in Figure 4.8 considers only the most likely decoded bit sequence at a time, building
it up one bit at a time, until it comprises N bits, or until its likelihood drops below
that of another decoded bit sequence candidate, whereupon the focus switches to that
candidate. More specifically, the Log-SCS decoder uses a stack to keep track of up to S
decoding candidates at a time, where S is referred to as the stack size.

As shown in Algorithm 1, the Log-SCS begins with only a single decoding candidate
in the stack, which initially has undefined values for all N bits. At each step of the
Log-SCS algorithm, the decoding candidate at the top of the stack is selected and the
value of its next undefined bit is considered. If this is an information or CRC bit, then
the decoding candidate is updated to adopt a specific binary value for this bit and a
replica is created that adopts the other binary value for this bit. The PMs for these two
decoding candidates are updated and the replica is inserted into the stack. The decoding
candidates are sorted in the order of their PM, with the top element in the stack having
the lowest PM and the bottom element having the highest. If the insertion of the replica
into the stack has resulted in exceeding the stack size S, then the bottom element in the
stack is eliminated. By contrast, if the next undefined bit in the top decoding candidate
is a frozen bit, then the bit in the decoding candidate is set to zero and no replica is
made. The PM of the decoding candidate is updated and the stack is sorted in the order
of increasing PM.

In contrast to the SCS algorithm shown in Figure 4.9, Figure 4.8 illustrates the advantage
of updating the PMs with consideration of the frozen bits in the Log-SCS algorithm. In
particular, when the decoding reaches the 7th bit, the top of the stack shifts from the
decoding candidate with PM of 3.80 in Figure 4.8 or with likelihood of 0.30 in Figure 4.9,

Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes 77

Algorithm 1 CRC-aided Log-SCS decoder
Input:

the received vector of N LLRs y;
Output:

the decoded vector of N frozen, information and CRC bits û when decoding is
successful, or a NULL output when decoding is unsuccessful;

Initialization:
Initialise stack S with a single entry `ST

;
Initialise corresponding PM φ[`ST

] = 0;
Initialise corresponding bit index i[`ST

] = 1;
Initialise current stack size s = 1;
Initialise failed CRC counter j = 0;
Initialise the maximum number of CRC checks C = 8;

1: while j < C and s > 0 do
2: i← i[`ST

];
3: if i ≤ N then
4: Use (4.2), (4.3) and (4.4) to compute the corresponding LLR x̃i[`ST

] as a function
of y;

5: if i /∈ A then
6: i is the index of a frozen bit;
7: Set the corresponding bit ûi[`ST

] = 0;
8: Use (4.5) to update the corresponding PM φ[`ST

] as a function of x̃i[`ST
] and

ûi[`ST
];

9: Increment i[`ST
];

10: else
11: i is the index of a information or CRC bit;
12: Create a replica of `ST

, referred to as `SB
;

13: Set the corresponding bits ûi[`ST
] = 0 and ûi[`SB

] = 1;
14: Use (4.5) to update the corresponding PMs φ[`ST

] and φ[`SB
] as functions of

x̃i[`ST
], ûi[`ST

] and ûi[`SB
];

15: Increment i[`ST
] and i[`SB

];
16: Insert `SB

into the stack;
17: Increment the stack size s;
18: if s > S then
19: Remove the entry in the stack having the worst PM;
20: end if
21: end if
22: Set `ST

to point to the entry in the stack having the best PM;
23: else
24: if CRC_Check(û[`ST

]) then
25: return the decoded vector of N frozen, information and CRC bits û[`ST

];
26: else
27: Remove `ST

from the stack;
28: Set `ST

to point to the entry in the stack having the best PM;
29: Increment the failed CRC counter j;
30: end if
31: end if
32: end while
33: return NULL

78 Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes

to the decoding candidate with PM 3.61 of the 4th bit in Figure 4.8 or with likelihood
of 0.35 in Figure 4.9. When processing the subsequent frozen 5th bit, the Log-SCS
algorithm in Figure 4.8 increases the PM to 3.90, but the SCS algorithm in Figure 4.9
simply copies the likelihood 0.35 of the previous bit. In Figure 4.8, the resultant PM
of 3.90 is compared with the previous decoding candidate’s PM of 3.80 and the Log-
SCS returns to continue the decoding of its 8th bit. By contrast, the SCS algorithm
requires the additional consideration of the 6th bit in the second decoding candidate,
before it returns to complete the decoding of the first decoding candidate. In this way,
the Log-SCS algorithm completes the decoding with a lower complexity than the SCS
algorithm.

4.2.5 Rate matching and dematching

As shown in Figure 4.4, rate matching is applied after the polar encoder core, in order to
adjust the length of the encoded block from N to E bits, where E does not have to be
a power of 2. Here, E ≥ K must be satisfied, although E may be higher or lower than
N . Here, rate matching for E ≥ N is achieved using repetition, while E < N is achieved
using puncturing or shortening. To be more specific, repetition repeats some of the N
bits in the bit vector x [57], while shortening and puncturing remove some of the N bits
in x. Note that shortening removes some specific bits that are guaranteed to have values
of 0, while puncturing removes some bits that may have either 0 or 1 values [57]. The
selection between these three different rate matching modes in the NR uplink polar code
depends on the combination of the information block length A and the encoded block
length G [57], as shown in Figure 4.6.

In contrast to the bits used in the polar encoder, a logorithmic polar decoder operates
on the basis of LLRs. In this case, the input to the rate dematching of the polar decoder
shown in Figure 4.4 will be a vector of E LLRs. In the case of repetition, rate dematching
is achieved by summing the LLRs corresponding to the repetition of each of the N bits
in the vector x, in order to obtain a corresponding vector of N LLRs. In the case of
shortening, infinite-valued LLRs are inserted among the E LLRs in the positions of the
shortened bits, in order to obtain the vector of N LLRs. By contrast, zero-valued LLRs
are inserted in the positions of punctured bits, in order to represent the uncertainty over
whether they have values of 0 or 1.

4.2.6 Channel interleaving and deinterleaving

Following the rate matching of Figure 4.4, the order of the E bits in the encoded block
is rearranged by a channel interleaver, according to a prescribed triangular interleaving
pattern of [57]. The corresponding deinterleaving operation is performed upon the E

Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes 79

LLRs before they are subjected to the rate dematching in the polar decoder of Figure
4.4.

4.3 Performance, complexity and memory analysis

In the following subsections, the error correction and error detection performance, the
computational complexity, and the memory requirement of the CRC-aided Log-SCS polar
decoder of [51] for the 3GPP NR are characterised and compared to those of the SCS
and Log-SCL algorithms of [42] and [46], in the context of PUCCH transmission. We
investigate polar decoding employing QPSK modulation over an AWGN channel, since
this is the channel model that was used throughout all of the 3GPP standardisation
process and allows the direct comparison of our work to the large catalogue of results
produced by 3GPP. Additionally, channel capacity bounds of the finite block length are
available for AWGN channel allowing comparison with the theoretical limit. Some of
our simulation results also consider uncorrelated Rayleigh fading channels, relying on
the idealized simplifying assumption of perfect channel estimation, providing results for
transmission over a more practical fading communication channel.

4.3.1 Error correction and error detection performance

Figures 4.12 to 4.14 characterise the BLER performance of the polar decoders considered,
when using Quaternary Phase Shift Keying (QPSK) modulation to convey blocks of
various lengths over Additive White Gaussian Noise (AWGN) or Rayleigh channels.
More specifically, an information block length of A = 84 bits is combined with encoded
block lengths of G = 136, G = 204 and G = 272 bits, which respectively correspond
to rate matching using shortening, puncturing and repetition, as shown in Figure 4.6.
Here, the approximate f and φ computations of (4.2c) and (4.5b) are employed.

Observe in Figures 4.12 to 4.14 that superior BLER performance is achieved when higher
encoded block lengths G are employed in both AWGN and flat Rayleigh fading channels,
which is the result of two conflicting trends. Explicitly the coding-performance improves
upon reducing the coding rate, which outweighs the effect of encountering more blocks
having bit errors when extending the block length. As shown in the figures, the Log-SCS
decoder achieves up to 0.5 dB gain compared to the SCS decoder having the same stack
sizes. However, the Log-SCL polar decoder achieves the best BLER performance when
the list size L of the Log-SCL decoder and the stack size S of the SCS and the Log-SCS
decoders are both equal to 8. But as the stack size S is increased towards S = 2048,
the BLER performance of the Log-SCS decoder becomes better than that of the L = 8

Log-SCL decoder, approaching the capacity bound within 1dB provided by the O(n−2)

meta-converse Polyanskyi-Poor-Verdù (PPV) upper bound of [107], as shown in Figures
4.12 (a), 4.13 (a), and 4.14 (a). In contrast to the vertical Shannon capacity bound that

80 Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes

is associated with the SNR where an infinitesimally low BLER may be achieved under
the assumption of infinite block length, the PPV upper bound of [107] takes account of
the finite block-length, in order to bound the achievable BLER as a function of SNR.
The particular version of the PPV bound used here assumes QPSK modulation over an
AWGN channel. Indeed, like the SCS decoder, the BLER performance of the Log-SCS
decoder converges towards optimal maximum likelihood decoding, as the stack size S is
increased towards infinity. However, an infinite stack size S leads to an infinite memory
requirement, which is impractical for hardware implementations, as it will be detailed
in Section 4.3.3. Note that enhancements to the Log-SCS decoder will be proposed in
Section 4.4, which address this performance discrepancy relative to the Log-SCL decoder.

Since the 3GPP PUCCH polar code employs a CRC having a limited length of P = 11

bits, there is a non-zero probability of the CRC failing to detect the erroneous bits
in some blocks. The prevalence of this problem may be characterised by the False
Alarm Rate (FAR), which can be defined as the fraction of blocks comprising random
Gaussian distributed LLRs that nonetheless pass the CRC [108]. Our simulations have
revealed that the FAR of the Log-SCS polar decoder remains near constant at around
2−(P−3), which is consistent with that characterised in [108] for the Log-SCL decoder.
Note that this FAR of 2−(P−3) is maintained regardless of the stack size S, owing to
our proposed approach of terminating the decoding when 8 failing CRCs have been
encountered. Hence, this mechanism may be considered to use log2(8) = 3 CRC bits
to aid error correction, while using the remaining (P − 3) CRC bits to perform error
detection. Without this mechanism, the stack would continue offering new decoding
candidates until eventually one with a passing CRC is found. However, the further down
the stack this decoding candidate is found, the higher the probability of it containing
erroneous bits. Hence, without the proposed approach for terminating the decoding,
large stack sizes would lead to high FARs.

4.3.2 Computational complexity

In this section, we compare the computational complexity of the Log-SCS polar decoder
to that of the Log-SCL decoder. Compared to the computation of the f , g and φ

functions of (4.2), (4.3) and (4.5a), the partial sum calculation of (4.4) is of much lower
computational complexity, which may be neglected in the complexity analysis of the
algorithms considered. Therefore, Figures 4.15 and 4.16 show the total number of f ,
g and φ computations performed by the Log-SCS decoder, as well as by the Log-SCL
decoder when employing an information block length of A = 84 and different encoded
block lengths of G = 136, 204 or 272. As shown in Figures 4.15 and 4.16, the complexity
of the Log-SCL decoder is independent of the channel SNR Es/N0, but the complexity of
the Log-SCS decoder reduces in the SNR regions, where a low BLER is achieved. In these
regions, the Log-SCS decoder has a complexity that is only one fifth of the L = 8 Log-
SCL decoder’s complexity regardless of stack size S. Note that the Log-SCS algorithm

Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes 81

A=84, G=136, AWGN, QPSK, shortening, approx

Log-SCL, L=8

SCS, S=8

Log-SCS, S=8

Log-SCS, S=128

Log-SCS, S=2048

Improved Log-SCS, S=128

Finite block-length capacity bound

10
0

10
-1

10
-2

10
-3

10
-4

10
-5

B
L

E
R

0 1 2 3 4 5 6 7

Es/N0 (dB)

(a)

A=84, G=136, Rayleigh, QPSK, shortening, approx

Log-SCL, L=8

SCS, S=8

Log-SCS, S=8

Log-SCS, S=128

Log-SCS, S=2048

Improved Log-SCS, S=128

10
0

10
-1

10
-2

10
-3

10
-4

10
-5

B
L

E
R

5 6 7 8 9 10 11 12 13 14 15 16

Es/N0 (dB)

(b)

Figure 4.12: BLER performance of the polar decoders considered for A = 84, G = 136
polar codes with various stack sizes S, for the case where QPSK modulation is used
for communication over (a) an AWGN channel; (b) an uncorrelated Rayleigh fading

channel.

82 Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes

A=84, G=204, AWGN, QPSK, puncturing, approx

Log-SCL, L=8

SCS, S=8

Log-SCS, S=8

Log-SCS, S=128

Log-SCS, S=2048

Improved Log-SCS, S=128

Finite block-length capacity bound

10
0

10
-1

10
-2

10
-3

10
-4

10
-5

B
L

E
R

-3 -2 -1 0 1 2 3 4 5

Es/N0 (dB)
(a)

A=84, G=204, Rayleigh, QPSK, puncturing, approx

Log-SCL, L=8

SCS, S=8

Log-SCS, S=8

Log-SCS, S=128

Log-SCS, S=2048

Improved Log-SCS, S=128

10
0

10
-1

10
-2

10
-3

10
-4

10
-5

B
L

E
R

2 3 4 5 6 7 8 9 10 11

Es/N0 (dB)

(b)

Figure 4.13: BLER performance of the polar decoders considered for A = 84, G = 204
polar codes with various stack sizes S, for the case where QPSK modulation is used
for communication over (a) an AWGN channel; (b) an uncorrelated Rayleigh fading

channel.

Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes 83

A=84, G=272, AWGN, QPSK, repetition, approx

Log-SCL, L=8

SCS, S=8

Log-SCS, S=8

Log-SCS, S=128

Log-SCS, S=2048

Improved Log-SCS, S=128

Finite block-length capacity bound

10
0

10
-1

10
-2

10
-3

10
-4

10
-5

B
L

E
R

-4 -3 -2 -1 0 1 2 3

Es/N0 (dB)

(a)

A=84, G=272, Rayleigh, QPSK, repetition, approx

Log-SCL, L=8

SCS, S=8

Log-SCS, S=8

Log-SCS, S=128

Log-SCS, S=2048

Improved Log-SCS, S=128

10
0

10
-1

10
-2

10
-3

10
-4

10
-5

B
L

E
R

1 2 3 4 5 6 7 8 9

Es/N0 (dB)

(b)

Figure 4.14: BLER performance of the polar decoders considered for A = 84, G = 272
polar codes with various stack sizes S, for the case where QPSK modulation is used
for communication over (a) an AWGN channel; (b) an uncorrelated Rayleigh fading

channel.

84 Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes

has a similar complexity to a decoder that uses the Log-SC algorithm in a first decoding
attempt and, only if that is unsuccessful, activates the Log-SCL algorithm having L = 8

in a second attempt. However, the Log-SCS algorithm has a lower processing latency,
since it makes only a single decoding attempt and offers superior BLER when employing
a sufficiently high stack size S, as shown in Section 4.3.1.

QPSK, AWGN, approx

Log-SCL, L=8(84,136)

Log-SCS, S=2048(84,136)

Improved Log-SCS, S=128(84,136)

Log-SCL, L=8(84,204)

Log-SCS, S=2048(84,204)

Improved Log-SCS, S=128(84,204)

Log-SCL, L=8(84,272)

Log-SCS, S=2048(84,272)

Improved Log-SCS, S=128(84,272)

10
3

2

5

10
4

2

5

10
5

2

5

10
6

O
v
er

al
l

co
m

p
u

ta
ti

o
n

al
co

m
p

le
x

it
y

-3 -2 -1 0 1 2 3 4 5 6 7

Es/N0 (dB)

Figure 4.15: The number of f , g and φ functions performed by the polar decoders
considered for various combinations of information block length A, encoded block length
G and stack size S, for the case where QPSK modulation is used for communication

over an AWGN channel.

4.3.3 Memory requirement

In addition to the computational complexity, the hardware resource requirements of a
practical polar decoder also depend on the maximum amount of memory required by the
decoding algorithm, which comprises two parts. More specifically, memory is required
for storing the partial sum bits processed by the g and XOR calculations of (4.3) and
(4.4), as well as the LLRs processed by the f , g and φ calculations of (4.2), (4.3) and
(4.5a).

For the Log-SCL decoder, memory is required for storing the NmaxL candidate decoded
bits that are generated during the decoding process, where the list size L quantifies the
number of candidates and Nmax = 1024 is the maximum core block size used in 3GPP

Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes 85

T
a
bl

e
4.

2:
M
em

or
y
re
qu

ir
em

en
ts

fo
r
th
e
po

la
r
de
co
de
rs

co
ns
id
er
ed
.

L
og

-S
C

L
L
og

-S
C

S
Im

p
ro

ve
d

L
og

-S
C

S

LL
R

m
em

or
y
X

(b
it
s)

(N
m
a
x

+
L
N

m
a
x
∑ log

2
N

m
a
x

i=
1

2−
i)
b L

L
R

(N
m
a
x

+
S
N

m
a
x
∑ log

2
N

m
a
x

i=
1

2−
i)
b L

L
R

B
it

m
em

or
y
Y

(b
it
s)

2N
m
a
x
L

2N
m
a
x
S

O
ve
ra
ll
m
em

or
y
X

+
Y

(b
it
s)

≈
(N

m
a
x

+
L
N

m
a
x
)b

L
L
R

+
2
N

m
a
x
L

≈
(N

m
a
x

+
S
N

m
a
x
)b

L
L
R

+
2
N

m
a
x
S

N
m
a
x

=
10

24
,b

L
L
R

=
8,
X

+
Y

(L
=

8)
11

K
B

(L
=

12
8)

16
1K

B
(S

=
12

8)
16

1K
B

86 Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes

QPSK, Rayleigh, approx

Log-SCL, L=8(84,136)

Log-SCS, S=2048(84,136)

Improved Log-SCS, S=128(84,136)

Log-SCL, L=8(84,204)

Log-SCS, S=2048(84,204)

Improved Log-SCS, S=128(84,204)

Log-SCL, L=8(84,272)

Log-SCS, S=2048(84,272)

Improved Log-SCS, S=128(84,272)

10
3

2

5

10
4

2

5

10
5

2

5

10
6

O
v
er

al
l

co
m

p
u

ta
ti

o
n

al
co

m
p

le
x

it
y

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Es/N0 (dB)

Figure 4.16: The number of f , g and φ functions performed by the polar decoders
considered for various combinations of information block length A, encoded block length
G and stack size S, for the case where QPSK modulation is used for communication

over a flat uncorrelated Rayleigh fading channel.

NR PUCCH and PUSCH. Furthermore, during the decoding process, the partial sum
bits generated after each XOR operation must also be stored in memories. However,
once we obtain the output bits of the XOR operations, the input bits are no longer
needed. Therefore, memory is only required for NmaxL partial sum bits during the
Log-SCL decoding, comprising Nmax bits for each of the L decoding candidates. So, the
combination of the candidate decoded bits and the partial sum bits requires memory for a
total of 2NmaxL bits is required by Log-SCL decoding, as shown in Table 4.2. By contrast,
in Log-SCS decoding, the S decoding candidates may comprise different numbers of bits,
as the decoding process proceeds. However, in the worst case, all S candidates will all
comprise Nmax bits. Hence, memory is required for 2NmaxS bits, including both the
decoding candidate bits and the partial sum bits, as shown in Table 4.2.

The Log-SCL decoder requires NmaxbLLR bits to store the Nmax LLRs input to the
decoder, where bLLR is the number of bits used for storing each LLR. The first decoding
stage of the Log-SCL decoder requires storage for a further LNmaxbLLR/2 bits, in order
to represent the L LLR candidates output by each of the Nmax/2 f operations performed
by this stage. Later on, this memory can be reused to store the L LLR candidates output

Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes 87

by each of the Nmax/2 g operations performed by this stage. In this way, memory can be
reused between the f and g operations performed by each stage in the polar code graph.
Each successive stage requires half as much memory as the previous, requiring storage
for a total of (Nmax + LNmax

∑log2Nmax

i=1 2−i)bLLR bits for LLRs generated during the
decoding process, as shown in Table 4.2. Similar logic can be applied when considering
the worst case of the Log-SCS decoder, where at most (Nmax+SNmax

∑log2Nmax

i=1 2−i)bLLR

bits of storage is required for the LLRs, as shown in Table 4.2. Note that when Nmax is
sufficiently large, we have

∑log2Nmax

i=1 2−i ≈ 1.

Table 4.2 shows the example of the memory requirement for the considered polar decoders
having bLLR = 8 and Nmax = 1024, as in 3GPP NR PUCCH and PUSCH. Here, we can
see that the S = 128 Log-SCS decoder and the L = 128 Log-SCL decoder require more
than ten times as much memory as the L = 8 Log-SCL decoder.

4.4 Improvements of the CRC-aided Log-SCS polar decoder

While the Log-SCS polar decoder achieves superior BLER versus complexity perfor-
mance compared to the L = 8 Log-SCL decoder, its requirement for a stack size of up
to S = 2048 imposes a significantly higher memory requirement. Motivated by this, we
propose two improvements to the Log-SCS decoder in Section 4.4.1 and 4.4.2, allowing
a smaller stack size S to be used, while still maintaining reliable low-complexity decod-
ing. Following this, the error correction performance versus complexity obtained when
combining these two techniques is characterised and compared to the benchmarkers in
Section 4.4.3.

4.4.1 Referenced Log-SCS polar decoder

Consider the example shown in Figure 4.17(a), where the first, second, third and fifth of
the N = 8 bits are frozen. Here, the Log-SCS polar decoder fails to recover the correct
bit sequence, which is associated with a PM of 3.88. As shown in Figure 4.17(a), this
is because the path to the correct bit sequence is abandoned in the 10th step of the
algorithm, when its PM reaches 3.80, in favor of other paths having PMs of 3.70 and
3.75, but ultimately leading to incorrect bit sequences.

In order to address this situation, the Log-SCS algorithm may be further improved by
preventing the longest path encountered so far from being removed from the stack. An
example of this improvement is shown in Figure 4.17(b), where the Referenced Log-SCS
decoder manages to decode and recover the original bit sequence by always retaining
the longest path in the stack. In the example of Figure 4.17(b), the path having the
metric 3.80 becomes the longest path encountered so far, and so it remains in the stack
at the 10th step of the algorithm instead of being removed. This avoids the elimination

88 Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes

of the correct path and achieves the correct decoding result. In this way, the Referenced
Log-SCS decoder of Figure 4.17(a) can achieve a superior performance compared to the
Log-SCS decoder, particularly in the case of a small stack size S.

0

0 3.61

3.410.71

3.80 8.85

3.12 3.62

3.88

3.70 3.75

4.05 9.85 3.92 11.12

10.123.95

visited node

non-visited node

0
1
top of stack

Step t

1 4 5 6 7 8 9 10 11 12 13

P
M
s
in
si
de

th
e
st
ac
k

0 0 3.12 3.4 3.80 3.61 3.62 3.70

3.75

4.05

3.75 4.053.61 3.61 3.61 3.61 3.80 3.80

3.75 3.92

4.05

3.95

4.05

143· · ·

bit 4

bit 5

bit 6

bit 7

bit 8

bit 3

bit 1

0

0 3.61

3.410.71

3.80 8.85

3.12

bit 2

3.62

3.88

3.70 3.75

4.05 9.85 3.92 11.12

10.123.95

Step t

1 4 5 6 7 8 9 10 11 12 13

P
M
s
in
si
de

th
e
st
ac
k

0 0 3.12 3.4 3.80 3.61 3.62 3.70

3.80

4.05

3.803.61 3.61 3.61 3.61 3.80 3.80

3.80 3.88

5.92

3· · ·

5.92 5.92

(a) Log-SCS (b) Referenced Log-SCS

Figure 4.17: An example of code trees in (a) the original Log-SCS polar decoder and
(b) Referenced Log-SCS polar decoder, where the stack size S is 2. Here, an N = 8-bit
polar code is used, where the first, second, third and fifth of N = 8 bits are frozen.

Here the exact of f and φ calculations of (4.2b) and (4.5a) are employed.

4.4.2 Restricted Log-SCS polar decoder

Another technique for maintaining the error correction performance despite having a
reduced stack size S is to set a limit R for the maximum number of times that each of
the N bits in the code tree may be visited during the process of traversing through the
code tree. When this limitation is reached for any particular bit, the stack is pruned of
all paths that have not yet reached this bit. In this way, more space can be released in the
stack for storing paths that have longer path lengths, hence reducing the total memory
required. Note that a larger R results in an improved error correction performance, but
requires a higher stack size S, hence imposing a performance versus complexity trade-
off. In order to achieve a BLER similar to that of the L = 128 Log-SCL decoder while
maintaining a reduced decoding complexity, we recommend R = 32 associated with
S = 128.

Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes 89

4.4.3 Performance of the Improved CRC-aided Log-SCS polar decoder

The two refinements proposed in Section 4.4.1 and 4.4.2 may be combined for creating
the Improved Log-SCS polar decoder. This section characterises the performance versus
complexity of the Improved Log-SCS polar decoder, as well as of the Log-SCL polar
decoder, across the full range of block lengths supported by the 3GPP NR PUCCH and
PUSCH polar code.

Figure 4.18 shows the SNR Es/N0 required by the polar decoders considered to obtain
a BLER of 10−3, across the full range of block lengths supported by the 3GPP NR
PUCCH and PUSCH polar code, when using QPSK for communication over an AWGN
channel. While Figure 4.18(a) employs the approximate f and φ functions of (4.2c) and
(4.5b), Figure 4.18(b) is obtained using the exact expressions of the f and φ functions
in (4.2b) and (4.5a). Here, the stack size of the Improved Log-SCS decoder is fixed
to S = 128, whereas the list sizes of both L = 8 and 128 are considered for Log-
SCL decoding. Additionally, the corresponding capacity bounds are provided by the
O(n−2) meta-converse Polyanskyi-Poor-Verdù (PPV) upper bound of [107]. Compared
to the approximate computations performed by the decoders of Figure 4.18(a), the exact
decoders of Figure 4.18(b) require a lower Es/N0 for achieving a BLER of 10−3, as
may be expected. Both Figure 4.18(a) and (b) show that the S = 128-based Improved
Log-SCS polar decoder consistently achieves a BLER of 10−3 at a similar Es/N0 as the
L = 128 Log-SCL decoder. This is further illustrated in Figure 4.12 to 4.14, where the
S = 128-based Improved Log-SCS polar decoder can be seen to offer a similar BLER to
the S = 1024 Log-SCS decoder.

Figure 4.19 characterises the Computational Complexity Reduction (CCR) of the pro-
posed S = 128-based Improved Log-SCS polar decoder across the full range of block
lengths supported by the 3GPP NR PUCCH polar code. To be more specific, the CCR
is defined as the ratio of the overall complexity of the L = 8 or L = 128-based Log-SCL
decoder to that of the S = 128-based Improved Log-SCS decoder, at a BLER of 10−3.
Observe from Figure 4.19, that our proposed S = 128-based Improved Log-SCS decoder
imposes a lower complexity than the L = 8-based Log-SCL decoder across nearly all
combinations of block length. The complexity of the proposed S = 128-based Improved
Log-SCS decoder is up to 7 times lower than that of the L = 8 Log-SCL decoder and up
to 100 times lower than that of the L = 128 Log-SCL decoder, while having the same
memory requirement in the latter case.

4.5 Conclusions

In this chapter, we have provided a detailed tutorial on the application of the Log-SCS
algorithm to the 3GPP NR uplink polar code. We have demonstrated that the Log-SCS
algorithm improves upon the BLER of the state-of-the-art Log-SCL polar decoder, while

90 Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes

BLER =10
-3

,QPSK, AWGN, approx

-20

-15

-10

-5

0

5

10
R

eq
u

ir
ed

E
s/

N
0

[d
B

]

16 32 64 128 256 512 1024 2048

A

Log-SCL(L=8)

Log-SCL(L=128)

Improved Log-SCS(S=128)

Finite block-length capacity bound

G=54

G=108

G=216

G=432

G=864

G=1728

G=3456

G=6912

G=13824

BLER =10
-3

,QPSK, AWGN, exact

-20

-15

-10

-5

0

5

10

R
eq

u
ir

ed
E

s/
N

0
[d

B
]

16 32 64 128 256 512 1024 2048

A

Log-SCL(L=8)

Log-SCL(L=128)

Improved Log-SCS(S=128)

Finite block-length capacity bound

G=54

G=108

G=216

G=432

G=864

G=1728

G=3456

G=6912

G=13824

(a)

(b)

Figure 4.18: The SNR required to achieve a BLER of 10−3 for different combinations
of information block length A and encoded block length G of the 3GPP NR PUCCH
polar code, using QPSK modulation for communication over an AWGN channel, when
employing (a) the approximate f and φ functions of (4.2c) and (4.5b); and (b) the exact
f and φ functions of (4.2b) and (4.5a). Here, the list size L for Log-SCL decoding is 8
or 128, whereas the stack size S for Log-SCS and Improved Log-SCS decoder is 128.

Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes 91

T
a
bl

e
4.

3:
C
om

pa
ri
so
n
of

di
ffe

re
nt

po
la
r
de
co
de
rs
.

SC
Lo

g-
SC

L
(L

=
8)

Lo
g-
SC

L
(L

=
12

8)
Lo

g-
SC

S
(S

=
10

24
)

Im
pr
ov
ed

Lo
g-
SC

S
(S

=
12

8)

D
is
ta
nc
e
to

ca
pa

ci
ty

2.
46

dB
0.
86

dB
0.
70

dB
0.
71

dB
0.
71

dB

C
om

pu
ta
ti
on

al
co
m
pl
ex
it
y

20
48

1
.5
∗1

0
4

1
.7
∗1

05
7.

8
∗1

03
4
.1
∗1

0
3

M
em

or
y
re
qu

ir
em

en
t

0.
56

K
B

3.
3
K
B

40
.3

K
B

32
0.
8
K
B

32
0.
8
K
B

92 Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes

BLER=10
-3

, QPSK, AWGN, approx/exact

1

2

5

10

2

5

10
2

C
C

R

16 32 64 128 256 512 1024 2048

A

G=54

G=108

G=216

G=432

G=864

G=1728

G=3456

G=6912

G=13824

CCR with L=8 and S=128

CCR with L=128 and S=128

Figure 4.19: The computational complexity Reduction (CCR) for different combi-
nations of information block length A and encoded block length G of the 3GPP NR
PUCCH and PUSCH polar code to achieve a BLER of 10−3, when employing QPSK
for communication over an AWGN channel. Here, the list size L for Log-SCL decoding

is 8 or 128, whereas the stack size S for the Improved Log-SCS decoder is 128.

reducing the complexity, as shown in Table 4.3. We have analysed the performance versus
complexity and memory requirements in the context of PUCCH and PUSCH transmis-
sions. During the exploitation of the CRC codes to improve the error correction perfor-
mance, we have introduced the novel technique of limiting the number of CRC checks
performed, in order to maintain a consistent error detection performance. Additionally,
we have proposed two techniques for further improving the error correction performance
of the Log-SCS polar decoder. We have compared the Improved Log-SCS decoder to the
Log-SCL and SCS benchmarkers in terms of its BLER versus computational complexity
and memory requirement. We have shown that the proposed S = 128-based Improved
Log-SCS decoder achieves a similar error correction capability to the L = 128-based
Log-SCL decoder, without increasing its memory requirement and while imposing only a
complexity that is up to seven times lower than that of an L = 8-based Log-SCL decoder.

Our future work will focus on the application of the Improved Log-SCS decoder to the
Physical Downlink Control Channel (PDCCH) transmissions in 3GPP NR, where a dis-
tributed CRC is used, as well as to the short block lengths of uplink PUCCH and PUSCH
transmissions, where a PC code is concatenated with the polar code. Furthermore, our

Chapter 4 CRC-aided Logarithmic Stack Decoding of Polar Codes 93

future work will consider the software and hardware implementation of the Improved
Log-SCS polar decoder.

Chapter 5

Fast Log-SCS Polar Decoder and its
Software Implementation

5.1 Introduction

As discussed in Chapter 4, as the selected channel coding scheme for protecting the
control channels of 3rd Generation Partnership Project (3GPP) New Radio (NR) [57,
109], polar codes have been shown to be capacity-achieving error correction codes with
the Successive Cancellation (SC) decoding algorithm in the case of infinite code block
lengths and binary memoryless channels [8]. We have proposed an Improved Log-SCS
in Chapter 4, which improves the Block Error Rate (BLER) performance by 0.5 dB,
compared to the State-of-the-art (SOTA) polar decoder. However, the serial nature
of the SC decoding algorithm imposes data dependencies, resulting in a high decoding
latency and low throughput. Therefore, several techniques have been proposed to solve
this disadvantage relative to other channel codes, such as Low-Density Parity-Check
(LDPC) and turbo codes [37, 50, 110]. For example, the authors of [37] proposed a
Simplified Successive Cancellation (SSC) polar decoder that considers the group decoding
of successive frozen or information bits, referred to as rate-0 and rate-1 nodes. Following
this, the decoding of repetition nodes and Serial to Parallel Converter (SPC) nodes
was proposed in [50], further simplifying the decoding operations and improving the
throughput and latency. This was demonstrated in [111] for the implementation of the
SC decoder in a Software-Defined Radio (SDR) system employing x86 processors with
Single Instruction Multiple Data (SIMD) parallel processing.

However, the error correction performance of the SC polar decoder is limited for finite
block lengths and in wireless channel. Therefore, more complicated decoding algorithms
have been proposed to further improve the Block Error Rate (BLER) performance in
those applications [39]. In contrast to the SC decoding which only selects each suc-
cessive bit value having the highest likelihood, the Successive Cancellation List (SCL)

95

96 Chapter 5 Fast Log-SCS Polar Decoder and its Software Implementation

decoding algorithm of [39, 40] considers a list of L possible bit values at a time enhanc-
ing the decoding reliability. In the Cyclic Redundancy Check (CRC)-aided (CA) SCL
decoder, any decoding candidates that do not satisfy the CRC are discarded, even if
they would otherwise appear to offer the globally most-likely bit values. The practical
implementation of the SCL typically represents the likelihoods of candidate bit values
into Logarithmic Likelihood Ratios (LLRs), allowing efficient and numerically stable im-
plementation of the SCL decoder [46]. Further improvements that reduce the decoding
latency and increase the throughput of the SCL decoder are proposed in [47,58,112,113]
and are referred to as the fast simplified SCL (SSCL) decoder. The real time software
implementation of the SCL decoder are demonstrated in [47,59]. In addition, appending
the CRC codes, the BLER performance may be enhanced as well to improve the decoding
reliability.

URLLC requirements

latency complexityerror correction
performance

flexibility

Figure 5.1: The contribution of Chapter 5.

In the meantime, the Successive Cancellation Stack (SCS) decoding of [42] uses a depth-
first search, rather than the breath-first search of the SCL decoder. The SCS algorithm
uses a stack of up to S decoding candidates in order to perform a directed search for the
bit values having the globally highest likelihoods. The SCS algorithm achieves a lower
decoding complexity than the SCL, which approaches to that of SC when used in channels
having high Signal-to-Noise Ratios (SNRs). However, to the best our knowledge, there
exists no literature considering the the real time software implementation of the Log-SCS
decoder. Therefore, designing a fast Log-SCS decoder to improve the decoding latency,
reduce the complexity, as well as maintaining the error correction performance, becomes
the target of this chapter, as highlighted in Figure 5.1

• The proposed CA Fast Log-SCS decoder exploits the unique property of Log-SCS
decoding and modifies several techniques that is previously considered only by the
Fast-SSCL decoder [47,58,112,113] to apply to the proposed Fast Log-SCS decoder.
More specifically, the simplified path-metric computation of the rate-0, rate-1 and
repetition nodes for Fast-SSCL decoder is applied to the corresponding sub-graphs
of the proposed Fast Log-SCS decoder, which reduces the decoding complexity by
50% on average, compared to the Log-SCS polar decoder.

• We also propose a real-time software implementation that is capable of attaining
a decoding latency that is only 21% of that of the state-of-the-art Fast SCL polar

Chapter 5 Fast Log-SCS Polar Decoder and its Software Implementation 97

decoder implementation, by employing the recursive template metaprogramming
[114].

• Each LLR that is input to the proposed decoder is quantised using a 32-bit fixed
point number representation, enabling the fixed-point implementation. In addition,
the proposed software implementation exploits the 512-bit AVX SIMD operations
of the Intel x86 processor architecture to achieve software parallel processing of
the SCS decoding for the first time. More specifically, in contrast to [59] which
exploits parallelism between the L decoding candidates of the SCL polar decoder,
the proposed Fast Log-SCS decoder can only consider parallelism within the pro-
cessing of only one decoding candidate, since the SCS algorithm considers decoding
candidates in series. In this way, a parallelism degree of 16 may be achieved, and
a 21% latency may be attained, compared to that presented in [47].

Chapter 1

Introduction

Chapter 2

Turbo code

Chapter 4

Polar code

Chapter 3

Concurrent OFDM

Chapter 5
Implementation

Chapter 6

Conclusion

Motivation: URLLC latency target

Review Log-SCS

Fast Log-SCS

Performance analysis (BLER and complexity)

Software implementation

Figure 5.2: The development of Chapter 5.

The structure of this chapter is summarised in Figure 5.2. To be more specific, Section
5.2 reviews polar encoding and the Log-SCS decoding process. Following this, a fast
Log-SCS polar decoder is proposed in Section 5.3 and is implemented and characterised
for x86 processors with SIMD instructions in Section 5.4. Finally, the main conclusions
of our work and direction for future research are summarised in Section 5.5.

98 Chapter 5 Fast Log-SCS Polar Decoder and its Software Implementation

5.2 Review of Logarithmic successive cancellation stack de-
coding

The encoding and decoding process for polar codes has been detailed in Chapter 4.2, in
the context of the 3GPP NR uplink. Therefore, we only use an example to review the
polar encoding Log-SCS decoding.

Figure 5.3 exemplifies this encoding operation, where the core information block u =

[00000010] is input on the lefthand edge of the graph and the successive stages of XOR
operations produce the core encoded block x on its righthand edge. The encoded bits
x = [10101010] are output from the encoder for subsequent operations, which typically
includes rate matching, as in the 3GPP NR uplink polar code [115]. After rate matching,
a polar-coded block comprising G bits is transmitted over the wireless channel, with the
code rate R being defined as R = A/G.

Frozen bit

Frozen bit

Frozen bit

Frozen bit

Frozen bit

Info bit 1

Info bit 2

Info bit 3

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

Encoded bit 1

Encoded bit 2

Encoded bit 3

Encoded bit 4

Encoded bit 5

Encoded bit 6

Encoded bit 7

Encoded bit 8

Figure 5.3: The XOR operations performed in the polar encoder, for an example
where the K = 3 information or CRC bits [010] are mixed with N − K = 5 frozen
bits to give the N = 8 input bits u = [00000010] are then polar encoded into N = 8

encoded bits x = [10101010].

The corresponding Log-SCS decoding is exemplified in Figure 5.4, following the principles
detailed in 4.2.4.

The error correction and detection performance of a polar code may be enhanced by
appending the information bits with a CRC code, before polar encoding them. For
example, a P = 11-bit CRC code with the generator polynomial X11+X10+X9+X5+1

is appended to each block of A information bits, before polar encoding in the NR PUCCH
for cases where A ∈ [20, 1706]. In a CA Log-SCS decoder, a CRC check may be performed
whenever a decoding candidate having defined values for all N bits is obtained, in order
to detect any erroneous bits in the candidate block. If the decoding candidate passes the
CRC check, then the decoding process is terminated immediately and successful decoding
is reported. On the other hand, if the CRC check fails, a counter is incremented and
the decoding candidate is eliminated from the stack. If the counter reaches a predefined
limit, then the decoding process is abandoned and a decoding failure is declared. In this

Chapter 5 Fast Log-SCS Polar Decoder and its Software Implementation 99

visited node

non-visited node

top of stack

depth-first

0.95

0.95

5.95

bit 4

bit 5

bit 6

bit 7

bit 8

bit 3

bit 1

bit 2

0

0

0

0

0

0 1

0.03

0.95

0.95

1.47

13.08

0 1

0 1

Step t

5 6 7

P
M
s
in
si
de

th
e
st
ac
k

0.95 0.95 0.95 0.95

5.95 1.47 1.47

1

0.03 0.03

2 4· · · 8

Figure 5.4: Code trees in Log-SCS, when decoding the example K = 3 information
or CRC bits from the N = 8 core encoded bits of Figure 5.3, using the exact f and φ

functions of (4.2a) and (4.5a).

paper, we set the maximum number of CRC check attempts to be C = 8, in order to
maintain a consistent false alarm rate. More specifically, this approach effectively uses
log2(8) = 3 of the P = 11 CRC bits to improve the error correction of the polar decoder,
while the remaining P = 3 CRC bits are used for error detection. Note that this is the
balance that was assumed when the length of the CRC was selected during the 3GPP
standardisation process [57].

5.3 Fast Log-SCS decoder

This section proposes a Fast Log-SCS polar decoder and a software implementation that
offers an improved decoding latency compared to the state-of-the-art Fast SSCL polar
decoder. The proposed Fast Log-SCS decoder employs the fixed-point implementation
detailed in Section 5.3.1, as well as special computation for rate-0, rate-1 and repetition
sub-graphs, as detailed in Sections 5.3.2 to 5.3.4 respectively. Note that we refer to
the rate-0, rate-1 and repetition nodes of [37] as sub-graphs in this paper, in order to
avoid confusion with the nodes of the tree exemplified in Figure 5.6, which has a different
structure to the tree used in [37]. Following the descriptions of our Fast Log-SCS decoder,
we characterize its BLER performance and computational complexity in Section 5.3.5
and 5.3.6 respectively.

100 Chapter 5 Fast Log-SCS Polar Decoder and its Software Implementation

Polar
encoder

QPSK

modulation

QPSK

demodulation
softScalingQuantiser

G

Recovered
information

A′

block

xxx

rrrgrrrPolar
decoder

G

Information
block

A

Figure 5.5: Schematic of polar encoding and fixed-point decoding.

5.3.1 Fixed-point implementation

As shown in Figure 5.5, the proposed software implementation of the Fast Log-SCS
decoder operates on the basis of fixed point arithmetic, where scaling and quantisation
are employed to preserve the error correction performance. Here, scaling is applied to
the channel LLRs rrr provided after the demodulation of the received signals, in order
to match their range to that of the quantisation applied afterwards, which maps the
continuous LLR amplitudes into discrete ranges. To elaborate further, while higher LLR
magnitudes conventionally result in superior BLER performance, fixed-point overflow
may occur if the LLR magnitudes are too high. Hence, scaling can be applied to reduce
the overflow, but at the cost of increasing underflow, which reduces the resolution of the
critical LLRs having low magnitudes. Therefore, an optimal scaling factor g balances
the trade-off between fixed-point overflow and underflow, in order to optimise the BLER
performance. In the performance simulations of Section 5.3.5, the value of the scaling
factor g will be selected as a function of the channel SNRs according to the technique
of [116].

Furthermore, the conversion from floating-point to the fixed-point arithmetic requires the
selection of values for three parameters, namely the number of bits used to represent the
channel LLRs, internal LLRs, and PMs. The channel LLRs are output by the quantizer
shown in Figure 5.5, while the internal LLRs are generated during the Log-SCS decoding
process, as the output of the f and g functions. In the proposed fixed-point software
implementation, the channel LLRs are quantised using 24 bits whereas the internal LLRs
and PMs are quantised using 32 bits. Here, a lower channel LLR width is employed to
reduce the occurrence of overflow during the additions performed by the f functions and
the PM computations. Further mitigation of overflow is achieved by considering that the
SCS algorithm does not depend on the absolute values of the PMs, but rather it depends
on the difference between PMs, when determining which path is most likely. Instead of
storing the absolute value of each PM, the occurrence of overflow is reduced by storing
only the difference between the PM and the minimum comparable PM.

Chapter 5 Fast Log-SCS Polar Decoder and its Software Implementation 101

The simulations of Section 5.3.5 will show that the fixed-point operation described here
has similar error correction performance to that of a floating-point implementation.

5.3.2 Rate-0 sub-graph computation

bit 5 → 6

bit 1 → 4

bit 7 → 8

0.03

5.950.95

1.47 13.08 0.95 14.12

Rate-0 sub-graph

Repetition sub-graph

Rate-1 sub-graph

0000

00 01

00
01 10 11

visited node

non-visited node

top of stack

depth-first

Step t

3

P
M
s
in
si
de

th
e
st
ac
k

0.95

1

0.03 0.95

2

5.95 5.95

Figure 5.6: Code trees in Log-SCS, when decoding the example A = 3 information
bits from the N = 8 core encoded bits of Figure 5.3, using the exact f and φ functions

of (4.2a) and (4.5a).

Frozen bit

Frozen bit

Frozen bit

Frozen bit

Frozen bit

Info bit 0

Info bit 1

Info bit 2

(1) + 0.95
Encoded LLR 1

Encoded LLR 2

Encoded LLR 3

Encoded LLR 4

Encoded LLR 5

Encoded LLR 6

Encoded LLR 7

Encoded LLR 8

(1) + 3.80

(1)− 0.82

(1) + 3.77

(1)− 0.03

(1) + 2.12

(1)− 0.62

(1) + 2.96

0

0

0

0

0

0

0

0

0

0

0

0

(2)− 0.03

(2) + 2.12

(2) + 0.62

(2) + 2.96

(6) 0

(6) 0

(3) + 0.92

(3) + 5.92

(3)− 1.44

(3)6.73

(4)− 0.92

(4) + 5.92

(5) 0

(6)− 0.52

(6) + 12.65

Rate-0 subgraph

Repetition

Rate-1

(8) 1

(8) 0

(5) 0

(7) 1

(7) 0

Figure 5.7: The XOR operations performed in the polar encoder core, for an exam-
ple where A = 3 information bits [010] are converted into N = 8 encoded bits with

corresponding LLRs.

102 Chapter 5 Fast Log-SCS Polar Decoder and its Software Implementation

x̃i−n+1

x̃i−n+2

x̃i−n+3

x̃i

sub-graph

ûi−n+1

ûi−n+2

ûi−n+3

ûi

Figure 5.8: The decoding process of the rate-0, rate-1, or repetition sub-graph.

A rate-0 sub-graph in the XOR graph is one which contains only frozen bits, as exem-
plified in Figures 5.6 and 5.7. Since the decoder has a priori knowledge that all frozen
bits have the value 0, and hence all encoded bits produced by the subgraph also have a
value of 0, the decoding of a rate-0 sub-graph may be carried out immediately, without
propagating LLRs into the sub-graph. Using the notation of Figure 5.8, the decoded
bits [ûj]

i
j=i−n+1 of a rate-0 sub-graph in any valid decoding candidate are zeros and the

corresponding PM φi[s1] may be updated as [113]

φi[s1] =φi−n +
i∑

j=i−n+1

|min{0, x̃j}| . (5.1)

Note that this calculation can be completed without any computation of any f or g
functions within the subgraph.

5.3.3 Rate-1 sub-graph computation

In contrast to the rate-0 sub-graph, a rate-1 sub-graph contains only information bits,
as exemplified in Figures 5.6 and 5.7. For a sub-graph comprising n information bits,
2n decoding candidates can be produced considering each possible combination of the
n bits. However, this leads to the exponential expansion of the candidate set, and it is
impractical to consider all candidates when n is not trivially small. Therefore, instead of
considering all the 2n decoding candidates, we adopt the most likely hard decision values
for the (n−2) most reliable bits and consider the four possible decoding candidates that
are obtained by varying the values of the the two least-reliable bits [37]. For example,
when the decoder encounters a subgraph, comprising n = 4 consecutive information bits,
ûi−3, ûi−2, ûi−1, ûi, hard decisions are made for the two bits corresponding to the two
LLRs from the set {x̃i−3, x̃i−2, x̃i−1, x̃i} having the highest magnitudes, according to the
signs of these two LLRs. Following this, the LLRs x̃min 1 and x̃min 2 of the two least-
reliable bits in the subgraph, where x̃min 1 ≤ x̃min 2, are used to compute PMs for the
four possible decoding candidates, and then generate four PMs, φi[s1], φi[s2], φi[s3] and

Chapter 5 Fast Log-SCS Polar Decoder and its Software Implementation 103

φi[s4], according to the following rules,

φi[s1] =φi−4, (5.2a)

φi[s2] =φi−4 + |x̃min 1| , (5.2b)

φi[s3] =φi−4 + |x̃min 2| , (5.2c)

φi[s4] =φi−4 + |x̃min 1|+ |x̃min 2| . (5.2d)

In this case, only three additional decoding candidates are generated and stored in the
stack, rather than the 15 that would be required if all possible candidates were computed.

5.3.4 Repetition sub-graph computation

When only the last bit ui in a group of n = 2v, v ≥ 1 bits is an information bit, with
the rest being frozen bits, then the sub-graph is referred to as repetition sub-graph,
as exemplified in Figures 5.6 and 5.7 The corresponding n encoded bits have only two
possible hard decisions, either n zeros or n ones, depending on whether the decoding
candidate uses ûi = 0 or ûi = 1 respectively. In order to consider both options, we
store both possible decoding candidates in the stack and update the PM according to
the following rules [113],

φi[s1] =φi−n +
i∑

j=i−n+1

|min{0, x̃j}| , (5.3a)

φi[s2] =φi−n +
i∑

j=i−n+1

|max{0, x̃j}| , (5.3b)

where the updated φi[s1] stores the PM when ûi = 0 and φi[s2] stores the PM when
ûi = 1. In this way, these PM calculations are performed without the computation of f
or g functions, as that in the rate-0 or rate-1 sub-graph.

5.3.5 Error correction performance

When a scaling factor g optimised for the particular channel SNR Es/N0 and 32-bit
fixed-point quantization is applied to the channel LLRs, BLER performance of the Log-
SCS decoder remains the same as that of the floating-point Log-SCS decoder [116]. This
may be observed for the case of G = 1024 polar codes of various coding rates R ranging
from 1/8 to 1/2, as shown in Figure 5.9.

Furthermore, Figure 5.10 demonstrates the SNR required for the S = 128 32-bit fixed-
point Log-SCS decoder of [115] and the proposed S = 128 fast fixed-point Log-SCS
decoder to achieve a BLER of 10−3 for different combinations of information block length
A and encoded block length G of the 3GPP NR PUCCH polar code. We can see that
when further combining the techniques discussed in Sections 5.3.1 to 5.3.4 together, the

104 Chapter 5 Fast Log-SCS Polar Decoder and its Software Implementation

G=1024, QPSK, AWGN

R=1/2

R=1/3

R=1/4

R=1/5

R=1/6

R=1/7

R=1/8

Floating point

32-bit fixed point

10
0

10
-1

10
-2

10
-3

10
-4

10
-5

B
L

E
R

-8 -6 -4 -2 0 2 4

Es/N0 (dB)

Figure 5.9: BLER performance of the fixed-point and floating-point implementations
of the Log-SCS polar decoder for G = 1024 polar codes of different coding rates R over

AWGN channel, where QPSK modulation is employed.

BLER performance remains similar to that of the 32-bit fixed-point Log-SCS decoder as
shown in Figure 5.10, while the decoding latency reduces significantly as will be discussed
in Section 5.4.2.

5.3.6 Computational complexity

The overall decoding complexity of the proposed fast Log-SCS decoder may be quantified
by the number of f , g and φ functions performed in the decoder at the channel SNR
where a BLER of 10−3 is achieved. Figure 5.11 compares the overall complexity of the
S = 128 32-bit fixed-point Log-SCS decoder and the proposed S = 128 fast 32-bit fixed-
point Log-SCS decoder for G = 1024-bit polar codes with various information block
lengths A, where QPSK modulation is used for communication over an AWGN channel.
Here, it may be observed that exploiting the simplified rate-0, rate-1 and repetition sub-
graph computation of the proposed fast Log-SCS polar decoder yields a 50% reduction
in the complexity.

Chapter 5 Fast Log-SCS Polar Decoder and its Software Implementation 105

PUCCH, S=128, QPSK, AWGN, 32-bit fixed point

-20

-15

-10

-5

0

5

10

R
eq

u
ir

ed
E

s/
N

0
(d

B
)

16 32 64 128 256 512 1024 2048

A

G=54

G=108

G=216

G=432

G=864

G=1728

G=3456

G=6912

G=13824

Log-SCS

Fast Log-SCS

Figure 5.10: The SNR required for the S = 128 32-bit fixed-point Log-SCS decoder
of [115] and the proposed S = 128 fast fixed-point Log-SCS decoder to achieve a BLER
of 10−3 for different combinations of information block length A and encoded block
length G of the 3GPP NR PUCCH polar code, where QPSK modulation is used for

communication over an AWGN channel.

5.4 SIMD implementation of the proposed Fast Log-SCS
decoder

In this section, we introduce an implementation of the proposed fixed-point Fast Log-
SCS decoder using SIMD instructions on an x86 CPU that supports AVX-512. The
implementation is detailed in Section 5.4.1 and characterised in Section 5.4.2.

5.4.1 f and g functions computation

A number of techniques are adopted in order to optimise the throughput and latency of
the proposed implementation of the Fast Log-SCS decoder. First, we employ recursive
template metaprogramming [114], as shown in Algorithms 1 and 2, with the special
case of the code length Nsc = 1 shown in Algorithm 3. This technique enables a
recursive programming style that is easy to maintain, while also enabling the computer
to optimize and pre-process as much of the processing as possible at compile time. To
be more specific, in the process of metaprogramming, polar decoders having each power-
of-2 block length N up to the maximum used in 3GPP NR of 1024 are instantiated
recursively during the compilation process. The recursive structure of the polar codes

106 Chapter 5 Fast Log-SCS Polar Decoder and its Software Implementation

S=128, QPSK, AWGN, 32-bit fixed point, G=1024

10
3

2

5

10
4

2

5

10
5

2

O
v
er

al
l

co
m

p
u
ta

ti
o
n

co
m

p
le

x
it

y

16 32 64 128 256 512 1024

Information block length A

Log-SCS

Fast Log-SCS

Figure 5.11: Overall computational complexity of the S = 128 32-bit fixed-point
Log-SCS decoder and the proposed S = 128 fast 32-bit fixed-point Log-SCS decoder
for G = 1024-bit polar codes with various information block lengths A, where QPSK

modulation is used for communication over an AWGN channel.

Algorithm 2 Main function
Iteration: stack_index=0; bit_index;
Input: main()
1: PolarDecoder<1024> polar_decoder; {Initialize an S = 128 stack decoder with
N = 1024}

2: polar_decoder[128]=0; {Initialize the length of decoding candidates in the stack
decoder}
{3-6: Complete the decoding when the length of the top element in the stack reaches
N}

3: while decod_bit[stack_index]<N do
4: bit_index=0;
5: polar_decoder.decode(llrs+stack_index*N, bits+stack_index*N, PM, de-

cod_bit);
6: end while

Output:

allows the recursive computations of the f and g functions to be unrolled at compile
time, producing highly optimised compiled code.

The AVX-512 implementation of f and g functions are detailed in the C++ code of Al-
gorithms 4 and 5, respectively. Here, m512i registers have 512 bits and the LLRs are
quantised using 32 bits as discussed in Section 5.3.1, resulting in a maximum parallelism
degree of P1 = 16. Note that in this paper, the parallelism of the SIMD instructions is
achieved by performing parallel computations for up to 16 bits within the same block,

Chapter 5 Fast Log-SCS Polar Decoder and its Software Implementation 107

Algorithm 3 Template meta-programming for the fast Log-SCS polar decoder
Iteration:
1: template <int Nsc>; {Class for a polar decoder having a length of Nsc}
2: class PolarDecoder{

{A polar decoder of length Nsc recursively contains a polar decoder of length
Nsc/2}

3: PolarDecoder<Nsc/2> next;
4: Public:
5: void decode(int *llrs, int *bits, int *decod_bit,int *PM) {
6: if is_rate0_subgraph(decod_bit, Nsc) then
7: decode_rate0(llrs, bits, decod_bit, PM);
8: else if is_rate1_subgraph(decod_bit, Nsc) then
9: decode_rate1(llrs, bits, decod_bit, PM);

10: else if is_rep_subgraph(decod_bit,Nsc) then
11: decode_rep(llrs, bits, decod_bit, PM);
12: else
13: if decod_bit[stack_index]==bit_index then
14: this → f_function(llrs);
15: end if

{Use the Nsc/2-length polar decoder to decode the top half}
16: next.decode(llrs, bits, decod_bit,PM);
17: if decod_bit[stack_index]==bit_index then
18: this → g_function(llrs+Nsc/2, bits+Nsc/2);
19: end if

{Use the Nsc/2-length polar decoder to decode the bottom half}
20: next.decode(llrs+Nsc/2, bits+Nsc/2, decod_bit, PM);
21: end if
22: }
23: }

Algorithm 4 Template meta-programming special case when Nsc=1
Iteration:
1: class PolarDecoder<1>{
2: void decode(int *llrs, int *bits, int *decod_bit,int *PM) {
3: if decod_bit[stack_index]==bit_index then
4: PM_calculate(PM,llrs,bits); {Calculate the PM of the top element in the

stack}
5: decod_bit[stack_index]++; {Extend the length of top candidate by 1}
6: expand_stack(llrs,bits,decod_bit,PM); {Expand the current stack size}
7: stack_index=sort_stack(PM); {Allow stack_index to point to the top ele-

ment in the stack}
8: end if
9: bit_index++;{Indicate calculations required for decoding the next bit}

10: }
11: }

108 Chapter 5 Fast Log-SCS Polar Decoder and its Software Implementation

Algorithm 5 f function calculation using AVX-512 instructions
Iteration: static const Is32vec16 const_0 = _mm512_set1_epi32(0);

{constant-zero AVX512 vector}
Input: f_function(int *llrs)
1: int i=0;

{Use different mask if the parallelism is less 16}
2: if Nsc>=16 then
3: while i<Nsc/2 do
4: Is32vec16 x_m = _mm512_load_epi32(llrs+i); {load llrs of x_m to the

AVX512 vector}
5: Is32vec16 x_n = _mm512_load_epi32(llrs+i + Nsc/2); {load llrs of x_n

to AVX512 vector}
6: Is32vec16 min_a_b = simd_min(_mm512_abs_epi32(x_m),

_mm512_abs_epi32(x_n));
7: Is32vec16 sign_x_m1 = _mm512_mask_set(const_0,

_mm512_cmpgt_epi32_mask(x_m, const_0), 1);
8: Is32vec16 sign_x_m2 = _mm512_mask_set(const_0,

_mm512_cmpgt_epi32_mask(x_m, const_0), -1);
9: Is32vec16 sign_x_m = sign_x_m1 | sign_x_m2;

10: Is32vec16 sign_x_n1 = _mm512_mask_set(const_0,
_mm512_cmpgt_epi32_mask(x_n, const_0), 1);

11: Is32vec16 sign_x_n2 = _mm512_mask_set(const_0,
_mm512_cmpgt_epi32_mask(x_n, const_0), -1);

12: Is32vec16 sign_x_n = sign_x_n1 | sign_x_n2;
13: Is32vec16 result = sign_x_m*sign_x_n* min_a_b;
14: _mm512_storeu_epi32(llrs+i, result); {store the AVX-512 vector to the cor-

responding llrs memory address}
15: i+=16;
16: end while
17: end if
Output:

Algorithm 6 g function calculation using AVX-512 instructions
Iteration: static const Is32vec16 const_1 = _mm512_set1_epi32(1);

static const Is32vec16 const_2 = _mm512_set1_epi32(2) ;
Input: g_function(int *llrs, int *bits)
1: int i=0;

{Use different mask if the parallelism is less 16}
2: if Nsc>=16 then
3: while i<Nsc/2 do
4: Is32vec16 x_m = _mm512_load_epi32(llrs+i-Nsc/2);
5: Is32vec16 x_n = _mm512_load_epi32(llrs+i);
6: Is32vec16 u_m = _mm512_load_epi32(bits+i-Nsc/2);
7: Is32vec16 temp = const_1-u_m*const_2;
8: Is32vec16 result = temp*x_m+x_n;
9: _mm512_storeu_epi32(llrs+i, result);

10: i+=16;
11: end while
12: end if
Output:

Chapter 5 Fast Log-SCS Polar Decoder and its Software Implementation 109

rather than performing parallel computations for bits from 16 separate blocks, as dis-
cussed for the SCL decoder of [59]. In this way, our approach provides a benefit even
when 16 blocks having the same information and encoded block lengths are not available
for decoding at the same time. Besides, the approach to parallelism of [59] cannot be
applied to SCS decoding, since it is unlikely that the decoding of the 16 blocks would
stay synchronised, throughout the dynamic SCS decoding process.

5.4.2 Latency, Throughput and Memory requirement

We have compiled our AVX-512-enabled C++ code using the Intel C++ Compiler with
the -Ofast optimisation, and characterised it on an Intel(R) Xeon(R) Gold 6138 CPU
operating at f1 = 2.00 GHz. The average over 100 runs of the latency D time required to
perform the S = 128 Fast Log-SCS decoding of each block is characterised as a function
of the number of information bits A and resultant encoded bits G in each block.

Figure 5.12 characterises the latency D of the Fast Log-SCS polar decoder and AVX-512
Fast Log-SCS polar decoder for encoded block lengths of G = 512, 1024 and 2048 with
various information block lengths A for the case where the channel SNR is such that a
BLER of 10−3 is achieved. Note that in contrast to the Fast SSCL decoder, whose latency
is independent of channel SNR, the latency of the Fast Log-SCS polar decoder decoder
decreases as the SNR increases. Note that the encoded block lengths of G = 512 and
1024 are obtained using the 3GPP NR PUCCH polar codes having core block lengths
of N = 512 and 1024, respectively. By contrast, density evolution with the gaussian
approximation (DE-GA) algorithm is employed to parameterize an N = 2048−bit polar
code, which is used to generate the encoded block length of G = 2048, since the 3GPP
NR PUCCH polar codes only supports a maximum core block length of N = 1024 bits.
Figure 5.12 also includes benchmark results for

Furthermore, Table 5.1 compares the latency, throughput and memory requirement of
different polar decoders when achieving a BLER of 10−3 for block lengths of A = 1723

and G = 2048. More specifically, the proposed CA Fast Log-SCS decoder is compared
with the AVX2 Fast SCL decoders of [112], [47] and [113], which were characterised
using clock frequencies of f2 = 3.90 and f3 = f4 = 3.40 GHz, respectively. These
implementations use LLR widths of 8 or 32 bits and since AVX2 has register widths
of 256 bits, a parallelism of P2 = 32 and P3 = P4 = 8 is achieved. Note that rather
than using the 32-bit floating point LLRs of the other implementations, the Fast SSCL
implementation of [113] uses 8-bit fixed point LLRs, same as our proposed CA Fast Log-
SCS decoder. For the sake of enabling fair comparison, we define the normalised latency

110 Chapter 5 Fast Log-SCS Polar Decoder and its Software Implementation

S=128, QPSK, AWGN, fixed point, f1=2.00 GHz

1

2

5

10

2

5

10
2

2

5

10
3

2

5

L
at

en
cy

(
s)

32 64 128 256 512 1024 2048

Information block length A

G=512, Fast-Log-SCS, AVX-512

G=512, Fast-Log-SCS, x86

G=1024, Fast-Log-SCS, AVX-512

G=1024, Fast-Log-SCS, x86

G=2048, Fast-Log-SCS, AVX-512

G=2048, Fast-Log-SCS, x86

G=2048, CA SCL of [112]

G=2048, CA Fast SSCL of [47]

G=2048, Fast SSCL of [113]

Figure 5.12: Latency D of the proposed S = 128 AVX-512 fixed-point Fast Log-SCS
decoder operating at f1 = 2.00 GHz for G = 512, 1024 and 2048 bits with various
information block lengths A, as well as the normalised latency D̄ of the works in [47,
112, 113] for G = 2048 and A = 1723 bits, where QPSK modulation is employed for

communication over an AWGN channel in all cases.

D̄ as

D̄ =
Pi × fi ×D
P1 × f1

, i = 2, 3, 4, (5.4)

where P1 = 16 and f1 = 2.00 GHz are the parallelism and the clock frequency of the
proposed CA Fast Log-SCS decoder and where Pi and fi are the parallelism and the
clock frequency of the decoder under consideration. As shown in Table 5.1 and plotted
in Figure 5.12, our proposed AVX-512 Fast Log-SCS decoder has a normalised decoding
latency D̄ that is 21% that of the best performing benchmarker, namely, the CA Fast
SSCL decoder of [47]. The throughput T of a software polar decoder is proportional to
the reciprocal of its latency, according to T = A/D, whereas the normalised throughput
T̄ can be defined as T̄ = A/D̄. Table 5.1 shows that the normalised throughput of our
proposed AVX-512 CA Fast Log-SCS decoder is more than 6 times higher than that of
the Fast SSCL decoder of [47]. The performance of the proposed Fast Log-SCS decoder
performance on a 32-bit x86 CPU is also characterised in Table 5.1, which demonstrates
that AVX-512 offers a 4.66 times improvement to throughput, in the case of CA Fast
Log-SCS polar decoding. Table 5.1 also quantifies the maximum amount of memory
required for storing the partial sum bits and the LLRs generated by the f , g and φ

functions in the various implementations considered. These comparisons reveal that the

Chapter 5 Fast Log-SCS Polar Decoder and its Software Implementation 111

T
a
bl

e
5.

1:
La

te
nc
y,

th
ro
ug

hp
ut

an
d
m
em

or
y
re
qu

ir
em

en
t
co
m
pa

ri
so
ns

of
di
ffe

re
nt

po
la
r
de
co
de
rs

w
he
n
ac
hi
ev
in
g
a
B
LE

R
of

1
0
−
3
fo
r
bl
oc
k
le
ng

th
s

of
A

=
1
7
2
3
G

=
2
0
4
8.

P
la
tf
or
m

In
te
l(
R
)
X
eo
n(
R
)
G
ol
d
61

38
I5
-6
60

0K
I7
-2
60

0
I7
-2
60

0
f i

(G
H
z)

f 1
=

2.
00

f 2
=

3.
90

f 3
=

3.
40

f 4
=

3.
40

A
lg
or
it
hm

C
A

Fa
st

Lo
g-
SC

S
Fa

st
SS

C
L
[1
13

]
C
A

Fa
st

SS
C
L
[4
7]

C
A

SC
L
[1
12

]
LL

R
bi
t-
w
id
th

32
8

32
32

A
V
X

re
gi
st
er

bi
t-
w
id
th

32
51

2
25

6
Li
st

si
ze
L

or
st
ac
k
si
ze
S

S
=
12

8
L

=
32

D
(µ
s)

27
4

79
57

7
43

3
33

00
D̄

(µ
s)

-
79

22
52

36
8

28
05

T
(M

bp
s)

6.
29

21
.8
1

2.
99

3.
98

0.
52

T̄
(M

bp
s)

-
21

.8
1

0.
77

4.
68

0.
61

M
em

or
y
(K

B
)

10
96

82
28

0
28

0

112 Chapter 5 Fast Log-SCS Polar Decoder and its Software Implementation

proposed AVX implementation of the CA Fast Log-SCS decoder requires 13 times higher
memory than the Fast SSCL decoder of [113], and 3 times higher memory than the CA
Fast SSCL decoder of [47]. Hence, the improved latency and throughput of our Fast Log-
SCS polar decoder is achieved at the cost of a higher memory requirement. However, it
may be argued that the 1096 KB memory required is insignificant in the context of a
high performance CPU.

5.5 Conclusions

In this chapter, we have proposed a novel Fast Log-SCS decoder for the 3GPP NR uplink
polar code which reduces the complexity by 50%, compared to the state-of-the-art CA
Fast polar SSCL decoder. We have also proposed an AVX-512 software implementation,
which increases the normalised throughput by 6 times and reduces the normalised latency
to 21% of the existing state-of-the-art AVX Fast SSCL polar decoder.

Chapter 6

Conclusions and Future Research

As shown in Figure 6.1, this thesis has designed low-latency and low-complexity decod-
ing as well as demodulation schemes that satisfy the requirements of the Ultra-Reliable
Low Latency Communication (URLLC) Fifth Generation (5G) mode. In particular,
the advanced Arbitrarily Parallel Turbo Decoder (APTD) for turbo codes and the Im-
proved Logarithmic Successive Cancellation Stack (Log-SCS) decoder for polar codes
have been proposed in Chapter 2 and 4, respectively. These novel decoding algorithms
exploit the unique code patterns of turbo or polar codes, and demonstrate their po-
tential in the future applications of URLLC. In addition, Chapter 3 further proposes a
concurrent Orthogonal Frequency-Division Multiplexing (OFDM) detection and turbo
decoding scheme that further reduces the physical layer latency. Furthermore, practical
high performance software implementation is considered in Chapter 5, which detailed
the implementation of a fast polar decoder on x86 processors with Advanced Vector
Extensions-512 (AVX-512) Single Instruction Multiple Data (SIMD) instructions. The
summary of each chapter is as follows.

Chapter 1

Introduction

Chapter 2

Turbo code

Chapter 4

Polar code

Chapter 3

Concurrent OFDM

Chapter 5
Implementation

Chapter 6

Conclusion

Turbo code for LTE URLLC Polar code for 5G NR URLLC

Figure 6.1: Thesis structure.

113

114 Chapter 6 Conclusions and Future Research

Chapter 2 started with a detailed overview of turbo encoding and decoding processes,
which provides the background knowledge for the discussions throughout Chapters 2
and 3. By integrating the properties of the Long Term Evolution (LTE) State-of-the-
art (SOTA) turbo decoder and the Fully-Parallel Turbo Decoder (FPTD), a novel APTD
is introduced, which achieves low processing latencies while maintaining high reliabili-
ty. The APTD algorithm allows the parallel operation of an arbitrary number P of
processors, which is not limited to an integer factor of N , nor to N itself. The APTD
employs several novel techniques in terms of the interleaver design, systematic informa-
tion transmission, as well as the extrinsic information calculation, which further reduces
the decoding complexity. Its particular benefits to short block length turbo codes further
enhance its potential application in URLLC scenario. A comprehensive comparison of
different turbo decoders is also summarised in Chapter 2.

While Chapter 2 was focused on the channel decoding process only, Chapter 3 extended
the scope to optimize the entire receiver, proposing a concurrent receiver, demodulation,
and decoding scheme, as shown in Figure 3.2. This approach reduces the decoding latency
by threefold, and in the meantime, achieves the same error correction performance as if
the turbo decoding process had only began after the reception of the OFDM symbol had
been completed.

In addition to the turbo codes, polar codes are also investigated in the following two
chapters. Chapter 4 first provides a detailed tutorial of the polar encoding and decoding
process for the 5G uplink control channel. Following this, the improvements of the Log-
SCS decoder have been proposed, which significantly reduces the decoding complexity
by 7 times while achieving a similar error correction capability as the Log-SCL decoder.

Chapter 5 further considers the software implementation of the Improved Log-SCS polar
decoder that has been proposed in Chapter 4. The proposed fast Log-SCS polar decoding
algorithm and the corresponding software implementation are capable of attaining a
decoding latency that is 80% lower than the SOTA Successive Cancellation List (SCL)
polar decoder software implementation without loss of error correction performance.
This is achieved by applying for simplified path-metric computations for the rate-0,
rate-1 and repetition nodes in the proposed fast Log-SCS decoder, which reduces the
decoding complexity by 50% on average. Furthermore, a 32-bit fixed point software
implementation for x86 processors of the fast Log-SCS polar decoder is achieved as well,
which maintains the same Block Error Rate (BLER) as that of the floating-point Log-
SCS polar decoder. In addition, this software implementation is accelerated using SIMD
instructions with AVX-512 for the first time, achieving a parallelism of 16 and satisfying
the low-latency requirements of Software-Defined Radio (SDR) systems.

Chapter 6 Conclusions and Future Research 115

Design Targets

Step 1

Algorithm Design

Step 2

Architecture Design

Step 3

System Simulation

Step 4

BLER, Latency, Throughput

Algorithm & system

Step 5

Optimisation Implementation

Step 6

Step 4

Step 5
Complexity, Latency, Throughput

Step 6

Figure 6.2: Design guidelines embraced by the thesis.

6.1 Design Guidelines

Figure 6.2 shows our guidelines for a typical algorithmic design with the aim of meeting
particular requirements. More specifically, the first step is to identify and define the
requirements and targets. In the case of the URLLC scenario considered in this treatise,
our design targets included 1ms end-to-end latency, 10−5 BLER, low-complexity and
high implementation flexibility. In particular, the LTE URLLC mode targets a 7.4 µs
latency for turbo decoding, as discussed in Chapter 2. Furthermore, various block lengths
and code rates in the 5G NR framework requires flexible implementation of channel
decoders. These requirements guide the following design and gives the overall system
characteristics.

Given the explicit requirements, an algorithm meeting the requirements is designed in
Step 2. For example, in order to achieve the 7.4 µs latency requirement of the LTE
URLLC mode, Chapter 2 proposes an APTD, which activates several processors in par-
allel compared to the SOTA turbo decoder and it is capable of supporting all the 188
legitimate block lengths.

Following a specific algorithm, a complete transmission and receive system needs to be
built to examine whether the designed algorithm will be capable of satisfying the require-
ments identified in Step 1. For instance, a polar-coded QPSK-modulated transmitter is
built in Chapter 4 to transmit polar coded blocks over AWGN channel, generating BLER
results by Monte-Carlo simulation.

Then in Step 4, the system simulations quantifies the characteristics such as BLER,
latency, complexity, etc., which allows the comparison with SOTA solutions, as demon-
strated in Chapters 2 to 4. For example, from the BLER results of Chapter 2, we can
conclude that the improved Log-SCS polar decoder achieves a superior error-correction
capability than the SOTA Log-SCL decoder.

In general, not all the targets and requirements will be fulfilled in the first attempt.
Therefore, Step 5 optimises the algorithm and system design in order to fill the gap
between the current simulation results and the design target.

116 Chapter 6 Conclusions and Future Research

When the design targets are fulfilled after the optimisation, Step 6 implemented the
proposed algorithm and system in software-defined radio or other practical implementa-
tion. We also need to characterise the throughput, latency, etc. For instance, Chapter
5 achieves a 32-bit fixed point software implementation for x86 processors of the fast
Log-SCS polar decoder, which is capable of attaining a decoding latency that is 80%

lower than the SOTA SCL polar decoder software implementation without loss of error
correction performance and reduces the decoding complexity by 50% on average.

6.2 Future Work

Potential research interest inspired by our work of this thesis will be introduced in this
section. First, the contention caused when interleaving multiple LLRs to the same
Processing Element (PE) at the same time the second version of the APTD that we
proposed in Chapter 2 will be addressed [22]. This contention problem arises when acti-
vating the number of PEs P that is not an integer factor of the block length N . We will
address this by designing schedules that delay the interleaving of some extrinsic LLRs
relative to the forward recursions in which they are generated. Our results seen in Figure
2.17 demonstrate that delaying the interleaving of extrinsic LLRs in this way has only a
negligible impact upon the BLER performance. Furthermore, our future work will con-
sider the practical hardware implementation of the proposed APTD algorithm in order
to determine the throughput, latency, energy efficiency and hardware efficiency that can
be achieved in practice [10,13].

Second, the concurrent receiving architecture that we have proposed in Chapter 3 will
have promising applications in different channel coding schemes and multicarrier com-
munication systems [26–28]. For example, a concurrent receiving approach integrated
with parallel LDPC decoding algorithm may achieve lower physical-layer latency in the
5G NR data channel. In addition, the complexity and latency trade-off may be further
investigated for superior solutions. In addition to LDPC codes, we also aim to propose
a novel design of polar codes for OFDM, whose salient feature is its diversity to tackle
deep fading.

More generally, the relatively less-mature polar codes demands improvement in different
aspects, especially in the reduction of latency and improvement of throughput. The im-
proved Log-SCS decoder that we proposed in Chapter 4 have been software implemented
in Chapter 5. As a complement to these, future work can consider hardware implemen-
tations in Field-Programmable Gate Array (FPGA) or Application Specific Integrated
Circuit (ASIC), giving a low-complexity, low-latency implementation of the improved
Log-SCS polar decoder for the potential application in 5G URLLC [9]. In addition, the
BLER performance of the long block polar codes may be improved as well, in order to
achieve the 10−5 reliability requirement of 5G URLLC.

Chapter 6 Conclusions and Future Research 117

In addition to the decoding schemes, the code construction for fading channels will
be researched as well. For convenience of implementation, the 5G standard adopts a
suboptimal solution for the code construction, which specifies a fixed polar code for
different rates that is based on the β-expansion [57]. Therefore, the optimisation of the
β-expansion technique for fading channels will be studied in the future.

Appendix A

A.1

After the culmulative FFT at the cth clock cycle, we have

Yz,c = F {hhh ∗ (xxxIIID) +nnn}z

= Hz

N∑
k=0

(
1

N

N−1∑
n=0

XnW
nk
N)dkW

−kz
N +Nz, (A.1)

where IIID is first D columns of a diagonal matrix IIIN with a size of N ×N and

dk =

{
1, if NC c > k

0, else
. (A.2)

119

120 Appendix A

Therefore, we have

Yz,c = Hz
1

N

N−1∑
k=0

N−1∑
n=0

XnW
nk
N dkW

−kz
N +Nz

= Hz
1

N

N−1∑
k=0

N−1∑
n=0

XnW
(n−z)k
N dk +Nz

= Hz
1

N

N−1∑
n=0

Xn

N−1∑
k=0

[
W

(n−z)k
N dk

]
+Nz

= Hz
1

N
Xz

N−1∑
k=0

[
W 0
Ndk

]
+Hz

1

N

N−1∑
n=0,n 6=z

Xn

N−1∑
k=0

[
W

(n−z)k
N dn

]
+Nz

= Hz
D

N
Xz︸ ︷︷ ︸

what we expect

+Hz
1

N

N−1∑
n=0,n 6=z

Xn

D−1∑
k=0

[
W

(n−z)k
N

]
︸ ︷︷ ︸

ICI

+ Nz︸︷︷︸
noise

=
D

N

HzXz +
Hz

D

N−1∑
n=0,n6=z

D−1∑
k=0

XnW
(n−z)k
N +

N

D
Nz

=
D

N

HzXz +
Hz

D

N−1∑
n=0,n6=z

N−1∑
k=0

XnW
(n−z)k
N︸ ︷︷ ︸

=0

− Hz

D

N−1∑
n=0,n 6=z

N−1∑
k=D

XnW
(n−z)k
N +

N

D
Nz

=
D

N

HzXz −
Hz

D

N−1∑
n=0,n6=z

N−1∑
k=D

XnW
(n−z)k
N +

N

D
Nz

 (A.3)

PNoise
Psignal

=
D ∗ Ts
N ∗ Ts

N−1∑
z=0

r2noise =
D

N

N2

D2

N−1∑
z=0

N2
z =

N

D
N0 (A.4)

Appendix A 121

PICI
Psignal

=
D ∗ Ts
N ∗ Ts

N−1∑
z=0

r2ici

=
D

N

N−1∑
z=0

∥∥∥∥∥∥Hz

D

N−1∑
n=0,n 6=z

N−1∑
k=D

XnW
(n−z)k
N

∥∥∥∥∥∥
2

=
D

N

N−1∑
z=0

‖Hz‖2
D2

N(N −D)

=
N −D
D

N−1∑
k=0

‖Hk‖2. (A.5)

Now, we obtain the relationship between the signal power and the power of ICI together
with noise, as

PICI+Noise
Psignal

=
N

D
N0 +

N −D
D

N−1∑
k=0

‖Hk‖2. (A.6)

Therefore, given the unit signal power, the variance of the ICI and noise can be expressed
as

σr =
N
DN0 + N−D

D

∑N−1
k=0 ‖Hk‖2

2

=
N + (N −D)γ

∑N−1
k=0 ‖Hk‖2

2Dγ
. (A.7)

Glossary

3GPP 3rd Generation Partnership Project
4G Fourth Generation
5G Fifth Generation
ADC Analogue to Digital Converter
AP a posteriori
APTD Arbitrarily Parallel Turbo Decoder
ARP Almost Regular Permutation
ASIC Application Specific Integrated Circuit
AVX-512 Advanced Vector Extensions-512
AWGN Additive White Gaussian Noise
B-DMCs Binary-input Discrete Memoryless Channels
BER Bit Error Ratio
BLER Block Error Rate
BP Belief Propagation
CA CRC Aided
CCR Computational Complexity Reduction
CDMA Code Division Multiple Access
CIR Channel Impulse Response
CP Cyclic Prefix
CRC Cyclic Redundancy Check
DAC Digital to Analogue Converter
DFT Discrete Fourier Transform
eMBB enhanced Mobile Broadband
eNB evolved Node B
ETU Extended Typical Urban model
FAR False Alarm Rate
FD Frequency Domain
FFT Fast Fourier Transform
FPGA Field-Programmable Gate Array
FPTD Fully-Parallel Turbo Decoder

123

GCD Greatest Common Divisor
ICI Inter-Carrier Interference
IDFT Inverse Discrete Fourier Transform
IFFT Inverse Fast Fourier Transform
LDPC Low-Density Parity-Check
LLR Log-likelihood ratio
Log-BCJR Logarithmic Bahl-Cocke-Jelinek-Raviv
Log-SCL Logarithmic Successive Cancellation List
Log-SCS Logarithmic Successive Cancellation Stack
LR Likelihood ratio
LTE Long Term Evolution
MAP Maximum a posteriori
MI Mutual Information
MIMO Multiple-Input and Multiple-Output
mMTC massive Machine-Type Communications
MQAM M -ary Quadrature Amplitude Modulation
NR New Radio
OFDM Orthogonal Frequency-Division Multiplexing
PC Parity Check
PDCCH Physical Downlink Control Channel
PE Processing Element
PM Path Metric
PPV Polyanskyi-Poor-Verdù
PSC Parallel to Serial Converter
PUCCH Physical Uplink Control Channel
PUSCH Physical Uplink Shared Channel
QAM Quadrature Amplitude Modulation
QPP Quadratic Permutation Polynomial
QPSK Quaternary Phase Shift Keying
RF Radio Frequency
SC Successive Cancellation
SCL Successive Cancellation List
SCS Successive Cancellation Stack
SDR Software-Defined Radio
SIMD Single Instruction Multiple Data
SNR Signal to Noise Ratio
SOTA State-of-the-art
SPC Serial to Parallel Converter
SSC Simplified Successive Cancellation
SSCL Simplified Successive Cancellation List
sTTI shortened Transmission Time Interval

TD Time Domain
TSMC Taiwan Semiconductor Manufacturing Company
UE User Equipment
URLLC Ultra-Reliable Low Latency Communication
XOR eXclusive-OR

Bibliography

[1] C. E. Shannon, “A mathematical theory of communication,” Bell system technical
journal, vol. 27, no. 3, pp. 379–423, 1948.

[2] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:
Turbo-codes,” IEEE Transactions on Communications, vol. 44, no. 10, pp. 1261–
1271, 1996.

[3] C. Berrou and A. Glavieux, “Turbo codes,” Encyclopedia of Telecommunications,
2003.

[4] L. Hanzo, T. Liew, B. Yeap, R. Tee, and S. X. Ng, Turbo coding, turbo equali-
sation and space-time coding: EXIT-chart-aided near-capacity designs for wireless
channels. John Wiley & Sons, 2011.

[5] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE transactions on Information Theory, vol. 13, no. 2,
pp. 260–269, 1967.

[6] E-UTRA, “Multiplexing and channel coding,” 3rd Generation Partnership Project
Std. 3GPP TS, vol. 36, p. V8, 2008.

[7] R. Gallager, “Low-density parity-check codes,” IRE Transactions on information
theory, vol. 8, no. 1, pp. 21–28, 1962.

[8] E. Arikan, “Channel polarization: A method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels,” IEEE Transactions on
Information Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[9] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva, F. Tufves-
son, A. Benjebbour, and G. Wunder, “5G: A tutorial overview of standards, trials,
challenges, deployment, and practice,” IEEE journal on selected areas in commu-
nications, vol. 35, no. 6, pp. 1201–1221, 2017.

127

[10] T. Fehrenbach, R. Datta, B. Göktepe, T. Wirth, and C. Helge, “URLLC services in
5G-low latency enhancements for LTE,” Accepted for publication at IEEE Vehicular
Technology Conference (VTC), Fall 2018.

[11] B. Tahir, S. Schwarz, and M. Rupp, “BER comparison between convolutional,
turbo, LDPC, and polar codes,” in Telecommunications (ICT), 2017 24th Interna-
tional Conference on, pp. 1–7, IEEE, 2017.

[12] T. Richardson and S. Kudekar, “Design of low-density parity check codes for 5G
new radio,” IEEE Communications Magazine, vol. 56, no. 3, pp. 28–34, 2018.

[13] 3GPP RP-171489, “Work item on ultra reliable low latency communication for
LTE,” June 2017.

[14] X. Zhang, “Latency reduction with short processing time and short TTI length,”
in Intelligent Signal Processing and Communication Systems (ISPACS), 2017 In-
ternational Symposium on, pp. 545–549, IEEE, 2017.

[15] H. Ji, S. Park, J. Yeo, Y. Kim, J. Lee, and B. Shim, “Introduction to ultra reliable
and low latency communications in 5G,” Computing Research Repository (CoRR)
abs/1704.05565, 2017.

[16] J. C. S. Arenas, T. Dudda, and L. Falconetti, “Ultra-low latency in next generation
lte radio access,” in SCC 2017; 11th International ITG Conference on Systems,
Communications and Coding; Proceedings of, pp. 1–6, VDE, 2017.

[17] 3GPP RP-161299, “Work item on shortened TTI and processing time for LTE,”
June 2016.

[18] N. A. Johansson, Y.-P. E. Wang, E. Eriksson, and M. Hessler, “Radio access for
ultra-reliable and low-latency 5G communications,” in Communication Workshop
(ICCW), IEEE International Conference on, pp. 1184–1189, IEEE, 2015.

[19] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-
optimal MAP decoding algorithms operating in the log domain,” in IEEE Interna-
tional Conference on Communications, ICC’95 Seattle,’Gateway to Globalization’,,
vol. 2, pp. 1009–1013, IEEE, 1995.

[20] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, A 24Mb/s radix-4
logMAP turbo decoder for 3GPP-HSDPA mobile wireless. PhD thesis, IEEE, 2003.

[21] Y. Zhang and K. K. Parhi, “High-throughput radix-4 logMAP turbo decoder ar-
chitecture,” in 2006 Fortieth Asilomar Conference on Signals, Systems and Com-
puters, 2006.

[22] S. Yoon and Y. Bar-Ness, “A parallel MAP algorithm for low latency turbo decod-
ing,” IEEE Communications Letters, vol. 6, no. 7, pp. 288–290, 2002.

[23] T. Ilnseher, F. Kienle, C. Weis, and N. Wehn, “A 2.15 GBit/s turbo code decoder
for LTE Advanced base station applications,” in 7th International Symposium on
Turbo Codes and Iterative Information Processing (ISTC), pp. 21–25, IEEE, 2012.

[24] R. G. Maunder, “A fully-parallel turbo decoding algorithm,” IEEE Transactions
on Communications, vol. 63, no. 8, pp. 2762–2775, 2015.

[25] A. S. Barbulescu and S. S. Pietrobon, “Interleaver design for turbo codes,” Elec-
tronics Letters, vol. 30, no. 25, pp. 2107–2108, 1994.

[26] L. Hanzo, S. X. Ng, W. Webb, and T. Keller, Quadrature amplitude modulation:
From basics to adaptive trellis-coded, turbo-equalised and space-time coded OFDM,
CDMA and MC-CDMA systems. IEEE Press-John Wiley, 2004.

[27] L. Hanzo, M. Münster, B. Choi, and T. Keller, OFDM and MC-CDMA for broad-
band multi-user communications, WLANs and broadcasting. John Wiley & Sons,
2005.

[28] J. A. Bingham, “Multicarrier modulation for data transmission: An idea whose
time has come,” IEEE Communications magazine, vol. 28, no. 5, pp. 5–14, 1990.

[29] L. Xu, J. Yang, D. Huang, and A. Cantoni, “Exploiting cyclic prefix for Turbo-
OFDM receiver design,” IEEE Access, vol. 5, pp. 15762–15775, 2017.

[30] I. Shubhi and Y. Sanada, “Joint turbo decoding for overloaded MIMO-OFDM
systems,” IEEE Transactions on Vehicular Technology, vol. 66, no. 1, pp. 433–442,
2017.

[31] K. Niu, K. Chen, J. Lin, and Q. Zhang, “Polar codes: Primary concepts and
practical decoding algorithms,” IEEE Communications magazine, vol. 52, no. 7,
pp. 192–203, 2014.

[32] Huawei, HiSilicon, “R1-1608862: Polar code construction for NR,” 3GPP TSG
RAN WG1 Meeting #86bis, no. 10, 2016.

[33] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware architectures for successive
cancellation decoding of polar codes,” in Acoustics, Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on, pp. 1665–1668, IEEE, 2011.

[34] E. Arikan, “A performance comparison of polar codes and Reed-Muller codes,”
IEEE Communications Letters, vol. 12, no. 6, 2008.

[35] B. Yuan and K. K. Parhi, “Early stopping criteria for energy-efficient low-latency
belief-propagation polar code decoders,” IEEE Transactions on Signal Processing,
vol. 62, no. 24, pp. 6496–6506, 2014.

[36] Y. Zhang, A. Liu, X. Pan, Z. Ye, and C. Gong, “A modified belief propagation polar
decoder,” IEEE Communications Letters, vol. 18, no. 7, pp. 1091–1094, 2014.

[37] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-cancellation
decoder for polar codes,” IEEE communications letters, vol. 15, no. 12, pp. 1378–
1380, 2011.

[38] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel successive-
cancellation decoder for polar codes,” IEEE Transactions on Signal Processing,
vol. 61, no. 2, pp. 289–299, 2013.

[39] I. Tal and A. Vardy, “List decoding of polar codes,” in Information Theory Pro-
ceedings (ISIT), 2011 IEEE International Symposium on, pp. 1–5, IEEE, 2011.

[40] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions on Infor-
mation Theory, vol. 61, no. 5, pp. 2213–2226, 2015.

[41] K. Chen, K. Niu, and J. Lin, “List successive cancellation decoding of polar codes,”
Electronics letters, vol. 48, no. 9, pp. 500–501, 2012.

[42] K. Niu and K. Chen, “Stack decoding of polar codes,” Electronics letters, vol. 48,
no. 12, pp. 695–697, 2012.

[43] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE Transactions on
Communications, vol. 60, no. 11, pp. 3221–3227, 2012.

[44] K. Chen, K. Niu, and J. Lin, “Improved successive cancellation decoding of polar
codes,” IEEE Transactions on Communications, vol. 61, no. 8, pp. 3100–3107,
2013.

[45] V. Miloslavskaya and P. Trifonov, “Sequential decoding of polar codes,” IEEE Com-
munications Letters, vol. 18, no. 7, pp. 1127–1130, 2014.

[46] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-based successive can-
cellation list decoding of polar codes,” IEEE Transactions on Signal Processing,
vol. 63, no. 19, pp. 5165–5179, 2015.

[47] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast list decoders for
polar codes,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 2,
pp. 318–328, 2016.

[48] Y. Fan, J. Chen, C. Xia, C.-y. Tsui, J. Jin, H. Shen, and B. Li, “Low-latency list
decoding of polar codes with double thresholding,” in Acoustics, Speech and Signal
Processing (ICASSP), 2015 IEEE International Conference on, pp. 1042–1046,
IEEE, 2015.

[49] J. Lin, C. Xiong, and Z. Yan, “A reduced latency list decoding algorithm for polar
codes,” in Signal Processing Systems (SiPS), 2014 IEEE Workshop on, pp. 1–6,
IEEE, 2014.

[50] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar decoders:
Algorithm and implementation,” IEEE Journal on Selected Areas in Communica-
tions, vol. 32, no. 5, pp. 946–957, 2014.

[51] H. Aurora, C. Condo, and W. J. Gross, “Low-complexity software stack decod-
ing of polar codes,” in Circuits and Systems (ISCAS), 2018 IEEE International
Symposium on, pp. 1–5, IEEE, 2018.

[52] J. Sun and O. Y. Takeshita, “Interleavers for turbo codes using permutation poly-
nomials over integer rings,” IEEE Transactions on Information Theory, vol. 51,
no. 1, pp. 101–119, 2005.

[53] O. Y. Takeshita, “On maximum contention-free interleavers and permutation poly-
nomials over integer rings,” IEEE Transactions on Information Theory, vol. 52,
no. 3, pp. 1249–1253, 2006.

[54] TSGRANGRA, Network, “Evolved universal terrestrial radio access (E-UTRA);
multiplexing and channel coding,” 3rd Generation Partnership Project (3GPP),
vol. TS 36, 2009.

[55] D. Soldani, Y. J. Guo, B. Barani, P. Mogensen, I. Chih-Lin, and S. K. Das, “5G for
ultra-reliable low-latency communications,” IEEE Network, vol. 32, no. 2, pp. 6–7,
2018.

[56] G. P. Fettweis, “The tactile internet: applications and challenges,” IEEE Vehicular
Technology Magazine, vol. 9, no. 1, pp. 64–70, 2014.

[57] 3GPP TS 38.212 V15.1.1, “NR Multiplexing and channel coding,” 3rd Generation
Partnership Project Std. 3GPP, 2018.

[58] S. A. Hashemi, C. Condo, and W. J. Gross, “Fast and flexible successive-
cancellation list decoders for polar codes,” IEEE Transactions on Signal Processing,
vol. 65, no. 21, pp. 5756–5769, 2017.

[59] B. Le Gal, C. Leroux, and C. Jego, “Multi-gb/s software decoding of polar codes,”
IEEE transactions on signal processing, vol. 63, no. 2, pp. 349–359, 2015.

[60] Altera, “3GPP LTE turbo reference design,” Jan 2011.

[61] A. Li, L. Xiang, T. Chen, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo,
“VLSI implementation of fully parallel LTE turbo decoders,” IEEE Access, vol. 4,
pp. 323–346, 2016.

[62] E. Boutillon, W. J. Gross, and P. G. Gulak, “VLSI architectures for the MAP
algorithm,” IEEE Transactions on Communications, vol. 51, no. 2, pp. 175–185,
2003.

[63] J. Vogt and A. Finger, “Improving the Max-Log-MAP turbo decoder,” Electronics
Letters, vol. 36, no. 23, pp. 1937–1939, 2000.

[64] C. E. Shannon, “A mathematical theory of communication,” ACM SIGMOBILE
Mobile Computing and Communications Review, vol. 5, no. 1, pp. 3–55, 2001.

[65] L. Kong, S. X. Ng, R. G. Maunder, and L. Hanzo, “Maximum-throughput irregular
distributed space-time code for near-capacity cooperative communications,” IEEE
Transactions on Vehicular Technology, vol. 59, no. 3, pp. 1511–1517, 2010.

[66] J. Hagenauer, “The exit chart-introduction to extrinsic information transfer in iter-
ative processing,” in Signal Processing Conference, 2004 12th European, pp. 1541–
1548, IEEE, 2004.

[67] R. Shrestha and R. P. Paily, “High-throughput turbo decoder with parallel architec-
ture for LTE wireless communication standards,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 61, no. 9, pp. 2699–2710, 2014.

[68] H. Shariatmadari, S. Iraji, R. Jantti, P. Popovski, Z. Li, and M. A. Uusitalo,
“Fifth-generation control channel design: Achieving ultrareliable low-latency com-
munications,” IEEE Vehicular Technology Magazine, vol. 13, no. 2, pp. 84–93,
2018.

[69] A. Aissioui, A. Ksentini, A. M. Gueroui, and T. Taleb, “On enabling 5G automotive
systems using follow me edge-cloud concept,” IEEE Transactions on Vehicular
Technology, vol. 67, pp. 5302–5316, June 2018.

[70] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the finite block-
length regime,” IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 2307–
2359, 2010.

[71] M. Condoluci, M. Dohler, G. Araniti, A. Molinaro, and K. Zheng, “Toward 5G
densenets: architectural advances for effective machine-type communications over
femtocells,” IEEE Communications Magazine, vol. 53, no. 1, pp. 134–141, 2015.

[72] M. Luvisotto, Z. Pang, and D. Dzung, “Ultra high performance wireless control for
critical applications: challenges and directions,” IEEE Transactions on Industrial
Informatics, vol. 13, no. 3, pp. 1448–1459, 2017.

[73] P.-H. Chiu, P.-H. Tseng, and K.-T. Feng, “Interactive mobile augmented reality
system for image and hand motion tracking,” IEEE Transactions on Vehicular
Technology, vol. 67, no. 10, pp. 9995–10009, 2018.

[74] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Unmanned aerial vehicle with
underlaid device-to-device communications: performance and tradeoffs,” IEEE
Transactions on Wireless Communications, vol. 15, no. 6, pp. 3949–3963, 2016.

[75] M. Bennis, M. Debbah, and H. V. Poor, “Ultra-reliable and low-latency wireless
communication: Tail, risk and scale,” arXiv preprint arXiv:1801.01270, 2018.

[76] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward low-latency and
ultra-reliable virtual reality,” IEEE Network, vol. 32, no. 2, pp. 78–84, 2018.

[77] B. Soret, P. Mogensen, K. I. Pedersen, and M. C. Aguayo-Torres, “Fundamen-
tal tradeoffs among reliability, latency and throughput in cellular networks,” in
Globecom Workshops (GC Wkshps), 2014, pp. 1391–1396, IEEE, 2014.

[78] D. Schneider, “The microsecond market,” IEEE spectrum, vol. 6, no. 49, pp. 66–81,
2012.

[79] M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, “5G-enabled tactile
internet,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 3,
pp. 460–473, 2016.

[80] G. P. Fettweis, “A 5G wireless communications vision,” Microwave Journal, vol. 55,
no. 12, pp. 24–36, 2012.

[81] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of com-
plex fourier series,” Mathematics of computation, vol. 19, no. 90, pp. 297–301, 1965.

[82] W. T. Cochran, J. W. Cooley, D. L. Favin, H. D. Helms, R. A. Kaenel, W. W.
Lang, G. Maling, D. E. Nelson, C. M. Rader, and P. D. Welch, “What is the fast
fourier transform?,” Proceedings of the IEEE, vol. 55, no. 10, pp. 1664–1674, 1967.

[83] S. Weinstein and P. Ebert, “Data transmission by frequency-division multiplex-
ing using the discrete fourier transform,” IEEE transactions on Communication
Technology, vol. 19, no. 5, pp. 628–634, 1971.

[84] S. Darlington, “On digital single-sideband modulators,” IEEE Transactions on Cir-
cuit Theory, vol. 17, no. 3, pp. 409–414, 1970.

[85] B. Hirosaki, “An orthogonally multiplexed QAM system using the discrete fourier
transform,” IEEE Transactions on Communications, vol. 29, no. 7, pp. 982–989,
1981.

[86] Access, Evolved Universal Terrestrial Radio, “Base station (BS) radio transmission
and reception,” 3GPP TS 36.104 V14, vol. 3, 2009.

[87] E. Arikan and E. Telatar, “On the rate of channel polarization,” in 2009 IEEE
International Symposium on Information Theory, pp. 1493–1495, IEEE, 2009.

[88] B. Li, H. Shen, and D. Tse, “An adaptive successive cancellation list decoder for
polar codes with cyclic redundancy check,” IEEE Communications Letters, vol. 16,
no. 12, pp. 2044–2047, 2012.

[89] C. Xiong, J. Lin, and Z. Yan, “Symbol-based successive cancellation list decoder
for polar codes,” in Signal Processing Systems (SiPS), 2014 IEEE Workshop on,
pp. 1–6, IEEE, 2014.

[90] Z. Zhang, L. Zhang, X. Wang, C. Zhong, and H. V. Poor, “A split-reduced succes-
sive cancellation list decoder for polar codes,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 2, pp. 292–302, 2016.

[91] H. Zhou, C. Zhang, W. Song, S. Xu, and X. You, “Segmented CRC-aided SC list
polar decoding,” in Vehicular Technology Conference (VTC Spring), 2016 IEEE
83rd, pp. 1–5, IEEE, 2016.

[92] W. Song, H. Zhou, Y. Zhao, S. Zhang, X. You, and C. Zhang, “Low-complexity
segmented CRC-aided SC stack decoder for polar codes,” in 2016 50th Asilomar
Conference on Signals, Systems and Computers, pp. 1189–1193, Nov 2016.

[93] X. Liang, H. Zhou, Z. Wang, X. You, and C. Zhang, “Segmented successive can-
cellation list polar decoding with joint BCH-CRC codes,” in 2017 51st Asilomar
Conference on Signals, Systems, and Computers, pp. 1509–1513, Oct 2017.

[94] S. Li, L. Lu, Y. Deng, J. Liu, and T. Huang, “A Reused-Public-Path successive can-
cellation list decoding for polar codes with CRC,” IEEE Communications Letters,
vol. 21, pp. 2566–2569, Dec 2017.

[95] P. Giard and A. Burg, “Fast-SSC-flip decoding of polar codes,” in Wireless Com-
munications and Networking Conference Workshops (WCNCW), 2018 IEEE, p-
p. 73–77, IEEE, 2018.

[96] X. Liu, S. Wu, X. Xu, J. Jiao, and Q. Zhang, “Improved polar SCL decoding by
exploiting the error correction capability of CRC,” IEEE Access, vol. 7, pp. 7032–
7040, 2019.

[97] P. Chen, B. Bai, Z. Ren, J. Wang, and S. Sun, “Hash-Polar codes with application
to 5G,” IEEE Access, pp. 1–1, 2019.

[98] K. Niu and K. Chen, “CRC-aided decoding of polar codes,” IEEE Communications
Letters, vol. 16, no. 10, pp. 1668–1671, 2012.

[99] U. U. Fayyaz and J. R. Barry, “Low-complexity soft-output decoding of polar
codes,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 5, p-
p. 958–966, 2014.

[100] T. Murata and H. Ochiai, “On design of CRC codes for polar codes with successive
cancellation list decoding,” in Information Theory (ISIT), 2017 IEEE International
Symposium on, pp. 1868–1872, IEEE, 2017.

[101] Q. Zhang, A. Liu, X. Pan, and K. Pan, “CRC code design for list decoding of polar
codes,” IEEE Communications Letters, vol. 21, pp. 1229–1232, June 2017.

[102] J. Chen, Y. Chen, K. Jayasinghe, D. Du, and J. Tan, “Distributing CRC bits to
aid polar decoding,” in 2017 IEEE Globecom Workshops (GC Wkshps), pp. 1–6,
Dec 2017.

[103] F. Cheng, A. Liu, Y. Zhang, and J. Ren, “CRC location design for polar codes,”
IEEE Communications Letters, vol. 22, pp. 2202–2205, Nov 2018.

[104] P. Chen, M. Xu, B. Bai, and J. Wang, “Design and performance of polar codes
for 5G communication under high mobility scenarios,” in Vehicular Technology
Conference (VTC Spring), 2017 IEEE 85th, pp. 1–5, IEEE, 2017.

[105] D. Hui, M. Breschel, and Y. Blankenship, “Interleaved CRC for polar codes,” in
2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pp. 1–5, June
2018.

[106] Z. Babar, Z. B. K. Egilmez, L. Xiang, D. Chandra, R. G. Maunder, S. X. Ng, and
L. Hanzo, “Polar codes and their quantum-domain counterparts,” IEEE Commu-
nications Surveys & Tutorials, 2019.

[107] T. Erseghe, “Coding in the finite-blocklength regime: Bounds based on laplace
integrals and their asymptotic approximations,” IEEE Transactions on Information
Theory, vol. 62, no. 12, pp. 6854–6883, 2016.

[108] Nokia, Shanghai-Bell, Alcatel-Lucent, “R1-1705860: Polar codes for control chan-
nels,” 3GPP TSG-RAN WG1 #88bis Meeting, vol. 16, no. 10, 2017.

[109] D. Hui, S. Sandberg, Y. Blankenship, M. Andersson, and L. Grosjean, “Channel
coding in 5g new radio: A tutorial overview and performance comparison with 4g
lte,” ieee vehicular technology magazine, vol. 13, no. 4, pp. 60–69, 2018.

[110] G. Sarkis and W. J. Gross, “Increasing the throughput of polar decoders,” IEEE
Communications Letters, vol. 17, no. 4, pp. 725–728, 2013.

[111] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “Fast software polar decoders,”
in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International
Conference on, pp. 7555–7559, IEEE, 2014.

[112] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Increasing the speed
of polar list decoders,” in Signal Processing Systems (SiPS), 2014 IEEE Workshop
on, pp. 1–6, IEEE, 2014.

[113] M. Léonardon, A. Cassagne, C. Leroux, C. Jégo, L.-P. Hamelin, and Y. Savaria,
“Fast and flexible software polar list decoders,” Springer Journal of Signal Process-
ing Systems (JSPS), pp. 1–16, January 2019.

[114] D. Abrahams and A. Gurtovoy, C++ Template Metaprogramming: Concepts, Tool-
s, and Techniques from Boost and Beyond (C++ in Depth Series). Addison-Wesley
Professional, 2004.

[115] L. Xiang, Z. B. K. Egilmez, R. G. Maunder, and L. Hanzo, “Crc-aided logarithmic
stack decoding of polar codes for ultra reliable low latency communication in 3gpp
new radio,” IEEE Access, vol. 7, pp. 28559–28573, 2019.

[116] Y. Wu and B. D. Woerner, “The influence of quantization and fixed point arithmetic
upon the BER performance of turbo codes,” in Vehicular Technology Conference,
1999 IEEE 49th, vol. 2, pp. 1683–1687, IEEE, 1999.

Subject Index

f and g functions computation 105–109

Channel interleaving and deinterleaving
78–79
Code block segmentation and
concatenation .68
Computational complexity . . 80–84, 104
Conclusions 60, 89–93, 112–117
Concurrent OFDM Demodulation and
Turbo Decoding Architecture 43–60
Contributions and thesis structure . 6–9
CRC generation and appending . .68–69
CRC-aided Logarithmic Stack Decoding
of Polar Codes 61–93

Design Guidelines 115–116

Error correction and error detection
performance . 79–80
Error correction performance . . 103–104

Fast Fourier Transform 46–49
Fast Log-SCS decoder 99–104
Fast Log-SCS polar decoder and
software implementation 95–112
Fixed-point implementation . . . 100–101
Frozen bit insertion and removal .69–70
Future Work 116–117

General notation xv
Glossary . 123–125

Improvements of the CRC-aided
Log-SCS polar decoder 87–89
Introduction . .1–9, 43–46, 61–66, 95–97

Latency, Throughput and Memory
requirement 109–112
List of Symbols xv–xvii

Memory requirement 84–87

Overview of the 3GPP New Radio (NR)
Uplink Polar Codes 66–79

Performance analysis 56
Performance of the Improved
CRC-aided Log-SCS polar decoder . . 89
Performance, complexity and memory
analysis . 79–87
Polar codes for 5G NR URLLC 5
Polar encoding and decoding core 71–78
Proposed turbo-coded OFDM scheme
49–53

Rate matching and dematching 78
Rate-0 sub-graph computation 101–102
Rate-1 sub-graph computation 102–103
Receiver .50–53
Referenced Log-SCS polar decoder
87–88
Repetition sub-graph computation . 103
Restricted Log-SCS polar decoder . . .88

137

Review of Logarithmic successive
cancellation stack (Log-SCS) decoding
98–99

Scaled approach . 59
SIMD implementation of the proposed
Fast Log-SCS decoder 105–112
Special symbols xv–xvii
Staggered receive approach 57

System refinements 57–59

Transmitter . 49–50
Turbo codes for LTE URLLC 3–4

Ultra-Reliable Low Latency
Communication .2–3

Validation . 53–54

Author Index

3GPP RP-161299 17

3GPP RP-171489 13

3GPP TS 38.212 V15.1.1 57

Abrahams, David 114

Access, Evolved Universal Terrestrial
Radio 86

Aguayo-Torres, Mari Carmen 77

Aijaz, Adnan 79

Aissioui, A. 69

Al-Hashimi, Bashir M 61

Alamdar-Yazdi, Amin 37

Altera 60

Andersson, Mattias 109

Araniti, Giuseppe 71

Arenas, John Camilo Solano 16

Arikan, Erdal 8, 34, 87

Aurora, Harsh 51

Babar, Zunaira 106

Bai, Baoming 97, 104

Balatsoukas-Stimming, Alexios 46

Bar-Ness, Yeheskel 22

Barani, Bernard 55

Barbulescu, Adrian S 25

Barry, John R 99

Benjebbour, Anass 9

Bennis, Mehdi 74–76

Berrou, Claude 2, 3

Bickerstaff, Mark 20

Bingham, John AC 28

Blankenship, Y. 105

Blankenship, Yufei 109

Boutillon, Emmanuel 62

Breschel, M. 105

Burg, Andreas 46, 95

Cantoni, Antonio 29

Cassagne, Adrien 113

Chandra, Daryus 106

Chen, J. 102

Chen, Ji 48

Chen, Kai 31, 41, 42, 44, 98

Chen, P. 97

Chen, Peiyao 104

Chen, Taihai 61

Chen, Y. 102

Cheng, F. 103

Chih-Lin, I 55

Chiu, Pei-Hsuan 73

Choi, Byungcho 27

Cochran, William T 82

Condo, Carlo 51, 58

Condoluci, Massimo 71

139

Cooley, James W 81, 82

Darlington, Sidney 84

Das, Sajal K 55

Datta, Rohit 10

Davis, Linda 20

De Silva, Prasan 9

Debbah, Mérouane 74, 75

Deng, Y. 94

Dohler, Mischa 71, 79

Doppler, Klaus 76

Du, D. 102

Dudda, Torsten 16

Dzung, Dacfey 72

E-UTRA 6

Ebert, Paul 83

Egilmez, Zeynep B Kaykac 106, 115

Elbamby, Mohammed S 76

Eriksson, Erik 18

Erseghe, Tomaso 107

Falconetti, Laetitia 16

Fan, YouZhe 48

Favin, David L 82

Fayyaz, Ubaid U 99

Fehrenbach, Thomas 10

Feng, Kai-Ten 73

Fettweis, Gerhard P 56, 79, 80

Finger, Adolf 63

Gallager, Robert 7

Garrett, David 20

Giard, Pascal 47, 50, 95, 111, 112

Glavieux, Alain 2, 3

Göktepe, Barış 10

Gong, Chao 36

Grosjean, Leefke 109

Gross, Warren J 33, 38, 47, 50, 51, 58, 62,
110–112

Gueroui, A. M. 69

Gulak, P Glenn 62

Guo, Y Jay 55

Gurtovoy, Aleksey 114

Hagenauer, Joachim 66

Hamelin, Louis-Philippe 113

Hanzo, Lajos 4, 26, 27, 61, 65, 106, 115

Hashemi, Seyyed Ali 58

Haustein, Thomas 9

Helge, Cornelius 10

Helms, Howard D 82

Hessler, Martin 18

Hirosaki, Botaro 85

Hoeher, Peter 19

Huang, Defeng 29

Huang, T. 94

Huawei, HiSilicon 32

Hui, D. 105, 109

Ilnseher, Thomas 23

Iraji, Sassan 68

Jantti, Riku 68

Jayasinghe, K. 102

Jégo, Christophe 113

Ji, Hyoungju 15

Jiao, J. 96

Jin, Jie 48

Johansson, Niklas A 18

Kaenel, Reginald A 82

Keller, T 26

Keller, Thomas 27

Kienle, Frank 23

Kim, Younsun 15

Kong, Lingkun 65

Kschischang, Frank R 37

Ksentini, A. 69

Kudekar, Shrinivas 12

Lang, William W 82

Le Gal, Bertrand 59

Lee, Juho 15

Léonardon, Mathieu 113

Leroux, Camille 33, 38, 59, 113

Li, An 61

Li, Bin 48, 88

Li, S. 94

Li, Zexian 68

Liang, X. 93

Liew, TH 4

Lin, Jiaru 31,41, 44

Lin, Jun 49, 89

Liu, A. 36, 101, 103

Liu, J. 94

Liu, X. 96

Lu, L. 94

Luvisotto, Michele 72

Maling, GC 82

Maunder, Robert G 24, 61, 65, 106, 115

Miloslavskaya, Vera 45

Mogensen, Preben 55, 77

Molinaro, Antonella 71

Molisch, Andreas F 9

Mozaffari, Mohammad 74

Münster, Matthias 27

Murata, Takumi 100

Nelson, David E 82

Ng, Soon Xin 4, 26, 65, 106

Nicol, Chris 20

Niu, Kai 31, 41, 42, 44, 98

Nokia, Shanghai-Bell, Alcatel-Lucent 108

Ochiai, Hideki 100

Paily, Roy P 67

Pan, K. 101

Pan, X. 36, 101

Pang, Zhibo 72

Parhi, Keshab K 21, 35

Parizi, Mani Bastani 46

Park, Sunho 15

Pedersen, Klaus I 77

Perfecto, Cristina 76

Pietrobon, Steven S 25

Polyanskiy, Yury 70

Poor, H Vincent 70, 75, 90

Popovski, Petar 68

Rader, Charles M 82

Raymond, Alexandre J 38

Ren, J. 103

Ren, Z. 97

Richardson, Tom 12

Robertson, Patrick 19

Rupp, Markus 11

Saad, Walid 74

Sachs, Joachim 79

Sanada, Yukitoshi 30

Sandberg, Sara 109

Sarkis, Gabi 38, 47, 50, 110–112

Savaria, Yvon 113

Schneider, David 78

Schwarz, Stefan 11

Shafi, Mansoor 9

Shannon, Claude Elwood 1, 64

Shariatmadari, Hamidreza 68

Shen, Hui 48, 88

Shim, Byonghyo 15

Shrestha, Rahul 67

Shubhi, Ilmiawan 30

Simsek, Meryem 79

Smith, Peter J 9

Soldani, David 55

Song, W. 92

Song, Wenqing 91

Soret, Beatriz 77

Sun, Jing 52

Sun, S. 97

Tahir, Bashar 11

Takeshita, Oscar Y 52, 53

Tal, Ido 33, 39, 40

Taleb, T. 69

Tan, J. 102

Tee, RYS 4

Telatar, Emre 87

Thibeault, Claude 47, 50, 111, 112

Thomas, Charles 20

Trifonov, Peter 43, 45

Tse, David 88

Tseng, Po-Hsuan 73

TSGRANGRA, Network 54

Tsui, Chi-ying 48

Tufvesson, Fredrik 9

Tukey, John W 81

Uusitalo, Mikko A 68

Vardy, Alexander 33, 39, 40, 47, 50, 112

Verdú, Sergio 70

Villebrun, Emmanuelle 19

Viterbi, Andrew 5

Vogt, Jörg 63

Wang, J. 97, 104

Wang, Xianbin 90

Wang, Y-P Eric 18

Wang, Z. 93

Webb, WT 26

Wehn, Norbert 23

Weinstein, S 83

Weis, Christian 23

Welch, Peter D 82

Wirth, Thomas 10

Woerner, Brian D 116

Wu, S. 96

Wu, Yufei 116

Wunder, Gerhard 9

Xia, ChenYang 48

Xiang, Luping 61, 106, 115

Xiong, Chenrong 49, 89

Xu, Lu 29

Xu, Minzi 104

Xu, Shugong 91

Xu, X. 96

Yan, Zhiyuan 49, 89

Yang, Jindan 29

Ye, Zhan 36

Yeap, BL 4

Yeo, Jeongho 15

Yoon, Seokhyun 22

You, X. 91, 92, 93

Yuan, Bo 35

Zhang, C. 91, 92, 93

Zhang, Liang 90

Zhang, Q. 96, 101

Zhang, QT 31

Zhang, S. 92

Zhang, Xinyi 14

Zhang, Y. 103

Zhang, Yingxian 36

Zhang, Yuping 21

Zhang, Zhaoyang 90

Zhao, Y. 92

Zheng, Kan 71

Zhong, Caijun 90

Zhou, H. 91, 92, 93

Zhu, Peiying 9

	Acknowledgements
	1 Introduction
	1.1 Ultra-Reliable Low Latency Communication
	1.2 Turbo codes for LTE URLLC
	1.3 Polar codes for 5G NR URLLC
	1.4 Contributions and thesis structure

	2 Arbitrarily Parallel Turbo Decoder
	2.1 Introduction
	2.2 LTE turbo codes overview
	2.2.1 Turbo Encoder
	2.2.2 Turbo Decoders
	2.2.2.1 State-of-the-art LTE turbo decoder
	2.2.2.2 Fully-parallel turbo decoder

	2.3 Arbitrarily Parallel Turbo Decoder
	2.3.1 APTD employing equal window lengths
	2.3.2 APTD employing unequal window lengths

	2.4 Performance analysis
	2.5 Complexity analysis
	2.6 Conclusions

	3 Concurrent OFDM Demodulation and Turbo Decoding Architecture
	3.1 Introduction
	3.2 Fast Fourier Transform
	3.3 Proposed turbo-coded OFDM scheme
	3.3.1 Transmitter
	3.3.2 Receiver

	3.4 Validation
	3.5 Performance analysis
	3.6 System refinements
	3.6.1 Staggered receive approach
	3.6.2 Scaled approach

	3.7 Conclusions

	4 CRC-aided Logarithmic Stack Decoding of Polar Codes
	4.1 Introduction
	4.2 Overview of the 3GPP NR Uplink Polar Codes
	4.2.1 Code block segmentation and concatenation
	4.2.2 CRC generation and appending
	4.2.3 Frozen bit insertion and removal
	4.2.4 Polar encoding and decoding core
	4.2.5 Rate matching and dematching
	4.2.6 Channel interleaving and deinterleaving

	4.3 Performance, complexity and memory analysis
	4.3.1 Error correction and error detection performance
	4.3.2 Computational complexity
	4.3.3 Memory requirement

	4.4 Improvements of the CRC-aided Log-SCS polar decoder
	4.4.1 Referenced Log-SCS polar decoder
	4.4.2 Restricted Log-SCS polar decoder
	4.4.3 Performance of the Improved CRC-aided Log-SCS polar decoder

	4.5 Conclusions

	5 Fast Log-SCS Polar Decoder and its Software Implementation
	5.1 Introduction
	5.2 Review of Logarithmic successive cancellation stack decoding
	5.3 Fast Log-SCS decoder
	5.3.1 Fixed-point implementation
	5.3.2 Rate-0 sub-graph computation
	5.3.3 Rate-1 sub-graph computation
	5.3.4 Repetition sub-graph computation
	5.3.5 Error correction performance
	5.3.6 Computational complexity

	5.4 SIMD implementation of the proposed Fast Log-SCS decoder
	5.4.1 f and g functions computation
	5.4.2 Latency, Throughput and Memory requirement

	5.5 Conclusions

	6 Conclusions and Future Research
	6.1 Design Guidelines
	6.2 Future Work

	A
	A.1

	Bibliography
	Subject Index
	Author Index

