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MASSEY PRODUCTS IN MOMENT-ANGLE COMPLEXES

by Abigail Linton

This thesis presents systematic constructions of new non-trivial higher Massey products
in the cohomology of moment-angle complexes. This is achieved by using combinatorial
operations, such as stellar subdivision and edge contraction, on the underlying simplicial
complex of a moment-angle complex. These techniques construct non-trivial higher
Massey products of cohomology classes in degree three or higher and can be used on any
simplicial complex. Consequently, we find new examples of non-trivial Massey products
in moment-angle manifolds ZP for simple polytopes P that are neither truncated n-cubes
nor Pogorelov polytopes, both of which have already been studied in the literature.
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Chapter 1

Introduction

In this thesis, I study Massey products in toric topology. In particular, I present
systematic methods to construct moment-angle complexes with non-trivial higher Massey
products, using homotopy theory and the combinatorial structure in moment-angle
complexes.

Massey products are higher cohomology operations that refine cup products and they are
studied extensively throughout algebra, topology and geometry. In symplectic geometry,
it is well known that all Kähler manifolds are formal [16], that is, Kähler manifolds have
no non-trivial Massey products. Since the 1970s, there has been a well-known problem
in symplectic geometry to find examples of non-Kähler manifolds. The first example
was found by Thurston [37] in 1975, but in general the non-Kähler structure is di�cult
to detect and there are still relatively few examples known [2]. Massey products are
obstructions to the Kähler structure, but being higher cohomology operations, Massey
products are also very di�cult to calculate. This is one of the reasons that we study
Massey products in moment-angle complexes.

For a simplicial complex K, the moment-angle complex ZK is a topological space formed
by identifying products of discs and circles according to the intersection of simplices in
K. These spaces naturally arise out of the study of complements of coordinate subspace
arrangements in combinatorics, the intersection of quadrics in complex geometry, and level
sets for moment maps in symplectic geometry. Moment-angle complexes are fundamental
objects in toric topology, which inherently relates to other fields such as combinatorics,
commutative algebra, geometric group theory, and complex geometry. The homotopy
type of moment-angle complexes is not yet fully understood, so Massey products are a
valuable topological invariant for these spaces. Furthermore, the underlying combinatorial
structure of moment-angle complexes is a useful platform from which to study Massey
products.

The first examples of non-trivial higher Massey products in moment-angle complexes
were found in 2003 by Baskakov [7], who gave an infinite family of moment-angle
complexes with non-trivial triple Massey products. In 2007, Denham and Suciu [17] gave
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2 Chapter 1. Introduction

a classification of triple Massey products of classes in the lowest degree (degree three).
Since then, there have been other families of examples such as Limonchenko’s family of
n-Massey products in moment-angle complexes over truncated cubes [26], and Zhuravleva
found non-trivial triple Massey products over Pogorelov polytopes [39]. All of these
results use a combinatorial interpretation of Massey products in moment-angle complexes,
which alludes to the ability to understand the structure of Massey products better from a
combinatorial perspective. However other than these few families of examples, not much
is currently known about the existence or abundance of non-trivial Massey products in
the cohomology of moment-angle complexes.

The main approach of this thesis is to use combinatorial operations on the underlying
simplicial complex of a moment-angle complex. We construct non-trivial n-Massey
products È–1, . . . , –nÍ in Hú(ZK) where K is obtained by performing stellar subdivisions
on the join of n simplicial complexes K1 ú · · · ú Kn and –i œ Hú(Ki). The degree of
the Massey product is then determined by the degree of –i œ Hú(Ki). Additionally, we
construct a non-trivial n-Massey product in Hú(ZK) given the existence of a di�erent
non-trivial n-Massey product in Hú(ZK̂), where K maps to K̂ by edge contractions. These
edge contractions are simplicial maps that maintain the homotopy type of K, but change
the combinatorics. Then we show that the Massey product in Hú(ZK) corresponds
to the Massey product in Hú(ZK̂) and is non-trivial. Its degree is determined by the
original Massey product and the number of edge contractions performed. In particular,
these higher Massey products are in arbitrary degree, not just in the lowest degree. The
constructions introduced in this thesis also generalise all of the aforementioned families
of examples, thereby proving that there are many more non-trivial Massey products in
the cohomology of moment-angle complexes than previously shown.

When a simplicial complex K is a simplicial sphere, such as the boundary of the dual of
a simple polytope P , the moment-angle complex ZK (or ZP ) is a smooth manifold: a
(polytopal) moment-angle manifold. In both of the constructions in this thesis, there
is no constraint on the simplicial complexes used, and indeed we find new non-trivial
Massey products in moment-angle manifolds. Hence these manifolds will be non-Kähler.

The first chapter of this thesis is dedicated to relevant background material and review of
existing results. The subsequent chapters present the original results of the thesis. In the
final chapter, we also show that there are non-trivial Massey products in moment-angle
complexes that correspond to simplicial posets.



Chapter 2

Background

2.1 Moment-Angle Complexes

This section summarises the relevant definitions and existing results for moment-angle
complexes and some of their wider context. Our aim is to be able to calculate the
cohomology of moment-angle complexes, and importantly to understand the cup product.

Let k be a field or the integers. A simplicial complex K on the vertex set V (K) =
[m] = {1, . . . , m} is a collection of subsets ‡ µ [m] such that if ‡ œ K and · µ ‡, then
· œ K. These subsets ‡ œ K are called simplices. For a set of vertices J µ [m], the full
subcomplex KJ is

KJ = {‡ œ K : V (‡) µ J}.

2.1.1 Introduction

Moment-angle complexes first appeared in work by Buchstaber and Panov [10], and
are fundamental objects in toric topology. In particular, the study of moment-angle
complexes is often very intradisciplinary since they also arise naturally as complements
of coordinate subspace arrangements, intersections of quadrics, and level sets of moment-
maps in symplectic geometry (see [4] for a summary). In this thesis, we focus on the
relationship between the topology of moment-angle complexes and the combinatorics.

Definition 2.1.1. For a simplicial complex K on [m] vertices, the moment-angle complex
ZK for K is

ZK =
€

IœK

1
D2, S1

2I
µ (D2)m

where (D2, S1)I =
rm

i=1 Yi for Yi = D2 if i œ I, and Yi = S1 if i /œ I.

Example 2.1.2. Let K be two disjoint points. Then the moment-angle complex is a
union of two solid tori taken over their boundary torus, which corresponds to the empty

3



4 Chapter 2. Background

simplex ? œ K.

ZK = D2 ◊ S1 €

S1◊S1
S1 ◊ D2

= ˆ(D2 ◊ D2) = S3.

In general, when K is a triangulation of a sphere, the moment-angle complex ZK is a
moment-angle manifold.

Theorem 2.1.3 ([10]). If K is a triangulation of an n-dimensional sphere on m vertices,
then ZK is an (m + n + 1)-dimensional (closed) topological manifold.

A proof of this theorem can be found in [10]. For a simple polytope P , let the nerve
complex KP = ˆ(P ú) of P be the boundary complex of the dual polytope. Then
ZP = ZK

P

be the (polytopal) moment-angle manifold corresponding to the polytope P .
Moment-angle manifolds ZP are particularly studied since they are smooth and have
rich geometrical properties (see [11, Sections 5, 6] for more information).

Example 2.1.4. Let K be the boundary of a pentagon. There are no n-simplices in K
for n > 2, and as such the maximal simplices are one-dimensional. Therefore,

ZK =(D2 ◊ D2 ◊ S1 ◊ S1 ◊ S1) fi (S1 ◊ D2 ◊ S1 ◊ D2 ◊ S1)

fi (S1 ◊ S1 ◊ D2 ◊ D2 ◊ S1) fi (S1 ◊ S1 ◊ D2 ◊ S1 ◊ D2)

fi (D2 ◊ S1 ◊ S1 ◊ S1 ◊ D2).

In fact ZK is di�eomorphic to the connected sum (S3 ◊ S4)#5, by results of Bosio and
Meersseman [9, Theorem 6.3].

1
2

4
3

5

Figure 2.1: The boundary of a pentagon

For two simplicial complexes K1 and K2 on vertex sets V1 and V2 respectively, the join is
K1 ú K2 = {I1 fi I2 : I1 œ K1, I2 œ K2} on the set V1 Û V2. This join also corresponds to
the product of simple polytopes, as discussed in [11, Example 2.2.9].

Lemma 2.1.5. For two simple polytopes P1 and P2, KP1◊P2 = KP1 ú KP2

We also have the following property of moment-angle complexes [11, Proposition 4.1.3].
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Proposition 2.1.6. Let K1 and K2 be simplicial complexes. Then ZK1úK2 = ZK1 ◊
ZK2.

1

2

3

4

Example 2.1.7. Let K be the boundary of a square, the join of two pairs of disjoint
points K1 = {?, {1}, {2}}, K2 = {?, {3}, {4}}. By Proposition 2.1.6 and Example 2.1.2,
ZK = S3 ◊ S3. Indeed, the moment-angle complex is

ZK = (D2 ◊ S1 ◊ D2 ◊ S1) fi (S1 ◊ D2 ◊ D2 ◊ S1) fi (S1 ◊ D2 ◊ S1 ◊ D2)

fi (D2 ◊ S1 ◊ S1 ◊ D2)

= ˆ(D2 ◊ D2) ◊ D2 ◊ S1 fi ˆ(D2 ◊ D2) ◊ S1 ◊ D2

= ˆ(D2 ◊ D2) ◊ ˆ(D2 ◊ D2) = S3 ◊ S3.

For a topological pair (X, A) there is a construction (X, A)K that generalises moment-
angle complexes.

Definition 2.1.8. Let K be a simplicial complex on [m] vertices, and let X = (X1, . . . , Xm),
A = (A1, . . . , Am) be families of pointed CW-spaces such that Ai is a pointed subset of
Xi for all i. Then the polyhedral product (X, A)K is

(X, A)K =
€

IœK
(X, A)I

where (X, A)I =
rm

i=1 Yi for Yi = Xi if i œ I, and Yi = Ai if i /œ I. If X1 = . . . = Xm

and A1 = . . . = Am, then we write (X, A)K instead of (X, A)K. If A is a point, then we
write (X)K instead of (X, A)K.

Polyhedral products are functorial with respect to continuous maps of topological pairs
and inclusions of simplicial complexes. In particular, the following result is from [36,
Proposition 3.1].

Proposition 2.1.9 ([36]). Let (X, A) be a sequence of pointed, path-connected CW-pairs.
Let K be a simplicial complex on [m] and let J µ [m].

• The inclusion KJ Òæ K induces an inclusion (X, A)K
J Òæ (X, A)K.

• The projection rm
i=1 Xi æ

r
iœJ Xi induces a map (X, A)K æ (X, A)K

J .

Moreover, the composite (X, A)K
J Òæ (X, A)K æ (X, A)K

J is the identity map.

As a result of the retraction (X, A)K æ (X, A)K
J , we have that Hú(ZK

J

) µ Hú(ZK) for
any J µ [m]. This is a fact we will use extensively when computing Massey products in
the cohomology of moment-angle complexes.
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Besides moment-angle complexes, other important examples of polyhedral products
include real moment-angle complexes, RK = (D1, S0)K or right-angled Coxeter groups,
fi1((RP Œ, ú)K). A summary of the variety of polyhedral products can be found in [4].

Before the term “polyhedral product” was used, one of the first examples studied was
Davis-Januszkiewicz space DJ(K) ƒ (CP Œ)K. These were introduced by Davis and
Januszkiewicz in [15] and are discussed in [11, Section 4.3]. Davis-Januszkiewicz spaces
are important for the calculation of the cohomology of moment-angle complexes since
there is a homotopy fibration ZK æ (CP Œ)K Òæ (CP Œ)m [11, Theorem 4.3.2]. In other
words, a moment-angle complex is the homotopy pullback making the following diagram
commute

ZK (CP Œ)K

{pt} (CP Œ)m.

i

Given this diagram, there is an Eilenberg-Moore spectral sequence [19] and it was shown
in [13] that the spectral sequence converges at the second page. Then there is a theorem
by Eilenberg-Moore [33] that gives an isomorphism of algebras

Hú(ZK) ≥= TorHú((CP Œ)m)(Hú((CP Œ)K), Hú({pt})) (2.1)

where Tor algebras will be discussed further in Section 2.1.2.1.

2.1.2 Face rings and cohomology of moment-angle complexes

An important property of Davis-Januszkiewicz spaces is that its cohomology ring is the
face ring k[K] of a simplicial complex. The face ring of a simplicial complex originates
from the study of algebraic combinatorics and combinatorial commutative algebra, but it
is also a fundamental tool for understanding the cohomology of moment-angle complexes.

Definition 2.1.10. Let K be a simplicial complex on m vertices. Let k[m] = k[v1, . . . , vm].
The face ring (or Stanley-Reisner ring) k[K] for K is given by

k[K] = k[m]/IK

where IK = (vI : I /œ K) is the Stanley-Reisner ideal generated by square-free monomials
vI = vi1 . . . vi

l

œ k[m] corresponding to minimal missing faces I = {i1, . . . , il} µ [m].

Example 2.1.11. Let K be the boundary of a pentagon as in Figure 2.1. Then

k[K] = k[v1, v2, v3, v4, v5]/IK

where IK = (v13, v14, v23, v25, v45) is the ideal generated by monomials whose simplices
are not present in the pentagon.
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The following proposition relates Davis-Januszkiewicz spaces to face rings of simplicial
complexes, thus highlighting a relation between combinatorial algebra and toric topology.

Proposition 2.1.12 ([32]). Let K be a simplicial complex on [m]. The cohomology ring
of (CP Œ)K is isomorphic to the face ring k[K].

Proof. The cellular structure of CP Œ is given by one cell in every even dimension ([23]).
Therefore (CP Œ)m is given by cells of the form D2k1

j1 ◊· · ·◊D
2k

p

j
p

for j1, . . . , jp œ [m], where
D2k

i

j
i

is a 2ki-dimensional cell in the jith factor of (CP Œ)m. Accordingly, the cochain
group Cú((CP Œ)m) has a basis of cochains (D2k1

j1 · · · D
2k

p

j
p

)ú dual to D2k1
j1 ◊ · · · ◊ D

2k
p

j
p

.

Comparably, (CP Œ)K has cells D2k1
j1 ◊ · · · ◊ D

2k
p

j
p

where {j1, . . . , jp} œ K. So the cochain
map iú : Cú((CP Œ)m) æ Cú((CP Œ)K) induced by the inclusion i : (CP Œ)K Òæ (CP Œ)m

has a kernel generated by cochains (D2k1
j1 . . . D

2k
p

j
p

)ú for {j1, . . . , jp} /œ K.

We can identify Cú((CP Œ)m) with k[m] by identifying the cochains (D2k1
j1 . . . D

2k
p

j
p

)ú with
monomials vk1

j1 . . . v
k

p

j
p

. Similarly we can identify ker(iú) with the Stanley-Reisner ideal
IK. Therefore Cú((CP Œ)K) ≥= k[K]. Since there are only cells in even dimensions, all
boundary maps in the cochain complex are trivial and so Hú((CP Œ)K) = Cú((CP Œ)K) ≥=
k[K].

Therefore, the identity in (2.1) becomes

Hú(ZK) ≥= Tork[m](k[K], k). (2.2)

Our aim is to understand the cup product in Hú(ZK) in terms of K, in order to calculate
Massey products. However, it is di�cult to see this using the isomorphism of algebras
given by the Eilenberg-Moore theorem. Consequently, Panov [32, Theorem 4.7] gave an
alternative proof of (2.2). We summarise this proof in Section 2.1.2.2 after a brief survey
of Tor-algebras in Section 2.1.2.1.

2.1.2.1 Tor-algebras and the Koszul algebra

To understand the cohomology of moment-angle complexes, we need to be able to
determine Tor (2.2), which can be di�cult to calculate. The definition of Tor given here
di�ers slightly from the standard definition in algebra since we use non-positive degrees
rather than non-negative.

Definition 2.1.13. Let A be a commutative finitely generated k-algebra with unit. For
an A-module M , a free (or respectively, projective) resolution of M is an exact sequence
of A-modules

· · · d≠(i+1)
≠æ P ≠i d≠i

≠æ · · · d≠2
≠æ P ≠1 d≠1

≠æ P 0 d0
≠æ M ≠æ 0

where P ≠i are free (projective) A-modules.
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Definition 2.1.14. For graded A-modules M and N , the module Tor≠i
A (M, N) is defined

as the cohomology module of the cochain complex

. . . ≠æ P ≠i ¢A N ≠æ · · · d≠2¢id≠æ P ≠1 ¢A N
d≠1¢id≠æ P 0 ¢A N ≠æ 0

obtained by omitting the term M in its free resolution and applying ¢AN to each term.
Therefore Tor≠i

A (M, N) = H≠i(P ¢A N). The Tor-algebra TorA(M, N) is then defined
as

TorA(M, N) =
n

i,j>0
Tor≠i,j

A (M, N)

with a multiplication

Tor≠i1,j1
A (M, N) ¢ Tor≠i2,j2

A (M, N) æ Tor≠i1≠i2,j1+j2
A (M, N)

where Tor≠i,j
A (M, N) is the jth graded component of Tor≠i

A (M, N) .

The choice of resolution in Definition 2.1.14 does not matter, since for any choice of free
resolution of M , the cohomology modules are canonically isomorphic [23, Lemma 3A.2].
Therefore, regarding k as a k[m]-module, we consider the Koszul resolution of k

0 d≠æ �m[m] ¢k k[m] d≠æ · · · d≠æ �1[m] ¢k k[m] d≠æ k[m] ‘≠æ k ≠æ 0 (2.3)

where �[m] = �[u1, . . . , um] is the exterior algebra (u2
i = 0, uiuj = ≠ujui), �i[m] is the

subspace of �[m] containing monomials u1 · · · ui of length i and k[m] = k[v1, . . . , vm] is
the polynomial algebra over k on m variables. For convenience we refer to ui ¢ vj œ
�[m] ¢ k[m] as the monomial uivj , and let uIvJ = ui1 . . . ui

k

vj1 . . . vj
l

for I = {i1, . . . , ik}
and J = {j1, . . . , jl}. The augmentation map ‘ sends vi ‘æ 0, and the di�erential d is
such that

d(ui) = vi, d(vi) = 0 and d(a · b) = (da) · b + (≠1)ia · db (2.4)

for any a œ �i[m] ¢ k[m] and b œ �[m] ¢ k[m]. The sequence (2.3) can be checked to be
exact, as in [11, Section A.2]. We let �[m] ¢ k[m] be a bigraded di�erential algebra with

bideg(ui) = (≠1, 2) and bideg(vi) = (0, 2). (2.5)

By tensoring the Koszul resolution by ¢k[m]k[K], and since TorA(M, N) ≥= TorA(N, M)
[24, Propostion 3A.5], we define the Tor-algebra of K to be Tork[m](k[K], k). Also
(�[m] ¢ k[K]) is called the Koszul complex of k[K]. There is an isomorphism of bigraded
algebras,

Tork[m](k[K], k) ≥= Tork[m](k, k[K]) = H(�[m] ¢ k[m] ¢k[m] k[K], d)
≥= H(�[m] ¢ k[K], d).
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Therefore we give the Tor-algebra of K a bigrading that is inherited from the cohomology
of �[m] ¢ k[K] and

Tork[m](k[K], k) =
n

i,j>0
Tor≠i,2j

k[m] (k[K], k).

Example 2.1.15. Let K be the boundary of a square as in Example 2.1.7. We calculate
the Tor-algebra of K with the following cochain complex

0 ≠æ �4[4] ¢ k[K] d4≠æ �3[4] ¢ k[K] d3≠æ �2[4] ¢ k[K] d2≠æ �1[4] ¢ k[K] d1≠æ k[K] ≠æ 0.

Generators of �1[4] ¢ k[K] are of the form uiv
p1
j1 · · · vp

l

j
l

for J = {j1, . . . , jl} œ K and
p1, . . . , pl œ Z>0. For ease of notation, let vp

J = vp1
j1 · · · vp

l

j
l

. The map d1 is given by
d1(uiv

p
J ) = viv

p
J +(≠1)1ui ·0 = viv

p
J . Therefore im(d1) is generated by all vi corresponding

to a vertex of K, so
Tor0

k[m](k[K], k) = k[K]
im(d1)

≥= k.

The kernel of d1 is generated by elements of the form uivjvp
J ≠ ujviv

p
J for i fi J, j fi J œ K

and by monomials uiv
p
J such that i fi J /œ K, that is, u1vp2

2 , u2vp1
1 , u3vp4

4 , u4vp3
3 . The

map d2 is given by d2(uijvp
J) = ujviv

p
J ≠ uivjvp

J . For example, d2(u12) = u1v2 ≠ u2v1,
d2(u34) = u3v4 ≠ u4v3, d2(u12v1) = u2v2

1 , etc. Hence im d2 contains elements u1v2 ≠ u2v1,
u3v4 ≠ u4v3 and u1vp2

2 , u2vp1
1 , u3vp4

4 , u4vp3
3 for integers p1, . . . , p4 > 1. Therefore

Tor≠1
k[m](k[K], k) ≥= È[u1v2], [u3v4]Í.

The kernel of d2 is generated by uijvp
J where i ”= j, i fi J, j fi J /œ K, and elements

of the form ujkviv
p
J ≠ uikvjvp

J + uijvkvp
J , i ”= j ”= k ”= i. The map d3 is given by

d3(uijkvp
J ) = ujkviv

p
J ≠ uikvjvp

J + uijvkvp
J . So d3(u124v3) = u24v13 ≠ u14v23, d3(u234v1) =

≠u24v13 + u23v14, and also u23v14 = d(u123v4) + u13v24, u14v23 = ≠d(u134v2) + u13v24.
Additionally, for any edge {j3, j4} œ K, {j1, j2} = [4] \ {j3, j4}, and any p3 ≠ 1, p4 > 0,
d(uj1j2j3vp3≠1

j3 vp4
j4 ) = uj1j2vp3

j3 vp4
j4 . Therefore

Tor≠2
k[m](k[K], k) ≥= È[u13v24]Í.

In particular, [u13v24] is the product of the generators [u1v2], [u3v4] in Tor≠1
k[m](k[K], k).

The final non-trivial map, d4, is given by d4(u1234) = u234v1 ≠ u134v2 + u124v3 ≠ u123v4,
and ker d3 = im d4. So Tor≠q

k[m](k[K], k) = 0 for all q > 3.

The generators of Tor≠1
k[m](k[K], k) have bidegree (≠1, 4), and similarly the generator of

Tor≠2
k[m](k[K], k) has bidegree (≠2, 8). Hence

Tor0
k[m](k[K], k) = Tor0,0

k[m](k[K], k) ≥= k,

Tor≠1
k[m](k[K], k) = Tor≠1,4

k[m](k[K], k) ≥= È[u1v2], [u3v4]Í,

Tor≠2
k[m](k[K], k) = Tor≠2,8

k[m](k[K], k) ≥= È[u13v24]Í
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and all other dimensions are trivial.

The aim of this example is to demonstrate that calculating Tork[m](k[K], k) is cumbersome.
Nonetheless, the Tor-algebra of K is crucial for understanding Hú(ZK). So, to make Tor
more approachable, it is helpful to use the following “auxiliary” multigraded algebra
Rú(K). In Example 2.1.25, we will see a much more simplified version of Examples 2.1.15.

Definition 2.1.16. For a simplicial complex K on [m], define the quotient algebra

Rú(K) = �[u1, . . . , um] ¢ k[K]/(v2
i , uivi, 1 6 i 6 m)

with bideg(ui) = (≠1, 2), bideg(vi) = (0, 2) and

d(ui) = vi, d(vi) = 0, and d(a · b) = (da) · b + (≠1)ia · db. (2.6)

This is an algebra with a basis of monomials uIvJ for I µ [m], J œ K and I fl J = ?.

By the definition of Rú(K), it is possible to define a quotient projection

Í : �[u1, . . . , um] ¢ k[K] æ Rú(K)

as well as a k-linear map
ÿ : Rú(K) æ �[m] ¢ k[K]

that maps uIvJ œ Rú(K) to uIvJ œ �[m] ¢ k[K]. Since both the domain and range have
the same di�erential, ÿ commutes with the di�erentials. Therefore ÿ is a homomorphism of
bigraded di�erential k-vector spaces, with Í ¶ ÿ = id. However it is not a homomorphism
of algebras since ÿ(uivi) = 0 but ÿ(ui)ÿ(vi) ”= 0.

Proposition 2.1.17. The projection homomorphism Í : �[u1, . . . , um] ¢ k[K] æ Rú(K)
induces an isomorphism on cohomology.

One proof of Proposition 2.1.17 is by finding an explicit cochain homotopy between the
identity map and ÿ ¶ Í. This proof can be found in [11, Lemma 3.2.6]. Importantly,
Proposition 2.1.17 says that there is an isomorphism of algebras

Tork[m](k[K], k) ≥= H(�[m] ¢ k[K], d) ≥= H(Rú(K), d).

Then calculations of H(Rú(K), d) are simplified compared to calculations of Tork[m](k[K], k)
since uivi = 0 and v2

i = 0, as in the following example.

Example 2.1.18. Let K be the boundary of a pentagon, as in Figure 2.1. Let Rl(K)
be generated by elements in Rú(K) of total degree l, so that R0(K) is generated by
the element 1, R1(K) generated by ui, R2(K) generated by vi and uiuj for i < j,
etc. The generators uijvklm and vijkl of R8(K) are zero because there are no 2 or
3-simplices in K. Also the generators uijklmnop, uijklmnvo, uijklvmn are zero because
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i, j, k, l, m, n, o, p œ {1, 2, 3, 4, 5} and u2
i = 0, uivi = 0, v2

i = 0. Therefore R8(K) = 0 and
similarly Rl(K) = 0 for l > 7. Then we have the cochain complex

0 ≠æ R0(K) d0
≠æ R1(K) d1

≠æ R2(K) d2
≠æ · · · d6

≠æ R7(K) ≠æ 0

where d0 is trivial and dl the di�erential in (2.6) for l > 0. If we take the cohomology of this
sequence, H0(Rú(K)) = k. Also, d1(ui) = vi for all i and ker(d1) = 0, so H1(Rú(K)) = 0.
Similarly H2(Rú(K)) = 0 since ker(d2) = im(d1), where d2(uiuj) = ujvi ≠ uivj for all
i, j and d2(vi) = 0 but vi œ im(d1). The map d3 takes the generators uivj , uijk of R3(K)
to d3(uivj) = vij and d3(uijk) = ujkvi ≠ uikvj + uijvk. So ker d3 is generated by uivj for
{i, j} /œ K and by uivj ≠ ujvi = d2(uij) for {i, j} œ K. Hence

H3(Rú(K)) = È[u1v3], [u1v4], [u2v3], [u2, v5], [u4v5]Í.

Also, R4(K) is generated by monomials uijkl, uijvk, and vij . So ker d4 contains vij =
d3(uivj), uijvk if {i, k}, {j, k} /œ K and d3(uijk). Thus

H4(Rú(K)) = È[u34v1], [u35v2], [u12v3], [u15v4], [u24v5]Í.

The group R5(K) is generated by monomials uijklm, uijkvl, uivjk. Since K has no 2-
simplices, d5(uivjk) = vijk is zero. Also for any uivjk ”= 0, either {i, j} /œ K or {i, k} /œ K
because K does not contain a cycle of length three. Thus either uivjk = d4(≠uikvj) if
{i, j} /œ K or uivjk = d4(≠uijvk) if {i, k} /œ K. Hence ker d5 = im d4.

The kernel of d6 contains monomials of the form uijvkl since there are no 2-simplices
in K. Also for any uijvkl ”= 0, either {i, k}, {j, k} /œ K or {i, l}, {j, l} /œ K. Thus either
uijvkl = ujlvik ≠ uilvjk + uijvkl = d5(uijlvk) in the first case, or uijvkl = d5(uijkvl) in the
latter. Hence ker d6 = im d5.

The generators of R7(K) are uijklmno, uijklmvn and uijkvlm. We have that uijkvlm œ
ker d7 because there are no 2-simplices. For any uijklvm ”= 0, d6(uijklvm) = ujklvim ≠
uiklvjm + uijlvkm ≠ uijkvlm and exactly two of these terms are non-zero. So there is no
linear combination a of monomials uijklvm œ R6(K) such that d(a) = uijkvlm. Thus
uijkvlm /œ im d6 and

H7(Rú(K)) = È[u124v35]Í.

In particular, [u124v35] = [u1v3] · [u24v5]. In terms of the bigrading, the non-zero
cohomology groups are

H0,0 (Rú(K)) = H0 (Rú(K)) = k,

H≠1,4 (Rú(K)) = H3(Rú(K)) = È[u1v3], [u1v4], [u2v3], [u2, v5], [u4v5]Í,

H≠2,6 (Rú(K)) = H4(Rú(K)) = È[u34v1], [u35v2], [u12v3], [u15v4], [u24v5]Í,

H≠3,10 (Rú(K)) = H7(Rú(K)) = È[u124v35]Í.
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2.1.2.2 The relationship between Hú(ZK) and Tor

We will first see that Hú(ZK) ≥= Tork[m](k[K], k) is an isomorphism of algebras via
H(Rú(K), d), before giving a combinatorial interpretation of H(Rú(K), d) in Section 2.1.2.3.
These results were first proved in [8] and [14]. We first summarise the arguments that
show Hú(ZK) ≥= H(Rú(K)) as an isomorphism of graded modules.

Let Cú(ZK) be the cellular cochains of ZK. We equip the product Dm of m polydiscs
with a cell structure from [10], where we use the polydisc D instead of D2 to emphasise
the cellular decomposition. Each component D has the point 1 œ D as a 0-cell, the
complement of 1 in the boundary circle as a 1-cell T and the interior D as the 2-cell. It
is convenient to label each cell of Dm by {(I, J), where I parameterises the T -cells and
J the D-cells so that each {(I, J) is a product of |I| T -cells and |J | D-cells, with 0-cells
in m ≠ |I| ≠ |J | coordinates.

Since ZK µ Dm, it has a cell decomposition consisting of {(I, J) for each J œ K and
I fl J = ?, by definition of ZK. Then Cú(ZK) has a basis of {(I, J)ú, dual to {(I, J).
Also Cú(ZK) =

mm
q=0

Cú,2q(ZK) has a bigrading given by

bideg{(I, J)ú = (≠|I|, 2|I| + 2|J |)

since the cellular di�erential preserves the second degree. Using this cell structure, we
have the following Lemma.

Lemma 2.1.19 ([10]). For a simplicial complex K, there is an isomorphism of graded
modules

H(Rú(K)) ≥= Hú(ZK).

Proof. We define a map g : Rú(K) æ Cú(ZK), uIvJ ‘æ {(I, J)ú. This map g is a bijection
of basis elements, and as such is also an isomorphism of bigraded modules. To show
that it is an isomorphism of cochains, we must show g commutes with the di�erentials ”

(the coboundary map for Cú(ZK)) and d (the di�erential for Rú(K)). By construction of
the cellular decomposition {({i},?) is a Ti-cell, the boundary of the Di-cell, {(?, {i}).
Therefore,

”(g(ui)) = ”({({i},?)ú) = ”T ú
i = Dú

i = {(?, {i})ú = g(vi) = g(d(ui))

and
”(g(vj)) = ”({(?, {j})ú) = ”Dú

j = 0 = g(0) = g(d(vj)).

Hence we have the isomorphism as required.

This lemma above helps to prove the stronger case. The proof of Proposition 2.1.20
shows that the map g : Rú(K) æ Cú(ZK) in the proof of Lemma 2.1.19 is an isomorphism
of algebras by explicitly defining a product in Cú(ZK). This proof can be found in [10,
Theorem 4.2.2].
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Proposition 2.1.20 ([10]). For a simplicial complex K on [m] vertices, there is an
isomorphism of graded algebras,

Hú(ZK) ≥= H(Rú(K)) ≥= Tork[m](k[K], k).

2.1.2.3 Hochster’s Theorem

It is evident that the cohomology of moment-angle complexes is given by Tor, but Tor is
di�cult to calculate. Introduced by Hochster [24] in the 1970s, Hochster’s formula has
been an important tool for transitioning between algebraic and combinatorial problems
as it relates the Tor-algebra of a simplicial complex K to the reduced cohomology ÂHú of
full subcomplexes of K.

Theorem 2.1.21 (Hochster’s theorem [24]). For a simplicial complex K on [m], there
is an isomorphism

Tor≠i,2j
k[m] (k[K], k) ≥=

n

Jµ[m] : |J |=j

ÂHj≠i≠1(KJ),

where we define ÂH≠1(K?) = k.

The following proof, which comes from Panov [32], is not Hochster’s original proof.

Proof. We define a multigrading on elements va1
1 . . . va

m

m œ k[m] so that mdeg va1
1 . . . va

m

m =
(2a1, . . . , 2am). This induces a Z ü Nm-multigrading on Tork[m](k[K], k) through the
Koszul complex �[m] ¢ k[K], where mdeg ua1

1 . . . ua
m

m = (≠(a1 + · · · + am), 2a1, . . . , 2am)
for ai either 0 or 1, and mdeg va1

1 . . . va
m

m = (0, 2a1, . . . , 2am) for ai œ N. We will denote
(a1, . . . , am) œ Nm by a. Then

Tor≠i,2j
k[m] (k[K], k) =

n

aœNm : a1+···+a
m

=j

Tor≠i,2a
k[m] (k[K], k).

We also define a multigrading on Rú(K). For J µ [m] whose elements have an order
induced by the order on [m], there is a corresponding Nm-vector. We let the jth
element be 1 if j œ J , and 0 otherwise. We also denote this vector J . Then let every
non-zero monomial uIvL œ Rú(K), I, L µ [m], I fl L ”= ? have multidegree (≠|I|, 2J),
where we regard J = I fi L as a Nm-vector. Since uivi = 0 and v2

i = 0 in Rú(K),
R≠i,2a(K) = 0 for any vector a œ Nm that is not a (0, 1)-vector. By Proposition 2.1.17,
we have an isomorphism of multigraded algebras Tork[m](k[K], k) ≥= H(Rú(K)). Hence
Tor≠i,2a

k[m] (k[K], k) ≥= H≠i,2a(Rú(K)) also vanishes. Therefore it only remains to show that
H≠i,2J (Rú(K)) ≥= ÂH |J |≠i≠1(KJ ). To do this, we will construct an isomorphism of cochain
complexes

m
Jµ[m] Cú(KJ) to Rú(K). To keep track of signs, let Á(j, J) = (≠1)r≠1 for j
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the rth element of J , and for L µ J , let

Á(L, J) =
Ÿ

jœL

Á(j, J).

Each simplicial cochain group Cp(KJ) = Hom(Cp(KJ), k) has a basis of ‰L for a p-
simplex L œ KJ , where ‰L takes the value 1 on L and 0 on any other simplex of KJ .
There is the augmented simplicial chain complex

0 ≠æ k ‘≠æ C0(KJ) d≠æ · · · d≠æ Cp≠1(KJ) d≠æ Cp(KJ) d≠æ . . .

where ‘ is the (co)augmentation map and the simplicial coboundary map d is given by

d(‰L) =
ÿ

jœJ\L,jfiLœK
J

Á(j, j fi L)‰jfiL. (2.7)

We define a k-linear map

f : Cp≠1(KJ) ≠æ Rp≠|J |,2J(K)
‰L ‘≠æ Á(L, J)uJ\LvL.

(2.8)

This is an isomorphism of k-vector spaces, but we will show that with the map k æ
R≠|J |,2J(K) given by 1 ‘æ uJ , we also have an isomorphism of cochain complexes

0 k C0(KJ) . . . Cp≠1(KJ) . . .

0 R≠|J |,2J(K) R1≠|J |,2J(K) . . . Rp≠|J |,2J(K) . . .

‘

≥=

d

≥=

d d

≥=

d d d d

(2.9)
where d : Rp≠1≠|J |,2J(K) æ Rp≠|J |,2J(K) the di�erential of Rú(K) in (2.6).

First we show that f commutes with the di�erentials,

f(d(‰L)) = f

Q

a
ÿ

jœJ\L,jfiLœK
J

Á(j, j fi L)‰jfiL

R

b

=
ÿ

jœJ\L

Á(j, j fi L)Á(j fi L, J)uJ\(jfiL)vjfiL.

We no longer need to include the condition j fi L œ KJ in the sum because vjfiL = 0 if
j fi L /œ KJ . Also,

d(f(‰L)) = d(Á(L, J)uJ\LvL)

= Á(L, J)
ÿ

jœJ\L

Á(j, J \ L)uJ\(jfiL)vjfiL.

By definition of Á, Á(j fi L, J) = Á(j, J) · Á(L, J) and Á(j, j fi L) · Á(j, J) = Á(j, J \ L).
Therefore the above calculations show that fd(‰L) = df(‰L). Hence we have an
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isomorphism of cochain complexes. Taking cohomology, we have the relation ÂHp≠1(KJ ) ≥=
Hp≠|J |,2J(Rú(K)). Let ≠i = p ≠ |J |, then this proves the result.

Theorem 2.1.21 gives us an isomorphism of modules Tork[m](k[K], k) ≥=
m

Jµ[m]
ÂHú(KJ).

In Examples 2.1.15 and 2.1.18, the calculations of Tork[m](k[K], k) and Rú(K) were
complicated. The advantage of using Hochster’s theorem is that the calculations of

m

Jµ[m] : |J |=j

ÂHj≠i≠1(KJ) are significantly easier.

Example 2.1.22. Let K be the boundary of a pentagon as in Figure 2.1. First consider
the first non-trivial reduced cohomology groups, ÂH0(KJ). By Theorem 2.1.21,

Tor≠1,4
k[m](k[K], k) ≥=

n

Jµ[m] : |J |=2

ÂH2≠1≠1(KJ) =
n

Jµ[m] : |J |=2

ÂH0(KJ).

Some subcomplexes KJ on two vertices are contractible; for example the subcomplex
K{1,2} has ÂH0(K{1,2}) = 0. Therefore these full subcomplexes do not contribute to
Tor≠1,4

k[m](k[K], k). This means that we only need to consider the non-contractible full
subcomplexes on two vertices. Hence

Tor≠1,4
k[m](k[K], k) ≥= ÂH0(K{1,3}) ü ÂH0(K{1,4}) ü ÂH0(K{2,3}) ü ÂH0(K{2,5}) ü ÂH0(K{4,5})

≥= k5.

A similar situation occurs with the other cohomology groups. For example,

Tor≠2,6
k[m](k[K], k) ≥= ÂH0(K{1,3,4})

ü ÂH0(K{2,3,5}) ü ÂH0(K{1,2,3}) ü ÂH0(K{1,4,5}) ü ÂH0(K{2,4,5}) ≥= k5

since KJ is contractible for all other J µ [m], |J | = 3. The only other non-zero reduced
cohomology groups are

Tor0,0
k[m](k[K], k) ≥= ÂH≠1(K?) ≥= k and Tor≠3,10

k[m] (k[K], k) ≥= ÂH1(K{1,2,3,4,5}) ≥= k.

Therefore by using Theorem 2.1.21, we have the same result as in Example 2.1.18 but
with much easier computation.

Putting together Proposition 2.1.20 and Theorem 2.1.21, we have an isomorphism of
modules

Hú(ZK) ≥= Tork[m](k[K], k) ≥=
n

Jµ[m]

ÂHú(KJ). (2.10)

However we want an isomorphism of algebras and to understand the cup product.
Therefore we need a product on

m

Jµ[m]
ÂHú(KJ).

For two simplices L = {l0, . . . , lp}, M = {m0, . . . , mq} œ K, L fl M = ?, let L fi M

denote the simplex on the vertices {l0, . . . , lp, m0, . . . , mq}. Then there is a product on
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m
Jµ[m]

ÂHú(KJ) given by Baskakov [6],

Cp≠1(KI) ¢ Cq≠1(KJ) æ Cp+q≠1(KIfiJ),

‰L ¢ ‰M ‘æ
I

cLfiM ‰LfiM if I fl J = ?,

0 otherwise
(2.11)

where
cLfiM = Á(L, I) Á(M, J) ’ Á(L fi M, I fi J) (2.12)

and
’ =

Ÿ

kœI\L

Á(k, k fi J \ M). (2.13)

For any simplicial complex K, if I, J µ [m] and I fl J = ?, then KIfiJ is a subcomplex of
KI ú KJ . Then the product in (2.11) is the restriction to KIfiJ of the standard product

Cp≠1(KI) ¢ Cq≠1(KJ) æ Cp+q≠1(KI ú KJ)

where the increase in degree from (p ≠ 1) + (q ≠ 1) = p + q ≠ 2 to the degree p + q ≠ 1
comes from the fact that |KI | ú |KJ | ƒ �(|KI | · |KJ |), where � denotes suspension, ·
denotes the smash product and |K| is the geometric realisation of K.

Proposition 2.1.23 ([8]). There is an isomorphism of algebras Tork[m](k[K], k) ≥=
m

Jµ[m]
ÂHú(KJ).

Proof. Theorem 2.1.21 says we already have an isomorphism of modules. In that proof,
the map f : Cp≠1(KI) æ Rp≠|I|,2I(K) in (2.8) takes ‰L ‘æ Á(L, I) uI\LvL. It only remains
to show that for any ‰L œ Cp≠1(KI) and ‰M œ Cq≠1(KJ), f(‰L‰M ) = f(‰L)f(‰M ). If
I fl J = ?, then

f(‰L‰M ) = f(cLfiM ‰LfiM )

= Á(L fi M, I fi J)cLfiM uIfiJ\LfiM vLfiM

= Á(L fi M, I fi J)2Á(L, I) Á(M, J) ’ uIfiJ\LfiM vLfiM

= Á(L, I) Á(M, J) uI\LuJ\M vLfiM

= (Á(L, I) uI\LvL) · (Á(M, J) uJ\M vM )

= f(‰L)f(‰M ).

If I fl J ”= ?, then Á(L, I) Á(M, J) ’ uIfiJ\LfiM vLfiM = 0 in Rú(K) since u2
i = uivi =

v2
i = 0 for any i œ [m]. Hence f(‰L‰M ) = 0 = f(‰L)f(‰M ).

Therefore by Proposition 2.1.20, the cup product in Hú(ZK) corresponds to the product
in (2.11). Assembling Propositions 2.1.20, 2.1.23 and Theorem 2.1.21, there is the
following theorem.

Theorem 2.1.24 ([8]). There is an isomorphism of cochains ÂCú≠1(KJ ) æ Cú≠|J |,2J (ZK) µ
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Cú+|J |(ZK), inducing an isomorphism of algebras

Hú(ZK) ≥=
n

Jµ[m]

ÂHú(KJ)

where ÂH≠1(K?) = k and

Hp(ZK) ≥=
n

Jµ[m]

ÂHp≠|J |≠1(KJ).

Example 2.1.25. Let L1 and L2 be the disjoint pair of points {1, 2} and {3, 4} respec-
tively. Let K = L1 ú L2 be the boundary of a square. By Theorem 2.1.24, the non-zero
cohomology groups are

H0(ZK) ≥= ÂH≠1(K?)

H3(ZK) ≥= ÂH0(K{1,2}) ü ÂH0(K{3,4})

H6(ZK) ≥= ÂH1(K{1,2,3,4}).

More specifically, let – = [‰1] œ ÂH0(K{1,2}) and let — = [‰3] œ ÂH0(K{3,4}). Then by
Proposition 2.1.23, the cup product –— œ Hú(ZK) is represented by the cochain

Á(1, {1, 2}) Á(3, {3, 4}) ’ Á({1, 3}, {1, 2, 3, 4})‰{1,3} = ‰{1,3} œ C1(K).

The cohomology class –— is non-zero since it is a generator of ÂH1(K). Equivalently
by Theorem 2.1.24, this product –— could be represented by the product of [u2v1] and
[u4v3] in H≠1,4(Rú(K)), given by [u24v13] œ H≠2,8(Rú(K)). This is the only non-zero cup
product, therefore thus we see that Hú(ZK) has the same cohomology ring structure as
Hú(S3 ◊ S3).

For a cochain a œ Cp(KJ), let the support of a be the set Sa of p-simplices ‡ œ KJ such
that

a =
ÿ

‡œS
a

a‡‰‡

for a nontrivial coe�cient a‡. For a cohomology class – œ ÂHp(KJ), we say that – is
supported on KJ .

Lemma 2.1.26. For a simplicial complex K, let a œ Cp(KI) and b œ Cq(KJ). Let the
order of vertices in K be such that i < j for every i œ I and j œ J . Suppose

a =
ÿ

‡œS
a

a‡‰‡ and b =
ÿ

·œS
b

b· ‰·

for p-simplices ‡ œ Sa µ KI , q-simplices · œ Sb µ KJ and coe�cients a‡, b· . Then the
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product ab œ Cp+q+1(KIfiJ) is given by

ab = (≠1)|I|(q+1) ÿ

‡œS
a

ÿ

·œS
b

a‡b· ‰‡fi· .

Proof. By (2.12), the product ab is given by

ab =

Q

a
ÿ

‡œS
a

a‡‰‡

R

b

Q

a
ÿ

·œS
b

b· ‰·

R

b

=
ÿ

‡œS
a

ÿ

·œS
b

a‡ b· Á(‡, I) Á(·, J) ’ Á(‡ fi ·, I fi J) ‰‡fi·

where ’ = 1 since all vertices of I are ordered before vertices of J in K.

By the definition of Á, and since all elements I are ordered before J , Á(‡ fi ·, I fi J) =
Á(‡, I)Á(·, I fi J). Furthermore, for each q-simplex · = {i1, . . . , iq+1} µ J ,

Á(·, I fi J) =
Ÿ

jœ{1,...,q+1}
Á(ij , I fi J) =

Ÿ

jœ{1,...,q+1}
(≠1)|I|Á(ij , J)

= (≠1)|I|(q+1) Ÿ

jœ{1,...,q+1}
Á(ij , J)

= (≠1)|I|(q+1)Á(·, J).

Therefore, since Á(I, J)2 = 1 for any sets I, J ,

ab =
ÿ

‡œS
a

ÿ

·œS
b

a‡b· (≠1)|I|(q+1)‰‡fi· .

Example 2.1.27. Let K be the boundary of a pentagon as in Figure 2.1. Consider the
non-zero cohomology classes – œ ÂH0(K1,2,3) and — œ ÂH0(K4,5), which are represented by
the cocycles

a = ‰1 + ‰2 œ C0(K1,2,3) and b = ‰5 œ C0(K4,5)

respectively. Then the product ab œ C1(K1,2,3,4,5) is given by

ab = (≠1)|{1,2,3}|(0+1) (‰1,5 + ‰2,5) = ≠‰1,5

since the cochain ‰2,5 is zero because there is no edge {2, 5} in K.

It is important for Lemma 2.1.26 that the vertices I come before the vertices J . For
example, suppose the vertices 3 and 4 were labelled the other way around. Then
a = ‰1 + ‰2 œ C0(K1,2,4) and b = ‰5 œ C0(K3,5), and for each i œ {1, 2},

’ = Á(i, {i, 3}) Á(4, {3, 4}) = ≠1.
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So by (2.12), the product ab œ C1(K1,2,3,4,5) is given by

ab =Á(1, {1, 2, 4}) Á(5, {3, 5}) ’ Á({1, 5}, {1, 2, 3, 4, 5}) ‰1,5

+ Á(2, {1, 2, 4}) Á(5, {3, 5}) ’ Á({2, 5}, {1, 2, 3, 4, 5}) ‰2,5

=1 · (≠1) · (≠1) · 1 ‰1,5 = ‰1,5.

2.2 Massey Products

In knot theory, the linking number of a knot or link is known to correspond to the cup
product in cohomology. However, the linking number cannot distinguish all knots/links.
For example, the complement of Borromean rings (in S3) and the complement of three
disjoint rings both have the same cohomology ring, so the cup product cannot distinguish
them. When Massey [38] first introduced his triple products in 1957, he demonstrated
that any triple Massey product of three disjoint rings was trivial but that there was a
non-trivial triple product for the Borromean rings. Hence triple Massey products are a
helpful invariant.

Triple Massey products are secondary operations. In 1958 they were generalised to
higher Massey products by Kraines [29] in such a way that cup products are two-Massey
products (up to sign). In this sense, Massey products can be thought of as generalisations
of standard cup products. In general, higher Massey products are very di�cult to
compute, being higher cohomology operations.

Historically, Massey products have long been studied in algebra. For a graded k-vector
space V =

m
i V i with finite-dimensional graded components, the Poincaré series is

PV (t) =
q

i>0 dimk V iti. In 1962, Golod studied the Poincaré series of TorR(k, k) where
R is a Noetherian local ring. He gave an expression [21] for the Poincaré series for any
R where all Massey products in the Koszul complex are trivial, and such rings were
termed Golod. In Sections 2.1.2, we saw that the cohomology of the Koszul complex
(�[m]¢k[K]) is isomorphic to

m
Jµ[m]

ÂHú(KJ ). This lead to the study of Golod simplicial
complexes (such as in [22]), whose face ring k[K] is Golod, that is, all Massey products
in Tork[m](k[K], k) = H(�[m] ¢ k[K]) are trivial.

Kähler manifolds are complex manifolds with a Hermitian metric whose associated
di�erential two-form is closed. There are many expository texts on Kähler manifolds,
such as [5]. It turned out that many symplectic manifolds have a Kähler structure and it
was not until Thurston in 1976 [37] that an example of a non-Kähler compact symplectic
manifold was found. Now there are more known non-Kähler manifolds, but in general
it is still hard to detect them; see [3] for an introduction. Deligne, Gri�ths, Morgan,
and Sullivan [16] showed that all Kähler manifolds are formal. They also showed that
Massey products are also an obstruction to formality. That is, if there is a non-trivial
Massey product, then the space is not formal [16]. Therefore, the existence of non-trivial
Massey products in a manifold gives an explicit example of a non-Kähler manifold.
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2.2.1 Introduction

We first define Massey products before calculating them via combinatorics in Section 2.2.2.
Since Massey introduced triple Massey products, there have been a few alternative
definitions of Massey products that di�er at most by sign. The definition given here
follows [29] and [31] which, in particular, di�ers by a sign to the definition of the triple
Massey product given in [11].

Definition 2.2.1. Let (A, d) be a di�erential graded algebra with classes –i in Hp
i(A, d)

for 1 6 i 6 n. Let ai,i œ Ap
i be a representative for –i. A defining system associated

to È–1, · · · , –nÍ is a set of elements (ai,k) for 1 6 i 6 k 6 n and (i, k) ”= (1, n) such that
ai,k œ Ap

i

+···+p
k

≠k+i and

d(ai,k) =
k≠1ÿ

r=i

ai,rar+1,k

where ai,r = (≠1)1+deg a
i,r ai,r.

To each defining system of È–1, · · · , –nÍ, the associated cocycle is

n≠1ÿ

r=1
a1,rar+1,n œ Ap1+···+p

n

≠n+2

and indeed, this can easily be directly shown to be a cocycle.

The n-Massey product È–1, · · · , –nÍ is the set of cohomology classes of associated cocycles
for all possible defining systems.

For example for classes –i = [ai] œ Hp
i(A, d), the triple Massey product È–1, –2, –3Í œ

Hp1+p2+p3≠1[A] is defined when –1–2 = 0 and –2–3 = 0. Since these cup products
are zero, there exist choices of cochains a12 œ Ap1+p2≠1 and a23 œ Ap2+p3≠1 such that
d(a12) = (≠1)1+p1a1a2 and d(a23) = (≠1)1+p2a2a3. Then the triple Massey product
È–1, –2, –3Í œ Hp1+p2+p3≠1[A] is the set of classes represented by cochains

(≠1)p1+1a1a23 + (≠1)p1+p2a12a3 œ Ap1+p2+p3≠1.

This cochain is a cocycle since

d((≠1)p1+1a1a23 + (≠1)p1+p2a12a3)

= (≠1)p1+1 (da1 · a23 + (≠1)p1a1 · da23) + (≠1)p1+p2
1
da12 · a3 + (≠1)p1+p2≠1a12 · da3

2

= (≠1)a1((≠1)1+p2a2a3) + (≠1)p1+p2(≠1)1+p1a1a2a3

= (≠1)p2a1a2a3 + (≠1)p2+1a1a2a3 = 0.

Kraines [25, Theorem 3] showed that for each –i, the choice of representing cocycle ai

does not change the Massey product.

Theorem 2.2.2 ([25]). A Massey product È–1, . . . , –nÍ depends only on –1, . . . , –n.
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That is, for any i œ {1, . . . , n} and any b œ Ap
i

≠1,

È[a1], . . . , [ai + d(b)], . . . , [an]Í = È[a1], . . . , [ai], . . . , [an]Í.

However the choice of the cochains ai,k is very important for Massey products.

Definition 2.2.3. An n-Massey product is called trivial if it contains 0.

Therefore a Massey product is trivial if there exists a defining system (ai,k) such that
[Ê] = 0, where Ê is the associated cocycle.

Definition 2.2.4. The indeterminacy of a n-Massey product is the set of di�erences
between elements in È–1, · · · , –nÍ.

Lemma 2.2.5. In a triple Massey product È–1, –2, –3Í, any two elements di�er by an
element in

–1 · Hp2+p3≠1[A] + –3 · Hp1+p2≠1[A] µ Hp1+p2+p3≠1[A].

Proof. Let [Ê], [ÊÕ] œ È–1, –2, –3Í, [Ê] ”= [ÊÕ] and suppose they are represented by cocycles
(≠1)p1+1a1a23 +(≠1)p1+p2a12a3 and (≠1)p1+1a1aÕ

23 +(≠1)p1+p2aÕ
12a3 respectively. Define

cocycles x = a12 ≠ aÕ
12 œ Ap1+p2≠1 and y = a23 ≠ aÕ

23 œ Ap2+p3≠1. The cohomology class
[Ê] ≠ [ÊÕ] is represented by the cocycle (≠1)p1+1a1y + (≠1)p1+p2xa3. Then cup products
on the level of cochains induce cup products in cohomology, and hence [Ê] ≠ [ÊÕ] œ
–1 · Hp2+p3≠1[A] + –3 · Hp1+p2≠1[A].

Therefore for the triple Massey product, the indeterminacy is the set in Lemma 2.2.5. If
a cohomology class [Ê] œ È–1, –2, –3Í is contained in the indeterminacy, then [Ê] di�ers
from 0 only by an element in the indeterminacy. Thus there is another choice of cochains
a12, a23 such that the associated cocycle is zero. Hence 0 œ È–1, –2, –3Í. In general, we can
say a triple Massey product is trivial if and only if there is a choice of cochains a12, a23 such
that [Ê] = [(≠1)p1+1a1a23 + (≠1)p1+p2a12a3] and [Ê] œ – · Hp2+p3≠1[A] + “ · Hp1+p2≠1[A].
There is no equivalent “nice” expression for the indeterminacy of higher Massey products.
For example, matric Massey products are a generalisation of Massey products; they
are studied thoroughly by May [30]. In [30, Proposition 2.3], May shows that elements
in the indeterminacy of an n-fold matric Massey product are elements in a certain
(n ≠ 1)-fold matric Massey product. In practice, this is a di�cult expression to work
with for calculations. This makes detecting non-trivial higher Massey products harder
than non-trivial triple Massey products.

Importantly, Massey products are homotopy invariants [25, Property 2.1].

Theorem 2.2.6 ([25]). Let A, B be di�erential graded algebras with a map f : A æ B.
Let fú be the induced homomorphism fú : Hú(A) æ Hú(B). Then for È–1, . . . , –nÍ µ
Hú(A),

fúÈ–1, . . . , –nÍ µ Èfú–1, . . . , fú–nÍ.
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If fú is an isomorphism, then fúÈ–1, . . . , –nÍ = Èfú–1, . . . , fú–nÍ.

2.2.2 Massey products via combinatorics

Calculating Massey products in the cohomology of moment-angle complexes can be done
through detecting Massey products in the corresponding Tor-algebra. By Theorem 2.1.24,
we know there are isomorphisms of algebras

Hú(ZK) ≥= Hú(Rú(K)) ≥=
n

Jµ[m]

ÂHú(KJ).

Therefore by Theorem 2.2.6, a Massey product in Hú(ZK) can also be expressed in terms
of

m

Jµ[m]
ÂHú(KJ). Recall that for a œ Cú(ZK), a = (≠1)1+deg aa.

Definition 2.2.7. For any element – œ ÂHp(KJ ) µ
m

Jµ[m]
ÂHú(KJ ), let deg(–) = p+|J |+1.

Also for a œ Cp(KJ), let a = (≠1)1+deg aa = (≠1)2+p+|J |a.

The map f : Cp(KJ) æ Rp+1≠|J |,2|J |(K) given in (2.8) is a k-linear isomorphism. There-
fore, for a œ Cp(KJ), the degree of f(a) œ Rp+1≠|J |,2|J |(K) is p + |J | + 1 and

f(a) = (≠1)1+deg f(a)f(a) = f((≠1)1+deg f(a)a)

= f((≠1)2+p+|J |)a) = f(a).

Let È–1, . . . , –nÍ µ Hú(ZK) where each class –i œ Hp
i

+|J
i

|+1(ZK) corresponds to –i œ
Hp

i(KJ
i

). Let ai œ Cp
i(KJ

i

) be a cocycle representative for –i. Then using the product
given in (2.11), the cochains ai,k such that d(ai,k) =

qk≠1
r=i ai,rar+1,k are elements ai,k œ

Cp
i

+···+p
k(KJ

i

fi···fiJ
k

). Using the degree from Definition 2.2.7,

deg(ai,k) = pi + · · · + pk + |Ji fi · · · fi Jk| + 1

= (pi + |Ji| + 1) + · · · + (pk + |Jk| + 1) ≠ k + i

= deg(ai) + · · · + deg(ak) ≠ k + i

which matches the definition of a defining system in Definition 2.2.1. Hence for a defining
system (ai,k) µ Cú(ZK), we have a corresponding defining system (ai,k) µ

m

Jµ[m]
Cú(KJ).

Furthermore, the associated cocycle Ê œ Cp1+···+p
n

+|J1fi···fiJ
n

|+2(ZK) corresponds to the
associated cocycle Ê œ Cp1+···+p

n

+1(KJ1fi···fiJ
n

).

Let È–1, –2, –3Í be a triple Massey product on –i œ Hp
i(ZK) for i = 1, 2, 3. By

Lemma 2.2.5, the indeterminacy of a triple Massey product is given by –1 · Hp2+p3(ZK) +
–3 · Hp1+p2(ZK). Then Theorem 2.1.24 implies that each class –i corresponds to a class
–i œ ÂHp

i

≠|J
i

|≠1(KJ
i

) and the indeterminacy of È–1, –2, –3Í from Lemma 2.2.5 becomes

–1 · ÂHp2+p3≠|J2|≠|J3|≠2(KJ2fiJ3) + –3 · ÂHp1+p2≠|J1|≠|J2|≠2(KJ1fiJ2). (2.14)
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Example 2.2.8. Consider a simplicial complex K as shown in Figure 2.2. Let –1, –2, –3 œ
H≠1,4(ZK) be represented by cocycles a1 = ≠u1v2, a2 = ≠u3v4 and a3 = ≠u5v6

respectively. Then –1–2, –2–3 œ H≠2,8(ZK) but the cochain products a1a2 and a2a3

are not zero and it is potentially hard to show that –1–2 = 0 = –2–3 in Rú(K).
Alternatively, by the map in (2.8), a1 corresponds to ‰2 œ C0(K12). Similarly, we
let a2 = ‰4 œ C0(K34) and a3 = ‰6 œ C0(K56). So –1 œ ÂH0(K12), –2 œ ÂH0(K34),
–3 œ ÂH0(K56). Then –1–2 œ ÂH1(K1234) and –2–3 œ ÂH1(K3456) by the product induced
by (2.11). Since the full subcomplexes K1234 and K3456 are paths in this simplicial
complex,

ÂHp(K1234) = ÂHp(K3456) = 0 for all p œ Z. (2.15)

Therefore the cup products –1–2 and –2–3 are zero and the triple Massey product
È–1, –2, –3Í is defined for this simplicial complex.

1

3 5

2

4

6

Figure 2.2: A simplicial complex for which ZK has a non-trivial 3-Massey product.

Let a1,2 œ C0(K1234) be the cochain ≠‰2. Then d(a1,2) = ‰24 = a1a2. Similarly let
a2,3 œ C0(K3456) be the cochain ≠‰4. So d(a2,3) = ‰46 = a2a3. Then we have a defining
system (ai,k), 1 6 i 6 k 6 3, (i, k) ”= (1, 3). Since 1 + deg ai,k is even for all (i, k), the
associated cocycle Ê is given by a1a2,3 + a1,2a3 = ≠‰2‰4 ≠ ‰2‰6 = ≠‰2‰4 = ≠‰24. The
cohomology class [Ê] is a generator of H1(K), and so [Ê] ”= 0.

By (2.14), the indeterminacy of this triple Massey product is given by –1 · ÂH0(K3456) +
–3 · ÂH0(K1234). By (2.15), this is zero, and therefore È–1, –2, –3Í contains only a single
element. In this case, that element is [Ê], and hence È–1, –2, –3Í is non-trivial.

2.3 Massey Products in Toric Topology

The first family of non-trivial Massey products in the cohomology of moment-angle
complexes were found by Baskakov [7] in 2003. Like these first examples, most of the
existing results about non-trivial Massey products in moment-angle complexes are for
the case of triple Massey products only. Other results are about n-Massey products for
n > 3 but where the classes are in the lowest possible degree. This section summarises
these results.
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2.3.1 The first Massey products in moment-angle complexes

Before summarising some examples of Massey products in moment-angle complexes, we
define truncation in polytopes.

Definition 2.3.1. Let P µ Rn be a polytope and let F be a face of P . Let H µ Rn

be a hyperplane that does not include any vertex of P and suppose H separates all
vertices of F from the rest of the vertices in P . Let H1, H2 be the half spaces defined by
H and suppose H2 is the half space such that F µ P fl H2. We say that the polytope
ÂP = P fl H1 is obtained from P by a hyperplane cut or face truncation.

Example 2.3.2. The 2-truncated cube in Figure 2.3a is obtained from the 3-dimensional
cube by two edge truncations.

Baskakov’s [7] infinite family of non-trivial triple Massey products were motivated by the
discovery of a non-trivial Massey product in the cohomology of a moment-angle manifold
ZP where P is a 2-truncated cube.

F1

F3

F5

F7

F8

F4 æ

Ω F2

  F6

(a) A cube truncated at two edges

1

3

5

4

6

7

8
2

(b) The one-skeleton of KP when P is
a 2-truncated cube.

Figure 2.3

Example 2.3.3. Let P be a cube, a simple 3-polytope, truncated at two edges as
in Figure 2.3a. Then KP = ˆP ú is a 2-dimensional simplicial complex with vertices
1, . . . , 8. We label the facets of P and the vertices of KP so that pairwise adjacent facets
Fi1 , . . . , Fi

k

in P correspond to simplices {i1, . . . , ik} in KP . Then KP is as in Figure 2.3b
and the Stanley-Reisner ideal of KP is

IK
P

= (v1v2, v3v4, v5v6, v1v3, v2v7, v4v7, v4v5, v3v8, v6v8, v7v8).

Let K be the full subcomplex of KP on the vertices {1, . . . , 6}, corresponding to the
original six facets of the 3-cube. By Proposition 2.1.9, H≠1,4(ZK) µ H≠1,4(ZK

P

). Let
–1, –2, –3 œ H≠1,4(ZK) be represented by cocycles a1 = ‰1 œ C0(K12), a2 = ‰4 œ
C0(K34) and a3 = ‰6 œ C0(K56). Then a1a2 = 0 since {1, 4} /œ K. Also a2a3 = ‰46. So
one set of choices for a12 and a23 is 0 and ‰6, respectively. In this way, the triple Massey
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product È–, —, “Í contains the cohomology class [Ê] represented by the cocycle

Ê = (≠1)3+1a1a23 + (≠1)4+2a12a3 = a1a23 = ‰1‰6 = ‰16

which is not a coboundary in C1(K). Therefore Ê is non-zero.

Furthermore, by (2.14) the indeterminacy is given by –1 · ÂH0(K3456) + –3 · ÂH0(K1234).
Since both K1234 and K3456 are contractible, the indeterminacy is zero. Hence È–, —, “Í µ
Hú(ZK

P

) is non-trivial.

In this example, a non-trivial triple Massey product was constructed by truncating two
edges in a cube, which is the product of three unit intervals. We wish to generalise
this construction in order to create non-trivial higher Massey products in moment-angle
complexes. By Lemma 2.1.5, the product of simple polytopes corresponds to the join
of the relevant simplicial complexes. Additionally, truncating faces in a polytope P

corresponds to performing stellar subdivision on a simplicial complex KP .

For a simplicial complex K, the star and link of a simplex I œ K are

stK I = {J œ K : I fi J œ K}

lkK I = {J œ K : I fi J œ K, I fl J = ?}.

Furthermore, the boundary of the star of I œ K is

ˆ stK I = {J œ K : I fi J œ K, I ”µ J}.

Definition 2.3.4. The stellar subdivision of K at I is

ssI K = (K \ stK I) fi (cone ˆ stK I).

Stellar subdivision does not change homotopy type. If K is a triangulation of an n-sphere
on m vertices, then ssI K is also a triangulation of Sn but on m + 1 vertices. So both ZK

and Zss
I

K are manifolds, (m+n+1) and (m+n+2)-dimensional manifolds, respectively.
Therefore, if K is a triangulation of a sphere and we find a non-trivial Massey product in
Hú(Zss

I

K), then Zss
I

K is an example of a non-formal/non-Kähler manifold.

Example 2.3.5. Let K be the boundary of an octahedron as in Figure 2.4a. Consider
the simplex I = {1, 3} œ K. The star stK I has maximal faces {1, 3, 5} and {1, 3, 6},
see Figure 2.4b. Then ˆ stK I = {{1, 5}, {1, 6}, {3, 5}, {3, 6}}. Thus cone ˆ stK I has four
maximal 2-simplices on the vertex set {1, 3, 5, 6, 7}, where {7} is the added cone-vertex
(see Figure 2.4c). Then ssI K is a simplicial complex on seven vertices.

The simplicial complex KP in Figure 2.3b is obtained from the octahedron in Figure 2.4a
by stellar subdividing at the edges {1, 3} and {4, 5}. These stellar subdivisions correspond
to truncating the intersection of the facets F1 and F3 and the intersection of F4 and F5
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1

3

5

4

6

2

(a) K is on 6 vertices

1 3
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6

(b) Star of the edge {1, 3}

3

6

1

7

5

(c) Cone on ˆ stK{1, 3}

Figure 2.4: Components of stellar subdivision on the boundary of an octahedron

in a 3-cube to obtain Figure 2.3a. Following Example 2.3.3, Baskakov generalised the
construction of this cube for other moment-angle manifolds using stellar subdivision.

Construction 2.3.6 (Baskakov). Let Ki be a triangulation of an (ni ≠ 1)-dimensional
sphere Sn

i

≠1 on a set of mi vertices, Vi, for i = 1, 2, 3. Let K = K1 ú K2 ú K3 be the join
of these three spheres, so that K is a triangulation of an (n ≠ 1)-dimensional sphere on m

vertices, for n = n1 + n2 + n3, m = m1 + m2 + m3. Choose maximal simplices I1 œ K1,
I2, I Õ

2 œ K2 such that I2 fl I Õ
2 = ?, and I3 œ K3. Let ÂK be obtained from K by stellar

subdivisions,
ÂK = ssI1fiI2

1
ssIÕ

2fiI3 K
2

.

Therefore ÂK is a triangulation of a (n ≠ 1)-dimensional sphere on m + 2 vertices.

Theorem 2.3.7 ([7]). Let –i œ Hn1≠m1,2m1(ZÂK) correspond to –i œ ÂHn
i

≠1( ÂKV
i

) for
i = 1, 2, 3. Then È–1, –2, –3Í µ Hn1+m1+n2+m2+n3+m3≠1(ZÂK) is defined and non-trivial.

Proofs of Theorem 2.3.7 can be found in [7] or [11], or later in Example 3.1.16. In
particular, by the expression in (2.14), the indeterminacy in this case is given by

–1 · ÂHn2+n3≠m2≠m3≠4( ÂKV2fiV3) + –3 · ÂHn1+n2≠m1≠m2≠4( ÂKV1fiV2).

In the construction of ÂK, we have that
1
ssIÕ

2fiI3 K2 ú K3
2

fl
3 ¶

stKI1 fi I2

4
= ?. Therefore

ssIÕ
2fiI3 K2 ú K3 µ ÂK is a full subcomplex of ÂK. Hence ÂKV2fiV3 =

1
ssIÕ

2fiI3 K2 ú K3
2

V2fiV3
.

Furthermore, since the star of a simplex is connected and K2 ú K3 is homotopy equivalent
to a (n2 +n3 ≠1)-sphere,

1
ssIÕ

2fiI3 K2 ú K3
2

V2fiV3
has the homotopy type of a (n2 +n3 ≠1)-

ball. Therefore ÂHú( ÂKV2fiV3) = 0. The same arguments are true for ÂKV1fiV2 , so similarly
ÂHú( ÂKV1fiV2) = 0. Hence the indeterminacy for È–1, –2, –3Í is always trivial. Thus to
prove that È–1, –2, –3Í is non-trivial, it is su�cient to find only one non-zero class in
È–1, –2, –3Í.

In general, showing that a Massey product is non-trivial is significantly easier when the
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indeterminacy is trivial. Trivial indeterminacy implies that there is only one element in
the Massey product, thus it is su�cient to only check if that element is zero or non-zero.
In many cases, we do not know if the indeterminacy is trivial or not, and thus calculating
non-trivial Massey products is more di�cult than in this example.

2.3.2 A classification of triple Massey products in lowest degree

Baskakov’s family of examples proved that moment-angle complexes can have non-trivial
Massey products in their cohomology. Therefore moment-angle complexes have more
“complexity” than was previously known. The examples also set out a new interpretation
of Massey products in combinatorial terms. We give a combinatorial classification of
triple Massey products of three dimensional classes in Hú(ZK). This classification is
largely based on a result by Denham and Suciu, but improves on [17, Theorem 6.1.1] by
considering Massey products with non-trivial indeterminacy.

Before classifying lowest-degree triple Massey products in moment-angle complexes, we
first consider examples of non-trivial triple Massey products with non-trivial indetermi-
nacy.

1

2

3

4

5

6

Figure 2.5: A simplicial complex that corresponds to a Massey product with non-trivial
indeterminacy.

Example 2.3.8. Let K be the graph in Figure 2.5, where the dashed edge is optional.
Let –1, –2, –3 œ H3(ZK) correspond to –1 = [‰1] œ ÂH0(K12), –2 = [‰3] œ ÂH0(K34),
–3 = [‰5] œ ÂH0(K56). Since ÂH1(K1234) = 0 and ÂH1(K3456) = 0, the products –1–2 œ
ÂH1(K1234) and –2–3 œ ÂH1(K3456) are zero.

A cochain a12 œ C0(K1234) such that d(a12) = ‰1‰3 = 0 is of the form a12 = c1‰3 +
c2(‰1 + ‰4 + ‰2), c1, c2 œ k. A cochain a23 œ C0(K3456) such that d(a23) = ‰3 · ‰5 = ‰35

is of the form a23 = c3‰4 + c4(‰6 + ‰3 + ‰5) + ‰5, c3, c4 œ k, where c3 = c4 if {4, 6} œ K.
The associated cocycle Ê œ C1(K) is

Ê = a1a23 + a12a3 = c3‰14 + c4(‰16 + ‰15) + ‰15 + c1‰35 + c2(‰15 + ‰25).

Since d(‰5) = ‰15 + ‰35 + ‰25 and d(‰1) = ≠‰16 ≠ ‰14 ≠ ‰15 for ‰1, ‰5 œ C1(K),

Ê = (c3 ≠ c4)‰14 ≠ c4d(‰1) + ‰15 + (c1 ≠ c2)‰35 + c2d(‰5).
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Therefore [Ê] = [(c3 ≠ c4)‰14 + ‰15 + (c1 ≠ c2)‰35] ”= 0 for any c1, c2, c3, c4 œ k. By
Hochster’s formula, a12 œ C0(K1234), a23 œ C0(K3456) and [Ê] œ H1(K) correspond to
a12, a23 œ C5(ZK) and [Ê] œ H8(ZK), respectively. Hence È–1, –2, –3Í µ H8(ZK) is
non-trivial and has non-trivial indeterminacy, given by –1 · ÂH0(K3456) + –3 · ÂH0(K1234).
These calculations are similar to Example 2.2.8. In that case, the triple Massey product
only contains one (non-zero) class, so the indeterminacy is trivial.

The simplicial complexes in Example 2.3.8 are also the last two graphs in Figure 2.6.
We will show that all non-trivial triple Massey products of the form È–1, –2, –3Í for
–i œ H3(ZK) are classified by these eight graphs.

Figure 2.6: The obstruction graphs

Lemma 2.3.9. None of the graphs in Figure 2.6 is isomorphic to another.

Proof. Label the eight graphs a, b, c, d along the top row and e, f, g, h along the bottom.
Two graphs are not isomorphic if their vertices have di�erent valencies. For each graph,
we list the valency of the vertices.

a : 3, 3, 2, 2, 2, 2 b : 3, 3, 3, 3, 2, 2 c : 3, 3, 3, 3, 2, 2 d : 4, 3, 3, 3, 3, 2

e : 3, 3, 3, 3, 3, 3 f : 4, 4, 3, 3, 3, 3 g : 4, 3, 3, 3, 3, 2 h : 3, 3, 3, 3, 2, 2

Thus graphs a, e, f are not isomorphic to any of the other graphs. Also the graphs d and
g are not isomorphic because the vertices of valency 2 and 4 are adjacent in g but not
adjacent in d. The graph c is di�erent to b, h because the two vertices of valency 2 are
adjacent in graph c but not adjacent in b or h. The graph b is di�erent to h because the
two vertices of valency 2 are at a minimal distance of 2 from each other, that is, there is
one vertex in between them in b. In h, these two vertices are at a minimal distance of 3
from each other. Therefore each of these graphs is not isomorphic to another.

Denham and Suciu [17, Theorem 6.1.1] showed that the first 6 graphs in Figure 2.6
classify non-trivial Massey products È–1, –2, –3Í for –i œ H3(ZK) but the proof works
only when the indeterminacy is trivial. The following result is based on that Theorem,
but also considers the case when the triple Massey product has non-trivial indeterminacy.

Theorem 2.3.10. A Massey product È–1, –2, –3Í µ H8(ZK) for –1, –2, –3 œ H3(ZK) is
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defined and non-trivial if and only if the one-skeleton K(1) of K contains a full subcomplex
isomorphic to a graph in Figure 2.6.

Proof. As ZK
J

retracts o� ZK, it is su�cient to prove Theorem 2.3.10 when K has six
vertices. Let K(1) be a graph in Figure 2.6. Then the arguments to find non-trivial
Massey products in Examples 2.2.8 and 2.3.8 apply to K(1). Also, these calculations are
not a�ected by 2-simplices in K, and dim(K) 6 2. Thus È–1, –2, –3Í is non-trivial.

Conversely, suppose È–1, –2, –3Í is non-trivial for –1, –2, –3 œ H3(ZK). Let G on [6] be
the edge complement of K(1), so {i, j} œ G if and only if {i, j} /œ K. We will show that
G is a graph (a) or (b) in Figure 2.7, where dashed edges are optional.

By Theorem 2.1.24,

H3(ZK) = H≠1,4(ZK) ü H≠3,6(ZK) ü . . .

≥=
n

Jµ[m],|J |=2

ÂH0(KJ) ü
n

Jµ[m],|J |=3

ÂH≠1(KJ) ü . . .

≥=
n

Jµ[m],|J |=2

ÂH0(KJ).

Therefore there are full subcomplexes KS
i

for Si µ [m], |Si| = 2 such that –i corresponds
to –i œ ÂH0(KS

i

). Since È–1, –2, –3Í is non-trivial, Si fl Sj = ? for i ”= j. Let S1 = {1, 2},
S2 = {3, 4}, S3 = {5, 6}. Since {v1, v2} /œ K for any v1, v2 œ Si, G contains the edges
{1, 2}, {3, 4}, {5, 6}. Since –i–i+1 = 0, KS

i

fiS
i+1 does not contain a cycle for i = 1, 2.

Thus there exist edges {v1, v2}, {vÕ
2, v3} œ G for vi, vÕ

i œ Si.

1

2

3 4

5

6

(a)
1

2

3 4

5

6
(b)

Figure 2.7: Graph complements G, dashed edges optional.

Suppose {v1, v2}, {v2, v3} œ G for vi œ Si. Let a1 = ‰v1 œ C0(K12), a2 = ‰v2 œ C0(K34),
a3 = ‰v3 œ C0(K56) be representing cocycles for –1, –2, –3. So a1a2 = 0 and a2a3 = 0.
For a12 = 0 = a23, Ê = 0, which contradicts the non-triviality of È–1, –2, –3Í. Thus
{v1, v2}, {v2, v3} /œ G for vi œ Si.

Label the vertices of G so that there is a path 1, . . . , 6. Consider the case when
{1, 3}, {4, 6} /œ G. Since {v1, v2}, {v2, v3} /œ G for vi œ Si, vertices 3 and 4 have valency
two. Suppose {2, 5} œ G. Let ‰2 œ C0(K12), ‰3 œ C0(K34), ‰5 œ C0(K56) represent
–1, –2, –3, respectively. Since a1a2 = 0, let a12 = 0 and let a23 = ‰5. Then Ê = ‰25 is
zero, contradicting the non-triviality of È–1, –2, –3Í. Hence {2, 5} /œ G and G is graph
(a), where {1, 5}, {1, 6} and {2, 6} are optional.



30 Chapter 2. Background

There are three more cases. When {1, 3} œ G and {4, 6} /œ G, it is necessary that
{1, 5} /œ G otherwise in Example 2.3.8, Ê = ‰15 is zero. Also {2, 5} /œ G as in the
previous case. The edges {1, 6}, {2, 6} in G are optional as they do not change the
calculations in the Example. If {1, 6}, {2, 6} /œ G, G is graph (b) with {4, 6} /œ G. For
other selections of {1, 6}, {2, 6}, G is isomorphic to a graph in (a). When {4, 6} œ G and
{1, 3} /œ G, G is symmetric to when {1, 3} œ G and {4, 6} /œ G, so up to isomorphism we
obtain the same graphs.

Finally if {1, 3}, {4, 6} œ G, then {1, 5}, {2, 5}, {2, 6} /œ G for the same reasons as in
the last two cases. Let –1, –2, –3 be represented by ‰1 œ C0(K12), ‰3 œ C0(K34),
‰6 œ C0(K56), respectively. Let a12 = 0, a23 = ‰6. Then Ê = ‰16 and therefore
{1, 6} /œ G. So G is graph (b) with {4, 6} œ G.

Up to graph isomorphism, the graphs (a) and (b) are edge complements to exactly the
one skeletons in Figure 2.6.

Example 2.3.11. In Example 2.3.3, we found a non-trivial triple Massey product in
ZP , where P is a 2-truncated 3-cube. In particular, the full subcomplex on the vertices
1, . . . , 6 of the one-skeleton of KP is shown in Figure 2.8a. This full subcomplex can
also be drawn as in Figure 2.8b, which is one of the obstruction graphs in Figure 2.6.
Therefore the triple Massey product in Example 2.3.3 can also be regarded as an example
of Theorem 2.3.10.
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4

6
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(a)
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5
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(b)

Figure 2.8: An obstruction graph in KP when P is a 2-truncated cube.

Example 2.3.12. For k > 3, a k-belt in a polytope P is a sequential collection of k facets
(Fi1 , . . . , Fi

k

, Fi
k+1), Fi

k+1 = Fi1 , such that Fi
p

fl Fi
q

”= ? if and only if q © p + 1 mod k,
and Fi1 fl Fi2 fl Fi3 = ? if k = 3. Also a k-belt in a simple polytope P corresponds to a
cycle of length k in KP . Buchstaber, Erokhovets, Masuda, Panov and Park [12] showed
that for any polytope P with no 4-belts, all triple Massey products È–1, –2, –3Í µ H8(ZP )
for –i œ H3(ZP ) are trivial. This is proved by considering the one-skeleton of KP and
noticing that all of the obstruction graphs in Figure 2.6 have a chordless cycle of length
four. If P contains no 4-belts, then K(1)

P contains no cycles of length 4, thus K(1)
P does

not contain an obstruction graph. Hence Denham and Suciu’s result means that any
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triple Massey product on classes of degree three will be trivial.

Theorem 2.3.10 is a useful result for easily detecting Massey products, but it is limited
to only triple Massey products in the lowest degree.

2.3.3 A family of higher Massey products

The examples of non-trivial Massey products have so far been examples only of triple
products. In 2016, Limonchenko [26] also used Baskakov’s original truncated cube exam-
ple as inspiration for constructing non-trivial higher Massey products in the cohomology
of moment-angle complexes.

Construction 2.3.13. [26] Let In be the n-dimensional cube with opposite facets
labelled Fi, Fn+i for i = 1, . . . , n. Let Pn be a polytope obtained from In by making
consecutive cuts of faces so that the Stanley-Reisner ideal of KP

n

is

I =
1
{vivn+i : 1 6 i 6 n}, {vivn+i+1 : 1 6 i 6 n ≠ 1}, . . . , {vivn+i+(n≠2) : 1 6 i 6 2}, R

2

where vi correspond to facets Fi of Pn, and R is the set of all relations coming from the
new facets. For this construction, we write ZP

n

for the moment angle complex of KP
n

.

Example 2.3.14. When n = 2, I2 is a square. The Stanley-Reisner ideal corresponding
to KP2 is I = (v1v3, v2v4), and so no cuts are made to I2. That is, P2 = I2. When
n = 3, I3 is the 3-cube and the Stanley-Reisner ideal of KI3 is (v1v4, v2v5, v3v6). By
Construction 2.3.13, the Stanley-Reisner ideal of KP3 is

I = ({v1v4, v2v5, v3v6}, {v1v5, v2v6}, v7v2, v7v4, v8v3, v8v5) .

This corresponds to obtaining P3 from I3 by truncating the intersection of the facets F1

and F5, and the intersection of F2 and F6, thus introducing new facets F7 and F8. Up
to a relabelling of facets, P3 is the same 2-truncated cube as in Figure 2.3a.

Theorem 2.3.15 ([26]). Let n > 2 and let K denote KP
n

. Also let –i œ ÂH0(Ki,n+i) for
1 6 i 6 n. Then all l-Massey products of l consecutive elements from –1, . . . , –n are
defined and the n-Massey product È–1, . . . , –nÍ is non-trivial.

The idea of the proof of Theorem 2.3.15 is to ensure that the n-Massey product
È–1, . . . , –nÍ is defined by cutting/truncating faces so that the two (n ≠ 1)-Massey
products È–1, . . . , –n≠1Í and È–2, . . . , –nÍ are trivial. The proof uses induction on n, the
dimension of the cube. For example, P2 is the square and the 2-Massey product is the
same as the cup product. Since KP2 is the boundary of a square, the cup product is
non-trivial (as seen in Example 2.1.25). In I3, the cup products –1–2 and –2–3 are each
supported on a full subcomplex that is the boundary of a square. Then we make two
truncations to cut each of the squares and thus make both cup products –1–2 and –2–3

trivial. We have already seen that there is a non-trivial triple Massey product in ZP3
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in Example 2.3.3. When n = 4, the Stanley-Reisner ideal of I4 is (v1v5, v2v6, v3v7, v4v8).
We then perform cuts to I4 so that the two Massey products È–1, –2, –3Í and È–2, –3, –4Í
are defined. That is, add monomials v1v6, v2v7, v3v8 to the Stanley-Reisner ideal and
there are two copies of P3 contained in this stage of the construction of P4. Then we
again cut to ensure that È–1, –2, –3Í and È–2, –3, –4Í are trivial. That is, add monomials
v1v7, v2v8 to the Stanley-Reisner ring in order to obtain P4. So

I = ({v1v5, v2v6, v3v7, v4v8}, {v1v6, v2v7, v3v8}, {v1v7, v2v8}, . . .)

where R is the set of relations coming from the new facets F9, . . . , F13. A more detailed
proof can be found in [26] and [27], or alternatively in Example 3.1.17.

Similar to Baskakov’s family of examples and Denham and Suciu’s classification, the
indeterminacy in Limonchenko’s family always turns out to be trivial [27, Theorem 3.3].
Additionally, all of the classes –i are elements of ÂH0(Ki,n+i), where Ki,n+i is a simplicial
complex on two disjoint vertices, so –i corresponds to a class in H3(ZK). Both of these
properties simplify the calculations to check the non-triviality of the Massey products.

2.3.4 Other families of examples of non-trivial Massey products

The Pogorelov class of polytopes is the class of combinatorial 3-polytopes that admit
a right-angled realisation in Lobachevsky space L3 that is unique up to isometry [12].
It includes polytopes such as fullerenes, whose facets are either pentagons or hexagons.
The moment-angle complexes corresponding to Pogorelov polytopes are key for the study
of hyperbolic manifolds of Löbell type, as well as for the study of cohomological rigidity
[12].

In 2017, Zhuravleva [39] showed that the simplicial complex K = KP corresponding to any
Pogorelov polytope P has a full subcomplex as shown in Figure 2.9. Let – œ ÂH0(K567),
— œ ÂH0(K2,b0,...,b

n

) and “ œ ÂH0(K3,4). Then by Theorem 2.1.24, these classes correspond
to – œ H4(ZK), — œ Hn+3(ZK) and “ œ H3(ZK). As in (2.14), the indeterminacy is
given by

– · ÂH0(K2,b0,...,b
n

,3,4) + “ · ÂH0(K2,b0,...,b
n

,5,6,7) = 0.

Zhuravleva showed that this Massey product È–, —, “Í µ Hn+9(ZK) is non-trivial.

Theorem 2.3.16 ([39]). For any Pogorelov polytope P , there is a non-trivial triple
Massey product È–, —, “Í in Hú(ZK).

The proof of this theorem is by explicit calculation in similar style to Examples 2.2.8
and 2.3.3.

So far, the families of examples of non-trivial Massey products in moment-angle complexes
have all had trivial indeterminacy. Additionally, the Massey products have all been
on spherical classes. For example, both Limonchenko’s family in Section 2.3.3 and
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2

3

4

5 6

7

b0

b1 bn≠1

bn

Figure 2.9: A full subcomplex of the simplicial complex corresponding to any Pogorelov
polytope [39]

Denham and Suciu’s classification in Section 2.3.2 are on classes –i œ ÂH0(S0). Similarly,
Baskakov’s family in Section 2.3.1 is on classes –i œ ÂHn(Sn). In the rest of this thesis, we
will see constructions of non-trivial higher Massey products in moment-angle complexes
on arbitrary classes, including torsion classes.
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Chapter 3

Combinatorial Operations and
Massey Products

3.1 Join and stellar subdivision

The aim of this section is to develop a new systematic construction of non-trivial higher
Massey products in the cohomology of moment-angle complexes.

We have already seen in Proposition 2.1.6 that the join K1 úK2 of simplicial complexes K1,
K2 induces a product ZK1úK2 = ZK1 ◊ ZK2 of corresponding moment-angle complexes.
This product can be thought of as a 2-Massey product. For example, let K̄ be the
boundary of a square, which is the join of K1 = {{1}, {2}} and K2 = {{3}, {4}}, as in
Figure 3.1a. In Example 2.1.25 we saw that the 2-Massey product of – œ ÂH0(K̄1,2) and
— œ ÂH0(K̄3,4) is non-trivial in the cohomology group ÂH1(K̄1,2,3,4), that is, in Hú(ZK̄).

13

2 4

(a) Non-trivial cup product of – and —

13

2 4

(b) Trivial cup product of – and —,
after stellar subdivision

Figure 3.1: 2-Massey products (cup products) on a square

We use this motivating example to also create higher non-trivial Massey products.
However, if all cup products are non-trivial, then the triple Massey product is not defined.
Therefore we need to break the cycle that supports –— œ ÂH1(K̄1,2,3,4) in order to make
the cup product trivial. Let K = ss{1,4} K̄, as in Figure 3.1b. Then for – œ ÂH0(K1,2) and
— œ ÂH0(K3,4), the product –— is trivial. This is how the families given by Baskakov and
Limonchenko were constructed in Constructions 2.3.6 and 2.3.13.

In this section, we systematically construct simplicial complexes K such that Hú(ZK)
contains a non-trivial n-Massey product È–1, . . . , –nÍ of classes –i in arbitrary degree.

35
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The idea is to create K by first starting with the join K̄ of n simplicial complexes Ki,
each of which support –i. In the join K̄ = K1 ú . . . ú Kn, the cup product –1 fi . . . fi –n

is non-trivial. To obtain K, we further stellar subdivide the join K̄ in such a way that
for every l < n, the relevant l-Massey products vanish simultaneously ensuring that the
n-Massey product is defined.

3.1.1 Massey products and stellar subdivision

To construct a non-trivial n-Massey product, we will need to perform several stellar
subdivisions to ensure that the l-Massey products for l < n are trivial. We first show that
the order of stellar subdivisions on a simplicial complex does not a�ect a full subcomplex
on the original vertices.

Lemma 3.1.1. Let L be a simplicial complex. For simplices I1, I2 œ L, such that
I1 fl I2 ”= I1, I2, let M = ssI2 ssI1 L and N = ssI

I

ssI2 L. Then the full subcomplexes
MV (L) and NV (L) are equal.

Proof. Since (ssI1 L)V (L) = (L\stL I1)fiˆ stL I1 = {J œ L | I1 ”µ J}, we can alternatively
express ssI1 L as {J œ L | I1 ”µ J} fi {J Û {ú1} | J, I1 fi J œ L and I1 ”µ J}. Since
I1 fl I2 ”= I1, I2, neither I1 µ I2 nor I2 µ I1 and so I1 œ ssI2 L and I2 œ ssI1 L. Therefore
after stellar subdividing ssI1 L at I2,

M = {J œ L | I1, I2 ”µ J} fi {J Û {ú1} | J, I1 fi J œ L and I1, I2 ”µ J} fi

fi {J Û {ú2} | J, I2 fi J œ ssI1 L and I2 ”µ J} .

A similar expression can be made for N . Then MV (L) = {J œ L | I1, I2 ”µ J} =
NV (L).

Example 3.1.2. Let L be the simplicial complex in Figure 2.4a. Let I1 = {1, 5} and
I2 = {3, 5}. The star stL I1 contains maximal simplices {1, 4, 5} and {1, 3, 5}, and stL I2

contains {1, 3, 5} and {2, 3, 5}. If I1 is stellar subdivided first, then stss
I1 L I2 contains

maximal simplices {2, 3, 5} and {3, 5, 7}, where {7} is the new vertex introduced by the
first stellar subdivision. Then M = ssI2 ssI1 L and N = ssI

I

ssI2 L are di�erent, as shown
in Figures 3.2a and 3.2b, respectively. Restricting both M and N to the original vertices
V (L) = {1, . . . , 6}, we have that MV (L) = NV (L).

Construction 3.1.3. Let K be a simplicial complex on [m] with a non-trivial – œ ÂHp(K)
for p > 0. Let – be represented by a cocycle a that is supported on the p-simplices
in Sa µ K so that a =

q
‡œS

a

c‡‰‡ œ Cp(K) for a non-zero coe�cient c‡ œ k for each
‡ œ Sa. For every simplex ‡ œ Sa, let v‡ denote one particular choice of vertex in ‡. Let
P‡ be the set

P‡ = {p-simplices ‡Õ œ K | ‡ fl ‡Õ = ‡ \ v‡}.

We fix an order on the simplices in Sa. Let ‡(1) be the first element of Sa. Then let
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5

4

1 3

27 8

(a) M{1,2,3,4,5,7,8}

5

4

1 3

28 7

(b) N{1,2,3,4,5,7,8}

3

1

5

4

6

2

(c) MV (L) = NV (L)

Figure 3.2: The order of stellar subdivisions does not a�ect the restriction to the
original vertices

v‡

‡ ‡Õ‡ÕÕ

Figure 3.3: For this choice of a vertex v‡ œ ‡, ‡Õ œ P‡ but ‡ÕÕ /œ P‡

S(1)
a = Sa\P‡(1) . Let ‡(2) be the next element after ‡(1) in S(1)

a . Then let S(2)
a = S(1)

a \P‡(2) .
We continue inductively until ‡(l) is the last element of S(l≠1)

a , and let

ÂSa = S(l≠1)
a \ P‡(l) . (3.1)

At each stage, ‡ /œ P‡ so ÂSa contains at least the last element ‡(l). Let

Pa = P‡(1) fi · · · fi P‡(l) . (3.2)

This set is non-empty as follows. If p = 0 and ÂH0(K) ”= 0, then K is a disjoint union of
at least two vertices. For any v, w œ K, v fl w = ? = v \ v. Hence w œ Pv. Alternatively
let p > 0. Since – œ ÂHp(K) is non-zero, there is a non-zero cycle x œ Cp(K) such that
a(x) ”= 0. Let x =

q
·œT

x

c· �· for non-zero coe�cients c· and a set of p-simplices
Tx µ K. Let ‡ œ Sa fl Tx. If ˆ is the boundary map and vj is the jth vertex in ‡, then
ˆ(‡) =

qp+1
j=1(≠1)j+1�‡\v

j

”= 0. Since x is a cycle, there is a simplex · œ Tx, · ”= ‡, and
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a vertex v œ · such that · \ v = · fl ‡ = ‡ \ vj for any vertex vj œ ‡. Hence for any
‡ œ Sa fl Tx, P‡ is non-empty.

For i œ {2, . . . , n ≠ 1}, let Ki be a simplicial complex on [mi] vertices that is not an
(mi ≠ 1)-simplex. Since Ki is not a simplex, there is a non-zero cohomology class
–i œ ÂHp

i(Ki
J

i

) for pi œ N, Ji ™ [mi]. For i œ {1, n}, let Ki be a simplicial complex on
[mi] such that there exist Ji µ [mi], pi œ N and a non-zero –i = [ai] œ ÂHp

i(Ki
J

i

) for
which there is a pi-simplex ‡i œ Sa

i

(if i = 1) or ‡i œ Pa
i

(if i = n) that is maximal in
Ki

J
i

.

Let K̄ = K1 ú · · · ú Kn, so K̄V (Ki) = Ki for every i œ {1, . . . , n}. The vertices in each
vertex set V (Ki) have an induced order from [mi]. Suppose the vertex set V (K̄) =
g

iœ{1,...,n} V (Ki) is ordered so that u < v for all u œ V (Ki) and v œ V (Kj) for i < j. We
construct a simplicial complex K by stellar subdividing K̄ as follows. For any i < k,
(i, k) ”= (1, n), let ‡i œ Sa

i

and ‡k œ Pa
k

. If ‡i fi ‡k œ K̄, we stellar subdivide K̄ at the
simplex ‡i fi ‡k. For ease of notation, let K̄ denote the resulting simplicial complex
ss‡

i

fi‡
k

K̄. We iteratively stellar subdivide K̄ at every ‡i fi ‡k for every i < k and every
‡i œ Sa

i

, ‡k œ Pa
k

. Let K denote the resulting simplicial complex restricted to the
original vertices of K1 ú · · · ú Kn.

Lemma 3.1.4. The simplicial complex K is independent of the order of simplices in
Pa

k

.

Proof. For any ‡k, ‡Õ
k œ Pa

k

, we have that ‡i fi ‡k fl ‡i fi ‡Õ
k ”= ‡i fi ‡k, ‡i fi ‡Õ

k. So by
Lemma 3.1.1, the order of Pa

k

does not a�ect K.

Lemma 3.1.5. The simplicial complex K is independent of the order in which the pairs
{i, k}, 1 6 i < k 6 n, are chosen.

Proof. For any ai, the set Sa
i

of simplices lies in Ji µ V (Ki). Let {i1, k1} and {i2, k2}
be two pairs of indices. For any ‡i

j

œ Sa
i

j

and any ‡k
j

œ Pa
k

j

such that 1 6 ij < kj 6 n,
j = 1, 2, the intersection of ‡i1 fi ‡k1 µ Ji1 fi Jk1 and ‡i2 fi ‡k2 µ Ji2 fi Jk2 is empty.
Therefore by Lemma 3.1.1, we can stellar subdivide at simplices ‡i1 fi ‡k1 and simplices
‡i2 fi ‡k2 in either order.

Example 3.1.6. Let K1 be the disjoint union of two vertices {1}, {2} and K2 the
simplicial complex in Figure 3.4a. The join K1 úK2 is homotopy equivalent to S2 ‚S1. Let
–1 œ ÂH0(K1), –2 œ ÂH0(K2) be represented by the cochains a1 = ‰1 and a2 = ‰3 +‰4 +‰5,
respectively. Then Sa1 = {1}, and Sa2 = {{3}, {4}, {5}}. Following the construction
above, for ‡2 = {3} there is only one choice of a vertex v = 3. Then P{3} = {{4}, {5}, {6}}
so ÂSa2 = S(1)

a2 = {{3}} and Pa2 = P{3}. Let

K̄ = ss{1,6} ss{1,5} ss{1,4} K1 ú K2.

Therefore K = K̄1,2,3,4,5,6, as in Figure 3.4b. Since K is contractible, the cup product
–1–2 is trivial.
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Example 3.1.7. In addition to K1 and K2 in Example 3.1.6, let K3 be the disjoint
union of two vertices {7}, {8}. Let –3 œ ÂH0(K3) be represented by a3 = ‰7. Then
ÂSa3 = Sa3 = {7} and Pa3 = P{7} = {{8}}. By Construction 3.1.3, we stellar subdivide
K1 ú K2 ú K3 at ‡i fi ‡k for every ‡i œ Sa

i

and ‡k œ Pa
k

for i = 1, 2 and k = i + 1. Since
Sa2 = {{3}, {4}, {5}}, we obtain the simplicial complex

K̄ = ss{5,8} ss{4,8} ss{3,8} ss{1,6} ss{1,5} ss{1,4} K1 ú K2 ú K3.

The resultant simplicial complex K = K̄1,2,3,4,5,6,7,8 has a 1-cycle on the edges {1, 3},
{2, 3}, {2, 8}, {1, 8}, which is not a boundary (proved by Lemma 3.1.11). Therefore
ÂH1(K) is non-trivial.

3

4
5

6

(a) The simplicial complex
K2

3

4 5
6

2

1

(b) K1,2,3,4,5,6 after
stellar subdivisions at
{1, 4}, {1, 5}, {1, 6}

3

4 5

8

6

7

(c) K3,4,5,6,7,8 after
stellar subdivisions at
{3, 8}, {4, 8}, {5, 8}

Figure 3.4: Example of Construction 3.1.3

Lemma 3.1.8. In Construction 3.1.3, the simplicial complex K depends on the order of
simplices in Sa

k

.

Proof. Suppose ‡k œ Sa
k

, ‡Õ
k œ P‡

k

and let ‡i œ Sa
i

for an i œ {1, . . . , k ≠ 1}. If
‡Õ

k œ Sa
k

fl P‡
k

, then either ‡Õ
k > ‡k or ‡Õ

k < ‡k in the order of simplices in Sa
k

. In the
first case, the simplex ‡Õ

k œ Pa
k

and hence ‡i fi ‡k œ K and ‡i fi ‡Õ
k /œ K. Conversely

in the second case, if the chosen vertex vkÕ œ ‡Õ
k is such that ‡Õ

k \ vkÕ = ‡k \ vk, then
‡k œ P‡Õ

k

. So ‡k œ Pa
k

and therefore ‡i fi ‡Õ
k œ K and ‡i fi ‡k /œ K.

Lemma 3.1.9. The choice of vertex vk œ ‡k a�ects the number of stellar subdivisions
performed in Construction 3.1.3.

Proof. Suppose the simplicial complex in Figure 3.3 is a full subcomplex of Kk
J

k

, for
some k œ {2, . . . , n}. Further suppose that Sa

k

= {‡k, ‡ÕÕ
k}. In Figure 3.3, ‡ÕÕ

k /œ P‡
k

so
Pa

k

= P‡
k

fiP‡ÕÕ
k

. Alternatively, if vk œ ‡k was chosen so that vk /œ ‡k fl‡ÕÕ
k , then ‡ÕÕ

k œ P‡
k

.
Therefore if ‡k < ‡ÕÕ

k in Sa
k

, then P‡ÕÕ
k

”µ Pa
k

and thus fewer stellar subdivisions are
made.

We aim to show that there is a non-trivial n-Massey product in Hú(ZK) where K is the
simplicial complex created by Construction 3.1.3. We do this in stages, first showing
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that the n-Massey product is defined.

Proposition 3.1.10. Let K be a simplicial complex constructed in Construction 3.1.3.
Then È–1, . . . , –nÍ µ Hú(ZK) is defined.

Proof. Let ai =
q

‡
i

œS
a

i

c‡
i

‰‡
i

be a representative cocycle for –i œ ÂHp
i(KJ

i

) for each
i œ {1, . . . , n ≠ 1}, as in Construction 3.1.3. As in Section 2.2.2, we construct a defining
system (ai,k) for the Massey product È–1, . . . , –nÍ µ Hp1+···+p

k

+|J1fi···fiJ
k

|+2(ZK).

For 1 6 i < k 6 n, (i, k) ”= (1, n), let ai,k œ Cp
i

+···+p
k(KJ

i

fi···fiJ
k

) be the cochain given by

ai,k =
ÿ

‡
i

œS
a

i

ÿ

‡
i+1œÂS

a

i+1

· · ·
ÿ

‡
k

œÂS
a

k

c‡
i

. . . c‡
k

◊i,k ‰
‡

i

fi···fi‡
k

\(v
i+1fi···fiv

k

) (3.3)

where ÂSa
i

is the set in (3.1), each vertex vi œ ‡i is the vertex chosen in Construction 3.1.3,
and ◊i,k is the sign ◊i,k = 1 when i = k and

◊i,k = (≠1)k≠i(≠1)|J
i

|(p
i+1+···+p

k

)(≠1)|J
i+1|(p

i+2+···+p
k

) . . . (≠1)|J
k≠1|p

k ·

· Á(vi+1, ‡i+1) . . . Á(vk, ‡k). (3.4)

Following the stellar subdivisions in Construction 3.1.3, for any simplex ‡i fi ‡Õ
k, the

simplex ‡i fi‡k \vk is contained in ˆ stL(‡i fi‡Õ
k). Hence ‡i fi · · ·fi‡k \(vi+1 fi · · ·fivk) œ K.

Then since every coe�cient c‡
i

is non-zero, the cochain ai,k is not trivial.

We show that d(ai,k) =
qk≠1

r=i ai,r · ar+1,k, as in Section 2.2.2. By the definition of the
coboundary map,

d(ai,k) =
ÿ

‡
i

œS
a

i

ÿ

‡
i+1œÂS

a

i+1

· · ·
ÿ

‡
k

œÂS
a

k

c‡
i

. . . c‡
k

◊i,k·

Q

ccca
ÿ

jœJ
i

fi···fiJ
k

\(‡
i

fi···fi‡
k

\(v
i+1fi···fiv

k

)) :
jfi‡

i

fi···fi‡
k

\(v
i+1fi···fiv

k

)œK

Á(j, j fi ‡i fi · · · fi ‡k \ (vi+1 fi · · · fi vk)) ‰
jfi‡

i

fi···fi‡
k

\(v
i+1fi···fiv

k

)

R

dddb .

(3.5)
We will show that the only non-zero summands in this summation are when j œ
vi+1 fi · · · fi vk. Suppose there is a vertex j œ Ji fi · · · fi Jk \ (‡i fi · · · fi ‡k) such that
j fi ‡i fi · · · fi ‡k \ (vi+1 fi · · · fi vk) œ K. Then there are two cases, that is, either j œ Ji or
j œ Jl for l œ {i + 1, . . . , k}.

If j œ Ji, then j fi ‡i œ Ki. Since ai is a cocycle, d(ai) = 0, so there are other simplices
·1, . . . , ·s œ Sa

i

such that there is a vertex wn œ Ji \ ·n with wn fi ·n = j fi ‡i for
n œ {1, . . . , s} and

0 = c‡
i

Á(j, j fi ‡i) ‰jfi‡
i

+
sÿ

n=1
c·

n

Á(wn, wn fi ·n) ‰w
n

fi·
n

.

So, similarly, there are summands in (3.5) corresponding to wn fi ·n fi ‡i+1 fi · · · fi ‡k \
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(vi+1 fi · · · fi vk) since wn fi ·n = j fi ‡i and no simplex j fi ‡i fi · · · fi ‡k \ (vi+1 fi · · · fi vk)
was stellar subdivided for any j œ Ji and any ‡i œ Sa

i

. Therefore,

0 = c‡
i

Á(j, j fi ‡i fi ‡i+1 fi · · · fi ‡k \ (vi+1 fi · · · fi vk)) ‰
jfi‡

i

fi‡
i+1fi···fi‡

k

\(v
i+1fi···fiv

k

)+

+
sÿ

n=1
c·

n

Á(wn, wn fi·n fi‡i+1 fi · · ·fi‡k \(vi+1 fi · · ·fivk)) ‰
w

n

fi·
n

fi‡
i+1fi···fi‡

k

\(v
i+1fi···fiv

k

).

If j œ Jl for some l œ {i+1, . . . , k}, then jfi‡l\vl œ Kl and in particular, jfi‡l\vl œ P‡
l

µ
Pa

l

. So by Construction 3.1.3, ‡ifijfi‡l\vl /œ K. Hence jfi‡ifi· · ·fi‡k\(vi+1fi· · ·fivk) /œ K
for any j œ Ji fi · · · fi Jk \ (vi+1 fi · · · fi vk).

Therefore, we only consider the case when j œ vi+1 fi · · · fi vk. Then,

d(ai,k) =
ÿ

‡
i

œS
a

i

ÿ

‡
i+1œÂS

a

i+1

· · ·
ÿ

‡
k

œÂS
a

k

c‡
i

. . . c‡
k

◊i,k·

·
ÿ

jœv
i+1fi···fiv

k

:
jfi‡

i

fi···fi‡
k

\(v
i+1fi···fiv

k

)œK

Á(j, j fi‡i fi · · ·fi‡k \ (vi+1 fi · · ·fivk)) ‰
jfi‡

i

fi···fi‡
k

\(v
i+1fi···fiv

k

).

Let j œ vi+1 fi · · ·fivk be denoted as vr+1 for r œ {i, . . . , k≠1}, then this may be rewritten
as

d(ai,k) =
k≠1ÿ

r=i

◊i,k

ÿ

‡
i

œS
a

i

ÿ

‡
i+1œÂS

a

i+1

· · ·
ÿ

‡
k

œÂS
a

k

c‡
i

. . . c‡
k

·

· Á(vr+1, ‡i fi · · · fi ‡k \ (vi+1 fi · · · fi v̂r+1 fi · · · fi vk)) ‰
‡

i

fi···fi‡
k

\(v
i+1fi···fiv̂

r+1fi···fiv
k

)
(3.6)

where v̂r+1 denotes that the vertex vr+1 is deleted from the sequence vi+1, . . . , vk.

To show that d(ai,k) =
qk≠1

r=i ai,r · a(r+1),k, consider the expression for
qk≠1

r=i ai,r · a(r+1),k,

k≠1ÿ

r=i

(≠1)1+deg(a
i,r

)

Q

ca
ÿ

‡
i

œS
a

i

ÿ

‡
i+1œÂS

a

i+1

· · ·
ÿ

‡
r

œÂS
a

r

c‡
i

. . . c‡
r

◊i,r ‰
‡

i

fi···fi‡
r

\(v
i+1fi···fiv

r

)

R

db ·

·

Q

ca
ÿ

‡
r+1œS

a

r+1

ÿ

‡
r+2œÂS

a

r+2

· · ·
ÿ

‡
k

œÂS
a

k

c‡
r+1 . . . c‡

k

◊r+1,k ‰
‡

r+1fi···fi‡
k

\(v
r+2fi···fiv

k

)

R

db .

For any ‡r+1 œ Sa
r+1 \ ÂSa

r+1 , we must have that ‡r+1 œ Pa
r+1 . Therefore ‡i fi ‡r+1 /œ K.

Hence by applying Lemma 2.1.26,

k≠1ÿ

r=i

ai,r · a(r+1),k =
k≠1ÿ

r=i

ÿ

‡
i

œS
a

i

ÿ

‡
i+1œÂS

a

i+1

· · ·
ÿ

‡
k

œÂS
a

k

(≠1)1+deg(a
i,r

)·

· (≠1)|J
i

fi···fiJ
r

|(p
r+1+···+p

k

+1)c‡
i

. . . c‡
k

◊i,r ◊r+1,k ‰
‡

i

fi···fi‡
k

\(v
i+1fi···fiv̂

r+1fi···fiv
k

).

(3.7)
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Since deg(ai,r) = |Ji fi · · · fi Jr| + pi + · · · + pr + 1,

(≠1)1+deg(a
i,r

)(≠1)|J
i

fi···fiJ
r

|(p
r+1+···+p

k

+1) = (≠1)(p
i

+···+p
r

)+|J
i

fi···fiJ
r

|(p
r+1+···+p

k

).

To show that d(ai,k) =
qk≠1

r=i ai,r · a(r+1),k, we need to prove that (3.5) is equal to (3.7).
Thus we want to show that

◊i,k Á(vr+1,‡i fi · · · fi ‡k \ (vi+1 fi · · · fi v̂r+1 fi · · · fi vk)) (3.8)

= (≠1)(p
i

+···+p
r

)+|J
i

fi···fiJ
r

|(p
r+1+···+p

k

)◊i,r ◊r+1,k. (3.9)

Since

◊i,r = (≠1)r≠i(≠1)|J
i

|(p
i+1+···+p

r

) · · · (≠1)|J
r≠1|p

r Á(vi+1, ‡i+1) · · · Á(vr, ‡r)

and

◊r+1,k = (≠1)k≠r≠1(≠1)|J
r+1|(p

r+2+···+p
k

) · · · (≠1)|J
k≠1|p

k Á(vr+2, ‡r+2) · · · Á(vk, ‡k),

the expression (3.9) becomes

(≠1)k≠i≠1(≠1)(p
i

+···+p
r

)(≠1)|J
i

|(p
i+1+···+p

k

)(≠1)|J
i+1|(p

i+2+···+p
k

) . . . (≠1)|J
k≠1|p

k

Á(vi+1, ‡i+1) . . . Á(vr, ‡r)Á(vr+2, ‡r+2) . . . Á(vk, ‡k).

This can be rewritten as

(≠1)p
i

+···+p
r

≠1 Á(vr+1, ‡r+1) ◊i,k. (3.10)

Next consider (3.8). For any r œ {i, . . . , k ≠ 1}, suppose vr+1 œ ‡r+1 is the lth vertex in
the vertex set of ‡i fi · · · fi ‡k \ (vi+1 fi · · · fi v̂r+1 fi · · · fi vk). Then

Á(vr+1, ‡i fi · · · fi ‡k \ (vi+1 fi · · · fi v̂r+1 fi · · · fi vk)) = (≠1)l≠1.

Since vr+1 œ ‡r+1, l is given by

l = |‡i| + (|‡i+1| ≠ 1) + · · · + (|‡r| ≠ 1) + lr+1

where lr+1 is the position of vr+1 in ‡r+1 and |‡i| = pi + 1 for every i. So l =
(pi + 1) + pi+1 + · · · + pr + lr+1, and hence

Á(vr+1, ‡ifi· · ·fi‡k\(vi+1fi· · ·fiv̂r+1fi· · ·fivk)) = (≠1)l≠1 = (≠1)p
i

+···+p
r

+1 Á(vr+1, ‡r+1).
(3.11)

Thus (3.8) may be rewritten as (≠1)p
i

+···+p
r

+1 ◊i,k Á(vr+1, ‡r+1), which is equal to (3.10).

Hence (3.5) is equal to (3.7), and so d(ai,k) =
qk≠1

r=i ai,r · a(r+1),k. Therefore (ai,k)
corresponds to a defining system for È–1, . . . , –nÍ.
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Since the n-Massey product È–1, . . . , –nÍ is defined, it remains to show that this Massey
product is non-trivial. To do this, we first verify that there is at least one non-zero
cohomology class in È–1, . . . , –nÍ. Then we show that any other element of È–1, . . . , –nÍ
is also non-zero.

Let Ê œ Cp1+···+p
n

+1(KJ1fi···fiJ
n

) be the associated cocycle for the above defining system.
Then,

Ê =
n≠1ÿ

r=1
a1,r · a(r+1),n.

In particular,

Ê =
n≠1ÿ

r=1

ÿ

‡1œS
a1

ÿ

‡2œÂS
a2

· · ·
ÿ

‡
n

œÂS
a

n

◊ ‰
‡1fi···fi‡

n

\(v2fi···fiv
r

fiv
r+2fi···fiv

n

) (3.12)

as in (3.7) when i = 1 and k = n, where ◊ is the coe�cient

◊ = c‡1 . . . c‡
n

(≠1)p1+···+p
r

≠1 Á(vr+1, ‡r+1) ◊1,n

as in (3.10).

Lemma 3.1.11. The class [Ê] œ ÂHp1+...+p
n

+1(KJ1fi···fiJ
n

) is non-zero.

Proof. We construct a cycle x œ Cp1+...+p
n

+1(KJ1fi···fiJ
n

) such that Ê(x) ”= 0. If [x] is a
non-zero homology class, then this concludes that [Ê] ”= 0.

Let ‡i œ ÂSa
i

for 2 6 i < n be fixed. By assumption in Construction 3.1.3, J1 and Jn

were chosen such that there exist ‡1 œ Sa1 and ‡n œ Pa
n

that are maximal in KJ1 , KJ
n

,
respectively. Since –1 œ ÂHp1(KJ1) is non-zero, there is a homology class [x1] œ ÂHp1(KJ1)
with a representative cycle x1 œ Cp1(KJ1) such that a1(x1) ”= 0. As for any general chain,
we can write x1 as

x1 =
ÿ

‡̃1œS
x1

c‡̃1�‡̃1

for a collection of p1-simplices Sx1 µ KJ1 and non-zero coe�cients c‡̃1 .

Let ˆ(‡2 fi ‡n) be the boundary of the simplex ‡2 fi ‡n. Then let x2 œ Cp2+p
n

(ˆ(‡2 fi ‡n))
be the cycle

x2 =
ÿ

w2œ‡2fi‡
n

cw2�‡2fi‡
n

\w2

for vertices w2 œ ‡2 fi ‡n and non-zero coe�cients cw2 , so that [x2] œ ÂHp2+p
n

(ˆ(‡2 fi ‡n))
is the spherical class. Similarly for 3 6 i 6 n ≠ 1, let xi œ Cp

i

≠1(ˆ(‡i)) be the cycle given
by

xi =
ÿ

w
i

œ‡
i

cw
i

�‡
i

\w
i

for vertices wi œ ‡i and non-zero coe�cients cw
i

.
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Let x œ Cp1+...+p
n

+1(KJ1fi···fiJ
n

) be the chain

x =
ÿ

‡̃1œS
x1

ÿ

w2œ‡2fi‡
n

ÿ

w3œ‡3

· · ·
ÿ

w
n≠1œ‡

n≠1

c‡̃1cw2 · · · cw
n≠1�‡̃1fi‡2fi···fi‡

n≠1fi‡
n

\(w2fi···fiw
n≠1).

For ease of notation, let Tx be the set of simplices t that supports x, where t has the
form

t = ‡̃1 fi ‡2 fi · · · fi ‡n≠1 fi ‡n \ (w2 fi · · · fi wn≠1) (3.13)

for a pi-simplex ‡̃1 œ Sx1 , and a choice of vertices w2 œ ‡2 fi ‡n, wi œ ‡i for 3 6 i 6 n ≠ 1.
We will first show that x is a cycle, before showing that it is also not a boundary. The
boundary ˆ(x) is given by

ˆ(x) =
ÿ

‡̃1œS
x1

ÿ

w2œ‡2fi‡
n

ÿ

w3œ‡3

· · ·
ÿ

w
n≠1œ‡

n≠1

ÿ

vœt

Á(v, t) c‡̃1cw2 · · · cw
n≠1�t\v.

Since ‡̃1 µ J1, ‡i µ Ji for 2 6 i 6 n, and Ji fl Jj = ? for i ”= j, every choice of vertex
v œ t is contained in a simplex ‡̃1 or ‡i for 2 6 i 6 n. If v œ ‡̃1, then Á(v, t) = Á(v, ‡̃1).
Also like in (3.11), if v œ ‡i for i > 1, then

Á(v, t) =

Y
_____]

_____[

(≠1)p1+1 Á(v, ‡2) if w2 œ ‡n and i = 2,

(≠1)p1+···+p
i≠1+2 Á(v, ‡i \ w̃i) if w2 œ ‡n and i > 2,

(≠1)p1+···+p
n≠1+1 Á(v, ‡n) if w2 œ ‡2 and i = n,

(≠1)p1+···+p
i≠1+1 Á(v, ‡i \ wi) if w2 œ ‡2 and i < n

where w̃i = wi for 1 < i < n, and w̃n = w2. We rewrite ˆ(x) as

ˆ(x) =
ÿ

‡̃1œS
x1

ÿ

w2œ‡2fi‡
n

ÿ

w3œ‡3

· · ·
ÿ

w
n≠1œ‡

n≠1

nÿ

i=1

ÿ

vœ‡̃
i

\w̃
i

Á(v, t) c‡̃1cw2 · · · cw
n≠1�t\v

where ‡̃1 \ w̃1 = ‡̃1 and ‡̃i = ‡i for i > 1. Let �t\v|J denote the restriction of �t\v to its
vertices in J µ [m]. Then

ˆ(x) =
ÿ

‡̃1œS
x1

ÿ

w2œ‡2fi‡
n

ÿ

w3œ‡3

· · ·
ÿ

w
n≠1œ‡

n≠1
Q

a
nÿ

i=1

ÿ

vœ‡̃
i

\w̃
i

Á(v, t) c‡̃1cw2 · · · cw
n≠1(�t\v|J

i

)(�t\v|V (K)\J
i

)

R

b .

We rearrange ˆ(x) into four collections of summands, one in which v œ ‡̃1, another for
v œ ‡2 fi ‡n \ w2, and two more when v œ ‡i \ wi for 3 6 i 6 n ≠ 1 where either w2 œ ‡2

or w2 œ ‡2. Then writing Á(v, t) more explicitly,

ˆ(x) =
ÿ

w2œ‡2fi‡
n

ÿ

w3œ‡3

· · ·
ÿ

w
n≠1œ‡

n≠1

cw2 · · · cw
n≠1(�t\v|V (K)\J1)

Q

a
ÿ

‡̃1œS
x1

ÿ

vœ‡̃1

Á(v, ‡̃1) c‡̃1(�t\v|J1)

R

b +
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+
ÿ

‡̃1œS
x1

ÿ

w3œ‡3

· · ·
ÿ

w
n≠1œ‡

n≠1

c‡̃1cw3 · · · cw
n≠1(≠1)p1+p3···+p

n≠1+1(�t\v|V (K)\J2fiJ
n

)
Q

a
ÿ

w2œ‡2fi‡
n

ÿ

vœ‡2fi‡
n

\w2

Á(v, ‡2 fi ‡n \ w2) cw2(�t\v|J2fiJ
n

)

R

b +

+
ÿ

‡̃1œS
x1

ÿ

w2œ‡2

ÿ

w3œ‡3

· · ·
ÿ

w
n≠1œ‡

n≠1

c‡̃1cw2 · · · cw
n≠1

Q

a
n≠1ÿ

i=3
(≠1)p1+···+p

i≠1+1(�t\v|V (K)\J
i

)

Q

a
ÿ

vœ‡
i

\w
i

Á(v, ‡i \ wi)(�t\v|J
i

)

R

b

R

b +

+
ÿ

‡̃1œS
x1

ÿ

w2œ‡
n

ÿ

w3œ‡3

· · ·
ÿ

w
n≠1œ‡

n≠1

c‡̃1cw2 · · · cw
n≠1

Q

a
n≠1ÿ

i=3
(≠1)p1+···+p

i≠1+2(�t\v|V (K)\J
i

)

Q

a
ÿ

vœ‡
i

\w
i

Á(v, ‡i \ wi)(�t\v|J
i

)

R

b

R

b .

Each collection of summands can be written in terms of ˆ(xi), that is

ˆ(x) =
ÿ

w2œ‡2fi‡
n

ÿ

w3œ‡3

· · ·
ÿ

w
n≠1œ‡

n≠1

cw2 · · · cw
n≠1(�t\v|V (K)\J1) ˆ(x1)+

+
ÿ

‡̃1œS
x1

ÿ

w3œ‡3

· · ·
ÿ

w
n≠1œ‡

n≠1

c‡̃1cw3 · · · cw
n≠1(≠1)p1+p3···+p

n≠1+1(�t\v|V (K)\J2fiJ
n

) ˆ(x2)+

+
ÿ

‡̃1œS
x1

ÿ

w2œ‡2

n≠1ÿ

i=3

ÿ

w3œ‡3

· · · [
ÿ

w
i

œ‡
i

· · ·
ÿ

w
n≠1œ‡

n≠1

c‡̃1cw2 · · · ‰cw
i

· · · cw
n≠1

1
(≠1)p1+···+p

i≠1+1(�t\v|V (K)\J
i

) ˆ(xi)
2

+

+
ÿ

‡̃1œS
x1

ÿ

w2œ‡
n

n≠1ÿ

i=3

ÿ

w3œ‡3

· · · [
ÿ

w
i

œ‡
i

· · ·
ÿ

w
n≠1œ‡

n≠1

c‡̃1cw2 · · · ‰cw
i

· · · cw
n≠1

1
(≠1)p1+···+p

i≠1+2(�t\v|V (K)\J
i

) ˆ(xi)
2

where ‚ denotes omission. Since every xi is a cycle, ˆ(xi) = 0. Therefore also ˆ(x) = 0
and x is a cycle.

We will show that x is not a boundary. In particular, we will show that the link of a simplex
s œ Tx is empty, so that x cannot be a boundary of a collection of higher dimensional
simplices. Let us consider t when ‡̃1 = ‡1 œ Sa1 , and wi = vi for i = 2, . . . , n ≠ 1. Let

s = ‡1 fi · · · fi ‡n≠1 fi ‡n \ (v2 fi · · · fi vn≠1). (3.14)

Recall that in Construction 3.1.3, a1 œ Cp1(K1) and an œ Cp
n(Kn) were chosen so that

there are simplices ‡1 œ Sa1 and ‡n œ Pa
n

that are maximal in KJ1 and KJ
n

respectively.
Hence we have that lkK

J1
(‡1) = ? and lkK

J

n

(‡n) = ?. Suppose there is a vertex
j œ lkK

J1fi···fiJ

n

(s). Then there is an m œ {2, . . . , n ≠ 1} such that j œ Jm. Therefore
‡m fi j \ vm œ KJ

m

, and in particular ‡m fi j \ vm œ P‡
m

. Thus there would have been a
stellar subdivision made at the simplex ‡1 fi ‡m fi j \ vm during the construction of K.
So ‡1 fi ‡m fi j \ vm ”œ K, and subsequently also ‡1 fi ‡m fi j ”œ K. This contradicts the
assumption that j œ lkK

J1fi···fiJ

n

(s). Hence lkK
J1fi···fiJ

n

(s) = ? and the cycle x cannot be
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a boundary. Therefore, the homology class [x] œ ÂHp1+···+p
n

+1(KJ1fi···fiJ
n

) is non-zero.

Furthermore by (3.12), the summands of Ê are of the form

‰
‡1fi···fi‡

n

\(v2fi···fiv
r

fiv
r+2fi···fiv

n

)

for ‡1 œ Sa1 , ‡i œ ÂSa
i

for 2 6 i 6 n. Thus the only non-zero terms in the evaluation of Ê

on x are when r = 1, wi = vi for 3 6 i 6 n ≠ 1, and w2 = vn. Therefore,

Ê(x) =
ÿ

‡1œS
a1

ÿ

‡̃1œS
x1

◊c‡̃1cv2 · · · cv
n≠1

‰‡1(�‡̃1)

= c‡2 . . . c‡
n

(≠1)p1≠1 Á(v2, ‡2) ◊1,ncv2 · · · cv
n≠1

ÿ

‡1œS
a1

ÿ

‡̃1œS
x1

c‡1c‡̃1
‰‡1(�‡̃1)

= c‡2 . . . c‡
n

(≠1)p1≠1 Á(v2, ‡2) ◊1,ncv2 · · · cv
n≠1a1(x1).

Since a1(x1) ”= 0 and the coe�cient c‡2 . . . c‡
n

(≠1)p1≠1 Á(v2, ‡2) ◊1,ncv2 · · · cv
n≠1 is non-

zero, Ê(x) is also non-zero. Here, x a cycle representative of a non-zero homology class
[x] œ ÂHp1+···+p

n

+1(KJ1fi···fiJ
n

), so [Ê] must also be non-zero.

Example 3.1.12. Let K be the simplicial complex as in Figure 3.5a, where stellar
subdivisions were performed at the simplices ‡1 fi ‡Õ

2, ‡2 fi ‡Õ
3. That is, Sa1 = {‡1},

Sa2 = {‡2}, Sa3 = {‡3}, Pa2 = {‡Õ
2}, Pa3 = {‡Õ

3}. As in (3.13), the cycle x is supported
on a collection of simplices of the form

t = ‡̃1 fi ‡2 fi ‡Õ
3 \ (w2)

for simplices ‡̃1 œ {‡1, ‡Õ
1}, and a choice of vertex w2 œ ‡2 fi ‡Õ

3. Therefore the set of
simplices Tx that supports x contains ‡1 fi ‡2, ‡Õ

1 fi ‡2, ‡Õ
1 fi ‡Õ

3 and ‡1 fi ‡Õ
3, as shown in

Figure 3.5b. The simplex s œ Tx is ‡1 fi ‡Õ
3, and the stellar subdivisions performed to

construct K secure that lkK(s) = ?.

As in (3.12), summands of Ê are of the form ‰
‡1fi‡2fi‡3\(v2) = ‰‡1fi‡3 and ‰

‡1fi‡2fi‡3\(v3) =
‰‡1fi‡2 . Therefore Ê evaluates on exactly one simplex of Tx, ‡1 fi ‡2. So Ê(x) ”= 0.

As in Section 2.2.2, the above lemma shows that the cohomology class

[Ê] œ Hp1+···+p
n

+|J
n

fi···fiJ
n

|+2(ZK)

is non-zero. It remains to show that every other element of the Massey product
È–1, . . . , –nÍ is also non-zero.

Proposition 3.1.13. The n-Massey product È–1, . . . , –nÍ µ Hú(ZK) is non-trivial.

Proof. We will show that for the cycle x constructed in Lemma 3.1.11 and any element
[ÊÕ] œ È–1, . . . , –nÍ, [ÊÕ]([x]) is non-zero. Since [x] œ ÂHp1+···+p

n

+1(KJ1fi···fiJ
n

) was shown
to be non-zero, then this implies that [ÊÕ] is non-zero.
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‡Õ
1

‡1

‡2

‡3

‡Õ
2

‡Õ
3

(a) A simplicial complex K constructed
by stellar subdivisions at ‡1 fi ‡Õ

2 and
‡2 fi ‡Õ

3.

‡Õ
3

‡1

‡2
‡Õ

1

s

(b) The cycle x is supported by sim-
plices that include s, whose link is
empty.

Figure 3.5

Let (ai,k) be any defining system of È–1, . . . , –nÍ, where ai,k œ Cp
i

+···+p
k(KJ

i

fi···fiJ
k

) as
in Section 2.2.2. Also let Sa

i,k

be the set of (pi + · · · + pk)-simplices such that

ai,k =
ÿ

‡œS
a

i,k

c‡‰‡

for non-zero coe�cients c‡ œ k. The di�erential increases the degree of cochains by one,
which in particular corresponds to adding a vertex to the simplices in Sa

i,k

. Since the
base of the defining system is given by ai =

q
‡

i

œS
a

i

c‡
i

‰‡
i

for every i, for any ‡i œ Sa
i

there is at least one simplex in Sa2,n

of the form ‡2 fi · · · fi ‡n \ (u2 fi · · · fi un≠1) for
‡i œ ÂSa

i

and vertices ui œ ‡2 fi · · · fi ‡n for 2 6 i 6 n, ui ”= uj . So a1a2,n contains a
summand supported on a simplex of the form

‡ = ‡1 fi ‡2 fi · · · fi ‡n≠1 fi ‡n \ (u2 fi · · · fi un≠1) (3.15)

for ‡1 œ Sa1 , ‡i œ ÂSa
i

and vertices ui œ ‡2 fi · · · fi ‡n for 2 6 i 6 n, ui ”= uj .

Let ÊÕ be the associated cocycle for this defining system (ai,k),

ÊÕ =
ÿ

·œS
Ê

Õ

c· ‰·

for non-zero coe�cients c· œ k. By the definition of an associated cocycle, ÊÕ has a
summand a1a2,n. Hence SÊÕ contains ‡ in (3.15). We would like to compare the simplices
‡ in (3.15) and t in (3.13). Specifically, we want to show that SÊÕ fl Tx ”= ?. Since
‡1 œ Sa1 , ‡i œ ÂSa

i

for 2 6 i 6 n, we have that ‡i /œ Pa
i

for every i = 1, . . . , n. Therefore
‡1 fi · · · fi ‡n œ K since it was not removed by stellar subdivision in Construction 3.1.3.
Then both ‡ and t are (p1 + · · · + pn + 1)-dimensional faces of ‡1 fi · · · fi ‡n. If there
is no appropriate set of choices of ui and wi such that ‡ = t, then there is a cochain
b œ Cp1+···+p

n(K) such that ÊÕ + d(b) contains a summand ‰t and no summand ‰‡.
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Rename this cocycle as ÊÕ. Then t œ SÊÕ fl Tx. Therefore, the evaluation ÊÕ(x) has at
least one non-zero term. However, there could be other simplices in SÊÕ fl Tx and so we
cannot conclude that ÊÕ(x) is non-zero.

We construct a cocycle ÊÕÕ and a cycle xÕ such that [ÊÕÕ] = [ÊÕ], [xÕ] = [x], and ÊÕÕ(xÕ) ”= 0.
Set an order on the simplices Tx such that the simplex s in (3.14) is the last in this order.
We work inductively to remove simplices in SÊÕ fl Tx so that SÊÕÕ fl TxÕ contains only the
simplex s. Let us start at the first simplex · œ Tx.

Suppose that both Tx and SÊÕ contain · ”= s. Then there is a non-zero term in the
evaluation of ÊÕ on x. The link of · is non-empty, since · ”= s and because K was
constructed from the join of simplicial complexes. So there is a (p1 + . . . + pk + 2)-
dimensional simplex A œ KJ1fi···fiJ

n

containing · in its boundary.

Suppose SÊÕ does not contain any other face of A. Then replace x by xÕ, where the
simplex · œ Tx is replaced by the (p1 + . . . + pk + 1)-simplices in ˆ(A) \ · to form TxÕ .
Therefore xÕ is the cycle x ≠ c· ‘(v, A) ˆ(A), where c· is the coe�cient of the summand
�· in x, v is the vertex such that v fi · = A, and ‘(v, A) is the coe�cient of �· in ˆ(A).
Thus [x] = [xÕ]. Moreover, SÊÕ and TxÕ do not both contain the simplex · .

s

A·

(a) The cycle x

s

A·

(b) The cycle xÕ

· Õ

t

A·

(c) There may be a simplex
· Õ that shares a boundary
with ·

Figure 3.6: If the link of · is non-empty, then the cycle x can be changed to xÕ

Alternatively, suppose SÊÕ contains another face · Õ of A. Since x is a cycle, there is
another simplex t œ Tx such that · fl · Õ µ t (as shown in Figure 3.6c). If t < · in
the order on Tx, then again we create the cycle xÕ from x by replacing · in Tx by the
(p1 + . . . + pk + 1)-simplices in ˆ(A) \ · . Then · is not contained in xÕ. By induction,
· Õ /œ Tx, otherwise we would have considered it before · . Similarly since t < · , the
induction process means that t /œ SÊÕ .

On the other hand, suppose SÊÕ contains another face · Õ of A and t > · in the order
on Tx. Then t œ stK

J1fi···fiJ

n

(· fl · Õ). Let ÊÕÕ = ÊÕ ≠ c· Á(· \ · fl · Õ, ·) d(‰·fl· Õ) with a
coe�cient ≠c· where c· is the coe�cient of the summand ‰· in ÊÕ and Á(· \ · fl · Õ, ·)
is its coe�cient in d(‰·fl· Õ). So ÊÕÕ does not contain a summand ‰· , but does have a
summand ‰t, and [ÊÕÕ] = [ÊÕ]. We continue the induction process on the next simplex in
Tx.

Finally we come to a cocycle ÊÕÕ and a cycle xÕ such that SÊÕÕ fl TxÕ = s. Since the cycle x



3.1. Join and stellar subdivision 49

only depended on particular choices of ‡i for all i œ {1, . . . , n}, and since the link of the
simplex s in KJ1fi···fiJ

n

is empty, the induction process terminates. The evaluation of ÊÕÕ

on xÕ only has one non-zero term, which is supported by the simplex s. Thus ÊÕÕ(xÕ) ”= 0,
and so [ÊÕÕ] = [ÊÕ] is non-zero.

Example 3.1.14. For i = 1, 2, 3, let Ki be the simplicial complexes as in Examples 3.1.6
and 3.1.7. For a1 = ‰1, a2 = ‰3 + ‰4 + ‰5, a3 = ‰7, we previously saw that Sa1 = {1}
and ÂSa2 = S(1)

a2 = {{3}}. Therefore by (3.3),

a1,2 = ◊1,2‰1 = ≠‰1.

Similarly Sa2 = {{3}, {4}, {5}} and ÂSa3 = Sa3 = {7} so

a2,3 = ◊2,3(‰3 + ‰4 + ‰5) = ≠(‰3 + ‰4 + ‰5).

Let Ê be the associated cocycle for this defining system. Then

Ê = ≠‰1(‰3 + ‰4 + ‰5) ≠ ‰1‰7.

Therefore [Ê] is supported on the 1-cycle given by the edges {1, 3}, {2, 3}, {2, 8}, {1, 8}.
Alternatively, another defining system could have aÕ

2,3 = ‰8 + ‰6 + ‰7. Then, the
associated cocycle ÊÕ for this defining system is given by

ÊÕ = ‰1(‰6 + ‰7 + ‰8) + ≠‰1‰7 = ‰17 + ‰18 ≠ ‰17 = ‰18.

Thus [ÊÕ] is also supported on the 1-cycle given by the edges {1, 3}, {2, 3}, {2, 8}, {1, 8}.
By Proposition 3.1.13, this is true for all other defining systems and È–1, –2, –3Í is a
non-trivial Massey product.

In summary, Proposition 3.1.10, Lemma 3.1.11 and Proposition 3.1.13 prove the following
theorem.

Theorem 3.1.15. For i œ {2, . . . , n ≠ 1}, let Ki be a simplicial complex on [mi] that
is not an (mi ≠ 1)-simplex. For i œ {1, n}, let Ki be a simplicial complex on [mi] such
that there exist Ji µ [mi], pi œ N and a non-zero [ai] œ ÂHp

i(Ki
J

i

) for which there is a
pi-simplex ‡i œ Sa

i

(if i = 1) or ‡i œ Pa
i

(if i = n) that is maximal in Ki
J

i

. Then there
exists a simplicial complex K, obtained by performing stellar subdivisions on K1 ú · · · ú Kn,
with a non-trivial n-Massey product in Hú(ZK).

Two key examples of Theorem 3.1.15 are the families of Baskakov and Limonchenko.

Example 3.1.16 (Baskakov’s family). For i = 1, 2, 3, let Ki be a triangulation of a
(ni ≠ 1)-sphere on [mi]. Let I1 œ K1, I2, I Õ

2 œ K2, I3 œ K3 be maximal simplices such that
I2 and I Õ

2 are adjacent. That is, there is a vertex v2Õ œ K2 such that I2 fl I Õ
2 fi v2Õ = I Õ

2.
Similarly let I Õ

3 œ K3 be a maximal simplex adjacent to I3 so that there exists a vertex
v3Õ œ K3 such that I3 fl I Õ

3 fi v3Õ = I Õ
3. Let a1 = ‰I1 , a2 = ‰I2Õ , and a3 = ‰I3Õ be cocycle
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representatives of –i œ ÂHn
i

≠1(Ki) for i = 1, 2, 3. Then Construction 3.1.3 produces
the same simplicial complex as Construction 2.3.6. Therefore Theorem 3.1.15 and
Construction 3.1.3 recovers the family of examples of non-trivial triple Massey products
in Hú(ZK) given by Baskakov in [7].

Example 3.1.17 (Limonchenko’s family). For i = 1, . . . , n, let Ki be a copy of two
disjoint points labelled {‡i}, {‡Õ

i}. Then the stellar subdivisions in Construction 3.1.3 cor-
respond to the truncations in Construction 2.3.13. Therefore Theorem 3.1.15 recovers the
infinite family of examples of non-trivial n-Massey products given by Limonchenko [26].

Theorem 3.1.15 does not just recover these existing results about non-trivial Massey
products in the cohomology of moment-angle complexes. Theorem 3.1.15 creates non-
trivial n-Massey products from any non-zero cohomology classes supported on a full
subcomplex of any simplicial complex Ki. Therefore there is no limit on the dimension of
the classes –i, nor on the size of n, that is, how many classes –i there are. In particular,
using this construction it is possible to have Massey products on torsion elements, as
shown in Example 3.1.18.

34

5

3 4

5

0

1
2

Figure 3.7: A 6-vertex triangulation of RP 2.

Example 3.1.18. Let K1 be a triangulation of RP 2 on 6 vertices as in Figure 3.7.
Let K2, K3 be copies of two disjoint vertices labelled 6, 7 and 8, 9, respectively. Let
–1 œ ÂH2(K1) be represented by ‰012. For i = 2, 3, let –i œ ÂH0(Ki) be represented by
a2 = ‰6 and a3 = ‰8, respectively. By Construction 3.1.3, Pa2 = {{7}} and Pa3 = {{9}}.
Then let

K̄ = ss{0127} ss{69} K1 ú K2 ú K3

and let K = K̄0123456789. By Theorem 3.1.15, there is a non-trivial triple Massey product
È–1, –2, –3Í µ H14(ZK). This is the smallest example of a non-trivial triple Massey
product on a torsion class since K1 is the triangulation of RP 2 on the least number of
vertices.

Since –1 is the generator of ÂH2(K1) ≥= ÂH2(RP 2), –1 is a torsion element. The cocycle
constructed in (3.12) is Ê = ≠‰0126 ≠ ‰0128 œ C3(K), and it can be checked that the
corresponding class [Ê] œ È–1, –2, –3Í is not a torsion element in H14(ZK).
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Also, there is a cochain aÕ
1,2 = ‰126 + ‰124 ≠ ‰147 ≠ ‰347 + ‰037 + ‰027 such that

d(aÕ
1,2) = ‰0126 œ C3(K01234567), which is di�erent to a1,2 constructed in (3.3). The

associated cocycle to this defining system is ÊÕ = ≠‰0126 + ‰1268 + ‰1248 ≠ ‰1478 ≠
‰3478 + ‰0378 + ‰0278. It can be checked that [ÊÕ] ”= 0 and that [Ê] ”= [ÊÕ]. Therefore
È–1, –2, –3Í has non-trivial indeterminacy. In particular, the indeterminacy is given by
–1 · ÂH0(K6789) + –3 · ÂH2(K01234567) = –3 · ÂH2(K01234567), where ÂH2(K01234567) ≥= Z.

3.2 Edge contraction

The next section demonstrates a systematic method to create non-trivial higher Massey
products given existing non-trivial higher Massey products. The idea is to contract edges
of a simplicial complex K in a way that preserves the homotopy type of K. We first
define such an edge contraction.

3.2.1 Introduction

Definition 3.2.1. Let K, K̂ be simplicial complexes with an edge {u, w} œ K, and a
vertex z œ V (K̂) such that V (K̂) \ {z} = V (K) \ {{u}, {w}}. The simplicial complex K̂ is
obtained from K by an edge contraction of {u, w} if there is a map ÏV : V (K) æ V (K̂)

ÏV (v) =
I

z for v œ {u, w}
v for v /œ {u, w}

that extends to a surjective map Ï : K æ K̂, where Ï(I) = {ÏV (v1), . . . , ÏV (vn)} for
I = {v1, . . . , vn} œ K. The map Ï : K æ K̂ is called the edge contraction of {u, w} œ K.

Edge contractions are simplicial maps, but they do not preserve the topology of K in
general. Attali, Lieutier and Salinas [1] showed that the homotopy type of a simplicial
complex is preserved under edge contractions that satisfy the link condition.

Theorem 3.2.2 ([1]). For any simplicial complex K, if an edge {u, w} œ K satisfies the
link condition,

lkK({u}) fl lkK({w}) = lkK({u, w}), (3.16)

then the edge contraction of {u, w} preserves the homotopy type of K.

Example 3.2.3. The following is a series of edge contractions that satisfy the link
condition.
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Here, despite the fact that the dimension of the simplicial complex has reduced, the
homotopy type has remained the same as the link condition holds.

Example 3.2.4. Without the link condition, the homotopy type of a simplicial complex
under edge contractions can change, such as in the following example.

1

2

3

z

The links of the vertices {2} and {3} both contain the vertex {1}, but lkK({2, 3}) is
empty, so the link condition is not satisfied.

Example 3.2.5. An edge contraction that does not satisfy the link condition may also cre-
ate a cycle. For example, suppose K̂ is a triangulation of S2 on four vertices, and let K be
a 2-dimensional simplicial complex with facets {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {3, 4, 5}, {2, 5}.
So H2(K) = 0. The link of the edge {2, 5} is empty, while lkK{2} fl lkK{5} = {{3}, {4}}.
The edge contraction of {2, 5} results in a 2-cycle in K̂, as shown below.

1

2

4

53

z

The following properties of edge contractions will help calculations of Massey products
later. Let K̂ be a simplicial complex and let x̂ œ Cq(K̂). Then x̂ is supported on a
collection Tx̂ of simplices so that x̂ can be written as

q
‡̂œT

x̂

c‡̂�‡̂ where c‡̂ œ k and �‡̂

is a generator of Cq(K̂).

Corollary 3.2.6. Let [x̂] œ ÂHq(K̂) be non-zero. Suppose a simplicial complex K maps
to K̂ by one edge contraction Ï : K æ K̂ that satisfies the link condition. Then there is a
non-zero class [x] œ ÂHq(K) and a representative x œ Cq(K) such that for every ‡̂ œ Tx̂,
there is exactly one lift of ‡̂ in the collection Tx of simplices that supports x.

Proof. Let x̂ œ Cq(K̂) be a representative of [x̂]. By Theorem 3.2.2 and since Ï : K æ K̂
satisfies the link condition, there exists a cycle x œ Cq(K) such that Ï#(x) = x̂, where
Ï# : Cq(K) æ Cq(K̂) is the map induced by Ï and

Ï#(�‡) =
I

sgn(Ï(‡))�Ï(‡) if ‡ is not contracted,
0 otherwise,

where sgn is the sign of the permutation. Let x =
q

‡œT
x

c‡�‡, where �‡ is a generator
of Cq(K) and c‡ œ k is non-zero. Suppose there are two di�erent q-simplices ‡, · œ Tx
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such that Ï(‡) = Ï(·) = ‡̂ œ K̂. Let {u, v} œ K be the edge that is contracted by
Ï. Since Ï(‡) = Ï(·), let u œ ‡ and v œ · . Then ‡ \ u = ‡ fl · = · \ v, that is,
‡ fl · œ lkK{u} fl lkK{v}. By the link condition, ‡ fl · œ lkK{u, v}, so there is a (q + 1)-
simplex A on the vertices V (‡) fi V (·). Since Ï contracts only one edge, there are no
other q-simplices ÷ œ K such that Ï(÷) = ‡̂.

Let xÕ = x ≠ c· Á(u, A) ˆ(A), where c· is the coe�cient of the summand �· in x and
Á(u, A) is the coe�cient of �· in ˆ(A). So [x] = [xÕ], but the support TxÕ of xÕ does
not contain · . Since ‡, · are the only q-simplices in ˆ(A) that do not get contracted,
there are no new pairs ‡1, ·1 œ TxÕ such that Ï(‡1) = Ï(·1) is a q-simplex. Also,
Ï#(ˆ(A)) = Á(u, A)Ï#(�· ) + Á(v, A)Ï#(�‡). Thus

Ï#(xÕ) = x̂ ≠ c· Á(u, A) (Á(u, A) sgn(Ï(·)) + Á(v, A) sgn(Ï(‡))) �‡̂.

Since xÕ is a cycle, Ï#(xÕ) is also a cycle, which implies that

Á(u, A) sgn(Ï(·)) + Á(v, A) sgn(Ï(‡)) = 0.

Hence Ï#(xÕ) = x̂. If ·, ‡ /œ TxÕ , then ‡̂ /œ Tx̂. Therefore whether ‡ œ TxÕ or ‡ /œ TxÕ ,
there is exactly one lift ‡ œ TxÕ for every ‡̂ œ Tx̂.

v·

v‡

·
‡ ‡̂

Figure 3.8: There are cycles x in Cq(K) whose support contains only one of ‡ or ·

3.2.2 Massey products and edge contraction

The aim of this section is to create a non-trivial n-Massey product in the cohomology
of a moment-angle complex ZK, given an existing non-trivial n-Massey product in the
cohomology of another moment-angle complex ZK̂, where K is mapped onto K̂ by a
series of edge contractions.

Construction 3.2.7. Let K̂ be a simplicial complex with a non-trivial n-Massey product
È–̂1, . . . , –̂nÍ µ Hú(ZK̂). As in Section 2.2.2, every class –̂i œ Hú(ZK̂) has a corresponding
class

–̂i œ ÂHp
i(K̂Ĵ

i

)

for a set of vertices Ĵi µ V (K̂). Furthermore Ĵi fl Ĵj = ? for any i ”= j since È–̂1, . . . , –̂nÍ
is non-trivial; otherwise for any a œ Cp(K̂Ĵ

i

), b œ Cq(K̂Ĵ
i

), we have that ab = 0 if
Ĵi fl Ĵj ”= ?.

Suppose there is a simplicial complex K and a series of edge contractions that satisfy the
link condition, Ï : K æ K̂. Let the vertices in V (K̂) be ordered and suppose that all of
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the vertices in Ĵi come before those of Ĵi+1. For a set of p-simplices P µ K̂, let

Ï≠1
p (P ) = {p-simplex ‡ œ K : Ï(‡) = ‡̂ for ‡̂ œ P}.

Then let the vertices V (K) be ordered and suppose the order is such that for any vertex v̂

that comes before ŵ in K̂, we also have v before w for every v œ Ï≠1
0 (v̂) and w œ Ï≠1

0 (ŵ).
Let Ji = Ï≠1

0 (Ĵi) µ V (K). Then by the order on V (K), all vertices in Ji come before
those in Ji+1. Also Ji fl Jj = ? for any i ”= j since Ĵi fl Ĵj = ? and Ï≠1

0 (v̂) fl Ï≠1
0 (ŵ) = ?

for any vertices v̂, ŵ œ K̂, v̂ ”= ŵ.

Let âi be a cocycle representing –̂i œ ÂHp
i(K̂Ĵ

i

). Let Sâ
i

be the set of pi-simplices ‡̂i œ K̂Ĵ
i

such that
âi =

ÿ

‡̂œS
â

i

c‡̂‰‡̂ œ Cp
i(K̂Ĵ

i

)

for non-zero coe�cients c‡̂
i

œ k. Then, let ai œ Cp
i(KJ

i

) be the cochain

ai =
ÿ

‡̂œS
â

i

c‡̂

ÿ

‡œÏ≠1
p

i

(‡̂)

‰‡. (3.17)

Example 3.2.8. Let KJ
i

, K̂Ĵ
i

be the simplicial complexes as shown below, where K̂Ĵ
i

is
obtained from KJ

i

by contracting the edges e2 = {2, 3} ‘æ {2̂} and e5 = {4, 5} ‘æ {3̂}.
The cohomology class –̂i œ ÂH1(K̂Ĵ

i

) may be represented by the cocycle ‰ê, so Sâ
i

= {ê}.

4

5
1

e1

e2

e3

e4

e5

e6

3

2

1̂

2̂3̂

ê

The edge contraction of e2 satisfies the link condition, since lkK(e2) = lkK{2} fl lkK{3} =
{1}. Under the map Ï : K æ K̂, Ï≠1

1 (ê) = {e1, e3}. So by (3.22), ai is the cochain

ai = ‰e1 + ‰e3 œ C1(KJ
i

).

Lemma 3.2.9. The cochain ai is a cocycle.

Proof. For ease of notation, we omit the index i in the following proof, that is, let
a = ai, p = pi, J = Ji, etc. Let V (‡) denote the vertices of a simplex ‡. Applying the
coboundary map to a,

d(a) =
ÿ

‡̂œS
â

c‡̂

ÿ

‡œÏ≠1
p

(‡̂)

ÿ

jœJ\V (‡)
Á(j, j fi ‡)‰jfi‡.
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Since V (‡) µ Ï≠1
0 (V (‡̂)) µ J for any ‡̂ œ Sâ, this may be written as

d(a) =
ÿ

‡̂œS
â

c‡̂

ÿ

‡œÏ≠1
p

(‡̂)

ÿ

jœJ\Ï≠1
0 (V (‡̂))

Á(j, j fi ‡)‰jfi‡ (3.18)

+
ÿ

‡̂œS
â

c‡̂

ÿ

‡œÏ≠1
p

(‡̂)

ÿ

jœÏ≠1
0 (V (‡̂))\V (‡)

Á(j, j fi ‡)‰jfi‡. (3.19)

For any p-simplex ‡̂ œ Sâ and any ‡ œ Ï≠1
p (‡̂), if there is a vertex j œ Ï≠1

0 (V (‡̂)) \ V (‡)
such that j fi ‡ œ K, then ‡̄ = j fi ‡ œ Ï≠1

p+1(‡̂) and there is a vertex i œ V (‡) such that
Ï(i) = Ï(j). Hence j fi ‡ \ i œ Ï≠1

p (‡̂). Moreover, i, j are consecutive vertices in V (‡̄)
by the order of the vertices in K defined in Construction 3.2.7, so Á(j, ‡̄) = ≠Á(i, ‡̄).
Therefore, for any ‡̂ œ Sâ,

ÿ

‡œÏ≠1
p

(‡̂)

ÿ

jœÏ≠1
0 (V (‡̂))\V (‡)

Á(j, j fi ‡)‰jfi‡ =
ÿ

‡̄œÏ≠1
p+1(‡̂),

i,jœ‡̄ : Ï(i)=Ï(j)

Á(j, ‡̄)‰‡̄ + Á(i, ‡̄)‰‡̄ = 0

so (3.19) is zero.

Next consider (3.18). For j œ J \Ï≠1
0 (V (‡̂)) such that j fi‡ œ K, there is a corresponding

simplex Ï(j fi ‡) = Ï(j) fi Ï(‡) œ K̂. Hence for any summand Á(j, j fi ‡)‰jfi‡ in (3.18),
there is a corresponding summand Á(Ï(j), Ï(j fi ‡))‰Ï(jfi‡) in the expression for d(â).

Since d(â) = 0, there are other simplices ·̂1, . . . , ·̂s œ Sâ with a vertex ŵn = Ï(j fi ‡) \ ·̂n

for n œ {1, . . . , s} such that

cÏ(‡) Á(Ï(j), Ï(j fi ‡)) ‰Ï(jfi‡) +
sÿ

n=1
c·̂

n

Á(ŵn, ŵn fi ·̂n) ‰ŵ
n

fi·̂
n

= 0.

Therefore there is a p-simplex ·n œ K such that ·n is a maximal face of j fi ‡, and
so Ï(wn fi ·n) = ŵn fi ·̂n for the vertex wn = j fi ‡ \ ·n. Furthermore, Á(wn, wn fi
·n) = Á(ŵn, ŵn fi ·̂n) by the ordering of vertices in K. Thus, (3.18) has summands
Á(wn, wn fi ·n)‰w

n

fi·
n

such that

c‡ Á(j, j fi ‡) ‰jfi‡ +
sÿ

n=1
c·

n

Á(wn, wn fi ·n) ‰w
n

fi·
n

= 0.

This means that (3.18) is zero, and hence a is a cocycle.

Example 3.2.10. Let J1 = {1, 2, 3, 4} and Ĵ1 = {1̂, 2̂, 3̂}. Suppose KJ1 and K̂Ĵ1
are the

simplicial complexes shown below, where KJ1 maps onto K̂Ĵ1
by the edge contraction

{3, 4} ‘æ {3̂}.
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4

3

2

1 3̂

2̂

1̂

Suppose â1 = ‰2̂ + ‰3̂ œ C0(K̂Ĵ1
). We have that d(â1) = ≠‰2̂,3̂ + ‰2̂,3̂ = 0.

By (3.17), a1 = ‰2 + ‰3 + ‰4 œ C0(KJ1). Then d(a1) = ≠‰2,3 + (‰2,3 ≠ ‰3,4) + ‰3,4 = 0.
The summands of the form ‰2,3 correspond to the summands ‰2̂,3̂ in d(â1) as summands
in (3.18). The summands of the form ‰3,4 cancel in pairs as summands in (3.19). So a1

is a cocycle.

Furthermore, we check that ai is not a coboundary.

Lemma 3.2.11. The class –i = [ai] œ ÂHp
i(KJ

i

) is non-zero.

Proof. Since the Massey product È–̂1, . . . , –̂nÍ is non-trivial, the class –̂i œ ÂHp
i(K̂Ĵ

i

) is
non-zero. Therefore there is a homology class [x̂] œ ÂHp

i

(K̂Ĵ
i

) such that the evaluation
–̂i(x̂) is non-zero. Let x̂ be supported on a collection Tx̂ µ K̂Ĵ

i

of pi-simplices so that
x̂ =

q
·̂œT

x̂

c·̂ �·̂ for c·̂ œ k.

By Lemma 3.2.6, there is a non-zero class [x] œ ÂHp
i

(KJ
i

) and a representative x œ Cp
i

(KJ
i

)
such that for every ·̂ œ Tx̂, there is exactly one lift of ·̂ in the collection Tx of simplices
that supports x. For any ·̂ œ Tx̂, let c· = c·̂ for · œ Tx such that Ï(·) = ·̂ . Let
x =

q
·œT

x

c· �· for c· œ k.

By definition, any ‡ œ Ï≠1
p

i

(‡̂) for ‡̂ œ Sâ
i

does not contract since both ‡̂ and ‡ are
pi-simplices. Therefore, evaluating the cocycle ai on the cycle x,

ai(x) =
ÿ

‡̂œS
â

i

c‡̂

Q

ca
ÿ

‡œÏ≠1
p

i

(‡̂)

‰‡

Q

a
ÿ

·œT
x

c· �·

R

b

R

db

=
ÿ

‡̂œS
â

i

ÿ

·̂œT
x̂

c‡̂ c· ‰‡̂(�·̂ ).

Then since c· = c·̂ , this is equal to –̂i(x̂). So since the evaluation –̂i(x̂) is non-zero,
then also ai(x) is non-zero. Therefore, –i = [ai] œ ÂHp

i(KJ
i

) is a non-zero cohomology
class.

By Section 2.2.2, for the Massey product È–̂1, . . . , –̂nÍ µ H(p1+···+p
n

)+|Ĵ1fi···fiĴ
n

|+2(ZK̂),
there is a defining system (âi,k) for cochains âi,k œ Cp

i

+···+p
k(K̂Ĵ

i

fi...fiĴ
k

), 1 6 i 6 k 6 n

and (i, k) ”= (1, n). Suppose
âi,k =

ÿ

·̂œS
â

i,k

c·̂ ‰·̂ (3.20)
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for simplices ·̂ œ Sâ
i,k

µ K̂Ĵ
i

fi...fiĴ
k

, non-zero coe�cients c·̂ œ k. Then

d(âi,k) =
ÿ

·̂œS
â

i,k

c·̂

Q

ca
ÿ

ĵœĴ
i

fi···fiĴ
k

\V (·̂)
Á(ĵ, ĵ fi ·̂)‰ĵfi·̂

R

db

is equal to

k≠1ÿ

r=i

(≠1)1+deg(â
i,r

)âi,râr,k =
k≠1ÿ

r=i

(≠1)1+deg(â
i,r

) c

Q

ca
ÿ

‹̂œS
â

i,r

ÿ

÷̂œS
â

r+1,k

c‹̂ c÷̂ ‰‹̂fi÷̂

R

db (3.21)

where (≠1)1+deg(â
i,r

) = (≠1)(p
i

+...+p
r

)+|Ĵ
i

fi···fiĴ
r

| and c = (≠1)|Ĵ
i

fi···fiĴ
r

|(p
r+1+···+p

k

+1)

comes from the product of âi,r and âr,k, as in Lemma 2.1.26.

Proposition 3.2.12. Let K be a simplicial complex that maps to K̂ by edge contractions
satisfying the link condition. Then there is a n-Massey product È–1, . . . , –nÍ defined on
Hú(ZK).

Proof. For every i œ {1, . . . , n}, let –i = [ai] for ai as in (3.17). We construct a
defining system (ai,k) for È–1, . . . , –nÍ µ Hú(ZK), where ai,k œ Cp

i

+···+p
k(KJ

i

fi···fiJ
k

) as
in Section 2.2.2. For i ”= k, let

ai,k = ◊i,k ◊̂i,k

ÿ

·̂œS
â

i,k

c·̂

Q

ca
ÿ

·œÏ≠1
p

i

+···+p

k

(·̂)

‰·

R

db (3.22)

for Sâ
i,k

, c·̂ œ k from (3.20), and

◊i,k = (≠1)|J
i

|(p
i+1+···+p

k

)(≠1)|J
i+1|(p

i+2+···+p
k

) · · · (≠1)|J
k≠1|p

k

◊̂i,k = (≠1)|Ĵ
i

|(p
i+1+···+p

k

)(≠1)|Ĵ
i+1|(p

i+2+···+p
k

) · · · (≠1)|Ĵ
k≠1|p

k .
(3.23)

When i = k, let ◊i,i = 1 = ◊̂i,i so that ai,i = ai as in (3.17). We will show that
d(ai,k) =

qk≠1
r=i ai,rar,k, where ai,r = (≠1)1+deg a

i,r ai,r as in Definition 2.2.7.

Applying the coboundary map to ai,k,

d(ai,k) = ◊i,k ◊̂i,k

ÿ

·̂œS
â

i,k

c·̂

Q

ca
ÿ

·œÏ≠1
p

i

+···+p

k

(·̂)

ÿ

jœJ
i

fi···fiJ
k

\V (·)
Á(j, j fi ·)‰jfi·

R

db .

This may be rewritten as

d(ai,k) = ◊i,k ◊̂i,k

ÿ

·̂œS
â

i,k

c·̂

Q

ca
ÿ

·œÏ≠1
p

i

+···+p

k

(·̂)

ÿ

jœJ
i

fi···fiJ
k

\Ï≠1
0 (V (·̂))

Á(j, j fi ·)‰jfi·

R

db +

(3.24)
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+ ◊i,k ◊̂i,k

ÿ

·̂œS
â

i,k

c·̂

Q

ca
ÿ

·œÏ≠1
p

i

+···+p

k

(·̂)

ÿ

jœÏ≠1
0 (V (·̂))\V (·)

Á(j, j fi ·)‰jfi·

R

db .

(3.25)

For any · œ Sâ
i,k

and any · œ Ï≠1
p

i

+···+p
k

(·̂), first suppose there is a vertex j œ Ï≠1
0 (V (·̂))\

V (·) such that j fi · œ K. Then j fi · = ·̄ œ Ï≠1
p

i

+···+p
k

+1(·̂) and there is a vertex i œ V (·)
such that Ï(i) = Ï(j). Thus jfi· \i œ Ï≠1

p
i

+···+p
k

(·̂). Moreover, i, j are consecutive vertices
in V (·̄) by the order of vertices in K defined in Construction 3.2.7, so Á(j, ·̄) = ≠Á(i, ·̄).
Therefore (3.25) is zero since all summands cancel out in pairs, that is, for any ·̂ œ Sâ

i,k

,

ÿ

·œÏ≠1
p

i

+···+p

k

(·̂)

ÿ

jœÏ≠1
0 (V (·̂))\V (·)

Á(j, j fi ·)‰jfi· =
ÿ

·̄œÏ≠1
p

i

+···+p

k

+1(·̂),
i,jœ·̄ : Ï(i)=Ï(j)

Á(j, ·̄)‰·̄ + Á(i, ·̄)‰·̄ = 0.

Consider (3.24). For any j œ Ji fi · · · fi Jk \ Ï≠1
0 (V (·̂)), Ï(j) /œ V (ĵ). So for any simplex

j fi· œ K, for j œ Ji fi · · ·fiJk \Ï≠1
0 (V (·̂)), there is a simplex Ï(j)fi ·̂ œ K̂. Therefore any

summand in (3.24) has a corresponding summand in the expression for d(âi,k). Hence
(3.24) may be rewritten as

d(ai,k) = ◊i,k ◊̂i,k

ÿ

·̂œS
â

i,k

c·̂

Q

ca
ÿ

ĵœĴ
i

fi···fiĴ
k

\V (·̂)

ÿ

jfi·œÏ≠1
p

i

+···+p

k

+1(ĵfi·̂)

Á(j, j fi ·)‰jfi·

R

db (3.26)

where, by the order of vertices in K, Á(j, j fi ·) = Á(ĵ, ĵ fi ·̂). Since d(âi,k) =
qk≠1

r=i âi,râr,k,
the expression in (3.26) can be written in terms of the expression in (3.21). That is,
d(ai,k) is equal to

◊i,k ◊̂i,k

k≠1ÿ

r=i

(≠1)1+deg(â
i,r

) c

Q

ca
ÿ

‹̂œS
â

i,r

ÿ

÷̂œS
â

r+1,k

c‹̂ c÷̂

Q

ca
ÿ

’œÏ≠1
p

i

+···+p

k

+1(‹̂fi÷̂)

‰’

R

db

R

db (3.27)

where (≠1)1+deg(â
i,r

) = (≠1)(p
i

+···+p
r

)+|Ĵ
i

fi···fiĴ
r

| and c = (≠1)|Ĵ
i

fi···fiĴ
r

|(p
r+1+···+p

k

+1)

comes from the product of âi,r and âr,k, as in Lemma 2.1.26.

Any simplex ’ œ Ï≠1
p

i

+···+p
k

+1(‹̂ fi ÷̂) is on pi + · · · + pk + 2 vertices and so can be written
as ‹ fi ÷ for ‹ the restriction of ’ to its first pi + · · · + pr + 1 vertices, and ÷ the restriction
of ’ to its last pr+1 + · · · + pk + 1 vertices. Then ‹ œ Ï≠1

p
i

+···+p
r

(‹̂) and ÷ œ Ï≠1
p

r+1+···+p
k

(÷̂).
Furthermore, ◊̂i,k (≠1)1+deg(â

i,r

) c = (≠1)(p
i

+···+p
r

) ◊̂i,r ◊̂r+1,k. So (3.27) may be rewritten
as

d(ai,k) =
k≠1ÿ

r=i

(≠1)(p
i

+···+p
r

) ◊i,k ◊̂i,r ◊̂r+1,k·
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·

Q

cca
ÿ

‹̂œS
â

i,r

ÿ

÷̂œS
â

r+1,k

c‹̂ c÷̂

Q

cca
ÿ

‹œÏ≠1
p

i

+···+p

r

(‹̂)

ÿ

÷œÏ≠1
p

r+1+···+p

k

(÷̂)

‰‹fi÷

R

ddb

R

ddb . (3.28)

Comparatively, the product
qk≠1

r=i (≠1)1+deg(a
i,r

)ai,rar,k is

k≠1ÿ

r=i

(≠1)1+deg(a
i,r

)(≠1)|J
i

fi···fiJ
r

|(p
r+1+···+p

k

+1)◊i,r ◊r+1,k ◊̂i,r ◊̂r+1,k·

·

Q

cca
ÿ

‹̂œS
â

i,r

ÿ

÷̂œS
â

r+1,k

c‹̂ c÷̂

Q

cca
ÿ

‹œÏ≠1
p

i

+···+p

r

(‹̂)

ÿ

÷œÏ≠1
p

r+1+···+p

k

(÷̂)

‰‹fi÷

R

ddb

R

ddb (3.29)

where (≠1)1+deg(a
i,r

) = (≠1)(p
i

+···+p
r

)+|J
i

fi···fiJ
r

| and the sign (≠1)|J
i

fi···fiJ
r

|(p
r+1+···+p

k

+1)

comes from the product of ai,r and ar+1,k as in Lemma 2.1.26. Using the expression for
◊i,k in (3.23), (≠1)1+deg(a

i,r

)(≠1)|J
i

fi···fiJ
r

|(p
r+1+···+p

k

+1) ◊i,r ◊r+1,k = (≠1)(p
i

+···+p
r

) ◊i,k.

Therefore the expressions in (3.28) and (3.29) are equal.

Hence d(ai,k) =
qk≠1

r=i ai,rar,k, and so (ai,k) is a defining system for the Massey product
È–1, . . . , –nÍ.

Example 3.2.13. Let J1 = {1, 2, 3}, Ĵ1 = {1̂, 2̂}, J2 = {4, 5} and Ĵ2 = {4̂, 5̂}. Suppose
KJ1fiJ2 and K̂Ĵ1fiĴ2

are the simplicial complexes shown below, where KJ1fiJ2 maps onto
K̂Ĵ1fiĴ2

by the edge contraction {2, 3} ‘æ {2̂}.

3

2

4

1 5

2̂4̂

1̂ 5̂

Suppose â1 = ‰2̂ œ C0(K̂Ĵ1
), â2 = ‰4̂ œ C0(K̂Ĵ2

), and â1,2 = ≠‰2̂ œ C0(K̂Ĵ1fiĴ2
).

Then d(â1,2) = ‰2̂,4̂ = (≠1)1+deg â1 â1â2. By (3.17), a1 = ‰2 + ‰3 œ C0(KJ1) and
a2 = ‰4 œ C0(KJ2). By (3.22), a1,2 = ≠‰2 ≠ ‰3 œ C0(KJ1fiJ2), since ◊1,2 = 1. We have
that d(a1,2) = (‰2,4 + ‰2,3) ≠ ‰2,3 = ‰2,4 = (≠1)1+deg a1a1a2 = a1a2.

Since there is a n-Massey product È–1, . . . , –nÍ defined on Hú(ZK), it remains to show
that this Massey product is non-trivial. To do this, we first check that there is at least
one non-zero cohomology class in È–1, . . . , –nÍ.

Let Ê œ C(p1+···+p
n

)+|J1fi···fiJ
n

|+2(ZK) be the associated cocycle for the defining system
(ai,k) for È–1, . . . , –nÍ. Then

Ê =
n≠1ÿ

r=1
a1,rar,n œ Cp1+···+p

n

+1(KJ1fi···fiJ
n

).
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As in (3.29) when i = 1 and k = n, we can express Ê as the cocycle

Ê =
n≠1ÿ

r=1
(≠1)1+deg(a1,r

)(≠1)|J1fi···fiJ
r

|(p
r+1+···+p

n

+1)◊1,r ◊r+1,n ◊̂1,r ◊̂r+1,n·

·

Q

cca
ÿ

‹̂œS
â1,r

ÿ

÷̂œS
â

r+1,n

c‹̂ c÷̂

Q

cca
ÿ

‹œÏ≠1
p1+···+p

r

(‹̂)

ÿ

÷œÏ≠1
p

r+1+···+p

n

(÷̂)

‰‹fi÷

R

ddb

R

ddb . (3.30)

Lemma 3.2.14. The class [Ê] œ Hp1+···+p
n

+1(KJ1fi···fiJ
n

) is non-zero.

Proof. We will show that there is a cycle x œ Cp1+···+p
n

+1(KJ1fi···fiJ
n

) such that [x] ”= 0
and Ê(x) ”= 0. By assumption, there is a non-zero element [Ê̂] œ È–̂1, . . . , –̂nÍ µ
Hú(ZK̂). As in Section 2.2.2, this may be represented by the cocycle Ê̂ =

qn≠1
r=1 â1,râr,n œ

Cp1+···+p
n

+1(K̂Ĵ1fi···fiĴ
n

) for âi,k as in (3.20). Like (3.21) when i = 1 and k = n,

Ê̂ =
n≠1ÿ

r=1
(≠1)1+deg(â1,r

) (≠1)|Ĵ1fi···fiĴ
r

|(p
r+1+···+p

n

+1)

Q

ca
ÿ

‹̂œS
â1,r

ÿ

÷̂œS
â

r+1,n

c‹̂ c÷̂ ‰‹̂fi÷̂

R

db

where (≠1)1+deg(â1,r

) = (≠1)(p1+...+p
r

)+|Ĵ1fi···fiĴ
r

| and the sign (≠1)|Ĵ1fi···fiĴ
r

|(p
r+1+···+p

n

+1)

comes from the product of â1,r and âr,n, as in Lemma 2.1.26 .

Since [Ê̂] is non-zero, there is a non-zero homology class [x̂] œ ÂHp1+···+p
n

+1(K̂Ĵ1fi···fiĴ
n

)
such that Ê̂(x̂) ”= 0. Let the representing cycle x̂ be supported on a collection Tx̂ µ
K̂Ĵ1fi···fiĴ

n

of (p1 + · · · + pn + 1)-simplices,

x̂ =
ÿ

·̂œT
x̂

c·̂ �·̂

for c·̂ œ k and �·̂ a generator of Cp1+···+p
n

+1(K̂Ĵ1fi···fiĴ
n

).

By Lemma 3.2.6, there is a non-zero class [x] œ ÂHp1+···+p
n

+1(KJ1fi···fiJ
n

) and a represen-
tative x œ Cp1+···+p

n

+1(KJ1fi···fiJ
n

) such that for every ‡̂ œ Tx̂, there is exactly one lift
of ‡̂ in the collection Tx of simplices that supports x. For any ·̂ œ Tx̂, let c· = c·̂ for
· œ Tx such that Ï(·) = ·̂ . Then for c· œ k, let

x =
ÿ

·œT
x

c· �· .

Since (≠1)1+deg(a1,r

) (≠1)|J1fi···fiJ
r

|(p
r+1+···+p

n

+1) ◊1,r ◊r+1,n = (≠1)(p1+···+p
r

) ◊1,n, we
evaluate the cocycle Ê on the cycle x using the expression (3.30) for Ê,

Ê(x) =
n≠1ÿ

r=1
(≠1)(p1+···+p

r

) ◊1,n ◊̂1,r ◊̂r+1,n·
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·

Q

cca
ÿ

‹̂œS
â1,r

ÿ

÷̂œS
â

r+1,n

c‹̂ c÷̂

Q

cca
ÿ

‹œÏ≠1
p1+···+p

r

(‹̂)

ÿ

÷œÏ≠1
p

r+1+···+p

n

(÷̂)

‰‹fi÷

Q

a
ÿ

·œT
x

c· �·

R

b

R

ddb

R

ddb .

Since every ·̂ œ Tx̂ has exactly one lift · œ Tx, and Ï(‹ fi ÷) = ‹̂ fi ÷̂, we have that
‰‹fi÷(·) ”= 0 if and only if ‰‹̂fi÷̂(·̂) ”= 0. Also c· = c·̂ for · œ Tx such that Ï(·) = ·̂ .
Therefore,

Ê(x) =
n≠1ÿ

r=1
(≠1)(p1+···+p

r

) ◊1,n ◊̂1,r ◊̂r+1,n

Q

ca
ÿ

‹̂œS
â1,r

ÿ

÷̂œS
â

r+1,n

c‹̂ c÷̂ ‰‹̂fi÷̂

Q

a
ÿ

·̂œT
x̂

c·̂ �·̂

R

b

R

db .

We also have (≠1)(p1+···+p
r

) ◊̂1,r ◊̂r+1,n = (≠1)1+deg(â1,r

) (≠1)|Ĵ1fi···fiĴ
r

|(p
r+1+···+p

n

+1) ◊̂1,n.
Hence

Ê(x) = ◊1,n ◊̂1,n Ê̂(x̂).

So since Ê̂(x̂) ”= 0, also Ê(x) ”= 0. Thus [Ê] œ Hp1+···+p
n

+1(KJ1fi···fiJ
n

) is non-zero.

Therefore by Section 2.2.2, we have shown that È–1, . . . , –nÍ µ H(p1+···+p
n

)+|J1fi···fiJ
n

|+2(ZK)
contains a non-zero element. It remains to show that every other element [ÊÕ] œ
È–1, . . . , –nÍ is also non-zero. In Lemma 3.2.14, Ê was the associated cocycle of a defining
system for È–1, . . . , –nÍ that was constructed from a defining system for È–̂1, . . . , –̂nÍ.
Therefore in a sense Ê was derived from an associated cocycle Ê̂ œ Cú(ZK̂). However,
not every defining system for È–1, . . . , –nÍ can be directly constructed from a defining
system for È–̂1, . . . , –̂nÍ in this way.

Example 3.2.15. Let K̂1 be a triangulation of S1 on three vertices, {1̂, 2̂, 3̂}. Let
K̂2 = {{5̂}, {6̂}}, and let K̂3 = {{7̂}, {8̂}}. Let –̂1 = [‰1̂3̂] œ ÂH1(K̂1), –̂2 = [‰5̂] œ ÂH0(K̂2)
and –̂3 = [‰7̂] œ ÂH0(K̂3). Let K̂ be a simplicial complex on the vertices {1̂, 2̂, 3̂, 5̂, 6̂, 7̂, 8̂},
obtained from ss{5̂,8̂} ss{1̂,3̂,6̂} K̂1 ú K̂2 ú K̂3 by restricting to the original vertices. The
simplicial complex K̂1̂,2̂,3̂,5̂,6̂ is shown in Figure 3.9a. Then by Theorem 3.1.15, there is a
non-trivial triple Massey product È–̂1, –̂2, –̂3Í µ Hú(ZK̂). There are a number of options
for â1,2 such that d(â1,2) = (≠1)1+deg(â1)â1â2 = (≠1)3+1‰1̂3̂5̂ = ‰1̂3̂5̂. For example ‰1̂3̂ or
≠‰1̂6̂ ≠ ‰1̂2̂ ≠ ‰1̂5̂.

Let K be the simplicial complex on vertices {1, . . . , 8} that edge contracts to K̂ by
contracting the edge {1, 4} ‘æ {1̂} as in Figure 3.9b. This edge contraction satisfies the
link condition. By Construction 3.2.7, we have cocycles a1 = ‰13, a2 = ‰5, a3 = ‰7.
Then a1a2 = ‰13‰5 = (≠1)4‰135 = ‰135. Using (3.22), we can construct options for a1,2.
For example, ‰1̂3̂ becomes ◊1,2◊̂1,2‰13 = ≠‰13. For the cochain â1,2 = ≠‰1̂6̂ ≠ ‰1̂2̂ ≠ ‰1̂5̂,
the support is Sâ1,2 = {{1̂, 6̂}, {1̂, 2̂}, {1̂, 5̂}}. Then

Ï≠1
1 ({1̂, 6̂}) = {{1, 6}, {4, 6}}, Ï≠1

1 ({1̂, 2̂}) = {{2, 4}}, Ï≠1
1 ({1̂, 5̂}) = {{1, 5}, {4, 5}}.

Therefore by (3.22), a1,2 = ≠◊1,2◊̂1,2(‰16+‰46+‰24+‰45+‰15) = ‰16+‰46+‰24+‰45+‰15.
Nevertheless, there are other options for a1,2 that cannot be constructed from any â1,2.
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1̂

3̂

5̂

2̂

6̂

(a) The simplicial complex K̂1̂,2̂,3̂,5̂,6̂,
which is missing the simplex {1̂, 3̂, 6̂}.

1

3

5

4

6

2

(b) The simplicial complex K1,2,3,4,5,6,
which is missing the simplex {1, 3, 6}

Figure 3.9: The simplicial complex K1,2,3,4,5,6 maps to K̂1̂,2̂,3̂,5̂,6̂ by contracting the edge
{1, 4} ‘æ {1̂}.

For example, let a1,2 = ≠‰16 ≠ ‰14 ≠ ‰15. For the edge {1, 4} œ K, {1, 4} /œ Ï≠1
1 (ê) for

any edge ê œ K̂, so a1,2 does not directly correspond to any â1,2 as in (3.22). However,

a1,2 ≠ d(‰1) = ≠‰16 ≠ ‰14 ≠ ‰15 ≠ (‰16 + ‰14 + ‰15 + ‰13)

= ≠‰13 = ◊1,2◊̂1,2
ÿ

·œÏ≠1
p

i

+···+p

k

(1̂3̂)

‰· .

Therefore a1,2 does correspond to a choice of â1,2 after adding a coboundary. In a similar
way, in the proof of Proposition 3.2.16 we will show that any defining system (ai,k) for
È–1, . . . , –nÍ corresponds to a defining system (âi,k) for È–̂1, . . . , –̂nÍ.

Proposition 3.2.16. The n-Massey product È–1, . . . , –nÍ is non-trivial.

Proof. For any series of edge contractions Ï : K æ K̂, we can repeat the arguments in
this proof for each edge contraction in turn. Suppose that Ï : K æ K̂ is the contraction
of just one edge {u, v} œ K. By Construction 3.2.7, {u, v} µ Ji for i œ {1, . . . , n}.

For ai,i = ai as defined in (3.17), let (ai,k) be a defining system for È–1, . . . , –nÍ,

ai,k =
ÿ

‡œS
a

i,k

c‡‰‡ œ Cp
i

+···+p
k(KJ

i

fi···fiJ
k

).

We will show that any defining system (ai,k) corresponds to a defining system (âi,k) for
È–̂1, . . . , –̂nÍ in Hú(ZK̂). There are two main stages to this proof. Firstly, for a defining
system (ai,k) such that {u, v} /œ ‡ for any ‡ œ Sa

i,k

and any pair {i, k}, we construct
a corresponding defining system (Ïú(ai,k)) for È–̂1, . . . , –̂nÍ. Secondly, for any other
defining system (ai,k), we create a di�erent defining system (Âai,k) for È–1, . . . , –nÍ such
that {u, v} /œ ‡ for any ‡ œ SÂa

i,k

and any pair {i, k}. Then applying the first step to
(Âai,k), we have a defining system (Ïú(Âai,k)) that corresponds to (ai,k).
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For this first step, suppose that {u, v} /œ ‡ for any ‡ œ Sa
i,k

and any pair {i, k}. That
is, no simplex ‡ œ Sa

i,k

is contracted. Let a œ Cp(KJ
i

fi···fiJ
k

) be a general cochain such
that {u, v} /œ ‡ for any ‡ œ Sa, where either p = pi + · · · + pk or p = pi + · · · + pk + 1.
We will define Ïú(a) œ Cp(K̂Ï(J

i

fi···fiJ
k

)) when either a is a cocycle, or a = ai,k and
p = pi + · · · + pk, or Ï(‡) ”= Ï(‡Õ) for any ‡, ‡Õ œ Sa.

Let a =
q

‡œS
a

c‡‰‡. Suppose there are simplices ‡, ‡Õ œ Sa such that Ï(‡) = Ï(‡Õ). We
will show that c‡ = c‡Õ . Without loss of generality, let u œ ‡ and v œ ‡Õ. By the link
condition, ‡ fi v = ‡Õ fi u is a simplex in K. So, d(a) contains summands such as

d(c‡‰‡ + c‡Õ‰‡Õ) = c‡ Á(v, ‡ fi v)‰‡fiv + c‡Õ Á(u, ‡Õ fi u)‰‡Õfiu + other terms.

Due to the labelling of vertices in Construction 3.2.7, the labels u and v are always
consecutive in ‡ fi v = ‡Õ fi u. That is, Á(v, ‡ fi v) = Á(u, ‡ fi v). So,

d(c‡‰‡ + c‡Õ‰‡Õ) = ±(c‡ ≠ c‡Õ)‰‡fiv + other terms.

If a is a cocycle, then c‡ = c‡Õ because d(a) = 0. If a = ai,k, then d(ai,k) =
qk≠1

r=i ai,rar,k.
Hence if c‡ ”= c‡Õ , there is an index r œ {i, . . . , k ≠ 1} such that ‡ fi v = · fi ÷ for · œ Si,r

and ÷ œ Sr+1,k. Since {u, v} µ Ji for some i œ {1, . . . , n} and Si,k µ Ji fi · · · fi Jk for any
{i, k}, either {u, v} œ · or {u, v} œ ÷. This contradicts the assumption that {u, v} /œ ‡

for any ‡ œ Sa
i,k

and any {i, k}. So c‡ = c‡Õ .

For J µ [m], let Ĵ = Ï(J). Then when either a is a cocycle, or a = ai,k and p = pi+· · ·+pk,
or Ï(‡) ”= Ï(‡Õ) for any ‡, ‡Õ œ Sa, let

Ïú(a) = ci,k

ÿ

‡̂œÏ(S
a

)
c‡̂‰‡̂ œ Cp(K̂Ĵ

i

fi···fiĴ
k

) (3.31)

where c‡̂ = c‡ for any ‡ œ Sa such that Ï(‡) = ‡̂, ci,i = 1 and

ci,k = (≠1)(|J
i

|≠|Ĵ
i

|)p
i+1(≠1)(|J

i

fiJ
i+1|≠|Ĵ

i

fiĴ
i+1|)p

i+2 · · · (≠1)(|J
i

fi···fiJ
k≠1|≠|Ĵ

i

fi···fiĴ
k≠1|)p

k .

To show that (Ïú(ai,k)) is a defining system for È–̂1, . . . , –̂nÍ, we will check three properties
of Ïú(a). Firstly, for any constant cÕ œ k and for a = c‡‰‡, b = c· ‰· in Cp(KJ

i

fi···fiJ
k

)
where p is either pi + · · · + pk or pi + · · · + pk + 1 and {u, v} /œ ‡, · ,

Ïú(cÕa) = ci,k cÕc‡‰Ï(‡) = cÕÏú(a) and
Ïú(a + b) = ci,k (c‡‰Ï(‡) + c· ‰Ï(·)) = Ïú(a) + Ïú(b).

(3.32)

Secondly, let a =
q

‡œS
a

c‡‰‡ œ Cp
i

+···+p
k(KJ

i

fi···fiJ
k

). Then

d(a) =
ÿ

‡œS
a

ÿ

jœJ
i

fi···fiJ
k

\‡,
jfi‡œK

J

i

fi···fiJ

k

c‡ Á(j, j fi ‡) ‰jfi‡.

Suppose that for every summand ‰jfi‡ that is not cancelled by other summands in d(a),
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j fi ‡ does not contract. That is, |j fi ‡| = pi + · · · + pk + 2 = |ĵ fi ‡̂| where ĵ = Ï(j) and
‡̂ = Ï(‡). We want to show that Ïú(d(a)) is a coboundary. We have

Ïú(d(a)) = ci,k

ÿ

‡̂œÏ(S
a

)
c‡̂

3 ÿ

ĵœĴ
i

fi···fiĴ
k

\‡̂,

ĵfi‡̂œK̂
Ĵ

i

fi···fiĴ

k

,

|ĵfi‡̂|=p
i

+···+p
k

+2

Á(ĵ, ĵ fi ‡̂) ‰
ĵfi‡̂

4

where Á(j, j fi ‡) = Á(ĵ, ĵ fi ‡̂) due to the order on vertices in K and since j fi ‡

does not contract. Let Ŝ = {Ï(‡) | ‡ œ Sa, |Ï(‡)| = pi + · · · + pk + 1} and let
b =

q
‡̂œŜ c‡̂‰‡̂ œ Cp

i

+···+p
k(K̂Ĵ

i

fi···fiĴ
k

). Then

Ïú(d(a)) = d(b). (3.33)

In particular, let a = ai,k for some i, k, so {u, v} /œ ‡ for any ‡ œ Sa
i,k

. Suppose that
for a simplex ‡ œ Sa

i,k

, there is a simplex j fi ‡ œ KJ
i

fi···fiJ
k

for j œ Ji fi · · · fi Jk \ ‡

that is contracted. That is, {u, v} œ j fi ‡. By the definition of a defining system,
d(ai,k) =

qk≠1
r=i ai,rar,k. Therefore either c‡ Á(j, j fi ‡) ‰jfi‡ is cancelled by other terms

in d(ai,k), or there exists i 6 r < k and simplices · œ Sa
i,r

, ÷ œ Sa
r+1,k

such that
· fi ÷ = j fi ‡. In the latter case, if {u, v} œ j fi ‡, then {u, v} œ · fi ÷. This implies
that either {u, v} œ · or {u, v} œ ÷, since by construction {u, v} µ Ji for an 1 6 i 6 n

and · œ Sa
i,r

µ Ji fi · · · fi Jr, ÷ œ Sa
r+1,k

µ Jr+1 fi · · · fi Jk. This then contradicts the
assumption that {u, v} /œ ‡ for any ‡ œ Sa

i,k

and any {i, k}. Hence a summand of the
form c‡ Á(j, j fi ‡) ‰jfi‡, where {u, v} œ j fi ‡, is cancelled out by other summands.
Therefore Ïú(d(ai,k)) = d(Ïú(ai,k)).

Thirdly, let ai,r =
q

·œS
a

i,r

c· ‰· , ai,r œ Cp
i

+···+p
r (KJ

i

fi···fiJ
r

) and ar+1,k =
q

÷œS
a

r+1,k

c÷‰÷,
ar+1,k œ Cp

r+1+···+p
k(KJ

r+1fi···fiJ
k

). Then

k≠1ÿ

r=i

Ïú(ai,r)Ïú(ar+1,k)

=
k≠1ÿ

r=i

(≠1)1+deg Ïú(a
i,r

)

Q

caci,r

ÿ

·̂œÏ(S
a

i,r

)
c· ‰·̂

R

db ·

Q

cacr+1,k

ÿ

÷̂œÏ(S
a

r+1,k

)
c÷‰÷̂

R

db

=
k≠1ÿ

r=i

C

Q

ca
ÿ

·̂œÏ(S
a

i,r

)

ÿ

÷̂œÏ(S
a

r+1,k

)
c· c÷‰·̂fi÷̂

R

db

where
C = (≠1)1+deg Ïú(a

i,r

)(≠1)|Ĵ
i

fi···fiĴ
r

|(p
r+1+···+p

k

+1)ci,rcr+1,k.

Since (≠1)2 = 1, (≠1)|Ĵ
i

fi···fiĴ
r

|(p
r+1+···+p

k

+1) = (≠1)≠|Ĵ
i

fi···fiĴ
r

|(p
r+1+···+p

k

+1). So using
the expressions for ci,r and cr+1,k, and using deg Ïú(ai,r) = 1 + pi + · · · + pr + |Ĵi fi · · · Ĵr|,

C =(≠1)2+p
i

+···+p
r

+|Ĵ
i

fi···Ĵ
r

|(≠1)≠|Ĵ
i

fi···fiĴ
r

|(p
r+1+···+p

k

+1)
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· (≠1)(|J
i

|≠|Ĵ
i

|)p
i+1 · · · (≠1)(|J

i

fi···fiJ
r≠1|≠|Ĵ

i

fi···fiĴ
r≠1|)p

r

· (≠1)(|J
r+1|≠|Ĵ

r+1|)p
r+2 · · · (≠1)(|J

r+1fi···fiJ
k≠1|≠|Ĵ

r+1fi···fiĴ
k≠1|)p

k

=(≠1)p
i

+···+p
r (≠1)(|J

i

|≠|Ĵ
i

|)p
i+1 · · · (≠1)(|J

i

fi···fiJ
r≠1|≠|Ĵ

i

fi···fiĴ
r≠1|)p

r · (≠1)|Ĵ
i

fi···fiĴ
r

|p
r+1

· (≠1)(|J
r+1|≠|Ĵ

r+1|≠|Ĵ
i

fi···fiĴ
r

|)p
r+2 · · · (≠1)(|J

r+1fi···fiJ
k≠1|≠|Ĵ

r+1fi···fiĴ
k≠1|≠|Ĵ

i

fi···fiĴ
r

|)p
k

=(≠1)p
i

+···+p
r (≠1)|J

i

fi···fiJ
r

|(p
r+1+·+p

k

)ci,k

=(≠1)1+deg a
i,r (≠1)|J

i

fi···fiJ
r

|(p
r+1+·+p

k

+1)ci,k.

By assumption, {u, v} /œ ‡ for any ‡ œ Sa
i,k

and any {i, k}. Thus {u, v} /œ · and
{u, v} /œ ÷ for any i 6 r < k and any simplices · œ Sa

i,r

, ÷ œ Sa
r+1,k

. Also by construction,
{u, v} µ Ji for an index 1 6 i 6 n, so {u, v} /œ · fi ÷. Hence Ï(· fi ÷) = Ï(·) fi Ï(÷) is
a (pi + · · · + pk + 1)-simplex. Therefore using the definition of Ïú(a), the properties in
(3.32), and the fact that Ï(· fi ÷) = Ï(·) fi Ï(÷) = ·̂ fi ÷̂,

k≠1ÿ

r=i

Ïú(ai,r)Ïú(ar+1,k)

=
k≠1ÿ

r=i

(≠1)1+deg a
i,r (≠1)|J

i

fi···fiJ
r

|(p
r+1+·+p

k

+1)ci,k

Q

ca
ÿ

·̂œÏ(S
a

i,r

)

ÿ

÷̂œÏ(S
a

r+1,k

)
c· c÷‰·̂fi÷̂

R

db

= Ïú
A

k≠1ÿ

r=i

ai,rar+1,k

B

.

Pairing this with the fact that Ïú(d(ai,k)) = d(Ïú(ai,k)) for any i, k, we have that

d(Ïú(ai,k)) = Ïú(d(ai,k)) = Ïú
A

k≠1ÿ

r=i

ai,rar+1,k

B

=
k≠1ÿ

r=i

Ïú(ai,r)Ïú(ar+1,k).

Lastly, by the definition of ai = ai,i in (3.17), Ïú(ai,i) = âi,i = âi. Hence (Ïú(ai,k)) is a
defining system for È–̂1, . . . , –̂nÍ if (ai,k) is a defining system such that {u, v} /œ ‡ for any
‡ œ Sa

i,k

and any pair {i, k}. Also, if Ê is the associated cocycle for (ai,k), then

Ïú(Ê) = Ïú(
k≠1ÿ

r=i

ai,rar+1,k) =
k≠1ÿ

r=i

Ïú(ai,r)Ïú(ar+1,k)

so Ïú(Ê) is the associated cocycle for (Ïú(ai,k)). Moreover if [Ê] = 0, then there is a
cochain a œ Cp1+···+p

n(KJ1fi···fiJ
n

) such that Ê + d(a) = 0. No simplices in SÊ contract,
and d(a) = ≠Ê. Then by (3.32) and (3.33), Ïú(Ê + d(a)) = Ïú(Ê) + d(b) = 0 for a
cochain b œ Cp

i

+···+p
k(K̂Ĵ

i

fi···fiĴ
k

). So [Ïú(Ê)] = 0, which contradicts the non-triviality of
È–̂1, . . . , –̂nÍ. Hence [Ê] ”= 0.

For the second stage of this proof, suppose that (ai,k) is a defining system for È–1, . . . , –nÍ
such that there is a pair of indices {i, k} with {u, v} œ ‡ for some ‡ œ Sa

i,k

. We will create
another defining system (Âai,k) for È–1, . . . , –nÍ such that {u, v} /œ ‡ for any ‡ œ SÂa

i,k

and
such that [Ê] = [ÂÊ] where Ê, ÂÊ are the associated cocycles for (ai,k), (Âai,k), respectively.
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The cocycle ai = ai,i as defined in (3.17) is such that {u, v} /œ ‡ for every ‡ œ Sa
i

.
Therefore, let {i, k} be a pair of indices such that there is a simplex ‡ œ Sa

i,k

with
{u, v} œ ‡, and for every i < iÕ < kÕ < k, {u, v} /œ ‡ for any ‡ œ Sa

i

Õ
,k

Õ . Let ‡ œ Sa
i,k

be a simplex such that {u, v} œ ‡, and let c‡ be the (non-zero) coe�cient of ‰‡ in ai,k.
Then for every pair {iÕ, kÕ} µ [n], let c = ≠(≠1)1+deg a

i,kc‡ Á(u, ‡) and let

ÂaiÕ,kÕ =

Y
_____]

_____[

aiÕ,kÕ ≠ c‡ Á(u, ‡) d(‰‡\u) if iÕ = i < k = kÕ,

aiÕ,kÕ + c‡ Á(u, ‡) aiÕ,i≠1‰
‡\u if iÕ < i < k = kÕ,

aiÕ,kÕ + c ‰
‡\uak+1,kÕ if iÕ = i < k < kÕ,

aiÕ,kÕ if iÕ < i < k < kÕ or i < iÕ < kÕ < k

(3.34)

where ‰
‡\u œ Cp

i

+···p
k

≠1(KJ
i

fi···fiJ
k

). We will show that (ÂaiÕ,kÕ) is a defining system for
È–1, . . . , –nÍ. Firstly since k ≠ i > 1, ÂaiÕ,iÕ = aiÕ,iÕ for every iÕ œ [n]. We also need to show
that d(ÂaiÕ,kÕ) =

qkÕ≠1
r=iÕ ÂaiÕ,rÂar+1,kÕ for every {iÕ, kÕ}.

For i < iÕ < kÕ < k, we have that ÂaiÕ,kÕ = aiÕ,kÕ so

d(ÂaiÕ,kÕ) = d(aiÕ,kÕ) =
kÕ≠1ÿ

r=iÕ
aiÕ,rar+1,kÕ =

kÕ≠1ÿ

r=iÕ

ÂaiÕ,rÂar+1,kÕ .

For iÕ = i < k = kÕ,

d(Âai,k) = d(ai,k ≠ c‡ Á(u, ‡) d(‰‡\u)) = d(ai,k)

since d(d(‰‡\u)) = 0. Since ‰
‡\u œ Cp

i

+···p
k

≠1(KJ
i

fi···fiJ
k

), d(‰‡\u) œ Cp
i

+···p
k(KJ

i

fi···fiJ
k

).
Hence Âai,k œ Cp

i

+···p
k(KJ

i

fi···fiJ
k

) and deg Âai,k = deg ai,k. Additionally,

d(‰‡\u) =
ÿ

jœJ
i

fi···fiJ
k

\(‡\u),
jfi‡\u œK

J

Á(j, j fi ‡ \ u)‰jfi‡\u.

So ‰‡ is the only summand of d(‰‡\u) such that {u, v} œ ‡. Thus ai,k ≠c‡ Á(u, ‡) d(‰‡\u)
no longer contains the summand ‰‡ and also

|{· œ SÂa
i,k

: {u, v} œ ·}| < |{· œ Sa
i,k

: {u, v} œ ·}|.

Next, for iÕ < i < k = kÕ, we have aiÕ,i≠1 œ Cp
i

Õ +···+p
i≠1(KJ

i

Õ fi···fiJ
i≠1) and so aiÕ,i≠1‰

‡\u œ
Cp

i

Õ +···+p
k(KJ

i

Õ fi···fiJ
k

). Hence ÂaiÕ,k œ Cp
i

Õ +···+p
k(KJ

i

Õ fi···fiJ
k

). Also,

d(ÂaiÕ,k) = d(aiÕ,k + c‡ Á(u, ‡) aiÕ,i≠1‰
‡\u)

= d(aiÕ,k) + c‡ Á(u, ‡)
1
d(aiÕ,i≠1)‰‡\u + (≠1)deg a

i

Õ
,i≠1aiÕ,i≠1d(‰‡\u)

2

=
k≠1ÿ

r=iÕ
aiÕ,rar+1,k + c‡ Á(u, ‡)

A
i≠2ÿ

r=iÕ
aiÕ,rar+1,i≠1

B
‰

‡\u ≠ c‡ Á(u, ‡) aiÕ,i≠1d(‰‡\u)

=
i≠2ÿ

r=iÕ
aiÕ,r(ar+1,k + c‡ Á(u, ‡) ar+1,i≠1‰

‡\u) + aiÕ,i≠1(ai,k ≠ c‡ Á(u, ‡) d(‰‡\u))
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+
k≠1ÿ

r=i

aiÕ,rar+1,k

=
k≠1ÿ

r=iÕ

ÂaiÕ,rÂar+1,k.

For iÕ = i < k < kÕ, we have that Âai,kÕ œ Cp
i

+···+p
k

Õ (KJ
i

fi···fiJ
k

Õ ) since ‰
‡\uak+1,kÕ œ

Cp
i

+···+p
k

Õ (KJ
i

fi···fiJ
k

Õ ). Furthermore,

d(Âai,kÕ) = d(ai,kÕ ≠ (≠1)1+deg a
i,kc‡ Á(u, ‡) ‰

‡\uak+1,kÕ)

=
kÕ≠1ÿ

r=i

ai,rar+1,kÕ ≠ (≠1)1+deg a
i,kc‡ Á(u, ‡) d(‰‡\u)ak+1,kÕ

≠ (≠1)1+deg a
i,kc‡ Á(u, ‡) (≠1)deg ‰

‡\u‰
‡\u

Q

a
kÕ≠1ÿ

r=k+1
ak+1,rar+1,kÕ

R

b

=
k≠1ÿ

r=i

ai,rar+1,k + (≠1)1+deg a
i,k(ai,k ≠ c‡ Á(u, ‡) d(‰‡\u))ak+1,kÕ

+
kÕ≠1ÿ

r=k+1

1
≠(≠1)1+deg a

i,kc‡ Á(u, ‡) (≠1)deg ‰
‡\u‰

‡\uak+1,r + ai,r

2
ar+1,kÕ .

More specifically, let c = ≠(≠1)1+deg a
i,kc‡ Á(u, ‡). Then in the last summand,

c (≠1)deg ‰
‡\u‰

‡\uak+1,r

= (≠1)p
i

+···+p
k

≠1+|J
i

fi···fiJ
k

|+1(≠1)2+p
k+1+···+p

r

+|J
k+1fi···fiJ

r

| c ‰
‡\uak+1,r

= (≠1)2+p
i

+···+p
k

+|J
i

fi···fiJ
k

| c ‰
‡\uak+1,r

= (≠1)1+deg a
i,r c ‰

‡\uak+1,r.

Therefore

d(Âai,kÕ) =
k≠1ÿ

r=i

ai,rar+1,k + (≠1)1+deg a
i,k(ai,k ≠ c‡ Á(u, ‡) d(‰‡\u))ak+1,kÕ

+
kÕ≠1ÿ

r=k+1
(≠1)1+deg a

i,r ( c ‰
‡\uak+1,r + ai,r)ar+1,kÕ

=
k≠1ÿ

r=iÕ

ÂaiÕ,rÂar+1,k.

Lastly when iÕ < i < k < kÕ, consider

kÕ≠1ÿ

r=iÕ

ÂaiÕ,rÂar+1,kÕ = aiÕ,i≠1Âai,kÕ + ÂaiÕ,kak+1,kÕ +
ÿ

rœ{iÕ,...,[i≠1,...,‚k,...kÕ≠1}

ÂaiÕ,rÂar+1,kÕ
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where ‚l denotes omission. Thus

kÕ≠1ÿ

r=iÕ

ÂaiÕ,rÂar+1,kÕ = aiÕ,i≠1
1
ai,kÕ ≠ (≠1)1+deg a

i,kc‡ Á(u, ‡) ‰
‡\uak+1,kÕ

2

+ (≠1)deg a
i

Õ
,k

1
aiÕ,kÕ + c‡ Á(u, ‡) aiÕ,i≠1‰

‡\u

2
ak+1,kÕ +

ÿ

rœ{iÕ,...,[i≠1,...,‚k,...kÕ≠1}

ÂaiÕ,rÂar+1,kÕ

= ≠(≠1)1+deg a
i

Õ
,i≠1(≠1)1+deg a

i,kc‡ Á(u, ‡) ‰
‡\uaiÕ,i≠1ak+1,kÕ

+ (≠1)deg a
i

Õ
,kc‡ Á(u, ‡) aiÕ,i≠1‰

‡\uak+1,kÕ + d(aiÕ,kÕ)

=
1
(≠1)1+deg a

i

Õ
,k ≠ (≠1)1+deg a

i

Õ
,i≠1(≠1)1+deg a

i,k

2
c‡ Á(u, ‡) aiÕ,i≠1‰

‡\uak+1,kÕ + d(aiÕ,kÕ)

where

(≠1)1+deg a
i

Õ
,i≠1(≠1)1+deg a

i,k = (≠1)2+p
i

Õ +···+p
i≠1+|J

i

Õ fi···fiJ
i≠1|(≠1)2+p

i

+···+p
k

+|J
i

fi···fiJ
k

|

= (≠1)2+p
i

Õ +···+p
k

+|J
i

Õ fi···fiJ
k

| = (≠1)1+deg a
i

Õ
,k .

Hence

kÕ≠1ÿ

r=iÕ

ÂaiÕ,rÂar+1,kÕ =
1
(≠1)1+deg a

i

Õ
,k ≠ (≠1)1+deg a

i

Õ
,k

2
c‡ Á(u, ‡) aiÕ,i≠1‰

‡\uak+1,kÕ + d(aiÕ,kÕ)

= 0 + d(aiÕ,kÕ) = d(ÂaiÕ,kÕ).

Therefore for all {iÕ, kÕ}, ÂaiÕ,kÕ œ Cp
i

Õ +···+p
k

Õ (KJ
i

Õ fi···fiJ
k

Õ ) and d(ÂaiÕ,kÕ) =
qkÕ≠1

r=iÕ ÂaiÕ,rÂar+1,kÕ .
So (ÂaiÕ,kÕ) is a defining system for È–1, . . . , –nÍ. Also ‡ /œ · for any · œ SÂa

i

Õ
,k

Õ and any

{iÕ, kÕ}. The associated cocycle ÂÊ for this defining system is given by
qn≠1

r=1 Âa1,rÂar+1,n.
Thus by calculating

qn≠1
r=1 Âa1,rÂar+1,n in a similar manner as in the above calculations,

ÂÊ =

Y
__]

__[

Ê if i ”= 1, k ”= n,

Ê + c‡ Á(u, ‡) d(aiÕ,i≠1‰
‡\u) if 1 = i < k = n,

Ê ≠ (≠1)1+deg a
i,kc‡ Á(u, ‡)d(‰‡\uak+1,kÕ) if 1 = i < k < n

(3.35)

where Ê is the associated cocycle for (aiÕ,kÕ). (There is no a1,n, so it is not possible for
i = 1, k = n.) So in terms of the cohomology classes, [ÂÊ] = [Ê]. Therefore [ÂÊ] = 0 if and
only if [Ê] = 0.

If there is a cochain ÂaiÕ,kÕ such that {u, v} œ ‡ for some ‡ œ SÂa
i

Õ
,k

Õ , then we can repeat the
above procedure to construct (ÂÂaiÕ,kÕ), etc. In each iteration, ‡ /œ · for any · œ SÂa

i

Õ
,k

Õ and
any {iÕ, kÕ}. Thus after a finite number of iterations, we obtain a defining system (ÂaiÕ,kÕ)
such that {u, v} /œ ‡ for any ‡ œ SÂa

i

Õ
,k

Õ and any pair {iÕ, kÕ}. Then we can construct
a defining system (Ïú(ÂaiÕ,kÕ)) for È–̂1, . . . , –̂nÍ. So if [Ê] = [ÂÊ] = 0, then [Ïú(ÂÊ)] = 0,
which contradicts the assumption that È–̂1, . . . , –̂nÍ is non-trivial. Hence if È–̂1, . . . , –̂nÍ
is non-trivial, then È–1, . . . , –nÍ is non-trivial.

Proposition 3.2.12, Lemma 3.2.14 and Proposition 3.2.16 prove the following statement.
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Theorem 3.2.17. Let K̂ be a simplicial complex with a non-trivial n-Massey product in
Hú(ZK̂). Let K be a simplicial complex that maps onto K̂ by a series edge contractions
Ï : K æ K̂ that satisfy the link condition. Then there is a non-trivial n-Massey product
in Hú(ZK).

Remark 3.2.18. The degree of the classes in the new Massey product are di�erent to
the degree of classes in the original Massey product. The original Massey product
È–̂1, . . . , –̂nÍ µ H |Ĵ1fi···fiĴ

n

|+(p1+···+p
n

+1)+1(ZK̂) had classes –̂i œ H |Ĵ
i

|+p
i

+1(ZK̂). Theo-
rem 3.2.17 gives an n-Massey product on classes whose degree is determined by |Ji| > |Ĵi|,
so –i œ H |J

i

|+p
i

+1(ZK). Therefore È–1, . . . , –nÍ µ H(p1+···+p
n

)+|J1fi···fiJ
n

|+2(ZK).

(a) A truncated octahedron P (b) A full subcomplex of K, missing
just one vertex

Figure 3.10

Example 3.2.19. Let P be the truncated octahedron as shown in Figure 3.10a. Its
facets are squares and hexagons. Let K = KP = ˆP ú be the simplicial complex that
is the nerve complex of the simple polytope P . Then K is the simplicial complex in
Figure 3.10b, with one more vertex and six 2-simplices joining this vertex to the boundary
of the disc in Figure 3.10b.

Consider a full subcomplex KV of K, such as in Figure 3.11a. It is possible to edge
contract KV to a simplicial complex on 6 vertices by contracting the coloured edges, as
shown in Figure 3.11b. These edge contractions satisfy the link condition.

Up to graph isomorphism, the one skeleton of the simplicial complex K̂ in Figure 3.11b
is one of the obstruction graphs from Figure 2.6. Therefore by Theorem ??, there is a
non-trivial triple Massey product È–̂1, –̂2, –̂3Í µ H8(ZK̂) for –̂i œ H3(ZK̂) and where –̂1,
–̂2, –̂3 are supported on Ĵ1 = {a, b}, Ĵ2 = {c, d}, Ĵ3 = {e, f}, respectively.

Since the edge contractions taking KV to K̂ satisfy the link condition, by Theorem 3.2.17
there is also a non-trivial triple Massey product È–1, –2, –3Í µ Hú(ZK). Moreover,
–1, –2, –3 are supported on the vertex sets J1 = {1, 2, 3}, J2 = {4, 5, 6, 7}, J3 = {8, 9, 10},
respectively. Hence –1 œ H4(ZK), –2 œ H5(ZK), –3 œ H4(ZK), and È–1, –2, –3Í µ
H12(ZK). Therefore, Theorem 3.2.17 gives a new triple Massey product. In particular,
it shows that ZK = ZP is a non-formal manifold, when P is a truncated octahedron.

Example 3.2.20. In Section 2.3.4 we described how Zhuravleva [39] showed that for
any Pogorelov polytope P , moment-angle complexes ZP = ZK

P

have a non-trivial triple
Massey product using the full subcomplex in Figure 3.12.
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(a) A full subcomplex of K
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(b) A full subcomplex of K after edge
contracting the coloured edges

Figure 3.11
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5 6

7

b0

b1 bn≠1

bn

Figure 3.12: A full subcomplex of the simplicial complex corresponding to any Pogorelov
polytope [39]

Applying edge contractions to the coloured edges of the full subcomplex in Figure 2.9,
we obtain the simplicial complex in Figure 3.13. Up to graph isomorphism, the one-
skeleton of this simplicial complex is one of the obstruction graphs in Figure 2.6, given by
Denham and Suciu [17]. These edge contractions satisfy the link condition, and therefore
Theorem 3.2.17 recovers the non-trivial triple Massey products in Zhuravleva’s work
from Denham and Suciu’s classification of non-trivial triple Massey products of classes
in degree three.

Furthermore, similar conclusions can be made about other simple polytopes, rather
than just those in the Pogorelov class or the truncated octahedron. For example, when
P is a polytope such as the 3-dimensional permutahedron, 3-dimensional stellahedron,
truncated dodecahedron, etc, then KP contains full subcomplexes that also edge contract
to an obstruction graph. Therefore we can conclude the existence of non-trivial triple
Massey products in many other moment-angle manifolds, other than those related to
Pogorelov polytopes. This also provides more explicit examples moment-angle manifolds
that are non-formal.
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2̂

3̂

4̂

5̂

6̂

b̂0

5̂
2̂

4̂

6̂

b̂0

3̂

Figure 3.13: An edge-contracted full subcomplex of a simplicial complex corresponding
to any Pogorelov polytope

Remark 3.2.21. Theorem 3.2.17 can be used for detecting non-trivial Massey products in
moment-angle complexes. For example, let K be a simplicial complex with –1, . . . , –n œ
Hú(ZK) such that –i œ ÂHp

i(KJ
i

) and Ji flJj = ? for any i ”= j. Suppose K edge contracts
to a simplicial complex K̂ that has non-trivial Massey product È–̂1, . . . , –̂nÍ œ Hú(ZK̂)
such that È–̂1, . . . , –̂nÍ can be lifted to È–1, . . . , –nÍ as in the proof of Theorem 3.2.17.
Then È–1, . . . , –nÍ µ Hú(ZK) is also a non-trivial higher Massey product.

We can also use Theorem 3.2.17 to reduce known non-trivial Massey products to other
non-trivial Massey products of smaller degree.

Corollary 3.2.22. Let K be a simplicial complex with a non-trivial n-Massey product
È–1, . . . , –nÍ µ Hú(ZK) for –i œ ÂHp

i(KJ
i

) and Ji fl Jj = ? for any i ”= j. Suppose
Ï : K æ K̂ is a series of edge contractions such that there are non-trivial classes –̂i œ
ÂHp

i(K̂Ï(J
i

)) for i = 1, . . . , n. Then there is a non-trivial n-Massey product È–̂1, . . . , –̂nÍ
in Hú(ZK̂).

Proof. If the Massey product È–̂1, . . . , –̂nÍ was trivial, then lifting it as in Theorem 3.2.17
would also give a trivial Massey product È–1, . . . , –nÍ.

3.3 A moment-angle manifold with non-trivial higher Massey
product

In this section, we use both Theorem 3.1.15 and Theorem 3.2.17 to show the existence
of a non-trivial 4-Massey product in the cohomology of ZP where P is a 4-polytope that
is not a truncated 4-cube.

Example 3.3.1. Let P be the truncated 24-cell, which is a simple 4-polytope composed
of 24 truncated octahedrons and 24 cubes. It is derived from the 24-cell by performing
vertex cuts at every vertex, which exposes the 24 cubes.
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In a cube-first projection of the truncated 24-cell, there is one cube closest in the four-
dimensional viewpoint. Six truncated octahedra surround that central cube, and eight
more cubes fill gaps between three adjacent truncated octahedra. There are 12 truncated
octahedra and six cubes in the equator of the truncated 24-cell. Then on the far side of
the truncated 24-cell, a further six truncated octahedra and 8 + 1 cubes have the same
arrangement as those on the near side. Therefore in total there are 6 + 12 + 6 = 24
truncated octahedra and 1 + 8 + 6 + 8 + 1 = 24 cubes.

(a) Near (far) side of the truncated 24-
cell, plus six equatorial cubes shown as
flat squares due to the 4D viewpoint.

(b) Twelve equatorial truncated octa-
hedra shown as flat hexagons due to
the 4D viewpoint.

Figure 3.14: Visualisation of the truncated 24-cell [35]

We find a non-trivial 4-Massey product in Hú(ZP ), as constructed by Theorems 3.1.15
and 3.2.17. Let KP be the simplicial complex that is dual to P .

Label the nearest cube in P as C1. Label the furthest cube C1Õ . Let the six equa-
torial cubes be C2, C2Õ , C3, C3Õ , C4, C4Õ , such that opposite cubes along the same axis
are Ci and CiÕ . Every truncated octahedron is adjacent to exactly two of the cubes
C1, C1Õ , . . . , C4, C4Õ , so let each truncated octahedron be labelled Oi,j for Ci, Cj the
adjacent cubes.

Let K be a full subcomplex of KP after removing the vertices O1,3Õ , O1,2Õ , O2,3Õ , O2,4Õ , O3,4Õ ,
and all of the vertices that correspond to cubes other than Ci, CiÕ for i = 1, . . . , 4. Let K̂1

be the result of contracting the edges {C1Õ , O1Õ,j} ‘æ Ĉ1Õ for j œ {2, 2Õ, . . . , 4, 4Õ}. Then
the one-skeleton of K̂1 is the simplicial complex in Figure 3.15, where Ĉ1Õ is connected
to every vertex except C1, O1,2, O1,3, O1,4 and O1,4Õ .

Performing edge contractions at each of the bold edges, we obtain a simplicial complex
K̂. These edge contractions satisfy the link condition. The one-skeleton of K̂ is shown in
Figure 3.16, where Ĉ1Õ is connected to every vertex except Ĉ1.

Rearranging the vertices of K̂, we have the simplicial complex whose one-skeleton is
shown in Figure 3.16b. This simplicial complex is exactly the dual to the 4-cube, after
stellar subdivisions have been performed at the edges {Ĉ1, Ĉ2Õ}, {Ĉ1, Ĉ3Õ}, {Ĉ2, Ĉ3Õ},
{Ĉ2, Ĉ4Õ}, {Ĉ3, Ĉ4Õ}. That is,

K̂ = ss{Ĉ1,Ĉ2Õ } ss{Ĉ1,Ĉ3Õ } ss{Ĉ2,Ĉ3Õ } ss{Ĉ2,Ĉ4Õ } ss{Ĉ3,Ĉ4Õ } K1 ú K2 ú K3 ú K4
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C1

C3Õ
C4

C2

C3 C4Õ

C2Õ

O1,4

O1,2

O1,3
O1,4Õ

O2Õ,3Õ

O3Õ,4

O2,4

O2,3 O2Õ,4Õ

O2Õ,4

O3,4

O2Õ,3

O3Õ,4Õ

Figure 3.15: A full subcomplex of K̂1

where Ki = {{Ĉi}, {ĈiÕ}}, for i = 1, 2, 3, 4.

Therefore by Theorem 3.1.15, there is a non-trivial 4-Massey product È–̂1, –̂2, –̂3, –̂4Í µ
H10(ZK̂). Each cohomology class –̂i can be thought of as a class in ÂH0(K̂i). By
Theorem 3.2.17, there is a non-trivial 4-Massey product È–1, –2, –3, –4Í µ H29(ZK) µ
H29(ZP ), where –1 œ H9(ZP ), –2 œ H6(ZP ), –3 œ H6(ZP ), –4 œ H10(ZP ). Alterna-
tively, –i œ ÂH0(KJ

i

) for

J1 = {C1, C1Õ , O1Õ,2, O1Õ,2Õ , O1Õ,3, O1Õ,3Õ , O1Õ,4, O1Õ,4Õ},

J2 = {C2, C2Õ , O1,2, O2Õ,4Õ , O2Õ,3}, J3 = {C3, C3Õ , O1,3, O2,3, O2Õ,3Õ},

J4 = {C4, C4Õ , O1,4, O1,4Õ , O2,4, O2Õ,4, O3,4, O3Õ,4, O3Õ,4Õ}.

Therefore ZP is a non-formal manifold, when P is a truncated 24-cell.
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Ĉ1

Ĉ3ÕĈ4

Ĉ2

Ĉ3 Ĉ4Õ

Ĉ2Õ

(a) The one-skeleton of a full subcom-
plex of K̂

Ĉ1 Ĉ3Õ

Ĉ4

Ĉ2

Ĉ3

Ĉ4Õ

Ĉ2Õ

(b) A rearranged one-skeleton of a full
subcomplex of K̂

Figure 3.16



Chapter 4

Simplicial Posets

4.1 Introduction

Simplicial posets are a generalisation of simplicial complexes. They first arose as
quotients of simplicial complexes under group actions [20], but also correspond to ideal
triangulations in low-dimensional topology. It was shown by Lü and Panov [28] that we
can generalise moment-angle complexes to correspond with simplicial posets instead of
just simplicial complexes. One advantage of this is that we can obtain moment-angle
complexes such as spheres in even dimension.

The faces of a simplex form a partially ordered set (poset) with respect to inclusion, with
the empty set as the initial element.

Definition 4.1.1. A simplicial poset S is a finite poset with order relation 6, an initial
element 0̂ and the property that for any ‡ œ S, the lower segment [0̂, ‡] = {· œ S : 0̂ 6
· 6 ‡} is the face poset of a standard simplex.

All simplicial complexes K are also simplicial posets by considering K as its face poset.
We use the term simplicial poset to also refer to the cell complex obtained by assigning a
geometric simplex �‡ to every ‡ œ S and gluing these simplices along the poset category.
Therefore we refer to an element ‡ œ S as a simplex. The rank of a simplex |‡| is k if the
face �‡ is a (k ≠ 1)-dimensional standard simplex. A vertex is a 0-dimensional simplex.
The dimension of a simplicial poset S is the maximum of ranks of its simplices minus
one.

Example 4.1.2. The simplest example of a simplicial complex that is not a simplicial
poset is the “doubling” of a standard one-simplex on two vertices, as shown in Figure 4.1a.
Figure 4.1b is the simplicial poset obtained by gluing two standard 2-simplices (triangles)
along their boundary, and Figure 4.1c is the result of adding two copies of the standard
1-simplex to one edge of a triangle.

Stanley [34] defined a face ring for simplicial posets that coincides with the definition of

75
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1 2

‡

·

(a)

1 2

3

(b)

1

2

33
(c)

Figure 4.1: Examples of simplicial posets

a face ring for simplicial complexes.

Definition 4.1.3. For any two simplices ‡, · œ S, the join ‡ ‚ · is the set of their least
common upper bounds, and the meet ‡ · · is the set of their greatest common lower
bounds.

Example 4.1.4. In Figure 4.1a, for simplices {1}, ‡ œ S, {1}·‡ = {1} and {1}‚‡ = {‡}.
Additionally, {1} · {2} = ? and {1} ‚ {2} = {‡, ·}. For the maximal simplices ‡, · œ S,
‡ · · = {1, 2} while ‡ ‚ · = ?.

Definition 4.1.5 ([34]). For a simplicial poset S, the face ring k[S] is the quotient

k[S] = k[v‡ : ‡ œ S]/IS

where the generator v‡ has degree deg v‡ = 2|‡|, and IS is the Stanley-Reisner ideal
generated by

v0̂ ≠ 1 and v‡v· ≠ v‡·· ·
ÿ

÷œ‡‚·

v÷.

The sum over the empty set is taken to be zero, so if ‡ ‚ · = ?, there is the relation
v‡v· = 0.

Remark 4.1.6. For a simplicial complex K, the monomial v‡v· corresponds to a missing
face of K if and only if ‡ ‚ · = ?, in which case v‡v· = 0. If, however, ‡ fi · is not a
missing face, then ‡‚· contains one element so v‡v· = v‡·· v‡‚· . Therefore for simplicial
complexes, Definition 4.1.5 of the face ring is the same as Definition 2.1.10.

Example 4.1.7. For S given by Figure 4.1a, the join and meet of simplices is calculated
in Example 4.1.4. Then the Stanley-Reisner ideal is generated by the relators

v? ≠ 1, v1v2 ≠ v? · (v‡ + v· ) = v1v2 ≠ (v‡ + v· ) and v‡v· .

Additionally, Lü and Panov [28] gave a definition of moment-angle complexes for simplicial
posets that generalises the definition of moment-angle complexes for simplicial complexes.
For a simplicial poset S on [m], and any simplex ‡ œ S, let

(D2, S1)‡ = {(z1, . . . , zm) œ D2m : |zj | = 1 if j ”6 ‡}.

Therefore (D2, S1)‡ is a subspace of D2m homeomorphic to a product of |‡| discs and
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m ≠ |‡| circles. There is a natural inclusion (D2, S1)‡ µ (D2, S1)· for ‡ 6 · , so in a
categorical sense, there is a diagram (D2, S1)S : cat(S) æ top, ‡ ‘æ (D2, S1)‡, from
the face poset of S to the category of topological spaces.

Definition 4.1.8. For a simplicial poset S, the moment-angle complex ZS is

ZS = colim
‡œcat(S)

(D2, S1)‡.

Example 4.1.9. Consider again Figure 4.1a. For the maximal simplices ‡, · , both
(D2, S1)‡, (D2, S1)· are copies of D4 = D2 ◊ D2. The boundary of both ‡ and · is the
set {1, 2} of disjoint points. This corresponds to S3 = D2 ◊ S1 fi S1 ◊ D2 since the union
of (D2, S1){1} and (D2, S1){2} is taken over (D2, S1)? = S1 ◊ S1. Hence in the colimit,
these copies of S3 in both (D2, S1)‡ and (D2, S1)· are identified, and so ZS = S4. This
example is a moment-angle manifold that we cannot obtain from simplicial complexes.

As for simplicial complexes, Duval [18] showed that there is a simplicial poset equivalent
of Hochster’s theorem. Using this, Lü and Panov [28] showed that there is a simplicial
poset version of Theorem 2.1.24.

Definition 4.1.10. For a simplicial poset S on [m] and an index set J µ [m], let a full
subposet SJ be the set of simplices ‡ œ S such that V (‡) µ J .

Theorem 4.1.11 ([18, 28]). For a simplicial poset S on [m], there is an isomorphism of
cochains ÂCú≠1(SJ ) æ Cú≠|J |,2J (ZS) µ Cú+|J |(ZS), inducing an isomorphism of bigraded
algebras

Hú(ZS ; k) ≥= Torú
k[m](k[S], k) ≥=

n

Jµ[m]

ÂHú(SJ)

where in particular, ÂH≠1(S?) = k and

Hp(ZS) ≥=
n

Jµ[m]

ÂHp≠|J |≠1(SJ).

Additionally, the di�erentials in Cú(ZS ; k) and ÂCú(SJ) are the same as those for sim-
plicial complexes in Section 2.1.2.3. The main ideas for this proof are similar to the
ideas in Section 2.1.2.1. Some of the technical algebraic arguments do not work for
simplicial posets and instead need to be proved by topological and categorical arguments.
Specifically, we still have an auxiliary algebra Rú(S) similar to Definition 2.1.16, but
proving the map Í : �[u1, . . . , um] ¢ k[S] æ Rú(S) is a quasi-isomorphism is much harder
to achieve than in the proof of Proposition 2.1.17. Instead, this proof uses a deformation
retraction D2 Òæ SŒ æ D2 and formality of polyhedral products to obtain a deformation
retraction

ZS = (D2, S1)S Òæ (SŒ, S1)S æ (D2, S1)S

where (X, A)S = colim
‡œcat(S)

(X, A)‡. Then the proof constructs isomorphisms of cochain

complexes �[u1, . . . , um] ¢ k[S] æ Cú((SŒ, S1)S) and Rú(S) æ Cú(ZS). From these
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maps it is possible to form a commutative square and show Í is a quasi-isomorphism.
Specific constructions and more detail may be found in [28, Theorem 3.6]. Additionally,
Lü and Panov [28] also concluded that S ‘æ ZS is a covariant functor with respect to
maps of simplicial posets.

Example 4.1.12. We may use Theorem 4.1.11 to calculate the cohomology of the
moment-angle complex for S in Figure 4.1a.

H0(ZS) ≥= ÂH≠1(S?) = k

H4(ZS) ≥= ÂH(4≠2≠1)(S12) ≥= ÂH1(S1) ≥= k

and all other cohomology groups are zero. This agrees with Example 4.1.9.

Theorem 4.1.11 means that we can also study Massey products in moment-angle complexes
corresponding to simplicial posets in the same way as in Section 2.2.2.

4.2 Massey products and simplicial posets

In this section we first show that non-trivial Massey products in moment-angle complexes
that correspond to simplicial complexes lift to non-trivial Massey products in moment-
angle complexes that correspond to simplicial posets. Subsequently we also show that
there are non-trivial Massey products in moment-angle complexes from simplicial posets
that cannot be obtained from such a lift.

For every simplicial poset, there is a corresponding simplicial complex.

Definition 4.2.1. The associated simplicial complex KS is the simplicial complex whose
simplices are on the vertex set V (‡) for ‡ œ S. The folding map is S æ KS , ‡ ‘æ V (‡)
for V (‡) the vertex set of ‡ œ S.

Example 4.2.2. Let S be the simplicial poset in Figure 4.1a. Then KS is a 1-simplex.
For the simplicial posets in Figures 4.1b and 4.1c, KS is a 2-simplex.

Since ZS is functorial, the folding map in Definition 4.2.1 induces a map fú : Hú(ZKS ) æ
Hú(ZS). We use this map to lift Massey products from Hú(ZKS ) to Hú(ZS).

Proposition 4.2.3. Any non-trivial Massey product È–1, . . . , –nÍ in Hú(ZKS ) lifts to a
non-trivial Massey product in Hú(ZS).

Proof. The folding map in Definition 4.2.1 induces a map fú : Hú(ZKS ) æ Hú(ZS) in
cohomology. By Theorem 4.1.11, there is also a corresponding map ÂHú((KS)I) æ ÂHú(SI)
that we will also denote fú.

Let [Ê] œ È–1, . . . , –nÍ µ Hú(ZKS ). By Theorem 4.1.11, [Ê] œ Hú(ZKS ) corresponds to a
class [Ê] œ ÂHp((KS)I) for I µ V (S) and an integer p. Let Ê be a representative of [Ê].
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We wish to show that fú[Ê] œ Hú(ZS) is non-zero, that is, that fú(Ê) œ Cp(SI) is not a
coboundary.

Suppose fú(Ê) œ Cp(SI) is a coboundary and let c œ Cp≠1(S) be a cochain such that
d(c) = fú(Ê). The folding map f : S æ KS preserves the rank of simplices, so c has
a preimage b = (fú)≠1(c) œ Cp≠1((KS)I). As for simplicial complexes in (2.7), the
di�erentials in Cú(SI) are given by

d(‰‡) =
ÿ

jœ‡\I,jfi‡œS
I

Á(j, j fi ‡)‰jfi‡.

Hence the di�erentials in Cú((KS)I) and Cú(SI) are the same and fú : Cp((KS)I) æ
Cp(SI) commutes with the di�erential. Thus d(b) = Ê œ Cp≠1((KS)I), and this contra-
dicts the assumption that È–1, . . . , –nÍ µ Hú(ZKS ) is non-trivial.

On the other hand, there are also non-trivial Massey products in the moment-angle
complexes of simplicial posets that cannot be lifted from an associated simplicial complex,
such as in the following example.

Example 4.2.4. Let S12 be the simplicial poset with two edges ‡1, ‡2 on two vertices,
{1}, {2}. We take the join of this subposet with the vertex {i} for i = 4, 5, 6, thus
creating a union of three cones on S12. We add the edge {4, 5} and for another vertex
{3}, we add the edges {3, 5} and {3, 6}. Let S be the resulting simplicial poset, as drawn
in Figure 4.2a,

S = {?, {1}, {2}, {3}, {4}, {5}, {6}, ‡1, ‡2, {2, 4}, {1, 4}, {3, 5}, {3, 6}, {4, 5},

{4, ‡1}, {4, ‡2}, {5, ‡1}, {5, ‡2}, {6, ‡1}, {6, ‡2}}.

1 2

4

5 6
3

‡2

‡1

(a) A simplicial poset with non-trivial
Massey product in Hú(ZS)

1 2

4

5 6
3

‡1 = ‡2

(b) The associated simplicial complex
KS for S.

Figure 4.2: A simplicial poset with non-trivial Massey product in Hú(ZS), and its
associated simplicial complex

Let –1 œ ÂH1(S1,2), –2 œ ÂH0(S3,4), –3 œ ÂH0(S5,6). These correspond to classes –1 œ
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H4(ZS), –2, –3 œ H3(ZS).

Next we show that È–1, –2, –3Í is defined and non-trivial. By Theorem 4.1.11, –1–2 œ
ÂH2(S1234). Since ÂH2(S1234) = 0, the product –1–2 is therefore zero. Similarly, –2–3 œ
ÂH1(S3456) = 0 and so È–1, –2, –3Í is defined. Furthermore, ÂH0(S3456) = 0 and ÂH1(S1234) =
0. By (2.14), the indeterminacy of È–1, –2, –3Í is

–1 · ÂH0(S3456) + –3 · ÂH1(S1234).

Therefore the indeterminacy is trivial and it only remains to show that there is a non-zero
element in È–1, –2, –3Í.

Let –1 be represented by the cocycle a1 = ‰‡1 , –2 be represented by a2 = ‰4, and –3

by a3 = ‰6. Then let a1,2 = ‰‡1 œ C1(S1234) so that d(a1,2) = ‰‡1fi4 = a1a2, where
a1 = (≠1)1+deg a1a1 as in Definition 2.2.7. Also let a2,3 = 0 since a2a3 = ‰46. Then the
associated cocycle to this defining system is given by Ê = a1a2,3 + a1,2a3 = ≠‰‡1fi6. The
class [Ê] is a generator of ÂH2(S123456), so [Ê] ”= 0. Since the indeterminacy is trivial,
[Ê] is the only element in this triple Massey product. Hence È–1, –2, –3Í in Hú(ZS) is
non-trivial.

In particular this triple Massey product cannot be obtained as a lift induced by the
folding map S æ KS , where KS is shown in Figure 4.2b. Since ÂHp((KS)12) = 0 for
all p, there is no non-zero class –1 œ ÂHp((KS)12). Therefore there is no corresponding
non-trivial Massey product in Hú(ZKS ). Hence we have shown the following.

Proposition 4.2.5. There exist simplicial posets S with non-trivial Massey products
in Hú(ZS) that do not exist in Hú(ZKS ), where KS is the associated simplicial complex
for S.
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