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MASSEY PRODUCTS IN MOMENT-ANGLE COMPLEXES
by Abigail Linton

This thesis presents systematic constructions of new non-trivial higher Massey products
in the cohomology of moment-angle complexes. This is achieved by using combinatorial
operations, such as stellar subdivision and edge contraction, on the underlying simplicial
complex of a moment-angle complex. These techniques construct non-trivial higher
Massey products of cohomology classes in degree three or higher and can be used on any
simplicial complex. Consequently, we find new examples of non-trivial Massey products
in moment-angle manifolds Zp for simple polytopes P that are neither truncated n-cubes
nor Pogorelov polytopes, both of which have already been studied in the literature.
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Chapter 1

Introduction

In this thesis, I study Massey products in toric topology. In particular, I present
systematic methods to construct moment-angle complexes with non-trivial higher Massey
products, using homotopy theory and the combinatorial structure in moment-angle

complexes.

Massey products are higher cohomology operations that refine cup products and they are
studied extensively throughout algebra, topology and geometry. In symplectic geometry,
it is well known that all Kéhler manifolds are formal [16], that is, Kéhler manifolds have
no non-trivial Massey products. Since the 1970s, there has been a well-known problem
in symplectic geometry to find examples of non-Kéhler manifolds. The first example
was found by Thurston [37] in 1975, but in general the non-Kéahler structure is difficult
to detect and there are still relatively few examples known [2]. Massey products are
obstructions to the Kahler structure, but being higher cohomology operations, Massey
products are also very difficult to calculate. This is one of the reasons that we study

Massey products in moment-angle complexes.

For a simplicial complex I, the moment-angle complex Zx is a topological space formed
by identifying products of discs and circles according to the intersection of simplices in
IC. These spaces naturally arise out of the study of complements of coordinate subspace
arrangements in combinatorics, the intersection of quadrics in complex geometry, and level
sets for moment maps in symplectic geometry. Moment-angle complexes are fundamental
objects in toric topology, which inherently relates to other fields such as combinatorics,
commutative algebra, geometric group theory, and complex geometry. The homotopy
type of moment-angle complexes is not yet fully understood, so Massey products are a
valuable topological invariant for these spaces. Furthermore, the underlying combinatorial
structure of moment-angle complexes is a useful platform from which to study Massey

products.

The first examples of non-trivial higher Massey products in moment-angle complexes
were found in 2003 by Baskakov [7], who gave an infinite family of moment-angle

complexes with non-trivial triple Massey products. In 2007, Denham and Suciu [17] gave
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a classification of triple Massey products of classes in the lowest degree (degree three).
Since then, there have been other families of examples such as Limonchenko’s family of
n-Massey products in moment-angle complexes over truncated cubes [26], and Zhuravleva
found non-trivial triple Massey products over Pogorelov polytopes [39]. All of these
results use a combinatorial interpretation of Massey products in moment-angle complexes,
which alludes to the ability to understand the structure of Massey products better from a
combinatorial perspective. However other than these few families of examples, not much
is currently known about the existence or abundance of non-trivial Massey products in

the cohomology of moment-angle complexes.

The main approach of this thesis is to use combinatorial operations on the underlying
simplicial complex of a moment-angle complex. We construct non-trivial n-Massey
products (a1, ..., a,) in H*(Zx) where K is obtained by performing stellar subdivisions
on the join of n simplicial complexes Ky * --- % K, and «; € H*(K;). The degree of
the Massey product is then determined by the degree of o; € H*(K;). Additionally, we
construct a non-trivial n-Massey product in H*(Zx) given the existence of a different
non-trivial n-Massey product in H*(Zy.), where K maps to K by edge contractions. These
edge contractions are simplicial maps that maintain the homotopy type of K, but change
the combinatorics. Then we show that the Massey product in H*(Z) corresponds
to the Massey product in H*(Zy) and is non-trivial. Its degree is determined by the
original Massey product and the number of edge contractions performed. In particular,
these higher Massey products are in arbitrary degree, not just in the lowest degree. The
constructions introduced in this thesis also generalise all of the aforementioned families
of examples, thereby proving that there are many more non-trivial Massey products in

the cohomology of moment-angle complexes than previously shown.

When a simplicial complex K is a simplicial sphere, such as the boundary of the dual of
a simple polytope P, the moment-angle complex Zx (or Zp) is a smooth manifold: a
(polytopal) moment-angle manifold. In both of the constructions in this thesis, there
is no constraint on the simplicial complexes used, and indeed we find new non-trivial

Massey products in moment-angle manifolds. Hence these manifolds will be non-Kéhler.

The first chapter of this thesis is dedicated to relevant background material and review of
existing results. The subsequent chapters present the original results of the thesis. In the
final chapter, we also show that there are non-trivial Massey products in moment-angle

complexes that correspond to simplicial posets.



Chapter 2

Background

2.1 Moment-Angle Complexes

This section summarises the relevant definitions and existing results for moment-angle
complexes and some of their wider context. Our aim is to be able to calculate the

cohomology of moment-angle complexes, and importantly to understand the cup product.

Let k be a field or the integers. A simplicial complex K on the vertex set V(K) =
[m] ={1,...,m} is a collection of subsets ¢ C [m] such that if 0 € K and 7 C o, then
7 € K. These subsets o € K are called simplices. For a set of vertices J C [m], the full

subcomplex K is
Ky={oceK: V(o) C J}.

2.1.1 Introduction

Moment-angle complexes first appeared in work by Buchstaber and Panov [10], and
are fundamental objects in toric topology. In particular, the study of moment-angle
complexes is often very intradisciplinary since they also arise naturally as complements
of coordinate subspace arrangements, intersections of quadrics, and level sets of moment-
maps in symplectic geometry (see [4] for a summary). In this thesis, we focus on the

relationship between the topology of moment-angle complexes and the combinatorics.

Definition 2.1.1. For a simplicial complex K on [m] vertices, the moment-angle complex
Zx for K is
I
ze=|J (D% 8Y) c (o)
IeK

where (D2, S1) =[],V for Y; = D?ifi € I,and Y; = S' if i ¢ I.

Example 2.1.2. Let K be two disjoint points. Then the moment-angle complex is a

union of two solid tori taken over their boundary torus, which corresponds to the empty
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simplex @ € K.
Zx=D>xS" |J S'xD?
Stx St
= 9(D* x D*) = 3.

In general, when K is a triangulation of a sphere, the moment-angle complex Zx is a

moment-angle manifold.

Theorem 2.1.3 ([10]). If K is a triangulation of an n-dimensional sphere on m vertices,

then Zx is an (m + n + 1)-dimensional (closed) topological manifold. O

A proof of this theorem can be found in [10]. For a simple polytope P, let the nerve
complex Kp = O(P*) of P be the boundary complex of the dual polytope. Then
Zp = Zx, be the (polytopal) moment-angle manifold corresponding to the polytope P.
Moment-angle manifolds Zp are particularly studied since they are smooth and have

rich geometrical properties (see [11, Sections 5, 6] for more information).

Example 2.1.4. Let K be the boundary of a pentagon. There are no n-simplices in IC

for n > 2, and as such the maximal simplices are one-dimensional. Therefore,
Zie =(D* x D* x S' x 8* x SY) U (S! x D* x §' x D? x S)
U (ST x St x D? x D? x SY)u (S' x S1 x D? x S' x D?)
U(D? x S' x St x 8 x D?).

In fact Zx is diffeomorphic to the connected sum (S3 x S*)#°, by results of Bosio and

Meersseman [9, Theorem 6.3].

3

Figure 2.1: The boundary of a pentagon

For two simplicial complexes K1 and K9 on vertex sets Vi and Vs respectively, the join is
KixKo={l1Uly: I € K1,12 € K3} on the set V] U V5. This join also corresponds to
the product of simple polytopes, as discussed in [11, Example 2.2.9].

Lemma 2.1.5. For two simple polytopes P) and Pa, Kp,xp, = Kp, * Kp, ]

We also have the following property of moment-angle complexes [11, Proposition 4.1.3].
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Proposition 2.1.6. Let K1 and Ka be simplicial complexes. Then Zic i, = 2, X
Zi [

2

Example 2.1.7. Let K be the boundary of a square, the join of two pairs of disjoint
points K1 = {@,{1},{2}}, K2 = {@,{3},{4}}. By Proposition 2.1.6 and Example 2.1.2,
Zie = S% x §3. Indeed, the moment-angle complex is

Zie = (D*x S' x D* x SHU (S x D? x D* x SY) U (S' x D? x S' x D?)
U(D?* x S' x §' x D%

x D?) x D? x SYUa(D? x D?) x S x D?

x D?) x 9(D? x D?) = 8§ x S5,

(

d(D?
d(D?

For a topological pair (X, A) there is a construction (X, A)* that generalises moment-

angle complexes.

Definition 2.1.8. Let K be a simplicial complex on [m] vertices, and let X = (X71,..., X,,),
A = (Ay,...,A,) be families of pointed CW-spaces such that A; is a pointed subset of
X; for all i. Then the polyhedral product (X, A)* is

(X, A)" = [J x,A)

IeK
where (X, A)! =[], Yifor V; = X;ifi€[,and Y; = A; ifi ¢ . f X1 = ... = X,
and A; = ... = A,,, then we write (X, A)X instead of (X, A)*. If A is a point, then we

write (X)* instead of (X, A)X.

Polyhedral products are functorial with respect to continuous maps of topological pairs
and inclusions of simplicial complexes. In particular, the following result is from [36,

Proposition 3.1].

Proposition 2.1.9 ([36]). Let (X, A) be a sequence of pointed, path-connected CW-pairs.
Let IC be a simplicial complex on [m] and let J C [m].

e The inclusion Kj — K induces an inclusion (X, A)*7 — (X, A)F.

e The projection [["y X; — [lics Xi induces a map (X, A)* — (X, A)*v.
Moreover, the composite (X, A)*7 — (X, A)* — (X, A)X7 is the identity map. O
As a result of the retraction (X, A)* — (X, A)*7 we have that H*(Zx,) C H*(Zx) for

any J C [m]. This is a fact we will use extensively when computing Massey products in

the cohomology of moment-angle complexes.
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Besides moment-angle complexes, other important examples of polyhedral products
include real moment-angle complexes, Ry = (D*, SHX or right-angled Coxeter groups,

71 ((RP>, %)X). A summary of the variety of polyhedral products can be found in [4].

Before the term “polyhedral product” was used, one of the first examples studied was
Davis-Januszkiewicz space DJ(K) ~ (CP>®)X. These were introduced by Davis and
Januszkiewicz in [15] and are discussed in [11, Section 4.3]. Davis-Januszkiewicz spaces
are important for the calculation of the cohomology of moment-angle complexes since
there is a homotopy fibration Zx — (CP>®)X — (CP>)™ [11, Theorem 4.3.2]. In other
words, a moment-angle complex is the homotopy pullback making the following diagram

commute
Zx — (CP>®)Kk

| L

{pt} —— (CP>)™.

Given this diagram, there is an Eilenberg-Moore spectral sequence [19] and it was shown
in [13] that the spectral sequence converges at the second page. Then there is a theorem

by Eilenberg-Moore [33] that gives an isomorphism of algebras
H*(Zx) 2 Tor g+ ((cpoeymy (H* ((CP®)"*), H* ({pt})) (2.1)

where Tor algebras will be discussed further in Section 2.1.2.1.

2.1.2 Face rings and cohomology of moment-angle complexes

An important property of Davis-Januszkiewicz spaces is that its cohomology ring is the
face ring k[K] of a simplicial complex. The face ring of a simplicial complex originates
from the study of algebraic combinatorics and combinatorial commutative algebra, but it

is also a fundamental tool for understanding the cohomology of moment-angle complexes.

Definition 2.1.10. Let K be a simplicial complex on m vertices. Let k[m] = k[vy, ..., vp].

The face ring (or Stanley-Reisner ring) k[K] for K is given by
k[K] = k[m]/Zx

where Zic = (vr: I ¢ K) is the Stanley-Reisner ideal generated by square-free monomials

vr = vj, ...v; € k[m] corresponding to minimal missing faces I = {iy,...,4} C [m].

Example 2.1.11. Let K be the boundary of a pentagon as in Figure 2.1. Then
k(K] = k[v1,v2,v3,v4, v5] /Zkc

where Zxc = (v13,v14, V23, V25, v45) is the ideal generated by monomials whose simplices

are not present in the pentagon.
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The following proposition relates Davis-Januszkiewicz spaces to face rings of simplicial

complexes, thus highlighting a relation between combinatorial algebra and toric topology.

Proposition 2.1.12 ([32]). Let K be a simplicial complex on [m]. The cohomology ring
of (CP>)X is isomorphic to the face ring k[K)].

Proof. The cellular structure of CP* is given by one cell in every even dimension ([23]).
Therefore (CP>°)™ is given by cells of the form DJQ-II‘”1 XX fo” for ji,...,jp € [m], where
D?-ik" is a 2k;-dimensional cell in the j;th factor of (CP*°)™. Accordingly, the cochain

group C*((CP>)™) has a basis of cochains (D?lk1 e DJZ-:")* dual to DJQ-lk1 X e X DJQ-:".

Comparably, (CP>)* has cells D?-lkl X e X Dj:” where {j1,...,Jjp} € K. So the cochain
map i,: C*((CP®)™) — C*((CP>)X) induced by the inclusion i: (CP®)* — (CP>)™

has a kernel generated by cochains (DJQ-lk1 e D?:p)* for {j1,....Jp} ¢ K.

We can identify C*((CP>°)"™) with k[m] by identifying the cochains (Djz-lk”1 e D?:” )* with

monomials v}? . vf;’ . Similarly we can identify ker(i,) with the Stanley-Reisner ideal
Ti. Therefore C*((CP>)X) = k[K]. Since there are only cells in even dimensions, all
boundary maps in the cochain complex are trivial and so H*((CP>®)X) = C*((CP>®)X) =~

k[K]. O
Therefore, the identity in (2.1) becomes
H*(2x) = Toryy, (k[K], k). (2.2)

Our aim is to understand the cup product in H*(Zx) in terms of I, in order to calculate
Massey products. However, it is difficult to see this using the isomorphism of algebras
given by the Eilenberg-Moore theorem. Consequently, Panov [32, Theorem 4.7] gave an
alternative proof of (2.2). We summarise this proof in Section 2.1.2.2 after a brief survey

of Tor-algebras in Section 2.1.2.1.

2.1.2.1 Tor-algebras and the Koszul algebra

To understand the cohomology of moment-angle complexes, we need to be able to
determine Tor (2.2), which can be difficult to calculate. The definition of Tor given here
differs slightly from the standard definition in algebra since we use non-positive degrees

rather than non-negative.

Definition 2.1.13. Let A be a commutative finitely generated k-algebra with unit. For
an A-module M, a free (or respectively, projective) resolution of M is an exact sequence

of A-modules
df(iJrl) . d*i d72 _ d71 dO
TP e Pt e P S —0

where P~ are free (projective) A-modules.
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Definition 2.1.14. For graded A-modules M and N, the module Tor;"(M, N) is defined

as the cohomology module of the cochain complex
. —2 —1i
o PTI@u N — Pl N PP g, N — 0

obtained by omitting the term M in its free resolution and applying ® 4[N to each term.
Therefore Tor*(M, N) = H™/(P ®4 N). The Tor-algebra Tor4(M, N) is then defined
as

Tors(M,N) = @ Tor,,"’ (M, N)

1,720
with a multiplication
TOI‘Zilyjl(M’ N)® TOTZiQ’jZ (M, N) — Tor;lil*iz’jﬁrj? (M, N)

where Tor;‘i’j (M, N) is the jth graded component of Tor;\"(M ,N) .

The choice of resolution in Definition 2.1.14 does not matter, since for any choice of free
resolution of M, the cohomology modules are canonically isomorphic [23, Lemma 3A.2].

Therefore, regarding k as a k[m]-module, we consider the Koszul resolution of k

0 -% A" [m] @k k[m] —% - =% AMfm] @k k[m] —% k[m] -k — 0 (2.3)
where A[m] = Afuy, ..., uy] is the exterior algebra (u? = 0, wu; = —uju;), A'{m] is the
subspace of A[m| containing monomials wu; - - - u; of length 7 and k[m| = k[v1,...,vpn] is

the polynomial algebra over k on m variables. For convenience we refer to u; ® v; €

Alm] ® k[m] as the monomial u;vj, and let urvy = u;, ... w5, ... vj, for I = {iy,... i}
and J = {j1,...,5i}. The augmentation map e sends v; — 0, and the differential d is
such that

d(u;)) =v;, d(v;)=0 and d(a-b)=(da)-b+ (—1)'a-db (2.4)

for any a € Af[m] ® k[m] and b € A[m] ® k[m]. The sequence (2.3) can be checked to be
exact, as in [11, Section A.2]. We let A[m]® k[m] be a bigraded differential algebra with

bideg(u;) = (—1,2) and bideg(v;) = (0,2). (2.5)

By tensoring the Koszul resolution by ®y,,, k[K], and since Tor4 (M, N) = Tora(N, M)
[24, Propostion 3A.5], we define the Tor-algebra of K to be Toryp, (k[K], k). Also
(A[m] @ k[K]) is called the Koszul complex of k[K]. There is an isomorphism of bigraded

algebras,

~ H(A[m] @ k[K], d).
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Therefore we give the Tor-algebra of K a bigrading that is inherited from the cohomology
of Ajm] ® k[K] and

Tory ) (k[K], k) = € Tor (k[K], k).

1,20

Example 2.1.15. Let I be the boundary of a square as in Example 2.1.7. We calculate

the Tor-algebra of IC with the following cochain complex

0 — A*[4] @ k[K] -2 A3[4] @ k[K] 22 A2[4] @ k[K] 25 AY[4] ® k[K] -2 k[K] — 0.

Generators of A'[4] ® k[K] are of the form w;vf! ---vf! for J = {j1,...,51} € K and

I
P10 € Zxo. For ease of notation, let v = oo

di (uivh)) = vivh 4+ (—1) ;-0 = v;0). Therefore im(d;) is generated by all v; corresponding

The map d; is given by

to a vertex of IC, so
k[K]
im(dl)

12

Tory,,, (K[K], k) = k.

The kernel of d; is generated by elements of the form w;v;0" — ujvvl) for iU J, jUJ € K
and by monomials u;v" such that i U J ¢ K, that is, uijvh?, ugol", ugvh*, uavh®. The
map dp is given by dg(uijvg) = ujvivzj — uivjvf}. For example, da(u12) = ujve — ugvy,
do(u3s) = ugvy — uqvs, da(u12v1) = uzv?, ete. Hence im dy contains elements uy vy — ugvy,

uzvy — uqvg and ugvh? ugvht ugvt ugvh® for integers py,...,ps > 1. Therefore

Torlzﬁn] (k[K], k) = ([ujva], [usvy]).

The kernel of dy is generated by uijvf; where i # 7, tUJ,jUJ ¢ K, and elements
of the form ujrviv’; — wipvjvl) + wijupvh, @ # j # k # 4. The map ds is given by

Dy D D D _ _
d3(uijrv]) = wjrviv — ugvivy + uioRv. So d3(ui24v3) = ugav13 — u14v23, d3(ug3avi) =

—u24v13 + u23v14, and also ugzvis = d(u123v4) + w13v24, U123 = —d(u13402) + U13V2.
Additionally, for any edge {ja,ji} € K. {j1. 2} = [\ {js- i}, and any ps — 1.ps > 0,
(U125 Uf; _11)?: ) = Ujyj vf; v?f. Therefore

Torl:ﬁn] (k[lC], k) = ([u13024]>.

In particular, [ujzva] is the product of the generators [ujve], [uzvy] in Torlz[in] (k[K], k).

The final non-trivial map, d4, is given by d4(U1234) — U9234V1 — U134V2 + U1240V3 — U123V4,
and ker ds = imdy. So Tor;ﬁn] (k[K],k) = 0 for all g > 3.

The generators of Tor;ﬁn] (k[K], k) have bidegree (—1,4), and similarly the generator of
Torlzﬁn] (k[K], k) has bidegree (—2,8). Hence

Tor, (k[KC], k) = Toryp, (k[K], k) = k,
Tory, (K[K], k) = Tor 1 (K[K], k) 2 ([uva], [ugva]),
Tor, 21 (K[K], k) = Tor 23 (K[K], k) 2 ([u13v24])

[m]
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and all other dimensions are trivial.

The aim of this example is to demonstrate that calculating Toryj,,| (k[K], k) is cumbersome.
Nonetheless, the Tor-algebra of K is crucial for understanding H*(Zx). So, to make Tor
more approachable, it is helpful to use the following “auxiliary” multigraded algebra

R*(K). In Example 2.1.25, we will see a much more simplified version of Examples 2.1.15.

Definition 2.1.16. For a simplicial complex K on [m], define the quotient algebra
R*(K) = Alug, ..., um] @ K[K]/ (v}, wvs, 1 < i < m)
with bideg(u;) = (—1,2), bideg(v;) = (0,2) and

d(u;) =wv;, d(v;) =0, and d(a-b)=(da)-b+ (—1)'a-db. (2.6)

This is an algebra with a basis of monomials uyvy for I C [m], J € Kand INJ = @.

By the definition of R*(K), it is possible to define a quotient projection
0: Aug, ..., up] ® kK] - R*(K)

as well as a k-linear map

t: R (K) = Alm] ® k[K]

that maps urvy € R*(K) to urvy € Alm| ® k[K]. Since both the domain and range have
the same differential, : commutes with the differentials. Therefore ¢ is a homomorphism of
bigraded differential k-vector spaces, with o o« = id. However it is not a homomorphism

of algebras since ¢(u;v;) = 0 but ¢(u;)e(v;) # 0.

Proposition 2.1.17. The projection homomorphism o: Afui, ..., uy,] ® k[K] = R*(K)

induces an isomorphism on cohomology. L]

One proof of Proposition 2.1.17 is by finding an explicit cochain homotopy between the
identity map and ¢ o p. This proof can be found in [11, Lemma 3.2.6]. Importantly,

Proposition 2.1.17 says that there is an isomorphism of algebras
Tory,) (k[K], k) = H(A[m] @ k[K],d) = H(R*(K),d).

Then calculations of H(R*(K), d) are simplified compared to calculations of Tory,) (k[K], k)

since u;v; = 0 and v? =0, as in the following example.

Example 2.1.18. Let K be the boundary of a pentagon, as in Figure 2.1. Let R'(K)
be generated by elements in R*(K) of total degree I, so that R°(K) is generated by
the element 1, R'(K) generated by w;, R*(K) generated by v; and wu; for i < j,
etc. The generators w;;vg, and vy of RS(IC) are zero because there are no 2 or

3-simplices in K. Also the generators w;jiimnops WijkimnVo, UijkiVmn are zero because



2.1. Moment-Angle Complezes 11

i, 3, k,l,m,n,0,p € {1,2,3,4,5} and u? = 0, w;v; = 0, v? = 0. Therefore R*(K) = 0 and
similarly R!(KC) = 0 for I > 7. Then we have the cochain complex

0— R(K) % R L R2(k) & L P RTK) — 0
where d° is trivial and d' the differential in (2.6) for I > 0. If we take the cohomology of this
sequence, H*(R*(K)) = k. Also, d*(u;) = v; for all 4 and ker(d') = 0, so H*(R*(K)) = 0.
Similarly H?(R*(K)) = 0 since ker(d?) = im(d'), where d*(u;ju;j) = u;jv; — u;v; for all
i,j and d?(v;) = 0 but v; € im(d'). The map d> takes the generators U;Vj, Ujjk Of R3(K)
to d3(uivj) = v;; and d3(uijk) = UjKV; — UikVj + UijU. So ker d? is generated by u;v; for
{i,j} & K and by w;v; — ujv; = d*(u;;) for {i, j} € K. Hence

H*(R*(K)) = ([uavs], [urva], [ugvs], [ug, vs], [uavs)).

Also, R4(IC) is generated by monomials wu;jx;, uijv, and v;;. So ker d* contains Vij =
d3(uv;), wiju if {i,k}, {j, k} ¢ K and d®(u;;x). Thus

H*(R*(K)) = ([uav1], [ugsval, [u12v3], [u15v4], [ugavs)).

The group R®(K) is generated by monomials Uijkim, WijkVl, UiVjk. Since K has no 2-
simplices, d°(u;vji) = viji is zero. Also for any uvjx # 0, either {i,j} ¢ K or {i,k} ¢ K
because K does not contain a cycle of length three. Thus either w;v;; = d4(—u¢kvj) if
{i,5} ¢ K or wjvjp = d*(—ugjvr) if {i,k} ¢ K. Hence ker d® = im d*.

The kernel of d° contains monomials of the form u;jVy since there are no 2-simplices
in IC. Also for any w;jvg # 0, either {i,k},{j,k} ¢ IC or {i,1},{j,} ¢ K. Thus either
Ui Ukl = Wji Vi — UslVjk + UijURL = d5(uijlvk) in the first case, or w;;vy = d5(uijkvl) in the

latter. Hence ker d® = im d°.

The generators of R7(K) are Uijkimnos WijkimVUn and Uijpvy,. We have that w;rvy, €
ker d” because there are no 2-simplices. For any Uijrvm 7 0, d6(uijklvm) = UjkVim —
Uik Vjm + Uil Vkm — UijkVim and exactly two of these terms are non-zero. So there is no
linear combination a of monomials kv, € RS(K) such that d(a) = wu;jgvpm. Thus
UijkVim ¢ im d5 and

HT(R*(K)) = ([u124v35)).-

In particular, [ujo4vss] = [uivs] - [u24vs]. In terms of the bigrading, the non-zero

cohomology groups are

H (R*(K)) = H” (R*(K)) = k,
H™ Y (R*(K)) = H*(R*(K)) = ([u1vs], [u1va], [ugvs], [ug, vs], [usvs]),
H?S(R*(K)) = HY(R*(K)) = ([uaav1], [ussv2], [urgvs], [ursva], [uaavs]),
H-1(R¥(K)) = H(R*(KC)) = ([u124v33))-
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2.1.2.2 The relationship between H*(Zx) and Tor

We will first see that H*(Zx) = Toryy,)(k[K], k) is an isomorphism of algebras via
H(R*(K),d), before giving a combinatorial interpretation of H(R*(K), d) in Section 2.1.2.3.
These results were first proved in [8] and [14]. We first summarise the arguments that
show H*(Zx) = H(R*(K)) as an isomorphism of graded modules.

Let C*(Zx) be the cellular cochains of Zx. We equip the product D™ of m polydiscs
with a cell structure from [10], where we use the polydisc I instead of D? to emphasise
the cellular decomposition. Each component ID has the point 1 € D as a 0-cell, the
complement of 1 in the boundary circle as a 1-cell T' and the interior D as the 2-cell. It
is convenient to label each cell of D™ by (I, .J), where I parameterises the T-cells and
J the D-cells so that each »(I,J) is a product of |I| T-cells and |J| D-cells, with O-cells

in m — |I| — |J| coordinates.

Since Zx C D™, it has a cell decomposition consisting of (I, J) for each J € K and
I'NnJ = @, by definition of Zx. Then C*(Zx) has a basis of (I, J)*, dual to »(I,J).
Also C*(Zx) = @ C*?4(Zx) has a bigrading given by

q=0

bideg »(1, J)" = (|11, 2|I] + 2|J])

since the cellular differential preserves the second degree. Using this cell structure, we

have the following Lemma.

Lemma 2.1.19 ([10]). For a simplicial complex IC, there is an isomorphism of graded

modules
H(R*(K)) = H*(Zx).

Proof. We define a map g: R*(K) — C*(Zx), urvy — »(I,J)*. This map g is a bijection
of basis elements, and as such is also an isomorphism of bigraded modules. To show
that it is an isomorphism of cochains, we must show g commutes with the differentials §
(the coboundary map for C*(Zx)) and d (the differential for R*(K)). By construction of
the cellular decomposition s({i}, &) is a T;-cell, the boundary of the D;-cell, »(2, {i}).

Therefore,

0(g(ui)) = 0(({i}, 2)") = 0T} = Dj = (@, {i})" = g(vi) = g(d(us))

and
0(9(vj)) = 0(5(@,{j})") = 6Dj = 0 = g(0) = g(d(vy)).

Hence we have the isomorphism as required. ]

This lemma above helps to prove the stronger case. The proof of Proposition 2.1.20
shows that the map g: R*(K) — C*(Zx) in the proof of Lemma 2.1.19 is an isomorphism
of algebras by explicitly defining a product in C*(Zx). This proof can be found in [10,
Theorem 4.2.2].
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Proposition 2.1.20 ([10]). For a simplicial complex IC on [m] vertices, there is an

isomorphism of graded algebras,

H*(Z2x) = H(R*(K)) = Toryy, (k[K], k).

2.1.2.3 Hochster’s Theorem

It is evident that the cohomology of moment-angle complexes is given by Tor, but Tor is
difficult to calculate. Introduced by Hochster [24] in the 1970s, Hochster’s formula has
been an important tool for transitioning between algebraic and combinatorial problems
as it relates the Tor-algebra of a simplicial complex K to the reduced cohomology H* of

full subcomplexes of K.

Theorem 2.1.21 (Hochster’s theorem [24]). For a simplicial complex IC on [m], there

s an isomorphism

Tord (kKL k)= @ HTHKY),
JCm): |]=j

where we define H1(Kg) = k.
The following proof, which comes from Panov [32], is not Hochster’s original proof.

Proof. We define a multigrading on elements v{* ... v%" € k[m| so that mdegvi* ... v%m =
(2a1,...,2am,). This induces a Z @& N™-multigrading on Tory,(k[K], k) through the
Koszul complex A[m] ® k[K], where mdegu{* ... u%m = (—(a1 + -+ + am), 2a1, . .., 2a,)
for a; either 0 or 1, and mdegv{* ...v% = (0,2ay4,...,2a,,) for a; € N. We will denote

(a1,...,am) € N by a. Then

Tor, %/ (K[K],k) = D | Tor, 2 (k[K], k).

k[m] [m]
aeN™: q1+-+am=j

We also define a multigrading on R*(K). For J C [m]| whose elements have an order
induced by the order on [m], there is a corresponding N™-vector. We let the jth
element be 1 if j € J, and 0 otherwise. We also denote this vector J. Then let every
non-zero monomial urvy, € R*(K), I,L C [m], I N L # @ have multidegree (—|I|,2.J),
where we regard J = I U L as a N™-vector. Since u;v; = 0 and v? = 0 in R*(K),
R~%?2(K) = 0 for any vector a € N™ that is not a (0, 1)-vector. By Proposition 2.1.17,
we have an isomorphism of multigraded algebras Tory,(k[K], k) = H(R*(K)). Hence
Tor;é;f]a(k[lq, k) =~ H~%?2(R*(K)) also vanishes. Therefore it only remains to show that
H~#2J(R*(K)) = HI=i=1(K ;). To do this, we will construct an isomorphism of cochain
complexes @ ;) C*(Ky) to R*(K). To keep track of signs, let £(j, J) = (—1)""! for j
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the rth element of J, and for L C J, let

e(L,J) =[] (4, )

jEL

Each simplicial cochain group CP(K;) = Hom(C,(Ks),k) has a basis of X, for a p-
simplex L € K, where Xy, takes the value 1 on L and 0 on any other simplex of K.

There is the augmented simplicial chain complex

0—k-50%K) % L or i) L orky) -

where € is the (co)augmentation map and the simplicial coboundary map d is given by

d(Xr) = > e(j,J U L)X uL- (2.7)
jeJ\L,jULEK ;
We define a k-linear map
fr PN (Ky) — RPI2I (k)

(2.8)
X — €(L, J)UJ\L’UL.

This is an isomorphism of k-vector spaces, but we will show that with the map k —

R-171:2J (K) given by 1+ uy, we also have an isomorphism of cochain complexes

0 k E COKy) —4— ... —L o oK) —4— .
0 —— RMI27(K) —Ls RV-VIZ(K) L . L RPI2I(K) L L

(2.9)
where d: RP~1127(K0) — RP=17127(K) the differential of R*(K) in (2.6).

First we show that f commutes with the differentials,

fld(Xp)) = f ( > e(gu L)XjUL)

jEJ\L,jULEK

= > e(j,jUL)e(j UL, J)upgoryvioL.
JEI\L

We no longer need to include the condition j U L € K; in the sum because v;yr, = 0 if
JUL ¢ K. Also,

d(f(Xr)) = d(e(L, J)urvL)

=¢e(L,J) > (), J\ L)upor)vjuL-
JEINL

By definition of €, e(j U L,J) = e(4,J) - e(L,J) and (4,7 U L) - (3, J) = €(4,J \ L).
Therefore the above calculations show that fd(Xp) = df(Xr). Hence we have an
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>~

isomorphism of cochain complexes. Taking cohomology, we have the relation Hr-1 (Ky)
HP~I2J(R*(K)). Let —i = p — |.J|, then this proves the result.

(I

Theorem 2.1.21 gives us an isomorphism of modules Tory, (k[K], k) = & H*(K ).
JC[m)
In Examples 2.1.15 and 2.1.18, the calculations of Tory,(k[K], k) and R*(K) were

complicated. The advantage of using Hochster’s theorem is that the calculations of

) ﬁj_i_l(’CJ) are significantly easier.
JC[m]: |J|=j

Example 2.1.22. Let I be the boundary of a pentagon as in Figure 2.1. First consider
the first non-trivial reduced cohomology groups, H°(K ;). By Theorem 2.1.21,

Torg(kKl. k)= @ HH(Ky) = @ H(K).
JCim]: |J|=2 JC[m]: |J|=2

Some subcomplexes K ; on two vertices are contractible; for example the subcomplex
K12 has H O(IC{L2}) = 0. Therefore these full subcomplexes do not contribute to
Tor;[%(k[lq, k). This means that we only need to consider the non-contractible full

subcomplexes on two vertices. Hence

Tory i (K[K], k) = HO(Kq15)) @ H(Kqay) © H (K3 @ H(K25) @ H(K(a5))
=39

A similar situation occurs with the other cohomology groups. For example,

TOl“k[ig(k[’qa k) = H(K(13.4))
® H(Ki2p5y) ® H (K(123)) @ H'(Kj145)) ® H (K(g45,) 2k

since Ky is contractible for all other J C [m], |J| = 3. The only other non-zero reduced
cohomology groups are

Tor?(’[?ﬂ} (k[K],k) = HY(Ky) 2k and Torlz[i’io(k[lq,k) (IC{1 2345)) =k

Therefore by using Theorem 2.1.21, we have the same result as in Example 2.1.18 but

with much easier computation.

Putting together Proposition 2.1.20 and Theorem 2.1.21, we have an isomorphism of
modules
H*(Zx) = Torym (k ~ P H*(K)) (2.10)
JC[m]
However we want an isomorphism of algebras and to understand the cup product.

Therefore we need a product on @ H “(KJ).
JC[m]

For two simplices L = {ly,...,lp},M = {myg,....,mq} € K, LN M = @&, let LU M

denote the simplex on the vertices {lo,...,lp,mo,...,mq}. Then there is a product on
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Dicim H *(Ky) given by Baskakov [6],

CPH(Kr) @ CTH(KCy) = CPH 1 (K ),

X ifINJ =g (2.11)
X, @ Xag { CLuM ALUM 1 s
otherwise
where
crom =e(L,I)e(M,J)Ce(LUM,TUJ) (2.12)
and
¢= ][ ek, kug\M). (2.13)
kel\L

For any simplicial complex K, if I, J C [m] and I NJ = &, then Ky is a subcomplex of
K1 % K. Then the product in (2.11) is the restriction to Ky of the standard product

CP Y (Kp) @ CTHKCy) — CPTI7YN (K« Ky)

where the increase in degree from (p —1) + (¢ — 1) = p+ ¢ — 2 to the degree p+q — 1
comes from the fact that |[Kr| * || ~ X(]K1| A |Ks]), where ¥ denotes suspension, A

denotes the smash product and |K| is the geometric realisation of K.

12

Proposition 2.1.23 ([8]). There is an isomorphism of algebras Tory,(k[K], k)
@ H*(Kj).

JC|m]

Proof. Theorem 2.1.21 says we already have an isomorphism of modules. In that proof,
the map f: CP~*(K;) — RP~II2I(K) in (2.8) takes X1, — (L, I) up L. 1t only remains
to show that for any X;, € CP~1(K;) and Xpy € CTY(Ky), fF(XpXn) = f(X0)f(Xur). If
INJ =, then

F(XeXar) = flecum Xoum)

e(LUM,TUJ)crom wiunLuMVLoM

e(LUM,TUJ)?*e(L, 1) e(M,J) ¢ upsnLumvronm
e(L,

I) (M, J) up Lupmvrom
= (e(L,I) uI\LvL) (e(M, J) UJ\MUM)
= f(XL)f(Xn).

If INJ # @, then e(L,I) e(M,J) ¢ upunumvrom = 0 in R*(K) since u? = uv; =
v? = 0 for any i € [m]. Hence f(XzXn) = 0= f(Xz)f(Xum)- O

Therefore by Proposition 2.1.20, the cup product in H*(Z)) corresponds to the product
n (2.11). Assembling Propositions 2.1.20, 2.1.23 and Theorem 2.1.21, there is the

following theorem.

Theorem 2.1.24 ([8]). There is an isomorphism of cochains C*~*(K ;) — C*~ 127 (Z,) ¢
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C*H1(2x), inducing an isomorphism of algebras

H*(Zc) = @ H*(K))
JC[m]

where H1(Kg) =k and

HP(Z]C) = @ ﬁpﬂ]kl(lc{])'
JC[m]

Example 2.1.25. Let £; and L2 be the disjoint pair of points {1,2} and {3,4} respec-
tively. Let K = L1 * L2 be the boundary of a square. By Theorem 2.1.24, the non-zero

cohomology groups are

H(Zx) = H ' (Ko)
H¥(2Zx) 2 HO(K12)) @ H(K(3,4y)
HY(2x) = ﬁfl(lc{l,2,3,4})~

More specifically, let o = [X;] € fIO(IC{LQ}) and let 8 = [X3] € .FNIO(IC{M}). Then by
Proposition 2.1.23, the cup product af € H*(Z)) is represented by the cochain

e(1,{1,2}) e(3,{3.4}) ¢ e({1,3},{1,2,3,4})X{1.3 = X{1.3 € CH(K).

The cohomology class a3 is non-zero since it is a generator of H! (K). Equivalently
by Theorem 2.1.24, this product a8 could be represented by the product of [uav1] and
[ugvs] in H~14(R*(K)), given by [ugqvi3] € H=%8(R*(K)). This is the only non-zero cup
product, therefore thus we see that H*(Zx) has the same cohomology ring structure as
H*(S? x S3).

For a cochain a € CP(K ), let the support of a be the set S, of p-simplices o € K such

that
a= Z asXo
0ES,

for a nontrivial coefficient a,. For a cohomology class a € HP (Ky), we say that « is

supported on Kj.

Lemma 2.1.26. For a simplicial complex IC, let a € CP(Ky) and b € C1(K ). Let the
order of vertices in IC be such that i < j for everyi € I and j € J. Suppose

a= Z asXy and b= Z b X,

0ES, TESY

for p-simplices 0 € S, C Ky, g-simplices 7 € Sy, C Kj and coefficients a,, br. Then the
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product ab € CPTITY(K ) is given by

ab = (—1)|I|(q+1) Z Z aobr XoUr-

oES, TESY

Proof. By (2.12), the product ab is given by

ab = (Z a,,XU) (Z bTXT)
0€ES, TESY

= Z Z ay by e(o,I) e(r,J) Ce(cUT, T UJ) Xour
0€ES, TESY

where ¢ = 1 since all vertices of I are ordered before vertices of J in K.
By the definition of ¢, and since all elements I are ordered before J, e(c UT,TUJ) =

e(o,I)e(r, 1 U J). Furthermore, for each g-simplex 7 = {i1,...,ig41} C J,

e(r,fudy=[[ <G 1un= TJ[ (-l J)

je{l,....q+1} je{l,....q+1}

= (—1)Mlta+D) H e(ij, J)

je{l,..,q+1}
= (-~ e(r, )

Therefore, since £(I,.J)? = 1 for any sets I, J,

ab = Z Z agbr (=)@ Dy

oES, TESY
O

Example 2.1.27. Let K be the boundary of a pentagon as in Figure 2.1. Consider the
non-zero cohomology classes o € H O(K12,3) and B € HO(K45), which are represented by
the cocycles

a=X1+X2€C%K123) and b=X5¢€ C%Kys)

respectively. Then the product ab € C1(K12,3.45) is given by
ab = (—1){L23HO+1) (X15 + Xos) = —X15

since the cochain X5 is zero because there is no edge {2,5} in K.

It is important for Lemma 2.1.26 that the vertices I come before the vertices J. For
example, suppose the vertices 3 and 4 were labelled the other way around. Then
a=X1+Xg € CO(ICLQA) and b= X5 € CO(IC375), and for each i € {1,2},

C = 5(i’ {7;7 3}) 5(47 {374}) = -1
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So by (2.12), the product ab € C*(K12345) is given by

ab =e(1,{1,2,4}) (5,{3,5}) ¢ ({1,5},{1,2,3,4,5}) X1.5
+e(2,{1,2,4}) €(5,{3,5}) ¢ e({2,5},{1,2,3,4,5}) Xa5
=1 (=1) (1)1 X15 = Xy5.

2.2 Massey Products

In knot theory, the linking number of a knot or link is known to correspond to the cup
product in cohomology. However, the linking number cannot distinguish all knots/links.
For example, the complement of Borromean rings (in S?) and the complement of three
disjoint rings both have the same cohomology ring, so the cup product cannot distinguish
them. When Massey [38] first introduced his triple products in 1957, he demonstrated
that any triple Massey product of three disjoint rings was trivial but that there was a
non-trivial triple product for the Borromean rings. Hence triple Massey products are a

helpful invariant.

Triple Massey products are secondary operations. In 1958 they were generalised to
higher Massey products by Kraines [29] in such a way that cup products are two-Massey
products (up to sign). In this sense, Massey products can be thought of as generalisations
of standard cup products. In general, higher Massey products are very difficult to

compute, being higher cohomology operations.

Historically, Massey products have long been studied in algebra. For a graded k-vector
space V = @, V? with finite-dimensional graded components, the Poincaré series is
Py (t) = 350 dimy, V. In 1962, Golod studied the Poincaré series of Torg(k,k) where
R is a Noetherian local ring. He gave an expression [21] for the Poincaré series for any
R where all Massey products in the Koszul complex are trivial, and such rings were
termed Golod. In Sections 2.1.2, we saw that the cohomology of the Koszul complex
(Alm]®k[K]) is isomorphic to €D ;¢ jm) H*(K 7). This lead to the study of Golod simplicial
complexes (such as in [22]), whose face ring k[K] is Golod, that is, all Massey products
in Tory,, (k[K], k) = H(A[m] @ k[K]) are trivial.

Kéhler manifolds are complex manifolds with a Hermitian metric whose associated
differential two-form is closed. There are many expository texts on Kéhler manifolds,
such as [5]. It turned out that many symplectic manifolds have a Kéhler structure and it
was not until Thurston in 1976 [37] that an example of a non-K&hler compact symplectic
manifold was found. Now there are more known non-Kéhler manifolds, but in general
it is still hard to detect them; see [3] for an introduction. Deligne, Griffiths, Morgan,
and Sullivan [16] showed that all Kahler manifolds are formal. They also showed that
Massey products are also an obstruction to formality. That is, if there is a non-trivial
Massey product, then the space is not formal [16]. Therefore, the existence of non-trivial

Massey products in a manifold gives an explicit example of a non-Kéhler manifold.
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2.2.1 Introduction

We first define Massey products before calculating them via combinatorics in Section 2.2.2.
Since Massey introduced triple Massey products, there have been a few alternative
definitions of Massey products that differ at most by sign. The definition given here
follows [29] and [31] which, in particular, differs by a sign to the definition of the triple
Massey product given in [11].

Definition 2.2.1. Let (A, d) be a differential graded algebra with classes «o; in HPi(A, d)
for 1 <@ < n. Let a;; € AP be a representative for a;. A defining system associated
to (aq,-- -, ) is a set of elements (a; ) for 1 <i <k < n and (i, k) # (1,n) such that
ai € APt Fpe—k+i gnd

k-1
d(a;r) = Z Qi Qi1 k
r=t

where @; , = (—I)Hdega”am.

To each defining system of (o, -+, ay), the associated cocycle is
n—1
r=1

and indeed, this can easily be directly shown to be a cocycle.

The n-Massey product {aq,--- , ay,) is the set of cohomology classes of associated cocycles

for all possible defining systems.

For example for classes o; = [a;] € HPi(A,d), the triple Massey product (a1, ag, ag) €
Hp1+p2+p3_1[A] is defined when ajas = 0 and asag = 0. Since these cup products
are zero, there exist choices of cochains ajp € AP1TP2~1 and ag3 € AP2P3~1 such that
d(a12) = (=1)"*P1a1as and d(as3) = (—1)*P2aza3. Then the triple Massey product
(a1, g, a3) € HP1TP2P3=1[ A] is the set of classes represented by cochains

1 p1+1 1 p1+p c 4p +po+p3—1
( ) ! a1a23 ( ) ! 2 12a’3 ! 2 3 .
ThlS Cochain iS a COCS/CIG Since

d((—l)p1+1a1a23 4 (_1)p1+p2a12a3)
(=P (day - ags + (—1)"'ay - dagg) + (—1)P1F2 (da12 caz 4 (—1)P1P g, dag)
(=1)ai((=1)"P2a9a3) + (—1)Pr P2 (—=1)"P1g a9a3

(_1)p2a1a2a3 + (—1)p2+1a1a2a3 =0.

Kraines [25, Theorem 3] showed that for each «;, the choice of representing cocycle a;

does not change the Massey product.

Theorem 2.2.2 ([25]). A Massey product (aq,...,oy) depends only on ai, ..., ap.
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That is, for any i € {1,...,n} and any b € APi—1,

([a1], ... [a; +d(b)], ..., [an]) = ([a1], ..., [ai],- -, [an])-

However the choice of the cochains a;j is very important for Massey products.

Definition 2.2.3. An n-Massey product is called trivial if it contains 0.

Therefore a Massey product is trivial if there exists a defining system (a; ;) such that

[w] = 0, where w is the associated cocycle.

Definition 2.2.4. The indeterminacy of a n-Massey product is the set of differences

between elements in (aq,- -, ap).

Lemma 2.2.5. In a triple Massey product (a1, g, as), any two elements differ by an
element in
aq - HP2+p3*1[A] +as - HP1+p2*1[A] C Hp1+P2+p3*1[A].

Proof. Let [w], [w'] € (a1, a2, as), [w] # [w'] and suppose they are represented by cocycles
(—=1)Pr T a1ag3 + (—1)P1TP2aq9a3 and (—1)PrHajahy + (—1)P1P2a) a3 respectively. Define
cocycles T = aja — ajy € AP1TP271 and y = ag3 — aby € AP2TP3~L The cohomology class
[w] — [w'] is represented by the cocycle (—1)Pt*lay + (—1)P**P2za3. Then cup products
on the level of cochains induce cup products in cohomology, and hence [w] — [&'] €
oq - HP2Ps=1A] + oy - HPYTP27 L[ A] O

Therefore for the triple Massey product, the indeterminacy is the set in Lemma 2.2.5. If
a cohomology class [w] € (a1, a2, a3) is contained in the indeterminacy, then [w] differs
from 0 only by an element in the indeterminacy. Thus there is another choice of cochains
a12, azs such that the associated cocycle is zero. Hence 0 € (a1, ag, a3). In general, we can
say a triple Massey product is trivial if and only if there is a choice of cochains a2, asg such
that [w] = [(=1)P*ajagz + (—1)P1FP2q15a3] and [w] € a - HP2HP3~L[A] - HP1HP271[A],
There is no equivalent “nice” expression for the indeterminacy of higher Massey products.
For example, matric Massey products are a generalisation of Massey products; they
are studied thoroughly by May [30]. In [30, Proposition 2.3], May shows that elements
in the indeterminacy of an n-fold matric Massey product are elements in a certain
(n — 1)-fold matric Massey product. In practice, this is a difficult expression to work
with for calculations. This makes detecting non-trivial higher Massey products harder

than non-trivial triple Massey products.
Importantly, Massey products are homotopy invariants [25, Property 2.1].

Theorem 2.2.6 ([25]). Let A, B be differential graded algebras with a map f: A — B.
Let f* be the induced homomorphism f*: H*(A) — H*(B). Then for {(ai,...,a,) C
H*(A),

[fHat,...,an) C{(ffoa,..., ffay).
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If f* is an isomorphism, then f*(aq,...,an) = (ffo1, ..., ffay,). O

2.2.2 Massey products via combinatorics

Calculating Massey products in the cohomology of moment-angle complexes can be done
through detecting Massey products in the corresponding Tor-algebra. By Theorem 2.1.24,

we know there are isomorphisms of algebras

H*(Zc) = H'(R*(K)) = @ H*(K)).
JC[m]

Therefore by Theorem 2.2.6, a Massey product in H*(Z)) can also be expressed in terms

of P ﬁ—*(ICJ). Recall that for a € C*(Zx), a = (—1)1+deg“a.
JC[m]

Definition 2.2.7. For any element o € H?(K;) € @ H*(Kj), let deg(a) = p+]J]+1.
JC[m]

Also for a € CP(Ky), let a = (—1)1+diegaa = (—1)*trtlg,

The map f: CP(K;) — RPFI-II2JI(K) given in (2.8) is a k-linear isomorphism. There-
fore, for a € CP(K ), the degree of f(a) € RPT1-I/L2VI(K) is p + |J| + 1 and

fla) = (=)@ f(a) = f((-1)! el
P> a) = f(@).

Let (a1,...,a,) C H*(Zx) where each class a; € HPtlil+1(Z,) corresponds to a; €
HPi(Kj,). Let a; € CPi(K,) be a cocycle representative for a;. Then using the product
given in (2.11), the cochains a; j such that d(a; ) = Zf;l @i Q11 arve elements a; i, €
CPitHPr(Ky. .0, )- Using the degree from Definition 2.2.7,

deg(air) =pi+---+pr+ iU Ukl +1
= @i+ [Ll+ 1)+ 4 (pe+ [l +1) =k +i
= deg(a;) + - -~ + deg(ay) — k +

which matches the definition of a defining system in Definition 2.2.1. Hence for a defining

system (a; ) C C*(Zx), we have a corresponding defining system (a; 1) C @ C*(Kj).
JC[m]

Furthermore, the associated cocycle w € CP1H+Patl1U-UIn+2( Z,) corresponds to the

associated cocycle w € CP1HFTPntLl(JC, ;.

Let (a1, a9,a3) be a triple Massey product on «; € HPi(Zk) for i = 1,2,3. By
Lemma 2.2.5, the indeterminacy of a triple Massey product is given by ay - HP2TP3(Z) +
ag - HP1TP2(Zy). Then Theorem 2.1.24 implies that each class «; corresponds to a class

oy € HPi=Wil=1(KC ;) and the indeterminacy of (a1, as, as) from Lemma 2.2.5 becomes

oy - IA__,'rszrp:rlJz\flelf?(]CJQUJ3) +ag - ﬁplﬂJz*Ul|*|J2\*2(]CJ1UJ2). (2.14)



2.8. Massey Products in Toric Topology 23

Example 2.2.8. Consider a simplicial complex K as shown in Figure 2.2. Let o, as, a3 €
H*1’4(Z;C) be represented by cocycles a3 = —ujve, as = —ugzvy and az = —usvg
respectively. Then ajag, asas € H_Q’S(Z;c) but the cochain products ajas and asas
are not zero and it is potentially hard to show that ajas = 0 = asas in R*(K).
Alternatively, by the map in (2.8), a; corresponds to Xo € C°(Ky2). Similarly, we
let as = X4 € CY(K34) and a3 = Xg € C°(Ks6). So a1 € ﬁO(Klg), oy € I;TO(IC34),
ag € ﬁO(ICg,G). Then ajay € ﬁl(lC1234) and asas € f[l(lC3456) by the product induced
by (2.11). Since the full subcomplexes K234 and Ksys6 are paths in this simplicial
complex,

HP(K1234) = HP(K3456) = 0 for all p € Z. (2.15)

Therefore the cup products ajas and asas are zero and the triple Massey product

(a1, g, az) is defined for this simplicial complex.

4

1
Figure 2.2: A simplicial complex for which Zx has a non-trivial 3-Massey product.

Let a12 € CY(K1234) be the cochain —X. Then d(ai12) = Xo4 = Grap. Similarly let
az3 € C%(K3a56) be the cochain —X4. So d(az3) = X46 = G2a3. Then we have a defining
system (a;x), 1 <i <k <3, (i,k) # (1,3). Since 1+ dega; . is even for all (i, k), the
associated cocycle w is given by ajaz 3 + a1 2a3 = —XoX4 — X2Xg = —XoX4 = —X24. The

cohomology class [w] is a generator of H'(K), and so [w] # 0.

By (2.14), the indeterminacy of this triple Massey product is given by aq - HO(Ksss6) +
Qs - fIO(K1234). By (2.15), this is zero, and therefore (v, ag, a3) contains only a single

element. In this case, that element is [w], and hence (a1, ag, ag) is non-trivial.

2.3 Massey Products in Toric Topology

The first family of non-trivial Massey products in the cohomology of moment-angle
complexes were found by Baskakov [7] in 2003. Like these first examples, most of the
existing results about non-trivial Massey products in moment-angle complexes are for
the case of triple Massey products only. Other results are about n-Massey products for
n > 3 but where the classes are in the lowest possible degree. This section summarises

these results.
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2.3.1 The first Massey products in moment-angle complexes

Before summarising some examples of Massey products in moment-angle complexes, we

define truncation in polytopes.

Definition 2.3.1. Let P C R" be a polytope and let F' be a face of P. Let H C R"
be a hyperplane that does not include any vertex of P and suppose H separates all
vertices of F' from the rest of the vertices in P. Let Hy, Ho be the half spaces defined by
H and suppose Hj is the half space such that FF C PN Hs. We say that the polytope
P = PN Hj is obtained from P by a hyperplane cut or face truncation.

Example 2.3.2. The 2-truncated cube in Figure 2.3a is obtained from the 3-dimensional

cube by two edge truncations.

Baskakov’s [7] infinite family of non-trivial triple Massey products were motivated by the
discovery of a non-trivial Massey product in the cohomology of a moment-angle manifold

Zp where P is a 2-truncated cube.

5
8 3
4 k 7
Fy —
6
(a) A cube truncated at two edges (b) The one-skeleton of £p when P is

a 2-truncated cube.

Figure 2.3

Example 2.3.3. Let P be a cube, a simple 3-polytope, truncated at two edges as
in Figure 2.3a. Then Kp = 9P* is a 2-dimensional simplicial complex with vertices
1,...,8. We label the facets of P and the vertices of Kp so that pairwise adjacent facets
F;,,...,F;, in P correspond to simplices {i1, ..., } in p. Then Kp is as in Figure 2.3b
and the Stanley-Reisner ideal of Kp is

I/Cp — (U1U2a V3V4, U506, V103, V2V7, U4V7, V45, U3VS, VgUs, U7U8)'

Let K be the full subcomplex of Kp on the vertices {1,...,6}, corresponding to the
original six facets of the 3-cube. By Proposition 2.1.9, H=14(Z) ¢ H~%*(Zx,). Let
a1,az, a3 € H-H*(Zx) be represented by cocycles a3 = X1 € C%(K12), az = X4 €
C%(K34) and a3 = Xg € C%(K56). Then ajas = 0 since {1,4} ¢ K. Also asaz = X46. So

one set of choices for a12 and ags is 0 and Xg, respectively. In this way, the triple Massey
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product («a, 8,7) contains the cohomology class [w] represented by the cocycle
w = (—1)*ajas + (—1)*Pa12a3 = a1az3 = X1 X6 = X16

which is not a coboundary in C!(K). Therefore w is non-zero.

Furthermore, by (2.14) the indeterminacy is given by ay - H(Ksus6) + a3 - HO(K1234).
Since both K234 and Ksy56 are contractible, the indeterminacy is zero. Hence («, 3,7) C

H*(Zx,) is non-trivial.

In this example, a non-trivial triple Massey product was constructed by truncating two
edges in a cube, which is the product of three unit intervals. We wish to generalise
this construction in order to create non-trivial higher Massey products in moment-angle
complexes. By Lemma 2.1.5, the product of simple polytopes corresponds to the join
of the relevant simplicial complexes. Additionally, truncating faces in a polytope P

corresponds to performing stellar subdivision on a simplicial complex Kp.

For a simplicial complex K, the star and link of a simplex I € K are
stx [ ={JeK:TUJ €K}

kpl={JeK:ITuJekK,INJ =0}

Furthermore, the boundary of the star of I € K is
Ostcl ={JekK: TUuJeK,I¢g J}.
Definition 2.3.4. The stellar subdivision of IC at I is

ssp KK = (K \ st I) U (conedsti I).

Stellar subdivision does not change homotopy type. If K is a triangulation of an n-sphere
on m vertices, then ssy IC is also a triangulation of S™ but on m + 1 vertices. So both Zi
and Zg, k¢ are manifolds, (m+n+1) and (m+ n+ 2)-dimensional manifolds, respectively.
Therefore, if K is a triangulation of a sphere and we find a non-trivial Massey product in

H*(Z4, k), then Zg, x is an example of a non-formal/non-Kéhler manifold.

Example 2.3.5. Let K be the boundary of an octahedron as in Figure 2.4a. Consider
the simplex I = {1,3} € K. The star stx I has maximal faces {1,3,5} and {1, 3,6},
see Figure 2.4b. Then dstx I = {{1,5},{1,6},{3,5},{3,6}}. Thus cone dstx I has four
maximal 2-simplices on the vertex set {1,3,5,6, 7}, where {7} is the added cone-vertex

(see Figure 2.4c¢). Then ssy K is a simplicial complex on seven vertices.

The simplicial complex Cp in Figure 2.3b is obtained from the octahedron in Figure 2.4a
by stellar subdividing at the edges {1,3} and {4,5}. These stellar subdivisions correspond

to truncating the intersection of the facets F} and F3 and the intersection of Fy and Fj
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) 5
3
4 1 3 1 3
6 6

6
(a) K is on 6 vertices (b) Star of the edge {1, 3} (c) Cone on 9str{1,3}

Figure 2.4: Components of stellar subdivision on the boundary of an octahedron

in a 3-cube to obtain Figure 2.3a. Following Example 2.3.3, Baskakov generalised the

construction of this cube for other moment-angle manifolds using stellar subdivision.

Construction 2.3.6 (Baskakov). Let ; be a triangulation of an (n; — 1)-dimensional
sphere S™~! on a set of m; vertices, V;, for i = 1,2,3. Let K = K1 * Ko * K3 be the join
of these three spheres, so that K is a triangulation of an (n — 1)-dimensional sphere on m
vertices, for n = ny + ng + n3, m = mq + mo + mg. Choose maximal simplices I; € K4,
I, I} € Ky such that b NI, = @, and I3 € K3. Let K be obtained from K by stellar

subdivisions,

K = ssnur, (SS[&U[?) IC) .
Therefore K is a triangulation of a (n — 1)-dimensional sphere on m + 2 vertices.

Theorem 2.3.7 ([7]). Let oy € H™~™m1,2m (2%) correspond to a; € H " Y(Ky;) for
i=1,2,3. Then (a1, a2, a3) C H”1+m1+”2+m2+”3+m3_1(ZE) is defined and non-trivial.

Proofs of Theorem 2.3.7 can be found in [7] or [11], or later in Example 3.1.16. In

particular, by the expression in (2.14), the indeterminacy in this case is given by
aq - ﬁng+n3—m2—m3—4(i€v2uv3) + as - ﬁn1+n2_m1_m2_4(I€V1UV2)'

In the construction of IE, we have that (ss ILUls Ko * ICg) N (st;CI 1 U IQ> = . Therefore

SS11 UL Ko x ICg C K is a full subcomplex of K. Hence IEVQUv3 = (ssléul?) KCo % KS)Vguvg’
Furthermore, since the star of a simplex is connected and K9 * K3 is homotopy equivalent
to a (ng+mns —1)-sphere, (ss]éul3 ICa IC3) VAoV has the homotopy type of a (ng+ns—1)-
ball. Therefore H*(Ky,uy;) = 0. The same arguments are true for Ky, uy,, so similarly
H*(Ky,uv,) = 0. Hence the indeterminacy for (a1, as,as) is always trivial. Thus to
prove that (aq, a9, ) is non-trivial, it is sufficient to find only one non-zero class in

<a17 a2, Oé3>.

In general, showing that a Massey product is non-trivial is significantly easier when the
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indeterminacy is trivial. Trivial indeterminacy implies that there is only one element in
the Massey product, thus it is sufficient to only check if that element is zero or non-zero.
In many cases, we do not know if the indeterminacy is trivial or not, and thus calculating

non-trivial Massey products is more difficult than in this example.

2.3.2 A classification of triple Massey products in lowest degree

Baskakov’s family of examples proved that moment-angle complexes can have non-trivial
Massey products in their cohomology. Therefore moment-angle complexes have more
“complexity” than was previously known. The examples also set out a new interpretation
of Massey products in combinatorial terms. We give a combinatorial classification of
triple Massey products of three dimensional classes in H*(Zx). This classification is
largely based on a result by Denham and Suciu, but improves on [17, Theorem 6.1.1] by

considering Massey products with non-trivial indeterminacy.

Before classifying lowest-degree triple Massey products in moment-angle complexes, we
first consider examples of non-trivial triple Massey products with non-trivial indetermi-

nacy.

1

Figure 2.5: A simplicial complex that corresponds to a Massey product with non-trivial
indeterminacy.

Example 2.3.8. Let IC be the graph in Figure 2.5, where the dashed edge is optional.
Let ai,as, a3 € H*(Zx) correspond to ay = [X1] € HY(K12), ag = [X3] € H(Ks4),
a3 = [X5] € HO(Ksg). Since H'(K1234) = 0 and H'(Ksgs6) = 0, the products aay €
ﬁl(lC1234) and asas € ﬁl(/C3456) are zero.

A cochain ajp € C%(K1234) such that d(aiz) = X1X3 = 0 is of the form a2 = 1 X5 +
c2(X1 + X4 +X2), c1,c2 € k. A cochain ass € C%(K3456) such that d(aszs) = X3 X5 = X35
is of the form ags = c3Xyq + ca(Xe + X3 + X5) + X5, ¢3, ¢4 € k, where c3 = ¢4 if {4,6} € K.
The associated cocycle w € C1(K) is

w = a1azs + a12a3 = c3X14 + ca(Xi6 + X15) + X15 + c1X35 + c2(X15 + Xo5).
Since d(X5) = X15 + X35 + Xo5 and d(X1) = —X16 — X14 — X135 for X1, X5 € CI(IC),

w = (63 — C4)X14 — C4d(X1) + X15 + (01 - 02)X35 -+ CQd(X5).
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Therefore [w] = [(e3 — ¢4)X14 + X15 + (c1 — ¢2)X35] # 0 for any ¢1,co,c3,¢4 € k. By
Hochster’s formula, aj2 € C°(Ki234), asz € C°(Kaas6) and [w] € H(K) correspond to
a12,a23 € C%(Zx) and [w] € H8(Z2x), respectively. Hence (a1, az,a3) C H¥(Zk) is
non-trivial and has non-trivial indeterminacy, given by aq - H O(K3456) + 3 - H O(K1234).
These calculations are similar to Example 2.2.8. In that case, the triple Massey product

only contains one (non-zero) class, so the indeterminacy is trivial.
The simplicial complexes in Example 2.3.8 are also the last two graphs in Figure 2.6.

We will show that all non-trivial triple Massey products of the form (aj, s, as) for

a; € H3(Zx) are classified by these eight graphs.

S

Figure 2.6: The obstruction graphs

Lemma 2.3.9. None of the graphs in Figure 2.6 is isomorphic to another.

Proof. Label the eight graphs a, b, ¢, d along the top row and e, f, g, h along the bottom.
Two graphs are not isomorphic if their vertices have different valencies. For each graph,

we list the valency of the vertices.

@:3,3,2,2,2,2  b:3,3,3,3,2,2 ¢:3,3,3,3,2,2 d:4,3,3,3,3,2
€:3,3,3,3,3,3  £:4,4,3,3,3,3  ¢:4,3,3,3,3,2  h:3,3,3,3,2,2

Thus graphs a, e, f are not isomorphic to any of the other graphs. Also the graphs d and
g are not isomorphic because the vertices of valency 2 and 4 are adjacent in g but not
adjacent in d. The graph c is different to b, h because the two vertices of valency 2 are
adjacent in graph ¢ but not adjacent in b or h. The graph b is different to h because the
two vertices of valency 2 are at a minimal distance of 2 from each other, that is, there is
one vertex in between them in b. In h, these two vertices are at a minimal distance of 3

from each other. Therefore each of these graphs is not isomorphic to another. O

Denham and Suciu [17, Theorem 6.1.1] showed that the first 6 graphs in Figure 2.6
classify non-trivial Massey products (aq, ae, a3) for a; € H3(Zx) but the proof works
only when the indeterminacy is trivial. The following result is based on that Theorem,

but also considers the case when the triple Massey product has non-trivial indeterminacy.

Theorem 2.3.10. A Massey product {ay,az,a3) C H3(Zx) for ay,as,as € H(Zx) is
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defined and non-trivial if and only if the one-skeleton KV of K contains a full subcomplex

isomorphic to a graph in Figure 2.6.

Proof. As Zy, retracts off Z, it is sufficient to prove Theorem 2.3.10 when K has six
vertices. Let K be a graph in Figure 2.6. Then the arguments to find non-trivial
Massey products in Examples 2.2.8 and 2.3.8 apply to K(I). Also, these calculations are

not affected by 2-simplices in K, and dim(K) < 2. Thus (a1, ag, ag) is non-trivial.

Conversely, suppose (a1, g, a3) is non-trivial for aq, ag, a3 € H3(Zx). Let G on [6] be
the edge complement of K1), so {4,j} € G if and only if {i,j} ¢ K. We will show that
G is a graph (a) or (b) in Figure 2.7, where dashed edges are optional.

By Theorem 2.1.24,

H*(Zx)=H " (Zx) o H > (Z) &...

~ p HKpe H H'K)He..
JC[m],|J|=2 Jc[m],|J|=3

b HUK).

JC[m],|J|=2

12

Therefore there are full subcomplexes Kg, for S; C [m], |S;| = 2 such that «; corresponds
to a; € H(Kg,). Since (a1, oz, ar3) is non-trivial, S; N S; =@ for i # j. Let S1 = {1,2},
Sy = {3,4}, S3 = {5,6}. Since {v1,v9} ¢ K for any vi,ve € S;, G contains the edges
{1,2},{3,4},{5,6}. Since o141 = 0, Ks,us;,,
Thus there exist edges {v1,va2}, {vh,v3} € G for v;, v} € S;.

does not contain a cycle for ¢ = 1, 2.

(a) (b)

Figure 2.7: Graph complements GG, dashed edges optional.

Suppose {v1,va}, {ve,v3} € G for v; € ;. Let a1 = Xy, € C¥(K12), a2 = X, € C(K34),
a3z = Xy; € CO(IC56) be representing cocycles for ay, as, a3. So ajas = 0 and agsas = 0.
For aj9 = 0 = ags, w = 0, which contradicts the non-triviality of (o, ag,a3). Thus
{v1,v2}, {va,v3} ¢ G for v; € S;.

Label the vertices of G so that there is a path 1,...,6. Consider the case when
{1,3},{4,6} ¢ G. Since {vi,v2},{v2,v3} ¢ G for v; € S;, vertices 3 and 4 have valency
two. Suppose {2,5} € G. Let Xa € C°(K12),X3 € C%(K34),X5 € C°(K56) represent
a1, ae, a3, respectively. Since ajas = 0, let a;o = 0 and let ass = X5. Then w = Xa5 is
zero, contradicting the non-triviality of (aq, ae, a3). Hence {2,5} ¢ G and G is graph
(a), where {1,5}, {1,6} and {2,6} are optional.
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There are three more cases. When {1,3} € G and {4,6} ¢ G, it is necessary that
{1,5} ¢ G otherwise in Example 2.3.8, w = Xj5 is zero. Also {2,5} ¢ G as in the
previous case. The edges {1,6},{2,6} in G are optional as they do not change the
calculations in the Example. If {1,6},{2,6} ¢ G, G is graph (b) with {4,6} ¢ G. For
other selections of {1,6},{2,6}, G is isomorphic to a graph in (a). When {4,6} € G and
{1,3} ¢ G, G is symmetric to when {1,3} € G and {4,6} ¢ G, so up to isomorphism we

obtain the same graphs.

Finally if {1,3},{4,6} € G, then {1,5},{2,5},{2,6} ¢ G for the same reasons as in
the last two cases. Let aj, a9, a3 be represented by X1 € C%(Ki2), X3 € C%(K34),

X € C%(Ks6), respectively. Let ajz = 0, ass = Xg. Then w = Xi6 and therefore
{1,6} ¢ G. So G is graph (b) with {4,6} € G.

Up to graph isomorphism, the graphs (a) and (b) are edge complements to exactly the

one skeletons in Figure 2.6. O

Example 2.3.11. In Example 2.3.3, we found a non-trivial triple Massey product in
Zp, where P is a 2-truncated 3-cube. In particular, the full subcomplex on the vertices
1,...,6 of the one-skeleton of Kp is shown in Figure 2.8a. This full subcomplex can
also be drawn as in Figure 2.8b, which is one of the obstruction graphs in Figure 2.6.
Therefore the triple Massey product in Example 2.3.3 can also be regarded as an example
of Theorem 2.3.10.

4
1
5
Nar
(a) (b)

Figure 2.8: An obstruction graph in Kp when P is a 2-truncated cube.

Example 2.3.12. For k > 3, a k-belt in a polytope P is a sequential collection of k facets
(Fis-- s By, By L), By, = Fiy, such that F; N F;, # @ if and only if ¢ = p+1 mod &,
and F;, N F, N Fy, = @ if k = 3. Also a k-belt in a simple polytope P corresponds to a
cycle of length k in Kp. Buchstaber, Erokhovets, Masuda, Panov and Park [12] showed
that for any polytope P with no 4-belts, all triple Massey products (a1, a2, a3) C H3(Zp)

k+1

for oy € H3(Zp) are trivial. This is proved by considering the one-skeleton of Kp and

noticing that all of the obstruction graphs in Figure 2.6 have a chordless cycle of length
)

four. If P contains no 4-belts, then Kl(jl) contains no cycles of length 4, thus K](g1 does

not contain an obstruction graph. Hence Denham and Suciu’s result means that any
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triple Massey product on classes of degree three will be trivial.

Theorem 2.3.10 is a useful result for easily detecting Massey products, but it is limited

to only triple Massey products in the lowest degree.

2.3.3 A family of higher Massey products

The examples of non-trivial Massey products have so far been examples only of triple
products. In 2016, Limonchenko [26] also used Baskakov’s original truncated cube exam-
ple as inspiration for constructing non-trivial higher Massey products in the cohomology

of moment-angle complexes.

Construction 2.3.13. [26] Let I" be the n-dimensional cube with opposite facets
labelled F;, Fi,4; for i = 1,...,n. Let P, be a polytope obtained from I™ by making

consecutive cuts of faces so that the Stanley-Reisner ideal of Kp, is
1= ({UiUnJrii L<i<n} {vivnpip1: 1<i<n—1}F .. {vivppipn-2): 1 <i < 2},R>

where v; correspond to facets F; of P,, and R is the set of all relations coming from the

new facets. For this construction, we write Zp, for the moment angle complex of Kp, .

Example 2.3.14. When n = 2, I? is a square. The Stanley-Reisner ideal corresponding
to Kp, is T = (v1v3,v2v4), and so no cuts are made to I2. That is, P, = I2. When
n = 3, I? is the 3-cube and the Stanley-Reisner ideal of Ky, is (viv4, vovs,v3ve). By
Construction 2.3.13, the Stanley-Reisner ideal of Kp, is

T = ({viva, vavs, v3v6 }, {v1Vs5, V2V6 }, V702, U7V, VU3, VU5 ) -

This corresponds to obtaining P; from I3 by truncating the intersection of the facets F
and Fy, and the intersection of F and Fg, thus introducing new facets F7 and Fg. Up

to a relabelling of facets, P is the same 2-truncated cube as in Figure 2.3a.

Theorem 2.3.15 ([26]). Let n > 2 and let K denote Kp,. Also let oy € HO(K;pii) for
1 <i<n. Then all I-Massey products of | consecutive elements from aq,...,q, are

defined and the n-Massey product {aq, ..., o) is non-trivial.

The idea of the proof of Theorem 2.3.15 is to ensure that the n-Massey product
(a1, ...,qp) is defined by cutting/truncating faces so that the two (n — 1)-Massey
products (o, ...,a,—1) and (ag,...,ay,) are trivial. The proof uses induction on n, the
dimension of the cube. For example, P» is the square and the 2-Massey product is the
same as the cup product. Since Kp, is the boundary of a square, the cup product is
non-trivial (as seen in Example 2.1.25). In I3, the cup products oy and asas are each
supported on a full subcomplex that is the boundary of a square. Then we make two
truncations to cut each of the squares and thus make both cup products ajas and asag

trivial. We have already seen that there is a non-trivial triple Massey product in Zp,
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in Example 2.3.3. When n = 4, the Stanley-Reisner ideal of Iy is (vivs, vavg, V307, V4Vs).
We then perform cuts to I so that the two Massey products (a, ag, as) and (ag, ag, ay)
are defined. That is, add monomials vivg, vov7, v3vg to the Stanley-Reisner ideal and
there are two copies of P3 contained in this stage of the construction of P;. Then we
again cut to ensure that (aq, g, as) and (ag, as, ay) are trivial. That is, add monomials

v1v7, vovg to the Stanley-Reisner ring in order to obtain Py. So

T = ({v1vs, vave, v307, V408 }, {V1V6, V2T, V3V8}, {V1V7, V2UsY, . . )

where R is the set of relations coming from the new facets Fy, ..., Fi3. A more detailed

proof can be found in [26] and [27], or alternatively in Example 3.1.17.

Similar to Baskakov’s family of examples and Denham and Suciu’s classification, the
indeterminacy in Limonchenko’s family always turns out to be trivial [27, Theorem 3.3].
Additionally, all of the classes «; are elements of H O(ICMH-), where KC; 5,44 is a simplicial
complex on two disjoint vertices, so a; corresponds to a class in H3(Zy). Both of these

properties simplify the calculations to check the non-triviality of the Massey products.

2.3.4 Other families of examples of non-trivial Massey products

The Pogorelov class of polytopes is the class of combinatorial 3-polytopes that admit
a right-angled realisation in Lobachevsky space L3 that is unique up to isometry [12].
It includes polytopes such as fullerenes, whose facets are either pentagons or hexagons.
The moment-angle complexes corresponding to Pogorelov polytopes are key for the study
of hyperbolic manifolds of Lobell type, as well as for the study of cohomological rigidity
[12].

In 2017, Zhuravleva [39] showed that the simplicial complex K = Kp corresponding to any
Pogorelov polytope P has a full subcomplex as shown in Figure 2.9. Let o € H O(Kse7),
B e ﬁO(KQ’bO’m’bn) and v € fIO(ngA). Then by Theorem 2.1.24, these classes correspond
to a € H4(Zx), B € H"3(Zx) and v € H3(Zx). As in (2.14), the indeterminacy is
given by

a - H(Kapg,...pn3.4) +7 - H(K2po,..50567) = 0.

Zhuravleva showed that this Massey product («, 8,7) C H"*?(Zx) is non-trivial.
Theorem 2.3.16 ([39]). For any Pogorelov polytope P, there is a non-trivial triple
Massey product (o, B,7) in H*(Zx).

The proof of this theorem is by explicit calculation in similar style to Examples 2.2.8
and 2.3.3.

So far, the families of examples of non-trivial Massey products in moment-angle complexes
have all had trivial indeterminacy. Additionally, the Massey products have all been

on spherical classes. For example, both Limonchenko’s family in Section 2.3.3 and
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Figure 2.9: A full subcomplex of the simplicial complex corresponding to any Pogorelov
polytope [39]

Denham and Suciu’s classification in Section 2.3.2 are on classes o; € H(S°). Similarly,
Baskakov’s family in Section 2.3.1 is on classes a; € H™(S™). In the rest of this thesis, we
will see constructions of non-trivial higher Massey products in moment-angle complexes

on arbitrary classes, including torsion classes.
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Chapter 3

Combinatorial Operations and

Massey Products

3.1 Join and stellar subdivision

The aim of this section is to develop a new systematic construction of non-trivial higher

Massey products in the cohomology of moment-angle complexes.

We have already seen in Proposition 2.1.6 that the join K1 % /Co of simplicial complexes Ky,
KCo induces a product Zi,«k, = 2k, X Zi, of corresponding moment-angle complexes.
This product can be thought of as a 2-Massey product. For example, let K be the
boundary of a square, which is the join of K! = {{1},{2}} and K? = {{3},{4}}, as in
Figure 3.1a. In Example 2.1.25 we saw that the 2-Massey product of a € fIO(ICLQ) and
B € H(K3,4) is non-trivial in the cohomology group H'(Kj.23.4), that is, in H*(Zg).

3 1 3 d
/\.
) . 9 1

(b) Trivial cup product of « and 3,

(a) Non-trivial cup product of o and S after stellar subdivision

Figure 3.1: 2-Massey products (cup products) on a square

We use this motivating example to also create higher non-trivial Massey products.
However, if all cup products are non-trivial, then the triple Massey product is not defined.
Therefore we need to break the cycle that supports af € H 1()6172,374) in order to make
the cup product trivial. Let K = ssy 4 IC, as in Figure 3.1b. Then for a € ﬁO(Kl,Q) and
B e HY (Ks3,4), the product a3 is trivial. This is how the families given by Baskakov and

Limonchenko were constructed in Constructions 2.3.6 and 2.3.13.

In this section, we systematically construct simplicial complexes K such that H*(Zx)

contains a non-trivial n-Massey product (a1, ..., a,) of classes «; in arbitrary degree.

35
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The idea is to create K by first starting with the join K of n simplicial complexes K,
each of which support a;. In the join K = K! ... % K", the cup product oy U...U ay,
is non-trivial. To obtain K, we further stellar subdivide the join K in such a way that
for every | < n, the relevant [-Massey products vanish simultaneously ensuring that the

n-Massey product is defined.

3.1.1 Massey products and stellar subdivision

To construct a non-trivial n-Massey product, we will need to perform several stellar
subdivisions to ensure that the [-Massey products for [ < n are trivial. We first show that
the order of stellar subdivisions on a simplicial complex does not affect a full subcomplex

on the original vertices.

Lemma 3.1.1. Let £ be a simplicial complex. For simplices 11,15 € L, such that
ILiNIy # I, Iy, let M = ssp,ssy, L and N = ssp, ssg, L. Then the full subcomplezes
My gy and Ny (r) are equal.

Proof. Since (ssp, L)y () = (L\stg [1)Udste I = {J € L | I; ¢ J}, we can alternatively
express ssp, Las {J € L | I ¢ JbU{JU{x} | JLUJ € Land I} ¢ J}. Since
Ih NIy # I, Iz, neither Iy C Iy nor Iy C I; and so Iy € ssy, £ and Iy € ssy, L. Therefore
after stellar subdividing ss;, £ at I,

M={Jcl|l,Ib¢g JYU{JU{x)}|J1UJ€ELand [1,Is ¢ J}U
U{JU{*Q}‘J,IQUJESS[l,CandIQ¢J}.

A similar expression can be made for N. Then My ) = {J € L | L1, ¢ J} =
Nv(c)- O

Example 3.1.2. Let £ be the simplicial complex in Figure 2.4a. Let I; = {1,5} and
I, = {3,5}. The star st I; contains maximal simplices {1,4,5} and {1,3,5}, and st I
contains {1,3,5} and {2,3,5}. If I; is stellar subdivided first, then sty ;, £ I2 contains
maximal simplices {2,3,5} and {3,5, 7}, where {7} is the new vertex introduced by the
first stellar subdivision. Then M = ssy, ss;; £ and N = ssy, ssy, £ are different, as shown
in Figures 3.2a and 3.2b, respectively. Restricting both M and A to the original vertices
V(L) ={1,...,6}, we have that My () = Ny ().

Construction 3.1.3. Let K be a simplicial complex on [m] with a non-trivial o« € HP(K)
for p > 0. Let a be represented by a cocycle a that is supported on the p-simplices
in S, C Ksothat a =73 cg coXos € CP(K) for a non-zero coefficient ¢, € k for each
o € 8,. For every simplex o € S,, let v, denote one particular choice of vertex in o. Let
P, be the set

P, = {p-simplices 0’ € K | c No' =0\ v,}.

We fix an order on the simplices in S,. Let (1) be the first element of S,. Then let
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5 5
4 2 2 4 N 2
1 3 1 3
(a) M{1,2,3,4,5.,7,8} (b) N{1,2,3,4,5,7,8}
5
2

(c) My(zy =Ny

Figure 3.2: The order of stellar subdivisions does not affect the restriction to the
original vertices

Figure 3.3: For this choice of a vertex v, € o, 0’ € P, but ¢’ ¢ P,

Sél) = So\P,q). Let o be the next element after o(1) in S(gl). Then let 5’,52) = Sél)\PU@).

We continue inductively until o) is the last element of S[(ll*l), and let
Sa=SU=VN\ P . (3.1)

At each stage, o ¢ P, so §a contains at least the last element o). Let
P,=P U---UP . (3.2)

This set is non-empty as follows. If p = 0 and HO (K) # 0, then K is a disjoint union of
at least two vertices. For any v,w € K, vNw = & = v \ v. Hence w € P,. Alternatively
let p > 0. Since o € HP(K) is non-zero, there is a non-zero cycle z € C,(K) such that
a(z) # 0. Let x = 37 1 c;A; for non-zero coefficients ¢, and a set of p-simplices
T, C K. Let 0 € S, NT,. If O is the boundary map and v; is the jth vertex in o, then
(o) = Z?g(—l)jHAU\W # 0. Since z is a cycle, there is a simplex 7 € T}, T # o, and
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a vertex v € 7 such that 7\ v =7N0o = o\ v; for any vertex v; € o. Hence for any

o€ S,NT,, P, is non-empty.

For i € {2,...,n — 1}, let K* be a simplicial complex on [m;] vertices that is not an
(m; — 1)-simplex. Since K’ is not a simplex, there is a non-zero cohomology class
o; € ﬁpi(le,i) for p; € N, J; C [my]. For i € {1,n}, let K be a simplicial complex on
[m;] such that there exist J; C [m;], p; € N and a non-zero oy = [a;] € HP: (KY,) for
which there is a p;-simplex 0; € S, (if i = 1) or 0; € P,, (if i = n) that is maximal in

%

i
Let K =K' -« K", so lév(lci) = K for every i € {1,...,n}. The vertices in each
vertex set V(K') have an induced order from [m;]. Suppose the vertex set V(K) =
Licqa,...n} V(K?) is ordered so that u < v for all u € V(K?) and v € V(K7) for i < j. We
construct a simplicial complex K by stellar subdividing K as follows. For any i < k,
(i,k) # (1,n), let 0; € S,, and o} € P,,. If 0; U 0}, € K, we stellar subdivide K at the
simplex o; U o). For ease of notation, let K denote the resulting simplicial complex
SSe;Uo, K. We iteratively stellar subdivide K at every o; U o for every i < k and every
0; € Sa;y 0 € P,,. Let K denote the resulting simplicial complex restricted to the

original vertices of I - -+ % K.

Lemma 3.1.4. The simplicial complex K is independent of the order of simplices in
P, .

Proof. For any oy,0). € P,,, we have that o; U o, No; Uoy, # 0; Uog,0;Uo. So by
Lemma 3.1.1, the order of P,, does not affect K. O

Lemma 3.1.5. The simplicial complex K is independent of the order in which the pairs
{i,k}, 1 <i < k < n, are chosen.

Proof. For any a;, the set S,, of simplices lies in J; C V(K?). Let {i1, k1} and {is, ko}
be two pairs of indices. For any oi; € Saz.j and any Ok; € Pakj such that 1 <i; < k; < n,
j = 1,2, the intersection of o;, Uoy, C J;, U Jy, and o4, U og, C Ji, U Jy, is empty.
Therefore by Lemma 3.1.1, we can stellar subdivide at simplices o5, U o), and simplices

04, U o, in either order. O

Example 3.1.6. Let K! be the disjoint union of two vertices {1},{2} and K? the
simplicial complex in Figure 3.4a. The join X! #/C? is homotopy equivalent to S?V.S'. Let
a) € fIO(lCl), Qg € ﬁO(ICQ) be represented by the cochains a; = X; and ag = X3+ X4+ X5,
respectively. Then S,, = {1}, and S,, = {{3},{4},{5}}. Following the construction
above, for o2 = {3} there is only one choice of a vertex v = 3. Then Py3y = {{4}, {5}, {6}}
50 S, = S((zé) = {{3}} and P, = P3;. Let

K= SS{I,G} SS{175} SS{174} ICI * IC2.

Therefore K = 16172737475,6, as in Figure 3.4b. Since K is contractible, the cup product

a1og s trivial.
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Example 3.1.7. In addition to X' and K? in Example 3.1.6, let K2 be the disjoint
union of two vertices {7},{8}. Let ag € HO(K?) be represented by ag = X7. Then
Saz = Suy = {7} and P,, = Py = {{8}}. By Construction 3.1.3, we stellar subdivide
KL+ IC? % K2 at 0; U oy, for every o; € Se; and oy, € Py, for i =1,2 and k = ¢ + 1. Since

Say = {{3},{4},{5}}, we obtain the simplicial complex

’C = SS{578} SS{4,8} SS{3,8} SS{I,G} SS{1’5} SS{1’4} ICl * IC2 * ]Cs.

The resultant simplicial complex K = 16172,37475767778 has a 1-cycle on the edges {1, 3},
{2,3}, {2,8}, {1,8}, which is not a boundary (proved by Lemma 3.1.11). Therefore

H'(K) is non-trivial.

3
6e
5
4
(a) The simplicial complex
2
K (b) K1’2$374’5’6 after (C) ’C3’4’575’7’8 after
stellar subdivisions at stellar subdivisions at
{1,4},{1,5},{1,6} {3,8},{4,8},{5,8}

Figure 3.4: Example of Construction 3.1.3

Lemma 3.1.8. In Construction 3.1.3, the simplicial complex IC depends on the order of

simplices in Sg, .

Proof. Suppose oi, € S,,, 0, € Py, and let 0; € S,, for an i € {1,...,k —1}. If
o), € Sa,, N Py, , then either o), > o, or 0}, < 0y, in the order of simplices in S,,. In the
first case, the simplex o}, € P,, and hence o; U o}, € K and o; U gy, ¢ K. Conversely
in the second case, if the chosen vertex vy € o}, is such that o \ vy = o \ vg, then
o € Py . So o, € P,, and therefore o; Uo), € K and o; Uoy, ¢ K. O

Lemma 3.1.9. The choice of vertex vy € oy affects the number of stellar subdivisions

performed in Construction 3.1.3.

Proof. Suppose the simplicial complex in Figure 3.3 is a full subcomplex of Kﬁk, for
some k € {2,...,n}. Further suppose that S,, = {0}, 0} }. In Figure 3.3, o} ¢ P,, so
Py, = Py, UPUg. Alternatively, if v, € o, was chosen so that v, ¢ oMoy, then o} € Py, .
Therefore if o, < o} in S, , then ng ¢ P,, and thus fewer stellar subdivisions are
made. O

We aim to show that there is a non-trivial n-Massey product in H*(Zx) where K is the

simplicial complex created by Construction 3.1.3. We do this in stages, first showing
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that the n-Massey product is defined.

Proposition 3.1.10. Let K be a simplicial complex constructed in Construction 3.1.3.
Then {aq,...,an) C H*(Z2x) is defined.

Proof. Let a; = > ,.cg, Co;Xo; be a representative cocycle for «; € HP (K ) for each

i€ {l,...,n— 1}, as in Construction 3.1.3. As in Section 2.2.2, we construct a defining
system (a; 1) for the Massey product (ay, ..., a,) C HP1 Pt iU-Ull+2( 2y
For 1 <i<k <, (i,k) # (1,n), let a; € CPiTFPr(K ;.07 ) be the cochain given by
Z Z : Z 00'7, . Ca—k Zk XO'ZU UO‘k\(vlJrlU U’Uk) (33)
0;ES,

a; Ui+1€Sai+1 o’kESak

where gai is the set in (3.1), each vertex v; € o; is the vertex chosen in Construction 3.1.3,
and 0; , is the sign 0; ;, = 1 when ¢ = k£ and

0; ) = (_1)k—i(_1)|Ji\(pi+1+“'+pk)(_1)|Ji+1\(m+2+~"+pk) o (_1)|Jk—1|pk,

)

€(Ui+1, O‘i+1) . .€(Uk,0'k). (3.4)

Following the stellar subdivisions in Construction 3.1.3, for any simplex o; U 0y, the
simplex o; Uoy, \ vy, is contained in d'stz (03 Uoy,). Hence o;U---Uoy \ (vigp1 U+ - -Uwg) € K.

Then since every coefficient ¢, is non-zero, the cochain a; j, is not trivial.

We show that d(a; ) = Z’:;}ﬁ - Qr41k, as in Section 2.2.2. By the definition of the

coboundary map,

azk : Co; -+ Coy, zk'
=2 X X

U’LES’% Uz+1€Sai+1 O’kGSak

Z e(f,jUoiU---Uog \ (vig1 U~ Uwg)) XU Ur-Uog\ (vi41U-Uny,)
FEJIU-UJp\ (03U -Ug\ (vi41U-+-Ury)) :
jUO’iU"'UO'k\(’UH_lU"'U’Uk)E’C

(3.5)
We will show that the only non-zero summands in this summation are when j €
Vi41 U - +- Uvg. Suppose there is a vertex j € J; U---U Jg \ (0; U---Uoyg) such that
jUo;U---Uok \ (vig1 U---Uwvg) € K. Then there are two cases, that is, either j € J; or
jeJiforle{i+1,...,k}.

If j € J;, then j Uo; € K. Since a; is a cocycle, d(a;) = 0, so there are other simplices
Ti,...,Ts € Sg, such that there is a vertex w, € J; \ 7, with w, Ur, = j U o; for
ne{l,...,s} and

S
0= co; €(j, 7 U0s) Xjuo, + Z Cr, E(Wp, Wy U Ty) Xe, Uy, -

n=1

So, similarly, there are summands in (3.5) corresponding to w, U7, Uc;r1 U---Uog \
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(Vig1 U -+ - Uwyg) since w, UT, = jUo; and no simplex jUo; U---Uog \ (vi41 U---Uuvyg)
was stellar subdivided for any j € J; and any o; € S,,. Therefore,

O - CUi 5(]7] U Ui U UZ+1 U e U O‘k \ (/U’L-i-]. U T U /Uk)) XjUGiU0i+1U"'UUk\(Ui_‘_lU"’U’Uk)+

+ Z Crp E(MTH wnUTnUO—i+1 U-- ‘Uak\(vi_i,_l U-- ka)) XwnUTnUO'i+1U"'UO’)C\(’UZ‘+1U~~U’U;Q)'
n=1

If j € J, forsomel € {i+1,...,k}, then jUc;\v; € K and in particular, jUc;\v, € Py, C
P,,. So by Construction 3.1.3, o;UjUo;\v; ¢ K. Hence jUo;U- - -Uoy\ (vip1U- - -Uvg) ¢ K
forany j € J; U---UJg \ (vig1 U---Uuy).

Therefore, we only consider the case when j € v;41 U---Uvg. Then,

azk Z Z : Z Coj - - Cak ik"

UZGSG’Z 01+165ai+1 O'kESak
Z E(j,jUO'Z' U---Uoy \ (Ui'i‘l U.-- ka)) XjUO'iU---Ua'k\(vi+1u---ka)'

JEVi1 U Uvy:
jUO'Z'U---UO'k\(vZ'JrlU---ka)EIC

Let j € vi11U---Uuy be denoted as v,y for r € {i,...,k—1}, then this may be rewritten

as
alk Zglk Z Z Z Co; - -Cop”
r=i 7i€Sa, 0i11€5a;,, k€S,
e(vr41,00 U Uog \ (Vg1 U+ U g U= U k) XoyUe U\ (vig1 U Ubp 1 U--Uug)
(3.6)
where 0,1 denotes that the vertex v,y is deleted from the sequence v;11, ..., vg.

To show that d(a; k) = Zk e @jr - A(r41),k, consider the expression for ZT  Gir A1) ks

k-1 o
Z(_1)1+deg(ai,r) Z Z e Z Co; - Cop Oy XO'iU"'UO'r\(Ui_A,_lU"'U’UT-)
r=t O'iGSai Ui+1€§ai+1 U'regar

Z Z T Z Cori1 -+ Cop Ort1k Xoy i 1UeUog\ (v 2Un-Uny)

UT+1€Sar+l 07'+2€Sar+2 O’kesak

For any 0,41 € Sa, 4 \ §a we must have that o,41 € P, Therefore o; U o141 ¢ K.

r+1?

Hence by applying Lemma 2.1.26,

41"

Za“"' A(ry1) k_z Z Z Z (_1)1+Teg(ai,r).

r=i 0’165% o’z+1ES Ukegak
.(_1)|JiU"'UJr\(pr+1+ +Pk+1)ca_

(3.7)

441

- Coy, 91'77‘ 9T+1,k XO'iU~--U0'k\(’Ui+1U-"U@T+1U~~~U’Uk)‘
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Since deg(a;r) = |J;U - UJp[+pi+ - +pr + 1,

(_1)1+d79g(ai,r) (=)l prerttpetl) — (1) (Pitedpr) LU U (Pra e tpx)

To show that d(a; i) = Zf;ll @i - Q(r41),k, We need to prove that (3.5) is equal to (3.7).

Thus we want to show that

O e(Vrg1,00U---Uop \ (Vig1 U+ Ul U---Ury)) (3.8)
= () O ), (39
Since
O = (—1)" (= 1)V illeierttpn) () raler e (v 0500) g0, o)
and

Or i1 = (_1)k*T*1(_1)|Jr+1|(pr+2+---+pk) e (_1)|Jk71|pk e(Upy2, 0ry2) - - (Vg oh),
the expression (3.9) becomes

(—1)ki= (=) @ittpe) ()il isatoter) ()il Giatotpn) ()l Te-alee
e(Vix1,0i41) - - . (v, 0p)e(Vpt2, 0p12) . . . €(Vg, OF).

This can be rewritten as

()PPl (g1, 0041) Bk (3.10)

Next consider (3.8). For any r € {i,...,k — 1}, suppose v, 41 € 0,41 is the lth vertex in
the vertex set of o; U---Uoy \ (vi41 U+ UDpy1 U---Uwvg). Then

(g1, 03U Uop \ (g1 U+ Ubpy U---Uuy)) = (=D)L
Since vy41 € 0p41, [ is given by
L=loil + (loixa| = 1) + -+ (lov| = 1) + b

where [,41 is the position of v,11 in 0,41 and |o;| = p; + 1 for every i. So I =
(i +1) + pis1 + -+ pr + Ly, and hence

e(Vrs1, 03U+ -Uop\ (Vi1 U - -UbppyUs - -Ury)) = (= 1)1 = (1)t t2etl o(, 0 0, 09).
(3.11)
Thus (3.8) may be rewritten as (—1)Pit P+l g, e(v,41,0,41), which is equal to (3.10).

Hence (3.5) is equal to (3.7), and so d(a;x) = YF-1a:, - a(r41),k- Therefore (a;x)

corresponds to a defining system for (a1, ..., ay,). O
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Since the n-Massey product (o, ..., a,) is defined, it remains to show that this Massey
product is non-trivial. To do this, we first verify that there is at least one non-zero
cohomology class in {(aq,...,a,). Then we show that any other element of (aq,...,ay)

is also non-zero.

Let w € CPrH+Patl(JC, ;7 ) be the associated cocycle for the above defining system.
Then,

n—1
W= Ty A
r=1
In particular,
n—1
W= Z Z Z T Z 0 XUlU'“UUn\(UQU“-UUTUU,«+2U~~~Uvn) (312)
r=101€Sa; 6,5,  0nESay

as in (3.7) when 7 = 1 and k = n, where 6 is the coefficient
0= Coy ---Cop (_1)p1+-~~+p7.—1 E(UT+1, UT+1) Ql,n

as in (3.10).

Lemma 3.1.11. The class [w] € HP'H- 4t ([Cp (05 ) is non-zero.

Proof. We construct a cycle x € Cp, 4. 1p,+1(K s u..0s,) such that w(z) # 0. If [z] is a

non-zero homology class, then this concludes that [w] # 0.

Let o; € gai for 2 < i < n be fixed. By assumption in Construction 3.1.3, J; and J,
were chosen such that there exist o1 € S,, and o0, € F,, that are maximal in Ky, K, ,
respectively. Since a € HP'(K z,) is non-zero, there is a homology class [1] € H,, (K,)

with a representative cycle z1 € Cp, (K, ) such that aq(z1) # 0. As for any general chain,

xTr = Z C&lAa-l

5'1 Eswl

we can write x1 as

for a collection of p;-simplices S, C K, and non-zero coefficients cz, .

Let 0(o2 Uoy,) be the boundary of the simplex oo Uoy,. Then let 23 € Cpyyp, (0(02U0y))
be the cycle

Zo = Z Cwsy AogUan\wg

woEooUoy,

for vertices wy € oy U 0y, and non-zero coefficients c,,, so that [x2] € Hpy1p, ((o2 Uoy))
is the spherical class. Similarly for 3 <i < n—1, let z; € Cp,—1(0(0;)) be the cycle given
by

Li= Z cwiAUi\wi

w;€0;

for vertices w; € 0; and non-zero coefficients c,,.
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Let x € Cp1+..,+pn+1(lc‘]lu...u‘]n) be the chain

Z Z Z tee Z C51Cwy * " Cwn_1AﬁlUagu-nUon,lUan\(wQUman,Q-

6165'9:1 woEooUoy w3Eos Wn—1E€E0n—1

For ease of notation, let T, be the set of simplices ¢ that supports x, where ¢ has the
form
t=061UoaU---Uop_1Uop \ (weU---Uwy_1) (3.13)

for a p;-simplex &1 € S,,, and a choice of vertices wy € oo U0y, w; € 0 for 3 <1 <n—1.
We will first show that x is a cycle, before showing that it is also not a boundary. The

boundary d(z) is given by

Z Z Z Z Ze(v,t) C1 Cury "'Cwn_lAt\v.

G1€8y, w2€02U0n W3ET3 Wn—1€0n—1 VEL

Since 61 C J1, 0; C J; for 2 <@ < n, and J; N J; = @ for ¢ # j, every choice of vertex
v € t is contained in a snnplex g1 or g; for 2 <i < n. If v ey, then e(v,t) = (v, 61).
Also like in (3.11), if v € o; for i > 1, then

(=17 * g(v, 09) if wo € 0, and 7 = 2,
cw.t) = (=Pt HPicit2 o(y oy \ ;) if wy € 0y and i > 2,
(—1)prttpn- 1+1 e(v,0n) if wyg € 09 and 7 = n,
(— 1)p1+ +pi—1+1 e(v, 0y \ wi) if wg €ogandi<n

where w; = w; for 1 < i < n, and W, = wy. We rewrite d(x) as

Z Z Z Z Z Z E(’U,t) C51 Cwy "'Cwn_lAt\v

G1€8y, w2€02Uon W3ET3 Wn—-1€0n-1 i=1 vEF;\;

where 71 \ w1 = &1 and 6; = o; for i > 1. Let Ay, | denote the restriction of Ay, to its

vertices in J C [m]. Then

22 >

G1€8y, W2€02Uon W3ET3 Wp—1€0n—1

Z Z 5(@, t) C51Cwy " " Cwnfl(At\U|Ji)(At\U‘V(K:)\J¢)

i=1 7.)65'1'\7111'

We rearrange 0(z) into four collections of summands, one in which v € &1, another for
v € o9 U0y, \ wy, and two more when v € o; \ w; for 3 < i < n — 1 where either we € 09

or wy € oy. Then writing (v, t) more explicitly,

RN VD SR >

waEoaUon w3Eo3 Wp—1€0n—1

Cus Cumy Arwlvaonn) | D0 3 e(v,61) s (Apolan) | +

G1€8Sz, VEGL
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+ Z Z o Z C51Cws3 " Cwpg (_1)p1+p3m+pn_1+1(At\v‘V(’C)\JQUJn)

5‘16511 w3€oT3 Wn—-1€0n—1

( Z Z e(v,o9 Uy, \ ws) CwQ(At\U|J2an)) +

w2E€02U0n vegaUoy, \we

4 Z Z Z Z Co1Cum -+ Cunyy

G1€85z, W2€02 W3EOT3 Wpn—1€0n—1
n—1
S (=Pt A lvaons) | eioi \ wi)(Apols) | |+
1=3 vET; \w;
_|_ Z Z Z N Z Ca_lcw2 ce cwnil
G1€855, W2E0n W3E0T3 Wp—1€0n—1

n—1
(Z(_1)p1+m+pi_l+2(At\v|V(IC)\Ji) ( > €(U7Ji\wi)(At\v‘Ji)>) :
i=3 veT;\w;
Each collection of summands can be written in terms of d(z;), that is

o)=Y D D cwcw (Baulvaons) Oan)+

woEooUoy w3EoT3 Wp—-1E€E0n-1
- _1)P1tp3tpn—1+1
+ > > > CayCuwy e Cupy (1) " Apelv o seua,) O(2)+
G1€85, W3E03 Wp—1E€E0n—1
n—1 —
5D D S5 S DD DD DT
G1€8y, W2€02 =3 W3€03 w; €04 Wp—1€0n7—1

((_1)p1+-..+pi—1+1(At\v‘V(’C)\Ji) a(xz)) +

+ Z Z nz_:l Z Z Z Co1Cwy """ Coor = Cunyy s

G1€8z, W2ETn =3 W3€E03 w; ET; Wp—-1€0n—1

<(_1)p1+“'+pi71+2(At\v‘V(IC)\JZ-) a(xl))

where = denotes omission. Since every x; is a cycle, d(x;) = 0. Therefore also d(x) =0

and z is a cycle.

We will show that z is not a boundary. In particular, we will show that the link of a simplex
s € T, is empty, so that x cannot be a boundary of a collection of higher dimensional

simplices. Let us consider ¢ when 61 = 01 € Sg,, and w; =v; for i =2,...,n — 1. Let
s=o01U---Uop_1Uop \ (vaU---Uvy_1). (3.14)

Recall that in Construction 3.1.3, a; € CP*(K;) and a,, € CP*(K,,) were chosen so that
there are simplices o1 € S,, and o, € P, that are maximal in K, and K, respectively.
Hence we have that lkg, (01) = @ and lkg, (0n) = @. Suppose there is a vertex
J €1k, 0 0 (s). Then there is an m € {2,...,n — 1} such that j € J,,. Therefore
om Uj\ vm € K, and in particular o, U j \ vy, € Py, . Thus there would have been a
stellar subdivision made at the simplex o1 U oy, U j \ vy, during the construction of K.
So o1 Uy, Uj\ vy € K, and subsequently also o1 U o, U j & K. This contradicts the
assumption that j € lkr, |, ;. (s). Hence KK, oo (s) = @ and the cycle z cannot be
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a boundary. Therefore, the homology class [z] € Hy, +...sp, +1(Ks 0.7, ) is non-zero.

Furthermore by (3.12), the summands of w are of the form

XmU---Uan\(vgu---UervT+2U---Uvn)

for o1 € S,,, 0; € gai for 2 < i < n. Thus the only non-zero terms in the evaluation of w

on xz are when r =1, w; = v; for 3 < i <n— 1, and wy = v,,. Therefore,

w(a:) = Z Z Oca Cuy ++* Cop i Xoy (A51)

01€Sa1 o1 ESgcl

=Coy---Cop (_1)]0171 £(v2,02) O1,nC0, -+ Copy Z Z Coy €1 Xoy (D)

01€8q; G1€S5,

= Cgy.--Co, (—1)p1_1 e(v2,02) 01 nCyy -+ - Co,,_a1(21).

Since ai(z1) # 0 and the coefficient ¢y, ... ¢y, (=1)P171 e(ve,02) 01 nCyy -+ - Cp,_, i nON-
zero, w(z) is also non-zero. Here, x a cycle representative of a non-zero homology class

[2] € Hp vipy41(KJ0-00,), 50 [w] must also be non-zero. O

Example 3.1.12. Let K be the simplicial complex as in Figure 3.5a, where stellar
subdivisions were performed at the simplices o1 U 04, o2 U 0. That is, S,, = {01},
Say = {02}, Sas = {03}, Pay, = {04}, Pas = {0%}. Asin (3.13), the cycle x is supported

on a collection of simplices of the form
t:5'1U0'2UO'é\('LU2)

for simplices &1 € {01,0}, and a choice of vertex we € o9 U 0f. Therefore the set of
simplices T}, that supports x contains o1 U 02, 0] U 09, o} U 0% and o1 U 0%, as shown in
Figure 3.5b. The simplex s € T}, is 01 U 0%, and the stellar subdivisions performed to

construct K secure that lkx(s) = @.
As in (3.12), summands of w are of the form Xy, ygyues\ (v2) = Xo1Uos AN Xo UgyUos\ (v) =

Xo,Ue,- Therefore w evaluates on exactly one simplex of Ty, o1 U 02. So w(x) # 0.

As in Section 2.2.2, the above lemma shows that the cohomology class

W] € Hp1+-~~+pn+|Jnu~-~an\+2(ZK)
is non-zero. It remains to show that every other element of the Massey product
(a1, ..., ) is also non-zero.
Proposition 3.1.13. The n-Massey product (o, ..., can) C H*(Zx) is non-trivial.
Proof. We will show that for the cycle x constructed in Lemma 3.1.11 and any element

(W] € (a1, ..., an), [W]([z]) is non-zero. Since [z] € Hp, 1. yp,+1(Ksyu-0.,) was shown

to be non-zero, then this implies that [w'] is non-zero.
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g3
“ 02
/
01

3

(a) A simplicial complex K constructed (b) The cycle z is supported by sim-

by stellar subdivisions at o1 U ¢ and plices that include s, whose link is
o2 U 0}, empty.
Figure 3.5
Let (a;x) be any defining system of (aq,...,ay,), where a; € CPiT TPk (K ..y, ) as

in Section 2.2.2. Also let Sy, , be the set of (p; + - - - + py)-simplices such that

Q| = Z CoXg

UESELZ' k

for non-zero coefficients ¢, € k. The differential increases the degree of cochains by one,
which in particular corresponds to adding a vertex to the simplices in S, . Since the
base of the defining system is given by a; =3, g, ¢o;Xo,; for every i, for any o; € Sy,
there is at least one simplex in Sg,, of the form :72 U---Uop \ (ugU---Uupy_) for
o; € §ai and vertices u; € op U---Uoy, for 2 < i < n, u; # u;j. So ajaz, contains a

summand supported on a simplex of the form
oc=o01UosU---Uop_1Uop \ (ugU---Uuy_1) (3.15)

for o1 € Sy, 0; € §ai and vertices u; € oo U ---U oy, for 2 <@ < n, u; # uj.

Let w’ be the associated cocycle for this defining system (a; ),

W = Z cr Xr

TGSWI

for non-zero coefficients ¢; € k. By the definition of an associated cocycle, w’ has a
summand ajag,. Hence S, contains o in (3.15). We would like to compare the simplices
o in (3.15) and ¢ in (3.13). Specifically, we want to show that S, N1, # @. Since
01 € Say, 0; € Svai for 2 < i < n, we have that o; ¢ P,, for every i = 1,...,n. Therefore
o1 U---Uay, € K since it was not removed by stellar subdivision in Construction 3.1.3.
Then both ¢ and ¢ are (p; + - - + p, + 1)-dimensional faces of o1 U--- U oy,. If there
is no appropriate set of choices of u; and w; such that ¢ = ¢, then there is a cochain

b € CPrtPn(K) such that w’ + d(b) contains a summand X; and no summand X,.
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Rename this cocycle as w’. Then t € S,y NT,. Therefore, the evaluation w’(z) has at
least one non-zero term. However, there could be other simplices in S, N1, and so we

cannot conclude that w’(z) is non-zero.

We construct a cocycle w” and a cycle 2’ such that [w"] = [w'], [2/] = [z], and w”(2") # 0.
Set an order on the simplices T} such that the simplex s in (3.14) is the last in this order.
We work inductively to remove simplices in S, N1, so that S,» N T, contains only the

simplex s. Let us start at the first simplex 7 € Ty.

Suppose that both T, and S,/ contain 7 # s. Then there is a non-zero term in the
evaluation of w’ on z. The link of 7 is non-empty, since 7 # s and because K was
constructed from the join of simplicial complexes. So there is a (p; + ... + px + 2)-

dimensional simplex A € Kj,u...us, containing 7 in its boundary.

Suppose S, does not contain any other face of A. Then replace z by 2/, where the
simplex 7 € T} is replaced by the (p; + ...+ px + 1)-simplices in 9(A) \ 7 to form T}/.
Therefore 2’ is the cycle z — ¢, €(v, A) O(A), where ¢, is the coefficient of the summand
A, in x, v is the vertex such that v U7 = A, and €(v, A) is the coefficient of A, in (A).

Thus [z] = [2']. Moreover, S, and T, do not both contain the simplex .

e, oo,
s _ S
-9
T A,’
° ) :
o o o o (c) There may be a simplex
(a) The cycle = (b) The cycle 2’ 7/ that shares a boundary

with 7

Figure 3.6: If the link of 7 is non-empty, then the cycle z can be changed to x’

Alternatively, suppose S, contains another face 7’ of A. Since x is a cycle, there is
another simplex ¢ € T, such that 7 N 7' C ¢ (as shown in Figure 3.6¢). If ¢ < 7 in
the order on T}, then again we create the cycle 2’ from z by replacing 7 in T} by the
(p1+ ...+ pg + 1)-simplices in O(A) \ 7. Then 7 is not contained in 2’. By induction,
7' ¢ T,, otherwise we would have considered it before 7. Similarly since ¢ < 7, the

induction process means that t ¢ S,,.

On the other hand, suppose S, contains another face 7 of A and ¢ > 7 in the order
on Ty. Then t € stic, , ., (TNT). Let W' =" —c; e(r\7N7,7) d(X7nr) With a
coefficient —c; where ¢, is the coefficient of the summand X; in w’ and e(7 \ 7N 7/, 7)
is its coefficient in d(X,n,/). So w” does not contain a summand X,, but does have a
summand X¢, and [w”] = [w']. We continue the induction process on the next simplex in
T;.

Finally we come to a cocycle w” and a cycle ' such that S,» NT, = s. Since the cycle x
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only depended on particular choices of o; for all i € {1,...,n}, and since the link of the
simplex s in Kj,u...us, is empty, the induction process terminates. The evaluation of w”
on z’ only has one non-zero term, which is supported by the simplex s. Thus w”(z") # 0,

and so [w”] = [w'] is non-zero. O

Example 3.1.14. For i = 1,2, 3, let K be the simplicial complexes as in Examples 3.1.6
and 3.1.7. For a; = X1, ag = X3 + X4 + X5, ag = X7, we previously saw that S,, = {1}
and S, = S,%) = {{3}}. Therefore by (3.3),

ai2 = 012X1 = —X1.
Similarly S,, = {{3},{4},{5}} and S,, = Sa, = {7} so
az3 = 023(X3 + X4+ X5) = —(X3 + X4 + X5).
Let w be the associated cocycle for this defining system. Then
w = —X1(X3 4+ X4 + X5) — X1 X7.

Therefore |w] is supported on the 1-cycle given by the edges {1, 3}, {2,3}, {2,8}, {1, 8}.
Alternatively, another defining system could have a’273 = Xg + Xg + X7. Then, the

associated cocycle w’ for this defining system is given by
W' =X1(Xe + X7 + Xs) + —X1X7 = X17 + X158 — Xa7 = X13.

Thus [w'] is also supported on the 1-cycle given by the edges {1,3}, {2,3}, {2,8}, {1,8}.
By Proposition 3.1.13, this is true for all other defining systems and (a1, as, as) is a

non-trivial Massey product.

In summary, Proposition 3.1.10, Lemma 3.1.11 and Proposition 3.1.13 prove the following

theorem.

Theorem 3.1.15. Fori € {2,...,n — 1}, let K* be a simplicial complex on [m;] that
is not an (m; — 1)-simplex. For i € {1,n}, let K* be a simplicial complex on [m;] such
that there exist J; C [my], pi € N and a non-zero [a;] € HPi (KY4.) for which there is a
pi-simplex 0; € Sa, (if i =1) or o; € Py, (if i = n) that is mazimal in IC(’IZ Then there
exists a simplicial complex K, obtained by performing stellar subdivisions on K- -+ K",

with a non-trivial n-Massey product in H*(Zx). O

Two key examples of Theorem 3.1.15 are the families of Baskakov and Limonchenko.

Example 3.1.16 (Baskakov’s family). For i = 1,2,3, let K’ be a triangulation of a
(n; — 1)-sphere on [m;]. Let Iy € K!, Iy, I € K?, I3 € K3 be maximal simplices such that
I and I} are adjacent. That is, there is a vertex vy € K? such that I N I} U vy = I},
Similarly let I} € K3 be a maximal simplex adjacent to I3 so that there exists a vertex
vy € K3 such that I3 N[5 Uwvy = I}. Let ay = Xp,, ag = X1, , and ag = Xy, be cocycle
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representatives of a; € H™~'(K?) for i = 1,2,3. Then Construction 3.1.3 produces
the same simplicial complex as Construction 2.3.6. Therefore Theorem 3.1.15 and
Construction 3.1.3 recovers the family of examples of non-trivial triple Massey products
in H*(Zx) given by Baskakov in [7].

Example 3.1.17 (Limonchenko’s family). For i = 1,...,n, let K be a copy of two
disjoint points labelled {o;}, {o}}. Then the stellar subdivisions in Construction 3.1.3 cor-
respond to the truncations in Construction 2.3.13. Therefore Theorem 3.1.15 recovers the

infinite family of examples of non-trivial n-Massey products given by Limonchenko [26].

Theorem 3.1.15 does not just recover these existing results about non-trivial Massey
products in the cohomology of moment-angle complexes. Theorem 3.1.15 creates non-
trivial n-Massey products from any non-zero cohomology classes supported on a full
subcomplex of any simplicial complex K?. Therefore there is no limit on the dimension of
the classes «;, nor on the size of n, that is, how many classes «; there are. In particular,
using this construction it is possible to have Massey products on torsion elements, as

shown in Example 3.1.18.

Figure 3.7: A 6-vertex triangulation of RP2.

Example 3.1.18. Let ! be a triangulation of RP? on 6 vertices as in Figure 3.7.
Let K2, K2 be copies of two disjoint vertices labelled 6,7 and 8,9, respectively. Let
a1 € I;TQ(ICl) be represented by Xgp12. For ¢ = 2,3, let oy € I;TO(ICi) be represented by
as = Xg and ag = Xg, respectively. By Construction 3.1.3, P,, = {{7}} and P,, = {{9}}.
Then let

K= SS{0127} SS{69} I s K2 5 K3

and let K = Ko123456789- By Theorem 3.1.15, there is a non-trivial triple Massey product
(a1, a2, a3) C H™(Zx). This is the smallest example of a non-trivial triple Massey
product on a torsion class since K! is the triangulation of RP? on the least number of

vertices.

Since ; is the generator of H2(K') = H2(RP?), a; is a torsion element. The cocycle
constructed in (3.12) is w = —Xp126 — Xo128 € C3(K), and it can be checked that the

corresponding class [w] € (a1, az,as) is not a torsion element in H'4(Z).
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Also, there is a cochain a’172 = Xi26 + X124 — X147 — X347 + X037 + Xo27 such that
d(a) ) = Xoi26 € C*(Ko1234567), which is different to a;2 constructed in (3.3). The
associated cocycle to this defining system is w' = —Xg126 + X1268 + X1248 — X1478 —
X3478 + Xos7s + Xoz7s- It can be checked that [w'] # 0 and that [w] # [w']. Therefore
(a1, ag, a3) has non-trivial indeterminacy. In particular, the indeterminacy is given by
a1 - H(Kerso) + a3 - H*(Koi23s67) = a3 - H2(Koi2saser), where H?(Koi234567) = Z.

3.2 Edge contraction

The next section demonstrates a systematic method to create non-trivial higher Massey
products given existing non-trivial higher Massey products. The idea is to contract edges
of a simplicial complex K in a way that preserves the homotopy type of K. We first

define such an edge contraction.

3.2.1 Introduction

Definition 3.2.1. Let K, K be simplicial complexes with an edge {u,w} € K, and a
vertex z € V(K) such that V/(K)\ {z} = V(K)\ {{u}, {w}}. The simplicial complex K is

A

obtained from K by an edge contraction of {u,w} if there is a map ¥y : V(K) — V(K)

s P

that extends to a surjective map ¢: K — K, where ©(I) = {¢y(v1),..., Py (vn)} for
I ={vy,...,v,} € K. The map ¥: K — K is called the edge contraction of {u,w} € K.

Edge contractions are simplicial maps, but they do not preserve the topology of IC in
general. Attali, Lieutier and Salinas [1] showed that the homotopy type of a simplicial

complex is preserved under edge contractions that satisfy the link condition.

Theorem 3.2.2 ([1]). For any simplicial complezx KC, if an edge {u,w} € K satisfies the

link condition,

I ({u}) Nlkg ({w}) = Tk ({u, w}), (3.16)
then the edge contraction of {u,w} preserves the homotopy type of K.

Example 3.2.3. The following is a series of edge contractions that satisfy the link

[ Pl ]-A

condition.
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Here, despite the fact that the dimension of the simplicial complex has reduced, the

homotopy type has remained the same as the link condition holds.

Example 3.2.4. Without the link condition, the homotopy type of a simplicial complex

under edge contractions can change, such as in the following example.

The links of the vertices {2} and {3} both contain the vertex {1}, but lkx({2,3}) is

empty, so the link condition is not satisfied.

Example 3.2.5. An edge contraction that does not satisfy the link condition may also cre-
ate a cycle. For example, suppose Kisa triangulation of S? on four vertices, and let X be
a 2-dimensional simplicial complex with facets {1,2,3},{1,2,4},{1,3,4},{3,4,5},{2,5}.
So H%(K) = 0. The link of the edge {2,5} is empty, while lkc{2} N1k {5} = {{3}, {4}}.

The edge contraction of {2,5} results in a 2-cycle in K, as shown below.

PPN

The following properties of edge contractions will help calculations of Massey products
later. Let K be a simplicial complex and let # € C’q(lﬁ). Then % is supported on a
collection T of simplices so that & can be written as Z&eTi csAs where ¢z € k and As

A

is a generator of Cy(K).

Corollary 3.2.6. Let [£] € ﬁq(lé) be non-zero. Suppose a simplicial complex K maps
to K by one edge contraction ¥: K — K that satisfies the link condition. Then there is a
non-zero class [x] € Hy(K) and a representative x € Co(K) such that for every & € Ty,

there is exactly one lift of & in the collection T, of simplices that supports x.

Proof. Let # € C4(K) be a representative of [#]. By Theorem 3.2.2 and since ¢: K — K
satisfies the link condition, there exists a cycle z € Cy(K) such that ¥4 (x) = &, where

A

Pu: Cy(K) = Cy(K) is the map induced by ¢ and

sgn(¥P(0))Ayp,y if o is not contracted,
Pa(Ag) = { e

0 otherwise,

where sgn is the sign of the permutation. Let z = Y .1 ¢;A,, where A, is a generator

of Cy(K) and ¢, € k is non-zero. Suppose there are two different ¢g-simplices o, 7 € T},
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such that ¥(0) = ©(r) = 6 € K. Let {u,v} € K be the edge that is contracted by
®. Since P(0) = P(1), let u € 0 and v € 7. Then 0 \u = c N7 = 7\ v, that is,
o N7 € lki{u} Nlkg{v}. By the link condition, c N7 € lkx{u, v}, so there is a (¢ + 1)-
simplex A on the vertices V(o) U V(7). Since ¥ contracts only one edge, there are no

other g-simplices n € K such that ¥(n) = 6.

Let 2/ = 2 — ¢, e(u, A) (A), where ¢, is the coefficient of the summand A, in z and
e(u, A) is the coefficient of A; in 9(A). So [z] = [2], but the support T,/ of 2’ does
not contain 7. Since o, 7 are the only g-simplices in 9(A) that do not get contracted,
there are no new pairs 01,7 € T, such that ¥(o1) = ©(m) is a ¢-simplex. Also,
Pu(0(A)) = e(u, A)Pu(Ar) +e(v, A)Px(As). Thus

Pu(a") =2 —cre(u, A) (e(u, A) sgn(P(1)) + (v, A) sgn(P(0))) As.
Since 2’ is a cycle, ¥4 (2') is also a cycle, which implies that
e(u, A) sgn(¥(7)) 4 &(v, A) sgn(#(0)) = 0.

Hence ¥y (a') = &. If 7,0 ¢ T/, then 6 ¢ T;. Therefore whether o € Ty or o ¢ Ty,
there is exactly one lift o € T, for every 6 € T}. O

) T
g Ur ﬁ
[
Vo

Figure 3.8: There are cycles = in Cy(K) whose support contains only one of o or 7

Q>

3.2.2 Massey products and edge contraction

The aim of this section is to create a non-trivial n-Massey product in the cohomology
of a moment-angle complex Zi, given an existing non-trivial n-Massey product in the
cohomology of another moment-angle complex Z.., where K is mapped onto K by a

series of edge contractions.

Construction 3.2.7. Let K be a simplicial complex with a non-trivial n-Massey product
(G1,...,0,) C H*(Z¢). Asin Section 2.2.2, every class &; € H*(Zy.) has a corresponding
class
a; € ﬁ pi (I@ ji)

for a set of vertices .J; C V(l@) Furthermore J; N jj = @ for any i # j since (&1, ...,04y)
is non-trivial; otherwise for any a € Cp(leji), b e CQ(lei), we have that ab = 0 if
ji nJ j #+ O.

Suppose there is a simplicial complex I and a series of edge contractions that satisfy the
link condition, ¥: K — K. Let the vertices in V(l@) be ordered and suppose that all of
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the vertices in jl come before those of ji+1- For a set of p-simplices P C l@, let

1 o . . A ~
¢, (P) = {p-simplex 0 € K: ¥(0) = 6 for & € P}.

Then let the vertices V(K) be ordered and suppose the order is such that for any vertex o
that comes before @ in K, we also have v before w for every v € ¢y H(0) and w € ¢t (w).
Let J; = ¢35 (J;) € V(K). Then by the order on V(K), all vertices in J; come before
those in Ji41. Also J;NJ; = @ for any i # j since J;N.J; = @ and ¥, (0) N ¥y () = @

for any vertices v, W € KC, ¥ # 0.

Let a; be a cocycle representing ¢&; € HPi (I@ Jz) Let S, be the set of p;-simplices 6; € K i
such that
a; = Z csXs € Cpl(lajl)

&ESai

for non-zero coefficients ¢z, € k. Then, let a; € CP(K;,) be the cochain

a; = Z cs Z X (3.17)

G€5; UEQO;Z_I (6)

Example 3.2.8. Let Kj,, K j. be the simplicial complexes as shown below, where K g s
obtained from K, by contracting the edges ex = {2,3} + {2} and e5 = {4,5} — {3}.
The cohomology class &; € H 1(/@ 7.) may be represented by the cocycle X¢, so Sz, = {€}.

1 1
5 6
€1 R
€5 €3 2 —> e
e . .
4 € 3 2
13

The edge contraction of e satisfies the link condition, since lkx(e2) = lkx{2} N1k {3} =
{1}. Under the map ¥: K — K, ¥71(&) = {e1, e3}. So by (3.22), a; is the cochain

ai = Xey + Xey € CHK ).
Lemma 3.2.9. The cochain a; is a cocycle.

Proof. For ease of notation, we omit the index ¢ in the following proof, that is, let
a=aj, p=pi, J =J; etc. Let V(o) denote the vertices of a simplex o. Applying the

coboundary map to a,

da=Yc Y Y G.iUo)Nu.

6€8; Uetpgl(&) JEJ\V (o)
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Since V(o) C 51 (V(8)) C J for any & € S;, this may be written as

d(a) = Z Co Z Z e(J, 7 U o)Xjue (3.18)

G€S%  oe¥, 1 (5) je\Py(V(6))

+ ) e Y. > £(4,j Uo)Xjuo-  (3.19)

G€S e, (6) jePy (V(6)\V (o)

For any p-simplex 6 € S; and any o € 80;1(6), if there is a vertex j € ¥ (V(8)) \ V(o)
such that jUo € K, theno =jUo € @;ﬁl(f?) and there is a vertex ¢ € V(o) such that
©(i) = ¥(j). Hence jUc \ i € %051(6'). Moreover, i,j are consecutive vertices in V(o)
by the order of the vertices in K defined in Construction 3.2.7, so ¢(j,0) = —¢(i,0).

Therefore, for any & € S;,

> > iU o= > elj,5)Xs +2(i,5)X5 = 0
0P, (@) J€¥5 (V()\V (o) GeP11(6),
i,j€5: PH)=P(5)

so (3.19) is zero.

Next consider (3.18). For j € J\ ¥y (V(&)) such that jUo € K, there is a corresponding
simplex ¥(j U o) = ¢(j) U¥(s) € K. Hence for any summand (5, j U o)X,uy in (3.18),

there is a corresponding summand £(¥(j), ¥(j U 0))X¢ ;i) in the expression for d(a).

Since d(a) = 0, there are other simplices 71, ...,7s € S; with a vertex w, = P(jUo) \ 7,
for n € {1,..., s} such that

C()O(O') 8(@(]), 90('] U 0')) XQO(chr) + Z Cz, 8(’&)”, ’Lbn U 7A'n) X@nuf—n =0.

n=1

Therefore there is a p-simplex 7, € K such that 7, is a maximal face of j U o, and
so P(wy U Ty,) = W, UT, for the vertex w, = jU o \ 7. Furthermore, &(w,,,w, U
Tn) = &(Wp, Wy U 7,) by the ordering of vertices in K. Thus, (3.18) has summands

&(Wn, Wy, U 7)) X, U, such that
S
co €(J,JU0) Xjue + Z s, E(wp, wy U Ty) X, ur, = 0.
n=1

This means that (3.18) is zero, and hence a is a cocycle. O

Example 3.2.10. Let J; = {1,2,3,4} and J; = {1,2,3}. Suppose K, and /€j1 are the
simplicial complexes shown below, where K ; maps onto K i by the edge contraction
{3.4} = {3}.
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D>

—_—

o1 o]

L

Suppose 41 = X5 + X3 € C’O(Iﬁjl). We have that d(a1) = —X54 + X535 = 0.

By (3.17), a1 =Xo+ Xs+ X4 € CO(ICJI). Then d(al) =—Xo3+ (X273 — X374) + X34 = 0.
The summands of the form X2 3 correspond to the summands X3 4 in d(a;) as summands
in (3.18). The summands of the form X34 cancel in pairs as summands in (3.19). So a4

is a cocycle.

Furthermore, we check that a; is not a coboundary.

Lemma 3.2.11. The class o; = |a;] € HP (K j,) is non-zero.

Proof. Since the Massey product (&1, ..., &,) is non-trivial, the class &; € HPi (I@ fi) is
non-zero. Therefore there is a homology class [2] € H,, (K j,) such that the evaluation

& () is non-zero. Let & be supported on a collection T; C K j, of p;-simplices so that
=Y ser, ¢+Az for c; € k.

>

By Lemma 3.2.6, there is a non-zero class [z] € Hy, (K ,) and a representative z € C,, (K.1,)
such that for every 7 € T}, there is exactly one lift of 7 in the collection T} of simplices
that supports x. For any 7 € Tj, let ¢, = ¢; for 7 € T, such that ¥(r) = 7. Let
T =3 er, A, for ¢ € k.

By definition, any o € 9051,1 (6) for 6 € S;, does not contract since both & and o are

pi-simplices. Therefore, evaluating the cocycle a; on the cycle =z,

ai(x) = Z Cs Z Xo (Z CTA7->

&GSai Uegp;il (&) TET,

— Z Z Cs Cr X&(Af-).

&GS@Z. 7€y

Then since ¢, = ¢;, this is equal to &;(Z). So since the evaluation &;(Z) is non-zero,
then also a;(z) is non-zero. Therefore, a; = [a;] € HP(K,) is a non-zero cohomology

class. O

By Section 2.2.2; for the Massey product (&1, ...,4&,) C H(p1+"'+p")+|jlu"‘u‘j"H‘Q(Z,@
there is a defining system (a; ;) for cochains a;j € CPit+P (ICJ}U...UJ,C)? 1<i<k<n
and (i, k) # (1,n). Suppose

)

&i,k: Z (29, &3 (3.20)

’f'ES@i b
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for simplices 7 € S, , C K non-zero coefficients c¢; € k. Then

jiU...Ujk. ?

d(aig) = Y o > e(J, U)X

T€Sa, ), JESU-UT\V (F)
is equal to
k—1 . k—1 .
Z(_l)l-l—deg(ai,r)&im&r,k — Z (_1)1+deg(ai,r) ¢ Z Z o ¢ Xoun | (3:21)
r=i r=t ﬁeSai’T ﬁesdr+1,k
where (—1)1+des(@ir) — (_1)(p¢+...+pr)+|fiu---um and ¢ = (_1)|jiu...ujr|(pr+1+.._+pk+1)

comes from the product of a;, and a,j, as in Lemma 2.1.26.

Proposition 3.2.12. Let K be a simplicial complex that maps to K by edge contractions
satisfying the link condition. Then there is a n-Massey product (a1, ...,q,) defined on
H*(Zx).

Proof. For every i € {1,...,n}, let oz = [a;] for a; as in (3.17). We construct a
defining system (a; ) for (a1,...,an) C H*(Zx), where a; € CPiT 1Pe (K 1.0g,) as
in Section 2.2.2. For i # k, let

aix = Oik Oi Z ct Z X, (3.22)

7€Sa; Tg@};h._‘ﬂk(%)
for Sz, ., ¢+ € k from (3.20), and

O; 1 = (_1)|Ji|(pi+1+---+pk)(_1)\J¢+1|(P¢+2+'"+pk) ... (_1)|Jk71|pk
(3.23)

A

i1 = (f1)|ji|(pi+1+”'+pk)(f]_)‘ji+1|(pi+2+"'+pk) ... (f1)|jk—1|1’k'

A

When i = k, let 6;; = 1 = 6;; so that a;; = a; as in (3.17). We will show that

d(a; ) = Zf;il @j r Gy, Where @; , = (—1)1+degaimai,r as in Definition 2.2.7.

Applying the coboundary map to a; ,
dlaig) = 0is 0 > cr > > e(J, 7 U T)X ur
7E€Sa; Te(p;il‘"""ﬁ?k (%) JETU-UT\V (r)
This may be rewritten as

d(air) = 0ik O > s > > e, U)X ur | +

T€54; 1, TEPL N (F) GESUUIN\PG V(7))

(3.24)
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0, 00k > cr > > (4,7 UT)Xjur

€84, 4 T€P iy, () GELT T (VENV(7)
(3.25)

For any 7 € Sg, , and any 7 € ¢;1+---+pk(%)’ first suppose there is a vertex j € ¥ (V(7))\
V(1) such that jUr € K. Then jUT =7 € SO;ilJr,_,erkH(%) and there is a vertex i € V(1)
such that ¢ (i) = ¢(j). Thus jUT\i € SO;Z#,.H,IC (7). Moreover, i, j are consecutive vertices
in V(7) by the order of vertices in K defined in Construction 3.2.7, so (3, 7) = —&(i, 7).

Therefore (3.25) is zero since all summands cancel out in pairs, that is, for any 7 € Sy, , ,

> ) (4, UT)Xjur = > e(j, 7)Xs +e(i, T)Xz = 0.
TP, N ipy () GEPG (VR)\V(7) TPy i1 (P),
i,je7: P)=P(4)

Consider (3.24). For any j € J; U---U Jy \ ¢ H(V(%)), ©(4) ¢ V(j). So for any simplex
jUT € K, for j € J;U---UJp\ @y (V (%)), there is a simplex ¥(j)U7 € K. Therefore any
summand in (3.24) has a corresponding summand in the expression for d(a; ;). Hence

(3.24) may be rewritten as

dlair) =0k O > > > (4,7 UT)X ur | (3.26)

€84, 4 JESU-UT\V(3) jureP 11 (GUR)

where, by the order of vertices in I, £(j,jUT) = 5(3,ju%). Since d(a; ) = Zf;il fﬂ«dr,k,
the expression in (3.26) can be written in terms of the expression in (3.21). That is,

d(a; ) is equal to

k—1 o
ei,k ei,k Z (_1)1+deg(ai,r) I Z Z co Cﬁ Z XC (327)
r=i 0€8Sa,; . N€Sa, Ce(p};i}_#pkﬂ(puﬁ)
where (—1)1+98(ir) = (1)t tp)HIU- UL anq ¢ = (1)U OTrlreattpit)

comes from the product of a;, and @, , as in Lemma 2.1.26.

Any simplex ¢ € ('01;1+~~~+pk+1(’> Un) is on p; + - - - + pg + 2 vertices and so can be written
as vUn for v the restriction of ¢ to its first p; + - - - + p, + 1 vertices, and 7 the restriction
of ¢ to its last py41 4 -+ pg + 1 vertices. Then v € Sf’;ilJr,,,err(ﬁ) and n € ¢Z;L1+~~-+pk (7).
Furthermore, ém (—1)1+deg(d”) c= (—1)(”1’*"'“”) éi,r ér+1’k-. So (3.27) may be rewritten

as

k-1
d(air) = Z (—1)@ittpr) Oik Oi Org1 ke

r=t
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Y. ) e > 3 Xoun | |- (3.28)

5eS,.  HES, -1 N -1 R
P€8air M€5ap 11y VEP piteretpr (V) MEPL L i, ()

Comparatively, the product Zf;il(—1)1+d7g(“”)ai7rar,k is

k—1
Z (_1)1—&—@(&@0 (_1)|JiU'"Ujv‘l(p'r+1+"'+pk+1)6i7r 0

r=t

1k Qi Or 1k

> X wa| X > || (329)

ﬁesdi,r ﬁesdr#»l,k Vegop_il_'...._’_p,.(ﬁ) negp;rl+1+.”+pk(ﬁ)
where (71)1+dieg(ai,r) = (=1)Pittpr) HJUUl and the sign (—1)1i9 U rl(prattppt1)
comes from the product of a;, and a,;1 % as in Lemma 2.1.26. Using the expression for
Ok in (3.23), (—1)tHdee(en) (— ) H- Ol lGrittmt) g gy = (—1) Pt g,
Therefore the expressions in (3.28) and (3.29) are equal.

Hence d(a; 1) = Zf;il @i 0y, and so (a; ) is a defining system for the Massey product
(a1, ..., Q). O

Example 3.2.13. Let J; = {1,2,3}, J; = {1,2}, Jo = {4,5} and J> = {4,5}. Suppose
Kjug, and K Jud, are the simplicial complexes shown below, where Kz, maps onto
I€j1Uj2 by the edge contraction {2,3} — {2}.

>
o

Suppose 41 = Xé S Co(léjl), &—ZA: XZL < CO(K;JE), and &1’2 = —XQ S CO(I@jlujQ)'
Then d(a12) = X553 = (—1)'"984a1a9. By (3.17), a1 = X2 + X3 € C°(K;,) and
as = X4 € CO(ICJ2). By (3.22), aio = —Xo — X3 € CO(IleujQ), since 9172 = 1. We have
that d(a12) = (Xo4 + Xo3) — Xo3 = Xo 4 = (—1)1198%q a5 = Gras.

Since there is a n-Massey product (a1, ..., a,) defined on H*(Zx), it remains to show
that this Massey product is non-trivial. To do this, we first check that there is at least

one non-zero cohomology class in (o, ..., ay,).

Let w € w1t +4pn)+1U-UIn+2( Z,) be the associated cocycle for the defining system

(aiy) for (aq,...,a,). Then

n—1
_ ot pntl
w = Z a1,yQrp € crt P (ICJlu...an).
r=1
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As in (3.29) when ¢ = 1 and k = n, we can express w as the cocycle

1
(_1)1+Teg(a1,r) (_1)|J1U-~-UJr\(pr+1+--'+Pn+1)917r 0

3
I

r+1,n 91,7" 9r+1,n'

S
I

1

\3
Il

o> we > > Xoun | |- (3.30)

0 . N . -1 ~ -1 A
Vesal,r nesar+l,n V€¢p1+~“+l7r (V) 776@;07‘+1+"‘+Pn (77)
Lemma 3.2.14. The class [w] € HP*F+Pntl(KC; ;) is non-zero.

Proof. We will show that there is a cycle z € Cp, 4.4 p, +1(K j,u..u, ) such that [z] # 0

A

and w(xz) # 0. By assumption, there is a non-zero element [0] € (G1,...,&,) C

H*(Z). As in Section 2.2.2, this may be represented by the cocycle & = Z:‘;ll a1 ,0rp €
CptAen (K5 ) for @iy as in (3.20). Like (3.21) when i =1 and k = n,

n—1 . A X
o= (_1)1+deg(a1,r) (_1)|J1U---UJr\(Pr+1+---+17n+1) Z Z ¢ ¢ Xﬁuﬁ
1 1765(1177, nes,

r é‘7'+1,'n

where (—1)1+de(@nr) = (—1)(p1+---+Pr)+\j1U“'Ujr| and the sign (—1)\f1U--~ujr|(pr+1+--~+pn+1)

comes from the product of @1, and G, ,, as in Lemma 2.1.26 .

Since [&] is non-zero, there is a non-zero homology class [£] € Hp, ... p,+1 (’éjlu-nujn)
such that @(2) # 0. Let the representing cycle & be supported on a collection T; C

A

K04, of (p1+ -+ pn + 1)-simplices,

T = Z IYANS

T€T;

for ¢; € k and A; a generator of cp1+...+pn+1(/leumujn).

By Lemma 3.2.6, there is a non-zero class [z] € Hp, ..+ p,+1 (K000, ) and a represen-
tative z € Cp,4..qp,+1(Kjyu...u, ) such that for every 6 € T;, there is exactly one lift
of & in the collection T}, of simplices that supports . For any 7 € T}, let ¢, = ¢; for

T € Ty such that ¥(7) = 7. Then for ¢, € k, let

T = Z YAV

TET,

Since (_1)1+Teg(a1,r) (_1)|J1U~--UJr|(pr+1+~--+pn+1) 01, Opi1n = (_1)(p1+~~~+p7-) 61, we
evaluate the cocycle w on the cycle z using the expression (3.30) for w,

n—1

w(x) = Z (_1)(p1+--~+p,.) Gl,n él,r ér+1,n'
r=1
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Z Z cp Cj Z Z Xuun (Z CTAT)
)

", A ol N -1 ~ -1 ~
DESay . N€Sa, ) VEL ot () MEP, -y, (0 €T,

Since every 7 € T; has exactly one lift 7 € T,, and (v Un) = 0 U7, we have that
Xyun(T) # 0 if and only if X;us(7) # 0. Also ¢, = ¢z for 7 € T}, such that ¢(7) = 7.

Therefore,

n—1
w(x) = Z (_1)(p1+‘..+pr) 01,n QALT équrlm Z Z cp ¢y Xpun ( c,fAf_)
T€T;

r=1 DE€Sa, , MES

dr+1,n

A A

We also have (—1)®PrH-4p0) 4, 4, = (—1)1+des(arr) (_1)|f1U---ufT\(pT+1+---+pn+1) .

Hence

w(x) = 01, 01,0 O(&).

So since (&) # 0, also w(x) # 0. Thus [w] € HPr T +Pa+L(KC; (..us,) is non-zero. [

Therefore by Section 2.2.2, we have shown that (o, . .., a,) € HP1H-+pa)HAU-Un+2( 2,
contains a non-zero element. It remains to show that every other element [w'] €
(a1, ..., ) is also non-zero. In Lemma 3.2.14, w was the associated cocycle of a defining
system for (aq,...,ay) that was constructed from a defining system for (&1, ..., day,).
Therefore in a sense w was derived from an associated cocycle & € C*(Zy.). However,
not every defining system for (aq,...,a,) can be directly constructed from a defining

system for (&1, ...,d4y,) in this way.

Example 3.2.15. Let K1 be a triangulation of S' on three vertices, {i,?,g}. Let
K2 = {{5},{6}}, and let K3 = {{7},{8}}. Let a1 = [X;5] € H'(K1), a2 = [Xz] € H(K»)
obtained from Ss{gé} SS(1,3,6) K1 Ko * K3 by restricting to the original vertices. The
simplicial complex K5 5 4 5 4 is shown in Figure 3.9a. Then by Theorem 3.1.15, there is a
non-trivial triple Massey product (1, &2, a3) C H*(Zy). There are a number of options
for a1 2 such that d(a; o) = (—1)1798@)a,a, = (—1)3F1X4455 = Xj45. For example X;4 or

—Xig — X3 — Xi5-

Let K be the simplicial complex on vertices {1,...,8} that edge contracts to K by
contracting the edge {1,4} — {1} as in Figure 3.9b. This edge contraction satisfies the
link condition. By Construction 3.2.7, we have cocycles a1 = Xi3, as = X5, ag = X7.
Then ajaz = X13X5 = (—1)*X135 = X135. Using (3.22), we can construct options for aj o.
For example, Xj3 becomes 91729A172X13 = —Xi3. For the cochain a1 2 = —Xj5 — X35 — Xjs,
the support is S, , = {{1,6},{1,2},{1,5}}. Then

(Pfl({i,é}) = {{LG}’ {47 6}}7 Spfl({ivé}) = {{274}}’ S0171({175}) = {{175}7 {4a 5}}

Therefore by (3.22), aj.2 = —01.201 2(X164+Xag-+Xo4+Xa5+X15) = X16--Xag+Xoa+Xa5+X15.

Nevertheless, there are other options for a; 2 that cannot be constructed from any aq .
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v
t

D>
>
w

6 6
(a) The simplicial complex Ki,?,é,é,év (b) The simplicial complex K1,23.4,5,6,

which is missing the simplex {1,3,6}. which is missing the simplex {1, 3, 6}

Figure 3.9: The simplicial complex K1 234,56 maps to I@i 535 ¢ by contracting the edge

{1,4} — {1}.

For example, let a2 = —X16 — X14 — X15. For the edge {1,4} € K, {1,4} ¢ ¢7'(é) for

any edge é € K, so a1 2 does not directly correspond to any a2 as in (3.22). However,

ai2 —d(X1) = —Xi6 — X14 — X15 — (X16 + X14 + X15 + X13)
= —X13 = 01201 2 > Xz

1 PN
Tesppi+.“+pk (13)

Therefore a; o does correspond to a choice of a1 2 after adding a coboundary. In a similar
way, in the proof of Proposition 3.2.16 we will show that any defining system (a; ) for

(a1,...,ap) corresponds to a defining system (a; ) for (&1,...,an).

Proposition 3.2.16. The n-Massey product {aq,...,ay) is non-trivial.

Proof. For any series of edge contractions ¥: I — K, we can repeat the arguments in
this proof for each edge contraction in turn. Suppose that ¥: K — K is the contraction
of just one edge {u,v} € K. By Construction 3.2.7, {u,v} C J; for i € {1,...,n}.

For a;; = a; as defined in (3.17), let (a;x) be a defining system for (o, ..., o),

ik = Z CoXo € CPit TPk (Kjiu...ujk).
O’ESai’k

We will show that any defining system (a; ) corresponds to a defining system (a; ) for
(G1,...,Gy) in H*(Zg). There are two main stages to this proof. Firstly, for a defining
system (a; ) such that {u,v} ¢ o for any o € S,,, and any pair {7, k}, we construct
a corresponding defining system (¥*(a;x)) for (&1,...,é&y,). Secondly, for any other
defining system (a; ), we create a different defining system (a; ) for (o, ..., o) such
that {u,v} ¢ o for any o € S?i-,k and any pair {i,k}. Then applying the first step to
(@ ), we have a defining system (¥*(a;)) that corresponds to (a; ).
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For this first step, suppose that {u,v} ¢ o for any o € S,,, and any pair {i,k}. That
is, no simplex o € S, , is contracted. Let a € CP(K j,u..uJ, ) be a general cochain such
that {u,v} ¢ o for any o € S,, where either p=p; +---+prorp=p;+---+pp + 1.
We will define ¥*(a) € CPUCSO(JZ-UmUJk)) when either a is a cocycle, or a = a;; and
p=pi+-+pg, or P(o) £ P(c’) for any 0,0’ € S,.

Let a = Y ,cg, CoXo- Suppose there are simplices 0,0’ € S, such that ¥(o) = #(0’). We
will show that ¢, = ¢,». Without loss of generality, let © € ¢ and v € ¢’. By the link

condition, ¢ Uv = ¢/ Uwu is a simplex in K. So, d(a) contains summands such as
d(coXo + CorXor) = o €(v,0 UV)Xoup + Cor €(u, 0 Uu)Xoryy + other terms.

Due to the labelling of vertices in Construction 3.2.7, the labels v and v are always

consecutive in o Uv = ¢’ Uwu. That is, e(v,0 Uv) = e(u,0 Uv). So,
d(ceXo + cg'Xor) = £(co — €57 )Xoup + oOther terms.

If a is a cocycle, then ¢, = ¢, because d(a) = 0. If a = a; , then d(a; ) = Z,’f;} [RI
Hence if ¢, # ¢,, there is an index r € {i,...,k — 1} such that cUv =7Un for 7 € S; ,
and 1 € Sy41 . Since {u,v} C J; for some i € {1,...,n} and S;, C J;U--- U Jj for any
{i,k}, either {u,v} € 7 or {u,v} € n. This contradicts the assumption that {u,v} ¢ o
for any o € S, , and any {i,k}. So ¢, = ¢,

For J C [m], let J = ¢(J). Then when either a is a cocycle, or a = a; ; and p = p;+- - -+pi,
or (o) # P(o’) for any 0,0’ € S,, let

Y*(a) = cik Z csXs € Cp(léjiu...ujk) (3.31)
5€P(Sq)

where ¢; = ¢, for any o € S, such that ¥(0) =6, ¢;; =1 and
Cik = (_1)(\Ji|—|ji|)m+1 (_1)(\JiUJi+1|—\jini+1|)Pi+2 e (_1)(‘Jiu"'u‘]k—l|_|jiU"'Ujk—1|)pk.
To show that (¥*(a;)) is a defining system for (&, ..., &), we will check three properties

of ¥*(a). Firstly, for any constant ¢ € k and for a = ¢;Xs, b = ¢ X7 in CP(Kj,u...0,)
where p is either p; + -+ pg or p; +--- + p + 1 and {u,v} ¢ o, T,

v*(da) = cip c’cUX(p(o) = ¥*(a) and

(3.32)
P (a+b) = cik (coXp(y) + X)) = € (a) + P7(b).

Secondly, let a =3 5 coXo € CPittPr(KC s .0, )- Then

dla)=> > crel,iUo) Xje
0€Sa jEJ;U--UJg\o,
jUO’E’CJﬁLU.HUJk

Suppose that for every summand Xy, that is not cancelled by other summands in d(a),
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jUo does not contract. That is, [jUc|=p;+ - +pr +2 = |§ U &| where j= #(j) and
6 = ¥(0). We want to show that ¥*(d(a)) is a coboundary. We have

Pi(d(a)) =cip >, co > e(3,71U6) X5,
6€P(Sa) jediu-udi\s,
jUaGICJ Un Uy

|7UG|=pi+-+pr+2

where €(j,j U o) = €(j,J U &) due to the order on vertices in K and since j U o
{p(o) | 0 € Sa,|P(0)] = pi + -+ + pr + 1} and let

does not contract. Let § =
b=Y,cqCXe € CPFT (K5 ;). Then

©*(d(a)) = d(b). (3.33)

In particular, let a = a; for some i, k, so {u,v} ¢ o for any o € S, . Suppose that
for a simplex o € S, ,, there is a simplex jUo € Kju..uy, for j € J;U---U Jg \o
that is contracted. That is, {u,v} € jU 0. By the definition of a defining system,
d(a;r) = Ef;zl @i ray . Therefore either ¢, €(j,5 U o) Xjus is cancelled by other terms

such that

in d(a;y), or there exists i < r < k and simplices 7 € S,,,, 7 € Sq,,,,

TUn = jUo. In the latter case, if {u,v} € jUo, then {u,v} € 7 Un. This implies
that either {u,v} € 7 or {u,v} € n, since by construction {u,v} C J; foran 1 <i < n
and 7 € Sam cJiU---Ud,,nes, C Jrp1 U -+ U Jg. This then contradicts the
assumption that {u,v} ¢ o for any o € S,

r+1,k
., and any {i,k}. Hence a summand of the
form ¢, €(j,5 U o) Xjus, where {u,v} € jU o, is cancelled out by other summands.

Therefore ¥*(d(a; ) = d(¥*(a;x)).

Thirdly, let Qir = ZTGSai r CrXr, Qi € Cpittr (ICJiUmUJr) and Ar+1,k = E?]GS%H k nXa,
Qpg1) € CPr1t+Pr (K, 10-01,)- Then

Z (P* ar+1 k)

k—1 - .
— Z(_l)lereg(p (ai,r) Ci,’l‘ Z CTXf- . cT‘+1,k Z Cnxﬁ
r=1 %ESO(S%-’T) ﬁe@(SaT‘_‘_l’k)
k-1
= Z C Z Z CrenXsun
r=i #€P(Sa; ) 1€P(Say iy 1)

where
C = (_1)1+d76g90*(0»i,r)(_1)\jz'U"'Ujr|(Pr+1+'~~+pk+1)ci Cril -
Since (—1)2 = 1, (—1)MiUel(priat+ptl) — (_1)*‘jz‘u”'ujr|(pr+1+"'+pk+1)' So using

the expressions for ¢;, and ¢, 11k, and using deg ¥*(a;,) = 1+p;+- - +p, + \jz U--- J;|,

C =(—1)2FPitFpetlJidde ()= Tl (prr o tpict1)
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(= 1)(\J| | Ji)pit1 ...(_1)(|J1‘U~~UJT—1|—\jiU“~Ufr—1I)pr
(= 1) (rrl=1dr1lprsz . (_1)(|Jr+lu'”UJk71|*|jr+1U"'Ujk71|)pk

=(— 1)pz+ +Pr( )(|Ji‘*‘ji|)pi+l (=1 )(|Jiu---uJ,.,1|—|jiu---ujr,1\)pr . (_1)\j¢U---Ujr|p7-+1
(= 1)(\Jr+1\ EATSYEPAVREUN )T (= 1)(|Jr+1U"'UJk—1\—ljr+1U"'Ujk—1|—|jz'U"~Ujr|)Pk

—(— 1Pt () Ut tpr) ¢
)

:( 1 1+dega;, ,«( )|J¢U~--UJT|(pr+1+~+pk+1)ci k-

By assumption, {u,v} ¢ o for any o € S,,, and any {i,k}. Thus {u,v} ¢ 7 and

{u,v} ¢ nforanyi < r < kand any simplices 7 € S, ., 7 € S, Also by construction,

r+1,k°
{u,v} C J; for an index 1 < i < n, so {u,v} ¢ 7Un. Hence P(TUn) = P(1)UP(n) is
a(pi+- - +pr+ 1)—snnp1ex. Therefore using the definition of ¥*(a), the properties in

(3.32), and the fact that (7 Un) =P(1)UP(n) =7U7,

Z gp ar—l—l k)

_ Z 1+degal T )\J,U---UJT|(p7-+1+'+pk+1)ci’k Z Z CTCnXi—Uﬁ
7€ (Sa; ) NEP(Sayyy )

k—1
_ (z +k) |
r=g

Pairing this with the fact that ¥*(d(a;)) = d(¥*(aix)) for any i, k, we have that

d(¥P*(air)) = ¢*(d(air)) <Z @iyt k) Z ©*( “(arg1k)-

Lastly, by the definition of a; = a;; in (3.17), ¥*(a;;) = Gi; = a;. Hence (¥*(a; 1)) is a
defining system for (&1, ..., &y,) if (a; %) is a defining system such that {u, v} ¢ o for any
0 € Sa;,, and any pair {i,k}. Also, if w is the associated cocycle for (a;x), then

k-1 k—1
=P (Y Trariir) = Y P (air)? (ar41k)
r=% r=i

so ¥*(w) is the associated cocycle for (¥*(a;)). Moreover if [w] = 0, then there is a
cochain a € CP1tPn (K5 ..z, ) such that w + d(a) = 0. No simplices in S, contract,
and d(a) = —w. Then by (3.32) and (3.33), ¥*(w + d(a)) = ¢*(w) + d(b) = 0 for a
cochain b € CPit+Pr (K Jiuug,)- S0 [P*(w)] = 0, which contradicts the non-triviality of
(&1, ...,6y,). Hence [w] # 0.

For the second stage of this proof, suppose that (a; 1) is a defining system for (o, ..., an)
such that there is a pair of indices {4, k} with {u,v} € o for some o € S, . We will create
another defining system (a; x) for (o1, .., o) such that {u,v} ¢ o for any o € ;. and

such that [w] = [W] where w, @ are the associated cocycles for (a; 1), (@; k), respectively.
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The cocycle a; = a;; as defined in (3.17) is such that {u,v} ¢ o for every o € S,,.

Therefore, let {i,k} be a pair of indices such that there is a simplex o € S, , with
{u,v} € o, and for every i <i' <k <k, {u,v} ¢ o for any o € S, ,,. Let 0 € S, ,
be a simplex such that {u,v} € o, and let ¢, be the (non-zero) coefficient of X, in a; .
Then for every pair {i',k'} C [n], let ¢ = —(—1)'F9€%kc, £(u, o) and let
;' ! — Co 8(U, O') d(Xcr\u) ifi =1 <k= k?,,
Gy = { G T Ca £(,0) i1 Xov <<k =R )
itk + € X\ @k 41,k! ifi =i <k<FkK,
Qi ifi'<i<k<kKori<i<k <k

where X,\, € CPitPe=1(C s .0, ). We will show that (@ 4) is a defining system for

(ai1,...,0p). Firstly since k —i > 1, @y i = ay » for every i' € [n]. We also need to show
that d(ay ) = Zf/ o Gt pQpy g for every {i/, K’}

For i <4 < k' <k, we have that a; j» = a; j» so

k'—1 k'—1
d(&i’,k’) = az’ k’ Z Qg orAr1 k! = Z ai’,rarJrl,k’-
v

Fori =i<k=F,
d(a; ) = d(a;r — co €(u,0) d(XU\u)) =d(ai)

since d(d(Xa\u)) = 0. Since Xa\u € Cpi—i_mpk_l(’CJiUn-UJk)? d(Xa\u) € CPitpr (ICJiU~~-UJk)'
Hence a; € CPitPr(K j,u..00,) and degd; = dega; ;. Additionally,

d(Xa\u) = Z S(jaj Uo \ U)XjUO'\U'
jEJiUmUJk\(O'\u),
jUo\u ek y
So X, is the only summand of d(X,\,,) such that {u,v} € o. Thus a; x —c, (u,0) d(X\y)
no longer contains the summand X, and also

{7 e Sain’ {u,v} € T} < [{7 € Sa;, : {u,v} € T}

Next, for i’ < i < k = k', we have ay ;1 € CP/ T Pi-1(KC; .ug,_,) and 50 ayj—1 X\, €
CP ot (K g 0.0, )- Hence @y g € CPo TPk (K y 0 g, ). Also,

(az’ k:) d aql | +co € (’U,, U) a’i’,i—IXU\u)

(
( )+ ¢ 6(u,0) (d(ai/ DX+ (—D)E a1 d (X))

Il
B &.

ai’,rar—i-l,k +co € (Z Qi pQr41,5—1 ) o\u — a(u, U) ai’,i—ld(Xcr\u)

s 3
Il
s

|
N}

ai’,r(ar+1,k + co g(u’ U) ar—l—l,i—lXo-\u) + ai’,i—l(ai,k — Co 5(“7 U) d(Xo-\u))

7;/

%
Il
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k—1
+ Z Qi rQpr41,k

r=1i

k—1
= Z ai’,rar—f—l,k-

r=i’

For i' =i < k < K/, we have that a;p» € CP* P (Kju..uy,,) since Xo\,api1 4 €
CPittpy (K004, )- Furthermore,

(@) = d(aip — (=1)"F9B% e, e(u,0) Xo\uaps1,4)
k' —1 o
= Z Tigari1p — (—1)1 T8 %ke, g(u,0) d(Xg\u) At 1,87
r=t

N _ k'—1
_ (_1)1+degai,kco_ 5(U,0’) (_1)degXa\uXo_\u Z Of11,7Cr11,k!
r=k+1
k-1 o
=Y Grapiag+ (—1) Bk (0 — e e(u, 0) d(Xo\y)) @t 1
r=i
k-1 . .
+ Z (_(_1)1+degai,kcg E(’U,, U) (_1)degXa\uXU\u4ak+17r + ﬁ) g1 -
r=k+1
More specifically, let ¢ = —(—1)1+diegaivkca £(u, o). Then in the last summand,

c (_1)deg Xo-\u Xo\uiak—i-l,r

— (_1)pz‘+"-+pk71+\J¢U~--UJk\Jrl(_1)2+pk+1+"'+pr+|Jk+1U~--UJT| cX \ulk+1,r
g 3
_ 2+4p; - +pg | J U U
= (—1) Y2 i+ Ji k| c XU\uak+1,T
_ 14deg a;
— (_1) g ai,r Xo\uak—i-l,T'
Therefore
k—1 _
= N _ N = 14deg a;
d(ai,k/) = Z a,;7rar+17k + (—1) €8 ai,k (ai,k — Cy E(U, J) d(XU\u))ak+1,k’
r=1
K1 o
1+4d i
+ ) ()T (e Xy k1 F Q)
r=k+1
k—1
= Z ai’,rar+1,k-
r=i’
Lastly when ¢/ < ¢ < k < k/, consider
k-1
Zﬁi/,rﬁrﬂ,k/ = Qi i—1Gi ) + Qi Qi1 + Z it Qg1

=i re{il osim1,... K —1}
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where [ denotes omission. Thus

k'—1 _
= . 1+dega;
Zailyra,url,k/ =ay ;1 (alW — (—1) Elike, e(u, U) Xa\uakJrLk/)

r=i’

dega, =
+ (—1)TB (ai’,k’ + ¢o €(u,0) ai’,i—lxa\u> 41,k + Z Qi Q41K
re{il o1,k —1}

= _(_1)14—@@1-/,1-_1(_1)1+T%a¢,kca 5(% U) Xo\uaz",z‘—lak:-i-l,k:’

+ (_1)degai/,kca e(u, o) it i1 X\ u @41,k + d(ay i)

= ((_1)1+diegail,k _ (_1)1+d78ga¢/,i_1(_1)1+d76gai,k> Co g(u’o') ai’,iflxa\uakJrl,k’ —+ d(ai’,k’)
where
(_1)1+ngai/’i_1(_1)1+d70gai7k _ (_1)2+p,b-/+"‘+pi_1+|JZ-/U~~UJi_1‘(_1)2+pi+"'+pk+|J¢U-~UJk|

_ (_1)2+pi/+~'+pk+\Ji/U“'UJIc\ _ (_l)l—i-diegai/,k.

Hence

k-1 . _
D Al = ((‘UHdegai"k - (—1)1+degai"’“) Co €(U,0) i i1 X\ uhy 1 + d(ai )
r=1i

=0 —+ d(ai/,k’) = d(ai/,k/)'
Therefore for all {i',k'}, @y € CP*+ 4Pk (K ,u.0g,,) and d(@y ) = Ef/:_z,l At Qi1 Jo -
So (ay k) is a defining system for (ai,...,a,). Also o ¢ 7 for any 7 € S; | ., and any
{#,k'}. The associated cocycle @ for this defining system is given by Ef;ll ﬁ&rﬂm.

Thus by calculating >>"_{ @y ,Gy41., in a similar manner as in the above calculations,

w ifi# 1,k #n,
w=19 wtcye(u,0) dlayi—1X\y) ifl=i<k=n, (3.35)
w— (—1)tdeetike, e(u, 0)d(Xp\yan1pw) Hl=i<k<n

where w is the associated cocycle for (a; j/). (There is no a4, so it is not possible for
i =1,k =n.) So in terms of the cohomology classes, [w] = [w]. Therefore [@] = 0 if and

only if [w] = 0.

If there is a cochain a; js such that {u,v} € o for some o € S; i then we can repeat the

above procedure to construct (Ei/7k/), etc. In each iteration, o ¢ 7 for any 7 € Sgi’,k’ and
any {7, k'}. Thus after a finite number of iterations, we obtain a defining system (@ /)
such that {u,v} ¢ o for any o € Sgil’k, and any pair {i',k'}. Then we can construct
a defining system (¥*(ay x)) for (&u,...,dn). So if [w] = [@] = 0, then [¢*(W)] = 0,
which contradicts the assumption that (&1, ..., &,) is non-trivial. Hence if (&1, ..., &)

is non-trivial, then (a1, ..., a,) is non-trivial. O

Proposition 3.2.12, Lemma 3.2.14 and Proposition 3.2.16 prove the following statement.
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Theorem 3.2.17. Let K be a simplicial complex with a non-trivial n-Massey product in
H*(ZK). Let K be a simplicial complex that maps onto K by a series edge contractions
¢: K — K that satisfy the link condition. Then there is a non-trivial n-Massey product
in H*(Zx).

Remark 3.2.18. The degree of the classes in the new Massey product are different to
the degree of classes in the original Massey product. The original Massey product
(Q1,...,4,) C H|j1U"'an|+(p1+-~'+Pn+1)+1(ZK) had classes &; € H‘ji|+pi+1(2,€). Theo-
rem 3.2.17 gives an n-Massey product on classes whose degree is determined by |.J;| > |jl|,
so a; € HIilHpitl(Z) Therefore (o, ..., ap) € HEHFpn)H7U-Un[+2( Z 0y

(b) A full subcomplex of K, missing

(a) A truncated octahedron P \
just one vertex

Figure 3.10

Example 3.2.19. Let P be the truncated octahedron as shown in Figure 3.10a. Its
facets are squares and hexagons. Let K = Kp = dP* be the simplicial complex that
is the nerve complex of the simple polytope P. Then K is the simplicial complex in
Figure 3.10b, with one more vertex and six 2-simplices joining this vertex to the boundary
of the disc in Figure 3.10b.

Consider a full subcomplex Ky of K, such as in Figure 3.11a. It is possible to edge
contract Ky to a simplicial complex on 6 vertices by contracting the coloured edges, as

shown in Figure 3.11b. These edge contractions satisfy the link condition.

Up to graph isomorphism, the one skeleton of the simplicial complex K in Figure 3.11b
is one of the obstruction graphs from Figure 2.6. Therefore by Theorem 77, there is a
non-trivial triple Massey product (a1, dz,d3) C H¥(Zy) for &; € H*(Z;) and where dy,
o, Gz are supported on J; = {a, b}, Jo = {c,d}, Jy = {e, f}, respectively.

Since the edge contractions taking Ky to K satisfy the link condition, by Theorem 3.2.17
there is also a non-trivial triple Massey product (ai, a9, a3) C H*(Zx). Moreover,
aq, e, a3 are supported on the vertex sets J; = {1,2,3}, Jo = {4,5,6,7}, J3 = {8,9,10},
respectively. Hence a; € H*(Zx), as € H?(Z2x), ag € H*(Zx), and {ay,az,a3) C
H'2(Zx). Therefore, Theorem 3.2.17 gives a new triple Massey product. In particular,

it shows that Zx = Zp is a non-formal manifold, when P is a truncated octahedron.

Example 3.2.20. In Section 2.3.4 we described how Zhuravleva [39] showed that for
any Pogorelov polytope P, moment-angle complexes Zp = Zi,, have a non-trivial triple

Massey product using the full subcomplex in Figure 3.12.
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a

contracting the coloured edges

Figure 3.11

Figure 3.12: A full subcomplex of the simplicial complex corresponding to any Pogorelov
polytope [39]

Applying edge contractions to the coloured edges of the full subcomplex in Figure 2.9,
we obtain the simplicial complex in Figure 3.13. Up to graph isomorphism, the one-
skeleton of this simplicial complex is one of the obstruction graphs in Figure 2.6, given by
Denham and Suciu [17]. These edge contractions satisfy the link condition, and therefore
Theorem 3.2.17 recovers the non-trivial triple Massey products in Zhuravleva’s work
from Denham and Suciu’s classification of non-trivial triple Massey products of classes

in degree three.

Furthermore, similar conclusions can be made about other simple polytopes, rather
than just those in the Pogorelov class or the truncated octahedron. For example, when
P is a polytope such as the 3-dimensional permutahedron, 3-dimensional stellahedron,
truncated dodecahedron, etc, then Cp contains full subcomplexes that also edge contract
to an obstruction graph. Therefore we can conclude the existence of non-trivial triple
Massey products in many other moment-angle manifolds, other than those related to
Pogorelov polytopes. This also provides more explicit examples moment-angle manifolds

that are non-formal.
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~

b() 60

5@ 6
' D6
4
1

Figure 3.13: An edge-contracted full subcomplex of a simplicial complex corresponding
to any Pogorelov polytope

(&) 63
D>

Remark 3.2.21. Theorem 3.2.17 can be used for detecting non-trivial Massey products in
moment-angle complexes. For example, let I be a simplicial complex with aq,...,ay €
H*(Zx) such that a; € HPi (Kj,) and J;NJ; = @ for any ¢ # j. Suppose K edge contracts
to a simplicial complex K that has non-trivial Massey product (G1,...,0n) € H*(Zg)
such that (&q,...,d4,) can be lifted to (aq,...,a,) as in the proof of Theorem 3.2.17.
Then (o, ...,a,) C H*(Zx) is also a non-trivial higher Massey product.

We can also use Theorem 3.2.17 to reduce known non-trivial Massey products to other

non-trivial Massey products of smaller degree.

Corollary 3.2.22. Let K be a simplicial complex with a non-trivial n-Massey product
(a1,...,an) C H*(Zx) for oy € HP(Ky,) and J;N.J; = & for any i # j. Suppose
©: K — K is a series of edge contractions such that there are non-trivial classes &; €
ﬁpi(/@(]i)) fori=1,...,n. Then there is a non-trivial n-Massey product (&1, ..., &)

Proof. If the Massey product (&1, ..., &y) was trivial, then lifting it as in Theorem 3.2.17

would also give a trivial Massey product (i, ..., ap,). O

3.3 A moment-angle manifold with non-trivial higher Massey

product

In this section, we use both Theorem 3.1.15 and Theorem 3.2.17 to show the existence
of a non-trivial 4-Massey product in the cohomology of Zp where P is a 4-polytope that

is not a truncated 4-cube.

Example 3.3.1. Let P be the truncated 24-cell, which is a simple 4-polytope composed
of 24 truncated octahedrons and 24 cubes. It is derived from the 24-cell by performing

vertex cuts at every vertex, which exposes the 24 cubes.
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In a cube-first projection of the truncated 24-cell, there is one cube closest in the four-
dimensional viewpoint. Six truncated octahedra surround that central cube, and eight
more cubes fill gaps between three adjacent truncated octahedra. There are 12 truncated
octahedra and six cubes in the equator of the truncated 24-cell. Then on the far side of
the truncated 24-cell, a further six truncated octahedra and 8 4+ 1 cubes have the same
arrangement as those on the near side. Therefore in total there are 6 + 12 + 6 = 24
truncated octahedra and 1+ 8 +6 + 8 + 1 = 24 cubes.

(a) Near (far) side of the truncated 24- (b) Twelve equatorial truncated octa-
cell, plus six equatorial cubes shown as hedra shown as flat hexagons due to
flat squares due to the 4D viewpoint. the 4D viewpoint.

Figure 3.14: Visualisation of the truncated 24-cell [35]

We find a non-trivial 4-Massey product in H*(Zp), as constructed by Theorems 3.1.15
and 3.2.17. Let Kp be the simplicial complex that is dual to P.

Label the nearest cube in P as C;. Label the furthest cube Cy/,. Let the six equa-
torial cubes be Cy, Cyr, C3, Cy, Cy, Cyr, such that opposite cubes along the same axis
are C; and Cy. Every truncated octahedron is adjacent to exactly two of the cubes
C1,Cr,...,C4,Cy, so let each truncated octahedron be labelled O;; for C;, C; the

adjacent cubes.

Let KC be a full subcomplex of Kp after removing the vertices Oy 3/, O1,9/, O3 3/, O2 47, O3 41,
and all of the vertices that correspond to cubes other than C;, Cy for i = 1,...,4. Let K4
be the result of contracting the edges {Cy/, Oy ;} — Cy for j € {2,2,...,4,4}. Then
the one-skeleton of K is the simplicial complex in Figure 3.15, where (' is connected

to every vertex except C1, O12, O13, O14 and O 4.

Performing edge contractions at each of the bold edges, we obtain a simplicial complex
K. These edge contractions satisfy the link condition. The one-skeleton of K is shown in

Figure 3.16, where Cy is connected to every vertex except Ci.

Rearranging the vertices of I@, we have the simplicial complex whose one-skeleton is
shown in Figure 3.16b. This simplicial complex is exactly the dual to the 4-cube, after
stellar subdivisions have been performed at the edges {C’l, 6’2/}, {C’l, C’gl}, {C’z, 6’3/},
{Cy,Cy}, {C5,Cp}. That s,

A

K= 881640} SC1,Cr} SS1Ca,C} S5(Ca,Cu} SSCa ) Kp o Ko x I3 % Ky
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O34

Oy 3

Figure 3.15: A full subcomplex of K;

where K; = {{Ci}, {Cy}}, for i = 1,2,3, 4.

Therefore by Theorem 3.1.15, there is a non-trivial 4-Massey product (&1, e, &3, &) C
H'(Z). Each cohomology class &; can be thought of as a class in H°(K;). By
Theorem 3.2.17, there is a non-trivial 4-Massey product {(ay, as, a3, ) C H*(Zx) C
H?*(Zp), where oy € H?(Zp), ag € H(Zp), ag € H(Zp), ay € H'9(Zp). Alterna-
tively, a; € HY(K,) for

J1 ={C1,C1,01/2,071 9,01/ 3,011 3,011 4,017 a1 },
Jo = {C5,Co,01,2,09 4,02 3}, J3 ={C3,C5,013,023,09 3},
Jy ={C4,Cy, 014,01 4,024,09 4,03 4,03 4,03 4}

Therefore Zp is a non-formal manifold, when P is a truncated 24-cell.
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s Cy

(a) The one-skeleton of a full subcom-
plex of I

Cy
éQ ég/
s R
Cly
Cy

(b) A rearranged one-skeleton of a full
subcomplex of K

Figure 3.16



Chapter 4

Simplicial Posets

4.1 Introduction

Simplicial posets are a generalisation of simplicial complexes. They first arose as
quotients of simplicial complexes under group actions [20], but also correspond to ideal
triangulations in low-dimensional topology. It was shown by Lii and Panov [28] that we
can generalise moment-angle complexes to correspond with simplicial posets instead of
just simplicial complexes. One advantage of this is that we can obtain moment-angle

complexes such as spheres in even dimension.

The faces of a simplex form a partially ordered set (poset) with respect to inclusion, with

the empty set as the initial element.

Definition 4.1.1. A simplicial poset S is a finite poset with order relation <, an initial
element 0 and the property that for any o € S, the lower segment [0, 0] = {7 € S: 0 <

T < o} is the face poset of a standard simplex.

All simplicial complexes K are also simplicial posets by considering K as its face poset.
We use the term simplicial poset to also refer to the cell complex obtained by assigning a
geometric simplex A% to every o € S and gluing these simplices along the poset category.
Therefore we refer to an element o € S as a simplez. The rank of a simplex |o| is k if the
face A% is a (k — 1)-dimensional standard simplex. A vertez is a O0-dimensional simplex.
The dimension of a simplicial poset S is the maximum of ranks of its simplices minus

one.

Example 4.1.2. The simplest example of a simplicial complex that is not a simplicial
poset is the “doubling” of a standard one-simplex on two vertices, as shown in Figure 4.1a.
Figure 4.1b is the simplicial poset obtained by gluing two standard 2-simplices (triangles)
along their boundary, and Figure 4.1c is the result of adding two copies of the standard

1-simplex to one edge of a triangle.
Stanley [34] defined a face ring for simplicial posets that coincides with the definition of

75
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(c)

Figure 4.1: Examples of simplicial posets

a face ring for simplicial complexes.

Definition 4.1.3. For any two simplices 0,7 € S, the join o V 7 is the set of their least
common upper bounds, and the meet o A 7 is the set of their greatest common lower

bounds.

Example 4.1.4. In Figure 4.1a, for simplices {1},0 € S, {1}Ac = {1} and {1}Vo = {o}.
Additionally, {1} A {2} = @ and {1} vV {2} = {0, 7}. For the maximal simplices 0,7 € S,
o ANT={1,2} while o VT =0.

Definition 4.1.5 ([34]). For a simplicial poset S, the face ring k[S] is the quotient
k[S] = k[v, : 0 € S]/Zs

where the generator v, has degree degv, = 2|o|, and Zs is the Stanley-Reisner ideal

generated by

vg—1 and  veUr —Vopr - Z (I
neovrt

The sum over the empty set is taken to be zero, so if ¢ V 7 = @, there is the relation

VyUr = 0.

Remark 4.1.6. For a simplicial complex K, the monomial v,v, corresponds to a missing
face of IC if and only if ¢ V7 = &, in which case v,v, = 0. If, however, o U T is not a
missing face, then oV 7 contains one element so v,v; = VyarVsvr. Therefore for simplicial

complexes, Definition 4.1.5 of the face ring is the same as Definition 2.1.10.

Example 4.1.7. For S given by Figure 4.1a, the join and meet of simplices is calculated
in Example 4.1.4. Then the Stanley-Reisner ideal is generated by the relators

vy — 1, vivy —vg - (Vo +v;) =viv2 — (Vo +v7)  and VUL

Additionally, Lii and Panov [28] gave a definition of moment-angle complexes for simplicial
posets that generalises the definition of moment-angle complexes for simplicial complexes.

For a simplicial poset S on [m], and any simplex o € S, let
(D%, 817 = {(21, .. 2m) € D |z5| = 1if j L o}

Therefore (D?,S1)? is a subspace of D?™ homeomorphic to a product of |o| discs and
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m — |o| circles. There is a natural inclusion (D?,S')? C (D?,S')™ for 0 < 7, s0 in a
categorical sense, there is a diagram (D?,S')S: caT(S) — TOP, 0 ++ (D?,81)?, from

the face poset of S to the category of topological spaces.

Definition 4.1.8. For a simplicial poset S, the moment-angle complexr Zs is

Zs = colim (D? S)7.
o€CAT(S)
Example 4.1.9. Consider again Figure 4.1a. For the maximal simplices o, 7, both
(D%, 817, (D?,81)7 are copies of D* = D? x D?. The boundary of both ¢ and 7 is the
set {1,2} of disjoint points. This corresponds to S% = D? x S U St x D? since the union
of (D%, 8111} and (D2, $M){%} is taken over (D?,51)? = S' x S*. Hence in the colimit,
these copies of S3 in both (D?,S')? and (D?,S')" are identified, and so Zs = S*. This

example is a moment-angle manifold that we cannot obtain from simplicial complexes.

As for simplicial complexes, Duval [18] showed that there is a simplicial poset equivalent
of Hochster’s theorem. Using this, Lii and Panov [28] showed that there is a simplicial

poset version of Theorem 2.1.24.

Definition 4.1.10. For a simplicial poset S on [m] and an index set J C [m], let a full
subposet Sy be the set of simplices o € S such that V(o) C J.

Theorem 4.1.11 ([18, 28]). For a simplicial poset S on [m|, there is an isomorphism of
cochains C*~1(Sy) — C* 1120 (25) ¢ C*1(Zs), inducing an isomorphism of bigraded
algebras

H*(Zs;k) = Toryy,, (k[S].k) = @ H*(S))
JC|m]

where in particular, H-1(Sy) =k and

HP(Zg) = @ ﬁpflJlfl(SJ)'
JC|m]

Additionally, the differentials in C*(Zs;k) and C*(S;) are the same as those for sim-
plicial complexes in Section 2.1.2.3. The main ideas for this proof are similar to the
ideas in Section 2.1.2.1. Some of the technical algebraic arguments do not work for
simplicial posets and instead need to be proved by topological and categorical arguments.
Specifically, we still have an auxiliary algebra R*(S) similar to Definition 2.1.16, but
proving the map g: Afui, ..., u,] @Kk[S] — R*(S) is a quasi-isomorphism is much harder
to achieve than in the proof of Proposition 2.1.17. Instead, this proof uses a deformation
retraction D? < S — D? and formality of polyhedral products to obtain a deformation

retraction
ZS — (DQ,SI)S N (SOO,SI)S N (D2,S1)$

where (X, A)® = colir(r‘ls )(X ,A)?. Then the proof constructs isomorphisms of cochain
TECAT

complexes Afui, ..., um| @ k[S] — C*((S*, S1)°) and R*(S) — C*(Zs). From these
p [ut, ..., um] ® k[S] (5%, s
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maps it is possible to form a commutative square and show p is a quasi-isomorphism.
Specific constructions and more detail may be found in [28, Theorem 3.6]. Additionally,
Lii and Panov [28] also concluded that S — Zg is a covariant functor with respect to

maps of simplicial posets.

Example 4.1.12. We may use Theorem 4.1.11 to calculate the cohomology of the

moment-angle complex for S in Figure 4.1a.

HY(Zs) = H '(Sz) =k
H*(Zs) = HU271(Sy) = HY(S') =k

and all other cohomology groups are zero. This agrees with Example 4.1.9.

Theorem 4.1.11 means that we can also study Massey products in moment-angle complexes

corresponding to simplicial posets in the same way as in Section 2.2.2.

4.2 Massey products and simplicial posets

In this section we first show that non-trivial Massey products in moment-angle complexes
that correspond to simplicial complexes lift to non-trivial Massey products in moment-
angle complexes that correspond to simplicial posets. Subsequently we also show that
there are non-trivial Massey products in moment-angle complexes from simplicial posets

that cannot be obtained from such a lift.
For every simplicial poset, there is a corresponding simplicial complex.

Definition 4.2.1. The associated simplicial complex Kg is the simplicial complex whose
simplices are on the vertex set V(o) for o € S. The folding map is S - Ks, 0 — V(o)
for V(o) the vertex set of o € S.

Example 4.2.2. Let S be the simplicial poset in Figure 4.1a. Then g is a 1-simplex.
For the simplicial posets in Figures 4.1b and 4.1c, g is a 2-simplex.

Since Zs is functorial, the folding map in Definition 4.2.1 induces a map f*: H*(Zxs) —
H*(Zs). We use this map to lift Massey products from H*(Zxg) to H*(Zs).

Proposition 4.2.3. Any non-trivial Massey product (a1, ..., on) in H*(Zx,) lifts to a
non-trivial Massey product in H*(Zs).

Proof. The folding map in Definition 4.2.1 induces a map f*: H*(Zxs) = H*(Zs) in
cohomology. By Theorem 4.1.11, there is also a corresponding map H (Ks)r) — H *(S1)

that we will also denote f*.

Let [w] € (a1, ...,0n) C H*(Zxkg). By Theorem 4.1.11, [w] € H*(Zx) corresponds to a
class [w] € HP((Ks)s) for I € V(S) and an integer p. Let w be a representative of [w].
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We wish to show that f*[w] € H*(Zs) is non-zero, that is, that f*(w) € CP(Sy) is not a

coboundary.

Suppose f*(w) € CP(S;) is a coboundary and let ¢ € CP~1(S) be a cochain such that
d(c) = f*(w). The folding map f: S — Ks preserves the rank of simplices, so ¢ has
a preimage b = (f*)"1(c) € CP~Y((Ks)s). As for simplicial complexes in (2.7), the
differentials in C*(Sr) are given by

d(X,) = > el d Uo)Xjue
jeo\l,jUceS]
Hence the differentials in C*((Ks);) and C*(Sy) are the same and f*: CP((Ks)r) —
CP(S7) commutes with the differential. Thus d(b) = w € CP~1((Ks)), and this contra-
dicts the assumption that (o, ..., an) C H*(Zk,) is non-trivial. O

On the other hand, there are also non-trivial Massey products in the moment-angle
complexes of simplicial posets that cannot be lifted from an associated simplicial complex,

such as in the following example.

Example 4.2.4. Let S1o be the simplicial poset with two edges 01,09 on two vertices,
{1},{2}. We take the join of this subposet with the vertex {i} for i = 4,5,6, thus
creating a union of three cones on S12. We add the edge {4,5} and for another vertex
{3}, we add the edges {3,5} and {3,6}. Let S be the resulting simplicial poset, as drawn

in Figure 4.2a,

S ={2,{1},{2}, {3}, {4}, {5}, {6}, 01,02,{2,4},{1,4},{3,5}, {3,6}, {4, 5},
{4,01},{4,02},{5,01},{5,02},{6,01},{6,02}}.

4
5 6 5 6
3 3
(a) A simplicial poset with non-trivial (b) The associated simplicial complex
Massey product in H*(Zs) Ks for S.

Figure 4.2: A simplicial poset with non-trivial Massey product in H*(Zs), and its
associated simplicial complex

Let a1 € f]l(SLg), ay € ﬁIO(SgA), ag € IA{TO(S576). These correspond to classes oy €
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H4(Zg), 9,3 € Hg(ZS).

Next we show that (aq, g, ag) is defined and non-trivial. By Theorem 4.1.11, ayavg €
ﬁ2(81234). Since FI2(51234) = 0, the product ajas is therefore zero. Similarly, asas €
ﬁ1(83456) = 0 and so (a1, ag, ag) is defined. Furthermore, f[o(83456) = 0and ﬁ1(81234) =
0. By (2.14), the indeterminacy of (aq, g, ) is

aq - ﬁ0(83456) + ag - ﬁ1(81234)-

Therefore the indeterminacy is trivial and it only remains to show that there is a non-zero

element in (o, ag, as).

Let a; be represented by the cocycle a; = Xy,, a2 be represented by as = X4, and a3
by as = Xg. Then let aj2 = Xy, € C1(Si234) so that d(ai2) = Xoyus = Graz, where
a = (—1)1+diega1a1 as in Definition 2.2.7. Also let ag 3 = 0 since azas = X46. Then the
associated cocycle to this defining system is given by w = @jag 3 + @1 2a3 = —X4,u6. The
class [w] is a generator of H?(Si23456), so [w] # 0. Since the indeterminacy is trivial,
[w] is the only element in this triple Massey product. Hence (a1, a9, as) in H*(Zgs) is

non-trivial.

In particular this triple Massey product cannot be obtained as a lift induced by the
folding map & — Kgs, where Ks is shown in Figure 4.2b. Since H?((Ks)12) = 0 for
all p, there is no non-zero class a; € H?((Ks)12). Therefore there is no corresponding

non-trivial Massey product in H*(Zx,). Hence we have shown the following.

Proposition 4.2.5. There exist simplicial posets S with non-trivial Massey products
in H*(Zs) that do not exist in H*(Zx,), where Ks is the associated simplicial complex
for S. O
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