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A key concern in the financial literature is if asset prices can be predicted. In the past, stud-

ies mainly investigated on the predictability of past asset prices or financial ratios. This

thesis takes an alternative route and centres on information derived from options. Utilising

options is appealing for two major reasons: First, the structure enables to obtain a forward

looking or implied estimate. Second, the cross-section gives detailed insight about the

future states of the underlying asset. The starting point of this thesis is to investigate on

option implied risk-aversion. A simulation study is developed to analyse risk-aversion

estimates from option prices. The simulation suggests that risk-aversion varies drasti-

cally over time and the volatility of the underlying has a strong impact. Subsequently, the

thesis addresses the use of option implied information within portfolio allocation. The

considered investor is infinitely lived with a time varying risk-premium. The dynamics

of the risk-premium are derived using various implied predictor variables. They are ex-

tracted considering different assumptions about the underlying asset price density. The

findings suggest that the option implied risk-premium is the preferable predictor and flex-

ible densities do not benefit notably. Furthermore, performance measures suggest that

option implied predictors are superior to historical predictors and similar to financial ra-

tios. The final chapter elaborates further on the previously considered portfolio allocation.

It proposes a novel estimation method to obtain consistent estimates of the risk-premium

process. The method relies on the observable option implied risk-premium. It avoids the

use of a multivariate framework when working with financial ratios. Only with the pro-

posed method, the dynamics of the state variable are economically reasonable. Further,

the applied performance measures improve.
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CHAPTER 1

Introduction

The introduction provides an overview of the literature covered within this thesis and out-
lines the performed research. It is structured into three parts. First, the major milestones of
derivative markets are outlined with a focus on options. Further, the key breakthroughs in
the academic literature are highlighted. Second, a comprehensive literature review is pro-
vided covering the main areas of this thesis: option pricing, density forecasting and portfolio
allocation. Third, the methodology and contribution to the literature of each chapter is sum-
marised.



2 1.1 Background

1.1 Background

Over the course of the last 40 years, derivative instruments play an increasingly important

role in financial markets. The class of derivatives compromises a range of different prod-

ucts including forwards, swaps, options and many other types. In today’s world, they have

a broad range of applications including the creation of structured investment solutions

with non-linear payoffs, speculation, hedging, but also as tool for executive compensa-

tions. Thereby, the value of a derivative instrument roots in the underlying security. In

many cases, this is a price of a traded asset. For example, this thesis will be looking into

index options, which depend on the price of an underlying equity index.

However, what were the key factors in the last decades that helped derivatives to today’s

popularity? Probably the starting point of modern derivatives trading was in 1848 with the

introduction of the Chicago Board of Trade (CBOT). The initial objective was to provide

farmers and merchants with standardised qualities and quantities of grains. However, soon

after the successful introduction of the CBOT, the first future contracts were developed.

Speculators quickly figured out that trading a future is an appealing alternative to the grain

itself. One of the driving success factors was the high standardisation of tradable future

contracts and the ability to hedge against the variation in the underlying asset. In contrast

to futures, entering option contracts was far more difficult. Interested parties needed to

be matched individually. This resulted in a general lack of liquidity and made options an

unattractive instrument. Just in 1973, the Chicago Board of Options Exchange (CBOE)

was established and the cornerstone for today’s option markets was laid. The CBOE was

the first exchange that provided a central market place to trade standardised options. This

lead to sufficient market participants and liquidity resulting in the success of options until

today (Hull, 2012).

Next to the CBOE, another important milestone links to the year 1973. The aca-

demic literature marks a fundamental result in option pricing theory. Black and Scholes

(1973) and Merton (1973) published their work on the celebrated Black-Scholes-Merton

(or Black-Scholes) model, which won the Nobel Prize for economics in 1997. Even though
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option pricing was subject of academic research before, scientists had difficulties to obtain

correct discount rates. Black-Scholes-Merton provide two different approaches to handle

this issue. Black and Scholes derive a connection between the required market return on

the option and stock using the capital asset pricing model. Merton chooses a different

route by constructing a riskless portfolio using the underlying asset and option. The ad-

vantage of this procedure is the greater generality since it does not rely on the assumptions

of the capital asset pricing model.

Even though the Black-Scholes-Merton model provides a fundamental result in option

pricing theory it is not without flaws. The Black Monday in 1987 marks an important

event that lead to further developments in option pricing theory. Up to this point there was

no evidence that the assumption of constant volatilities through strike prices had been vio-

lated (Rubinstein, 1985). After the Black Monday, option prices exhibit the characteristic

volatility “smile” or “skew” (Rubinstein, 1994). The Black-Scholes-Merton model cannot

account for these characteristics due to restrictive assumptions. However, the volatility

priced into the option has strong influence on the option’s price. The higher the volatility

the higher the price. Most prominent are out-of-the-money put options in equity markets.

They tend to be valued with higher volatilities compared to at-the-money or in-the-money

options. An attempt to explain this phenomena argues with the fear of option sellers to-

wards large losses in the underlying asset. Large losses tend to decrease liquidity and

increase the likelihood of not being able to hedge the position. Therefore, the option

seller seeks for a higher compensation to account for the additional risk. This funda-

mental change in the structure of volatilities has strong implications on the probability

distribution that is used to price the option. Generally, it can be observed that the shape

of the distribution has excess kurtosis and negative skew. Therefore, the assumption of

a normal distribution is insufficient and attempting to accurately price options using the

Black-Scholes-Merton model is not successful. This key issue motivates a large body of

literature discussed in the following section.



4 1.2 Literature Review

1.2 Literature Review

In the following, the main body of literature related to this thesis is reviewed. The be-

ginning elaborates on different distributional assumptions of the underlying asset price

density to account for the observed non-constant volatilities. Further, the commonly ap-

plied transformation methods from risk-neutral to subjective density are discussed. Lastly,

the portfolio allocation literature is reviewed. It covers the classic case of the myopic in-

vestor and its extension to long-term oriented allocation problems. Moreover, the available

literature on option implied information and portfolio allocation is reviewed.

1.2.1 Option Pricing and Density Forecasting

The fundamental changes in the option market due to the events in 1987 motivate a range

of different methods in option pricing theory. The main criticism is that a satisfactory un-

derlying asset price distribution needs to be more general than provided by the lognormal

family. Particularly, distributional properties should be able to accommodate advanced

shapes in regards of skewness and kurtosis. Jackwerth (1999) provides a comprehensive

literature review on potential distributional assumptions. The described methods rely on

the theoretical result of complete markets by Breeden and Litzenberger (1978). In the

following, the most common methods in the literature are reviewed to model risk-neutral

distributions. Thereby, the classification relies on Jackwerth (1999):

A popular approach is the application of parametric distribution types. This stream

can be categorised into three groups. First, expansion methods. They assume a simple

underlying distribution and add correction terms to provide greater flexibility in the style

of a Taylor series expansion. Prominent examples for an underlying normal distribution

are hypergeometric (or Kummers) function (Rockinger and Abadir, 1997), four parame-

ter Hermite polynomials (Abken et al., 1996a,b), Gram-Charlier expansions (Jondeau and

Rockinger, 2001; Corrado and Su, 1997); for an underlying gamma distribution are La-

guere polynomials (Brenner and Eom, 1997); for an underlying lognormal, normal and
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binomial are cumulants (Jarrow and Rudd, 1982; Longstaff, 1995; Corrado and Su, 1996;

Rubinstein, 1998).

Second, generalised distribution methods. They provide more flexibility due to addi-

tional parameters compared to the (log-) normal distribution. A common feature of this

type of distribution is that in the limit it contains commonly known distributions. Exam-

ples include generalised beta functions of the second kind (Aparicio and Hodges, 1998)

going back to Bookstaber and McDonald (1987), Johnson family of densities (Posner

and Milevsky, 1998) going back to Johnson (1949), Burr III distribution (Sherrick et al.,

1996a) and Burr XII distribution (Sherrick et al., 1992, 1996b).

Third, mixture methods. This class of density achieves greater flexibility by combining

several simple distributions with each other. An issue using this type of specification is

that the amount of parameters increases quickly, which might over fit the data. Examples

of successful applications are mixtures of two and three lognormal distributions (Ritchey,

1990; Melick and Thomas, 1997; Liu et al., 2007).

A natural alternative to parametric specifications are non-parametric methods. They

aim to achieve a higher flexibility by allowing for more general functions. These can be

divided into three groups. First, kernel methods. This type of method treats each data

point, as for example the implied volatility for a specific strike price, as centre of a region

in which the true function could be laying. The region is modelled by a kernel, which is

normally a normal distribution. It allows to model the drop in likelihood when moving

away from the observed data point. Examples of this method include kernel estimators

across five dimensions (stock price, strike price, time to expiration, interest rate, dividend

yield) (Aït-Sahalia and Lo, 1998; Pritsker, 1998) and bivariate kernel across time to expi-

ration and moneyness (Rookley, 1997).

Second, maximum entropy methods. This type of method is to some extend similar

to a Bayesian framework. They aim to impose a minimum level on unknown or missing

information. Therefore, a prior distribution is chosen to find the posterior distribution

by maximising the cross-entropy. Examples include using the uniform and lognormal

distribution as priors (Buchen and Kelly, 1996) or alternatively the historical distribution
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as prior (Stutzer, 1996).

Third, non-parametric curve fitting methods. The objective of this method is to find

a function that minimises the squared difference to the underlying data while accounting

for a reasonable curvature of the function. Examples for this type of method include

approaches that fit the volatility smile first and then the risk-neutral distribution (Shimko,

1993; Malz, 1997; Brown and Toft, 1999; Campa et al., 1998; Aparicio and Hodges, 1998;

Rosenberg and Engle, 1997; Rosenberg, 1998; Jackwerth, 2000). Alternatively, the risk-

neutral density can be approximated directly (Rubinstein, 1994; Jackwerth and Rubinstein,

1996).

Altering the risk-neutral density is a popular and relatively straightforward adjustment

to deal with non-constant volatility. Another route to bring more flexibility into the Black-

Scholes-Merton framework is to extend the underlying price process. The inital assump-

tion of a Brownian Motion can achieve greater flexibility when adding additional compo-

nents to it. This can include a jump diffusion (Merton, 1976; Cox and Ross, 1976; Malz,

1996), stochastic volatility (Heston, 1993), or both in combination (Bates, 1991, 1996,

2000). An alternative to stochastic continuous time processes are binomial trees. They

are a special case of discretised, one-dimensional diffusion processes. Cox et al. (1979)

developed a binomial tree that matches the Black-Scholes-Merton framework. Later this

approach is further extended to allow for greater flexibility (Rubinstein, 1994; Jackwerth

and Rubinstein, 1996; Jackwerth, 1997), forward solved binomial trees (Barle and Cakici,

1998; Derman and Kani, 1994), or an extension to trinomial trees (Dupire, 1994).

Until this point the presented literature focused on accurate distributional assumptions

within the option pricing formula to reflect observed option prices. To gain insight on the

underlying asset the obtained distribution needs to be transformed. This transformation

is necessary since options are priced risk-neutral. They do not reflect a compensation

for the risk in the underlying asset as it is commonly observed in financial markets. The

transformed density has multiple names in the literature including physical, objective,

real-world or subjective density. Here the density will be referred to as subjective density.

The validity of this transformation is underlined in forecasting exercises (Liu et al., 2007;
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Shackleton et al., 2010). The predictability of the subjective density is superior to the risk-

neutral density. Moreover, it beats alternative benchmarks that rely on a history of asset

prices.

In finance, a commonly used approach to transform the density is to use asset pric-

ing theory. Aït-Sahalia and Lo (2000) and Rosenberg and Engle (2002) can show that

the option pricing formula can be connected to the stochastic discount factor or pricing

kernel. With this result, the stochastic discount factor can be linked to the utility func-

tion of the representative agent. Making assumptions about the utility allows to transform

the risk-neutral density into the subjective counterpart. Empirical work relies on a range

of different utility functions to perform the transformation. This includes a power util-

ity (Bakshi et al., 2003; Bliss and Panigirtzoglou, 2004; Liu et al., 2007) and exponential

utility (Bliss and Panigirtzoglou, 2004). An alternative to this procedure is the parametric

recalibration method by Fackler and King (1990). It does not rely on any assumptions

regarding the utility function. This procedure has been successfully implemented by Liu

et al. (2007); Wang (2009) and Shackleton et al. (2010). Further, Shackleton et al. (2010)

extends this approach for a non-parametric recalibration method. They also propose a

risk-premia transformation within the Heston (1993) and Bates (1996) model.

The calibration of the subjective parameter values relies on two different approaches.

First, the maximum likelihood criteria. Based on the risk-neutral density the subjective

parameters are obtained by maximising the out-of-sample log-likelihood of realised asset

price returns (Bao et al., 2007; Shackleton et al., 2010). Alternatively, the p-value of the

LR3 statistic of Berkowitz (2001) is maximised (Bliss and Panigirtzoglou, 2004). Liu

et al. (2007) compares both approaches and concludes that none is superior to the other.

1.2.2 Forward Looking Information and Portfolio Allocation

Most likely the starting point of modern portfolio theory is made by Markowitz (1952).

In his analysis he showed that all investors independent of risk-preferences invest only

in one optimal portfolio containing multiple assets. Thereby, the risk-preferences affect
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how strongly investors are exposed to the optimal portfolio. More aggressive investors

will allocate a higher proportion or even use leverage, whereas defensive investors will

allocate a smaller fraction. The finding that the composition of the portfolio weight is not

adjusted is also known as mutual fund theorem by Tobin (1958).

In the real world investors deviate from the optimal portfolio suggested by Markowitz.

There are multiple reasons why this is the case. Investors might alter their individual

portfolio compositions due to individual preferences. A major impact are risk-preferences.

For example, more aggressive individuals tend to allocate a higher fraction into stocks than

bonds. Further, different objectives to invest money could influence the composition. For

example, saving for retirement might result in other investment decisions than maximising

profits.

The literature deals with these problems by introducing the concept of a long-term

investor. Key conclusion is that long-term investors do not necessary allocate their wealth

in the same way as short-term investors. Long-term investors might be more interested

in how wealth affects their well-being over time rather than simply maximising wealth

itself. With these thoughts in mind different asset classes that are not attractive in the

short run might become attractive in the long run. For example, cash in the short run is

attractive, whereas in the long-run it is risky due to changing interest rates and associated

reinvestment risk. Stocks on the other side have a high variation in the short run but there

is support that in the long-run income streams are more stable. Therefore, a long run

investor might be more willing to hold a larger fraction in stocks than in cash. Further,

the concept of a long-term investor allows to give an explanation why more risk-averse

investors allocate a higher fraction into bonds than equities since bonds provide a more

certain payoff profile.

The first developments in this field study long-term portfolio choice under restric-

tive conditions. Results show that in these special cases, the long-term allocation nar-

rows down to the same optimal weights as short-term investors (Samuelson, 1963, 1969;

Mossin, 1968; Merton, 1969; Fama, 1970). Based on these fundamental findings research

has been performed for specific asset classes. Modigliani and Sutch (1966) argue that



Chapter 1 9

long-term bonds are safe assets when having a long-term horizon. Stiglitz (1970) and Ru-

binstein (1976a,b) build a theoretical framework to highlight this argument. The influence

of human capital is studied by Mayers (1976) and Fama and Schwert (1977b). Merton

(1971, 1973) provides the basis of working with time varying investment opportunities.

Rubinstein (1976b) and Breeden (1979) study this aspect in further detail. They illustrate

the results in terms of consumption risk. This way of interpreting portfolio choice influ-

enced important work as for example Lucas (1978), Grossman and Shiller (1981), Shiller

(1982), Hansen and Singleton (1983), Mehra and Prescott (1985) and many others.

Even though the idea of a long-term investor can be well tracked in theory its imple-

mentation was confronted with issues for a long time. A major problem is the development

of closed form solutions. Many results need to be approximated and required advanced nu-

merical methods. With the development of these methods the assumption of a long-term

investor can be well tracked. Under the assumption that asset price returns are to some

extend predictable (Campbell, 1987; Campbell and Shiller, 1988a,b; Fama and French,

1988, 1989; Hodrick, 1992) the first models were developed. Kim and Omberg (1996)

mark the starting point of allowing for time varying investment opportunities. They pro-

vide a closed form solution of an investor that chooses optimal portfolio policies with no

transaction costs and HARA utility. Brennan et al. (1997) further extend the model to al-

low for frequent rebalancing. Balduzzi and Lynch (1999) and Balduzzi and Lynch (2000)

consider transaction costs, which reduces the optimal amount of rebalancing. Barberis

(2000) provides a long-term investor within a Bayesian framework to account for parame-

ter uncertainty and shows that ignoring estimation risk may overallocate to the risky asset.

Liu (2007) further extends the assumptions about underlying market dynamics by provid-

ing a closed form solution allowing for quadratic term structure models for bond returns

and stochastic volatility for stock returns.

Of central interest in the subsequent sections is the study of Campbell and Viceira

(1999). As one of the first, they solve analytically the portfolio allocation of a long-term

investor that determines his optimal portfolio and consumption policies. The investor al-

locates his wealth by maximising Epstein and Zin (1989) and Weil (1989) preferences,

which are derived from consumption rather than wealth. Further, the equity premium is
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time varying. Later, this approach was extended by allowing for changing interest rates

and inflation (Campbell et al., 2003) and the risk of changing volatility (Chacko and Vi-

ceira, 2005).

So why are option prices interesting in the context of portfolio allocation? The previ-

ous section discussed that option prices are implied estimates and reflect current market

expectations. These information are beneficial in forecasting exercises. Therefore, it is

a natural step to use option implied information to solve a portfolio allocation. If option

prices really contain valuable information about the future they should improve the perfor-

mance of the portfolio allocation compared to alternative methods. This area of research

is relatively new. The starting point is the work of Kostakis et al. (2011) who successfully

applies option implied information assuming a myopic investor. They analyse the effect

when introducing higher moments into the portfolio allocation. Furthermore, they employ

a long-term investor. They conclude that option implied information are beneficial when

trying to time the market and that a long-term investor is beneficial compared to a myopic

one. Another aspect is the question on finding an optimal mean variance portfolio similar

to the approach by Markowitz. DeMiguel et al. (2013) and Kempf et al. (2015) con-

struct portfolios using option implied expected returns and volatility. A key contribution

of their work is to derive option implied covariance estimates between their considered

assets. They support the use of option implied information and highlight the effectiveness

of option implied covariance.

1.3 Contribution

This section outlines the methodology and contribution of this three paper thesis. Each

subsection summarises paper 1 to 3, which form the core sections 2 to 4 of the thesis.
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1.3.1 Paper 1

The first paper of this thesis contributes to the field of risk-aversion estimation from option

prices. Estimation of risk-aversion within a representative agent model is known to be a

difficult problem as highlighted by Mehra and Prescott (1985). In contrast, the density

forecasting literature could show that with the use of option prices risk-aversion estimates

are within more reasonable bounds. Nevertheless, a major issue in the density forecasting

literature are the limited sample sizes, which heavily impact the risk-aversion estimate.

The obtained estimates tend to vary depending on the considered sample period and length.

Therefore, the first paper investigates the variation of risk-aversion over time. It aims to

obtain a “current” estimate of risk-aversion using a simulation rather than an average over

a past estimation period.

Risk-aversion estimates using option prices are obtained in a two step procedure. First,

the risk-neutral dynamics are obtained from observed option prices using a more flexible

assumption of the risk-neutral density within the option pricing formula. The underlying

asset price density is assumed to be a lognormal, mixture-lognormal and generalized beta

distribution of the second kind to analyse the impact of different degrees of flexibility.

The density parameters are obtained using a cross-section of option prices with 4-weeks

until expiry. The estimation is performed by minimising the squared error between ob-

served and model option prices. Second, the obtained risk-neutral parameters need to be

transformed in order to reflect risk-premia in the market. This transformation relies on an

assumption about the preferences of the representative investor. In this case, the power

utility is chosen. Based on the previously obtained risk-neutral parameter estimates the

additional parameter from the power utility is derived using final asset price outcomes.

The estimation of the relative risk-aversion parameter is conducted by maximising the

log-likelihood of final asset price outcomes. The maximisation is performed over multiple

past periods using a rolling window. Therefore, the obtained risk-aversion estimate is an

average of the considered transformation horizon. It can be observed that risk-aversion

estimates vary quite drastically over time when moving the rolling window forward.

The proposed simulation aims to retrieve a “current” estimate of risk-aversion and pro-
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vides insight into the variation of risk-aversion. For the simulations only the risk-neutral

density at observation date t is relevant to retrieve the risk-aversion estimate. Making as-

sumptions about the underlying asset price process allows to obtain a range of asset price

outcomes. The considered asset price process relies on a Geometric Brownian motion and

extension for stochastic volatility. It enables to simulate multiple asset price outcomes for

a single risk-neutral density. Therefore, the estimation of the risk-aversion parameter can

be performed multiple times. The advantage of this procedure is that only the most re-

cent risk-neutral density is used in combination with the dynamics of the underlying asset.

Consequently, the risk-aversion estimate is referred to as “current” since it does not rely

on a past transformation horizon. Further, it allows to obtain a distribution of risk-aversion

estimates because the simulation can be repeated arbitrarily.

The empirical findings have three major implications. First, the assumption of the

underlying risk-neutral density has strong impact on the variation of risk-aversion. More

flexible density types reduce the variation in risk-aversion. Second, overall the findings

suggest a high variation in risk-aversion. Stochastic volatility in the underlying asset price

process has a strong impact on the uncertainty of risk-aversion. This is in contrast to other

studies as for example Bliss and Panigirtzoglou (2004) who only use realised asset price

outcomes and report lower variations of risk-aversion. Third, applying the log-likelihood

of asset price outcomes as evaluation criterion shows that the out-of-sample forecasting

abilities using the proposed simulation method improves density forecasts compared to a

rolling window methodology.

1.3.2 Paper 2

The second paper studies the impact of option implied information within portfolio al-

location. Options are an interesting source of information due to their forward looking

characteristics and the detailed insight into the future state of the underlying asset. The

main contribution in this chapter is to study the impact of option implied state variables

on an infinitely lived investor. Traditionally, portfolio allocation problems rely on state

variables derived from financial ratios. These ratios are replaced by two option implied
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alternatives: 1. The risk-premium, 2. The market price of risk. Furthermore, different

distributional assumptions of the underlying asset price are applied to study the impact of

different degrees of flexibility.

The considered portfolio allocation is the infinitely lived investor by Campbell and

Viceira (1999). The investor allocates his funds between a risky and risk-free asset by

maximising his utility of future consumption. His preferences are derived from an Epstein

and Zin (1989) and Weil (1989) utility. Furthermore, he considers a single state variable,

which is the risk-premium. In their set-up it follows an AR(1) process. This state variable

is responsible for the myopic and hedging demand of the risky asset. In their initial paper

they use the log dividend price ratio to derive the dynamics of the risk-premium process.

In this chapter the log dividend price ratio is replaced by the option implied risk-premium

and market price of risk. The risk-premium and market price of risk are defined as the

excess return towards the risk-free asset, and the ratio of the risk premium and volatility,

respectively.

The option implied moments, risk-premium and volatility, are derived from a range

of different methods. Thereby, the previously described procedure to obtain the option

implied density is followed. The considered density types include lognormal, mixture-

lognormal and binomial tree. The transformation from risk-neutral to subjective density

is performed for 36, 48, 60, 72, 84, 96, 108 and 120 months. Subsequently, the moments

can be derived and transformed so they relate to the return distribution. The log dividend

price ratio and an alternative historical approach is used as benchmark approach for the

option implied state variables. The historical approach derives the state variable from a

past series of asset price returns. It relies on assumptions about the return and volatility

process to obtain the risk-premium and volatility.

The empirical findings underline the timing abilities of option implied information

compared to the historical approach. Only the use of the log dividend price ratio makes

the option implied approaches less outstanding. Comparing the different methods to de-

rive the option-implied state variables suggests that there are no major differences between

different distributional assumptions. This might be a consequence of only considering the
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first two moments to calculate the state variables. Analysing the state variables suggests

that within the chosen set-up the option implied risk-premium is superior towards the al-

ternative market price of risk. All findings are measured out-of-sample taking into account

trading costs.

1.3.3 Paper 3

The second paper suggests that the risk-premium is the favourable predictor variable. The

third paper picks up this finding and continues to work directly with the risk-premium im-

plied by option prices. The analysis is again undertaken within the framework of Campbell

and Viceira (1999). Thereby, the risk-premium process in their portfolio allocation is of

central interest. It follows an autoregressive process with one lag, which also acts as state

variable. Campbell and Viceira (1999) propose to derive the dynamics of the risk-premium

process from a VAR(1) model. It contains the risk-premium and predictor variable. Typi-

cal predictors are financial ratios, which is in their case the log dividend price ratio. Using

a VAR(1) model is necessary since financial ratios do not give direct insight on the risk-

premium.

Central advantage of option prices is that the risk-premium can be observed directly.

Therefore, this chapter proposes an estimation framework that directly and consistently

obtains the dynamics of the risk-premium process from option prices. This approach

makes the estimation method described by Campbell and Viceira (1999) redundant since

a direct proxy of the risk-premium is available. This proxy is retrieved from the model-

free approach by Martin (2017). This method is chosen since it diminishes the need to

transform risk-neutral to subjective dynamics. However, it requires to approximate two

integrals that rely on the cross-section of option prices. These integrals need to be ap-

proximated since option prices cannot be observed with continuous strikes. Therefore,

the obtained option implied risk-premium is a proxy of the objective risk-premium. This

paper develops a framework that uses this proxy of the risk-premium to obtain consistent

estimates of the objective risk-premium process.
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The proposed direct estimation method comes with multiple advantages. Most striking

is that the option implied risk-premium is not conflicted with non-stationarity issues as

it is commonly detected for financial ratios. Furthermore, when working with the option

implied risk-premium only the direct estimation method obtains economically reasonable

parameter values compared to the approach by Campbell and Viceira (1999). The main

impact is on the hedging demand for the risky asset. Just in case of the direct estimation

method, the average hedging demand is positive. It implies that the infinitely lived investor

demands on average a higher fraction of the risky asset. Only in this case the investor

maintains a positive share in the risky asset when expected returns are zero. These find-

ings are underpinned by the applied evaluation criteria. The suggested method provides

strong improvements in the value function and out-of-sample performance compared to

the VAR(1) methodology. Furthermore, the option implied approach is compared against

a historical benchmark, simple investment into the index and the use of the log dividend

price ratio as state variable. As in paper 2, the option implied approach is clearly in excess

to the historical benchmark and index investment. Furthermore, the results are of equal

magnitude compared to the log dividend price ratio.





CHAPTER 2

Uncovering the Distribution of Option Implied Risk

Aversion

This chapter explores the dynamics of risk aversion of a representative agent with an iso-
elastic utility function. In contrast to most of the existing literature, this chapter estimates the
coefficient of relative risk aversion using option prices. To do this, the risk-neutral density
function obtained from a cross-section of option prices is transformed to an objective distribu-
tion function that reflects individuals’ risk aversion through a CRRA utility function. The dy-
namics of the relative risk-aversion coefficient are obtained by repeating the same estimation
procedure over rolling windows. This procedure uncovers strong variation in risk aversion
over time. Alternatively, a simulation procedure is proposed to construct confidence intervals
for the risk-aversion coefficient in each period. The robustness of these confidence intervals
is assessed under different assumptions on the data generating process of stock prices. The
results imply a strong influence of volatility on the variation of risk aversion. In an empir-
ical application, the forecasting performance of the simulation approach using the retrieved
risk-aversion estimates is compared against the rolling window methodology. Overall, the
simulation based approach obtains better forecasting results.
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2.1 Introduction

Stock options are priced using risk-neutral expectations of the payoff of the underlying

asset. These risk-neutral expectations are usually incorporated in the option pricing for-

mula within a flexible specification of the density function to describe the price of the

underlying asset. In contrast, stock prices are priced by discounting the expected value of

future cash flows of the asset under an objective distribution function. Both approaches

incorporate the individuals’ attitude towards risk. The risk-neutral approach embeds indi-

viduals’ risk aversion in the risk-neutral probability distribution of the risky payoffs, that

are discounted using the risk-free rate. Opposing to this procedure, the objective approach

uses objective probabilities, inferred from historical prices or alternative parametric meth-

ods, and discounts future payoffs using a stochastic discount factor. This discount factor

incorporates a risk premium over the risk-free rate.

There are different approaches to connect the risk-neutral valuation with the objective

valuation. A convenient formulation that relies on an utilitarian approach assumes a para-

metric relationship between the distribution functions by a utility function. The analytical

tractability of power utility functions offers a convenient modelling device for describing

individuals’ preferences. In this paper the parametric relationship between the risk-neutral

and objective distribution functions, and the power utility function is exploited to extract

consistent estimates of the coefficient of relative risk aversion of a representative agent.

There are two reasons to use option prices for extracting risk aversion from risk-neutral

valuations. First, risk-aversion estimates are economically important and provide relevant

information for understanding the performance and dynamics of financial markets. Sec-

ond, the empirical finance literature confirms the significant improvement in the ability of

parametric models for forecasting stock prices that incorporate reliable estimates of risk

aversion.

The link between expected returns and investors’ risk-preferences in financial markets

is the foundation of research concerning the risk-return relationship. Several methods were

developed over time in order to determine the risk-premia underlying asset markets. Popu-
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lar approaches are, for example, the standard and consumption-based capital asset pricing

model. These pioneering asset pricing methods are usually estimated based on asset price

returns, treasury yields and consumption data. Although these models are still the building

blocks of current asset pricing models and the foundation of today’s financial economics,

their success in estimating the underlying risk premia in financial markets have been lim-

ited. A prominent example is the seminal article by Mehra and Prescott (1985) on the

equity premium puzzle. These authors retrieve extremely high values of the risk aversion

coefficient in order for the asset pricing model to be compatible with observed asset prices.

These values are not economically justified. Other studies have tried to correct these esti-

mates by imposing different assumptions on individuals’ preferences. For example, Arrow

(1971) makes strong assumptions on the flexibility of the underlying utility function. This

author finds estimates of the risk aversion coefficient equal to one and consistent with the

presence of a log-utility function for modelling the preferences of a representative agent.

Friend and Blume (1975) find values of the risk aversion coefficient in the range of two.

Hansen and Singleton (1982) in their seminal study propose a novel GMM econometric

framework for estimating the model parameters. However, their parameter estimates are

consistent with previous estimates and oscillate between 0 and 1. Mehra and Prescott

(1985), discussed above, find values of the risk aversion coefficient around 55 that are

difficult to reconcile with practitioners’ and financial economists’ expectations on the un-

derlying risk aversion in financial markets. Epstein and Zin (1991) propose a recursive

utility function for modelling individuals’ preferences and find under this novel approach

a risk aversion coefficient that oscillates between 0.4 and 1.4. It is important to remark

that the Epstein-Zin utility function is able to disentangle individuals’ risk aversion from

the rate of intertemporal substitution. Ferson and Constantinides (1991) propose habit for-

mation models in which individuals’ preferences depend on a reference point under which

perceived utility of the asset is zero. This approach provides more variability in the esti-

mates of the risk aversion coefficient. Thus, these authors find a risk aversion coefficient

between 0 and 12. Cochrane and Hansen (1992) in an asset pricing context find values

in the range of 40 − 50 consistent with those found in Mehra and Prescott (1985). Jorion

and Giovannini (1993) and Normandin and St-Amour (1998) find values between 5.4 and

11.9 and smaller than 3, respectively. More recently, Aït-Sahalia and Lo (2000) derives a
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coefficient of risk aversion of 12.7 and Guo and Whitelaw (2001) using option prices, as-

set price returns and consumption data find a value of the relative risk aversion coefficient

equal to 3.52. These authors exploit option prices to extract implied volatility measures

for estimating the risk aversion coefficient.

The conclusion of this literature on risk aversion is that although it well acknowledges

the existence of a premium in financial markets to compensate individuals for the pres-

ence of risk in asset prices under individuals’ risk aversion, there is much controversy on

how to measure it and what values are consistent with the realizations of stock prices.

There are three major approaches for retrieving risk-aversion coefficients based on op-

tion prices. They all try to combine risk-neutral dynamics from option prices with the

realized dynamics of asset prices. The first approach estimates the risk-neutral density

based on option prices separately from the density of asset prices obtained from historical

asset price data. Afterwards, both densities are compared against each other to retrieve

the risk preferences of market participants (Aït-Sahalia and Lo, 2000; Jackwerth, 2000;

Aït-Sahalia et al., 2001; Weinberg, 2001; Pérignon and Villa, 2002; Rosenberg and Engle,

2002; Kliger and Levy, 2002; Anagnou-Basioudis et al., 2005; Ziegler, 2007). The sec-

ond approach jointly estimates the continuous-time dynamics of the risk-neutral and the

subjective process. Option and asset prices are used to jointly estimate the pricing kernel

that incorporates the premia for price, volatility and jump risks. (Bates, 2000; Chernov

and Ghysels, 2000; Pan, 2002; Shackleton et al., 2010). The third approach assumes a

parametric form of the risk-aversion function, which is combined with the risk-neutral

density in order to derive the subjective density. (Fackler and King, 1990; Bliss and Pani-

girtzoglou, 2004; Anagnou-Basioudis et al., 2005; Kang and Kim, 2006; Liu et al., 2007;

Shackleton et al., 2010).

The aim is to follow a combination of the first and third approach. The focus of the

work is on the transformation proposed by Bliss and Panigirtzoglou (2004). One of the ob-

jectives is to gain insight on the variation of risk-aversion estimates over time and, hence,

through the business cycle. Bliss and Panigirtzoglou (2004) provide quantitative methods

to evaluate risk-aversion estimates. These authors introduce two different approaches.

First, a Monte-Carlo simulation method to retrieve the standard error of risk-aversion
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estimates. Second, a Bootstrapping method to capture the influence of actual data and

potential model misspecification on the reliability of risk-aversion estimates. Despite the

appealing of both approaches, these methods face challenges due to the limited availability

of asset prices outcomes and option prices. To overcome this issue, different parametric

data generating processes are considered to construct the risk-neutral distribution function

for describing the dynamics of option and asset prices. The proposed method distinguishes

from other studies by retrieving the risk aversion estimate taking into account the current

risk-neutral density in combination with a data generating process to model the subjective

dynamics. Thereby, the process is applied to simulate final asset price outcomes, which

are then used to transform the risk-neutral density. Thereby, only the currently observed

density is of relevance within the simulation set-up. This enables to only consider current

market expectations. By choosing this approach the work in this section distinguishes from

studies as for example Aït-Sahalia and Lo (2000); Audrino and Meier (2012); Rosenberg

and Engle (2002); Christoffersen et al. (2013); Bakshi et al. (2010) aiming to gain more

current insights of current risk-aversion. Central difference is that they consider the en-

tirety of observations through time of risk-neutral densities in combination with physical

densities derived from realised asset price returns. Linn et al. (2017) criticises the ap-

proach chosen by the previously mentioned authors in regards of their estimated pricing

kernels and propose an alternative estimation method which is more robust. This chapter

cannot avoid this criticism. However, it needs to be highlighted that the aim of the pro-

posed method is in obtaining a current estimate of risk-aversion that is not an average over

a past time horizon.

Variation in the estimates of risk aversion is obtained by constructing rolling windows

of 120 monthly observations and obtaining estimates of risk aversion for each window.

This number is sufficiently large to avoid too much variation in risk-aversion estimates

and at the same time is small enough to capture changes in market conditions that trigger

shifts in risk aversion. Confidence intervals of the risk-aversion estimates can be con-

structed by simulating the prices from a parametric data generating process. The sim-

ulated distribution of risk-aversion estimates provides valuable insights on the variation

of the risk-aversion coefficient. Furthermore, in the proposed set-up the underlying asset
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price process allows for different characteristics starting with the base case of a Geometric

Brownian Motion and its extension to accommodate stochastic volatility processes. The

simulation results are compared with the classic approach followed by Bliss and Panigirt-

zoglou (2004) and Liu et al. (2007). These authors derive their risk-aversion estimates

based on past series of risk-neutral densities and realised asset prices.

The extensive simulation exercise provides the following insights. First, the results sug-

gest that there is more variation in the risk-aversion coefficient than implied by Bliss and

Panigirtzoglou (2004). Not surprisingly, the volatility component has a major impact on

the coefficient of relative risk aversion. The choice of parametric model for describing as-

set prices also has a major effect on the estimates of risk aversion for a representative agent.

Thus, it needs to be noted that imposing a lognormal density on asset prices produces

greater variation in the coefficient of risk aversion compared to the mixture-lognormal

and generalised beta distribution of the second kind. Lastly, a forecasting exercise is

performed to assess the relative out-of-sample ability of the different data generating pro-

cesses for estimating the risk-aversion coefficient to forecast stock prices. The forecasting

performance is evaluated using the subjective density derived from the average simulated

risk-aversion estimate. The findings are compared against the classic approach obtained

from Bliss and Panigirtzoglou (2004) and Liu et al. (2007). Overall, the simulation based

approach obtains better forecasting results than using a rolling window methodology. This

fact is particularly apparent in the period after the sub-prime crisis.

The paper is structured in six sections. Section 2.2 introduces the considered density

types and transformation from risk-neutral to subjective density. Section 2.3 describes the

proposed simulation method. Section 2.4 elaborates on the simulation results. Section 2.5

provides the summary statistics of the observed S&P 500 option and index prices. Further,

estimation errors and risk-neutral characteristics are reported, and empirical results are

discussed. Lastly, section 2.6 concludes the main findings and gives suggestions for further

research.



Chapter 2 23

2.2 Option implied densities

The risk-aversion estimates obtained in this section are retrieved from option prices. This

approach goes back to the density forecasting literature for option pricing as, for example,

Liu et al. (2007). The foundations to this literature on option pricing is due to Breeden and

Litzenberger (1978). These authors show that when there are no-arbitrage opportunities

and options are available for all strikes K, a call-option c can be evaluated by:

c(K) = e−rT
∫ ∞
K

(S −K)fQ(S)dS, (2.2.1)

where S is the stock price, r the risk-free rate, T the time to maturity and fQ a unique

risk-neutral density. All parameters can be observed in the market except for the risk-

neutral density. Assuming a parametric form of fQ, its parameters θ can be obtained by

minimising the squared error between observed co and model-based cm call prices:

arg min
θ

G(θ) =
N∑
i=1

(co(Ki)− cm(Ki | θ))2 , (2.2.2)

with N the number of options in the cross-section. The risk-neutral valuation involving

the density function fQ is restricted by the risk-neutrality constraint F = EQ[ST ], stating

that the expected value of fQ equals the forward price F . To reflect the dynamics of

the underlying asset, the risk-neutral density needs to be transformed into a subjective

counterpart density function that incorporates individuals’ risk-aversion profile. Here the

transformation in Bliss and Panigirtzoglou (2004) is followed, who relate the risk-neutral

fQ to a subjective density function fP by making an assumption about the preferences of

a representative investor. This parametric relationship goes back to Aït-Sahalia and Lo

(2000). In this study, a power utility function u is assumed with u′ = x−γ:

fP (ST ) =

fQ(ST )

u′(ST )∫∞
0

fQ(y)

u′(y)
dy

=
S−γT fQ(ST )∫∞

0
y−γfQ(y)dy

. (2.2.3)

The constant relative risk-aversion parameter γ, inherited from the power utility and re-

sponsible for the transformation into the subjective density, is the central aspect of the
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subsequent analysis. As in Liu et al. (2007), its value is determined by a series of M

densities, maximising the log-likelihood of the realization of asset prices:

log(L(ST,1, ST,2, ..., ST,M | γ)) =
M∑
i=1

log(fP,i(ST,i | θ̂i, γ)) (2.2.4)

In the empirical analysis, three different density types are considered with different de-

grees of flexibility: Lognormal density (LN), mixture-lognormal density (MLN) and gen-

eralized beta density of the second kind (GB2). Their characteristics and transformation

are outlined in the subsequent subsections.

2.2.1 Mixtures of lognormal densities

Ritchey (1990) introduces a mixture of lognormal densities, MLN herafter, to evaluate

option prices. Following Liu et al. (2007), this distribution is defined as a weighted com-

bination of two lognormal densities. A European call price is evaluated as the sum of two

Black (1976) models:

c(K | θ) = wcB(F1, T,K, r, σ1) + (1− w)cB(F2, T,K, r, σ2). (2.2.5)

with θ = (F1, σ1, F2, σ2, w). The risk-neutrality constraint for the MLN reduces the

amount of free parameters to four and by stating that:

F = wF1 + (1− w)F2, (2.2.6)

with F the forward price. Transforming the density into its subjective counterpart as in

(2.2.3) leads to another mixture-lognormal density. The subjective parameters become:

θ̃ = (F̃1, F̃2, σ1, σ2, w̃), (2.2.7)

F̃i = Fie
γσ2T , for i = 1, 2, and

1

w̃
= 1 +

1− w
w

(
F2

F1

)γ
exp

(
0.5(γ2 − γ)(σ2

2 − σ2
1)T
)
.

The lognormal density (LN) is a special case of the above for w = 1. As a result, this

distribution is not described separately.
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2.2.2 Generalized Beta Densities

The generalized beta density of the second kind, GB2 hereafter, was introducted by Book-

staber and McDonald (1987) and was applied to option prices by Liu et al. (2007). They

show that a European call option price can be evaluated by:

c(K | θ) = Fe−rT [1− Fβ(v(K, a, b) | p+ 1/a, q − 1/a)−Ke−rT [1− Fβ(v(K, a, b) | p, q],
(2.2.8)

with θ = (a, b, p, q), all greater than zero, v(K, a, b) = (x/b)a/[1 + (x/b)a] and Fβ the

distribution function of a random variable following a beta distribution. The risk-neutrality

constraint reduces the amount of free parameters from four to three:

F =
bB(p+ 1/a, q − 1/a)

B(p, q)
, aq > 1, (2.2.9)

where B is defined in terms of gamma functions B(p, q) = Γ(p)Γ(q)/Γ(p + q). The

transformation of the GB2 risk-neutral density as in (2.2.3) leads a different type of GB2

density function. The subjective parameters are then θ̃ =
(
a, b, p+ γ

a
, q − γ

a

)
with aq >

γ.

2.3 Risk Aversion Evaluation

One of the biggest challenges in the evaluation of risk-aversion estimates is the limited

availability of data. While option prices provide an accurate description of risk-neutral

market expectations, subjective dynamics can only be observed as single price outcomes.

Linking a single risk-neutral density to realized asset prices to estimate the degree of risk

aversion of a representative agent produces high variation in the parameter estimates. One

way of overcoming this issue is to obtain risk aversion over several periods, as presented in

(2.2.4). However, this approach requires access to a sufficiently long dataset. In situations

where the time horizon is too short, estimates might be misleading and will not accurately

reflect the risk preferences of the representative agent.
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Bliss and Panigirtzoglou (2004) introduce a Monte-Carlo simulation method and a

Bootstrapping procedure to gain better insight into the variation of risk-aversion estimates.

However, their approach does not overcome the problem of single price realisations. More

importantly, risk aversion is only estimated from past data, which may accurately reflect

individuals’ past preferences but not necessarily those relevant for the forthcoming period.

This study proposes an alternative Monte-Carlo simulation exercise that addresses all

these problems. The simulation setting is structured in a way that only considers the most

recent risk-neutral dynamics and simulates potential asset price outcomes based on differ-

ent stochastic processes. This allows to estimate risk aversion by taking into account cur-

rent market dynamics. Importantly, it is possible to simulate several asset price outcomes

for the same time period providing a more detailed outlook of the anticipated variation of

the underlying risk aversion.

2.3.1 Simulation framework

In the simulation framework current market dynamics are captured by a set of assumptions

on risk-neutral and subjective processes. Given these, a whole range of potential asset

price outcomes can be simulated and used to estimate risk aversion for a specific period.

Simulation-based risk-aversion estimates provide better insight into the full spectrum of

potential risk-aversion estimates. Accordingly, the utility function can be validated. The

Monte-Carlo simulation framework consists of the following five steps1:

1. Make assumptions about the subjective process that includes the utility function of

the representative agent and the risk-neutral process.

2. Obtain options from the risk-neutral process and fit a risk-neutral density into op-

tion prices. Since, the risk-neutral process does not change, estimated risk-neutral

parameter values do not change for the time horizon of M periods.

3. GenerateM asset price outcomes based on the subjective process forM risk-neutral

1Note that for the empirical application, Step 2 does not draw option prices from the risk-neutral process
since options can be observed directly in the market.
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densities.

4. Estimate the risk-aversion parameter γ over the estimation horizon of M periods

based on (2.2.4) .

5. Repeat Steps 3 and 4 H times.

2.3.2 Likelihood criteria

Log-likelihood based tests on the asset price outcomes can be useful in providing insights

on the quality of the retrieved risk-aversion values, as used in the work of Bao et al.

(2007), Liu et al. (2007) and Shackleton et al. (2010) to compare the quality of their

density methods on equity indices. The log-likelihood function is defined as:

log Lm =
i∑
t=1

log(fm,t(St+1)) (2.3.1)

where f is the density function, m the density type and i the number of densities. The

log-likelihood function serves two different testing purposes. First, a log-likelihood ratio

test is constructed to assess statistically whether the additional risk-aversion parameter γ

significantly improves the forecasting performance of the densities:

H0 : γ = 0 (2.3.2)

H1 : γ 6= 0. (2.3.3)

The corresponding test statistic is defined as:

2∗LR = −2(Lm,γ=0 − Lm,γ 6=0). (2.3.4)

Under the null 2∗LR ∼ χ2 distribution with 1 degree of freedom.

Second, it is tested whether the two competing methods, denoted as m and n, provide

equal expected log-likelihoods as described:

H0 : E[log(fm,t(St+1))] = E[log(fn,t(St+1))] (2.3.5)

H1 : E[log(fm,t(St+1))] 6= E[log(fn,t(St+1))] (2.3.6)
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This test is proposed by Amisano and Giacomini (2007), AG hereafter, and was applied

to option based densities by Shackleton et al. (2010). The AG test is an out-of sample

test, which uses a rolling window estimation scheme to rank density forecasts. Its loss

function is based on a weighted Likelihood ratio test and offers the advantage that it can

be robust to heterogeneous data sets, while it can be applied to densities obtained from

both parametric and non-parametric models. The test is based on the difference of log-

likelihood of each period, denoted by dt. The test statistic, AG, is retrieved on the basis of

the average difference d̂ and standard deviation of sd of d with integer times i, . . . , j, as:

AG = (j − i+ 1)0.5
d̂

sd
. (2.3.7)

Under the null hypothesis H0, it follows that AG ∼ N(0, 1).

2.3.3 Market assumptions and estimation

Two different parametric forms are imposed to model market dynamics. First, market

dynamics are assumed to follow a Geometric Brownian Motion as in Black and Scholes

(1973). Second, stochastic volatility is incorporated into the model by implementing the

model by Heston (1993). In both cases, it is assumed that the volatility parameters are

derived from option prices including also the subjective dynamics. Therefore, within the

proposed simulation framework there is no adjustment for the volatility premium as it is

commonly observed for option prices (Bekaert and Hoerova, 2014). Only the drift pa-

rameter is changed between specifications in order to account for the risk-premium of the

subjective approach. This transformation is similar to the risk-premium transformation in

Shackleton et al. (2010). The drift term of the subjective process is estimated using histor-

ical asset price returns under the assumption of lognormality of stock prices. An extension

of the proposed methodology would be to account for volatiltiy premia. Shackleton et al.

(2010) provides a procedure that adds a linear drift term to the variance process of the

Heston (1993) model to account for volatility premia. Finally, it is illustrated how ex-

pected risk aversion can be obtained by taking into account the risk-neutral and subjective

dynamics.
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2.3.3.1 Geometric Brownian Motion

In the first specification, it is assumed that markets follow a Geometric Brownian Motion

as in Black and Scholes (1973):

dSt = µStdt+ σStdWt with Wt ∼ N (0, 1) (2.3.8)

with µ the drift term and σ the constant volatility. Option prices can be evaluated by the

well-known Black and Scholes formula as follows.

c(X) = Ste
−qTN(d1)−Xe−rT (d2) (2.3.9)

d1 =
ln
(
St
X

)
+
(
r − q + σ2

2

)
T

σ
√
T

(2.3.10)

d2 = d1 − σ
√
T . (2.3.11)

The parameter estimation is performed as in (2.2.2) by only considering a single at-the-

money option.

2.3.3.2 Stochastic Volatility

An alternative to the geometric Brownian motion is the stochastic volatility model of He-

ston (1993). This specification allows for more flexibility and captures more accurately

observed market dynamics. As in the previous model, the change in asset prices follows

a Geometric Brownian Motion as in (2.3.8), whereas the volatility parameter σ follows an

Ornstein-Uhlenbeck process.

dσt = κ(θ − vt)dt+ ξ
√
vtdZt with Zt ∼ N (0, 1) (2.3.12)

where µ denotes the drift term, σ the volatility of stock price, κ the mean reversion speed,

θ the long-run variance, vt the current variance and ξ the volatility of volatility parameter.

Heston (1993) provides a closed form solution to price a European call option in the form

of the Black and Scholes formula:

c(X) = Se−qTP1 −Xe−rTP2 (2.3.13)
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In contrast to the estimation of the risk-neutral density, the risk aversion parameters are

not obtained directly from option prices as in (2.2.2). The Heston model is estimated

by minimising the squared error between market implied volatility and model implied

volatility2.

2.3.3.3 Expected risk-aversion

In line with Jackwerth (2000), Aït-Sahalia and Lo (2000) and Rosenberg and Engle (2002),

the risk-aversion coefficient can be determined by the relation of the utility function to the

risk-neutral and objective density function. The absolute risk-aversion, RA, can be then

defined as:

RA(x) = −u
′′(x)

u′(x)
=
f ′P (x)

fP (x)
−
f ′Q(x)

fQ(x)
(2.3.14)

Using this result, the relative risk-aversion, γ, can be retrieved by:

γ = xRA(x). (2.3.15)

Since it is assumed that the transformation from risk-neutral to subjective dynamics only

impacts the mean return, the risk-aversion estimate is the same at every point x.

2.4 Simulations

This simulation exercise aims to unveil the influence of different characteristics of the

underlying asset price process on risk aversion. As a starting point, the conventional Ge-

ometric Brownian Motion is used to model asset price dynamics and then extended to

accommodate stochastic volatility, as discussed in section 2.3. The simulations provide

useful insights about how and to what extent risk-aversion estimates are influenced by dif-

ferent factors within the considered models. The main point of interest is the influence of

stochastic volatility on the risk-aversion estimates.
2The required calculations for this method are computationally extensive and the weighting approach by

Christoffersen et al. (2009) helps to reduce the amount of computations (see appendix A.1)
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Therefore, the simulations below include six different scenarios that examine the im-

pact on risk aversion, as depicted in Panels A-F in the tables 2.1 and 2.2, and figure 2.1,

2.2 and 2.3. Simulation A evaluates the change in the mean return, while Simulation B

evaluates the impact of volatility, under a Geometric Brownian Motion. The remainder

panels focus on the presence of stochastic volatility. The volatility process is modelled

by an Ornstein-Uhlenbeck process. Simulation C investigates on the effect of the mean

reversion κ of volatility. Simulation D evaluates the impact of fat-tailed distributions via

the volatility of volatility ξ. Lastly, Simulation E and F evaluate the impact of skewness in

conjunction with a fat-tailed distribution. The latter might be the empirically most relevant

case which can provide guidance for practical purposes.

Each simulation scheme derives risk aversion over an estimation horizon of H = 120

monthly periods. As described in section 2.3, the risk-neutral and subjective parameters

are kept constant over the entire estimation horizon to ensure only the current market

dynamics are considered. The simulated option prices are obtained one month prior to

expiry. One month consists of 21 trading days, which results in 252 trading days per year.

Each day is discretised by ten sub-steps to assure a sufficient precision of the simulated

asset prices. The entire simulation is repeated N = 5, 000 times.

2.4.1 Geometric Brownian Motion

Within the Geometric Brownian Motion, both the mean, µ, and the variance,σ2, influence

the mean and variation of the simulated risk-aversion estimates, respectively. Figure 2.1,

2.2 and 2.3 A displays the case of an stepwise increase of µ from −0.5% to 4%. It is ap-

parent that risk-aversion increases when the expected return rises since the compensation

for risk becomes higher. Consequently, the mean of the subjective density shifts to reflect

the premium in the underlying asset price process.

Figure 2.1, 2.2 and 2.3 B displays the results of a change in variance. Compared to

the previous case an increase in the variance does not result in a major increase of risk-

aversion. The variance mainly influences the variation of risk-aversion. However, this
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median average MSE

E[γ] log mix-log GB2 log mix-log GB2 log mix-log GB2 simulation

0.00 0.00 0.07 0.02 0.01 0.03 0.03 10.17 8.48 9.58


A
1.50 1.50 1.25 1.47 1.48 1.43 1.46 9.73 7.11 9.18

2.50 2.60 2.59 2.54 2.59 2.58 2.53 9.91 9.78 9.29
3.50 3.46 3.42 3.36 3.49 3.45 3.40 10.18 9.91 9.50
4.50 4.51 3.83 4.38 4.48 4.15 4.37 9.88 6.10 9.22
0.00 0.08 0.13 0.09 0.09 0.11 0.11 9.86 8.74 9.27


B

0.33 0.35 0.35 0.35 0.37 0.37 0.38 3.40 3.39 3.21
0.40 0.37 0.37 0.38 0.38 0.38 0.38 1.93 1.93 1.84
0.43 0.47 0.47 0.47 0.47 0.47 0.47 1.45 1.45 1.38
0.44 0.42 0.42 0.43 0.42 0.42 0.42 1.13 1.13 1.07
0.00 -0.08 0.04 -0.11 -0.05 0.03 -0.10 41.77 26.22 29.63


C

0.00 -0.12 -0.01 -0.03 -0.15 -0.05 0.03 20.95 14.07 16.58

0.00 -0.06 0.00 -0.01 -0.07 -0.01 -0.04 17.23 13.73 12.83
0.00 -0.05 0.01 0.00 -0.10 -0.04 0.02 14.53 11.44 11.21
0.00 -0.05 0.00 -0.05 -0.06 -0.01 -0.03 13.24 11.01 10.92
0.00 0.03 0.05 0.11 -0.01 0.01 0.12 10.12 9.23 9.48


D

0.00 0.02 0.03 0.04 0.02 0.03 -0.01 11.38 10.74 10.31
0.00 -0.07 0.11 0.05 -0.05 0.01 -0.03 15.75 9.85 13.58

0.00 -0.10 -0.04 -0.07 -0.02 0.02 -0.07 26.32 20.87 20.39
0.00 -0.13 -0.03 0.00 -0.14 -0.06 0.01 43.43 30.26 30.43

0.00 -0.07 0.14 -0.04 -0.05 -0.02 -0.04 9.97 7.17 9.22


E
0.00 -0.05 -0.03 -0.02 0.05 0.05 0.06 9.82 9.61 9.11
0.00 0.01 0.01 0.05 0.17 0.17 0.18 10.62 10.51 9.79
0.00 0.04 0.08 0.08 0.21 0.22 0.22 10.11 9.31 9.29
0.00 -0.04 -0.01 0.02 0.19 0.20 0.20 10.21 9.67 9.24
0.00 -0.04 0.13 0.15 0.15 0.20 0.19 43.50 29.65 30.79


F

0.00 -0.02 0.22 0.29 0.36 0.38 0.38 42.20 28.61 30.06

0.00 -0.30 0.10 0.17 0.46 0.46 0.46 45.14 28.50 30.14

0.00 -0.02 0.41 0.53 0.82 0.77 0.78 45.08 27.45 29.34

0.00 -0.27 0.31 0.45 0.73 0.69 0.70 48.53 27.89 30.13

Table 2.1: The table provides the results for all 6 simulations. The expected value of gamma E[γ]

is obtained from the theoretical result in section 2.3. The average, median and mean squared error

for all density types are the results of the simulation. The bold values for the mean squared error

mark the lowest values in each row.
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log mix-log GB2

RND RWD RND RWD RND RWD simulation

0.57 1.08 0.48 0.96 0.00 0.49


A
0.47 1.07 0.42 0.96 0.00 0.58

0.46 1.29 0.46 1.28 0.00 0.81

0.45 1.56 0.40 1.50 0.00 1.08

0.43 1.94 0.37 1.72 0.00 1.47

0.45 0.95 0.34 0.81 0.00 0.48


B
0.50 1.03 0.50 1.03 0.00 0.52

0.42 0.94 0.42 0.94 0.00 0.51

0.43 1.02 0.43 1.02 0.00 0.57

0.46 1.05 0.46 1.05 0.00 0.58

0.00 1.81 111.32 112.80 119.66 121.21


C
0.00 0.92 42.47 43.23 43.48 44.31
0.00 0.77 24.70 25.39 28.18 28.83
0.00 0.66 19.04 19.62 18.81 19.38

0.00 0.61 13.26 13.81 14.93 15.48
0.00 0.50 0.48 0.97 1.97 2.45


D

0.00 0.56 8.84 9.38 10.75 11.27
0.00 0.75 22.30 22.92 29.28 29.97
0.00 1.20 56.31 57.39 68.88 69.96
0.00 1.88 102.91 104.52 124.70 126.30
0.00 0.50 0.27 0.70 2.14 2.61


E

0.00 0.49 0.81 1.30 2.18 2.65
0.00 0.53 0.52 1.04 2.21 2.72
0.00 0.50 0.74 1.22 2.23 2.72
0.00 0.51 0.98 1.48 2.38 2.86
0.00 1.88 99.49 101.07 119.19 120.82


F

0.00 1.81 95.83 97.34 117.18 118.73
0.00 1.91 104.51 106.06 117.58 119.18
0.00 1.89 99.33 100.82 112.75 114.29
0.00 2.00 104.96 106.50 113.51 115.09

Table 2.2: The table contains the average maximum log-likelihood estimate based on 2.2.4 for

the risk-neutral density (RND) and subjective density (RWD). The bold values mark the highest

average value of log-likelihood in each row.
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relation is inverse, meaning when variance is high (low) the variation of risk aversion is

low (high). This feature can be confirmed by (2.2.7), which clearly illustrates that the

risk-premium is linked to the product of volatility and risk-aversion. Thus, an increase in

volatility results in lower variation of risk-aversion since the risk-aversion has to change

less to achieve a specific premium. Overall, the different density types do not exhibit

major differences between each other.

This is also the case for the mean squared error in table 2.1. However, results change

across specifications of the simulation. In simulation A, the mean squared error is simi-

lar independently of the values for µ. In contrast, the mean squared error varies heavily

in simulation B due to the changes in variance. Generally, increases in variance reduce

the mean squared error. For both simulations, A and B, mean and median infer that risk

aversion is distributed symmetrically. This is due to the restrictive assumptions of the

Geometric Brownian motion which does not allow for asymmetries in the asset price dis-

tribution. The log-likelihood, in table 2.2, supports this finding by obtaining the highest

values for the lognormal distribution. This is not surprising because the underlying asset

price assumptions infer a lognormal density. Quite similar are the values of the mixture-

lognormal and GB2 density. Both densities can resemble a lognormal density as a special

case and therefore values can be close to each other. The observed differences can be most

likely traced back to the estimation error. Generally, the subjective density obtains the

highest values since the assumed asset price dynamics infer positive risk-aversion.

2.4.2 Stochastic volatility

Extending the Geometric Brownian motion to accommodate stochastic volatility allows to

further analyse the impact of volatility in the underlying asset. The focus is on the effect

of the following parameters: the speed of mean reversion to the long run volatility, κ, the

volatility of volatility, ξ, and the correlation between the two Wiener processes of the stock

price and volatility, ρ. Figure 2.1, 2.2 and 2.3 C displays the results across different values

of κ. The results suggest that an increase in κ has a similar influence as an increase in

variance which can straightforwardly be explained by the mechanics of κ. A high value
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of κ results in a faster reversion to the long run mean of the variance.

In contrast, the parameter ξ has an opposite effect on risk aversion, as shown in fig-

ure 2.1, 2.2 and 2.3 D. Increasing ξ results in more variation of risk-aversion. This can be

attributed to the fact that ξ models the tail thickness of the asset price distribution. The

simulation unveils that a higher frequency of extreme outcomes outweighs the impact of

higher volatility, resulting in higher variation of risk-aversion.

Simulations E and F elaborate on the remaining parameter ρ, which captures asymme-

try in the asset price distribution. Figure 2.1, 2.2 and 2.3 E and F exhibit the influence

of ρ on the risk aversion and its interaction with ξ. Figure 2.1, 2.2 and 2.3 E assumes a

low value of ξ, whereas in figure 2.1, 2.2 and 2.3 F ξ is relatively high. Both plots show

that with an increase in ρ the asymmetry of the relative risk-aversion coefficient increases.

This can be seen by the diverging mean and median parameters but also in the shrinking

upper percentiles. The higher ξ is the greater is the absolute difference between median

and average.

Overall, the more flexible mixture-lognormal and GB2 density are more capable to deal

with the asymmetric shape of the underlying distribution. In all of the considered simu-

lations assuming stochastic volatility the distribution of risk-aversion is more symmetric

and displays a lower variation. This is also reflected in the mean squared error. It clearly

favours the more flexible mixture-lognormal and GB2 density. However, between both

density types it is not clear which one is favourable. This might be rooted in the relatively

restricted assumptions about the underlying asset price process, which could be extended

to allow for even greater flexibility.

The simulation also provides insights on the maximum likelihood estimates and com-

pares the subjective to the risk-neutral likelihoods. The results are tabulated in table 2.2

and draw a more complete picture along with results of the Mean Squared Error in table

2.1. In simulation A and B likelihood values are fairly close to each other. However, this

changes from simulation C and ongoing. It shows that the GB2 density clearly fits the data

best, enforcing that a flexible density type is preferable when the underlying asset price

distribution moves further away from lognormal. Furthermore, when the subjective den-
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sity is compared to the risk-neutral density the likelihood is in all cases higher suggesting

an improved fit. This comes as a surprise since risk-aversion is zero. The additional risk-

aversion parameter provides more flexibility when transforming the data, which results on

average in a better fit of the simulated asset price outcomes. Therefore, the log-likelihood

measure of the subjective density exceeds the values of the risk-neutral density. However,

those differences are of minor magnitude.

The mean squared error underlines the findings that more flexible density types help

to obtain more stable estimates of risk-aversion. As for the boxplot the variation of risk-

aversion is lower. However, comparing the mixture-lognormal and GB2 density with each

other does not lead to clear results. Depending on the simulation, one method is preferable

over the other.

Collectively, simulation results indicate that the main influence on the certainty of risk-

aversion may be attributed to the volatility and the volatility of volatility. The mean mainly

shifts the risk-aversion estimate in one or the other direction. In addition, flexible class of

densities enable to obtain more accurate estimates for risk-aversion when the asset price

distribution is skewed and has excess kurtosis. The fact that more flexible density types

are favourable could also be shown by the likelihood comparison of the simulation. Fi-

nally, variation of risk-aversion strongly depends on the volatility component. Beyond that

it could be shown that asymmetry in the asset price distribution also skews risk-aversion

estimates. All these results provide useful insights to practitioners and highlight the im-

portance of accounting for volatility when evaluating risk aversion estimates.
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Figure 2.1: Distribution of estimated γs applying the lognormal density. A and B assume geo-

metric Brownian motion as underlying process. The remaining plots are simulated applying the

stochastic volatility model. The body of box plot is defined by the interquartile range of γ estimates.

The horizontal line dividing the box and diamond mark the median and average, respectively. The

"whiskers" define the 10th and 90th percentile and the dots the 5th and 95th percentile. If not sep-

arately specified in the graph the parameter values for µ = −0.005, r = 0, q = 0 and σ2 = 0.01.

For the case of the stochastic volatility model κ = 1, θ = 0.01, ξ = 0.7 and ρ = 0.
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Figure 2.2: Distribution of estimated γs applying the mixture-lognormal density. A and B assume

geometric Brownian motion as underlying process. The remaining plots are simulated applying the

stochastic volatility model. The body of box plot is defined by the interquartile range of γ estimates.

The horizontal line dividing the box and diamond mark the median and average, respectively.

The "whiskers" define the 10th and 90th percentile and the dots the 5th and 95th percentile. If

not separately specified in the graph the parameter values for µ = −0.005, r = 0, q = 0 and

σ2 = 0.01. For the case of the stochastic volatility model κ = 1, θ = 0.01, ξ = 0.7 and ρ = 0.
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Figure 2.3: Distribution of estimated γs applying the GB2 density. A and B assume geometric

Brownian motion as underlying process. The remaining plots are simulated applying the stochastic

volatility model. The body of box plot is defined by the interquartile range of γ estimates. The

horizontal line dividing the box and diamond mark the median and average, respectively. The

"whiskers" define the 10th and 90th percentile and the dots the 5th and 95th percentile. If not

separately specified in the graph the parameter values for µ = −0.005, r = 0, q = 0 and σ2 =

0.01. For the case of the stochastic volatility model κ = 1, θ = 0.01, ξ = 0.7 and ρ = 0.
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2.5 Empirical application

2.5.1 Data and Estimation

This study considers European call and put options, which can only be exercised at the

maturity date. Option prices are obtained from Optionmetrics for the period from January

1996 until May 2016 on the S&P 500 index. The considered expiry dates are 28 days

before the third Friday of each month. Only options 28 days before expiry are considered

to ensure that estimation horizons are non-overlapping. In case that there are no option

prices available for the 28 days before expiry, the observation date is shifted by one day. If

there are still no options available the observation date is dropped from the sample. This

results in 242 observation dates for the time period under study. The relevant option prices

are selected based on their moneyness. All call (put) options with a moneyness greater

(smaller) than 1.03 (0.97) are removed from the sample since they are less frequently

traded. Moneyness is defined as the ratio between strike price and underlying stock price.

Furthermore, if there is no traded volume the option is removed as well. The estimation

of the risk-neutral density is then performed taking into account the mid option price. Put

options are transformed into call-options by the put-call parity relationship. In case there

are two options available for the same strike price, the average mid price is used. In case

dividends and zero-coupon rates do not match the maturity date, rates are interpolated

between the two closest dates. Future prices F are calculated synthetically by the pricing

equation Ft = Ste
(rt−qt)T .

The risk-neutral density parameters are estimated minimising (2.2.2) at each observa-

tion date. Multiple start values were supplied into the minimisation problem to ensure

the minimum is robust. Table 2.4 provides the summary statistics of the option pricing

errors. The reported values are in a similar range as, for example, Shackleton et al. (2010).

There are remarkable differences between the more flexible densities and the lognormal

approach. The pricing errors are attributed to the greater flexibility of the MLN and GB2,

which better replicate the non-normal distribution contained in option prices.
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Total number Average Max Min

Calls 7,411 31 104 7

Puts 12,857 53 264 11

Overall 20,268 84 350 20

Moneyness S/K Total number In %

Deep OTM put >1.10 6,629 32.71

OTM put 1.03-1.10 3,106 15.32

Near the money 0.97-1.03 6,342 31.29

OTM call 0.90-0.97 3,159 15.59

Deep OTM call <0.90 1,032 5.09

Overall 20,268 100.00

Table 2.3: Total number of options and options by moneyness.

Density Median Average
Standard

deviation

LN 3.21 4.89 6.04

MLN 0.10 0.16 0.17

GB2 0.09 0.17 0.22

Table 2.4: Mean squared error of 2.2.2 between model and observed option prices.
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2.5.2 Results

The empirical results, applying the simulation method to observable S&P 500 index op-

tions, are presented in figure 2.4 and 2.5. The graphs display the mean and median simu-

lated risk-aversion estimate enclosed by confidence intervals. Furthermore, the estimation

using a sequence of risk-neutral densities and asset price outcomes as in Bliss and Panigirt-

zoglou (2004) and Liu et al. (2007) is displayed. This procedure is denoted as “historical

risk-aversion”.

For the case of the Geometric Brownian Motion, the results of the different density

types are similar with no major discrepancies. Overall, the simulation method suggests a

symmetric distribution of risk aversion since the mean and median are close to each other

and the percentiles are evenly distributed. Furthermore, during times of high volatility, as

for example at the subprime crisis, the variation in risk aversion lowers. These observa-

tions confirm the results from the simulation.

More complex are the findings assuming stochastic volatility for the price process. The

greater flexibility of the underlying process allows for an asymmetric shape. While in the

previous case the mean and median for all density types are close together, they diverge

for the lognormal case. The median tends to be in excess towards the median, imposing

a negative skew. This observation is a result of the negative skew induced by the stochas-

tic volatility process. The lognormal distribution is not able to accommodate the more

complex shape of the underlying probability distribution. Therefore, the estimation of the

risk-aversion parameter compensates for this inflexibility, resulting in a skewed distribu-

tion of risk aversion. This observation highlights the importance of flexible density types

when trying to estimate risk aversion. This finding lines up with the characteristics of the

simulation, that more flexible density types yield a lower mean square error. Furthermore,

the confidence intervals have a stronger variation compared to the Geometric Brownian

Motion. This is not a surprise due to the greater complexity of stochastic volatility. How-

ever, remarkable are the differences in the lower confidence intervals. The MLN and GB2

swing far less into negative values of risk aversion, which further highlights the importance

of flexible density types.
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Excess

log-likelihood
2*LR

Method LN MLN GB2 LN MLN GB2

RND 0.00 17.04 96.44

Hist. 1.04 18.03 97.43 2.09 1.69 1.98

GBM 1.20 18.17 97.58 2.40 2.26 2.28

SV 1.18 18.17 97.58 2.36 2.25 2.27

Table 2.5: The excess log-likelihood is defined as excess value compared to the weakest method.

In this case the worst performing method is the risk-neutral LN. The remaining methods denote

transformed subjective densities.

Overall, it is remarkable how uncertain the estimates are even within basic assumptions

as displayed in figure 2.4 and 2.5 . Generally, the simulation-based methods tend to ex-

ceed the risk-aversion estimates of the historical approach. Nevertheless, the confidence

intervals mostly encompass the historical estimates, particularly when assuming stochastic

volatility.

To gain further insight, the obtained mean risk-aversion estimate is used to transform

the risk-neutral density into its subjective counterpart. Afterwards,the predictability is

evaluated based on the log-likelihood of the final asset price outcomes. This results in

122 evaluation periods since the historical method retrieves the estimates using a 10 year

rolling window. The log-likelihood is reported in table 2.5 in excess to the risk-neutral LN.

The reported values can clearly show that the more flexible density types are preferable to-

wards the LN. Furthermore, the GB2 is clearly in excess towards the MLN. The additional

parameter γ is further tested using the log-likelihood ratio test. All methods are signifi-

cant at the 20% level. The reason for the low significance level could be rooted in the short

sample size. Liu et al. (2007) encounter similar difficulties and argue the insignificance is

a type II error. These authors base this claim on the findings of Merton (1980) and others

since the risk-premium is small relative to volatility and, therefore, difficult to estimate.
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Geometric Brownian Motion
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Figure 2.4: Risk-aversion simulation results and historical estimates. The simulation assumes the

asset price follows a geometric Brownian motion. The dark blue line denotes the average estimate

of risk-aversion whereas the green dashed-dotted line denotes the median. The inner confidence

interval (dark blue) defined by the 25th and 75th percentile. The outer confidence interval (light

blue) is defined by the 5th and 95th percentile. The red line defines the risk-aversion obtained by

the classic method.
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Stochastic Volatility
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Figure 2.5: Risk-aversion simulation results and historical estimates. The simulation assumes the

asset price follows stochastic volatility. The dark blue line denotes the average estimate of risk-

aversion whereas the green dashed-dotted line denotes the median. The inner confidence interval

(dark blue) defined by the 25th and 75th percentile. The outer confidence interval (light blue) is

defined by the 5th and 95th percentile. The red line defines the risk-aversion obtained by the classic

method.
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Finally, two competing forecasts are tested for equal expected log-likelihoods follow-

ing Amisano and Giacomini (2007). The results are reported in table 2.6. Comparing

the different density types with each other clearly shows that the GB2 is the preferable

method. The test rejects the null hypothesis at the 1% level in all cases. Within each

density type findings are less clear. Only for the historical risk aversion, the subjective

density is significantly different from the risk-neutral density. In none of the cases, the

proposed simulation method is significantly different to the risk-neutral density. A possi-

ble explanation for this observation could be that the volatility dynamics are assumed to be

the same in the risk-neutral and subjective model dynamics. It is well known that option

prices contain a volatility premium and the volatility in the subjective process tends to be

lower. Therefore, when assuming the risk-neutral and subjective volatility dynamics to be

the same, it implicitly assumes similar expected log-likelihoods.

Analysing the obtained risk-aversion estimates from an economic perspective gives

some interesting insights into financial markets but also raises some questions. First, the

representative investor is almost risk-neutral during periods of distress but clearly risk-

averse during periods of low volatility. Second, the variation in risk-aversion is the lowest

during crisis periods and increases heavily during times of low volatility. This observation

is easily explained from a technical perspective. However, the economic intuition is far

more interesting since it implies that the variety of investors during crisis periods is far

lower than during less risky times. Third, the confidence intervals show that risk-aversion

can become negative imposing a risk-seeking representative investors. This problem is

less critical when working with more flexible distribution types but it does not fully van-

ish. Therefore, this issue cannot be fully ruled out and is a shortcoming of the employed

approach. Potential ways of tackling this issue can include the estimation approach, as in

Linn et al. (2017), or underlying utility assumptions.
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Log mix log GB2

RND hist. sim. 1 sim. 2 RND hist. sim. 1 sim. 2 RND hist. sim. 1 sim. 2

log

RND

hist. 1.91*

sim. 1 1.13 0.18

sim. 2 1.12 0.16 0.31

mix log

RND 2.09** 2.01** 1.91* 1.91*

hist. 2.16** 2.09** 2** 2** 2.08**

sim. 1 2.23** 2.16** 2.08** 2.08** 1.07 0.18

sim. 2 2.23** 2.17** 2.09** 2.09** 1 0.16 0.06

GB2

RND 11.58*** 11.76*** 11.26*** 11.27*** 30.92*** 30.71*** 28.25*** 27.89***

hist. 11.44*** 11.65*** 11.19*** 11.19*** 30.15*** 30.93*** 28.86*** 28.55*** 2.11**

sim. 1 11.73*** 11.97*** 11.59*** 11.59*** 28.82*** 29.91*** 30.89*** 30.79*** 1.05 0.17

sim. 2 11.74*** 11.99*** 11.62*** 11.62*** 28.58*** 29.69*** 30.94*** 30.88*** 0.98 0.15 0.04

Table 2.6: The table contains the test-statistics of the Amisano and Giacomini (2007) test. The critical values are denoted with

(*) at the 10% level, (**) at the 5% level and (***) at the 1% level.
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2.6 Conclusion

This paper provides a novel methodology for uncovering the presence of risk aversion in

asset prices. Risk aversion is interpreted as the coefficient of relative risk aversion char-

acterizing a power utility function. In contrast to most of the literature, risk aversion is

extracted from the risk-neutral distribution underlying the risk-neutral valuation of option

prices. More specifically, a parametric expression is exploited relating the risk-neutral

distribution function with an objective distribution describing the true probability distribu-

tion of asset prices and a power utility function describing individuals’ risk attitude. This

expression provides a closed-form solution that links risk-neutral expectations with a sub-

jective valuation that incorporates the preferences of a representative agent. This approach

allows to estimate consistently the coefficient of relative risk aversion as the sample size

increases.

The study also proposed a simulation scheme to introduce uncertainty into the pricing

models. By doing so, confidence intervals were constructed that reflect the uncertainty

around the parameter estimates of relative risk aversion. It also accommodated the pres-

ence of dynamics in risk aversion by proposing a parametric model for describing the

dynamics of asset prices. Finally, as an additional contribution, different types of density

functions were exploited for describing the probability law of asset prices. By doing so,

the predictive ability of the model was explored and assessed, out of sample, the reliability

of the different estimates of the relative risk-aversion coefficient for prediction purposes.

The results, obtained from an extensive simulation exercise, suggest that there is more

variation in the risk-aversion coefficient than implied by Bliss and Panigirtzoglou (2004).

Not surprisingly, the volatility component has a major impact on the coefficient of relative

risk aversion. This is due to the direct link between volatility, risk aversion and the risk pre-

mium. A way to make the risk-aversion estimate less varying and more stable across time

is to assume more flexible density types. Especially, when stochastic volatility is present

more flexible density types obtain more stable values. The choice of a parametric model

for describing asset prices also has a major effect on the estimates of risk aversion. Thus,
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it is noted that imposing a lognormal density on asset prices produces greater variation in

the coefficient of risk aversion compared to the mixture-lognormal and generalised beta

distribution of the second kind. Lastly, a forecasting exercise was performed to assess the

relative predictive ability of each estimation method out of sample. For all density types,

there is no statistically significant difference between the risk-aversion coefficient based on

the Monte-Carlo simulation and the classic approach by Bliss and Panigirtzoglou (2004)

and Liu et al. (2007). In contrast, comparing both approaches against the risk-neutral

density reveals statistically significant differences.

Within this paper the attention centred on the classic case of a power utility function.

Therefore, it can be extended in different directions to obtain further insights into the

degree of risk aversion in financial markets and its variation over time. First, an interesting

avenue for further research is to evaluate the influence of the volatility premium on risk-

aversion estimates. Second, exploring alternative utility functions that provide a different

characterization of individuals’ risk aversion can be a fruitful strategy to uncover different

patterns of risk aversion under different assumptions on individuals’ risk profile. Finally,

the simulation exercise clearly shows that individuals’ risk aversion changes over time.

It might be of much interest to applied economists and financial practitioners to explore

suitable time series models for forecasting asset prices constructed from reliable estimates

of the risk-aversion coefficient.
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A Appendix

A.1 Weighting approach by Christoffersen et al. (2009)

Christoffersen et al. (2009) suggests to weight the mean squared error by the Black and

Scholes Vega. Vega is defined as the first derivative after volatility:

V egaBS =
∂c(X)

∂σBS
= Se−qTΘ(d) (A.1)

with

d =
log( S

K
) + (r − q +

σ2
BS

2
)T

σBS
√
T

, (A.2)

and Θ the cumulative standard normal distribution. The loss function is defined as:

arg min
θ

G(θ) =
1

N

N∑
i=1

(cobs(Xi)− ctheo(Xi | θ))2

V ega2BS
, (A.3)

with θ = (κ, θ, σ, ρ, ξ).



CHAPTER 3

Strategic Asset Allocation and Multiperiod Investors

using Option-Implied State Variables

This chapter studies the impact of option-implied information on an infinitely lived investor
that solves an allocation problem between a risky and risk-free asset. The investor determines
his optimal weight taking into account a single state variable, which is chosen as option im-
plied risk-premium and market price of risk. The option implied state variables are obtained
by making assumptions about the risk-neutral density and subsequent transformation to ob-
tain the subjective probabilities. Multiple densities are employed to analyse the impact of
different degrees of flexibility. The results are compared against a single investment into the
risky asset, historical approach relying on a GARCH type model, and the log dividend price
ratio acting as state variable. Applying this methodology to the S&P 500 acting as risky asset,
shows that the use of option implied information is superior towards the historical approach
and full investment into the risky asset but it is less clear towards the results of the log div-
idend price ratio. Further, the option-implied risk-premium is a more suitable state variable
compared to the market price of risk. The chosen densities to retrieve the option-implied in-
formation provide similar results and are not superior to each other within the chosen set-up.
All results are measured out-of-sample taking into account trading costs.
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3.1 Introduction

Option prices contain market expectations about the distribution of future asset prices.

Breeden and Litzenberger (1978) propose a convenient closed-form expression for obtain-

ing such distribution functions. This pricing equation assumes a risk-neutral distribution

function for the future payoffs of the underlying asset. Hence, a simple procedure to

calibrate the proposed option pricing formula is by fitting the model option prices into a

cross-section of observed option prices. Jackwerth (1999) provides a survey of different

risk-neutral density types applied within option pricing. This distribution function does not

contain any premia and reflects the risk-neutral market expectations towards the underly-

ing asset. In order to incorporate investors’ views on risk aversion, the risk-neutral prob-

abilities need to be transformed into a subjective probability distribution that explicitly

considers the preferences of the representative investor. The resulting subjective density,

also called “real-world density", “objective density", incorporates the market expectations

of the underlying asset price as outlined by Bakshi et al. (2003), Bliss and Panigirtzoglou

(2004) and Anagnou-Basioudis et al. (2005). The procedures involving option prices are

referred to as “option implied approach".

An alternative approach to retrieve the subjective density describing the random be-

havior of stock prices is to use the history of asset prices and, in particular, statistical

procedures such as the empirical distribution of returns or location-scale time series mod-

els for predicting the conditional distribution of asset prices. A natural example of these

models is the family of autoregressive models for the conditional mean and ARCH type

processes for the conditional volatility, see Engle (1982). Other examples of the historical

approach are Jackwerth (2000), Aït-Sahalia and Lo (2000), Pérignon and Villa (2002) and

Rosenberg and Engle (2002). The strength of this approach is the possibility of simulating

different scenarios to forecast asset prices once the model parameters and the distribution

error are estimated. In particular, simulation methods are applied to obtain estimates of

the subjective distribution function of asset prices.

Both approaches are compared in the literature from different angles, see for example
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Anagnou-Basioudis et al. (2005), Liu et al. (2007) and Shackleton et al. (2010). The

density forecasting literature emphasises the comparison between the option implied and

historical approach and consistently shows that the option implied approach can forecast

more accurately future asset prices compared to the historical approach. The main reason

for this is the forward-looking nature of option prices. When markets are efficient, the

option price should reflect market expectations of the underlying asset for the time until

expiration. This means that any newly arriving information from observation until expiry

date are priced into the distribution. A different route is taken by the historical approach.

Its estimates rely on past asset price outcomes. Therefore, when forecasting asset prices

the historical approach imposes that past dynamics also apply for the future. This means

that time series models slowly adjust their dynamics in a forecasting exercise when market

conditions change rapidly. In contrast, methods based on implied information obtained

from option markets are faster in incorporating new information and dynamics adjust more

timely to changing market expectations.

In this chapter, these findings motivate the use of option implied information in an asset

allocation perspective. To the best knowledge, the amount of empirical work in this area

is still very limited, with seminal work by Kostakis et al. (2011), DeMiguel et al. (2013)

and Kempf et al. (2015). To evaluate if option implied information offers statistically and

economically significant advantages in an asset allocation context, an investment portfolio

is employed comprising two assets (a risky and a risk-free asset). The optimal portfolio

allocation is obtained as the result of maximizing the expected utility of an infinitely-lived

representative agent.

Following the asset allocation literature, more specifically the seminal works of Camp-

bell and Viceira (1999) and Aït-Sahalia and Brandt (2001), a linear parametric portfolio

policy rule is considered for modelling the dynamics of the optimal portfolio weights. In

this setting, the individuals’ portfolio allocation is dictated by a set of state variables with

power to predict the future dynamics of asset returns. In this chapter, the implied risk pre-

mium as a novel state variable is proposed. It is compared against the log dividend price

ratio proposed by Campbell and Viceira (1999) that has acted as benchmark in the long-

term asset allocation literature, and also against the market price of risk, recently proposed
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by Kostakis et al. (2011) in a similar setting. The proposed state variable takes advantage

of the forward-looking information implied from option prices with the risky asset as un-

derlying. In fact, this variable is constructed from the expected value of the underlying

risk-neutral distribution function used for pricing options. The comparison between opti-

mal portfolio allocation strategies is based on a range of standard performance measures

such as the mean return, Sortino ratio, CAPM and portfolio turnover, see DeMiguel et al.

(2013) for a formal definition of these performance measures in an out-of-sample context.

This chapter also contributes to the empirical literature on long-term asset allocation

by exploring the sensitivity of the optimal asset allocation exercise to different choices of

the risk-neutral distribution function. In contrast to standard parametric portfolio policies,

the proposed option implied approach considers the choice of different risk-neutral distri-

butions as an additional aspect to take into account when constructing optimal portfolio

weights. The channel through which the risk-neutral distribution function affects the in-

vestment portfolio is by the construction of the state variable – the implied risk premium

in this case – that is obtained from the entirety of available option prices under the risk-

neutral density function. This chapter applies a lognormal density as in Black and Scholes

(1973), a mixture lognormal density as in Ritchey (1990), and a non-parametric binomial

tree as in Jackwerth and Rubinstein (1996).

The comparison of investment strategies characterized by different portfolio weights

obtained under different choices of state variables and risk-neutral density functions is

applied to a portfolio given by the US three-month Treasury bill and the S&P 500 Index.

All of the results are measured out of sample taking into account trading costs. Rather

than using index prices, prices of exchange traded funds (ETF) are taken into account that

capture the trading features of the risky asset – ETFs have the advantage that the price

derives from a real traded portfolio whereas the alternative index value is just a theoretical

construct. The obtained portfolio returns of the option implied and historical approach

are evaluated on the basis of the Sharpe ratio, Sortino Ratio, Capital Asset Pricing Model

(CAPM) and trading costs.

The empirical study implies three main findings. First, the option implied approach is
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superior to the historical approach. This finding is greatly supported by empirical fore-

casting exercises reported in the literature, as for example Liu et al. (2007) or Shackleton

et al. (2010). These studies reveal strong timing abilities of the option implied approach

relative to a historical benchmark. In this chapter, it can be shown that this finding also ap-

plies in a portfolio allocation context even when trading costs are subtracted. Interestingly,

the portfolio allocation under the proposed state variable cannot outperform the Campbell

and Viceira (1999) optimal portfolio constructed using the log dividend price ratio. As a

byproduct, the poor performance of the option-implied approach during the subprime cri-

sis falls behind the benchmark investment strategies including the simple investment into

the S&P 500 Index. The results are inconclusive about which approach provides superior

results during the subprime crisis. Second, the influence of risk-neutral density function

for the option implied approach reveals no significant differences between the lognormal

density with a single at-the-money option compared to the alternatives, which exploit the

entire cross-section of option prices. Third, the option implied risk premium acting as state

variable is more suitable compared to the market price of risk. The performance results of

the risk premium are more consistent across periods1. Furthermore, restricting the port-

folio rules for market timing highlights the timing abilities of the implied risk premium.

The timing abilities of the market price of risk tend to have a positive impact as well but

the magnitude is lower.

The results confirm the findings in the literature that the use of option implied infor-

mation improves market timing and yields superior portfolio allocation. Related studies

focussed on solving option implied mean-variance portfolios, as for example DeMiguel

et al. (2013) and Kempf et al. (2015). They show that the use of option implied infor-

mation is preferable compared to benchmark approaches such as the historical approach,

equally-weighted strategies and full investment into the index. Explicitly, DeMiguel et al.

(2013) compares implied variances and historical correlations against historical variances

and implied correlations whereas Kempf et al. (2015) considers a fully implied approach.

Both papers analyse crisis periods separately. DeMiguel et al. (2013) mentions that the

1The results can be confirmed applying the Dow Jones Industrial Average and NASDAQ 100 as risky
asset.
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subprime crisis period does not effect the overall results. Kempf et al. (2015) confirms

this observation and makes an even stronger statement for the period of the dotcom bubble

and subprime crisis period by claiming that the crisis period contributes strongly to the

overall performance of the portfolio. The here presented findings cannot confirm that the

subprime crisis leads to performance gains. Reason for this might be the different struc-

ture of the portfolio allocation problem, which focuses on the optimal portfolio decision

of an infinitely-lived investor maximizing the expected value of a recursive Epstein-Zin

utility function. Another influential study that is strongly related to the proposed method

is Kostakis et al. (2011). These authors exploit higher moments in a portfolio allocation

between a risky and a risk-free asset. As in Jondeau and Rockinger (2006), Kostakis et al.

(2011) expand the expected utility of future wealth via a Taylor series expansion. This

procedure allows them to introduce mean, variance, skewness and kurtosis of the option

implied density into the portfolio allocation. The implied density extracted from option

prices is obtained via splines as in Bliss and Panigirtzoglou (2002). This investment strat-

egy is compared against a benchmark constructed from historical data. The empirical

findings of the study illustrate the outperformance of the option implied approach com-

pared to the historical approach. These findings are also confirmed by DeMiguel et al.

(2013) and are similar in spirit to the presented empirical findings.

The here proposed study is concerned with a dynamic investment portfolio character-

ized by a set of portfolio weights driven by a state variable. Kostakis et al. (2011) also

applies their methodology to the dynamic portfolio allocation of Wachter (2002) for a

finite-lived investor. In their setting, innovations to the state variable and stock returns are

perfectly negatively correlated. In this study, the estimated correlation for the market price

of risk is negative but not close to−1. Beyond this, the findings line up with Kostakis et al.

(2011). Both studies find that the performance of portfolios comprised by a risk-free and

a risky asset deteriorates during the subprime crisis. Outside this period, option implied

information yields superior results compared to the historical approach and simple invest-

ment into the index. However, the comparison of the option implied approach against the

method characterized by the log dividend price ratio reveals a mixed performance.

The rest of the chapter is organised as follows. Section 3.2 outlines the procedures



Chapter 3 57

to obtain the two state variables, the risk-premium and market price of risk, consider-

ing the different methods within the option implied and historical approach and portfolio

allocation exercise. Section 3.3 describes the data, evaluation methods and benchmark

approaches. Section 3.4 summarises the in-sample estimation results of the portfolio allo-

cation. Section 3.5 presents the out-of-sample results applying the suggested performance

measures. Lastly, section 3.6 reviews the main findings of the study.

3.2 Methodology

The selection of suitable state variables is a crucial aspect for long-term asset allocation.

These variables have a strong impact on the structure of the optimal weights and the ef-

fectiveness of the allocation problem. Historically, many studies (Campbell and Viceira,

1999; Campbell et al., 2003; Chacko and Viceira, 2005) use financial ratios as state vari-

ables. However, their structure relies on past information and their implications on the

allocation in the future are not always clear. As an alternative, this chapter proposes to

derive state variables using options as a source of information. They are a tempting al-

ternative due to their predictive power documented in forecasting exercises (Bliss and

Panigirtzoglou, 2004; Liu et al., 2007; Shackleton et al., 2010). The reason for the success

of options is generally attributed to the cross-section of option prices containing detailed

information about the future state of the underlying asset. Furthermore, estimates are

forward-looking and theoretically reflect current market expectations. Three contributions

are made with the chosen approach. First, two different option implied state variables are

evaluated including the market price of risk, as in Kostakis et al. (2011), and the here pro-

posed option implied risk-premium. Second, the impact of different assumptions about the

underlying asset price density is investigated. Different degrees of flexibility are taken into

account to find any trades between methods. Third, the state variables are applied to evalu-

ate the out-of-sample performance of the optimal allocation problem of an infinitely-lived

investor with time varying expected returns, see Campbell and Viceira (1999).
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3.2.1 Option Implied State Variables

To describe future asset price returns two different option implied state variables xIt are

considered. First, the option implied risk premium. It is defined as the expected return of a

risky asset Et[rt+1] in excess to the risk-free rate rf,t. Choosing the risk premium as state

variable is an intuitive approach since it directly reflects current premia in the market:

xIRP,t = Et[rt+1]− rf,t. (3.2.1)

As an alternative, the market price of risk xIMPR is employed, as proposed by Wachter

(2002) and applied for option prices in Kostakis et al. (2011). This state variable can be

interpreted as an extension of the risk premium since it scales the risk premium by the

conditional volatility
√
V art[rt+1]. It is formally defined as

xIMPR,t =
Et[rt+1]− rf,t√
V art[rt+1]

. (3.2.2)

The information obtained from option prices enters the state variables via the first two

moments: Et[rt+1] and V art[rt+1]. Thereby, the necessary moments are retrieved relying

on different assumptions about the risk-neutral density and assumptions about the repre-

sentative investor.

3.2.2 Obtaining Option Implied Moments

To obtain option implied moments, three density types are applied: First, a lognormal

density (Log). Due to the assumption of constant volatility across strike prices, the density

is estimated using the two closest option prices above and below the current forward price.

The implied volatility between both options is interpolated based on the current forward

price to match the at-the-money volatility. Second, a mixture-lognormal density (Mix-

log). This density allows for more complex shapes. Its estimation takes into account the

entire cross-section of option prices to capture the non-normal shape contained in option

prices. Third, a binomial tree (Bin-Tree). This method is the most flexible density type due

to its non-parametric characteristics. Applying the different density types aims to analyse
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if the entire cross-section benefits the proposed state variables and if there are any gains

when applying more flexible density types.

Since the densities are retrieved from option prices they are priced risk-neutral. There-

fore, they need to be transformed to reflect the objective probabilities of the underlying

asset. The transformation relies on an assumption about the utility of the representative

investor. Throughout the study, it will be assumed that the representative investor fol-

lows a power utility. The transformation adds a risk-aversion parameter γD to the density,

which needs to be estimated. This risk-aversion coefficient should not be mistaken with

the risk-aversion parameter embedded in the portfolio allocation of the individual investor

that will be denoted hereafter by γP . The latter risk-aversion coefficient refers to the rela-

tive risk-aversion coefficient of an individual with a recursive Epstein-Zin utility function.

Since the risk-aversion of individuals cannot be simply observed, γP is freely chosen.

Consequently, the values for the relative risk-aversion coefficient in the portfolio allo-

cation problem can be different from the values obtained in the transformation between

risk-neutral and objective density functions2.

3.2.2.1 Mixture of two Lognormal Densities

When there are no arbitrage opportunities Breeden and Litzenberger (1978) show that

there is a unique risk-neutral density fQ for all possible values of the underlying asset

price S. The density can be inferred when there are European call prices c available for all

strike prices K with the same time to maturity T . The risk-neutral density is then defined

as:

cm(K) = e−rfT
∫ ∞
K

(S −K)fQ(S)dS, (3.2.3)

2First, a power utility is assumed for retrieving the density of stock returns from the risk-neutral density
of option prices. This risk aversion coefficient is considered to characterize the relative risk aversion of a
representative investor. Second, the obtained subjective density function is utilised to solve the sophisticated
asset allocation problem of an individual investor with recursive preferences modelled by an Epstein-Zin
utility function.
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with rf the risk-free rate, T the time to maturity and fQ is the risk-neutral density. Going

back to Ritchey (1990), Melick and Thomas (1997), Brigo and Mercurio (2002) and Liu

et al. (2007), the risk-neutral density is assumed to be a mixture of two lognormal distri-

butions. These authors show that the call price is derived from two weighted Black (1976)

models such that:

cm(K | θ, rf , T ) = wcB(F1, T,K, rf , σ1) + (1− w)cB(F2, T,K, rf , σ2), (3.2.4)

where the density moments are obtained as:

E[SnT ] = wF n
1 exp(0.5(n2 − n)σ2

1T ) + (1− w)F n
2 exp(0.5(n2 − n)σ2

2T ). (3.2.5)

The parameters characterising this model are θ = [F1, F2, σ1, σ2, w], with 0 ≤ w ≤ 1.

Each of the weighted Black (1976) models have its own mean [F1, F2] and variance

[σ1, σ2]. This results in five parameters θ that need to be determined. They are calibrated

using observed option prices. The objective is to minimise the squared error between

observed co and model-based cm option prices:

min
θ

N∑
i=1

[co(Ki)− cm(Ki | θ)]2 (3.2.6)

The optimisation is restricted by the risk-neutrality constraint. It requires that the risk-

neutral expectation of the underlying asset price, represented by the current forward price,

has to equal the expected value of the risk-neutral density:

F =

∫ ∞
0

SfQ(S)dS = wF1 + (1− w)F2. (3.2.7)

The constraint reduces the amount of free parameters θ by 1.

It is well known that the risk-neutral density does not reflect the objective dynamics

of the underlying asset. Going back to Aït-Sahalia and Lo (2000), Bliss and Panigirt-

zoglou (2004) provide a framework to transform the risk-neutral density into its objective

counterpart. They link the risk-neutral density to a parametric form of the utility func-

tion of the representative investor that allows one to obtain the objective density function.
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This density function, fP , is linked to the risk-neutral density fQ and utility function u as

follows:

fP (ST ) =

fQ(ST )

u′(ST )∫∞
0

fQ(y)

u′(y)
dy

=
SγDT fQ(ST )∫∞

0
yγDfQ(y)dy

. (3.2.8)

The integral in the denominator of (3.2.8) ensures the objective density integrates to 1.

In the ongoing analysis, it is assumed that the preferences of the representative investor

are derived from a power utility function with u′(S) = S−γD , where u(S) = S1−γD−1
1−γD

.

The power utility specification adds an additional parameter, the relative risk-aversion

coefficient γD, to the parameters θ inherited from the risk-neutral density. At this stage,

all parameters are known except γD. To estimate its value, the approach by Liu et al.

(2007) is followed by maximising the log-likelihood of asset price outcomes:

max
γD

m∑
i=1

log(fP,i(ST,i | θ̂i, γD)) (3.2.9)

Liu et al. (2007) shows that the transformation (3.2.8) applied to the mixture-lognormal

density function under the assumption of a power utility for modelling investors’ prefer-

ences results in another mixture-lognormal density. The transformed parameter values of

the new mixture-lognormal density are as follows:

θ = (F1, F2, σ1, σ2, w), (3.2.10)

F ?
i = Fiexp(γDσ

2
i T ) for i = 1, 2 and (3.2.11)

1

w?
= 1 +

1− w
w

(
F2

F1

)γD
exp(0.5(γ2D − γD)(σ2

2 − σ2
1)T ). (3.2.12)

The transformation from risk-neutral to objective density only changes the values for the

mean and the portfolio weight of the process but leaves the volatility of the process unaf-

fected by the transformation.

Beyond the mixture-lognormal density, the simple case of a lognormal density is con-

sidered. It is a special case of the mixture-lognormal density when w = 1. In this case, the

right hand side of (3.2.4) vanishes and only the simple Black (1976) model remains with

θ = [F1, σ1]. The risk-neutrality constraint reduces to F = F1, which leaves σ1 as single
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free parameter. Since the results for the lognormal density are embedded in the mixture

case, they are not discussed separately.

3.2.2.2 Binomial Tree

To allow for greater flexibility, a non-parametric density is employed. This choice allows

to obtain risk-neutral probabilities without making a priori assumptions on the functional

form of the risk-neutral density. It is also better in adapting to possible complex expec-

tations of market participants. The here considered approach goes back to Rubinstein

(1994), who proposes the use of a binomial tree. The resulting risk-neutral density is dis-

crete with n+ 1 possible values for the stock price Sj at expiry date T with corresponding

probabilities p = (p0, p1, ..., pn). The entirety of values define the risk-neutral density.

The density is constrained by p0, p1, ..., pn > 0 and
∑n

j=0 pj = 1. As in the previous

section, the density is priced risk-neutral and the expected value of the density needs to

equal the future price F at estimation
∑n

j=0 pjSj = F (risk-neutrality constraint). Under

those conditions the option pricing formula in (3.2.3) becomes:

cm(K) = e−rT
n∑
j=0

max(Sj −K, 0)pj. (3.2.13)

where the density moments are obtained by:

E[SnT ] =
n∑
j=0

Snj pj. (3.2.14)

The initial values for Sj and p are chosen by the standard binomial tree in Cox et al.

(1979) using the obtained implied volatility from the lognormal density in section 3.2.2.1.

To estimate the vector p, Jackwerth and Rubinstein (1996) propose a range of different

objective functions. However, they recommend to minimise a smoothness function g of

the risk-neutral density in combination with the fit of observed and model-based option

prices G as in (3.2.6). Here the recommended approach is followed, which requires to
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minimise:

min
p
g(p) +mG(p), where (3.2.15)

g(p) =
n∑
j=0

(pj−1 − 2pj + pj+1)
2. (3.2.16)

with p−1 = pn+1 = 0. After visually checking the densities, a trade-off parameter of

m = 0.0005 is chosen. In the application it provides the best trade-off between smoothness

and fit of option prices without overfitting the observed option prices. Subsequently, the

density is transformed as in (3.2.8). The expression changes to the discrete case:

fP (ST ) =

pT
u′(ST )∑n
j=0

pj
u′(Sj)

=
SγDT pT∑n
j=0 S

γD
j pj

. (3.2.17)

where pT is the probability closest to the final asset price outcome ST . Performing the

transformation results in another binomial tree. There is no closed form solution as it is

the case for the (mixture-) lognormal density due to the non-parametric shape.

3.2.2.3 Moment Conversion

The state variables are referring to relative changes in the underlying asset ("returns").

Using (3.2.5) and (3.2.14) the central moments of the asset price densities are obtained.

These asset price moments need to be transformed into asset return moments. The trans-

formation is performed from the perspective of the investor solving the portfolio alloca-

tion. The current stock price is chosen as as reference point for computing the moments

of the returns since the final profit of the investor is the difference between the price today

and next rebalancing date. It should also be noted that the stock dividend accrued over

the time interval also needs to be added to the expected return as part of the investor’s

earnings over the holding period. This procedure is not straightforward as the dividend is

not incorporated in the expected value of the objective density. The forward price lowers

when anticipating dividend payments. Therefore, the expected value needs to be adjusted.

The variance of the return density is obtained applying the same procedure but related this
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time to the squared stock price. This leads to the following expressions for the conditional

expected return and variance:

Et[rt+1] = log

(
Et[St+1]

St

)
+ qt (3.2.18)

V art[rt+1] =
V art[St+1]

S2
t

(3.2.19)

3.2.3 Portfolio allocation

The proposed state variables are evaluated within the framework of Campbell and Viceira

(1999). These authors assume an infinitely-lived investor with Epstein and Zin (1989) and

Weil (1989) preferences who maximises the expected utility of future wealth. Thereby,

the investor seeks an optimal allocation between a single risk-free asset with constant log

return rf , a single risky asset with log return rt+1 and innovations ut+1 in the risky asset’s

return:

rt+1 − Et[rt+1] = ut+1. (3.2.20)

The innovations are normally distributed with zero mean and variance σ2
u. The expected

excess log return on the risky asset is state dependent and is determined by a single state

variable xt:

Et[rt+1]− rf = xt (3.2.21)

The state variable xt or risk-premium follows a mean-reverting AR(1) process with mean

µ and persistence φ. The innovations ηt+1 are conditionally homoskedastic and normally

distributed with zero mean and variance σ2
η:

xt+1 = µ+ φ(xt − µ) + ηt+1 (3.2.22)

The two innovations ηt+1 and ut+1 are correlated with each other by σηu. The choice to

model the risk-premium process with an AR(1) is rooted in the characteristics of the under-

lying data. The empirical work in section 3.4 and 3.5 relies on monthly observations since
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option prices cannot be observed for any expiry date. Therefore, it is practical to assume

that the underlying stochastic process is in discrete time. The lag of one for the autore-

gressive process has been confirmed taking into account appropriate testing procedures.

An alternative to the assumed process would be to work in continuous time applying an

Ornstein-Uhlenbeck process in the style of Chacko and Viceira (2005). It allows to model

the risk-premium process continuously as it is the case in financial markets. However,

it would complicate the here intended analysis without a clear benefit for the proposed

research agenda. Therefore, this path is not followed.

Based on these assumptions, Campbell and Viceira (1999) guess a form of the optimal

consumption and portfolio policies. They suggest that the state variable xt is linear in the

optimal portfolio weight and quadratic in the log-consumption-wealth ratio:

αt = a0 + a1xt (3.2.23)

ct − wt = b0 + b1xt + b2x
2
t (3.2.24)

This results in unknown parameters [a0, a1, b0, b1, b2]. The parameters defining the linear

portfolio policy are determined by the following expression:

a0 =
1

2γP
− b1

1−Ψ

γP − 1

γP

σηu
σ2
u

− b2
1−Ψ

γP − 1

γP

σηu
σ2
u

2µ(1− φ) (3.2.25)

a1 =
1

γPσ2
u

− b2
1−Ψ

γP − 1

γP

σηu
σ2
u

2φ, (3.2.26)

where γP and Ψ are the risk-aversion and elasticity intertemporal substitution from the

Epstein-Zin utility. The remaining parameters of the log consumption wealth ratio are

retrieved by a recursive non-linear system. The exact definition of the terms and the recur-

sive procedure to obtain [b0, b1, b2] is outlined in Campbell and Viceira (1999) and would

exceed the scope of this chapter.

The expression for the optimal portfolio weight αt consists of two components to cap-

ture the asset demand. The first term defines the myopic asset demand. The myopic

component is proportional to the risk-premium and inversly proportional to the volatil-

ity and risk-aversion. The second component captures the intertemporal hedging demand

going back to Merton (1969), Merton (1971) and Merton (1973). The covariance term



66 3.2 Methodology

between the two innovations has a crucial impact on the intertemporal hedging demand.

The higher the covariance the better the ability of the risky asset to hedge against changing

investment opportunities over time. The weights have two special cases: 1. When returns

are unpredictable the hedging demand is zero and σηu = 0; 2. When γp = 1 the portfolio

weight reduces to the myopic component.

To solve the allocation problem the parameters [µ, φ, σ2
u, σ

2
η, σηu] are of central interest.

They are inferred from the suggested option implied state variables. As in Campbell and

Viceira (1999), they are estimated by restricted VAR(1) via OLS with the state variable as

predictor: (
rt+1 − rf,t+1

xIt+1

)
=

(
θ0

β0

)
+

(
θ1

β1

)
xIt +

(
ε1,t+1

ε2,t+1

)
(3.2.27)

where (ε1,t+1, ε2,t+1) v N(0,Ω) and

Ω =

[
Ω11 Ω12

Ω21 Ω22

]
.

Subsequently, the required parameters are retrieved as following: µ = θ0 + θ1β0/(1−β1),

φ = β1, σ2
η = θ21Ω22, σ2

u = Ω11 and σηu = θ1Ω12.

In a last step, the parameters are normalised defining the optimal portfolio and con-

sumption rules as in Campbell and Viceira (1999). After the normalisation, the inter-

cepts of the optimal policy functions are the optimal allocation to stocks and the optimal

consumption-wealth ratio when the expected excess return is zero. In this case the risky

asset has a risk-premium of zero and a myopic investor would not allocate any wealth to

it. Therefore, any asset demand would be generated by the intertemporal hedging demand.

The normalisation is achieved by setting a∗0 = a0−a1(σ2
u/2), b∗0 = b0−b1(σ2

u/2)+b2(σ
4
u/4)

and b∗1 = b1 − b2σ2
u. The parameters a1 and b2 are not affected by this transformation.
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3.3 Evaluation Criteria

3.3.1 Data

The empirical application is based on the S&P 500 Index (SPX). The observation period

ranges from 20th January 1996 until the 15th April 2016. In the empirical application

the time series is split into the subprime crisis period from 18th August 2007 until 19th

December 2009 and the period after the crisis from 19th December until 15th April 2016.

Within these periods the option expiry dates schedule the observation dates and allocation

periods. Relevant option expiry dates are the third Friday each month. In order to avoid au-

tocorrelation problems, as discussed in Bliss and Panigirtzoglou (2004), estimation lengths

are fixed at 4 weeks prior to expiry. This ensures that periods are non-overlapping. Fol-

lowing the procedures outlined in section 3.2.2, the risk-neutral density is estimated using

the closing price on the option observation date. This results in 243 periods.

Mean Median
Standard

deviation
Minimum Maximum

Amount 58.94 44 34.27 16 185

Deep OTM Call OTM Call ATM Options OTM Put Deep OTM Put

F/K < 0.90 0.90− 0.97 0.97− 1.03 1.03− 1.10 1.10 <

Amount 3.23 15.75 22.9 24.21 33.91

Table 3.1: Summary statistics of at-the-money and out-of-the-money options fulfilling the con-

ditions outlined in this section. The option statistics are displayed by moneyness in % based on

each observation date. The amount of options vary quite strongly due to the increasing amount of

available option prices over the past years.
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In the empirical application only European options are considered that are always writ-

ten on the underlying spot market index. The structure of European options allows to as-

sume that they are written on the corresponding forward, as discussed in Liu et al. (2007).

Options as well as future prices are obtained end of day from the Chicago Mercentile

Exchange. The obtained option prices are checked against no arbitrage constraints. The

options passing the no arbitrage constraints are then selected based on their moneyness.

Moneyness is defined as the ratio between current forward and strike price. To ensure

prices are accurate only options that are at-the-money and out-of-the-money are taken into

account. For in-the-money options it can be observed that they are less frequently traded

and therefore prices might not reflect market expectations. To qualify as eligible option the

moneyness for a call-option (put-option) needs to exceed (be below) 0.97 (1.03). Lastly,

the option price itself is checked. If there is no bid price quoted the option is dropped from

the sample since it cannot be actively traded any more. Furthermore, any options with a

price of less than 3/8 are excluded. Too low prices might not reflect the true value of the

option due to the proximity of tick sizes. The eligible option prices are summarised in

table 3.1. If necessary, option prices are transformed via the put-call parity relationship.

In case there exists a call- and put-option for the same strike the average call price is used.

Corresponding future prices only exist for quarterly expiry dates, namely March, June,

September and December for every year. Since options mature monthly, the closest future

price is interpolated to match the monthly expiry date. This is performed using the fol-

lowing definition of the future price Ft = Ste
(rf,t−qt)T . The risk-free rate rf is retrieved

via bootstrapping from zero-coupon bonds. The dividend yield qt is calculated using the

total dividend on the underlying index over the previous year divided by the current stock

price. Taking the logs of qt provides the log dividend price ratio pt − qt in the style of

Campbell and Viceira (1999). Lastly, ETF bid and ask prices for the the SPDR S&P 500

ETF are obtained to evaluate the portfolio allocation. The ETF was selected based on the

fund inception date and size.
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3.3.2 Performance Measures

The performance of the proposed state variables is evaluated based on monthly out-of-

sample returns rP,t of the portfolio allocation. To estimate the parameter values for the

portfolio allocation in section 3.2.3 and risk-aversion γD in section 3.2.2, a rolling and

recursive window estimation is applied. The transformation using a rolling window takes

into account monthly periods of 36, 48, 60, 72, 84, 96, 108 and 120. The empirical ap-

plication relies on the transformation using 120 periods in order to accurately reflect the

long-term dynamics within the portfolio allocation. Shorter interval tend to lack reason-

able parameter estimates.

The performance of the risky asset is based on Exchange Traded Funds (ETF). Using

an ETF to evaluate the performance of the portfolio allocation comes with multiple advan-

tages compared to using index value. Most striking is that it replicates the underlying asset

in an actually traded portfolio with no fractions of shares. Furthermore, paid dividends and

its taxation are directly reflected in the price. Trading costs and management fees are also

incorporated into the ETF’s price. Beyond the trading costs, bid and ask prices are used to

implement the suggested portfolio allocation.

The out-of-sample returns of the suggested portfolio allocation are calculated on the

basis of a theoretical fund with a value of one. On the basis of the optimal weights, shares

are bought using the ask price and sold using the bid price. Depending on whether the

portfolio is long (short) in the risky asset, the funds’ value is determined by multiplying

the shares with the bid (ask) price. The remaining share in the risk-free asset is interest-

bearing using the corresponding risk-free rate. In case the portfolio weight in the risky

asset exceeds one, interest is charged to finance the leverage. The portfolio weight in

every period is adjusted for the difference in weight between t− 1 and t. Furthermore, the

portfolio weight is restricted in the interval of [−1, 2] to avoid unrealistic leverage.

The resulting out-of-sample returns are first standardised to 4-week horizons before

any performance measures are calculated. This is necessary since option expiry dates are

not necessarily connected to each other. If the estimation horizon is not connected, it is



70 3.3 Evaluation Criteria

assumed that the investor holds the portfolio until the next rebalancing date. Based on

the standardised out-of-sample returns, the performance of the proposed state variables is

evaluated using four different criteria: I) Sharpe ratio; II) Sortino ratio; III) CAPM; and

IV) portfolio turnover. They are calculated over a series of N realisations. The annualised

Sharpe ratio (SR) using the mean return µ and variance σ2 is determined as following:

µ̂ =
1

N

N∑
t=1

rP,t − rf,t (3.3.1)

σ̂2 =
1

N − 1

N∑
t=1

(rP,t − µ)2 (3.3.2)

ŜR =
365

28

µ̂√
σ̂2

(3.3.3)

The obtained out-of-sample Sharpe ratios are futher tested. The Sharpe ratio are com-

pared by the proposed test of Ledoit and Wolf (2008). They provide a studentized time

series bootstrap test for equality of Sharpe ratios. For the analysis, 1, 000 bootstrap re-

samples and an expected block size equal to 5 is applied as in DeMiguel et al. (2014). All

approaches are tested against the simple investment into the underlying index.

To gain further insight into the relative performance of the investment strategies, the

Sortino ratio is computed. This ratio extends the Sharpe ratio by only considering the

downside volatility σ2
adj and therefore puts emphasis on returns falling below the risk-free

rate:

σ̂2
adj =

1

N − 1

N∑
t=1

(min(0, rP,t − rf,t))2 (3.3.4)

ŜoR =
365

28

µ̂√
σ̂2
adj

(3.3.5)

The CAPM is evaluated assuming that the returns of the underlying risky asset are the

market returns rm. The values for alpha are annualised by multiplying them by 365
28

:

rP,t − rf,t = âlpha+ b̂eta(rm,t − rf,t) (3.3.6)
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Furthermore, the obtained values for alpha are tested applying a simple t-test to check

whether the constant term alpha is significantly different from zero.

To analyse to what extent the portfolio weights need to be adjusted when moving from

t to t + 1 the average portfolio turnover per holding period is calculated. It is the average

absolute difference in the risky asset’s weight α between two consecutive rebalancing

dates:

Turnover =
1

N − 1

N−1∑
t=1

|αt+1 − αt| (3.3.7)

Lastly, the portfolio allocation itself is evaluated to gain insight on the effectiveness of

the myopic and hedging demand component. This is performed by restricting the portfolio

rule while adjusting optimally for consumption. This procedure is outlined in detail in

Campbell and Viceira (1999). Three different restricted portfolio rules are considered:

First, restriction of the timing component. This is achieved by setting the state variable xIt
in (3.2.23) to the unconditional expected log excess return µ. Second, restriction of the

hedging demand. Ignoring the hedging demand leads to a myopic portfolio rule. This is

accomplished by setting the covariance σηu to zero. Third, both components are restricted

with xIt = µ and σηu = 0.

3.3.3 Benchmark Approaches

The suggested option implied state variables are benchmarked against three general meth-

ods. I) full investment into the risky asset; II) the log dividend price ratio (dt − pt) as in

Campbell and Viceira (1999); and III) the historical approach (hist).

The first benchmark approach allocates all available funds into the risky asset and does

not make any adjustments over time. This simple strategy is chosen since it is far more

easy to implement compared to the here proposed methodology. The second benchmark

refers to financial ratios. They are commonly applied as state variables in a portfolio allo-

cation context. However, they are rarely compared against the option implied approach in
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the density forecasting literature. Therefore, the option implied state variables are bench-

marked against the log dividend price ratio as initially proposed by Campbell and Viceira

(1999). The log dividend price ratio enters the portfolio allocation directly as a predictor in

(3.2.27). Lastly, a historical approach is applied as benchmark. It is a classic choice from

the density forecasting literature and relies on a series of asset price returns. Making as-

sumptions about the return and volatility dynamics allows to obtain conditional moments.

Thereby, the historical information enters the portfolio allocation in the same way as for

the option implied approach. The conditional mean and variance is retrieved from the pre-

viously specified processes, which then enter the allocation problem via the two proposed

state variables in (3.2.1) and (3.2.2). The reported values in the empirical application rely

on a rolling estimation window of ten years, which is matched with the option observation

dates. The return process is assumed to follow an autoregressive of order one - AR(1)

process. For the conditional volatility the GJR asymmetric GARCH process is proposed

going back to Glosten et al. (1993) with t-distributed white noise ut+1. This model reacts

differently to positive and negative shocks to the return process and extends very naturally

standard GARCH models. The proposed location-scale model for the historical returns is:

rt+1 = µ+ φrt + ut+1

√
ht+1. (3.3.8)

ht+1 = w + (α + βIt)ε
2
t + δht (3.3.9)

It =

0, if rt ≥ 0

1, if rt < 0
(3.3.10)

where w, α, β, δ > 0 and α+ β
2

+ δ < 1. It is important to mention that the dividend yield

needs to be added to the conditional mean since it reduces the index value. Further, alterna-

tive specifications of the historical approach are employed including normally distributed

white noise process, constant return process with φ = 0 and a symmetric specification of

the volatility process. However, the impact on the results is of minor magnitude, which is

why only the outlined model above is reported.
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3.4 Estimation

This section presents and discusses the estimation results of the risk-neutral parameters,

the transformation into the subjective density and the estimation results of the historical

approach. Following this, the behaviour of parameter values of portfolio allocation is

explored across different indices, state variables and methods. Results presented in this

section take into account the entire sample for retrieving the necessary parameter values

of the portfolio allocation.

3.4.1 State variables

Table 3.2 presents the key summary statistics of the estimated values. To ensure that the

squared error converges to its minimum, multiple initial values have been applied into the

non-linear optimisation problem. Note that the squared errors of the lognormal density are

not displayed since the free parameter σ is obtained directly from the interpolation of the

implied volatility of the two closest at-the-money options. This guarantees that the density

precisely fits the data.

Method
G × 100 g × 1000

Mean Median
Standard

deviation
Mean Median

Standard

deviation

Mix-log 16.698 11.646 19.193

Bin-Tree 2.601 1.305 4.419 0.131 0.077 0.167

Table 3.2: Risk-neutral density estimation errors

Once the risk-neutral parameter values are estimated, the relative risk-aversion param-

eter γD of the representative investor can be derived. Unlike the estimation of the risk-

neutral density, the relative risk-aversion is estimated using all observations within the
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rolling window. The relative risk-aversion is updated on each new observation date before

the state variable at time point t is determined. The statistics are reported in table 3.3 and

refer to the 10-year rolling window estimation. Applying the lognormal density obtains

average estimates for the relative risk-aversion of 1.163, for the mixture-lognormal density

1.115, while for the binomial tree of 1.053, which are consistent across methods.

Method Mean Median
Standard

deviation
5th Perc. 95th Perc. Min Max

Log 1.163 1.276 0.959 -0.468 2.262 -0.823 2.388

Mix-log 1.115 1.161 0.861 -0.307 2.131 -0.586 2.258

Bin-Tree 1.053 1.102 0.772 -0.223 1.951 -0.458 2.052

Table 3.3: Statistics of risk-aversion estimates for the 10-year rolling window.

Further, it can be observed that the estimates of the SPX are consistent with results

from other related studies. Specifically, Shackleton et al. (2010) report an average MSE

for the risk-neutral density of 0.11 with median 0.03 and standard deviation of 0.21. Bliss

and Panigirtzoglou (2004) obtain a relative risk-aversion of 4.08 for the period from 1992

until 2001, whereas Liu et al. (2007) retrieve a value of 1.85 for the period from 1993

until 2003 for the FTSE 100. The discrepancies in these statistics can be attributed to

the different time periods covered in each study. In Bliss and Panigirtzoglou (2004) the

authors exclude most of the bearish market period starting in 2000, which can explain why

their risk-aversion estimates are found to be so high. Similarly, Liu et al. (2007) utilize a

sample, which covers most of the bearish period resulting in a lower risk-aversion. Even

though the obtained average risk-aversion coefficients fall below these reported values,

they are reasonable as the obtained estimates cover in large parts both the dotcom bubble

and the financial subprime crisis. Losses in the underlying indices have a strong impact

on the risk-aversion estimates, which results in average values below the values reported

in the existing literature.
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Parameter Mean Median
Standard

deviation

µ 0.043 0.047 0.015

φ -0.017 -0.007 0.039

ω 0.011 0.010 0.004

δ 0.927 0.929 0.017

α 0.005 0.000 0.010

β 0.115 0.124 0.045

d.o.f. 8.504 7.889 2.580

Table 3.4: Parameter statistics for the historical approach.

3.4.2 State variable Dynamics

Table 3.5 reports the estimation results for the restricted VAR(1) and derived model for

the SPX. The obtained results utilize the entire sample rather than using a rolling windows

to ensure that results can be displayed in a coherent manner.

The R2 of the first equation in the restricted VAR(1), which models the excess re-

turn in the next period, indicates similar results (up to two decimal places) between the

option implied and the historical approach. This may come as a surprise since the den-

sity forecasting literature emphasises the strength of option implied forecasts compared to

the historical approach. Therefore, one may expect a distinct higher R2 compared to the

historical approach. One characteristic that may affect these values may be the different

levels of persistence as will be discussed in the next paragraph. Hence, comparing the

models merely on values of R2 may not help to obtain a clear picture. Another possible

attribute is that the strength of the option implied approach lays in the asymmetric shape

of the underlying probability distribution. The asymmetry of the underlying distribution

is not incorporated in the state variable, which might negatively effect the predictability.
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E
stim

ation
Restricted VAR(1) Derived Model

xIt Method

(
θ0

β0

) (
θ1

β1

) [
Ω11 Ω12

Ω21 Ω22

]
R2 µ φ

[
σ2
u σuη

σuη σ2
η

]
ρ

RP Log

(
0.000

0.002

) (
0.487

0.679

) [
2.455E − 03 −1.719E − 05

−1.719E − 05 2.462E − 05

] (
0.009

0.679

)
0.002 0.679

[
2.455E − 03 −8.378E − 05

−8.378E − 05 5.844E − 06

]
-0.699

Mix

(
−0.001

0.002

) (
0.702

0.691

) [
2.450E − 03 −1.430E − 04

−1.430E − 04 1.646E − 05

] (
0.011

0.477

)
0.002 0.691

[
2.450E − 03 −1.004E − 04

−1.004E − 04 8.107E − 06

]
-0.712

Bin-tree

(
0.000

0.002

) (
0.403

0.652

) [
2.458E − 03 −1.780E − 04

−1.780E − 04 2.786E − 05

] (
0.007

0.424

)
0.002 0.652

[
2.458E − 03 −7.196E − 05

−7.196E − 05 4.520E − 06

]
-0.680

Hist

(
−0.005

0.000

) (
1.069

0.972

) [
2.454E − 03 5.856E − 06

5.856E − 06 6.336E − 07

] (
0.009

0.940

)
0.003 0.972

[
2.454E − 03 6.259E − 06

6.259E − 06 7.238E − 07

]
0.149

MPR Log

(
0.010

0.007

) (
−0.193

0.818

) [
2.459E − 03 2.318E − 04

2.318E − 04 5.833E − 05

] (
0.007

0.668

)
0.002 0.818

[
2.459E − 03 −4.478E − 05

−4.478E − 05 2.176E − 06

]
-0.612

Mix

(
0.011

0.007

) (
−0.223

0.823

) [
2.459E − 03 2.086E − 04

2.086E − 04 4.648E − 05

] (
0.007

0.676

)
0.002 0.823

[
2.459E − 03 −4.653E − 05

−4.653E − 05 2.313E − 06

]
-0.617

Bin-tree

(
0.011

0.006

) (
−0.241

0.827

) [
2.457E − 03 2.237E − 04

2.237E − 04 4.822E − 05

] (
0.008

0.682

)
0.002 0.809

[
2.457E − 03 −5.386E − 05

−5.386E − 05 2.795E − 06

]
-0.650

Hist

(
0.008

−0.023

) (
0.076

0.688

) [
2.462E − 03 1.783E − 03

1.783E − 03 3.300E − 03

] (
0.006

0.476

)
0.002 0.688

[
2.462E − 03 −4.148E − 05

−4.148E − 05 1.786E − 06

]
-0.625

dt − pt

(
0.121

−0.100

) (
0.030

0.975

) [
2.419E − 03 −2.419E − 03

−2.419E − 03 2.721E − 03

] (
0.023

0.950

)
0.002 0.975

[
2.419E − 03 −7.141E − 05

−7.141E − 05 2.371E − 06

]
-0.943

Table 3.5: Estimation results for the entire sample period for the restricted VAR and resulting dynamics of the risk-premium

process.
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Analysing the state variables unveils that there are state variable specific characteristics

that become visible. The option implied approach attains higher values of the R2 using

the risk-premium as state variable compared to the market price of risk. In line with this

observation is the historical approach. Nevertheless, compared to the log dividend price

ratio both state variables fall behind independently of the underlying data type.

Comparing the dynamics of the two equations within the VAR(1) suggests that the

bottom equation, describing the dynamics of the state variable, obtains far lower values

of the R2. This does not come as a surprise since the first equation aims to predict the

risk-premium in the next period, which is known to be a difficult task.

Apart from the R2, the persistence of φ in the derived AR(1) model provides useful

insights about the dynamics of the applied state variables. The option implied approach

using the risk-premium as state variable obtains overall the lowest values of persistence.

This can be attributed to the sole dependence on the observed option prices at observation

date, which make the option implied risk-premium more reactive.

Compared to the risk-premium, the market price of risk obtains higher values of persis-

tency. The higher level of persistence is most likely a consequence of the relation between

the risk-premium and volatility. High volatility normally implies a high risk-premium and

vice versa. Therefore, the ratio between both factors is relative stable compared to the

single use of the risk-premium.

The historical approach diverges from these observations. The risk-premium is highly

persistent, which can be traced back to the estimation method using a historical time se-

ries of asset price returns. The model simply extrapolates the past returns into the future

resulting in a low variation of the risk-premium. Opposite to the risk-premium is the mar-

ket price of risk. Here the persistence is lower and discrepancies in the results may be

attributed to the different model specifications. In the option implied approach the risk-

premium is strongly connected to the variance priced in the options. For the historical

approach this is not directly the case. In the here applied model there is no direct link

between the risk-premium and volatility. Both factors are less related to each other, which

promotes to reduce persistence.
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Lastly, the estimation results of the log dividend price ratio are in line with the reported

values in Campbell and Viceira (2000) Erratum Table 1. TheR2 is the highest compared to

the alternative methods and state variables. Furthermore, the log dividend price ratio has

a high persistence in line with empirical observations and the expected log excess return

µ lines up with the alternative methods. Overall, values are similar to the initial paper of

Campbell and Viceira (1999).

3.4.3 Portfolio weight characteristics

As briefly discussed in section 3.2.3 there are two components of the portfolio weight,

namely myopic and hedging demand. While myopic demand derives entirely from ex-

pected returns and variance σ2
u, hedging demand component values depend on the covari-

ance σηu between the innovations in the state variable ηt+1 and innovations in the risky

asset’s return ut+1. If σηu equals zero the demand for the risky asset is purely derived from

the myopic component. Therefore, to effectively hedge against changes in the investment

opportunity set, σηu should be of high magnitude.

In addition, the sign of σηu also plays a key role how the hedging demand contributes

to the portfolio weight. In cases where σηu is negative (positive) the hedging demand

increases (decreases) the weight in the risky asset. As discussed in Campbell and Viceira

(1999), the case where σηu < 0 is of empirical relevance. Only when the latter holds, the

long term investor maintains a positive proportion in the risky asset when expected returns

are zero. This characteristic holds true in the performed analysis except for the historical

approach using the risk-premium as state variable. This might be a result of the slow

adjustment of the historical approach. Since the historical returns are simply extrapolated

into the future, this method lags anticipating changes in the market. This is ultimately

reflected in a low magnitude and positive covariance σηu.

However, to further analyse how the covariance σηu impacts the portfolio allocation

the average portfolio weight is studied by setting the state variable xt to its long run log

excess return µ + σ2
u

2
. Table 3.6 displays the average portfolio weights and contribution
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of the hedging demand. In the here considered application the covariance σηu is mostly

negative, increasing the average share in the risky asset.

Comparing the state variables with each other shows that the risk-premium and market

price of risk obtain similar results. Even though the share of hedging demand varies,

the resulting average weight is quite stable. However, comparing the risk-premium and

market price of risk with the log dividend price ratio shows some tremendous differences.

Overall the average portfolio weight exceeds the alternative methods by more than 30%.

Furthermore, the share of hedging demand on the overall portfolio weight is far higher. To

explain this finding the correlation ρ between innovations in the state variable and returns

provides good insight. It gives an indication how effectively the state variable can be used

to hedge against changes in investment opportunities. Clearly, the log dividend price ratio

is ahead of the alternative approaches displaying the highest values of correlation.

The risk-aversion parameter γP impacts the average weight in the risky asset in the

same way for all methods. The higher the risk-aversion the lower the average weight in

the risky asset. This finding is not a surprise since a more risk-averse investor dislikes

uncertainty and therefore allocates a lower fraction into the risky asset. The influence

of the elasticity of inter-temporal substitution ψ is negligible for the here proposed state

variables. The weight does not change in any meaningful way. Therefore, the empirical

findings in section 3.5 only report the case when ψ = 0.5. In contrast, the log dividend

price ratio behaves as outlined in Campbell and Viceira (1999). An increase in ψ increases

the portfolio weight in the risky asset. However, the impact is considerably smaller com-

pared to the risk-aversion γP .

These characteristics are reflected in the portfolio weights over time. Appendix B.2

displays the variation of the hedging demand and myopic component. For the option

implied and historical approach the majority of variation in the weight of the risky asset

is a consequence of the myopic demand. Thereby, the use of the risk-premium leads to

stronger spikes in the risky portfolio weight compared to the market price of risk. The

hedging demand is of small magnitude. Comparing the different approaches with each

other unveils that the highest variation in the hedging demand component is achieved
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xIt Method γP

Mean allocation (in %): Hedging demand (in %):

E.I.S E.I.S

0.25 0.5 0.75 0.25 0.5 0.75

RP Log 2 74.51 74.50 74.49 5.35 5.34 5.33

4 38.38 38.37 38.36 8.12 8.09 8.07

6 25.85 25.84 25.83 9.05 9.03 9.00

Mix-log 2 75.50 75.49 75.48 6.67 6.66 6.65

4 39.21 39.20 39.19 10.16 10.13 10.10

6 26.49 26.48 26.47 11.34 11.31 11.27

Bin-Tree 2 73.58 73.58 73.57 4.20 4.19 4.18

4 37.64 37.63 37.63 6.36 6.34 6.32

6 25.29 25.28 25.28 7.08 7.06 7.04

Hist 2 75.51 75.55 75.60 -3.75 -3.68 -3.62

4 37.11 37.16 37.21 -5.55 -5.41 -5.27

6 24.60 24.64 24.68 -6.13 -5.96 -5.80

MPR Log 2 72.75 72.75 72.74 3.89 3.88 3.87

4 37.15 37.14 37.14 5.88 5.86 5.85

6 24.94 24.94 24.93 6.55 6.53 6.51

Mix-log 2 72.74 72.74 72.73 3.95 3.94 3.94

4 37.15 37.15 37.14 5.97 5.95 5.94

6 24.95 24.94 24.94 6.65 6.63 6.62

Bin-Tree 2 72.22 72.22 72.22 3.44 3.44 3.43

4 36.78 36.78 36.77 5.20 5.19 5.18

6 24.67 24.67 24.67 5.79 5.78 5.76

Hist 2 70.24 70.24 70.25 -0.77 -0.76 -0.76

4 34.98 34.99 34.99 -1.16 -1.15 -1.14

6 23.29 23.30 23.30 -1.28 -1.27 -1.26

Classic Log(DivY) 2 133.32 135.69 138.42 44.26 45.23 46.31

4 116.16 118.38 120.85 68.01 68.61 69.25

6 104.16 105.45 106.80 76.22 76.51 76.81

Table 3.6: The left column displays the mean optimal percentage allocation to the risky asset.

The right column panel displays the mean hedging demand relative to the mean total demand. All

values are based processes reported in table 3.5 assuming different values of risk aversion γ and

elasticity of inter-temporal substitution Ψ.
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by the option implied methods using the risk-premium. Underlying the log dividend price

ratio, the variation in the weights changes fundamentally. The hedging demand component

has a far stronger influence on the variation of the weights. It can be well observed that the

hedging demand has on average positive fraction in the risky asset, which varies notably

depending on the state variable. Overall, the weights reflect the findings of the average

portfolio weights in table 3.6.

3.5 Empirical findings

The presented results are based on the 10-year rolling window,3 which is the most sen-

sible choice to maintain a sufficient long estimation window, while keeping an adequate

period length to analyse the out-of-sample performance. Two different evaluation periods

are considered: 1. Subprime crisis, from 18th August 2007 until 19th December 2009;

2. Post crisis, from 19th December 2009 until 15th April 2016. The subprime crisis pe-

riod is evaluated separately due to the exceptional market conditions. Following this, the

results of the statistical tests, impact of restricted portfolio rules and trade revenue on the

performance measures are presented.

3.5.1 Performance results

The out-of-sample Sharpe ratio, Sortino ratio and CAPM are reported in table 3.7. The

Sharpe and Sortino Ratios are stated in excess to the full investment into the risky asset.

The CAPM assumes that the risky asset is the market portfolio. The risky asset is in all

cases the SPX and is denoted as "Index".
3Other choices of window lengths went down to 3 years in yearly increments starting at the 10-year

rolling window. Beyond that a recursive window is considered with a fixed starting point but extending end.
Results are in most cases similar. The shorter the interval the more inconsistent and unstable are the results.
Furthermore, in case of short estimation windows, portfolio allocation of the long-term investor struggles to
pick up the market’s long-term dynamics.
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xIt Method γP
Sharpe Ratio (%) Sortino Ratio (%) Alpha (%) Beta (%)

Crisis After All Crisis After All Crisis After All Crisis After All

Index -53.3 66.0 15.0 -41.8 53.4 11.4

RP Log 2 37.5 12.5 19.9 21.8 41.0 28.4 -11.8 4.6 5.2 -54.5 27.9 -19.0

4 57.2 6.7 21.1 47.0 41.9 32.0 -5.5 3.0 3.9 -37.8 14.2 -15.6

6 59.6 6.3 15.7 50.1 40.9 24.3 -4.1 2.0 2.9 -31.2 9.6 -13.9

Mix-log 2 40.5 14.1 20.3 26.5 43.0 27.2 -11.8 4.8 5.4 -57.8 25.2 -22.0

4 60.1 7.4 22.4 50.3 46.9 32.3 -5.3 3.1 4.1 -39.6 14.3 -16.6

6 61.9 8.1 17.4 52.5 49.3 25.2 -4.0 2.1 3.1 -32.4 9.7 -14.5

Bin-Tree 2 34.8 18.6 24.0 21.4 46.8 30.0 -11.8 5.1 5.7 -51.8 31.6 -15.8

4 56.4 13.9 23.1 45.5 49.8 32.1 -5.4 2.9 4.0 -36.4 16.9 -13.7

6 60.3 14.5 17.9 50.4 52.0 25.5 -3.9 2.0 3.0 -30.4 11.4 -12.6

Hist 2 38.0 -7.8 20.5 22.9 5.3 26.7 -14.7 0.8 7.2 -70.3 99.5 1.0

4 42.4 -11.9 16.4 28.9 0.1 21.2 -9.3 0.2 4.3 -47.0 58.6 -2.7

6 30.5 -9.7 11.1 17.4 3.0 14.4 -8.1 0.3 2.5 -33.3 39.0 -2.8

MPR Log 2 -46.1 -0.3 -28.3 -46.9 24.3 -23.3 -20.5 1.0 -2.3 -1.5 41.2 18.2

4 -52.5 2.4 -33.0 -49.5 27.7 -26.7 -12.8 0.7 -1.5 -4.4 21.2 7.4

6 -51.6 3.4 -31.4 -49.2 29.3 -25.5 -8.4 0.5 -1.0 -2.9 14.2 5.0

Mix-log 2 -51.7 -0.9 -32.1 -48.0 23.8 -26.1 -21.1 1.0 -3.0 4.7 40.6 21.7

4 -56.9 1.9 -34.9 -50.8 28.4 -28.2 -12.6 0.6 -1.7 -0.8 20.9 9.4

6 -56.2 2.9 -33.4 -50.5 30.0 -27.1 -8.2 0.4 -1.1 -0.6 14.1 6.3

Bin-Tree 2 -55.8 1.1 -35.6 -49.0 25.7 -28.4 -22.1 1.2 -3.7 11.4 39.2 25.1

4 -60.6 4.0 -37.1 -52.1 30.5 -29.5 -12.7 0.7 -2.0 2.8 20.2 11.3

6 -60.2 5.0 -35.6 -52.0 32.2 -28.4 -8.3 0.5 -1.2 1.8 13.6 7.5

Hist 2 -46.1 -32.4 -48.8 -43.6 -22.0 -37.9 -25.3 -2.2 -7.1 23.1 49.3 36.2

4 -39.5 -29.4 -47.9 -41.0 -18.7 -37.7 -16.2 -1.0 -3.7 -0.2 24.6 11.5

6 -38.7 -28.4 -47.2 -40.6 -17.6 -37.2 -10.8 -0.6 -2.4 -0.7 16.4 7.3

dt − pt 2 -9.5 34.6 -10.7 -0.2 46.6 -8.5 -16.4 5.5 -1.7 94.4 79.3 90.4

4 -17.3 32.5 -27.1 -4.7 42.8 -19.3 -19.1 3.2 -6.0 98.4 53.7 82.3

6 -23.4 31.7 -36.2 -8.2 41.2 -25.0 -21.3 2.3 -8.2 100.8 41.2 78.7

Table 3.7: The panel displays the proposed out-of-sample performance measures of the SPX acting

as risky asset. The elasticity of inter-temporal substitution parameter is Ψ = 0.5 for all cases.
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First, the option implied state variables are analysed. Using option implied state vari-

ables leads to consistent excess performance relative to the underlying index for the period

after the crisis. This finding is consistent across evaluation metrics. Comparing both state

variables with each other favours the risk-premium. It exceeds consistently the perfor-

mance measures of the market price of risk. For the period during the crisis, the risk-

premium obtains large Sharpe and Sortino Ratios in excess to the index. In contrast, this

finding is not in line with the values of alpha, which are all negative. However, taking into

account the entire sample positive Sharpe ratios as well as positive alphas are obtained for

the option implied risk-premium

Second, different methods of obtaining the option implied state variables are explored.

To analyse if the flexibility of the underlying density has an impact on the results, three dif-

ferent density types are employed where each density has a different degree of flexibility.

The performance results do not strongly favour a particular method. For the risk-premium,

the more flexible density types tend to obtain slightly higher values as well as for the mar-

ket price of risk. However, these differences are minor in magnitude. This might not be

expected since the existing literature, for example Liu et al. (2007), favours more flexible

density types when trying to predict asset prices. However, the proposed methodology

only considers the first two moments. The advantage of option implied densities when

trying to forecast asset prices mainly stems from the non-normal shape. Therefore, higher

moments seem to be a main influence, which are not considered in the applied state vari-

ables shown here.

Third, the option implied approach is compared against the benchmark approaches.

The historical approach clearly lacks behind the option implied state variables taking into

account the sub-periods. Taking into account the entire sample the findings are less obvi-

ous for the case of the risk-premium but the option implied approach is still in favour. A

fundamental issue is the way the risk-premium is obtained. Since the estimation relies on

a past time series, expected returns are simply extrapolated into the future. Thus, the his-

torical approach lacks on reaction speed and any changes in market conditions cannot be

anticipated timely. Contrary to this observation is the log dividend price ratio. Compared

to the alternative benchmark approaches it obtains more convincing out-of-sample results.
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Its performance after the crisis is in excess to the underlying index and similar to the op-

tion implied approach. However, during the crisis results distinguish more strongly from

option implied approach. The alphas are on average far more negative. An interesting

insight is also provided by the values for Beta. The log dividend price ratio is on aver-

age more exposed to market risks compared to the option implied approach. Particularly,

during the crisis the beta of the log dividend price ratio is close to one, whereas for the

option implied approach Betas are negative or close to zero. When evaluating the entire

sample period suggest that the option implied risk-premium is the most promising state

variable. However, these findings need to be interpreted with care since the option implied

approach is dependent on the transformation from risk-neutral to subjective density. Par-

ticularly, the excess performance during the crisis is difficult to justify, which leads to the

high performance for the entire sample. Overall, it is not clear whether the option implied

approach is universally preferable relative to the log dividend price ratio.

3.5.2 Tests

In this section the differences in the out-of-sample Sharpe Ratio and CAPM-alphas are

tested. The Sharpe Ratio is evaluated for the difference between two Sharpe Ratios fol-

lowing the robust procedure based on bootstrap Confidence Intervals proposed by Ledoit

and Wolf (2008). This procedure is used to test the difference between the Sharpe ratio of

different applied portfolio allocations SRstrat against the simple investment into the index

SRindex. Therefore, the null hypothesis can be defined as H0 : SRstrat = SRindex. The

index is chosen as benchmark since it is a simple strategy that does not require a complex

method approach. Furthermore, beating the simple investment into the index with an alter-

native strategy seems to be a tough challenge. The alternative test for the CAPM-alpha is

a standard t-test with H0 : alpha = 0. The underlying index is chosen as market portfolio

in order to obtain the CAPM and corresponding test statistics.

The test results are presented in table 3.8. Overall, the statistical tests applied to the

Sharpe Ratio and CAPM-alpha do not suggest any statistical evident results. These may be

attributed to two sources of problems, which arise when evaluating the two performance
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measurements. First, the sample size is relatively small due to monthly observations. Sec-

ond, the variation in the portfolio allocation tends to be similar to the benchmark since

both are strongly dependent on the movements of the SPX. Therefore, statistical differ-

ences are harder to detect. Nevertheless, some tendencies can be observed in the reported

p-values that support the reported Sharpe ratios and CAPM results. The Sharpe ratio test

does not detect any differences for the option implied and historical approach. In contrast,

the log dividend price ratio attains the lowest p-values for the period after crisis taking

into account the methods producing an excess Sharpe ratio relative to the index. Next to

this finding the historical approach in combination with the market price of risk is close

to the 10% significance level. It underlines the low Sharpe ratio falling behind the index.

The t-test of the CAPM-alpha provides slightly more transparent results. For the option

implied approach using the risk-premium, the relevant p-values vary around the 20% level

for the period after the crisis. The same applies for the market price of risk during the

crisis period. However, the p-values for the log dividend price ratio are at the 10% level.

It confirms the high values for alpha in the period after the crisis. Taking into account

the entire sample tends to lead to no statistically evident results even though the sample

horizon is longer. However, the p-values are less varying through different specifications

of state variables and values of risk-aversion.

All in all, the test statistics confirm the strength of the log dividend price ratio. They

also somewhat confirm the poor performance of the historical approach. The test statistics

for the option implied approach just provide a tendency but no statistically evident results.

3.5.3 Suboptimal portfolio choice results

In order to analyse the influence of the components of the portfolio weights of the long-

term investor the portfolio rule is restricted while allowing the investor to optimally adjust

their consumption. Table 3.9 displays the performance changes in the Sharpe Ratio when

restricting the portfolio rules relative to the unrestricted policy. If the component is bene-

ficial the Sharpe Ratio should display a negative value indicating a reduction in the Sharpe

Ratio relative to the unrestricted rule.
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xIt Method γP
Sharpe Ratio test Alpha t-test

Crisis After All Crisis After All

RP Log 2 0.821 0.868 0.771 0.133 0.223 0.250

4 0.691 0.948 0.733 0.439 0.235 0.222

6 0.668 0.970 0.788 0.549 0.239 0.279

Mix-log 2 0.799 0.842 0.803 0.122 0.195 0.230

4 0.703 0.950 0.751 0.445 0.230 0.202

6 0.664 0.941 0.799 0.556 0.224 0.253

Bin-Tree 2 0.824 0.773 0.727 0.140 0.182 0.219

4 0.709 0.829 0.701 0.458 0.207 0.212

6 0.674 0.794 0.762 0.580 0.201 0.262

Hist 2 0.823 0.695 0.783 0.021 0.888 0.327

4 0.772 0.607 0.802 0.120 0.960 0.373

6 0.865 0.631 0.872 0.114 0.899 0.450

MPR Log 2 0.689 0.895 0.531 0.156 0.658 0.605

4 0.639 0.960 0.465 0.114 0.590 0.544

6 0.653 0.980 0.495 0.117 0.567 0.571

Mix-log 2 0.652 0.881 0.470 0.152 0.671 0.508

4 0.609 0.957 0.450 0.118 0.603 0.484

6 0.620 0.970 0.480 0.120 0.580 0.509

Bin-Tree 2 0.574 0.940 0.387 0.151 0.611 0.426

4 0.558 0.992 0.399 0.121 0.545 0.425

6 0.574 0.986 0.410 0.123 0.522 0.449

Hist 2 0.678 0.137 0.249 0.207 0.321 0.215

4 0.719 0.164 0.349 0.189 0.389 0.296

6 0.726 0.225 0.322 0.189 0.414 0.308

dt − pt 2 0.910 0.299 0.646 0.572 0.068 0.836

4 0.844 0.274 0.342 0.491 0.064 0.441

6 0.771 0.241 0.219 0.430 0.059 0.284

Table 3.8: The left column displays the Sharpe Ratio Test testingH0 : SRstrat = SRindex and the

t-Test testing H0 : alpha = 0. The elasticity of inter-temporal substitution parameter is Ψ = 0.5

for all cases.
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xIt Method γP

Hedging + no

timing

No hedging +

timing

No hedging +

no timing

Crisis After All Crisis After All Crisis After All

RP Log 2 -64.54 -20.37 -28.78 0.45 -0.54 -0.50 -60.86 -21.12 -29.20
4 -89.27 -11.87 -40.12 0.14 -1.50 -1.44 -85.13 -13.15 -41.17
6 -91.53 -10.44 -33.01 0.12 -1.57 -1.47 -86.76 -11.93 -43.28

Mix-log 2 -66.21 -22.26 -28.07 -0.18 -0.70 -1.27 -63.14 -23.12 -29.47
4 -85.41 -12.55 -27.15 -0.60 -1.76 -2.26 -84.66 -14.09 -34.49
6 -86.54 -12.22 -20.55 -0.50 -2.02 -2.31 -85.57 -14.03 -28.49

Bin-Tree 2 -60.65 -26.88 -33.29 -0.10 -0.38 -0.35 -57.67 -27.29 -32.97
4 -81.90 -19.69 -30.61 0.22 -0.28 -0.70 -81.14 -20.34 -35.06
6 -85.18 -19.46 -24.24 -0.54 -0.29 -1.03 -84.18 -20.20 -28.86

Hist 2 26.60 -22.59 -11.44 -0.66 -0.08 -0.26 27.44 -22.42 -10.92
4 30.16 -15.24 -6.67 1.66 -0.08 0.32 28.88 -14.92 -7.04
6 43.82 -16.35 -3.30 3.12 -0.03 0.91 42.88 -15.97 -3.47

MPR Log 2 15.19 -7.56 23.04 2.45 -1.27 -0.60 16.28 -8.92 20.11

4 23.20 -7.16 31.82 2.22 -2.12 -2.77 24.99 -9.42 27.37

6 22.88 -7.02 31.68 2.52 -2.43 -3.14 24.92 -9.63 26.71

Mix-log 2 21.45 -7.15 27.11 1.69 -1.34 -0.78 22.34 -8.53 24.29

4 28.39 -6.74 34.00 1.64 -2.24 -2.77 29.84 -9.06 29.66

6 28.33 -6.60 33.90 1.88 -2.57 -3.16 29.99 -9.27 29.03

Bin-Tree 2 25.30 -9.05 30.56 1.29 -1.54 -0.79 26.38 -10.61 27.74

4 31.78 -8.58 36.12 1.31 -2.57 -2.68 33.53 -11.21 31.76

6 31.89 -8.43 36.06 1.55 -2.96 -3.07 33.90 -11.46 31.17

Hist 2 14.94 23.85 41.64 0.42 -1.18 0.19 16.82 22.89 40.20

4 9.67 23.60 43.89 2.96 -1.75 0.74 12.75 22.17 41.96

6 9.27 23.51 44.17 2.41 -1.94 0.16 12.80 21.93 42.12

Classic Log(DivY) 2 -10.06 -32.69 -11.85 -11.19 7.36 -12.52 -10.52 -28.27 -16.29
4 -3.49 -29.34 -5.52 -22.83 11.79 -17.34 6.23 -23.16 8.22

6 1.35 -27.84 -1.98 -18.51 13.45 -9.11 13.93 -21.28 19.23

Table 3.9: The panel displays the difference in Sharpe Ratio between the restricted and unrestricted

portfolio rule. The elasticity of inter-temporal substitution parameter is Ψ = 0.5 for all cases.
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First, the timing component is restricted by setting it to the long run log excess return

µ. For the option implied risk-premium this results in performance losses independently

of the time period. It suggests that the option implied risk-premium benefits the timing

abilities of the portfolio allocation. Similar findings cannot be confirmed for the option

implied market price of risk. During the crisis the timing component has a negative impact

whereas after the crisis this is found to be positive. Thereby, the magnitude is far lower

compared to the option implied risk-premium. For the case of the historical approach

market timing seems to benefit only when considering the risk-premium as state variable

for the period after the crisis. For the log dividend price ratio the results are not as clear as

for the option implied risk premium but the performance tends to be negatively affected

when restricting the timing component.

Second, the hedging demand component is restricted. The option implied risk-premium

tends to obtain higher Sharpe Ratios values during the crisis and lower Sharpe Ratios val-

ues after the crisis. This result can be easily justified since the hedging demand is mainly

a fixed fraction in the risky asset. During the crisis restricting the portfolio rule reduces

the losses resulting in Sharpe Ratio gains. However, after the crisis the opposite is the

case and the Sharpe Ratio reduces. Using the option implied market price of risk as state

variable lines up with the option implied risk-premium. Remarkably, for the entire sample

the performance drops consistently for the option implied approach. Similar observations

can be made for the historical approach except for the entire sample. The results of the

log dividend price ratio are the opposite. When restricting the hedging demand the Sharpe

ratio declines, whereas after the crisis it increases. These findings might be an outcome

of the hedging demand on the fixed fraction a0 and the weight restrictions on the risky

asset. As shown in section 3.4.3 the share of the hedging demand is the highest for the log

dividend price ratio. Excluding the hedging demand might on average reduce the weights

to more moderate levels, which decreases the risk of large losses. All in all, the hedging

demand has a smaller impact on the Sharpe Ratio compared to the timing component. This

is due to its smaller share on the overall portfolio weight as shown in section 3.4.3.

The combination of no hedging demand and no timing yields roughly the net of per-

formance losses or gains for the previous two cases. Overall, the findings in this section
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strengthen the results of the option implied risk-premium. Particularly, the timing abili-

ties are consistent through periods and indices. However, in terms of magnitude, the log

dividend price ratio is ahead of the option implied risk-premium.

3.5.4 Trade revenue

In order to get an understanding how actively a strategy needs to be managed the trade

revenue is analysed. The trade revenue is defined as the average of the absolute difference

in weight from two consecutive holding periods. Table 3.10 summarises the trade revenue

for the considered evaluation periods and methods. Also the impact of trading costs is

studied. In order to get insights on how trading costs impact performance, the Sharpe

Ratio is analysed with and without trading costs. When trading costs are ignored the bid

and ask price is simply the mid price of the ETF. This does not avoid the management fees

incorporated in the ETF price itself but should still give an intuition of the influence on the

Sharpe Ratio.

Overall, the results suggest that during the crisis period portfolio revenues are higher

compared to the period after the crisis. This can be associated with the higher volatility

and quickly changing market conditions during the crisis. Also, there is a relation between

portfolio revenue and risk-aversion γP in the portfolio allocation. The higher the risk-

aversion is the lower the trade revenue. This link can be explained by the preferences of

the investor. If risk-aversion increases the willingness to invest into the risky asset lowers

and the weight in the risky asset reduces. As a consequence, adjustments in the portfolio

weight are of smaller magnitude and the portfolio revenue reduces.

Results on trade revenue indicate that the option implied approach tends to obtain

higher trade revenues compared to the historical approach. This finding is a consequence

of the estimation procedure. The historical approach provides more stable estimates,

which reduces the need to adjust big portions of the risky portfolio weight. In contrast, the

option implied approach is more reactive and therefore trade revenues are higher. Focusing

solely on state variables suggests that for the option implied approach, the trade revenue
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tends to be higher using the risk-premium as state variable. For the historical approach the

opposite occurs having higher revenues using the market price of risk. In contrast to these

findings, the log dividend price ratio tends to have a smaller trade revenue, which is also

more balanced.

In some cases the trade revenue increases with an increase in risk-aversion γP , which

contradicts the relation stated above. This is a by-product of the portfolio weight restric-

tion in the interval [−1, 2]. When the portfolio weight exceeds the limits in subsequent

periods no trade revenue is recorded. Since this is more likely for lower values of γP , the

trade revenue can be smaller compared to the higher values of γP .

Lastly, the impact of the trade revenue on the Sharpe Ratio is stronger during the crisis

than after the crisis. This is a consequence of the higher revenues during the crisis period.

The option implied and historical approach are in some cases heavily affected by trading

costs resulting in peak reductions in the Sharpe Ratio of −10.58 during the crisis. After

the crisis the impact reduces but is in a few cases still higher than the log dividend price

ratio. The more consistent trade revenues of the log dividend price ratio positively affect

the losses in the Sharpe Ratio. They have a maximum magnitude during the crisis of

−3.92. Overall the impact is not as strong as for the alternative methods.

3.6 Conclusion

This chapter explored the role of option implied information from a long-term optimal

asset allocation perspective. The main contribution is to propose the implied risk premium

based on the risk-neutral distribution of stock prices as the state variable that drives the

optimal portfolio weights. The investment strategy obtained from this parametric portfolio

policy is compared against alternative investment strategies. Two types of strategies were

considered. The first type constructs the optimal portfolio allocation from past information

obtained from historical data and is represented by location-scale time series models such

as the AR-ARCH family of models. The second type constructs the investment portfolio

using a linear parametric portfolio policy in which the dynamics of the portfolio weights
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xIt Method γP
Trade Revenue (%) Sharpe Ratio (%) diff.

Crisis After All Crisis After All

RP Log 2 41.20 23.93 28.79 -6.90 -0.90 -3.79

4 27.12 15.59 18.83 -4.55 -0.35 -2.52

6 20.40 10.54 13.32 -3.34 -0.36 -2.01

Mix-log 2 38.47 29.79 32.24 -8.99 -2.24 -5.43

4 26.08 18.61 20.71 -5.92 -1.75 -3.80

6 19.70 12.45 14.49 -4.36 -1.73 -3.02

Bin-Tree 2 39.58 27.17 30.66 -10.58 -2.62 -6.22

4 26.67 15.94 18.96 -6.71 -2.21 -4.40

6 20.46 10.65 13.41 -4.86 -2.18 -3.43

Hist 2 15.57 8.92 10.80 -1.99 -0.93 -1.19

4 11.65 10.67 10.94 -1.64 -0.78 -0.99

6 10.02 7.09 7.91 -1.62 -0.78 -0.96

MPR Log 2 21.66 18.25 19.21 -2.70 -0.71 -1.33

4 13.74 9.25 10.51 -4.46 -0.72 -1.95

6 9.15 6.20 7.03 -4.42 -0.73 -1.93

Mix-log 2 25.50 18.68 20.60 -3.00 -0.87 -1.55

4 15.10 9.45 11.04 -4.57 -0.87 -2.09

6 10.06 6.32 7.37 -4.55 -0.88 -2.07

Bin-Tree 2 28.91 18.03 21.09 -3.04 -0.96 -1.64

4 16.48 9.13 11.20 -4.43 -0.96 -2.11

6 11.00 6.11 7.49 -4.43 -0.96 -2.10

Hist 2 26.47 14.68 18.00 -2.28 -2.71 -1.94

4 18.91 7.30 10.57 -3.77 -2.70 -2.44

6 12.95 4.86 7.14 -3.72 -2.69 -2.42

dt − pt 2 30.33 16.35 20.28 -3.63 -2.65 -2.68

4 31.23 9.03 15.28 -3.92 -2.61 -2.53

6 33.46 6.29 13.94 -3.91 -2.60 -2.40

Table 3.10: The left column displays the trade revenues of the risky asset. The right column

displays the difference between the Sharpe Ratio when the returns are calculated using bid and ask

prices, and mid prices. The elasticity of inter-temporal substitution parameter is Ψ = 0.5 for all

cases.
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are driven by different state variables, particularly as competitor state variables the log

dividend price ratio and the market price of risk are considered.

The performance of these different investment portfolios was assessed within the con-

text of long-lived investors using different economic and statistical performance measures

in an out-of-sample context. The results highlight the outperformance of the implied ap-

proach over historical methods. This finding is consistent with the literature that empha-

sizes the role of the derivatives market for extracting forward-looking information from

market option prices. The second finding of the empirical study is to note that the implied

risk premium is a good predictor of future returns on the risky asset. This is observed im-

plicitly by noting the good performance of the investment portfolio based on the paramet-

ric portfolio policy rule that uses the implied risk premium as state variable. This portfolio

is superior to the investment that uses the market price of risk as state variable. However,

it does not beat the investment strategy proposed by Campbell and Viceira (1999) based

on the log of the dividend price ratio.

Finally, it has been investigated on the performance of the investment portfolios de-

pending on specific choices of the risk-neutral distribution function to price options. For

that reason parametric and nonparametric distribution functions were contemplated. In

principle, the choice of risk-neutral distribution function is an additional parameter that

needs to be considered in the optimal asset allocation problem that uses implied informa-

tion. However, the application to a portfolio given by the risk-free rate and the S&P 500

Index shows that the out-of-sample performance of the portfolio is quite insensitive to the

specific choice of risk-neutral distribution function among the set of candidates usually

proposed in the literature (lognormal density as in Black and Scholes (1973), a mixture

lognormal density as in Ritchey (1990), and a nonparametric binomial tree as in Jackw-

erth and Rubinstein (1996)). A potential reason for this finding is that the state variables

under study characterizing each investment portfolio only consider the risk-premium and

volatility (market price of risk). Hence, higher moments of the risk-neutral distribution do

not play any role in driving the optimal portfolio allocation.
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B Appendix

B.1 Consumption and portfolio decisions

This appendix replicates the theoretical results of the optimal consumption and portfolio

decisions. These findings need to be attributed to the novel study of Campbell and Vi-

ceira (1999). They are not part of the here conducted research and are purely added for

completeness of this thesis.

Campbell and Viceira (1999) solve a discrete time portfolio allocation of an infinitely

lived investor with Epstein and Zin (1989) and Weil (1989) preferences:

U(Ct, Et[Ut+1]) =
{

(1− δ)C(1−γ)/θ
t + δ(Et[U

1−γ
t+1 ])1/θ

}θ/(1−γ)
(B.1)

with θ = (1 − γ)/(1 − ψ−1), δ the discount factor and ψ the elasticity of intertemporal

substitution. The investor seeks an optimal allocation between a single risk-free asset with

constant log return rf , a single risky asset with log return rt+1 and innovations ut+1 in the

risky asset’s return:

rt+1 − Et[rt+1] = ut+1 (B.2)

The innovations are normally distributed with zero mean and variance σ2
u. After the opti-

mal weights are determined the gross portfolio return Rp can be calculated by:

Rp,t+1 = αt(Rt+1 −Rf ) +Rf (B.3)

where Rt+1 = exp{rt+1} and Rf = exp{rf}. The expected excess log return on the risky

asset is state dependent and derived by a single state variable xt:

Et[rt+1]− rf = xt (B.4)

The state variable xt or risk-premium follows a mean-reverting AR(1) process with mean

µ and persistence φ. The innovations ηt+1 are conditionally homoskedastic and normally

distributed with zero mean and variance σ2
η:

xt+1 = µ+ φ(xt − µ) + ηt+1 (B.5)
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The two innovations ηt+1 and ut+1 are correlated with each other. The covariance σηu
between the two innovations creates the intertemporal hedging demand for the risky asset

of the long-term investor. The higher the covariance the better the ability of the risky asset

to hedge against changes in the investment opportunity set over time.

In order to solve the portfolio allocation problem, the individual investor chooses his

consumption and portfolio policies to maximise (B.1) subject to the budget constraint:

Wt+1 = Rp,t+1(Wt − Ct) (B.6)

Using this type of budget constraint, Epstein and Zin (1989) and Weil (1989) show that

the optimal consumption and portfolio policy must satisfy the following Euler equation

for any asset i:

1 = Et

{δ(Ct+1

Ct

)−1/ψ}θ

R
−(1−θ)
p,t+1 Ri,t+1

 (B.7)

In the here considered case, i represents the single risky and risk-free asset. Therefore,

i = p and (B.7) reduces to:

1 = Et

{δ(Ct+1

Ct

)−1/ψ
Rp,t+1

}θ
 . (B.8)

After dividing (B.1) by Wt and inserting the budget constraint, Campbell and Viceira

(1999) obtain the following expression for the utility per unit of wealth:

Vt =

{
(1− δ)

(
Ct
Wt

)1−1/ψ

+ δ

(
1− Ct

Wt

)1−1/ψ

(Et[V
1−γ
t+1 R

1−γ
p,t+1])

1/θ

}1/(1−ψ)

. (B.9)

where Vt ≡ Ut/Wt. Using this form of value function enables to rewrite the expression as

a combination of a power function of (1− δ) and the consumption-wealth ratio as shown

by Epstein and Zin (1989) and Epstein and Zin (1991):

Vt = (1− δ)−ψ/(1−ψ)
(
Ct
Wt

)1/(1−ψ)

. (B.10)
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To obtain optimal consumption and portfolio policies, Campbell and Viceira (1999) use

the log-linear approximation of the Euler equation and intertemporal budget constraint of

Campbell (1993). Following this approach the Euler equation (B.7) becomes:

0 = θlogδ − θ

ψ
Et∆ct+1 + θEtrp,t+1 +

1

2
vart

(
θ

ψ
∆ct+1 − θrp,t+1

)
, (B.11)

and the budget constraint (B.6):

∆wt+1 ≈ rp,t+1 +

(
1− 1

ρ

)
(ct − wt) + k, (B.12)

where k = log(ρ)+(1−ρ)log(1−ρ)/ρ and ρ = 1−exp{E(ct−wt)}. Based on expression

(B.11) and (B.12), Campbell and Viceira (1999) characterise the optimal portfolio rule:

αt =
1

γ

Etr1,t+1 − rf + 0.5σ1,1,t
σ1,1,t

−
(

1

1− ψ

)(
γ − 1

γ

)
σ1,c−w,t
σ1,1,t

. (B.13)

The expression for the optimal portfolio weight αt consists of two components that capture

the demand for the risky asset. The first term defines the myopic asset demand. The

myopic component is proportional to the risk-premium and inversly proportional to the

volatility and risk-aversion. The second component captures the intertemporal hedging

demand going back to Merton (1969), Merton (1971) and Merton (1973). It describes the

demand of the investor to hedge against changes in the investment opportunity set. Within

this framework there are two special cases: 1. When returns are unpredictable the hedging

demand is zero, so σ1,ct−wt,t = 0; 2. When γ = 1 the portfolio weight reduces to the

myopic component.

Lastly, Campbell and Viceira (1999) guess a form of the optimal consumption and port-

folio policies. This is necessary since σ1,c−w,t depends on future decisions about portfolio

weights and consumption as shown by Campbell (1993). Therefore, to finally solve the

allocation problem Campbell and Viceira (1999) guess that the optimal portfolio weight

of the risky asset αt is linear and the log-consumption-wealth ratio ct − wt is quadratic in

the state variable xt:

αt = a0 + a1xt (B.14)

ct − wt = b0 + b1xt + b2x
2
t (B.15)



96 B Appendix

This results in unknown parameters [a0, a1, b0, b1, b2]. The parameters defining the linear

portfolio policy can be solved analytically:

a0 =
1

2γ
− b1

1−Ψ

γ − 1

γ

σηu
σ2
u

− b2
1−Ψ

γ − 1

γ

σηu
σ2
u

2µ(1− φ) (B.16)

a1 =
1

γσ2
u

− b2
1−Ψ

γ − 1

γ

σηu
σ2
u

2φ. (B.17)

The remaining parameters of the log consumption wealth ratio are retrieved by a recursive

non-linear system. The exact definiton of the terms and the recursive procedure to obtain

[b0, b1, b2] is outlined in Campbell and Viceira (1999) proposition 2. The results imply that

the approximate value function per unit of wealth is given by:

Vt = exp

{
b0 − ψlog(1− δ)

1− ψ
+

b1
1− ψ

xt +
b2

1− ψ
x2t

}
, (B.18)

and b2/(1 − ψ) > 0. As final step we normalise the parameters defining the optimal

portfolio and consumption rules as in Campbell and Viceira (1999). After the normalisa-

tion, the intercept of the optimal policy functions are 1. the optimal allocation to stocks;

2. the optimal consumption-wealth ratio when the expected excess return is zero. In

this case, the risky asset has a risk-premium of zero and a myopic investor would not

allocate any wealth to it. Therefore any asset demand would be generated by the intertem-

poral hedging demand. We achieve the normalisation by setting a∗0 = a0 − a1(σ
2
u/2),

b∗0 = b0 − b1(σ
2
u/2) + b2(σ

4
u/4) and b∗1 = b1 − b2σ

2
u. The parameters a1 and b2 are not

affected by this transformation.
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B.2 Portfolio weights
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Figure 3.1: The figure displays the myopic and hedging demand following the optimal portfolio

rule for the case γ = 2 and ψ = 0.5.
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Figure 3.2: The figure displays the myopic and hedging demand following the optimal portfolio

rule for the case γ = 2 and ψ = 0.5.
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Figure 3.3: The figure displays the myopic and hedging demand following the optimal portfolio

rule for the case γ = 2 and ψ = 0.5.





CHAPTER 4

Consumption and Portfolio Decisions when Expected

Returns are Time Varying: An Option Implied Approach

This paper proposes a novel estimation method to directly obtain the dynamics of the risk-
premium process from option prices. Contrary to the use of financial ratios, using a cross-
section of option prices allows to directly retrieve implied estimates of the risk-premium.
Using the option implied risk-premium, the estimation method obtains consistent estimates
of the risk-premium process, which is then used to solve the portfolio allocation by Campbell
and Viceira (1999). The findings suggest that the proposed estimation method is superior to
the use of times series models as proposed in the related literature. The investor obtains high
utility increases and strong improvements in the out-of-sample performance. Furthermore,
the use of option prices beats a simple investment into the index and historical approach.
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4.1 Introduction

The optimal portfolio allocation of a multiperiod investor is strongly dependent on the as-

sumptions of market dynamics. A prominent observation is that asset returns vary through

time and investment opportunities are not constant (Campbell, 1987; Fama and French,

1988, 1989; Campbell and Shiller, 1988a,b; Hodrick, 1992). Based on those empirical

findings optimal portfolio and consumption policies can be derived within a multiperiod

set-up. The most obvious impact is on the portfolio weight. Alongside to the myopic

component, it accommodates a hedging demand component. This additional component

is used by the investor to hedge against changes in the investment opportunity set. How-

ever, a core issue is that the dynamics and expectations, as for example expected returns,

of the underlying asset cannot be directly observed. They need to be captured by suitable

predictors to obtain an accurate picture about the current state. Typical predictor vari-

ables are financial ratios. Campbell and Viceira (1999); Campbell et al. (2003); Campbell

et al. (2004); Chacko and Viceira (2005) incorporate such ratios within their portfolio al-

location. They solve a portfolio allocation assuming an infinitely lived investor and time

varying investment opportunities. To capture the changes in the opportunity set, they ap-

ply different financial ratios as predictors for the risk-premium, which are associated with

some predictive power. Those financial ratios include the dividend price ratio, earnings

price ratio and book to market ratio (Campbell and Shiller, 1988a; Fama and French,

1988; Cochrane, 1992). Next to financial ratios, other predictors as the short term inter-

est rate (Fama and Schwert, 1977a; Campbell, 1987; Glosten et al., 1993) or yield spread

between long- and short-term bonds (Fama, 1984; Fama and French, 1989; Campbell and

Shiller, 1991) are used.

However, the use of those ratios is associated with some flaws. For example, dividends

and earnings itself are more difficult to forecast than returns. Therefore, most of the vari-

ation in financial ratios is due to the variation in expected returns. This is concerning in a

forecasting exercise since it implies that the use of financial ratios is conflicted in several

aspects. Most prominent is the discussion on persistency. Typical tests have difficulties

to reject the hypothesis of a unit root. The testing procedures evaluating the forecasta-
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bility signal weak statistical evidence for a good predictive power after adjusting the test

for high persistency (Nelson and Kim, 1993; Stambaugh, 1999; Ang and Bekaert, 2007;

Ferson et al., 2003; Valkanov, 2003). Next to this econometric issue is the little evidence

for the out-of-sample forecasting abilities as discussed in Bossaerts and Hillion (1999);

Goyal and Welch (2003). Closely related are the findings that the forecasting quality of

financial ratios varies over time. Paye and Timmermann (2006), Gonzalo and Pitarakis

(2017) reject the hypothesis of constant regression coefficients in their study. Also in the

more complex framework of Kostakis et al. (2015) to capture the dynamics of financial

ratios there is no strong evidence of predictability in the post 1952 period.

The here outlined methodology aims to overcome the econometric issues associated

with financial ratios by introducing an option-implied state variable. The analysis relies

on the assumptions of Campbell and Viceira (1999). They assume that the risk-premium

acts as state variable and follows an AR(1) process. The dynamics of the risk-premium

are derived from the log dividend price ratio within a multivariate set-up. This proce-

dure is the benchmark approach. It is referred to as “classic estimation method”. The

chapter contributes to this stream of literature by proposing an estimation framework that

retrieves consistent estimators from risk-premium estimates inferred by option prices. It

is referred to as “direct estimation method”. The advantage of this method is that: First,

the risk-premium is an implied estimate for the period until option expiry. Second, the

risk-premium is obtained from a cross-section of option prices and does not require an es-

timation based on a past time series. The cross-section is in relation to the strike price and

provides detailed information about the states of the underlying asset. Third, The option-

implied estimate is model-free and directly obtains the risk-premium without making any

assumptions about the underlying distribution, as in Martin (2017). Fourth, The dynam-

ics of the AR(1) risk-premium process can be directly inferred using the option-implied

estimates.

In the empirical analysis, the proposed approach is applied to the Dow Jones, NASDAQ-

100 and S&P 500 acting as risky asset. There are three key empirical findings. First, the

estimation results suggest that the option-implied risk-premium is persistent but not close

to a unit root. This is validated by a Dickey-Fuller test. The results clearly reject the
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null-hypothesis of a unit root and therefore the econometric difficulties associated with

the financial ratios are avoided.

Second, only the proposed direct estimation method delivers parameters that are em-

pirically reasonable using the option-implied risk-premium. The key role plays the covari-

ance between innovations in unexpected stock returns and state variable. Only for the di-

rect estimation method the covariance is coherent negative, implying low expected returns

today are followed by high returns in the future and vice versa. The negative covariance

has strong implications on portfolio weights, particularly on the hedging demand. If the

covariance is negative the hedging demand increases the average portfolio weight that is

allocated to the risky asset. Furthermore, the direct estimation method makes the portfo-

lio and consumption policies more reactive to changes in the investment opportunity set.

Particularly, during extreme market events like the subprime crisis. The improved abilities

are ultimately evaluated by the out-of-sample performance which strongly increases when

comparing the classic with the direct estimation method.

Third, using the option-implied risk-premium confirms the findings in the density fore-

casting literature, as for example Liu et al. (2007) or Shackleton et al. (2010). The option-

implied risk-premium is compared relative to a historical benchmark that relies on a past

series of asset price returns. The obtained out-of-sample performance using the option-

implied approach generally exceeds the values of the historical benchmark. Furthermore,

the results are compared against the initially chosen approach by Campbell and Viceira

(1999) using the log dividend price ratio. Unfortunately, the proposed estimation method

using the option-implied risk-premium can only close up to this benchmark approach. To

further analyse why there is no major difference between both methods the average util-

ity implied by the model dynamics is taken into account. Thereby, the portfolio rules for

market timing and hedging demand are restricted while solving for optimal consumption

policies. For the case of the log dividend price ratio it can be seen that restricting the

portfolio rule results in high losses of utility whereas for the case of the option-implied

risk-premium the losses are only of minor magnitude. This is a concerning finding since

it imposes that option-implied information within the chosen set-up do not benefit the

investor in regards of timing the market and hedging against changes in the investment
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opportunity set. An attempt to overcome this issue is to adjust the volatility of the return

process by an option-implied estimate to obtain a richer set of information from option

prices. It can be observed that the decisions on portfolio weights and consumption be-

come more flexible over time and higher fractions in the risky asset shift towards times of

lower volatility. Even though this might improve the applied measures, the findings stand

in conflict with mathematical issues. A key problem is that the correlation is now a com-

bination of historical and option-implied information. As a consequence, the correlation

exceeds in some cases -1 and the portfolio allocation cannot be solved. Therefore, this

aspect needs to be studied to greater extend in the future since it is not possible within the

chosen framework.

This chapter contributes to the literature by allowing for richer assumptions within the

portfolio allocation using option prices and a novel direct estimation method. More recent,

developments in this area focus on mean-variance portfolio allocation with multiple assets.

DeMiguel et al. (2013) and Kempf et al. (2015) centre their attention on the gains of

option-implied covariance. At this stage, only Kostakis et al. (2011) provides insight on

multiperiod investors and the use of option-implied information. The studied allocation

problem goes back to Wachter (2002). The investor follows a power utility and derives

his investment decisions from the market price of risk that acts as state variable. They

conclude that the out-of-sample performance exceeds the values of the myopic investor

and therefore the multiperiod investor is preferable.

This study is structurred as follows. Section 4.2 describes the suggested estimation

framework. Section 4.3 presents the initial estimation procedure in Campbell and Viceira

(1999) and alternative state variables. Section 4.4 outlines the portfolio allocation. Section

4.5 describes the data and evaluation methods. Section 4.6 summarises the estimation and

presents the out-of-sample performance. Section 4.7 presents the results using option

implied volatility within the portfolio allocation. Lastly, section 4.8 reviews the main

findings of this chapter.
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4.2 Econometric framework

The suggested estimation framework is based on the assumptions made in Campbell and

Viceira (1999). They propose that the log excess return on a risky asset is state dependent.

The state of the risky is determined by a single state variable xt:

Et[rt+1]− rf = xt. (4.2.1)

The dynamics of the state variable are described by an AR(1) process:

xt+1 = µ+ φ(xt − µ) + ηt+1, (4.2.2)

where the innovations ηt+1 are conditionally homoskedastic, normally distributed white

noise error, ηt+1 ∼ N (0, σ2
η). The innovations in the unexpected log return ut+1 are then

defined as:

rt+1 − Et[rt+1] = ut+1, (4.2.3)

where ut is also conditionally homoskedastic, normally distributed ut+1 ∼ N (0, σ2
u).

Further, they are correlated with the innovations in the state variable. Therefore:

vart(ut+1) = σ2
u (4.2.4)

covt(ut+1, ηt+1) = σηu (4.2.5)

Campbell and Viceira (1999) propose to estimate the necessary parameter values within

a VAR framework. They infer the dynamics of the risk-premium process in (4.2.1) by

using the log dividend price ratio as suggested in Campbell and Shiller (1988a), Fama

and French (1988) and Hodrick (1992). However, using financial ratios, in particular the

log dividend price ratio, is heavily discussed in the literature due to multiple econometric

issues. Most prominent and concerning is the debate on stationarity and the little evidence

of predictability.

Therefore, an alternative framework is proposed that does not rely on financial ratios.

This section makes two contributions: First, the latent process describing the risk-premium
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of the risky asset is replaced by an observable proxy that is obtained from information im-

plied by option prices; second, an autoregressive process is proposed to estimate consistent

estimators. It is of particular interest to obtain consistent estimators for σ2
u and σηu.

Let xIt = Êt[r
e
t+1], where Êt[ret+1] = Êt[rt+1]− rf,t, be the estimated risk-premium ob-

tained from option prices. Under some regularity conditions that will be discussed below,

this process provides consistent estimates of the objective risk premium xt = Et[r
e
t+1]. To

obtain estimates for xIt from option prices the approach by Martin (2017) is employed.

The estimator xIt is constructed using a set of cross-sectional option prices. Martin (2017)

shows if the negative correlation condition covt(MtRt, Rt) holds, with gross return Rt

and stochastic discount factor Mt, the lower bound of the risk-premium can be derived

from option prices. He provides several examples that this condition holds for the here

considered case of equity indices. The lower bound is defined as:

Êt[r
e
t+1] ≥

2

S2
t

[∫ Ft

0

p(K)dK +

∫ ∞
Ft

c(K)dK

]
+ qt (4.2.6)

where St is the current stock price, c the call prices and p the put prices. In his analysis

he shows that the lower bound is relatively tight and can be used as proxy for the risk-

premium. However, the two integrals in (4.2.6) need to be approximated since strike prices

cannot be observed continuously1. Hence, it can be safely assumed that xIt = xt + εt√
Nt

,

with εt a zero-mean serially uncorrelated random variable and Nt the number of option

prices on each observation date t. In this framework, the parameters of the autoregressive

process (4.2.2) can be estimated using standard OLS methods. More formally, it proposes

to estimate the following observable processes:

xIt+1 = µ+ φ(xIt − µ) + ηIt+1, (4.2.7)

ret+1 = xIt + uIt+1, (4.2.8)

with ηIt+1 and uIt+1 zero-mean error terms with variance σ2
ηI and σ2

uI , respectively. After

1In Appendix C.1 the approximation of the continuous integral in (4.2.6) is outlined
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some simple algebra: ηt = ηIt − εt√
Nt

+ φ εt−1√
Nt

and ut = uIt + εt√
Nt

. Then:

cov(ut+1, ηt+1) = cov(uIt+1, η
I
t+1) (4.2.9)

+
1√
Nt

[
cov(ηIt+1, εt+1)− cov(uIt+1, εt+1)−

1√
Nt

var(εt+1)

]
, and

var(ut+1) = var(uIt+1) +
1√
Nt

[
cov(uIt+1, εt+1) +

1√
Nt

var(εt+1)

]
. (4.2.10)

Since ηIt+1 and uIt+1 are not correlated with ηt+1, cov(εt+1, η
I
t+1) = 0 and cov(εt+1, u

I
t+1) =

0. When Nt →∞, the second term on the right hand side in (4.2.9) and (4.2.10) tends to

zero. The resulting consistent estimators of σηu and σ2
u can then be obtained via OLS:

σ̂ηu =
1

T

T∑
t=1

(ret+1 − xIt )(xIt+1 − µ̂− φ̂(xIt − µ̂)), (4.2.11)

with µ̂ and φ̂ the OLS estimators of the autoregressive process (4.2.8), and

σ̂2
u =

1

T

T∑
t=1

(ret+1 − xIt )2. (4.2.12)

The estimators σ̂ηu and σ̂2
u allow to characterise the dynamics within the framework of

Campbell and Viceira (1999). The effectiveness of the proposed direct estimation method

is evaluated by solving their suggested portfolio allocation. The performance is measured

out-of-sample and compared to the benchmark approaches in section 4.3. The details of

the portfolio allocation are outlined in section 4.4.

4.3 Benchmark approach

This section outlines the initial estimation procedure of Campbell and Viceira (1999) using

a restricted VAR model, which will be the benchmark approach for the suggested estima-

tion method. Furthermore, the originally suggested log dividend price ratio is applied

as state variable. This type of state variable is not suitable for the suggested estimation

method since it does not directly reflect the risk-premium. Next to the log dividend price
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ratio, a state variable is employed that estimates the risk-premium from a history of as-

set prices. This historical approach has been commonly used in the density forecasting

literature and is also applied in Kostakis et al. (2011).

4.3.1 Classic estimation method

Campbell and Viceira (1999) provide a framework to derive the dynamics of the risk-

premium process in (4.2.8) from a predictor variable zt. Typical predictors are financial

ratios, which do not directly give insight into the risk-premium. Therefore, they propose to

estimate a restricted VAR(1) model, which allows to derive the underlying characteristics

of the risk-premium. The VAR(1) is restricted by inferring the risk-premium process solely

by the lagged predictor variable.(
rt+1 − rf,t+1

zt+1

)
=

(
θ0

β0

)
+

(
θ1

β1

)
zt +

(
ε1,t+1

ε2,t+1

)
(4.3.1)

where (ε1,t+1, ε2,t+1) ∼ N (0,Ω) and

Ω =

[
Ω11 Ω12

Ω21 Ω22

]
.

The structure of (4.3.1) is identical to a multivariate regression model using the same

explanatory variables in all equations. Therefore, under the assumption of normality there

is no difference between maximum likelihood estimation and OLS regression for each of

the equations. From the VAR system in (4.3.1) the values for the AR(1) risk-premium

process (4.2.1) are obtained: µ = θ0 + θ1β0/(1− β1), φ = β1, σ2
η = θ21Ω22, σ2

u = Ω11 and

σηu = θ1Ω12. As predictor variable zt the log dividend price ratio, the historical approach

in subsequent section and the option-implied risk-premium is used.

4.3.2 Alternative state variables

The results are compared against two alternative state variables. First, the log dividend

price ratio as proposed by Campbell and Viceira (1999). It is defined as the log of the total
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dividend paid over the past year divided by the current stock price. Second, a historical

benchmark. The historical benchmark relies on information contained in a past series of

asset price returns. It is well known that asset price behaviour can be well described by

ARCH type models going back to Engle (1982). To describe the returns an AR(1) process

is used with constant µ, persistence parameter φ and residuals ε:

rt+1 = µ+ φrt + εt+1. (4.3.2)

The residuals consist of a conditional volatility component h and white noise process u.

h is modelled by an asymmetric GARCH type model as in Glosten et al. (1993). Their

model imposes that the impact of negative returns on volatility is stronger compared to

positive returns. This aspect is accounted for by a dummy variable It which depends on

the last return. This structure of the GARCH model provides more flexility and results in

a more flexible shape of the return distribution. To further account for a non-normal shape

the white noise component is assumed to be t-distributed as suggest by Bollerslev (1986)

to allow for fat tails:

εt+1 = ut+1

√
ht+1 (4.3.3)

ht+1 = w + (α + βIt)ε
2
t + δht (4.3.4)

It =

0, if rt ≥ 0

1, if rt < 0
(4.3.5)

where w, α, β, δ > 0 and α + β
2

+ δ < 1. Beyond this approach three alternative specifi-

cations are applied. 1. The t-distribution is replaced by a normally distributed white noise

process, the return process in (4.3.2) is replaced by a constant mean (φ = 0) using a 2.

normally and 3. a t-distributed white noise process.

The parameter estimation is matched with the option implied approach. The GARCH

model is estimated on each option observation date using the last 10 years of daily his-

torical asset prices. In Liu et al. (2007) and Kostakis et al. (2011) the historical approach

is implemented via Monte-Carlo simulation to obtain the distribution of asset price out-

comes. For the here considered allocation problem this is not necessary since only the
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expected return is of interest. Therefore, the exact solution for the conditional mean of the

return process in (4.3.2) is retrieved:

Êt[r
e
t+1] = µ̂+ θ̂rt + qt − rf,t (4.3.6)

The expected dividend qt needs to be added on top of the expected return since any div-

idend payments negatively effect the underlying index value and are not reflected in the

conditional mean. Due to the similar results of the applied ARCH model specifications,

section 4.6 only reports the values of the model in (4.3.2) with t-distributed white noise

process.

4.4 Application to portfolio allocation

The outlined framework in section 4.2 relies on the assumptions made by Campbell and

Viceira (1999). Consequently, it is natural to use their suggested portfolio allocation to

evaluate the proposed estimation method. They solve a discrete time portfolio allocation

between a risk-free and risky asset of an infinitely lived investor with Epstein and Zin

(1989) and Weil (1989) preferences:

U(Ct, Et[Ut+1]) =
{

(1− δ)C(1−γ)/θ
t + δ(Et[U

1−γ
t+1 ])1/θ

}θ/(1−γ)
(4.4.1)

with θ = (1 − γ)/(1 − ψ−1), δ the discount factor and ψ the elasticity of intertemporal

substitution. The gross portfolio return Rp is calculated by:

Rp,t+1 = αt(Rt+1 −Rf ) +Rf (4.4.2)

where Rt+1 = exp{rt+1} and Rf = exp{rf}. In order to solve the portfolio allocation

problem, the individual investor chooses his consumption and portfolio policies to max-

imise (4.4.1) subject to the budget constraint:

Wt+1 = Rp,t+1(Wt − Ct) (4.4.3)

Using this type of budget constraint, Epstein and Zin (1989) and Weil (1989) provide

the optimality conditions for the consumption and portfolio policies. To finally solve the
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portfolio allocation, Campbell and Viceira (1999) guess a form of the optimal consump-

tion and portfolio policies. This is necessary since the optimal policies depend on future

decisions about portfolio weights and consumption. They guess that the optimal portfo-

lio weight of the risky asset αt is linear and the log-consumption-wealth ratio ct − wt is

quadratic in the state variable xt:

αt = a0 + a1xt (4.4.4)

ct − wt = b0 + b1xt + b2x
2
t (4.4.5)

In the empirical application the weight of the risky asset in (4.4.4) is restricted in the

range of [−1, 2] to avoid unrealistic leverage. The expression of the portfolio weight and

consumption-wealth ratio results in the unknown parameters [a0, a1, b0, b1, b2]. The pa-

rameters defining the linear portfolio policy can be solved analytically:

a0 =
1

2γ
− b1

1−Ψ

γ − 1

γ

σηu
σ2
u

− b2
1−Ψ

γ − 1

γ

σηu
σ2
u

2µ(1− φ) (4.4.6)

a1 =
1

γσ2
u

− b2
1−Ψ

γ − 1

γ

σηu
σ2
u

2φ. (4.4.7)

The remaining parameters of the log consumption wealth ratio are retrieved by a recursive

non-linear system. The exact definiton of the terms and the recursive procedure to obtain

[b0, b1, b2] is outlined in Campbell and Viceira (1999) proposition 2. The results imply that

the approximate value function per unit of wealth is given by:

Vt = exp

{
b0 − ψlog(1− δ)

1− ψ
+

b1
1− ψ

xt +
b2

1− ψ
x2t

}
, (4.4.8)

and b2/(1− ψ) > 0.

The expression for the optimal portfolio weight (4.4.6) and (4.4.7) consists of two

components that capture the demand for the risky asset. The first term in (4.4.7) defines

the myopic asset demand:

Myopic Demand =
xt
γPσ2

u

(4.4.9)
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The myopic component is proportional to the risk-premium and inversely proportional to

the volatility and risk-aversion. The remaining parts capture the intertemporal hedging

demand going back to Merton (1969, 1971, 1973):

Hedging Demand =
1

2γ
− 1

1− ψ
γ − 1

γ

σηu
σ2
u

[b1 + 2b2 (µ(1− φ) + φxt)] (4.4.10)

It describes the demand of the investor to hedge against changes in the investment oppor-

tunity set.

Lastly, the parameters defining the optimal portfolio and consumption rules are nor-

malised as in Campbell and Viceira (1999). After the normalisation, the intercept of the

optimal policy functions are the optimal allocation to stocks and the optimal consumption-

wealth ratio when the expected excess return is zero. In this case, the risky asset has a

risk-premium of zero and a myopic investor would not allocate any wealth to it. Therefore

any asset demand would be generated by the intertemporal hedging demand. The normal-

isation is achieved by setting a∗0 = a0 − a1(σ
2
u/2), b∗0 = b0 − b1(σ

2
u/2) + b2(σ

4
u/4) and

b∗1 = b1 − b2σ2
u. The parameters a1 and b2 are not affected by this transformation.

Now there are two special cases concerning the demand for the risky asset: 1. When

returns are unpredictable the hedging demand is zero, so σηu = 0; 2. When γ = 1 the

portfolio weight reduces to the myopic component.

4.5 Evaluation criteria

This section outlines the considered data and adjustments to it. Further, describes the

applied evaluation criteria including the suboptimal portfolio choice, out-of-sample return

calculation using ETF prices and performance measures.

4.5.1 Data

In the empirical study three major US indices are considered: Dow Jones Industrial Index

(DJX), NASDAQ 100 Index (NDX) and S&P 500 Index (SPX). The respective observation
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periods range from 18th October 1997, 20th April 1996 and 20th January 1996 until the

15th April 2016. Within these periods the option expiry dates schedule the observation

dates and allocation periods. Relevant option expiry dates are the third Friday each month.

The estimation length is fixed at 4-weeks before expiry to avoid overlapping intervals.

The option implied risk-premium is then estimated using the closing price on the option

observation date. This results in 222 periods for the DJX, 240 periods for the NDX and

243 periods for the SPX.

Index Mean Median
Standard

deviation
Minimum Maximum

DJX 13.34 12.00 6.17 5.00 48.00

NDX 49.68 34.00 37.36 16.00 240.00

SPX 58.94 44.00 34.27 16.00 185.00

Table 4.1: Summary statistics of the amount of options on each observation date. The values vary

quite strongly due to the increasing amount of available option prices over the past years.

Deep OTM Call OTM Call ATM Options OTM Put Deep OTM Put

F/K <0.9 0.9 - 0.97 0.97 - 1.03 1.03 - 1.10 1.10 <

DJX 0.95 10.44 51.77 30.43 6.42

NDX 8.67 15.43 21.62 22.42 31.85

SPX 3.23 15.75 22.90 24.21 33.91

Table 4.2: Summary statistics of option prices by moneyness in % for each observation date.

The summary statistics of the eligible option prices are displayed in table 4.1 and 4.2.

Only European options are considered in this study and are always written on the underly-

ing spot market index. Due to the structure of European options it allows to assume they

are written on the corresponding forward as discussed in Liu et al. (2007). Option as well
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as future prices are obtained end of day from the Chicago Mercentile Exchange for the

NDX and SPX, and from the Chicago Board of Trade for the DJX. The obtained option

prices are checked against no arbitrage constraints. They must fulfil:

c(K) ≥ (Ft −K)e−rf,tT , (4.5.1)

p(K) ≥ (K − Ft)e−rf,tT , (4.5.2)

where c is the call and p the put price, F the forward and K the strike price. The options

passing (4.5.1) and (4.5.2) are then selected based on their moneyness. Moneyness is

defined as the ratio between current forward and strike price. To ensure prices are accurate

only options that are at-the-money and out-the-money are taken into account. For in-the-

money options it can be observed that they are less frequently traded and therefore prices

might not be accurate. To qualify as eligible option the moneyness for a call-option (put-

option) needs to exceed (be below) 0.97 (1.03). Lastly, the option price itself is checked.

If there is no bid price quoted, the option is dropped from the sample since it cannot

be actively traded any more. Furthermore, any options with a price of less than 3/8 are

excluded. Too low prices might not reflect the true value of the option due to the proximity

of tick sizes. If necessary options are transformed via put-call parity c(K) + Ke−rf,tT =

p(K) + Fte
−rf,tT . In case there are options for the same strike the average price is used.

Corresponding future prices only exist for quarterly expiry dates, namely March, June,

September and December for every year. Since options mature monthly, the closest future

price is interpolated to match the monthly expiry date. This is performed using the fol-

lowing definition of the future price Ft = Ste
(rf,t−qt)T . The risk-free rate rf is retrieved

via bootstrapping from zero-coupon bonds. The dividend yield qt is calculated using the

total dividend on the underlying index over the previous year divided by the current stock

price. Taking the logs of qt provides the log dividend price ratio as in Campbell and Viceira

(1999).
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4.5.2 Suboptimal portfolio choice

In Campbell and Viceira (1999), they restrict the portfolio rules to highlight the benefits of

timing the stock market and using stocks to hedge against deteriorations in the investment

opportunity set. In their analysis, they focus how optimal timing and hedging provides

large utility gains in the value function. This procedure is employed to: 1. Compare

the utility of the different estimation procedures with each other; 2. How the suggested

estimation methods benefit the portfolio components of the long-term investor.

The restricted portfolio weights are determined in the same fashion as in the case of

the unrestricted rule but the consumption rule is still optimally adjusted. Appendix C.2

displays the optimal consumption and corresponding restricted portfolio rules. First, the

impact of the timing component is analysed. This is performed by setting the state vari-

able xt to the unconditional expected log excess return µ of the derived VAR(1) system.

Second, the impact of the hedging demand is analysed. Ignoring hedging demand leads to

a myopic portfolio rule. This is performed by setting the covariance σηu to zero. Lastly,

both components are restricted by setting the equity allocation to the average allocation

under the myopic portfolio rule and set the covariance to zero. In this case market timing

as well as hedging demand are ignored.

4.5.3 Out-of-sample performance

The predictability of option prices is heavily discussed in the density forecasting literature.

Within this stream the quality of option implied forecasts is evaluated based on the final

index value at option expiry date. Index values have the disadvantage that they are not

traded assets and just reflect a theoretical value. For example, indices mostly do not con-

tain trading costs, management fees and consist of fractions of shares. To base the results

of the portfolio allocation on more realistic grounds the performance of the risky portfo-

lio allocation is evaluated using Exchange Traded Funds (ETF). The ETFs were selected

based on the fund inception date and size. For the DJX the SPDR Dow Jones Industrial

Average ETF trust, the NDX the Power Shares QQQ Trust series 1 and the SPX the SPDR
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S&P 500 ETF Trust are chosen. Using an ETF to evaluate the performance of the portfolio

allocation comes with multiple advantages. Most striking is that it replicates the risky as-

set in an actually traded portfolio with no fractions of shares. Furthermore, paid dividends

and its taxation are directly reflected in the price. Lastly, trading costs and management

fees are incorporated in the ETF’s price. Beyond the trading costs within the ETF, bid and

ask prices for the ETF at the listed exchange are used to implement the suggested portfolio

allocation.

The out-of-sample returns rstrategyt,t+1 of the suggested portfolio allocation are calculated

on the basis of a theoretical fund value of one. The funds are allocated using the optimal

weights from the considered portfolio allocation. The optimal weights are determined

on the basis of a rolling-window estimation. The window length is 10 years in order to

accurately capture the long-term dynamics in the market within the portfolio allocation. In

this case, the optimal weights are determined taking into account all available information

from ten years ago until t. The out-of-sample return of the portfolio allocation is then

determined using the funds value FV . It is defined as the sum of the fair value of the risky

asset and the risk-free asset. The return is then calculated using the FV from t until t+ 1:

rstrategyt,t+1 =
1

T

28

365
log

(
FVt+1

FVt

)
, (4.5.3)

where T is the number of days between t and t + 1. Dividend payments are not added

since the used ETFs are reinvesting funds. Therefore, any paid dividends are reflected in

the ETF price. Before applying the suggested performance measures the calculated returns

are standardised to 4-week horizons. This is necessary since the forecasting horizons are

not always connected to each other and it is assumed that the investor holds the portfolio

until the next rebalancing date. The return calculation takes into account that shares are

bought using the ask price and sold using the bid price. Depending if the portfolio is long

or short in the risky asset, the funds value is determined by multiplying the shares with the

bid or ask price, respectively. The remaining share in the risk-free asset is interest-bearing

using the corresponding risk-free rate. In case the weight in the risky asset exceeds one,

interest is charged to finance the leverage. The portfolio weight in every period is adjusted

for the difference in weight between t− 1 and t.
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Using the obtained realised, out-of-sample returns rstrategyt,t+1 for the portfolio allocation,

the funds performance is evaluated using four criteria. First, the Sharpe Ratio. It is defined

as the quotient between annualised average excess return µ to the risk-free rate rf and

annualised volatility σ of portfolio returns:

µ̂strategy =
1

N

365

28

N∑
t=1

(rstrategyt,t+1 − rf,t), (4.5.4)

σ̂strategy =

[
1

N − 1

365

28

N∑
t=1

(rstrategyt,t+1 − µ)2

]0.5
, (4.5.5)

ŜR
strategy

=
µ̂strategy

σ̂strategy
. (4.5.6)

It is a measure that describes the excess return in terms of risk. Generally, the higher

the Sharpe Ratio the better the trade-off between return and risk. Second, the Sortino

Ratio. It is an extension of the Sharpe Ratio by using the downside deviation σadj instead

of the volatility. In the calculations of the volatility, positive as well as negative returns

are considered equally. However, investors are normally more concerned about negative

returns than positive. Therefore, the downside deviation takes only into account returns

that fall below a specified threshold. The threshold is in this case the risk-free rate:

σ̂strategyadj =

[
1

N − 1

365

28

N∑
t=1

(min(0, rstrategyt − rf,t))2
]0.5

, (4.5.7)

ŜoR
strategy

=
µ̂strategy

σ̂strategyadj

. (4.5.8)

4.6 Empirical findings

This section presents the empirical findings applying the previously outlined evaluation

criteria. Section 4.6.1 discusses the estimation results of the state variable. Section 4.6.2

elaborates on the estimation results of the portfolio allocation. Section 4.6.3 evaluates

the portfolio weight and consumption decisions over the sample horizon. Lastly, section



Chapter 4 119

4.6.4 analyses the utility gains when using the direct estimation method and impact on the

out-of-sample performance.

4.6.1 Dynamics state variable

The results of the outlined state variables are displayed in table 4.1. Among the three

methods there are great differences in the characteristics over time. The option implied

risk-premium displays the highest variation. Particularly, during times of distress risk-

premia increase sharply. In contrast to this observation is the historical approach. The

historical approach displays less variation and is more constant over time. Further, during

times of distress, as for example the subprime crisis in 2008, the risk-premium lowers.

Comparing the option implied risk-premium with the historical risk-premium suggests

an inverse relation. This can be easily justified. The historical risk-premium is an extrapo-

lation of past returns. Therefore, if markets fall in value it results in a lower risk-premium.

Contrary, to this observation are the dynamics of the option implied risk-premium. When

markets are in distress, the implied volatility contained in the option price tends to in-

crease. Therefore, the integral in (4.2.6) grows, which results in an increase in the option

implied risk-premium. Furthermore, the option implied approach is more reactive. It does

not rely on a past series of asset price returns which makes the obtained parameter values

less persistent.

The log dividend price ratio tends to react in a similar fashion as the option implied

risk-premium. During times of distress the ratio increases. This is a consequence of the

construction of the ratio. It considers the dividends over the past year divided by the

current stock price. Due to the lag of one year for the dividend payments, changes in this

factor happen relatively slow compared to the asset price. Therefore, when markets are in

distress the ratio increases since the dividend payments do not adjust immediately but the

asset price does.
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Figure 4.1: State variables over sample horizon.
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The state variables of the NDX pose an exception compared to the other indices. For

the option implied approach there are high risk-premia during the early 2000’s. Further,

the log dividend price ratio is relatively low and only comes closer to the DJX and SPX

moving towards the end of the sample horizon. Only for the historical approach values

are similar even though the risk-premium of the NDX mostly exceeds the values of the

SPX and DJX. These observations have two reasons. First, the NDX at the beginning of

the sample horizon consisted of mainly young companies. Young companies tend to pay

no dividend or only low dividends. Therefore, the log dividend price ratio is relatively

small. The more the companies mature over time, the higher the dividend payments grow.

Therefore, the log dividend price ratio of the NDX closes up to the other two indices.

Second, the dotcom bubble in the early 2000’s. Due to the focus of the NDX in the

technology sector, it was heavily affected by the bubble. Therefore, option implied risk-

premia strongly exceed the values for the alternative indices. Further, the risk-premium of

the historical approach is higher due to the strong recovery in the subsequent years. Those

characteristics are later reflected in the estimation results and empirical findings.

4.6.2 Estimation portfolio allocation

The reported estimation results are on the basis of the entire sample horizon. Table 4.3

reports the results using the classic estimation method and the results using the here sug-

gested direct estimation method.

Most striking are different estimation results for the covariance σηu between the two

different estimation procedures. Applying the classic estimation method for the option

implied and historical approach results in inconsistent parameter values. Depending on

the index, the sign of σηu changes. This has strong implications on the portfolio alloca-

tion since σηu dictates how great the share of hedging demand is on the overall portfolio

weight, and if the weight in the risky asset is increased or lowered. Campbell and Viceira

(1999) conclude that the case σηu < 0 is relevant since it implies mean-reversion in stock

returns. This means that unexpected high returns today imply lower returns in the future.

Furthermore, the magnitude of σηu plays a crucial role. The higher the magnitude, the bet-
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ter the asset can be used to hedge against changing investment opportunities. Particularly,

the positive values for σηu cast doubt if the classic estimation method is suitable to capture

the model dynamics.

Classic Estimation Method

Method Index µ φ σ2
u σ2

η σηu ρ DF p-value

Option DJX 0.002 0.594 2.418E-03 1.023E-05 -9.646E-05 -0.613 0.000***

NDX 0.004 0.452 5.746E-03 3.673E-07 8.437E-06 0.184 0.000***

SPX 0.002 0.677 2.466E-03 1.034E-07 9.512E-06 0.596 0.000***

Hist DJX 0.002 0.970 2.432E-03 8.884E-08 2.334E-06 0.159 0.427

NDX 0.004 0.949 5.737E-03 9.982E-07 -1.960E-05 -0.259 0.406

SPX 0.003 0.972 2.454E-03 7.238E-07 6.259E-06 0.149 0.423

Log(DivY) DJX 0.004 0.973 2.409E-03 1.157E-06 -4.926E-05 -0.933 0.383

NDX 0.029 0.998 5.716E-03 2.208E-07 -2.556E-05 -0.719 0.126

SPX 0.002 0.975 2.419E-03 2.371E-06 -7.141E-05 -0.943 0.621

Direct Estimation Method

Method Index µ φ σ2
u σ2

η σηu ρ DF p-value

Option DJX 0.002 0.594 2.416E-03 1.277E-05 -1.108E-04 -0.631 0.000***

NDX 0.005 0.452 5.934E-03 1.074E-04 -1.584E-04 -0.198 0.000***

SPX 0.002 0.677 2.563E-03 3.687E-05 -1.864E-04 -0.606 0.000***

Hist DJX 0.000 0.971 2.448E-03 5.966E-07 5.120E-06 0.134 0.427

NDX 0.001 0.948 5.846E-03 1.776E-06 2.172E-05 0.213 0.406

SPX 0.000 0.972 2.469E-03 6.311E-07 5.158E-06 0.131 0.423

Table 4.3: Parameter estimates for the risk-premium process xt+1 = µ + φ(xt − µ) + ηt+1. The

p-values refer to the Dickey-Fuller-Test, H0: φ = 1, H1: φ < 1.
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Applying the direct estimation method overcomes these issues. For the option implied

approach σηu is consistently negative implying a positive hedging demand. It underpins

the suitability of the direct estimation method in combination with the option implied ap-

proach. Contrary, to this observation are the results of the historical approach. Here σηu
displays positive values for all indices. This finding can be linked to the nature of the

historical approach. Past returns are simply extrapolated into the future. Therefore, after

a shock in the returns arrived, it is extrapolated into the future. Since it is well known that

high returns today imply lower returns tomorrow, the extrapolation of shocks is inaccurate

and has to result in σηu > 0. Lastly, the estimation results for the log dividend price ratio

are only available for the classic estimation method since it does not directly reflect the

risk-premium. Therefore, the direct estimation method cannot be applied. The estima-

tion results line up with the findings in Campbell and Viceira (1999). Remarkably are the

values of ρ compared to the alternative approaches. They are of the highest magnitude

which will later on drastically affect portfolio weights. Beyond the covariance, the un-

conditional excess return µ and variance σ2
u are affected by the direct estimation method.

For the option implied approach the differences between the estimation methods are of

small magnitude. In contrast, the use of the direct estimation method using the historical

approach drastically reduces µ.

The different estimation methods change the parameter values [a?0, a1] of the portfolio

rule as presented in table 4.4. Thereby, both parameters are not affected equally. The

changes in a?0 are stronger compared to a1. This is a consequence of the changes in σηu
for the direct estimation method. As discussed before, the major impact of the covariance

is on the hedging demand. Thereby, the hedging demand effects the constant fraction in

the risky asset stronger compared to varying fraction since it ensures a sufficient share

when returns are low. Furthermore, the consistently negative covariance keeps the share

of hedging demand positive. The historical approach lines up with these observations.

However, the positive covariance obtains a negative value for a?0, which reduces on average

the portfolio weight. Overall, the historical and option implied approach do not exceed

the values of a?0 of the log dividend price ratio. This is rooted in the higher value of the

correlation which implies better hedging abilities.
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Method γP

Classic estimation Direct estimation

DJX NDX SPX DJX NDX SPX

Intercept a?0 × 100

ModFree 2 2.34 -0.05 -0.25 2.58 1.19 5.35

4 1.84 -0.04 -0.19 2.03 0.91 4.46

6 1.38 -0.03 -0.14 1.53 0.68 3.43

Historical 2 -0.47 0.90 -1.25 -0.39 -0.46 -0.40

4 -0.35 0.70 -0.89 -0.28 -0.33 -0.28

6 -0.26 0.52 -0.65 -0.20 -0.24 -0.20

Log(DivY) 2 26.84 1.41 31.08 26.84 1.41 31.08

4 33.65 2.96 46.01 33.65 2.96 46.01

6 31.83 3.76 48.04 31.83 3.76 48.04

Slope a1

ModFree 2 210.67 86.98 202.30 211.49 84.90 204.60

4 106.37 43.48 101.03 106.95 42.62 105.05

6 71.15 28.99 67.32 71.58 28.45 70.69

Historical 2 204.06 88.54 199.78 201.08 84.13 199.22

4 101.66 44.64 98.97 99.80 41.74 98.84

6 67.69 29.84 65.78 66.37 27.75 65.73

Log(DivY) 2 256.40 94.41 291.02 256.40 94.41 291.02

4 152.26 52.81 201.31 152.26 52.81 201.31

6 110.04 38.24 159.71 110.04 38.24 159.71

Table 4.4: The table displays the parameter estimates for a?0 and a1. All values are based on the

estimates of the return processes reported in table 4.3. The elasticity of inter-temporal substitution

parameter is Ψ = 0.5 for all cases.
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The impact on the slope coefficient a1 is rather small. There are no major differences

between the two estimation methods. The covariance mainly impacts the constant fraction,

as can be seen in (4.4.6) and (4.4.7). Further, other parameters determining a1 changed

less drastically resulting in similar values. The comparison of a1 with the log dividend

price ratio is not possible due to the different type of data.

Lastly, the persistency using the option implied risk-premium falls strongly below the

unit root while still being persistent. Testing for a unit root using a Dickey-Fuller under-

lines that the option implied state variable does not encounter stationarity issues compared

to the alternative state variables.

4.6.3 Portfolio weight and consumption

This section analyses the impact of the different estimation procedures on the portfolio and

consumption decisions. Table 4.5 displays the average portfolio weight and the fraction

due to hedging demand. Different values for the elasticity of intertemporal substitution

were not considered since the impact on the results are only of minor magnitude as shown

in chapter 3. An increase in elasticity of intertemporal substitution results in an increase in

hedging demand for the log dividend price ratio. For the alternative methods this change

has almost no impact on the hedging demand even though a new estimation technique is

introduced.

As discussed in the previous section the main impact of the direct estimation method is

a change in the covariance σηu, which increases the constant term a?0 in the portfolio rule.

Further, it is well known that σηu is one of the main drivers in determining the hedging

demand. For the option implied approach, it can be observed that for the direct estimation

method the fraction due to hedging demand increases. Further, the mean allocation in the

risky asset tends to be higher as well. Both observations are rooted in σηu and associated

increase in the constant term a?0. Contrary to this observation are the findings of the his-

torical approach. The direct estimation method results in lower average portfolio weights

compared to the classic estimation method. On one hand, this is a consequence of the
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reduced value in µ. On the other hand, the fraction due to hedging demand is negative

implying a reduction of the average portfolio weight. For both state variables, the results

are consistent across indices using the direct estimation method. The classic estimation

method does not provide consistent results and the share of hedging demand tends to be

lower for the option implied approach. Comparing the log dividend price ratio relative to

the two alternative state variables suggests that average portfolio weights and the fraction

due to hedging demand is substantially higher.

To further analyse the portfolio weight appendix C.4 and C.5 display the weights over

the sample horizon using the classic and direct estimation method. For the option implied

approach it is apparent that for the NDX and SPX results are not reasonable using the

classic estimation method. The weight in the risky asset and consumption-wealth ratio

exhibit almost no changes. This is a surprise since the sample period covers the dotcom

and subprime crisis which should strongly impact portfolio policies. Furthermore, the

positive values of σηu result in reductions in the portfolio weight. Especially, when risk-

premia are high, reductions in the weight of the risky asset are strong. This stands in

contradiction with the previously explained characteristics of asset price returns.

Applying the direct estimation method overcomes these issues. Consistently through

the applied risky assets, the portfolio weights are more reactive. Furthermore, when there

are high risk-premia in the market the portfolio weight increases. Therefore, the weight

in the risky asset behaves in a similar way as the state variable. Ultimately, the consump-

tion wealth ratio is more reactive to changes in investment opportunities. Generally, in

times of financial distress the ratio increases whereas during more calm periods the ra-

tio lowers. Compared to the historical approach, the option implied approach is more

reactive. Further, the historical approach displays similar issues following the classic es-

timation method. The time series of the portfolio weight and consumption-wealth ratio is

inconsistent across indices. When applying the direct estimation method, this problem is

mostly overcome. However, due to the negative hedging demand, the portfolio weight is

confronted with the issues explained before.

The log dividend price ratio is closer to the option implied approach, displaying similar
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Method γP

Classic estimation Direct estimation

DJX NDX SPX DJX NDX SPX

Mean optimal percentage allocation to risky asset:

αt = [a?0 + a1(µ+ σ2
u/2)]× 100

ModFree 2 74.63 57.95 70.18 71.10 71.52 77.48

4 38.33 28.95 34.99 36.69 36.21 41.49

6 25.79 19.30 23.30 24.73 24.24 28.35

Historical 2 70.57 58.14 75.55 28.45 29.28 27.89

4 35.04 29.55 37.16 14.04 14.42 13.75

6 23.31 19.82 24.64 9.32 9.57 9.13

Log(DivY) 2 160.07 300.41 135.69

4 112.77 170.21 118.38

6 89.01 124.88 105.45

Fraction due to hedging demand (in %):

[αt,h(µ; γ, φ)/αt(µ; γ, φ)]× 100

ModFree 2 4.93 -0.13 -0.60 5.68 2.41 11.25

4 7.46 -0.20 -0.90 8.60 3.63 17.14

6 8.31 -0.22 -1.00 9.59 4.04 19.15

Historical 2 -1.41 3.09 -3.68 -2.99 -3.25 -3.11

4 -2.12 4.68 -5.41 -4.38 -4.81 -4.55

6 -2.36 5.22 -5.96 -4.83 -5.33 -5.01

Log(DivY) 2 32.63 7.79 45.23

4 52.18 18.63 68.61

6 59.61 26.06 76.51

Table 4.5: The left panel displays the mean optimal percentage allocation to the risky as-

set. The lower panel displays the mean hedging demand relative to the mean total demand

(αt,hedging(µ; γ,Ψ) = αt(µ; γ,Ψ) − αt,myopic(µ; γ,Ψ)). All values are based on the estimates

of the return processes reported in table 4.3. The elasticity of inter-temporal substitution parameter

is Ψ = 0.5 for all cases.
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characteristics over time. Differences are mainly in the slower adjustment of the portfolio

weight. This is rooted in the calculation of the log dividend rice ratio as discussed in

section 4.6.1. Additionally, the variation of the portfolio weight is stronger reflected in

changes of the consumption-wealth ratio. It is more reactive and peaks during the financial

crisis. For the NDX the log dividend price ratio poses and exception. Due to the strong

growth of dividends, values are not reasonable.

Lastly, the hedging demand for the risky asset is reported in appendix C.6 and C.7. The

variation over time in the hedging demand confirms the positive improvements when tak-

ing into account the entire demand for the risky asset. For the classic estimation method

the hedging demand hardly changes over time and is close to zero for the option implied

approach. The historical approach obtains similar characteristics but also displays greater

inconsistencies between different risky assets. Applying the direct estimation method

leads to more consistent movements comparing the different risky assets to each other.

Further, the variation in hedging demand and magnitude increase tremendously particu-

larly for the SPX. For the historical approach the variation is not as high as for the option

implied approach but the hedging demand behaves more consistent comparing the differ-

ent risky assets with each other. However, comparing the hedging demand with the log

dividend price ratio still suggests tremendous differences in magnitude as well as variation

over time. Major reason for the differences is the covariance σηu that is responsible for the

hedging demand.

4.6.4 Utility and out-of-sample performance

To quantitatively evaluate the direct estimation procedure two measures are taken into

account: utility and out-of-sample performance. The results for the unconditional mean

value function per unit of wealth are reported in table 4.6 and 4.7. For the unrestricted

portfolio rule the absolute values are reported whereas the restricted portfolio rules display

the relative change in the value function. For the option implied approach the unrestricted

rule obtains high utility gains when using the direct estimation method. When using the

classic estimation procedure the utility of the option implied approach cannot even exceed
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the historical approach. However, using the direct estimation method, the utility closes

mostly up to the log dividend price ratio and clearly exceed the results of the historical

approach. Further, this finding is consistent through indices, making the direct estimation

method preferable.

Furthermore, restricting the hedging demand and timing component results in reduc-

tions in the value function. These reductions have a stronger impact using the direct es-

timation method. This is an important finding since it emphasizes that the direct estima-

tion method better captures the information contained in option prices. Furthermore, it

strengthens to allow for the more complex features of the portfolio allocation. Neverthe-

less, compared to the log dividend price ratio, the timing and hedging component have a

rather small impact. Therefore, it is questionable if model assumption are suitable for the

use of option implied information and if different assumptions about the model dynamics

should be considered in order to fully accelerate information contained in option prices.

The out-of-sample performance results underline the findings of the value function.

The out-of-sample performance is evaluated using 10-year rolling windows to capture the

dynamics of the state variable. The window length of 10 years is selected as it provides

a sufficiently long estimation horizon to capture long-run dynamics without loosing too

much of the out-of-sample evaluation period. The performance is evaluated separately

for the subprime crisis from 18th August 2007 until 19th December 2009 and after the

crisis from 19th December 2009 until 15th April 2016 taking into account the Sharpe and

Sortino Ratio. The evaluation period is split into two parts due to the exceptional market

environment during the financial crisis. The results are reported in table 4.8 in excess to

the simple investment into the index.

For the option implied approach the performance measures consistently improve during

both market periods using the direct estimation method. It confirms the higher utilities

reported in the previous paragraph. Furthermore, after the crisis the performance measures

are in all cases in excess relative to the simple investment into the index. This is an

important finding since the results using the classic estimation method were mostly behind

the full investment into the risky asset.
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Classic estimation

Method γP

Timing No timing

DJX NDX SPX DJX NDX SPX

Hedging Mod-free 2 0.35 0.27 0.22 -0.45 -0.24 -0.23

4 0.24 0.20 0.18 -0.23 -0.12 -0.11

6 0.21 0.18 0.17 -0.16 -0.08 -0.08

Hist 2 0.23 0.30 0.31 -2.17 -2.19 -4.41

4 0.18 0.22 0.21 -1.09 -1.12 -2.17

6 0.17 0.19 0.19 -0.72 -0.75 -1.44

Log(DivY) 2 0.86 16.45 1.22 -11.33 -88.66 -16.44

4 0.60 6.72 0.88 -7.67 -81.36 -13.01

6 0.48 4.14 0.71 -5.89 -76.73 -10.98

No hedging Mod-free 2 -4.38 0.14 0.44 -4.80 -0.11 0.21

4 -4.11 0.12 0.36 -4.32 0.00 0.25

6 -3.32 0.09 0.28 -3.47 0.01 0.20

Hist 2 1.07 -3.18 3.45 -1.17 -5.26 -1.32

4 0.86 -2.85 2.73 -0.26 -3.90 0.36

6 0.66 -2.26 2.06 -0.09 -2.96 0.49

Log(DivY) 2 -44.80 -23.04 -54.13 -49.28 -92.47 -58.60

4 -53.95 -47.89 -65.55 -55.82 -91.45 -67.21

6 -52.93 -59.59 -65.91 -54.20 -90.58 -67.00

Table 4.6: This table displays the expected value function in (4.4.8) implied by the risk-premium

process in table 4.3 when setting the state variable to its long-run mean µ + σ2
u
2 for the classic

estimation method. The upper left hand side of each table reports the utility of the unrestricted

portfolio rule. The remaining parts display the utility losses when following a suboptimal portfolio

rule. The elasticity of inter-temporal substitution parameter is Ψ = 0.5 for all cases.
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Direct estimation

Method γP

Timing No timing

DJX NDX SPX DJX NDX SPX

Hedging Mod-free 2 0.38 0.97 0.96 -0.50 -1.08 -1.55

4 0.25 0.47 0.49 -0.26 -0.55 -0.82

6 0.21 0.34 0.36 -0.17 -0.36 -0.55

Hist 2 0.22 0.22 0.22 -1.94 -1.18 -2.20

4 0.18 0.18 0.18 -0.95 -0.58 -1.08

6 0.17 0.17 0.17 -0.63 -0.39 -0.71

No hedging Mod-free 2 -4.94 -3.14 -12.84 -5.39 -4.17 -14.06

4 -4.71 -3.40 -14.22 -4.93 -3.91 -14.83

6 -3.84 -2.96 -12.62 -3.99 -3.30 -13.03

Hist 2 1.24 1.64 1.36 -0.78 0.39 -0.95

4 0.95 1.28 1.04 -0.05 0.66 -0.10

6 0.71 0.96 0.78 0.04 0.55 0.02

Table 4.7: This table displays the expected value function in (4.4.8) implied by the risk-premium

process in table 4.3 when setting the state variable to its long-run mean µ + σ2
u
2 for the direct

estimation method. The upper left hand side of each table reports the utility of the unrestricted

portfolio rule. The remaining parts display the utility losses when following a suboptimal portfolio

rule. The elasticity of inter-temporal substitution parameter is Ψ = 0.5 for all cases.
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Compared to the historical approach, the option implied approach benefits more heavily

by the direct estimation method. For the historical approach the Sharpe and Sortino ratio

increase in many cases but only of small magnitude. It confirms the weak timing abilities

as discussed in the density forecasting literature. Furthermore, it underlines the adverse

estimation results. In contrast, the log dividend price ratio obtains high values for Sharpe

and Sortino ratio. The option implied approach is only able to close up to the log dividend

price ratio but results do not exceed the performance measures. It lines up with the findings

taking into account the utility.

4.7 Extension for option implied variance

Following the proposed direct estimation method leads to high weights in the risky asset

during times of distress. Even though the portfolio weight reacts in the intended way, the

long-term investor misses out during periods of high gains as for example from 2004 until

2007 or 2012 until 2016. The weight in the risky asset during these time periods obtains

its lowest values which is not reasonable. A potential issue associated with the estima-

tion procedure is the estimate of the return volatility σ2
u. It is an estimate based on past

returns. However, it is questionable if this estimate correctly reflects the volatility in the

risky asset. From volatility forecasting it is well known that option implied volatility has

advanced forecasting abilities compared to alternative methods, e.g. Blair et al. (2001),

and varies over time. Therefore, the estimation procedure for σ2
u is amended by obtaining

estimates from option prices. Even though this procedure does not allow for stochastic

volatility it should help to improve the portfolio allocation. The option implied estimates

of σ2
u are constantly updated and should more accurately reflect uncertainties in the mar-

ket. Therefore, the implied estimates should deliver a more accurate picture about current

market expectations.

To follow a similar methodology to retrieve the volatility as the risk-premium, the

model-free approach by Britten-Jones and Neuberger (2000) is employed. Jiang and Tian

(2005) extend this procedure to account for interest and dividend payments. To determine
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Classic estimation Direct estimation

Risky asset Method γP

Sharpe Ratio Sortino Ratio Sharpe Ratio Sortino Ratio

Crisis After Crisis After Crisis After Crisis After

DJX Index -0.549 0.605 -0.440 0.484 -0.549 0.605 -0.440 0.484

Mod-free 2 -0.438 -0.068 -0.390 -0.003 -0.089 0.162 -0.048 0.186
4 -0.393 -0.034 -0.350 0.036 -0.024 0.208 -0.016 0.246
6 -0.375 -0.023 -0.335 0.050 0.038 0.220 0.024 0.262

Hist 2 -0.567 -0.141 -0.536 -0.072 0.052 -0.085 0.013 -0.066

4 -0.656 -0.241 -0.581 -0.176 0.101 -0.119 0.048 -0.089

6 -0.654 -0.221 -0.580 -0.155 0.116 -0.092 0.059 -0.062

Log(DivY) 2 -0.370 0.177 -0.224 0.225
4 -0.470 0.181 -0.278 0.205
6 -0.514 0.180 -0.300 0.199

NDX Index -0.200 0.787 -0.157 0.609 -0.200 0.787 -0.157 0.609

Mod-free 2 -1.117 -0.035 -0.964 0.101 -0.063 0.082 -0.040 0.147
4 -1.108 0.038 -0.960 0.208 -0.128 0.143 -0.078 0.233
6 -1.105 0.064 -0.959 0.270 -0.097 0.189 -0.059 0.311

Hist 2 -0.545 -0.205 -0.371 -0.185 0.003 -0.081 0.000 -0.060

4 -0.519 -0.153 -0.356 -0.138 0.039 -0.050 0.027 -0.023

6 -0.511 -0.136 -0.351 -0.122 0.051 -0.021 0.036 0.008

Log(DivY) 2 -0.028 -0.190 -0.019 -0.173

4 0.093 -0.104 0.068 -0.084

6 0.135 -0.078 0.103 -0.051

SPX Index -0.533 0.660 -0.418 0.534 -0.533 0.660 -0.418 0.534

Mod-free 2 -0.043 -0.317 -0.015 -0.202 -0.109 0.093 -0.060 0.119
4 -0.132 -0.288 -0.070 -0.169 -0.104 0.165 -0.051 0.259
6 -0.158 -0.279 -0.084 -0.159 -0.163 0.181 -0.082 0.341

Hist 2 0.380 -0.078 0.229 0.053 0.155 -0.027 0.093 -0.001

4 0.424 -0.119 0.289 0.001 0.187 -0.021 0.116 0.013
6 0.305 -0.097 0.174 0.030 0.197 0.002 0.124 0.040

Log(DivY) 2 -0.095 0.346 -0.002 0.466
4 -0.173 0.325 -0.047 0.428
6 -0.234 0.317 -0.082 0.412

Table 4.8: Annualized out-of-sample Sharpe and Sortino ratios. The elasticity of inter-temporal

substitution parameter is Ψ = 0.5 for all cases. Positive excess values are marked bold.
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the volatility estimate, they consider the forward price F under the forward probability

measure. The variance can then be obtained by the following expression:

E0

[∫ T

0

(
dFt
Ft

)2
]

= 2

∫ ∞
0

cF (T,K)−max(F0 −K, 0)

K2
dK (4.7.1)

The numerator of the integral in (4.7.1) becomes the difference between forward option

price cF and its inner value. The forward option price is defined as cF = cerf,tT . The

integral requires a continuous sequence of option prices which are not observable in finan-

cial markets. Therefore, the integral needs to be approximated. It is assumed that option

prices are sorted by the corresponding strike price from low to high. Nt is the amount of

observed option prices:

V art[rt+1] = E0

[∫ T

0

(
dFt
Ft

)2
]
≈

Nt∑
i=1

[g(T,Ki) + g(T,Ki−1)](Ki −Ki−1) (4.7.2)

where g(T,K) = [cFo (T,K)−max(F0 −K, 0)]/K2 (4.7.3)

This expression results in a downwards bias of the implied volatility as discussed in Jiang

and Tian (2005) since volatilities in the extreme upper and lower tails are missing. The

approximation of V art[rr+1] is then introduced into the optimisation procedure of the

portfolio allocation. For each observation date, the observed option implied variance is

used to estimate σ2
u and the portfolio optimisation is performed to obtain optimal portfolio

and consumption policies. The results for the portfolio weights and consumption-wealth

ratio are displayed in appendix C.10 and C.11.

The plots show that the portfolio weights change drastically and avoid some of the

issues when estimating σ2
u from a past time series. Most apparent for the option implied

approach is that the weight in the risky asset increases in periods of low volatility and

lowers during times of distress. This finding clearly differentiates from not using an option

implied estimate for σ2
u. The updated option implied estimates for σ2

u seem to put the

expected returns better into perspective and scale the share in the risky asset depending

on the market environment. These findings are quite intuitive since the weight in the risky

asset is high during times of gains whereas during times of distress the portfolio weight
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is reduced. Furthermore, the weight in the risky asset exhibits a stronger variation over

time. The historical approach obtains similar results. However, the variation in weight is

stronger compared to the option implied approach. Overall, the weight in the risky asset

for the option implied and historical approach becomes similar volatile compared to the

log dividend price ratio. Nevertheless, they diverge quite drastically as for example before

and during the subprime crisis. Within this time periods the weight in the risky asset is

more or less the opposite compared to the option implied and historical approach.

Next to the weight in the risky asset, the consumption wealth ratio exhibits great

changes for the option implied approach. The variation over time greatly increased peak-

ing in periods of low volatility but maintaining low levels when markets are in distress.

Compared to the alternative approaches the option implied approach obtains the highest

variation in the consumption wealth ratio. The historical approach increases its variation

too. However, it is on a far lower level compared to the option implied approach. This

is a remarkable observation since the weight in the risky asset is of similar magnitude for

some sub-periods.

Even though the observations can be explained intuitively there are some shortcom-

ings following this procedure. First, within the portfolio allocation σ2
u is assumed to be

constant and therefore accounts for the entire estimation horizon. This is not reasonable

since estimates for the volatility change over time. Second, the estimation of the param-

eters [σ2
u, σ

2
η, σηu] is performed based on two different approaches: σ2

η using a past time

series and σ2
u using option implied information. The resulting covariance σηu is a com-

bination of both. This way of estimating the parameters of the portfolio allocation is not

reasonable from a mathematical perspective. Using the obtained values to calculate the

correlation coefficient can result in values that exceed in some cases−1. If this applies the

approximation method normally cannot converge or obtains unreasonable values for opti-

mal weights and consumption. This is of course by no means reasonable. Nevertheless,

this section should highlight that the introduction of option implied volatility impacts the

portfolio allocation drastically. In order to accommodate this feature in a consistent and

appropriate way the model assumptions need to be extended.
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4.8 Conclusion

This study presented a novel estimation method to directly obtain the dynamics of the state

variable within the portfolio allocation of a long-term investor. The portfolio allocation

goes back to Campbell and Viceira (1999) and considers a single state variable. In the

initial paper, the dynamics of the state variable or risk-premium process were obtained

indirectly via a VAR(1) system using the log dividend price ratio. However, the research

concerning with option implied information advanced over the past years and could show

that the risk-premium can be estimated robustly from a cross-section of option prices.

Therefore, this chapter proposed a direct estimation method to obtain consistent estimates

of the AR(1) process that reflects the dynamics of the risk-premium within the considered

portfolio allocation.

When Applying the direct estimation method, the results become more consistent across

considered risky assets and portfolio weights as well as consumption policies. The main

impact is on the covariance σηu between the innovations in the state variable and log excess

return. This component is responsible for the hedging demand of the long-term investor.

Only the direct estimation method, obtains estimates of σηu < 0 that are empirically rea-

sonable as discussed in Campbell and Viceira (1999). It ensures that the hedging demand

has a positive share in the overall portfolio weight of the risky asset. The positive share of

hedging demand is mainly reflected in an increase of a?0 within the portfolio rule. To eval-

uate the two different estimation methods, the utility of the long-term investor is compared

to each other. The utility using the direct estimation method clearly exceeds the classic

estimation method when using option implied information. This is also confirmed by the

out-of-sample results. The direct estimation method obtains high gains in the Sharpe and

Sortino ratio. Comparing the findings of the option implied to the historical approach

confirms the findings of the density forecasting literature. Utility as well as out-of-sample

performance are in excess to the historical approach. However, relative to the log dividend

price ratio, results only close up.

The empirical findings are most likely a consequence of the model assumptions, which
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are tailored for the log dividend price ratio. To overcome parts of these issues the option

implied variance is incorporated into the portfolio allocation. As a result, the portfolio

and consumption decisions change quite drastically and seem to be more suitable taking

into account the market environment. However, the model comes to its limits by obtaining

unreasonable values of the correlation between innovations in the state variable and excess

returns. Future work should be centred around the model assumptions to incorporate the

option implied risk-premium and variance in a more advanced framework.
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C Appendix

C.1 Approximation Risk-premium

Since we cannot observe a continuous series of strike prices the two integrals need to be

approximated. We approximate the first integral containing only put options where Np is

the amount of observed put prices as following:∫ Ft

0

po(K)dK ≈
Np−1∑
i=2

po(Ki)
Ki+1 −Ki−1

2
(C.1)

+ po(K1)(K2 −K1)

+ po(KNp)

[
(KNp −KNp−1)

2
+

(Ft −KNp)

2

]
.

The second and third term refer to the put option with the lowest and highest strike price.

For the put option with the lowest strike the difference in the strike price towards K2 is

mirrored to the left hand side. For the put option with the highest strike KNp the area

on the right hand side of the option is only considered until the future price. The second

integral containing only call options is approximated in the same fashion with the amount

of call option prices N c:∫ ∞
Ft

co(K)dK ≈
Nc−1∑
i=2

co(Ki)
Ki+1 −Ki−1

2
(C.2)

+ co(KNc)(KNc −KNc−1)

+ co(KNc)

[
(K2 −K1)

2
+

(K1 − Ft)
2

]
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C.2 Restricted portfolio policies

Portfolio rule
Optimal consumption rule

given portfolio rule

Hedging

Timing αt = a∗0 + a1(xt + σ2
u/2) ct − wt = b∗0 + b∗1(xt + σ2

u/2) + b2(xt + σ2
u/2)2

No-timing αt = a∗0 + a1(µ+ σ2
u/2) ct − wt = bh,nt0 + bh,nt1 (xt + σ2

u/2)

No-hedging

Timing αt = xt+σ2
u/2

γσ2
u

ct − wt = bnh,t0 + bnh,t1 (xt + σ2
u/2) + bnh,t2 (xt + σ2

u/2)2

No-timing αt = µ+σ2
u/2

γσ2
u

ct − wt = bnh,nt0 + bnh,nt1 (xt + σ2
u/2)

Table 4.9: This table is from Campbell and Viceira (1999). From left to right, the first equation

describes the unrestricted intertemporal optimisation problem. The second equation allocates a

fixed fraction to the risky asset that is equal to the average allocation of the risky asset imposed by

the optimal portfolio rule. Market timing is ignored in combination with imperfect hedging. The

third case refers to a myopic investor ignoring intertemporal hedging but trying to time the market.

Lastly, the fourth investor ignores hedging and timing and allocates a fixed fraction equal to the

average myopic demand of the risky asset.
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C.3 Estimation errors

Parameter

Mean Median
Standard

deviation

DJX NDX SPX DJX NDX SPX DJX NDX SPX

µ 0.047 0.069 0.043 0.053 0.075 0.047 0.016 0.020 0.015

φ -0.016 0.001 -0.017 -0.010 -0.028 -0.007 0.037 0.058 0.039

ω 0.012 0.026 0.011 0.011 0.023 0.010 0.003 0.018 0.004

δ 0.925 0.924 0.927 0.927 0.928 0.929 0.018 0.027 0.017

α 0.009 0.018 0.005 0.002 0.021 0.000 0.010 0.014 0.010

β 0.106 0.089 0.115 0.114 0.078 0.124 0.049 0.037 0.045

d.o.f. 8.236 14.618 8.504 8.303 12.631 7.889 2.001 6.280 2.580

Table 4.10: Parameter statistics of the historical approach.
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C.4 Portfolio weight - direct estimation method
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Figure 4.2: The figure displays the risky portfolio weight following the optimal portfolio rule for

the case γ = 2 and ψ = 0.5.
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C.5 Portfolio weight - classic estimation method
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Figure 4.3: The figure displays the risky portfolio weight following the optimal portfolio rule for

the case γ = 2 and ψ = 0.5.
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C.6 Hedging demand - direct estimation method
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Figure 4.4: The figure displays the hedging demand following the optimal portfolio rule for the

case γ = 2 and ψ = 0.5.
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C.7 Hedging demand - classic estimation method
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Figure 4.5: The figure displays the hedging demand following the optimal portfolio rule for the

case γ = 2 and ψ = 0.5.
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C.8 Consumption wealth ratio - direct estimation method
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Figure 4.6: The figure displays the consumption wealth ratio following the optimal portfolio rule

for the case γ = 2 and ψ = 0.5.
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C.9 Consumption wealth ratio - classic estimation method
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Figure 4.7: The figure displays the consumption wealth ratio following the optimal portfolio rule

for the case γ = 2 and ψ = 0.5.
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C.10 Portfolio weight - excursus
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Figure 4.8: The figure displays the risky portfolio weight following the optimal portfolio rule with

updated volatility σu for the case γ = 2 and ψ = 0.5.
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C.11 Consumption wealth ratio - excursus
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Figure 4.9: The figure displays the consumption wealth ratio following the optimal portfolio rule

with updated volatility σu for the case γ = 2 and ψ = 0.5.



CHAPTER 5

Conclusion

This chapter summarises the main findings outlined in this thesis including chapter 2 dealing
with risk-aversion measurement, chapter 3 on portfolio allocation and option implied state
variables and chapter 4 on the developed direct estimation method. Further, an outlook of
prospective research in the area of portfolio allocation using option prices and density fore-
casting is provided.
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5.1 Summary

This thesis dealt with option implied information in economic applications. Thereby, the

focus was on the use of option prices in the field of risk-aversion measurement and port-

folio allocation. The performed research is motivated by the findings in the option pricing

and density forecasting literature. These streams suggest that observed option prices imply

an underlying asset price distribution that is non-normal. Further and more importantly,

relying on a non-normal asset price distribution improves out-of-sample forecasting abili-

ties when predicting the underlying asset price. Therefore, option prices are an appealing

alternative to other sources of information (e.g. financial ratios) when trying to predict

asset prices. Based on this finding, this thesis investigates within three chapters on the use

of option implied information within risk-aversion measurement and portfolio allocation.

The first chapter contributes to the area of risk-aversion measurement using option

prices. This field is rooted in the density forecasting literature, which relies on a trans-

formation from risk-neutral to subjective dynamics. The transformation requires an as-

sumption about the preferences of the representative investor. In this chapter, the investor

follows a power-utility function. To transform the risk-neutral density into its subjec-

tive counterpart the risk-aversion parameter contained in the power-utility needs to be

estimated. This transformation is normally performed taking into account a past series

of risk-neutral densities that are linked to corresponding asset price outcomes to obtain

an estimate of risk-aversion. In the density forecasting literature the risk-aversion es-

timate is many times a point estimate. Studies trying to evaluate those estimates sug-

gest that they are relatively stable and within reasonable bounds. However, comparing

the risk-aversion estimate over time using a sufficiently long rolling window unveils that

risk-aversion varies strongly over time. To analyse and justify this observation, the first

chapter proposes a simulation method to validate the obtained risk-aversion estimates and

examines its variation. Contrary to other studies, the simulation aims to obtain current

insights about risk-aversion rather than an average over a past time horizon. Therefore,

only the current risk-neutral density is relevant to obtain risk-aversion estimates. The sim-

ulation makes assumptions about the underlying subjective asset price process to obtain
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risk-aversion estimates. Thereby, the market dynamics are assumed to follow a geometric

Brownian motion and are further extended for stochastic volatility. The entirety of simu-

lation outcomes allows to obtain a distribution of risk-aversion estimates and insight into

its variation. The findings imply that the assumptions about the underlying risk-neutral

distribution has a great impact on the variation of risk-aversion. More flexible distribution

types reduce the variation. Nevertheless, the variation reported in this chapter is far higher

than suggested by other studies (Bliss and Panigirtzoglou, 2004). Noteworthy, is that the

structure of stochastic volatility has a strong impact on the distribution of risk-aversion and

magnitude of variation. Lastly, the simulation is evaluated taking into account the out-of-

sample performance. This is performed by taking into account the average risk-aversion

from the simulation to transform the risk-neutral density. The obtained subjective den-

sity is then evaluated based on the log-likelihood of asset price outcomes. Comparing the

proposed simulation with the classic method of estimating risk-aversion over a past time

horizon suggest that forecasting abilities improve when using the proposed simulation

method.

Central aspect within the third and fourth chapter is portfolio allocation. Both chapters

investigate on how option implied information benefit strategic asset allocation between

a risky and risk-free asset. The studied investor is infinitely lived with Epstein-Zin pref-

erences going back to Campbell and Viceira (1999). The long-term investor makes his

investment decisions based on a single state variable, the risk-premium. Central issue with

the risk-premium is that it cannot be observed directly. Therefore, the literature derives

the risk-premium process from state variables that are associated with predictive power

towards the risk-premium. Typical examples for state variables are financial ratios (e.g.

log dividend price ratio, price-earnings ratio).

The third chapter studies the impact when the financial ratio is replaced with infor-

mation derived from option prices. The use of option prices in portfolio allocation is

motivated by three aspects: First, option prices are forward looking since their pricing

contains in theory the current market expectations until expiry. Second, the cross-section

in the strike price allows to gain detailed insight about different states of the underlying

asset. Third, option prices rely on currently observed prices and do not require a history
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of options prices as it is the case for financial ratios1. This chapter proposes to exploit the

option implied risk-premium as state variable. To derive the option implied risk-premium

a battery of different distributional assumptions are employed, including a lognormal den-

sity (Black, 1976), a mixture-lognormal density (Ritchey, 1990) and a non-parametric

binomial tree (Jackwerth and Rubinstein, 1996). As benchmark state variables, the op-

tion implied market price of risk as in Kostakis et al. (2011) and the log dividend price

ratio as proposed in Campbell and Viceira (1999) are applied. Furthermore, as alternative

method to derive the proposed state variables a historical benchmark is implemented. It

makes assumptions about the return and volatility process using a GARCH type model

and is estimated using a series of asset price returns. Next to this benchmark the results

are also compared against a simple investment into the risky asset. The findings suggest

that there are no major differences among the proposed density types. This is most likely

a consequence of only using the first two moments within the suggested state variables.

Comparing the option-implied approach to the alternative benchmarks unveils that option

implied information provide improved timing abilities towards the historical approach.

Comparing it towards the simple investment shows that during the period after the cri-

sis the option implied approach is preferable. However, during the crisis this is not the

case. Analysing the market price of risk shows that the risk-premium is preferable within

the considered portfolio allocation. Nonetheless, comparing the risk-premium to the log

dividend price ratio it is not clear which state variable is in favour.

The fourth chapter is motivated by the findings in chapter three and develops and es-

timation framework. Starting point are the empirical findings of the option implied risk-

premium. Chapter three suggests that the option implied risk-premium is a good state

variable in regards of the applied performance measures to describe the risk-premium pro-

cess of the portfolio allocation. However, the applied estimation framework of the risk-

premium process goes back to Campbell and Viceira (1999) and derives its parameters

using a restricted VAR(1). This is necessary since they originally worked with financial

1Indeed the transformation from risk-neutral to subjective density relies on a past time horizon but within
the assumption of a power utility risk-aversion is constant. Therefore only the observed cross-section of
option prices, which essentially dictates the characteristics of the risk-neutral density, is of relevance.
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ratios which do not give direct insight into the risk-premium. Therefore, this chapter

proposes a direct estimation method to obtain consistent estimates of the risk-premium

process using the option implied risk-premium. The risk-premium is obtained as in Mar-

tin (2017). This procedure is model free. Main benefit is that it avoids to appoint a fixed

horizon to transform the risk-neutral to subjective density. The empirical findings suggest

that the proposed direct estimation method obtains consistent parameters across different

risky assets which is not the case for the estimation method using the restricted VAR(1).

The parameters are in line with the empirically relevant case described in Campbell and

Viceira (1999) and exhibit a positive hedging demand. These observations are supported

by the improvements in the value function and out-of-sample performance. Furthermore,

a striking argument to use the option-implied risk-premium is that it is not conflicted with

non-stationarity issues as it is the case for financial ratios.

5.2 Future Work

In the near future, the work on portfolio allocation and option implied information should

be continued. The infinitely lived investor by Campbell and Viceira (1999) operates within

a quite restrictive set-up. Most apparent is the assumption of constant volatility. A chal-

lenging task is to incorporate option-implied volatility. The starting point would be to

design a suitable framework to capture the dynamics of option-implied volatility follow-

ing Chacko and Viceira (2005). Furthermore, some work needs to be dedicated to design

a portfolio allocation that is more tailored towards the use of option implied information

rather than financial ratios. It can be expected that the portfolio and consumption deci-

sions in this richer set-up will strongly diverge from the findings. Some preliminary work

already indicates these expectations as suggested in section 4.7. Furthermore, allowing for

a wider set of available securities, particularly to hedge positions within the portfolio, is

an appealing route. Thereby, the focus should not be on stock selection but rather on the

availability of derivative securities like options and futures or short selling.

The second area of work is to introduce machine learning algorithms to option pricing
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and density forecasting. Even though machine learning is on a more early stage within

economics it has potentially interesting applications within option pricing and density

forecasting. An interesting fact is the great flexibility within the machine learning al-

gorithms which generally is of advantage when working with option implied distributions.

Thereby, an appealing route are short term or high frequency predictions using option im-

plied densities since they tend to perform worse compared to historical densities. Machine

learning could draw another perspective into short term predictions and help to understand

the weaker forecasting abilities of option implied densities. Particularly, interesting within

this context is the analysis of high frequency option prices.
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