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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES
SCHOOL OF ENGINEERING

Doctor of Philosophy

by Jennifer A. Forrester

Political, environmental, and economic factors are driving an increased need to under-
stand variability in aerospace product performance. Although there is a plethora of geo-
metric inspection data gathered over many years, and an array of methods for informing
design decisions based on statistically defined uncertainty, uncertainty in performance
due to geometric variability is seldom assessed beyond the modification of geometric de-
sign parameters in existing analyses. The practical use of these approaches is limited by
the cost of simulation, the lack of accurate statistical definition of geometric variation,
and the complexity involved in modifying geometric definitions for their implementation

in existing analysis.

In this thesis, methods are developed to enable three sets of inspection measurement
data from aero-engine components to further inform design. In the first case, turbine disc
firtree slot flank geometry is characterized using existing parameters, fitted to point cloud
measurement data using particle swarm optimization. In the second case, measurements
of combustor features correspond directly to existing parameters. Implementation of
changes to those parameters within the analysis mesh is achieved using a modified polar
coordinate based mesh morphing algorithm with surrogate model based transformations.
The final data sets are point cloud measurements along a blade firtree flank and have a
form that differs from the design. Here, both defining the uncertainty and applying the
geometric changes within the simulation require novel application of existing techniques.
The complex shape of the variable geometry is modelled using a combined Kriging and
principal component analysis based approach, and realized through radial basis function

morphing of an existing mesh.

The techniques enable the facilitation of design optimization in an uncertainty frame-
work. This is achieved by providing an automated approach to producing a data-based
reduced set of uncertain geometric variables, and associated probability distributions,
from which appropriate designs of experiment can be sampled. The computer experi-
ments can be executed using the free form deformation based mesh morphing methods

for integration of the uncertainty with existing complex workflows.
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Chapter 1

Introduction

1.1 An historical perspective

Engineers often build predictive models to estimate the likely performance of a compo-
nent or system design. Such models vary in fidelity and complexity, from simple ‘back-
of-the-envelope’ type calculations, using well established formulae, to detailed computer
codes. All of these models, however, make certain assumptions and approximations
about the real-life scenario that they model. It is the methods employed to enable the
designer to take account of the effects of these assumptions that are the focus of this
thesis. In particular, we are concerned with critical component design in aero-engines.

Assumptions are typically introduced to models as:

e boundary conditions,
e geometry, and

e solid or fluid material properties.

The true variability, or uncertainty, in each of these input assumptions results in a
combined uncertainty in the performance prediction. Common sources of variability are
manufacturing processes and operating environment, as well as uncertainty through lack

of understanding, or model error.

As computational processing power increased throughout the 1980s and beyond, efforts
into developing more and more accurate and computationally expensive codes for per-
formance prediction grew. They continue to this day. These physics-based codes have
been refined such that, in many cases, the confidence in their predictions is considerable.
There is now often very little uncertainty in their underlying calculations. These analysis
codes remain, in general, the basis of most detailed engineering design. They tend to be

based on computational structural mechanics (CSM), or computational fluid dynamics

1
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(CFD), codes. These codes (usually using finite element analysis (FEA), or finite volume
methods respectively) are now notably accurate for static, linear, and even many non-
linear structural, or inviscid flow problems but do still contain considerable uncertainty
and continue to be refined for complex models involving, for example: contact, fatigue,

dynamic impact, viscous flow, and prediction of flow separation.

Traditionally, uncertainty has not been entirely ignored; designers have applied safety
factors or reserve factors to introduce a margin of safety to their calculations in an
attempt to ensure that designs do not fail to meet requirements. The choice of a suitable
value for the required safety factor is generally based on experience and perceived risk.
This is well established practice and many national and international design standards

continue to use safety factors within their recommended calculations.

As Choi et al. [41] state, “as modern structures require more critical and complex designs,
the need for accurate approaches to assess uncertainties ... has increased significantly”.
There are applications where factors of safety are still the most rational approach given
that the consequences of poor performance or failure are of little significance and there
is no need to expend additional effort to quantify the uncertainty in the prediction made
by the mathematical model, or in cases where very large safety factors can be readily
accepted. However, in applications where the risks are particularly high, for example in
the nuclear industry, the safety factor based approach is no-longer acceptable. Indeed,
designers of nuclear power plants were among the first to begin to quantify uncertainty
in their models and assumptions. Risk, or probability of failure, in such applications is a

probability of risk to human life, among other serious effects.

If we consider aerospace design specifically, engineers and manufacturers must strive to
remain competitive in a global market. It is not sufficient to build an aircraft or engine
that only ‘does the job’ and is considered ‘safe’. These are assumed prerequisites. A
global customer-driven, or value-driven, market requires that all products are cheaper to
produce, more economic (cheaper to run), more reliable (cheaper to maintain), and have
a longer usable life than those of their competitors. Companies such as Rolls-Royce plc.
have entered into ‘total care’ packages with their customers to underwrite the quality
of their engines. As a result, they are responsible for bearing the cost of maintenance
throughout a pre-determined engine life. In addition, the demand for affordable air travel
has increased steadily, reaching over 275 million passengers in 2017, despite a small fall in
the years 2008 to 2010 [42]'). Governments have also been pressurized into introducing
tight requirements on noise and emissions, as well as efficiency, following the sharp rise

in air travel and an increased public concern over environmental impact and fossil fuel

1On 15th March 2010 Harry Bush, CAA Director of Economic Regulation, said, “today’s figures show
the biggest fall in passenger numbers since the second world war, highlighting the enormous impact the
recession has had on the aviation industry. Passenger numbers are now back to the level they were six
years ago and, although they will certainly rebound, the pace of recovery is uncertain and it could be a
number of years before they reach their peak level again”. He was proven correct as numbers continued
to rise again after 2010 at a similar rate to the previous decade.



Chapter 1 Introduction 3

depletion. All of these design drivers combine to result in multiple constraints on designs
and, due to these, unless step changes in the design approach can be found, increases in
design complexity to meet them. Increased complexity inevitably leads to more need to

deal with the introduction of uncertainty.

In this thesis, we consider the design of aero-engines and their components where com-
plexity and uncertainty are of particular concern. The turbofan engine, figure 1.1, is
already one of the most complex pieces of machinery ever produced. Although its pi-
oneer Frank Whittle said that simplicity was a hallmark of his jet engine, “not once
in the history of the jet engine has it been truly simple, not in theory, not in prac-
tice, not in manufacture, not in application” [235]. The ever tightening requirements on
noise, emissions, and efficiency have, in general, been addressed over recent years using
a variety of approaches aimed primarily at improving the performance of the nominal
design. Consider a component: its current nominal design is reached through initial
innovation in the early preliminary design stage, followed by successive iteration in the
detailed design phase until constraints on, for example, stress, deflection, and weight,
are met with appropriate safety factors. The computer code that uses FEA to predict
these performance parameters involves time consuming solutions of partial differential
field equations, which may, depending on the fidelity, size, and linearity of the problem
consume days of computing effort. To ensure that undesired effects are not introduced
due to manufacturing error, tolerance bounds are specified for the component geometry
and as many runs of the analysis code as can be afforded are executed at the extremities
of the tolerance bands, which are adjusted if required. Often the choice of tolerances
takes into account what is achievable with the current manufacturing process. A number
of components are made to ensure that they conform with the designers’ specification
and if loading tests are possible they can be tested. The component is then tested as
part of the whole engine, after which its design is not altered unless it exhibits signs of
failure. There may be a number of engine tests and the manufacturing process must be
productionized? and the component proved in tests in the production engine as well. The
process is greatly simplified in this description but we now have a component nominal
design with tolerance specifications, typically designed for worst case load cycles and

with nominal material properties.

To improve upon the current design for a new, more stringent, set of requirements one,
unsurprisingly, begins the iterative cycle again, perhaps searching for stronger materi-
als, tighter tolerances, or using model verification to improve the mathematical model
being used, based on previous tests. This process of innovation followed by ewvolution
is described by Keane and Nair [130] as a precursor to automation - a prerequisite for

optimization.

20xford spelling as used by the Oxford University Press, and defined in the Oxford English Dictionary
[259] is used throughout this thesis.
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Figure 1.1: Rolls-Royce Trent series turbofan engine, courtesy of Rolls-Royce
plc.

In the 1990s, aerospace companies, and many others, began to turn to formal optimiza-
tion, or more accurately termed design search and optimization (DSO), as a tool for
searching for superior product designs. The approaches enabled them to squeeze addi-
tional performance from current design concepts without the expense of new innovation.
Many developments around this time in response surface modelling for optimization en-
abled these improvements to be made at an affordable computational cost. Keane and
Nair [130] stated in 2005 that “a formidable range of optimization methods is available to
designers - so much so that most current design-related optimization research focuses on
how such methods should be deployed, rather than on developing new search methods
per se”. Design of consistently similar components could be automated using parametric
computer aided design (CAD) packages, and DSO algorithms. At the time, however,
the expertise lay with software specialists and researchers rather than with engineers in
industry. Over a decade later, a number of commercial DSO software packages are now

available that are integrated with, or with close links to, CAD software.

The analyses of product performance discussed thus far, with or without automation and
DSO, are termed deterministic; the inputs are fixed at single, usually nominal, values
and the predicted performance is a prediction at a single design point, figure 1.2. There
may be multiple input and output values, such as those with changes in time or with

field outputs, but these are still only analysed at a single design point.

Recently, for critical aerospace components, deterministic optimization has seen a rise
in popularity, perhaps due in part to the availability of user friendly software as well
as the drive from economic factors. In the longer term, new innovation is required to

meet regulatory constraints, but in the coming decades further refinement of existing
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Figure 1.2: Comparison of deterministic and stochastic analysis

technology must continue. The use of deterministic optimization has been seen to result
in large performance gains, but often the theoretically ‘best’ design lies close to constraint,
or operational, boundaries. When tested, these nominally high performing components
can still fail to ‘meet the mark’ (reach the desired, or designed, level of performance).
If tolerances have been tightened, and models and manufacturing processes have been
refined, the under-, or over-, performance of the design is now due to uncertainties (known

and irreducible, or unknown). This raises two important questions for the designer:

1. given these uncertainties, how close should the design really be to the boundaries,

and

2. is a high performance design that may be particularly sensitive to irreducible un-

certainties really the ‘best’?

Assuming that what is uncertain is known, in response to these questions the designer is
now turning to stochastic analysis, figure 1.2, which has received much attention in the
engineering literature over recent years. The input variables are considered to be random,
or stochastic, in nature and wuncertainty propagation (UP)? techniques are employed,
often through multiple analysis solutions, to predict the statistical distribution of the
performance. Choi et al. [41] are clear that a deterministic approach can only result in
an over-designed or under-designed system. As the title of Choi’s book suggests, the
problem then becomes one of reliability. Reliability is concerned with variation close to
constraints. Where in the past one would have calculated a factor of safety or reserve

factor, one should investigate the probability of failure, or risk. The second question is

3UP as the calculation of uncertainty at design points of interest is sometimes referred to as un-
certainty quantification (UQ), but will only be termed UP in this thesis to distinguish it from the
quantification of the input distributions of uncertain variables.
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one of robustness, where a key output of interest is the variation in performance, often
described by the wariance or standard deviation. This is a probabilistic description of
uncertainty propagation in that it is concerned with the determination of probability
density functions (pdfs) or their descriptors, statistical moments. Reliability is primarily
concerned with the extremities, or ‘tails’ of the pdf, where robustness is concerned with
the central region close to the mean or nominal. There are alternative non-probabilistic

approaches that are not the focus of this thesis.

Perhaps the increase in the use of DSO has also been in part due to the increase in
computer processing power. Search of the design space requires multiple runs of analysis
code, and even response surface models (RSMs) require reasonably large number of runs,
the number increasing exponentially with the number of design variables; the so-called
‘curse of dimensionality’ [78]. Uncertainty propagation methods face this same difficulty
for searching the uncertain space; where deterministically only a single evaluation of a
computational model was required for each assessment, now multiple runs are needed
for accurate response prediction. The first step to creating a practicable approach is
to reduce the number of variables by determining which are expected to be of most
consequence to the performance; sensitivity analysis or wvariable reduction. Removing
variables in error can result in overly optimistic prediction of performance variation. For
this reason, when using these techniques for reliability prediction, one must be partic-
ularly cautious. However, when using uncertainty propagation for design improvement
these approaches can provide useful guidance for the ‘best’ employment of limited com-
putational effort. In some cases, a designer may have experience that guides them to
investigate a particular set of variables for which they wish to determine the resulting

performance variation.

A noteworthy example is that of geometric parameters, where tolerances are specified
for measurable dimensions. If variation in these measurable dimensions can be shown to
have either a marked, or negligible, effect on performance then inspection tolerances can
be tightened or relaxed, respectively. The result can be reduction of costly scrappage or

rework, or improved real performance, with no change to the fundamental design.

In wishing to approach a design problem in a stochastic manner, the engineer cur-
rently faces an abundance of possible methods. They can be categorized as two dis-
tinctly different classes: intrusive, and non-intrusive. The first, developed initially for
reliability-based problems, requires modification of the underlying analysis code. The
second considers the analysis code as a so-called ‘black-box’. The focus of this work is
on non-intrusive methodologies. Although some FEA solvers now incorporate stochastic
analysis as part of their analysis suite, they are not yet widely available or applicable to
many types of problem. Existing analysis can also use a combination of software packages
and the codes themselves can be in constant flux through research and development. The
non-intrusive procedures allow flexibility in choice of analysis code and can be simply

converted for application to a multitude of different problems. For these reasons we use
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Figure 1.3: Stochastic analysis integrated into design search and optimization
(DSO)

‘black-box’-type approaches here for aerospace engineering design. They can be applied
both to gain improvements in existing designs, yet can also keep up with new innovations
that are currently in the preliminary design stage for air travel in twenty five years time

Oor maore.

The next step in design improvement is to enhance the DSO process with stochastic anal-
ysis, improving the designer’s ability to answer our second question: is the deterministic
optimum really the ‘best’ design? An automated stochastic analysis can be combined
with deterministic DSO as either robust design optimization (RDO), or reliability based
design optimization (RBDO), figure 1.3. The concept behind both is the notion that
the nominally most highly performing design might also perform most variably and that
the search should be a combination of a search for the most highly performing and most
consistent design. In both RDO and RBDO, the measure of performance is generally
either the most probable value, the mode, or the average value, the mean, of the output
parameter. The measure of variability is the standard deviation for RDO, or probability
of failure for RBDO. The optimization problem is now one of dual objectives and there
are many possible multi-objective optimization (MOO) approaches, either requiring a
weighting between the two objectives or resulting in an informative set of ‘best’ possible

designs lying on, what is called, a Pareto front [75].
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Despite the plethora of robust optimization methods in the literature, and more recently
in some commercial software such as Isight ™ [46], most publicly accessible application of
robust optimization remains in the academic literature and its routine use in engineering
is far from common practice, particularly where the deterministic analyses are already
extremely complex or the input uncertainties are poorly understood. This problem can

be pronounced where the variability is in geometry.

1.2 The facilitation of practical stochastic analysis for geo-

metric uncertainty

It is perhaps not surprising that UP and RDO are not routinely applied in the engineering
design of complex systems, for a number of reasons.
1. Existing simulation workflows are usually:

e expensive (time-consuming to run),
e continually evolving, and

e complex (often involving multiple different analysis types and codes, and with

highly non-linear response functions).
2. Accurate and informative performance variability predictions require:

e input variability to represent the ‘truth’ accurately (including correlations

between uncertainties), and

e large numbers of simulations to be run.

3. Designs are defined by multiple design variables (including geometric parameters)
which:

e may be large in number, and

e are often not the same parameters that accurately represent the uncertainty.
These features point to three major ‘stumbling blocks’ for stochastic analysis:

1. cost,
2. lack of knowledge (or data),
3. appropriate means of CAD or mesh manipulation.

As discussed previously, the difficulty of dealing with high cost simulations and high

numbers of variables is prohibitive and has been addressed by many researchers through,
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Figure 1.4: Necessary steps as a precursor to geometric uncertainty propagation
and robust design optimization
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Figure 1.5: Renishaw SP25M measuring probe [231]

for example: meta-models, effective sampling methods, and dimension reduction. This
must be considered, and some such techniques are used throughout this thesis, but it is
the remaining two ‘stumbling blocks’ upon which this work is focused. Even small studies
can be rendered almost impossible, or the results misleading, by lack of understanding of
the real input uncertainty and an inability to implement modifications to existing code
effectively. The necessary means of obtaining, or quantifying, uncertainty data varies
from problem to problem. These crucial steps (figure 1.4), which enable accurate UP
and RDO, are seldom addressed in the literature and independent variables with normal
Gaussian distributions or simple intervals are often, not unreasonably in some cases,

assumed for input variables, simplifying the algebra, e.g. Putko et al. [218].

For geometric uncertainty, there is a wealth of measurement data sometimes already
stored by manufacturers; routine inspection processes are already making measurements
using devices such as coordinate measuring machines (CMMs) with a physical probe
(such as that of Renishaw, figure 1.5), resulting in sets of points in Cartesian coordinates.

An example measurement data set from a firtree-shaped profile is shown in figure 1.6.
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Figure 1.6: Typical coordinate measuring machine (CMM) data set for a single
firtree-shaped slot. Probe traces front and rear profile (quantity of data limited
by time and probe access restrictions)
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Figure 1.7: White light sensor image of a single blade firtree flank section post-
service showing resultant profile shape alteration

Similar data sets of varying resolution can be obtained using alternative devices. For

4 was used to gain an insight into the true surface

example, a white light scanning device
profile of a small section of a single turbine blade pressure flank after service, figure
1.7. The resulting sets of points on the surface (point clouds) might cover only a linear
measurement or a full surface. Although the financial cost of full three dimensional
scans is high, recent developments mean that the ratio of scan accuracy to time and
cost is increasing rapidly [204]. This work is undertaken in the understanding that an
automatic approach for incorporating this increasing quantity of available
data into parametric design geometry for design search and analysis is likely
to be beneficial, enabling robustness studies that use realistic inputs, and

strengthening the feedback loop between design and production.

There are, however, obstacles to this automation, apparent in cases of geometric uncer-

tainty. Firstly, the parameter set used for automated design may need to be replaced

4Profile measured courtesy of Taicaan Technologies Europe, using a Xyris™ profiler. Image created
using Taicaan Technologies BODDIES™ software suite.
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with a new set of ‘uncertain’ parameters which represent the ‘true’ component shape, and
can be sufficiently accurately approximated by statistical distributions with appropriate
correlations, i.e. can be characterized. Secondly, for ‘black-box’ approaches, parameter
changes within the uncertain space must be able to be implemented through modifica-
tion of either the geometric definition or the discretized version of the geometry (mesh)
in the existing analysis. It is noted that any implementation must be made to an anal-
ysis code that is of high enough fidelity to reflect the effects of changes in the order of

magnitude of the uncertainty.

In this thesis, we therefore concern ourselves with the central question:

how can measurement data from inspection be used to character-
ize geometric uncertainty effectively, and implement changes within
existing analyses, for the facilitation of automated uncertainty prop-

agation and robust design?

We begin in chapter 2 by introducing a collection of existing techniques which are either
employed throughout this thesis or are considered central to the UP or RDO frameworks
discussed throughout. First, those which are usually employed in the design search
and optimization part of the problem, are described. Due to their versatility, these
sampling schemes, response surface methods, and optimization routines, are central to
this work, also being applied here to geometry fitting and manipulation. We follow this
with details of more traditional geometry fitting routines, and means of evaluating fit
accuracy. Given that statistical validity is a requirement, some statistical tools of note
are also described, including the recently formulated stable distribution, which allows
for greater spread and peakiness than the popular Gaussian normal. We then delve into
principal component analysis (PCA) as a procedure for dimension reduction, which is
critical if UP or RDO are to be practicable. The remaining methods explained in chapter
2 are spatial deformation and mesh manipulation tools, used widely for implementing

free-form morphing of existing geometry in various forms.

The following chapter shows how this plethora of existing methods from chapter 2 can be
applied in order to address the above central question, compared with the way in which

this problem has previously been undertaken.

In the next three chapters, we address three different aero-engine component uncertainty
problems. Each chapter demonstrates how a set of tools from chapter 2 can be applied
to facilitate the use of existing data, from inspection, in a UP or RDO workflow. In each
case, component performance in service is known to vary from the predicted value, and
further investigation into the effects of known geometric uncertainties is needed. Chapter

4 addresses a problem where implementation of changes to design parameters is already
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feasible within existing workflows, but characterizing the inputs for uncertainty analysis
requires a novel approach. In chapter 5 there are measurements of existing parameters
but the complex workflow precludes changes to parametric geometry models, requiring
an automated approach to implementing geometric changes within an existing CFD
mesh. Chapter 6 introduces a problem, with more generic application, where the shape
of a surface depicted by measurement data sets cannot be represented by parameters
corresponding to design parameters, or easily adjusted parameters in existing geometric
models. Here, the uncertainty, manifesting as complex curves, is modelled using a novel
approach that combines existing techniques to result in a reduced set of characterized
parameters. Following this, a method of implementing changes to these new parameters

within an existing workflow is demonstrated.

Throughout chapters 4, 5, and 6, tools have been selected depending on the attributes of
the measurement data and the analysis to which the geometric changes are to be applied.
Although the approaches themselves are not necessarily novel, their combination and
application to the characterization and implementation problem is original. In chapter 7
the approaches taken are summarised with a description of how the methods are applied
within the framework given in chapter 3. The contributions made throughout this work
are reviewed, and areas for future development are highlighted. In particular, we point
to the generalized approaches developed throughout chapter 6 that could be extended
to, and tested on, larger measurement data sets, for further application as measuring

technologies advance.



Chapter 2
Existing methods

Consider a concept design for a component that performs sufficiently well under ‘work-
ing’ conditions. Following its initial design, the concept has been fixed. It has then
been refined through increased analysis model fidelity, and further still by design process
automation and DSO. At this point, we observe that the performance of the part varies
from the predicted nominal and parts can be unreliable compared with their supposedly
less well performing predecessors. The increased performance afforded to us through
DSO needs to be maintained, but we must now also consider uncertainty. If the uncer-
tainties in input parameters to the analysis model can be identified and characterized,
then we may quantify the expected uncertainty in performance at the optimal design
point, by implementing changes through existing workflows, using UP (sometimes also
referred to as UQ). It may then also be possible to understand the effects of the uncer-
tainties throughout the design space, and extend the optimization procedure to RDO
and RBDO. To facilitate this further-informed design decision making process, a num-
ber of different techniques and processes need be combined to good effect. This chapter
introduces a set of useful tools, figure 2.1, with a review of the literature pertaining to
those that are considered central to this thesis. The methods which have been directly
applied throughout chapters 4, 5, and 6, are italicised in the table. The remaining meth-
ods discussed are either alternatives to those chosen, or are the methods that may be
facilitated by the characterization or implementation of uncertainty on which this

thesis is focused.

13
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Response surface modelling and optimization tools

Sampling plans | Kriging; a radial | Uncertainty Design search
(space-filling) basis function propagation and
model (black-box and | optimization
non-linear)
Full-factorial Interpolating Monte Carlo Single objective
Optimal Latin Regressing Using a meta- Using a
hypercube model surrogate
Fixed noise model
Orthogonal parameter Quadrature
array based Local searches
Universal

Global searches

Multi-objective
optimization

Robust design
optimization

Reliability-
based design
optimization

Geometry measurement and modelling tools

Curve and surface
fitting

Evaluating the
accuracy of fitting

Geometry and mesh
manipulation

Registration and
segmentation

Polynomial models
and least-squares

regression

Orthogonal least-
squares and similar

Spline fitting

Orthogonal distance
based spline fitting

Goodness-of-fit and
confidence

Validation by re-
sampling

‘Proof-by-example’

Surface mapping

Spatial deformation

Statistical and mathematical methods

Statistical methods

Dimension reduction

Popular distributions
Stable distributions
Hypothesis tests

Correlation

Principal component analysis

Table 2.1: Tools for uncertainty studies in engineering design discussed and
employed (italicised) in this thesis
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2.1 Space-filling sampling plans

Sampling plans are integral to informed design selection through analysis, or testing.
Whether selecting computer or physical experiments for design space modelling or un-
certain space modelling, or taking sample measurements, the selection of sample points
is critical to the cost of the process and the accuracy of the resulting parameter predic-
tion. For many of the methods presented in this chapter, an analysis code is sampled at
various input parameter values. Geometric measurement points can also be considered
sample points and formally selected using an appropriate strategy, although this is often
not the case. In both of these cases a sampling strategy for building a model of the
whole space, where all regions are equally important, as accurately as possible, using the
smallest possible number of points or to a number of points (time and cost) budget: a
design of experiment (DoE), is usually required. These methods are termed space-filling,

and some popular space-filling sample plans are given in detail in appendix A.1:

e the simplest, evenly spaced, full factorial design [72],
e pure random sampling,

e Latin hypercube sampling (LHS) [172] and optimal Latin hypercube (OLH) sampling
[121, 181], and

e orthogonal arrays (OAs) [237, 103, 278].

Further problem-specific refinement of these sampling methods, and alternative non-
space-filling designs for application to propagating uncertainty, are discussed as appro-

priate throughout this chapter.

2.2 Fitting design space models to sample points

Much like the design of sampling plans is integral to an informed design selection pro-
cess, so too is the modelling of a design space predicated upon such a DoE. A suitable
model can provide a fast-running (low-cost) alternative to evaluating a complex analysis
workflow. In many engineering design cases similar to those this thesis seeks to facil-
itate, such models can ensure that automated design searches are practicable. These
models are termed surrogate models (also referred to as response surface models (RSMs),

meta-models, emulators, or simply approzimations).

Over recent years there has been a significant rise in the popularity of radial basis function

(RBF) based models, and in particular Kriging! [242, 79] for surrogate modelling in

'Kriging is named in honour of Danie Krige; the South African mining engineer who first developed
the method in 1951.



16 Chapter 2 Existing methods

engineering design search, which is a Gaussian process based model (Gaussian process
emulator) that assumes that the points on which the functions are built are realizations
of a random process. These models are central to much of the work in this thesis. Not
only are they useful in the context of enabling costly optimization, including design
search with uncertainty, but they are also applied in later chapters to model geometric

surfaces and displacements in the context of deformation of geometry.

These kinds of models are flexible in that, provided there are enough sample points, a
generic model can be constructed based on any number of input variables. Although
this means that their modelling power extends to hyperspaces, they are not a panacea
because the number of sample points needed increases exponentially with the number of

variables (dimensions); the curse of dimensionality [78].

In this section, we introduce the method of constructing a radial basis function (RBF)

model and describe the special case of the Kriging model in detail.

2.2.1 Interpolating Kriging
Model construction

Kriging is a specific case of a radial basis function (RBF) model used most prolifically to
fit curves or multi-dimensional surfaces to data points in surrogate modelling for design
space representation in design optimization. RBFs are discussed by Broomhead and Lowe
[21] and reviewed in terms of surrogate modelling by Forrester et al. [78]. They are a
weighted sum of basis functions. Using the notation of Forrester and Keane [79], the

basis functions, v, are functions of the Euclidean distance between the evaluation point,

x, and n, basis function centres, ¢, ||x —c(?|| = 7. The estimated function is expressed
as
Ne
§(x) = > wi(r). (2.1)
i=1

The basis functions may be fixed, varying only with r, or parametric, varying with an
additional parameter or parameters. Whatever form the basis functions take, w can
be calculated via interpolation at the sample points. In matrix form, if the bases are
considered to be at the data point locations; n = n. and ¢ = x| the interpolation
condition is

y = Pw, (2.2)

where y is a vector of sample response values; the measured data, ¥ is an nxn matrix
of basis function values evaluated at the data points, also known as the Gram matriz,

and w is the vector of weights.
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In reality, a limited number of standard basis functions are used depending on the ap-

plication. The parametric Gaussian basis function
(r) = e (23)

is often a popular choice because it has two benefits for response modelling. First, ¥
is then a positive definite (symmetric) matrix, greatly simplifying and guaranteeing a
solution to (2.2) via Cholesky factorization®. Second, it is possible to estimate the error
of the model at any point. For parametric basis functions it becomes important to find a
solution for w efficiently and to estimate error. This is because one must also determine
the value of the other parameters (e.g. o for the Gaussian basis function) and w will
need to be calculated multiple times during this process. Parameter selection is generally
a minimization of the estimated model error metric, which is usually a cross-validation

error or a sum of squared prediction errors (section 2.8).

One may notice the similarity between the above model formulation and a weighted
spline-based curve fit. Cressie [44] pl80, describes the “formal connection” between
Kriging and splines but notes that “there is a large divergence in how they are applied
and how their results are interpreted”. Benefits of Kriging include the ease of prediction

calculation and mean-squared error (MSE) prediction, discussed later in this section.

Kriging is an extension of the approach described thus far. It assumes that the response
is a realization of a Gaussian process where its Gram matrix is a set of Gaussian basis

functions which take the form of the correlation between two random variables, Y:

d
ij = cor (Y(X(i)), Y(x(j))) = exp (— S Ozl — f'«“;(f)lpk> : (2.4)
k=1

and covariance (known as a covariance kernel in the data-mining community):

d
02¢ij = cov (Y(x(i)), Y(x(j))) = o2exp <— Z 9k’33§;) — :c](f)|pk> , (2.5)
k=1

where d is the number of dimensions and 6j, and pj are parameters which can optimized,
or tuned. The distance metric used here is non-Euclidean in that it is the absolute value
of the distance between points in a given dimension. Jones [124] explains that the use of
the Euclidean distance without the use of parameters such as 6, and pj to scale it, are
“sensitive to the units of measurement”. Normalizing all the data to a unit interval is
standard practice to overcome this problem. However, this “treats all variables as equally
important — something that is almost never true”. Kriging mitigates this effect by the

tuning of the values of 6 and py.

24Given a symmetric positive definite matrix A, the Cholesky decomposition is an upper triangular
matrix U with strictly positive diagonal entries such that A = UTU”, [307]
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The value of constant ), > 0 is related to how rapidly the function changes in the k"
dimension. It is usually given a value between 1073 and 102 [78]. The smoothness of
the model in the k' dimension is determined by 0 < p, < 2 (with the inclusion of p
this is sometimes referred to as the power exponential kernel [196]). It is often fixed
at p = 2.00 (the Gaussian kernel [196, 207]), or slightly lower at p = 1.99 to improve
numerical stability. This creates smooth functions as lower values of p exhibit roughness.

The correlation, 1, with changing values of p and 6 are plotted by Forrester et al. [78].

Alternative covariance kernels include the Matérn kernel [207, 226]:

201=1) [ r\/20 Y rv2v
o?1p(r) = r(y)( z )K< z > (2.6)

where I is the gamma function [141], K, is a modified Bessel function of the second kind

[141], [ is a positive constant which is equivalent to %, and v is another positive constant.
v is typically set to % The Gaussian kernel is, in fact, a specific case of the Matérn
kernel where v — oo. Picheny et al. [207] compare the use of the Gaussian and Matérn
% kernel concluding that the choice is of “limited influence” and that “other factors, such

as ... the robustness of the covariance parameter estimation” dominate performance.

Model training

Let us consider an interpolating Kriging model. If it is assumed that each data point,
Vi, is a realization of the random field Y (a field with Gaussian normal distribution with
mean g and variance o), then y can be substituted for Y. If p, o, 8, and p are found
such that the statistical likelihood, L, is maximized then we are selecting the model for

which the data points sampled are the most likely responses at the given x’s.

We turn our attention now to the salient points relating to this maximization, discussed
in depth by Jones [124]|. To capture the correlation between the y;s, consider the multi-
variate normal distribution

y ~ N(p, V). (2.7)

p is the n x 1 expectation vector E(y) and V is the n X n covariance matrix cov(y).

Such a distribution has the density function

IR Y B Vv
P = ey Y ) 25)

and it can be shown that the likelihood of an individual data set given this distribution
is

L(y|p, V) = —l(y — ) VT(y - u)} : (2.9)

T 1XP
(2m)% V|2 { 2
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[122]. Given that 4 and o2 are constant in this case, g can be expressed as

p=1pu, (2.10)

where 1 is and n x 1 vector of ones, and the covariance cov(y;,y;) = oy,0y,cor(y;,y;) in
matrix form is
V = cov(y) = 02, (2.11)

[309]. Substituting these into equation 2.9 results in

L(ylp,0) = —L(y 1) (y - 1u)} : (2.12)

XD
(2m02) % | |2 { 20°

The problem can be simplified by taking the natural logarithm of the likelihood function

such that derivatives can be taken with respect to x and o?:

(y —10)T® Yy — 1p)
202

In(L) = 2 n(2r) — 2in(o?) - %ln|\:[l| - . (2.13)

Setting the derivatives equal to zero and solving yields estimates for p and o2 in terms
of W¥:

o 1Twly
=gy (2.14)
and e R
- . .
Substituting back into (2.13) results in the concentrated In-likelihood function:
1
In(L) ~ —gln(&Q) — 5In( ), (2.16)

which one seeks to maximize using some preferred numerical optimization routine in
order to specify @ and p, using (2.14) and (2.15) to estimate p and o2. Typically,
techniques such as combined global and local searches, section 2.3, are preferred because

the concentrated In-likelihood function is generally highly multi-modal |78].

To reiterate, in contrast to other RBF models, the Kriging model is trained, not by
minimizing the estimated error, but by choosing parameters that maximize the model
likelihood; the probability of achieving the y values in the sample or data set. Kriging

" considered “...in terms of the range of function forms

“is the least assuming method...
it can emulate, and it is for this reason that it is so effective” [79]. In tests on multidis-
ciplinary design optimization problems Simpson et al. [260] find Kriging models “yield
global approximations that are slightly more accurate” than the other response surface

methods tested.
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Model evaluation; prediction

Once estimates have been obtained for p and 6, the function value at any x* can be
predicted. In order to do this, it is considered that the prediction should be consistent
with our model of the correlation, with the parameters chosen thus far. As such, the new

value, g is incorporated into the correlation matrix, ¥, to give the enlarged correlation

A L;I; ﬂ (2.17)

where 9 is a vector of correlations between each of the existing points and the new point

matrix, ¥*:

at x*. The In-likelihood (2.13), removing the terms that are independent of g, then

L b
L T Lo
Y02 JE AL I L B L (2.18)

202

By arranging as a quadratic function in § and setting equal to zero, an analytical solution

becomes

for the ¢ with maximum In(L); the maximum likelihood estimate (MLE) of ¢, can be
found:
G = i+ 9T (y — 14). (2.19)

This is also known as the Kriging mean. Details of its derivation can be found in [78|
and [108].

A demonstration of interpolating Kriging

Interpolating Kriging is used here to model a known curve:
f(zy) = —(sin(4m) + 1)e™ 221 4 2, (2.20)

using an increasing number of sample points evenly distributed in z1, figure 2.1. A
generally accepted ‘rule of thumb’ suggests that 10 x d (the number of dimensions) is
a sufficient number of computer experiments for fitting a response surface model of this
type [159]. This is reflected in this example, with 10 points providing a ‘good’ fit of the

given curve.

A two-dimensional function (a surface), based on the ‘bird function’ of Mishra [178|:

f(z1,22) = sin(—IOxl)e(l_COS(_10$2))2 + Cos(—10:161)e(l_sm(_mg"’?))2 + (10z — 1021 )2,
(2.21)
figure 2.2, is used to further demonstrate the use of a Kriging model to approximate a

true response. The function is fitted using an increasing number of OLH sample points
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Figure 2.1: Interpolating Kriging fit in a single dimension

(section 2.1 and appendix A.1.3)3, figure 2.3. Given the complexity of this particular
function the 10d-rule falls short of accurately representing all of the surface contours.
It does, however, point to regions of peaks and troughs, useful for optimization, but

possibly insufficient for surface reconstruction.

Kriging models have some limitations of note: they are known to lack accuracy near

3The OLH samples are optimized using the Morris and Mitchell [181] maximin criteria and a genetic
algorithm (appendix A.4) with 10 individuals and 20 generations. As discussed in appendix A.1.3, a
truly optimal solution is untenable given time constraints.
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Figure 2.2: Example surface function example for demonstration of Kriging

1 100 1 100
0.8 0.8 l’»
50 50
0.6 0.6
N N
x x
0.4 0.4
0.2 0.2 'li’
0 -50 0 — -50
0 0.5 1 0 0.5 1
X X

1 1

o
o

(a) 10 sample points (b) 20 sample points

100 100

-50

(c) 60 sample points (d) 80 sample points

Figure 2.3: Interpolating Kriging fit in two dimensions using optimal Latin
hypercube sampling

bounds, and they are unable to represent discontinuities or non-smooth functions with-
out the tuning of p. It is also noted that variables should be normalized prior to con-
structing the Kriging model [198] to ensure that each dimension is considered of equal
importance during hyperparameter tuning. This means that the same bounds can be
applied for hyperparameters in each direction and that the resulting hyperparameters
can be interpreted to provide some understanding of the relative effect of each variable

on the output.
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Evaluation of the accuracy of these models, and others, is discussed in section 2.8.

2.2.2 Regressing Kriging

So far our description of RBFs and Kriging has considered interpolation of data, yet
there are many difficulties with interpolation, including over-fitting, where the fitted
shape has a high-order due to the interpolation constraint. To fit a regressing model
through the data, we assume that the error can be considered to be random (normally
distributed). One can take an approach similar to that of polynomial fitting and, instead
of increasing the model order, increase the number of bases, n., until 5%( /(n —n¢) no
longer significantly reduces with an increase in bases [129]. % is a validation metric,

usually the sum of the squared deviations of the model from the training points.

Alternatively, one can include the reqularization parameter A in the main diagonal of ¥
[104, 77|, typically in the range 10~* to 10~! for normalized data. The set of equations
then becomes

w = (T + )y, (2.22)

where I is an n x n identity matrix. A is then related to the variance of the measurement

noise and ) )
1+X 12 i3 .. Yia
a1 14+ A
U=(T+N)= |1 .. 14+X . . |. (2.23)
_d}n,l 1—|—)\_

Estimates fi (2.14), 62 (2.15), and §(x*) (6.10), remain valid and A can be determined
along with the other Kriging parameters, @ and p, yielding the least-squares solution.
One could also consider the relationship between A and a known variance in the data to

fix the value of A for the fit. This type of approach is discussed in chapter 6.

To illustrate regressing Kriging a small amount of random noise (with variance 72 = 1.52
has been added to each sample point, i.e. in the f-direction (the response), not orthogonal
to the curve as it could be in the case of geometric fitting. The functions 2.20 and 2.21
are used again, resulting in the fitted curves and surfaces in figures 2.4 and 2.6. The
In-likelihood is plotted with varying A and 6 for the single dimension problem, showing

that there is a distinct minimum, figure 2.5.
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Figure 2.4: Regressing Kriging fit in a single dimension
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2.2.3 Regressing Kriging with a fixed noise parameter

If the level of noise is known, as may be the case with measurement data, then a relatively
little known method, used for Kriging-based optimization, by Picheny et al. [207] could
be applied. The approach introduces an additional variance parameter 72, which is the
known noise variance. The method is described in detail in chapter 6 with application
to uncertainty characterization and is presented in appendix A.2 by illustrating it on the
test functions 2.20 and 2.21.

2.2.4 Universal Kriging

A Kriging model assumes that each data point is a realization of a random field with
Gaussian normal distribution with mean u. Universal Kriging |44] attempts to include
additional known trends in the response by assuming that the random field has a Gaus-
sian normal distribution with mean that varies with x according to a specified function:
a quadratic, or cubic for example. It can be argued that this approach is limited in its

applicability. It has proved useful, however, in chapter 6 of this thesis.

An extension of universal Kriging is Blind Kriging [125], where the mean function used

is selected from a set of candidates based on a Bayesian forward selection technique.

2.3 Design search and optimization

Given either a physics based computational model (analysis workflow) or a surrogate
model of component performance, for example, to determine the ‘best’ design parameters
one might turn to optimization, or the more aptly termed process of design search and
optimization (DSO).

2.3.1 Single objective optimization; local and global approaches with
constraints

Optimization with continuous real variables has a clear definition, and if we ignore any
variation (stochastic or otherwise) then the process is deterministic and set out as follows

for a single objective or goal function.

Find

which minimizes

f(x) (2.24)
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subject to the constraints

where x is a vector of design variables (the design vector). There are d variables and
¢ constraints, of which c. are equality constraints, and ¢ — ¢, are inequality constraints
[225]. In engineering design f is the chosen performance measure and objective function

of the optimization.

Searches for an optimal design point can either be

(a) local: given a starting point, xg, the search moves downhill towards the optimum

(descent methods) until a specified convergence condition is met [91, 131], or

(b) global: moving about the entire space in such a way as to ensure that multiple

minima are not ignored [211].

Reviews of local and global approaches are provided in appendices A.3 and A.4, and a

complete guide to the topic was written by Rao [225] in 2009.

Here, we demonstrate the use of a local optimizer (implemented via MATLAB’s fmincon
function) applied to a dovetail joint design case study presented in appendix B. The
dovetail joint analysis is constructed as a two-dimensional contact problem with geometry

as shown in figure 2.7, and nominal design stresses as shown in figure 2.8.

Figure 2.7: Dovetail joint slot parametric geometry for local DSO demonstration

The fmincon interior-point algorithm is a development of SQP where the iterations are
a mixture of Newtonian-type linear steps and gradient-based steps using trust-region

methods. Full details can be found in the research report by Byrd et al. [24].

In the dovetail contact problem f(x) is the slot peak principal stress (away from edge

of contact), calculated using a finite element model in ABAQUS software. x consists of
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Figure 2.8: Peak principal stress (N/mm?) contour map for nominal dovetail
design

two design variables: AlphaT; the flank angle, and rNotchT; the slot notch radius. The
design is constrained to be symmetric top and bottom and there are three constraint

functions g;(x):

g1(rNotchT, AlphaT) = min(cT,cB)
g2(rNotchT, AlphaT) = wNeck (2.25)
g3(rNotchT, AlphaT) = wPostT + wPostB

In order to plot a contour of the ‘true’ response, for illustrative purposes, a large (225-
point) OLH sample is taken. x; is allowed to vary in the range [20,50| degrees and o
with the bounds [0.5,4] mm. The objective function is fitted to all the sample points
using a Kriging model, figure 2.9. Each of the constraints is modelled in the same way

using their values at the same set of sample points.

Using fmincon a constrained search, with workflow as illustrated in figure 2.10, and
initial starting point at the nominal design, results in an optimum on the bound and
constraint boundary (at AlphaT = 20°, and rNotchT = 3.2427 mm), figure 2.11. The

search required 57 evaluations of the function.

The function is not very expensive in this case; each run takes only five minutes. Even
so, 57 evaluations takes a significant amount of time (4% hours). In section 2.3.2 we

discuss expediting this process.
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Figure 2.9: Contour plot of notch peak principal stress (N/mm?) fitted using
225 OLH sample points

In this example case, the problem is fast-running and it is shown, by making a large
number of calls to the function, that the function is not highly non-linear with multiple
minima. A local search routine tends towards the only minima. In reality few engineering
design problems with complex analysis codes can immediately be solved using local
approaches. In particular, when there are large numbers of variables whose interactions
with each other and the constraints are not obvious, one can easily find that a search gets
stuck in an unexpected local minima at a constraint boundary. To ensure that the full
design space is adequately searched, we turn to global optimization routines [211]. These
include the common genetic algorithms (GAs) [92] and the more recently popularised

particle swarm optimization (PSO) [62] routines which are described in appendix A.4.



30

Chapter 2 Existing methods

Design

variables

Constraints

Objective function

Y

Initial design /
parameterized
model and fixed
parameters

Output variables
(constraint and

CAD file Nx
| part(.prt)

Final design

e variables,
Optimizer associated
Matlab code objectives

\,/\

Replaced with surrogate (Kriging)
models of objective and constraints

/ Description

(geometric
design

variables)

Formatted text Mesh seeds,

y file(.dat) |—__"’" element :

i / specification 3

CAD model 1A :
-------- —» construction and ———— ‘
FEA analysis ' Fixed loads,

| !

| boundary i

- conditions, H

Formatted and
text file materials i
(.out) !

<
objective values)J‘

Figure 2.10:

Automated dovetail DSO workflow



Chapter 2 Existing methods

4 . . . . 6000

5500

5000

4500

4000

3500

rNotchT, X2 (mm)

3000

&> Peak principal notch stress
® Optimum = 2131 N/mm?
®  Nominal = 2356 N/mm?

2500

. 2000
20 25 30 35 40 45 50

AlphaT, X1 (degrees)

Figure 2.11: Contour plot of notch peak principal stress (N/mm?) fitted using
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2.3.2 Surrogate models for design optimization

In engineering design, the objective function is often calculated using some complex
code, set of complex codes, or even using a physical experiment. In such cases, and
even for relatively cheap code as demonstrated in section 2.3.1, multiple evaluations of
the objective can be expensive in terms of time. To combat this problem, it can make
sense to approximate the true function as a fast-running analytical model, such as those
presented in section 2.2, prior to using any of the routines discussed above to search
for optimal designs [78]. In terms of optimization such models not only increase the
speed of the optimization such that a previously impracticable problem may be made
possible, but they open up the opportunity to use some previously inaccessible methods
due to the ability to directly calculate gradient information*. However, the fitting of such
models does not come without its own associated cost (of function evaluation at sample
points and of the optimization involved with fitting the model), and the accuracy of the
model should be understood and taken into account. It is prudent to re-evaluate the true

function at the chosen optimum and compare it to the predicted value, for example.

Modelling in this way can also be used for constrained optimization; it is possible to
approximate the constraints themselves using surrogate models. One such approach is
that of classifiers using support vector machines to approximate the hyperplane that sep-
arates classes [119, 97, 248]. If one is already using a model to approximate a continuous
objective function then it might make some sense, however, to use a similar techniques

to model the constraint function.

To illustrate the benefits of a meta-model approach, we build a model of the two-
dimensional dovetail joint (section 2.3.1) objective function. Using only 20 OLH samples
(10 x d, where d is the number of dimensions), a Kriging-based surrogate model can be
used to expedite the search, resulting in an almost identical optimal design point as that
reached with 57 evaluations and a direct downhill search of the true function, figures 2.12
and 2.13. The area of the design space immediately surrounding the optimum point will
now require further investigation, but this illustrates the utility supplied by emulators,
particularly for visualizing a design space: using the surrogate, the model of the design
space shows the designer that there is a tendency towards a single minima and, as such,
a local downhill search of the space can be seen to be suitable. A direct downhill search,

with no such response surface to observe, would not have provided this assurance.

Here, only 20 runs of the full simulation have been needed. The optimum value is shown
to be at AlphaT = 20°, and rNotchT = 3.2430 mm, which is accurate to three decimal
places, although the surrogate predicted principal stress at this point is slightly lower.

Surrogate approaches can also be usefully combined directly with the optimization pro-

cess; an efficient iterative process that searches for an optimum whilst improving the

4Complex and often expensive calculation of the gradients of the original function is then not required
but could, if available, be used to enhance the surrogate model.
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Figure 2.12: Kriging based contour plot of notch peak principal stress (N/mm?)
fitted using 20 OLH sample points
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Figure 2.13: Kriging based contour plot of notch peak principal stress (N/mm?)
fitted using 20 OLH sample points with constraints and optimum point shown

model being searched in only the most promising regions can be utilized in a meta-
modelling framework. Jones [124] explains how a probabilistic Gaussian process based
approach can be refined by using the probability of improvement to select additional eval-
uation points. He also explains how expected improvement can be used as an alternative
criterion. This approach calculates the expected magnitude of improvement at a given

point.

This method uses infill criteria to determine the best location for model refinement
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within an optimization routine. If the optimization is constrained then it is possible to
further extend this probabilistic infill criteria to include the probability of the new point
being feasible by simply multiplying it by either the probability of improvement or the
expected improvement. In the latter case this is described as the constrained expected

improvement.

2.3.3 Multi-objective optimization (MOO)

In reality, design problems with only a single objective are unlikely. Even where a single
performance measure is paramount to design, it is probable that an additional cost
measure will need to be considered [202|. Multiple objectives need not be conflicting,
but when they are (for example: strength and weight are almost always conflicting), the

problem becomes one of a multi-objective nature.

The simplest means of dealing with such a problem is to create a single aggregated
objective function with pre-defined weightings assigned to each goal. Using this approach

the optimization formulation (2.3.1) is augmented such that we aim to minimize
m
> winfm(x), (2.26)
i=1

where x € R? and Yot wy, = 1 and there are m goals. The main difficulty with this
approach is the subjective nature with which weightings are likely to be chosen and the
likelihood of high-performing radical designs being missed [202]. A variation on this
theme that still cannot guarantee a unique solution and requires some subjective input
from the designer is the reformulation of the problem defining all but one objective
as constraints (the e-constraint method [169, 177]). Other weighted metric methods
minimize some weighted distance of the function from an ideal solution (e.g. using the
Manhattan norm or Euclidean norm [177], using the Tchebycheff metric [177]). The ideal
solution, therefore, needs to be found by optimizing each individual objective function
prior to embarking on the multi-objective search. Another special case of the use of a
weighting function is to minimize a wvalue function or utility function which relates the
objectives via exchange constants [4]. However, this utility function may be difficult to
define, and must be strongly decreasing® for this approach to be successful [49]. These
approaches are generally described as a priori methods. Some developments of this
type of technique are described as interactive where choices of weightings, or other such

factors, are made or updated during the optimization process [169].

It is widely acknowledged, therefore, that global searches without the need for assumed
weightings or overly subjective or difficult to pose objective function formulations, are

preferable for multi-objective optimization problems; these are the posteriori methods,

5¢This means that the preference of the decision maker will increase if the value of an objective
function decreases while all other objective values remain unchanged” [177].
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where the decisions on trade-offs are made after an optimal set of possible solutions
has been arrived at [169]. These searches result in a set of non-dominated® Pareto
optimal points” and corresponding solutions; a Pareto optimal set. We therefore turn to
a special group of global optimization techniques that are specifically designed to search
for solutions that are globally Pareto optimal (the definitions of Pareto optimality apply

to the entire feasible space [162]); genetic multi-objective algorithms.

Marler and Arora [162]| provide an overview of genetic multi-objective algorithms in the
context of engineering design, noting that in “much of the literature on multi-objective
genetic algorithms, constraints are not addressed directly. It is assumed that a penalty
approach is used to treat constraints”. This overview describes “one of the first treatments
of multi-objective genetic algorithms™ the vector evaluated genetic algorithm (VEGA)
introduced by Schaffer [246]. VEGA is founded on the idea that the minima of each of the
individual objectives are vertices of the Pareto optimal set which makes the assumption
that each objective has a unique minimum. The method creates small subsets of a popu-
lation® (sub-population) within the given generation®, by evaluating one single objective
at a time. These sub-populations are then combined to make a new population (in the
next generation). To avoid clustering of results around the individual objective minima
Schaffer [246] used cross-breeding between sub-populations and selection preferences for
non-dominated points [162]. The fundamental difficulties and usefulness of the VEGA
approach have been well documented |75, 271|. Srinivas and Deb [271] suggested a new
approach based on the ideas of Goldberg [92] for a non-dominated sorting genetic algo-
rithm (NSGA), which with further refinement [50] is still one of the most popular today.
This scheme uses an approach known as ranking, where all of the points are sequen-
tially ranked and temporarily removed from the population according to whether they
are non-dominated with respect to all other points. The fitness metric for determining

which points are passed on to the next generation is based on the rank.

Further developments of this type of algorithm and alternative methods for applying
genetic algorithms to multi-objective problems are ubiquitous. We will refrain from
describing them all, but make a note of the type that use tournament selection introduced
by Horn et al. [106] and available in the MATLAB toolbox [167]. In this scheme, pairs
of points are ‘pitched against each other’ in terms of non-dominance with respect to the
remaining points, and the ‘best’ are selected for carrying forward into the next generation.

If points are tied, fitness sharing [271] is used to select the ‘best’.

8«A vector of objective functions, F(x*) € Z, is non-dominated iff there does not exist another vector,
F(x) € Z, such that F(x) < F(x") with at least one F;(x) < F;(x*). Otherwise, F(x") is dominated.”
[162]. Z is the feasible criterion space. F is a vector of objective functions. x is the vector of design
variables at a point in the design space.

T“A point, x* € X, is Pareto optimal iff there does not exist another point, x € X, such that
F(x) < F(x"), and F;(x) < F;(x") for at least one function.” [162].

8«A population represents a group of potential solution points” [162].

%A generation represents an algorithmic iteration” [162].
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An example of the application of multi-objective optimization for RDO is given in section
2.5.

2.3.4 Multi-fidelity optimization (MFO)

At this point, the potential for multi-fidelity approaches when applied to uncertainty and
robustness are worthy of note. A design optimization problem might be developed from
a nominal analysis model by parameterizing existing geometry or material properties etc.
However, the fidelity of such a model, although sufficient to reflect performance changes
on a large scale, might not be sufficient to reflect the effect of changes in the uncertain
space (e.g. use of isotropic properties rather than spatially varying ones, or fixed at-
tachment rather than contact algorithms). As such, multi-fidelity-type algorithms may
tend to play a part in effectively applying robust optimization. A short review of ex-
isting work in this area shows that mostly, although not exclusively, multi-fidelity (or
multi-level) optimization tends to exploit the probabilistic nature of meta-model fits by
building global models around less accurate cheap simulations and refining them in areas
of probable improvement using higher fidelity expensive codes. Ng and Willcox [184] use
a Monte Carlo (appendix A.5) based approach for multi-fidelity robust design, Forrester
et al. [80] use co-Kriging for multi-fidelity optimization, and Huang et al. [110] “exploit
the results of Kennedy and O’Hagan [132]” with a sequential Kriging methodology. Most
approaches are based on a ‘two-tier’ problem formulation (two types of analysis; low fi-
delity (LF) and high fidelity (HF)) but there are also suggested frameworks for a larger
number of levels, or even dynamically choosing model fidelity during the search process
[152]. Multi-fidelity approaches have not been investigated fully in this thesis with re-
spect to their use in robust design, and although potentially applicable to characterizing

measurement data, their use has not been investigated for the data sets reviewed here.

In summary, there are a plethora of well-established methods for optimization and choos-
ing the most appropriate, given their individual restrictions requires some thought. We
can however, whilst being aware of the alternatives, restrict use of existing algorithms
to those that are non-intrusive (‘black-box’) and suitable for the minimization of highly
non-linear functions with non-linear constraints. Searches applied throughout this thesis
are therefore typically global in the first instance with refinements sought, if necessary,
using a local search starting at the globally obtained minimum. Surrogate models are
also used in lieu of expensive simulations to enable optimization with practical expense

and to gain some of the other advantages as discussed throughout.

2.4 Uncertainty propagation

Here we discuss means of estimating statistical properties of a ‘black-box’ (hidden) func-

tion, based on a sample of input variables with known statistical properties. The process



Chapter 2 Existing methods 37

is referred to here as UP, although, as discussed previously, it is often termed uncertainty
quantification (UQ), a description also used to describe the quantification of input un-
certainties. The function (f) is assumed to be a complex computational model, or
combination of multiple models, and it is also assumed that there is a possibility that
the function is non-linear. These assumptions are necessarily true in the case of physical
experiments, but in the case of mathematical computational models one might consider
using a raft of approaches that propagate local uncertainty around a design point within
the analysis code itself. These so-called intrusive methods rely on modification of the
underlying computational modelling code. One might, for example, look to using in-
trusive methods for the stochastic finite element method (SFEM) [60], by incorporating
additional functionality into FEA code. These approaches are not without their own
problems with respect to prohibitive cost but, if embedded within commercial code ef-
fectively, could increase the practicality of implementing UP. However, many designs
(including those used within this thesis) require multiple analysis codes in a workflow, or
use codes that have been developed ‘in-house’, making universally applicable UP sitting
within an optimization suite, rather than within the performance calculation, appealing.

This thesis therefore, considers only non-intrusive methods.

Uncertainty propagation (UP) could, therefore, be termed ‘sampling for direct statistical
approximation’, which is far from being a new concept. As discussed in chapter 1, the
application of statistically rigorous assessment of the effects of uncertainty in engineering
design is of increasingly significant interest due to a number of economic and political

drivers.

Mathematical representation of uncertainty

Prior to propagating input uncertainty, it must be defined in some way. Usually this is
via some mathematical representation that can be propagated to a resulting useful repre-
sentation of performance uncertainty. This thesis is focused on the use of available data,
to which probabilistic definitions can be estimated, or fitted. Probabilistic representation

of inputs include:

e probability density functions (pdf’s),

e statistical moments (often only mean and variance, but could include skewness,

kurtosis etc. if the pdf is of a recognized form),

e polynomial chaos expansions (PCEs) (polynomial-type mathematical expansions

that approximate pdf’s in terms of other pdf’s), and
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e p-bozes constructed on a specified confidence interval [69, 8, 325] (from probability
bounds analysis which combines standard interval analysis with classical probabil-
ity theory to result in a region of probabilty bounded not by individual values but

by cumulative distribution functions (cdf’s)).

Agarwal et al. [1] asserts “when sufficient data is available, any form of variability can
be mathematically represented by probability density functions. There is almost univer-
sal agreement on this issue”. Other methods have been developed to allow quantitative
performance predictions to be obtained if the input data are lacking in completeness,
knowledge, or quantity, and in some cases is itself only qualitative (such data are usually
drawn from expert opinion). Oberkampf et al. [189] describe different categories of un-
certainty representation and pose a set of UP problems with varying levels of detail in the
input uncertainties. A summary of the different solutions to these problems arrived at by
different research communities with different uncertainty characterizations are described
in Ferson et al. [70]. We refrain from extending this work to non-probabilistic methods,

which include fuzzy sets and possibility theory [127].

Despite the statement made by Agarwal et al. [1], the quantification of uncertainty
based on measurements is seldom addressed in the literature [13]!°. O’Hagan [190]
proposes that the statistics community very much addresses the quantification of the
uncertainty in the input vector but that the applied mathematics community does not.
In fact, Oladyshkin and Nowak [193] make some ‘in-roads’ in this area by showing that
polynomial chaos expansions based methods can be extended to allow for sparseness in
data without the need for pdf inputs, rather only data or histograms. O’Hagan [190]
points to Bayesian inference to define pdfs. Perhaps one can surmise that the gathering
of data is, in general, a rather time-consuming task of less interest to researchers than the
mathematics of UP. Or maybe it is the practicalities of data capture that have inhibited
researchers in studying the use of measured data sets in UP. Equally, some quantities are
difficult, or impossible, to measure. In addition it can be difficult to capture and maintain
the effects of cross-correlations. Typically, independent Gaussian normal distributions
or simple intervals are assumed despite the fact that many acknowledge that if the input

distributions are wrong then the result may be inaccurate.

A note on polynomial chaos expansions for propagating uncertainty

Polynomial chaos expansions (PCEs) have gained recognition recently by the applied
mathematics community for their use in propagating uncertainty to predict the distribu-
tions of outputs of computer simulations. O’Hagan [190] defines PCEs as “an expansion

to construct a random variable with a desired distribution as a function of another given

0We see this issue begin to be addressed in the field of operations research (OR) with linear pro-
gramming [12] and financial portfolio optimization for stochastic programming (linear or quadratic pro-
gramming with uncertainty) [52], and more recently for biomedical engineering [161].
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random variable” in his critique of them from a statistician’s viewpoint. The expansion
is a polynomial series with orthogonal polynomial basis'!. The resulting truncated PCE
(it must be truncated to some predefined order) is an approximation or surrogate of the

output distribution.

Formulation of the PCE requires calculation of of the mode strengths; the weightings
in the PCE formulation. The non-intrusive ‘black-box’ formulation in which we are
interested, determines these weightings either via numerical integration or via some sort
of regression model. PCEs, although popular for UP in real-world modelling, have not
gained such a reputation in engineering design. They have limitations for non-linear
problems, lack of versatility for different inputs once constructed, and inherent error in
using truncated functions, as discussed by O’Hagan [190]. Given that the PCE model is
made to approximate the output distribution, yet the computational cost is equivalent
to building a model of the function itself, it appears to lack many of the advantages of
emulators or even direct integral estimation applied to moment estimation, for robust

design.

Mathematical methods employed for propagating uncertainty

Once mathematical definitions of the uncertain inputs are available, UP can be achieved

using one of two families of methods:

e Monte Carlo (MC) (usually employing surrogate models, section 2.3.2), or

e quadrature (also known as stochastic collocation [98, 321])

based methods. These are presented in detail in appendix A.5 and A.6, respectively.
Comparisons of different approaches by Liu et al. [157] and Stern et al. [275] on specific
UP problems conclude that meta-models are the “most promising method” and are “more

efficient” than the alternatives.

To demonstrate the UP process using MC, let us consider our dovetail design problem
from section 2.3.1 and appendix B. The two design variables can be selected freely by
the designer but the reality of manufacturing and service is that symmetry from top
to bottom may not, in fact, be a reality. At the chosen design point (we shall assume
that this is the nominal design), we wish to determine the effect of this uncertainty on
the performance parameter (disc notch principal stress). We begin with four uncertain
parameters (rNotchT, AlphaT, rNotchB, and AlphaB), which vary independently from

" Calculation of the polynomial basis set will result in the Legendre polynomials [216] if the input
variable (known as the germ) is uniform on [-1,1], the Hermite polynomials [216] if the germ has a
standard normal distribution, and the Laguerre polynomials [216] if the germ is an exponential random
variable on [0, o).
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one another. They vary in the following ranges:

AAlphaT < 3.5°
AAlphaB < 3.5°
—0.35mm < ArNotchT < 0.35mm
—0.35mm < ArNotchB < 0.35mm,

(2.27)

where A is the change from nominal setting of each parameter. In order to propa-
gate these uncertainties using Monte Carlo sampling or related methods, we require
a model of the distribution of each uncertain parameter and thousands of evaluations
of the performance at randomly selected values of the parameters. This is possible, but
time-consuming, even for this relatively fast-running simulation. Using quadrature based
methods one can expedite the process but hundreds of evaluations are still likely to be
required and the process has other limitations, appendix A.6. Therefore, the most prac-
tical solution is to create a four-dimensional response surface model over the uncertain

range and evaluate this cheap surrogate in preference to the full simulation.

Instead of a direct random sample of thousands of points over the four-dimensional
uncertain space, an OLH sample is created in the same way as for DSO in section 2.3.2.
This time, however, the sample exists in the smaller uncertain region and a 10d sample is
40 points space-filling over d = 4 dimensions. A regressing Kriging model is fitted over the
four-dimensional space. To visualize the resulting response, the model has been plotted
as six sets of two-dimensional surfaces showing the variation across the two dimensions
whilst maintaining fixed values of the other two dimensions at the nominal, figure 2.14.
The black points show the uncertain variable values of the forty sample points in each
pair of dimensions. Even with only four dimensions visualization is difficult but this
gives us an indication of the non-linear effects resulting from the lack of symmetry in the

design.

The Kriging model is assessed by evaluating the resulting noise filtered using the regres-
sion model. The standard deviation of this noise over 41 points (the sample and the
nominal) is 0.1886 units of principal stress (MPa), and the range 0.9875 MPa, so the
level of regression is extremely small. A leave-one-out cross-validation, as discussed later
in section 2.8, is then performed. If the model is refitted using the same process, which
involved a genetic algorithm (section A.4.1), followed by a local downhill search (section
2.3.1), then the percentage error is 0.72%. If the refit only repeats the downhill search
then the error is predicted to be 0.70%. Re-calculating the likelihood only, also results
in a predicted percentage error of 0.70%. This model can now be used to propagate the
uncertainty. The full process is shown in figure 2.15, where the model is built first (1),

followed by UP using the techniques described in this section (2).

Consider that the variation in the angles AAlphaT and AAlphaB are distributed nor-

mally with mean g4 = 0 and standard deviation 04 = 1.0. The variation in notch
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Figure 2.14: Response surfaces showing Kriging model values throughout the
uncertain space for dovetail example uncertainty propagation problem

radii ArNotchT and ArNotchB are distributed normally with mean p, = 0 and stan-
dard deviation o, = 0.1. The Kriging model bounds truncate any sampling to 3.5 x o.
The input distributions are shown in figure 2.16. Using a MC sample of 1000 results in
the output performance distribution shown in figure 2.17. The results clearly show the
detrimental effects that could be seen if uncertainty is ignored in design; in this ‘toy’
problem, not only is the spread seen in the peak stresses significant (in the region of 20%
of the nominal peak stress), but the mode, mean, and median peak principal stresses
all lie above the nominal when uncertainty is considered. In this case, although the

performance distribution is bell-shaped, it is peaky with long tails.

We note here that, without exception, for the UP methods discussed here to provide

results that are not misleading, they reply upon correctly and accurately quantified
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Figure 2.15: Uncertainty propagation using a surrogate model

and any correlations accounted for, section A.8.4.

input uncertainties, i.e. the correct distributions must be attributed to the inputs [189]
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2.5 Robust design optimization

It is widely acknowledged that the founder of the robust design approach is Genichi
Taguchi, who pioneered the use of probabilistic approaches for quality engineering in
Japan in the 1950s. He faced the challenge of improving product quality after World War

IT despite poor-quality raw materials and manufacturing equipment, and a lack of skilled
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workers introducing an increased level of variability into the manufacturing process [206].
The fundamental principle of Taguchi’s robust design is the minimization of variance in
product performance due to noise factors (uncontrollable parameters) by appropriate
selection of control factors (design variables) [33, 206]. Taguchi was most interested in
‘loss’ expressed as a signal-to-noise ratio (SNR) as the objective of minimization, i.e.
a quantifiable value of the cost to society (other than cost caused by intrinsic product
function), that can be reduced by parameter design [281]. Taguchi wasn’t the first person
ever to consider the reduction of variation to be important; in a panel discussion by Nair
et al. [183] Lorenzen recalls hearing of agricultural studies in the early 1940s with the
aim of producing “products whose yield was robust to different growing conditions” [234].
In fact, the Rothamsted Classical Experiments creating a soil sample archive began in
1843 [160]. Taguchi was, however, the first to formalize the approach and successfully

implement it in product manufacture.

After its success in Japan, the methodology that Taguchi popularized took until the 1980s
to be applied effectively in the USA and the wider world. His philosophy, often known
as robust parameter design (RPD), uses experimental design, or design of experiments
(DoE), by way of orthogonal array samples [103|, for selecting which sets of control
variables should be chosen for experiment given a limited number of possible product
tests. The results of these experiments are scrutinized to firstly determine the set of
control factors resulting in least variability in performance, then using a scale factor
(one of the control factors) to shift the mean close to the desired value, and running a

further confirmation experiment.

The Taguchi approach is far reaching; “developed to improve product quality and relia-
bility in industrial engineering” [201]|. In 2006 Park et al. [201] gave a detailed overview
of robust design as developed from the Taguchi method and stated that “recently, this
technology has been expanded to various design areas”. When applied to design, the
function is a model of a critical performance parameter, and is typically a computer
model. For example, if we consider the effect of a single variable on performance, we can
illustrate the concept as a choice of alternative designs (A and B) in figure 2.18 [206]. In
this plot, assuming we wish to minimize the performance parameter, there is a choice to
be made between the nominally best performing design and the least variation design. Of
course, this trade-off may not be necessary, depending on the shape of the performance
curve. As Park et al. [201] describe, an expansion of methodologies for robust design has
ensued since the 1950s, in particular, due to a number of difficulties associated with the

method when applied to design:

e a scale factor might not, in fact, exist,
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Figure 2.18: The essence of robust design as illustrated using a choice of two
single stochastic (normally distributed random) design variables A and B [206]

e the SNR is only effective as an objective when factors affecting the mean and

variance are separated, eliminating confounding'? effects,

e the number of experiments required may be prohibitively costly, although this

difficulty is by no means limited to Taguchi methods,

e the approach is only suitable for a single characteristic function,
and, possibly most prohibitively,

e the Taguchi method is not capable of including constraints, unless a limited number

of candidate designs are proposed.

In the early 1990s the momentum shifted to the use of well established optimization
routines for robust optimization to allow for ease of the use of continuous variables
and incorporation of constraints. Beyer and Sendhoff [14] review the methods in RDO
from a broader perspective, including the simultaneously developing approaches of the

operations research (OR) community.

Robust design optimization, based on the definition by Park et al. [201], is formulated

as the multi-objective problem:

find
v e R?

2Confounding is the misinterpretation of cause and effect (main effects or interactions) between
variables due to the failure to account for an influential, confounding, factor.
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to minimise a combination of

py(v,p)

and

ar(v,p),

subject to the constraints
gj(v+zvvp+zp) < 0

where j =1,...,¢c, and v, < v < vy.

p are ‘uncertain’ or ‘uncontrollable’ parameters; they contain irreducible uncertainty
(often described as ‘noise’) which may be distributed normally or otherwise, and are
the same for all designs. v are design variables!3, which can also be uncertain. z is a
vector of changes in either v or p due to uncertainty. There are d design variables and ¢
constraints. py and oy are the mean and standard deviation of the performance function

14, respectively, and are given by the well-documented definitions (for example [200]):

+oo
ps=Elf) = [ r P, (2.28)

and oo
7 = Bl(f(w) = ) = [ 1f() - p*Pluda, (2.29)

where P is the joint probability density function of the variables u which is a combined
vector of design v and p. One might equally formulate the problem to minimize some

alternative measure of distribution spread, such as the size of a given confidence interval.

The evaluation of this mean and standard deviation throughout the design space (at all
possible values of f, or at sufficient sample points for optimization) is not an insignificant
task. There is no closed-form analytical solution of the minimization problem, in general,
for problems of practical interest. In certain circumstances, “when interactions of the
design variables and the design parameters are negligible and deviations of them are
small” [201], the mean (1f) can be approximated as a function of the individual variable
and parameter means, and the variance (0;%) as a function of the first and second
derivatives of the model function with respect to the variables and parameters. The first
derivatives, or gradients, are sensitivities of the function to the variables and the second
derivatives are second order sensitivities. Figure 2.19 shows how a sensitive design, ‘C’,
although deterministically ‘better’, is less robust than designs ‘A’ and ‘B’; the same

variation in v results in a potentially much higher value and bigger range in f (it is more

131t is typical to use x, as is the case for the remainder of this chapter, but to avoid confusion with
x from a measurement set in later chapters, we refer to the design variable vector as v.

1 f can sometimes confusingly be referred to as the ‘objective function’. We shall refrain from using
this description in this thesis, using the term objective function only to refer to the function which is the
objective of an optimization, which varies depending on the construction of the optimization problem.
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Figure 2.19: ‘Robustness’ as minimum sensitivity illustrated using a single design
variable (v); the performance (f) of design ‘A’ varies less than that of designs
‘B’ and ‘C’ for the same change in v, i.e. it is less sensitive to uncertainty in v

sensitive). Park et al. [201] does note, however, that while “calculation of the second-
order sensitivity is viable for mathematical or small scale engineering problems, but is

difficult to apply to large-scale problems”.

Han and Kwak [100] calculate second order sensitivities directly from the equations of
motion for a lumped mass system to “minimize the maximum sensitivity” where the
method “requires no statistical information on the uncertainties”. This is perhaps unsur-
prising as the deviations are similar in magnitude and small relative to the design space,
and are independent. Putko et al. [218] and Taylor III et al. [285] use sensitivity deriva-
tives for robust design in CFD, using automatic forward (direct) and reverse (adjoint)*®

differentiation procedures.

The complexities involved with direct differentiation of the output of complex computer
codes can be eliminated by the use of RSMs: as described by Chen et al. [34] and Chen
et al. [33]. They propose the use of quadratic RSMs as a surrogate for the expensive
computer model or physical experiment. The derivatives are relatively easily calculated
from the mathematical functions. Park et al. [201] suggest that the use of RSMs can be
risky because sensitive regions of the design may have been ‘smoothed out’ by the RSM.
This is arguable, particularly in recent years where RSMs have become more and more
sophisticated [79, 219]. In particular, with the common use of radial basis functions
[22, 21|, and Kriging models, first applied to engineering design by Sacks et al. [242]

(section 2.2). The sensitivity method is not appropriate however, if the uncertainties

5 This method is typically intrusive; requires modification of the underlying analysis code, but black-
box reverse-mode application of automatic differentiation is also possible with increased CPU time and
computer memory [285].
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Figure 2.20: A typical robust design optimization (RDO) workflow

have asymmetric or differing distributions as only the mean and variance of the input

parameters are used in the output estimations'®.

For problems where the response is non-linear in the region of uncertainty, where there
are interactions or correlations between variables, where the uncertainty is large in mag-
nitude, or where uncertainty is distributed differently between variables, or in an unusual
or skewed manner, it may be preferable to propagate uncertainty locally in order to cal-

culate means and variances. This process of RDO is illustrated in figure 2.20.

This approach requires much more knowledge in the local region of uncertainty where
the mean and variance are to be calculated (the uncertainty space, or sometimes referred
to as the stochastic space). There are multiple uncertain spaces, analogous to design
points in deterministic optimization. Inherently, more information requires more cost.
Where derivation of sensitivities can be expensive in terms of their calculation, prop-
agated uncertainties can be expensive in terms of the multiple additional evaluations
of the computer model. This multiple space approach within the overall design space,
sometimes referred to as optimization space, has been adopted by Roos and Hoffmann
[236] in a sequential manner by evaluating uncertainty in areas of ‘best’ deterministic

designs and iterating around them.

161t is also noted that the distributions of uncertainty in variables could also be different depending
upon the location in the design space. Such variation is difficult, if not impossible, to determine without
a great deal of experimentation. In the case of geometric uncertainty, even accurate determination at a
nominal design point (as is the focus of this thesis) will be an improvement on current practices. The
approach discussed here would also be appropriate if further knowledge across the design space was
available
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Here we take the whole design space of the ‘bird function’ illustration from section 2.2.1 to
demonstrate the RDO process as a multi-objective design problem. f is now constructed
as a function of the design variable vector x (referred to in the general case above as v),

and two constant parameters p (p; = —10, po = —10):
Fwr, ) = sin(pyag)e7eo®222)" 4 cos(pay e —mP222)" 4 (pyay — porg)?  (2.30)
where z1 (or the variation in x1, z,,) and p are uncertain:

s~ N(0, 0.03)
P1 ~ (—10, 1) (2.31)
p2 ~ (_107 2)

Z z

An OLH sample of the design space is made. At each of the n = 60 sample points
the mean and standard deviation of f are evaluated by means of UP. The UP approach
taken is Monte Carlo sampling; evaluation of a sample mean and standard deviation
using 1000 randomly drawn uncertain values from the given distributions at each design
point. Regressing Kriging models are fitted to give a prediction of the mean function
i(f), and the standard deviation function &(f), figures 2.21a and 2.21b respectively. The
regressing models are used because Monte Carlo sampling results in values containing

some noise.

Using a single objective global optimization (with the PSO algorithm, appendix A.4.2)
results in two different optimal designs, figures 2.21c and 2.21d. A front of Pareto-optimal
non-dominated points can be plotted from either the existing sample points, figure 2.22a,
or using a larger sample of the Kriging predictor, 2.22b. Further investigation could be
employed to obtain a more accurate optimal front with, for example, multi-objective ex-
pected improvement and a multi-objective optimizer such as NSGA-II to select a suitable

Pareto-optimal design, depending upon the problem.

A second example uses different definitions of the uncertain variables, which are not all

centred on the nominal value:

2, ~ N(0,0.03)
pi ~ S(2,0.75, 1, 0) (2.32)
p2 ~ U[_37 1]

S refers to a stable distribution, section A.8.2. The single-objective optimum designs are
substantially further from each other, figure 2.23, and the Pareto-front is discontinuous,
figure 2.24. Such a design would warrant further investigation, but this example serves
to illustrate how combinations of uncertainties in already complex problems can result in

designs of sub-optimal variance in performance. Studies that include uncertainties can
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further inform the design decision making process and improve robustness of performance

under irreducible uncertainty.
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2.6 Reliability-based design optimization

Although this thesis was intended to develop methods for facilitating black-box robust
design optimization, it is also relevant to the assessment of reliability. It is therefore perti-
nent to be clear here about the distinction between design for robustness and reliability-
based design, or robust design optimization (RDO) and reliability-based design opti-
mization (RBDO), and to briefly introduce the latter. The approaches used for both are
similar, and can even be the same (e.g. Monte Carlo sampling), but the goal of each is

fundamentally different.

Reliability, described as ‘quality’, like robust design, was popularized during the 1980s,
specifically in January 1987, when the chief executive officer of the Motorola company in
the USA launched “The Six Sigma Quality Program”. It had been developed by Motorola
employees Bill Smith and Mikel Harry, as a means of eliminating defects but was now
to be used as the central quality control process throughout the entire business. The
quality focus of the company was a reaction to observing the greatly improved quality
of television sets manufactured after a Motorola factory had been taken over by the
Japanese [217|. General Electrics’s chief executive officer, Jack Welch then adopted ‘Six
Sigma’ as a central business strategy in 1995, from where the approach became well

known globally.

The central goal of ‘Six Sigma’ is a reduction in defective parts. ‘Sigma’ refers to the
standard deviation of the measure of performance with levels of conformance; lower
and upper specification limits, or tolerances. ‘Six Sigma’ is a “quality improvement
process and philosophy” that strives towards designs with six standard deviations of
performance from the mean falling within the conformance limits, i.e. 99.9999998% of
parts conforming, or 0.002 defects per million [138]. This assessment of quality in terms of
‘defects per million’ is a measure of reliability and can also be expressed as a probability

of failure, Py.

Applied to engineering design, we consider the historically used factor of safety defined
by Shigley and Mischke [255] as:

B
Factor of safety = T

where B is the “actual breaking strength in application” and L is the applied “load”.

Here, and in most texts, it refers to material strength where load to failure is the critical
performance measure. In reality the uncertainties in the mathematical model, and in the
service conditions (environment), lead to a statistical distribution of the performance
measure and hence the factor of safety. As Shigley and Mischke [255] state, “a major
danger in the use of ... the factor of safety is to believe that if” it “is greater than 1, the

product having such a factor is safe”. Figure 2.25 shows clearly that a factor of safety
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exceeding 1 can potentially lead to a large probability of failure (i.e. region below 1

under the curve), depending on the true statistical distribution.

It is the goal of design for reliability to minimize Py, in contrast with robust design where
the goal is to minimize the variance (02) of the performance. In both cases, one might
also wish to minimize or maximize the mean performance, in which case the optimization

becomes one of multiple objectives, chapter 2.3.3.

Koch et al. [138] illustrated the use of “robust optimization” applied to design for ‘Six
Sigma’ in their 2004 paper, and these methods are now readily available in some com-

mercial software such as Isight ™ [46].

This probabilistic approach, where the value of interest is the probability of failure, is
usually referred to as reliability analysis and many relevant and state of the art uncer-
tainty propagation techniques originate from this subject area. They can be based on the
definition of a limit state function [279]. Some of these techniques may also be of partic-
ular use if, for example, the most likely ‘best’ designs lie close to constraint boundaries.
In this case one may need to estimate accurately both the expected level of variation

and the probability of exceeding the critical constraint.

Reliability-based design can be more difficult because it requires an accurate propagation
of uncertainty in the tails of the statistical distributions where they are often asymp-
totic. Sampling, section 2.1, modelling, section 2.2, and propagation, section 2.4, can all

introduce inaccuracy ‘in the tails’.
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2.7 Fitting geometric curve and surface models to measured

points

Section 2.2 presents a popular approach for fitting a mathematical model based on a
set of data points: a response surface. Such a surface exists in multiple dimensions:
hyperspace. In the case of geometry fitting from measurement, we are concerned only with
true space, in up to three dimensions, and although the response surface methodologies
are applicable, there are a number of other means of curve and surface fitting that have

been utilized for many more decades.

A significant amount of literature pertaining to the fitting of geometric models can be
found in publications discussing reverse engineering. In particular, during the 1990s,
when use of computer aided design (CAD), computer aided manufacturing (CAM), and
the use of coordinate measuring machines (CMM) had become widespread. In 1995
Chivate and Jablokow [40] reviewed surface definitions and fitting algorithms used in re-
verse engineering and rated the use of algebraic'” surfaces and parametric'® surfaces for a
number of criteria and four types of fitting method. Their conclusion that parametric sur-
faces, mostly fitted using “the method of least squares” [40] or sometimes using smoothing,
were preferable, carries through reverse engineering software today where spline-based
parametric surfaces routinely form the basis of their coding, e.g. 3D RESHAPER®, and
PolyWorks®. The flexibility of these definitions is emphasized by Chen and Liu [35]
who state that they “offer one canonical form of the representation of both analytical

and free-form shapes”.

Even with advances in reverse engineering, the process remains somewhat dependent
on either manual interaction, or some kind of cleaning process, to remove regions of
inaccuracy or missing data points, or to specify the degree or order of the analytical
definition, or the level of smoothing. The latest research focuses mainly on expediting the
cleaning of polygonal meshes, often using optimization algorithms, prior to then fitting
non-uniform rational b-splines (NURBS) if required |31, 86, 2|. Biomedical research now
also draws on these approaches for building models of natural structures (bone joints,
for example). They do not usually draw on information known about the expected form
of the artefact, although a template-based approach was proposed by Buonamici et al.

[23] in 2018, for applying a PSO algorithm for reverse engineering,.

”

17 An algebraic surface is one “that can be represented by an”...“equation f(z,y,z) = 0 in 3-space or
by a homogeneous polynomial equation f(z,y,z,w) = 0 in 4-space. A homogeneous polynomial is one
having all terms of the same degree” [40]. 85% of machined surfaces can be represented by a subset of
these, quadratic surfaces, or natural quadrics, which can be defined using ten coefficients [40]. Similarly,
for quadratic curves the z-terms are removed and six coefficients are required.

8 A parametric curve is one that is defined in terms of a parameter along its length, denoted ¢ in
this text. A parametric surface is characterized by two such parameters, ¢ and s, with three functions:
z=uxz(t,s), y =y(t,s), and z = 2(¢,s). Spline-based surfaces fall into this category and are defined by a
set of control points where the surface remains within their convex hull.
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For routine inspection measurement data, still largely CMM based due to their accuracy
[228, 304], approaches for fitting are necessarily automated. There is conflict between
the requirement to quickly determine whether multiple parts are within tolerance, and
the longer-term goal of understanding the uncertainty in the manufacturing process in
order to enhance the design or redetermine more appropriate tolerances. Therefore, with
the inspection process, although the expected (nominal) shape or form is known, it is
not always used to enhance the fitting process. Typically, if the form appears to fit
reasonably then segments are considered individually and fitted using a least-squares
type algorithm. Where shapes are seen to deviate from straight lines or planes and arcs

or fillets, polynomials or splines are fitted in much the same way.

Despite advances in measurement technology and surface reproduction with CAD soft-
ware, any statistical error in the measurements or fitting routines are generally not
readily available. Such data may be embedded in measurement systems or CAD soft-
ware, if it is recorded at all. In an attempt to ensure that measurement uncertainty be
routinely incorporated into measurement processes the International Organization for
Standardization (ISO) presented a framework by publishing its ‘Guide to the expres-
sion of uncertainty in measurement’ (‘GUM’) [116] in 1995, and a supplement in 2006
[117], although a number of works including that of Willink [316] highlight pitfalls in its
approach. Most measuring system manufacturers quote a resolution pertaining to the
spacing of possible measurements, rather than giving an expected statistical deviation.
Researchers continue to work towards devising rigorous evaluations of CMM uncertainty
[36, 74].

Meta-models (such as Kriging or other RBF-based models) can also be used to fit geom-
etry, although this has seldom been presented in the literature. For surrogate models, a
probabilistic measure of ‘goodness of fit’, maximum likelihood!?, is used to fit a model,

20

but least squares*® or other criteria, including the orthogonal least squares approach

taken by Chen et al. [32] for signal processing, are also possible.

Radial basis functions have been experimented with for geometrical fitting but have not
found their way into mainstream CAD software as far as the author is aware: Carr et al.
[30] used RBFs for interpolation of surfaces for medical imaging of the skeletal trunk
and later enhanced their algorithm using polyharmonic RBFs and greedy algorithms to
reconstruct multiple three-dimensional objects, including a turbine blade with internal
structure [29] (the advantages of Carr et al. [29]’s algorithm is its efficiency and its
mesh repair (hole-filling) capability), Ohtake et al. [192] use least-squares based RBFs
to enhance adaptive partition of unity approzimations used for several overlapping data

sets, and Liu et al. [158] suggest an adapted K-means algorithm to reduce RBF centres for

9«Maximum likelihood, also called the maximum likelihood method, is the procedure of finding the
value of one or more parameters for a given statistic which makes the known likelihood distribution a
maximum” [308].

20Least-squares estimators are, in fact, the maximum likelihood estimators in the case where errors
are statistically independent, and normally distributed with constant variance [19].
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improved efficiency of RBF based surface fitting. They have also recently been employed
for surface modification, section 2.11. Kriging is afforded even less interest for geometric
surface construction, although it is suggested by Liamaiem and ElMaraghy [151] for

complete surfaces and used for enhancing existing surfaces by Grinstead et al. [95].

The latest developments in scanning and measuring hardware [89] technologies could
soon mean that even more data are available, leading to increased scope for routinely
integrating measurement with design processes, but potentially even more need to un-
derstand the uncertainties in the data, and to ensure that models are manageable in

terms of variable numbers.

In this section, we discuss some important precursors, before referring to appendix A.7
for details of the commonly used curve and surface definitions (excluding response surface

models, section 2.2) and the processes by which such definitions can be fitted.

2.7.1 Precursors to fitting
Point cloud data

Discrete measurement data can be collected as a set of points referred to as a point
cloud, or a set of pixels with varying (intensity) referred to as an image. The points may
be distributed randomly over a curve or surface, or regularly distributed in some kind of
grid (akin to a full-factorial sample in DSO)?!. There is no truly continuous measurement
data; with extremely high resolution the number of points or pixels becomes larger, but
they remain points or pixels each pertaining to an individual piece of measurement data.
One might consider that increasing the resolution of measurements could reach a close-
to-continuous measurement but, notwithstanding the still inherently discrete nature of
the data, one is limited by computational expense, measurement time, and physical
restrictions of the measuring equipment. Pixel-based images, although important, are

not the focus of this thesis.

We note that although point cloud data for a single part might include multiple sets
of points from different viewpoints, with the part supported in different positions, in
multiple scanning processes, or “sometimes multiple sensor integrated approaches may
be necessary to combine different characteristics of several scanning devices [254]” [111],
this work is limited to single data sets due to the nature of the ‘real’ sets that are available

to us.

21 Although, point measurements may be manually distributed as selected by a measurement system
user, examples of intelligent placing of point measurements in an automated or adaptive way have not
been found in the literature; such sampling appears to remain with the expertise of designers using
surrogates and DSO.
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Shape or ‘form’ assessment

Through the assessment of form, it is possible to determine how the curves can be most
simply defined, and which category of curve fitting algorithm is most appropriate. It

may be possible to define the curves as:

e simple composite curves (straight lines and arcs joined using constraints) defined

by end points, centre points, lengths and radii,

e more complex algebraic formulation curves (e.g. higher degree polynomials, ellipses

etc.), or
e generalized algebraic curves such as radial basis functions, or

e complex parametric curves such as splines.

At the lower end of this scale, certain assumptions and constraints about the geometry
are required, but the shape is defined by fewer variables in total. As the curve definitions
become more general and more widely applicable, the greater the number of variables

required to define them.

Implicit curves and surfaces, i.e. functions of the form f(x1,...,2,) = 0, where n = 2 for
curves and n = 3 for surfaces, which cannot be expressed explicitly as a function of one
variable, introduce specific peculiarities in curve fitting, and often in the distribution of
error in measurement. There is a non-unique value of one parameter at a given value
of the other and measuring, for example, a circle or sphere is often difficult. It is often
important to measure such shapes, e.g. holes or conics, and to inspect them for size,
position, and correctness of form. In the late 1990s there was a flurry of papers dedicated
to fitting circles and ellipses to CMM point measurements. Mostly, they make use of
the recorded probe direction to allow the use of fixed regressor assumptions in the least-
squares minimization, e.g. Watson [305] uses a convex local minimization and Chernov
and Lesort [38] refine an algorithm for short arcs. There is a subset of research dedicated
to spherical regression due to its importance for analysis of global geographical data.

These methods are not explored further here.

If, as might be the case for analysis requirements only, a geometric definition for CAD
reconstruction or manufacture is not needed, then an alternative discrete representation
with a suitable quality and fidelity e.g. a mesh, might be more appropriate. This is

where fitting, or characterization as discussed in chapter 1 may not be needed.

Interpolation and regression

Fitted geometric models may either be regressing or interpolating, where an interpolating

model fits precisely through the given set of points, assuming implicitly that there is no
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error or noise in the data points. In reality, this is seldom the case, but interpolating
approaches can often be invoked easily. For example CAD packages, including NX™, can
easily create spline curves of a chosen degree through given points and loft given curves
to create spline surfaces with edge boundary constraints. Such curves and surfaces are
defined by using parameters that include each of the point locations. The NX™ default
spline interpolation function uses piece-wise polynomial splines and allows the user to
specify the degree. MATLAB also has a cubic spline interpolation function for this type
of spline as described by de Boor [48|. The interpolation condition results in a linear
system which is row diagonally dominant and can be solved by Gaussian elimination.
Curves and surfaces interpolated in this way can be particularly useful for visualization
but can be limiting in their practical use because fictitious roughness can be generated in
the surface (over-fitting) if the points are not actually noise-free, and at the extremities or
at gaps in a data set the immediately adjacent points can have a disproportionate effect
on the shape of the fitted curve. In addition, they inherently have the disadvantage
associated with many complex model definitions that the number of variables (if used
for further DSO or RBDO) is likely to be restrictive.

In contrast, regression assumes that the points contain some form of error and aims to
fit the ‘best” model of a chosen form given that there is some error. The resulting curve
or surface will not intersect the points exactly unless the chosen curve form is able to
pass exactly through them, which is extremely unlikely for large ‘real-world’ data sets

with curves using fewer defining parameters than there are points.

The process of fitting either a regressing or interpolating model of geometry is akin to that
of building a surrogate model as described in chapter 2.2. Indeed, regression methodology
in curve fitting was a predecessor to such techniques. All of the routines follow the same
basic approach: given a pre-defined curve or surface form, first determine a system by
which ‘goodness-of-fit’ of a curve or surface can be quantified, and then use this measure

as the objective function for an optimization of the curve or surface parameter values.

Form deviation is often indistinguishable from other noise and attempts have been made
to filter form deviation [319, 229] using Gaussian process methods. We propose using a
Kriging-based fit, based on the work of Picheny et al. [207] in chapter 6. An understand-

ing of the true measurement error magnitude is required.

2.7.2 Registration and segmentation
Registration
It is usually important to determine the global position of the feature being measured,

or its position relative to other features. The position may be required because it has

an effect on component performance, or movement of the feature in space may position
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it far from the nominal, therefore extending the required bounds for the fitting routine.

There are papers dedicated to the localization problem alone, e.g. Rivest [233].

Segmentation

Where the measurements represent a component built of multiple curves or surfaces
another difficulty, addressed mainly by the reverse engineering and engineering inspection
communities, is that of determining the point at which one parameterized segment ends
and the next starts. An early work by Hudson [113]| categorizes curves made of two

segments as being of one of three types:

1. with join point lying strictly between two successive x values and curves either side

do not have equal slopes at the join,

2. with the join lying at a measured value of x with no restrictions on the slopes of

the curves, or

3. with join point lying strictly between two successive x values and curves either side

have equal slopes at the join.

If the join type is unknown then fitting is applied three times with all three assumptions.
For curve types that are constrained to have equal slope at the join (type 3), an iterative
solution is used where the fit (linear regression®?) is conducted at successive join point
locations. Such an approach is generally too expensive, even now, when considering a
whole component, but may be of use for individual feature inspection and geometric

parameter determination in uncertainty propagation and robust optimization?3.

When reverse engineering became more prolific in the 1990s, segmentation was “usually
done manually” [35]. Mostly, b-spline curves and surfaces were fitted to manually se-
lected regions and the curves and surfaces interrogated for points of maximum curvature
[35]. Thompson et al. [286] use a feature-based approach with least median squares and
Bézier curves. The method was still highly user interactive, although points with high
expected error, based on distance and orientation, are automatically discarded depending
on feature type. Huang and Tai [112] and Tai and Huang [282| use, what they describe
as a median method to construct new points by averaging the positions of each set of
three neighbouring points, from which a curvature can be calculated for segmentation.

These methods are referred to as edge-based segmentation.

Attempts at automation of segmentation only really begin to enter the literature in the

2000s. Huang and Menq [111] first construct a triangular mesh with the data points

22Linear regression was the only practical approach with the limited computer processing power of
the 1960s.
28However, no examples of this have been found in recent literature.
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and then calculate curvature tensor values by Euler’s theorem [59]. A threshold value of
curvature is specified for the segmentation. Woo et al. [318] and Li et al. [149] also suggest
mesh-based approaches. Other such methods include that of Rabbani et al. [220] who use
K-nearest neighbour (KNN), and fized distance neighbour (FDN), methods to calculate
normal vectors from the raw data, requiring user input of threshold values of smoothness.
An approach by Rahayem and Kjellander [221] recursively splits initially segmented
surfaces where threshold error requirements aren’t met. Mesh-based approaches are
usually referred to as region-based as they split the surfaces into sets of elements, or
regions according to the properties of the elements. Those mentioned here are also top-

down algorithms as the mesh is fitted to the entire object before segmenting.

The automatic segmentation problem continues to be of interest; human interaction intro-
duces inconsistency, the potential for human error, and makes statistical representation
of fitting error difficult or impossible. Vanco and Brunnett [298] attempt to automati-
cally segment surfaces using normal vectors from the original data set, in a bottom-up
approach which locates the main surfaces, growing them to a point where the given
threshold is met.

2.7.3 Common curve and surface fitting methods

Methods used for defining and fitting geometry (curves and surfaces) to data have devel-
oped in parallel, and prior to, the definitions and fitting routines for developing models of
responses. Although similar in many ways, the potential simplicity of a limited number
of dimensions but complexity of a potentially intractable number of points in geometric
modelling, as opposed to high-dimensional spaces and sparse sample points in response
surface modelling, has meant that they are usually considered from slightly different
perspectives. In this thesis, we are interested in both; the geometric uncertainty prob-
lem requires the conversion of geometric definitions based on an intractable numbers of

points, to design spaces of practical size.

There are a number of classical mathematical models and associated fitting methods for

dealing with geometric fitting, some of which are described in appendix A.7:

polynomial models and least-squares regression,

orthogonal least-squares,

spline fitting, and

e Bayes regression.
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2.8 Evaluating the accuracy of fitting (curves, surfaces, and

meta-models)

Given that a curve, surface, or meta-model has been constructed which is believed to be
the best possible prediction of the ‘true’ geometry or function, one may wish to assess
the ‘correctness’ of the fit in a quantitative manner. In order to compare the closeness of
fit for one data set with that of another, a single numerical value (a kind of score) may be
appropriate. Alternatively, one may wish to understand the statistical confidence that
we have in the fit or a particular property of the curve. For some purposes, one may also

be interested in accuracy in a particular region of the curve or surface.

Origins of fit inaccuracy

During the fitting process for measurement data we are aiming to represent ‘real’ un-
certainty due to the manufacturing process, or in-service wear, accurately. The fitting
process itself, however, can introduce further inaccuracy. We refer to this as error. It is
a combination of our ability to select the correct analytical curve or surface construction,
parameters, and fidelity (we shall describe this as fitting error), and our ability to deal
appropriately with the measurement error, which may be described as noise because it is
usually random if equipment has been correctly calibrated. Weckenmann et al. [306] and
Dowling et al. [61] discuss the range of potential errors through measurement. Erkan
et al. [63] reviews errors introduced through CMM tip radius correction software and

shows them to be in the order of 1.0e " ®mm for Mitutoyo software.

Similarly, models in place of computational analysis chains can also contain noise, usually
from numerical truncation error. The error in the surrogate model fitting process is akin

to the error in the measurement fitting process.

In both cases systematic errors need be removed through wvalidation of either the mea-

surement system or computer code prior to use.

2.8.1 ‘Goodness-of-fit’ and confidence

A universally popular metric for assessment of the error in a model or surface fit to a set
of data points is the mean squared error (MSE), also known as the residual mean square
or standard error, or its square root: the root mean squared error (RMSE). Forrester

et al. [78] describe the process of determining this metric as ‘model testing’ and
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where n; is the number of test points (one, or a number of, sample or measurement

evaluations, held back as a validation set).

Other residual-based measures are also used, such as the sum of squares due to error
(SSE), and R-square (the “square of the correlation between the values and the predicted
values” [165]). In general these measures are defined in terms of model building, where
the regressor, x, has no error. In the case of curves fitted using orthogonal least-squares,
one must take care to use similar measures using the orthogonal residual values. To
compare the global accuracy of a model or a number of fitted curves the use of such

measures is reasonable. However, is has three pitfalls.

1. If we wish to compare the accuracy of different approaches to fitting then these
measures will obviously tend to prefer the least-squares based fits. Any such mea-

sures will be biased in this context.
2. Using the MSE metric alone, over-fitting will result in a low MSE.

3. It is seldom possible to hold back sample points where the size of the set is limited
by expense or data availability. One might even argue that, for small sample sets,
reducing the training set size still further for validation purposes is too detrimental

to the accuracy that one aims to evaluate.

These test metrics also rely upon the fact that the form of the curve or surface is
correct. If this is unknown then one can construct a statistical test of the assumption
that the errors are normally distributed and ensure avoidance of over-fitting, such as
the test of Ralston and Rabinowitz [224] for a polynomial fit. Confidence intervals can
also be calculated using the MSE at a given confidence level for the curve or surface
coefficients assuming that the deviations from the true curve can be considered to be
normally distributed [165]. However, these approaches do not avoid the requirement for
additional data sets for model testing. A common error assessment in these circumstances

is cross-validation.

2.8.2 Cross-validation

If the data points used for fitting are some large set of randomly selected points from a
population then there is much freedom over the choice of training dataset and testing
dataset. One may choose multiple new random sets from the same population or ran-
domly select a subset of the original data for testing. In the case of measurement, the
data points are not randomly distributed over the curve or surface, they are generally
relatively evenly spread. In addition, there is only one set. In fact, even a second phys-
ically measured dataset on the same part would not be a valid testing set as it would

not result in points drawn from the same population. In the case of a surrogate model
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the training set is often too small. Cross-validation [101] is a validation of a model by

re-sampling the original data set.

Given that a model has already been built using all the sample points and the parameters
for the model have been determined through surface fitting or model training, K-fold
cross-validation can be used to estimate the likely global error in the model. The original
sample is split into K sub-sets of roughly equal size (ns) randomly selected without
replacement. In turn, each subset is left out and the fitting, or training, process repeated.
The same equation is then used to predict the left out points and a loss function is
calculated at each of these points. Usually the squared error is used as the loss function.
Averaging over all ng left out and re-predicted points in all K sets results in a mean

cross-validation error of

K nt
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More specifically, leave-one-out cross-validation, where K = n and ng = 1, is a popular
approach but is prohibitive if the training routine is expensive. For Kriging, where the
tuning of hyperparameters can be expensive, a reasonable estimate of the full cross-
validation error is a cross-validation error where the optimized parameters are fixed but

the predictor (a function of the correlation matrix, ¥), is re-calculated.

Cross-validation gives an estimate of the prediction error, which although it is not a mean-
ingful number in itself for measurement data, is a good comparator (it is not unbiased in
a statistical sense but if the data set is large this causes little difficulty). Cross-validation
error can also be used as the objective function for minimization in model training for

other RBF-based models where likelihood is used for Kriging models.

A related, and popular approach for estimating error in a predictive model is boot-
strapping [101, 216]. This is typically used when there is only one sample, which is
drawn from an independent, identically distributed (iid) population, and involves taking
repeated sub-samples drawn with replacement. Given the evenly spread nature of the
measurement data, one “can usually get away with pretending that these are iid uni-
formly distributed over the measured range” [216], but must be particularly careful if
the fitting routine requires sequential points, or if there is any “small-scale clumpiness”
[216] in the points. Intuitively, a leave-one-out scheme (where points are drawn with-
out replacement) is preferable for measurement data as it gives equal weighting to all
remaining points, where bootstrapping effectively increases the weighting of any points

drawn multiple times. Of course, the larger the data set, the smaller this effect.
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2.8.3 Proof-by-example

An alternative, or concurrent method for assessing fits for data sets of known form,
is one of ‘proof by example’. If one assumes a ‘perfect’, or nominal, geometry with a
representative number of points, perturbs said points by introducing Gaussian noise of a
representative magnitude, and uses the same algorithm to fit this artificially generated
data set as that of the measured data set, then one can conclude that, if the normal error
assumption holds, then this is equivalent to the expected error. The effectiveness of a
given fitting routine can be demonstrated ‘by example’. A statistically robust prediction
would again require multiple fits to multiple randomly perturbed simulated data sets.
Even so, this may be preferable, especially if comparing different fitting routines for
similar geometric features. This approach will also allow for errors caused by registration
if representative rotations and translations can also be applied to the synthetic data

points.

2.8.4 A special case: Kriging predictor error

None of the error estimates discussed thus far separate noise in the sample points from
error due to the model prediction itself. They also result in an overall error value, and
local variation in prediction error is not considered. A significant advantage of Kriging
(section 2.2), and other similar approaches, is that an estimate of the mean squared
error in the predictor, (x*), can be evaluated as a function of ¥ at any x*. This Kriging

predictor error can be shown to be

(1-p'o 1)’
17911

s2(x*) =0 [1—9pT Ty + (2.34)
In order to reach this relatively easily evaluated analytical solution, §(x*) is treated as
a Gaussian random variable and the mean squared error of this predictor averaged over
the Gausssian random process. This approach is described by Sacks et al. [242], and a
detailed derivation of this result from first principles is given by Hoyle [108] based on the
work of Cressie [44]. This prediction error estimate is fundamental to advanced methods

to enhance models through adaptive sampling routines.

2.9 Statistical methods

There is little to be gained from describing the many well-documented statistical tools
used in data analysis here. The fundamentals are covered in many large tomes. However,
given that the subject of this thesis is the facilitation of a probabilistic understanding of
performance in order to inform design choices in the face of measurable uncertainty, it

is important that a short overview of some of the applied statistical theory is provided.
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In appendix A.8 a brief overview of some pdfs that are typically found to be of use in
engineering design. Such distributions include, the often assumed Gaussian normal and
uniform distributions, along with the truncated normal likely to be experienced if com-
ponents are rejected as out of tolerance, and the log-normal favoured for some material
property variations. The general form for fitting unusually shaped distributions: the
Kernel density, is also presented. A section is also dedicated to a more recently popu-
larised stable distribution, which can be particularly useful for representing skewness, or
where tails of a distribution are heavy. We also present the hypothesis tests which have
been used in this work to assess the accuracy of distributions fitted to input variables,

although plenty more alternative tests exist.

It is not just the distributions of variables themselves that must be accurate, but the
correlation structures between them. Correlation and analysis of variance (ANOVA) are
of great relevance to the engineer who wishes to use data to enhance the design process.
They can enable reduction of variable numbers and ensure that correlation between mea-
sured variables is not ignored; assuming independence between variables is commonplace
with the lack of any other information, but might lead to misleading predictions of per-
formance variation. A description of ANOVA and measures of correlation are given in

appendix A.8.

Once pdfs of, and relationships between, variables have been established the task of sam-
pling the correlated variables can become difficult. In which case, the statistician turns
to copulas, and popularly the Gaussian copula. These enable multi-variate distributions

to be constructed such that correlations maintained during sampling, appendix A.8.

2.10 Dimension reduction

Undoubtedly the most popular approach to reducing dimensions which, in its simplest
form is a linear representation of an original variable space, is principal component
analysis (PCA). PCA is also known by various other names, including classical scaling.
Wold [317] lists some of these by discipline:

o singular value decomposition (SVD) is sometimes used in place of PCA in “numer-
ical analysis”,

e Karhunen-Loéve (KL) decomposition (or expansion) is referred to in the field of

“electrical engineering”,

e Figenvector analysis or characteristic vector analysis is used in the “physical sci-

ences”,

and others include:
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e the Hotelling transformation in image analysis, and

e principal factor analysis in chemistry.
This method results in a new variable set of principal components (PCs) that are uncorre-
lated, which is beneficial for statistical sampling, avoiding the need for copulas (appendix

A.8). Details of this method, applied in chapter 6, and of its variants, are provided in
appendix A.9.

It is also worth noting that PCA has other uses, not just dimension reduction. As listed
by Wold [317], the uses of PCA are:
e simplification (reducing the size of a data matrix to a size that can be interpreted

more easily by human observation),

e data reduction (the approximation of a large data set to a less complex model

structure),

e modelling (of a physical or chemical system by isolating the ‘main effects’ from the

noise, the data matrix is the training data set),
e prediction (of unknown data points in the modelled system),
e classification (finding classes (clusters, or groups) of similar objects or data points),

e outlier detection (by identifying sample points or objects that lie outside of known

clusters), and

e unmizing (where the end members, either known or identified, in the new principal
component or ‘factor’ space are used to define each object or data point as a
‘mixture’ (often used in the field of geology) [82, 137]).

2.11 Geometry and mesh manipulation

The methods described thus far can be used to enable the designer to:

1. understand the data (select appropriate variables that define the uncertainties and
ensure that we a have suitable probabilistic definition of them): characterize the

geometric uncertainties, and

2. plan an appropriate ‘black-box’ UP, RDO, or RBDO study (select sample plans and
robustness parameters or objective functions, and optimization algorithms with, or

without, surrogate models).
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There is, however, a final step that is not trivial in the case of geometric uncertainties:
implementing the changes to geometry within the analysis. Uncertain variables, such
as boundary conditions or loads require only a trivial change to a numeric value, but
geometric uncertainty is non-trivial to implement, unless the existing geometry has the

same parametric definition (defining variables) as the uncertainty being studied.

Analyses typically contain a geometry created in a CAD tool, which is then meshed, i.e.
discretized into a set of elements connected by nodes at their vertices. Whatever the type
of mesh (solid, or shell), it is fully defined (in a geometric sense) by the nodal locations
and their connectivity with each other. In order to implement the sampled changes within
the workflow, a modification must either be made to the original geometric model, or the
mesh, whilst maintaining associated loading and mesh quality. Modifying the original
geometry means that a fully automated and robust meshing process be employed but
modifying the mesh leaves the designer without a CAD model of any analysis points
of interest. In this section, we review the methods available for making modifications
to the mesh, in particular, although the manipulation techniques can also be applied
to CAD models by manipulating the positions of the defining points or vertices whilst

maintaining the mathematical curve or surface definition.

When a deformation is applied to an existing geometry of any definition to morph it into
an alternative geometry of ‘free-form’ i.e. “an object whose surfaces are not of a more
easily recognized class such as planar and/or natural quadric surfaces” [26], a number
of mathematical methods can be employed. The deformation is usually facilitated by
software applications through manual interactions. Such manipulations (like the physical
moulding of clay) can be for many purposes: usually design or re-design, reconstruction
of an existing entity, or parameterization of a new product topology based on move-
ment of control points. With design and reconstruction in the sense of a single designer
experimenting with ideas prior to analysis, or creating a visually appealing item, the al-
gorithms used need only reduce computational effort such that the computer processing
and graphics can keep up with the user. Given the processing power now available in
modern computational hardware, the large number of points needed to define a complex
free-form surface structure completely, and the processing required to move the points,

no-longer tend to be prohibitive in this respect.

A ‘true’ body shape is actually a free-form object of infinitely small precision (defined
by an infinitely large number of points). Therefore, in the uncertainty problem one
is typically presented with a parametric design and multiple free-form representations
of ‘the truth’ expressed as point clouds or similar, of varying precision and accuracy,
section 2.7. The goal is ultimately to morph an existing parametric model and/or its
associated appropriately refined analysis mesh such that mesh connectivity and quality
is maintained. Deforming the geometric model and re-meshing maintains control of rule-

bases that ensure mesh quality but is likely to introduce more computational noise. In
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addition, if the deformation requires manual intervention then it is also infeasible for

large numbers of model evaluations.

Existing algorithms for manipulating geometries and meshes with varying degrees of

automation fall into one of three categories:

e spatial deformation; deforming an object by “warping its ambient space” [83], or

e surface mapping; creating a mapping directly from one geometry to another whilst

minimizing either the “angular or area distortions” [150], or

e volume-based or vozxel-based morphing, where a voxel is a 3D cube akin to a pixel

in 2D space,

and all three are often referred to as morphing. They can be either mesh-based or
structural. Although pixels and voxels might indeed be the result of measurement (X-
ray and micro computed tomography (nCT) for example), such data processing is beyond

the current scope of this thesis, which is focused on processing of point-cloud data.

Free-form deformation (FFD), a popular form of spatial deformation, is commonplace as
a tool in engineering design where the performance parameters are those related to fluid
interactions (aerodynamic or hydrodynamic surfaces) [188]. Its potential (and that of
related techniques) for representing uncertainty for propagation and robustness studies
is yet to be fully explored. Algorithms have been developed and implemented for soft-
ware designed primarily for imaging and for computer graphics in the design of realistic
animation (in the gaming and film industries). Some are applied to reverse engineering
problems. However, in both cases the morphed geometry is an approximation, rather
than a statistically accurate definition of the required shape, and the algorithms are
only just becoming routinely into FEA and CFD meshing and analysis tools for engi-
neering design. Examples are Siemens NX™, Altair® HYPERMORPH™, and Enginsoft
Optimal Solutions Sculptor™. The Siemens NX™ morphing capability moves an existing
mesh associated with geometry to match a new but ‘similar’ geometry. This approach
has been used in the dovetail analysis in this thesis. The capability is also seen in HY-
PERMORPH™ as part of a larger suite of “simulation driven design” tools, and as a
stand-alone tool Sculptor® based around what they call ‘arbitrary shape deformation’.
The algorithms used within these packages are the intellectual property of the respective
companies and are not accessible. They could be surface-based or spatial methods, or

combinations of both.

Reasonably recent developments, embedded into ANSYS fluent CFD software, use radial
basis function models of nodal displacements to deform meshes: termed RBF morph by
the first publisher of the method [15].
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2.11.1 Surface mapping

There are a number of approaches to morphing surfaces using various parameterizations

[73].

These approaches are usually:

e largely interactive (due to partitioning and/or feature pairing), and

e based on planar parameterization (which introduces a need to partition the two

meshes into consistent patches, and can also result in undesirable ‘seams’), or

e based on spherical parameterization for closed surfaces, which does not require
splitting [253, 6].

The methods usually require that surfaces are “within the same homotomy class” (are
isotopic to each other), i.e. “one can deform to another smoothly” [150]. If the target
surface is not genus zero (a sphere or plane) then searching for the optimal mapping can
result in a locally, rather than globally, optimal map. For these reasons there are numer-
ous variations of these schemes documented including consistent parametrizations where
the original mesh is not maintained [140], the direct manifold parameterization approach
to mapping a desired mesh definition onto the surface of an alternative undesirable mesh
[326], the globally optimal mapping of Li et al. [150], and automated wrapping where
the mapping is to and from an intermediate ‘auxiliary’ surface [258]. A comprehensive
overview of mesh parameterization methods, terminology, and applications is given by
Sheffer et al. [252], although they state that given the “amount of active research”, “no
survey on the topic can, realistically, be truly complete”. A review of surface deforma-
tion methods is also provided by Botsch and Sorkine [16]. Further refinements to these
methods continue to be published, e.g. [109, 65].

One could envisage editing only the surface mesh and then re-meshing the resulting
solid. This approach has been taken for bio-engineering problems where similar, but not
identical structures, such as bones are modelled. Sigal et al. [258] use surface morphing
techniques to reduce the cost associated with processing of each individual specimen scan.
In an engineering design context one could use a morphed surface mesh as a seed for the
uncertain component mesh. However, the process could remain expensive depending on
component mesh complexity and level of automation. Neither would it necessarily be
significantly less noise-free or reliable than re-meshing a morphed solid geometry from
scratch. Surface-based approaches could yet provide some benefits but are considered

beyond the scope of this thesis.
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2.11.2 Spatial deformation

Rather than editing vertices and manipulating neighbouring surface nodes, spatial ap-
proaches manipulate a body by ‘warping’ the surrounding space: free-form deformation
(FFD). They fall into one of four categories: 3-dimensional volume-based, 2-dimensional
surface-based, 1-dimensional curve-based, and zero-dimensional point-based deformation
schemes. The limiting factor in the application of these methods to the design and un-
certainty problem, as touched on earlier, is that, in most cases (excepting point-based
methods), controlling the precise displacement of points within the component mesh can

be “arduous in the extreme” [83].

Where such approaches are used for automated design, via DSO for example, it is only
the number of control points used that determines the computational effort, and not the
thousands of points defining the actual shape. The designer is free to select and position
such control points as they wish within the constraints of the algorithm used. However,

this design approach is limited:

e irrespective of the structure of the initial geometry, the deformed model has a

free-form structure (is defined by multiple points), and

e there is no direct conversion from known deformed feature points to control-point
location required to match the shape. This would require an iterative process or
optimization for which the selection of the most appropriate initial control point

locations may also be non-trivial.

In addition to these meshless morphing techniques there are the mesh-centred approaches
reviewed by Staten et al. [272] and Sieger et al. [257], some of which are referred to as mesh
warping, mesh moving, or mesh smoothing. A promising mesh-based method, the RBF
morph employs a RBF-based model of nodal displacements at a surface to predict nodal
displacements for non-surface nodes in a method which combines free-form deformation
(FFD) and mesh-based variational methods.

In appendix A.10 we discuss the fundamentals of FFD, which is used in this thesis, and
review the radial basis function (RBF) morph developed by de Boer et al. [47] and now
embedded in ANSYS Fluent as (rbf-morph)™, written by Biancolini [15].

Having presented some of the most fundamental and useful approaches for the practical
application of UP and RDO in the face of measured geometric uncertainty, we continue to
the next chapter where we examine the process of combining these methods. The UP and
RDO literature pertaining to geometric uncertainty is reviewed, showing the approaches

that are typically adopted, and areas where further research and development is needed.
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uncertainty

The automated process of RDO, or RBDO, as built up from a deterministic optimization
workflow by combining with the characterization of measured uncertainties and including
surrogate modelling, is encapsulated in the flowcharts, figures 3.1 to 3.5. Figure 3.1 shows
the deterministic optimization process, where performance is evaluated at various design
points using an analysis workflow based on parametric CAD and discretizing (meshing)
the geometry for analysis. The analysis is often costly and the process of optimization is,
therefore, often enhanced using a surrogate model of the design space (figure 3.2). If one
wishes to design for robustness or reliability then uncertainty propagation can be added
at each sample point in the design space, requiring sampling in the uncertain space also.
This process, with additional steps for characterizing measurements for UP, and also
enhanced using surrogate models is shown in figure 3.3. This integration of surrogate
models for both performance in the uncertain space and variability in the design space
the process can potentially be made practicable in terms of cost. Figures 3.4 and 3.5
illustrate the same processes with surrogate models used either for RDO and RBDO, or

UP, but not both, respectively.

The many tools that can be considered useful for enabling this process have been reviewed
and described in detail as appropriate in chapter 2. In this chapter we review how other
researchers have applied these, and other methods, and how they can be combined for

studies of uncertainty in engineering design.

Given that DSO, UP, and RDO all aim to ‘inform design decisions’, in preference to ‘giv-
ing answers’, we note that, where surrogate modelling is used, the designer is provided
with the capability to visualize the geometrical variation, the design or uncertain spaces
(although usually only in two dimensions concurrently), and understand the trade-offs,
making the proposed Kriging-based processes described in the following chapters partic-

ularly appealing.
73
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Uncertain parameter definition

Chapters 2.5 and 2.6 consider RDO and RBDO in the context of known uncertain inputs.
In reality, robust-optimal design choices are usually based on some educated guesses of
statistical inputs, rather than implementing an ‘uncertainty characterization’ or mod-
elling process (as shown in figures 3.5, 3.4, and 3.3), and assumed invariant across the
design space. In recent examples Fang et al. [66] study the effects of uniformly dis-
tributed values of material properties on truck cab fatigue life, Campobasso et al. [27]
assume that 13 design variables are “affected by non-correlated normally distributed un-
certainty” in the design of wind turbine rotors, Renault et al. [230] turn to experiments
to determine the extent of different component moduli variation and then select an al-
gorithm “which implicitly considers Gaussian distribution” for brake squeal uncertainty
propagation, and Dey et al. [56] assume that ply rotational uncertainties in the compos-
ite lay-up of a conical structure are uniformly distributed within a range. Such assumed
inputs enable design searches, but can lead to scepticism in the process if predicted per-
formance uncertainty appears to contradict anecdotal observations. If however, we have
some real data pertaining to some of the uncertainties, one could hypothesize that it is
possible to use these data to further inform and refine the robust design process. In the
context of geometric uncertainty and measurement data, this thesis seeks to implement
such uncertainty characterization, in an automated fashion, using ‘real’ data sets. This
hypothesis is made notwithstanding the fact that measurements are made on physical
manufactured components and as such are made at a single design point only and often

for inspection at non-random points in the manufacturing process.

Application of stochastic variations to existing analyses

Richardson et al. [232] implement multi-objective DSO, and multi-objective RDO (with
the NSGA-II non-dominated sorting algorithm), using an intrusive stochastic finite ele-
ment solver where the uncertainties are the loading and material properties. Jansen et al.
[120] apply the same approach to the nodal positions in a truss structure. Such methods
including the spectral stochastic finite element method (SFEM) [279, 273] are popular
as they can be easily implemented for simple FE models with an appropriate solver.
They internally implement polynomial chaos expansions (section 2.4), which are more
tenable when using modification of the internal code. Again, distributions are assumed,
but these are more complex models: the load is “expanded in the polynomial basis”, and
the Young’s Modulus varies across the parts as a Gaussian or log-normal random field,
[284, 44, 208|. Similar stochastic analysis is possible with stochastic computational fluid
mechanics (SCFM) [153]. If the analysis chain is not capable of intrusive approaches, or
their implementation overly complex, then changes cannot be implemented by making
modifications to values of cells in the embedded matrix calculations, but must be fed

into the inputs: the mesh definition and boundary conditions.
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There are few examples of papers dedicated to methods of implementing uncertain ge-
ometric changes in the literature. There are descriptions of ‘shape optimization’ where
shapes are modified in the design space. Typically, this implies defining shapes according
to design intent (parameterization) or taking a free-form approach using predetermined
lattice point locations (section 2.11). For example, Koshakji et al. [139] apply this ap-
proach to sailboat bulb and rudder hydrodynamic design, and Sieger et al. [256] three
shape deformation approaches to this end in automibile aerodynamic design. However,
many uncertainties, including geometric ones, are spatial variations, such that their
definition has high dimensionality. We, therefore, require a characterization of the un-
certainties that both

e reduces the space for practical UP and DSO, and

e can be implemented through non-intrusive means.

PCA, or KL expansion, is often applied to reduce the dimensionality of large random
fields, most often for intrusive UP, e.g. Richardson et al. [232]. We are beginning to
see the approach appearing for non-intrusive UP and RDO. For example, Schillings and
Schulz [247] and Liu et al. [157] use non-intrusive approaches for a RDO study and
a UP comparison, respectively, for an aerofoil geometry. Schillings and Schulz [247]
apply assumed truncated normal distributions centred on nominal values for uncertain
parameters such as Mach number and apply a random field based on KL expansions
(section 2.10) for a reduced-space set of perturbations of surface points for geometric
uncertainty applied to a relatively simple 2D model. They apply non-intrusive PCE
using adaptive sparse grids (section 2.4) for the UP, and compare the use of a number
of different robustness objective functions used in a single-objective robust optimization
using SQP (section 2.3).

When PCA is applied for DSO, there is a subtle difference in that the variable set is
reduced in size using data from performance assessment, rather than measurement. Diez
et al. [58], however, use this stochastic view of geometric variation to apply the KL
expansion in order to reduce the size of the design space in the DSO of a catamaran
hull-form using FFD, and Garzon and Darmofal [88] and Roy et al. [239] also use PCA

for dimension reduction in this way.

In all of the example cases the implementation of changes to the analyses to reflect the
uncertainties in the resulting variable sets are trivial given their existing construction.
Similar examples of dimension reduction and geometry manipulation in a non-intrusive
UP or RDO framework applied to large CAD models, meshes, or analysis chains have

not been found.
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Selecting the tools

The appropriate set of tools for the characterization and implementation of uncertain
geometry is therefore mainly dependent upon the available data, the existing design and

analysis process, and the goal of the study.

In the case of geometric inspection data, although it is plentiful in its existence, it is
often not integrated with design', and is only called for in cases of failure of components.
Indeed, if the analysis is not set up to make use of such data, then turning to the
investigation of parameters whose uncertainties can be easily implemented within the

existing analysis is sensible in the first instance.

In this thesis, we begin from the standpoint that we have some geometric inspection data
which we wish to integrate into existing design workflows, and that the goal is both UP,

and RDO. The choice of tools and workflow will depend upon the factors listed.

1. Data

(a) type:
i. none,
ii. parameters (design variables or other),
iii. point clouds (2D or 3D), or
iv. pixels or voxels (not addressed here),
(b) quantity:
i. small sample, or

ii. large sample (>1000).
2. Existing analysis (usually for a nominal design or deterministic DSO DoE)

(a) set-up:

i. full parametric automated workflow (parametric in design variables with
efficient re-meshing and/or morphing capability),

ii. full parametric automated workflow (parametric in both design variables
and uncertain parameters with efficient re-meshing and/or morphing ca-
pability),

iii. workflow with automated connectivity between processes and automated
meshing, but without a parametric CAD model, or

iv. workflow where meshing process is not automated or is prohibitively ex-

pensive,

(b) cost:

'Trainer et al. [293] recently highlighted the benefits and difficulties associated with CMM, CAD
and computer aided manufacturing (CAM) data exchange within the supply chain.
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i. very cheap (thousands of Monte Carlo samples (code runs) are practical),
ii. cheap (tens/hundreds of Monte Carlo samples are practical),
iii. expensive (Monte Carlo samples are impractical but hundreds of samples
are possible), or

iv. very expensive (only tens/hundreds of samples are practicable),

(c) type:
i. finite element or fluid mechanics analysis software containing intrusive

stochastic analysis code,
ii. FEA or CFD with no built-in stochastic analysis capability, or

iii. a workflow using multiple analysis software components with no intrusive

uncertainty propagation capability.

It is assumed that analyses are of sufficient fidelity that the analysis is capable of deter-

mining changes in performance due to uncertainties of the scale measured.

The ideal scenario for UP (without RDO or RBDO) would be a scenario where thou-
sands of components are produced, all of them measured, and all the ‘true’ geometries
implemented in analysis, providing a direct Monte Carlo sample (section A.5) of the
manufactured uncertainty space, and resulting in an unbiased estimate of the perfor-
mance distribution and statistical moments. This scenario simplifies the process to UP

only, as shown in figure 3.6.

In this case, the sample is random by necessity but the process by which the geometric
changes are implemented might be through a number of alternative methods. A very
cheap analysis code is required, or a large amount of time available, in order to run the
thousands of analyses, and this ideal precludes any design optimization as there is no
characterization of the geometry as a variation of anything but the original design. Figure
3.7 shows the options available for fitting the data (characterization) and implementing
changes to the analysis CAD or mesh. The green processes are performed using methods

in chapter 2. The grey processes require manual intervention.

If an automated process is required, then the use of parametric CAD is not possible if
the meshing process is not automated, or if the workflow is built with software where
mesh morphing is not integral. Re-meshing can also introduce additional noise. The
alternative mesh morphing route does not provide new design geometries for future use,
but avoids the potential noise and additional expense of re-meshing. It may also be the

only feasible approach if the meshing process is not automated.

In truth, neither analyses nor measuring processes are often very cheap so this ideal
case is not yet, to the author’s knowledge, a reality. The reality is one of limited data,
expensive analyses, and a desire to undertake full RDO. To do so, samples are required

from multi-dimensional design or uncertain spaces. The process remains impracticable if
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Figure 3.6: Ideal UP workflow (a direct Monte Carlo sample)

these hyperspaces are built from too many dimensions. Therefore, the characterization
process must include the fitting of the geometry itself, along with careful parameter
selection, and statistical model generation. If the data are simple parameters then this
process only requires statistical distribution fitting, but correlations must be considered.
There is little variation in the approaches taken for this, but independence is regularly
assumed. If, however, point cloud data are available this process can be performed in
a number of different ways, figure 3.8%2. This figure adds the variable reduction and
statistical modelling steps (in orange) that are not required for large data sets with

inexpensive analyses. It illustrates the possible approaches in the circumstances in which

2Tt is assumed that the CMM data samples are made randomly, which is likely if the measurements
have been made during routine inspection, given that inspection processes are often designed to ensure a
distribution of samples randomly over time and manufacturing equipment. One could imagine a scenario
of integrated inspection and design where the inspection programme was, at least in part, controlled by
robust design requirements.
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we are most interested, showing methods that use existing CMM data as an input to
uncertainty analysis and can be applied to any existing mesh-based analysis of suitable
fidelity.

Although the “accurate characterization and efficient computation of geometric uncer-
tainty remains an open problem” [126], there are some examples in the literature, from

a variety of different research communities.

e O’Hare [191] successfully registered a U.S. patent for data reduction in coordinate
measuring systems. The patent follows a similar workflow to that of figure 3.8
but maintains that segmentation is required prior to reduction and is non-specific
regarding either algorithm except to suggest that methods can include a “Gaussian
filter”, “extracting uniformly spaced points along specified cross-sectional profiles”,
and “best-fit” and “least-squares” operations. The patent by O’Hare [191] refers
to user selection of parameters and algorithms and points out that the benefit
is to “help reduce the data burden associated with scanning technologies”. Such
a document is suggestive of one of the difficulties faced by designers: that prior
processing within software associated with the CMM hardware can disguise, or

even remove, uncertainties in which the designer is interested.

e Joskowicz et al. [126] approaches the question of uncertainty from the perspective
of tolerances. They suggest the modelling of uncertainty in point locations as
“approximate uncertainty zones” using a “linear parametric model”. Given that
the uncertainties are based on tolerance bands, and are a further approximation
to these, this method appears to lack the statistical rigour of approaches using

geometric fitting with algebraic parametrizations.

e Garzon and Darmofal [88] create a model of aerofoil geometry by direct subtraction
of the measured points from equivalent points on the nominal shape. No reference
was made to a ‘registration’ of the points via least-squares fitting or otherwise.
They investigate the reduction of the variables by PCA (section 2.10) applied to
206 variables (103 points in two dimensions). The UP is applied using Monte Carlo
sampling (with 2000 trials taking one hour) and a number of performance outputs
assessed. They find that, although six parameters (modes) appear to represent
over 99% of the geometric variance, 15 modes are needed to model 99% of the
performance variance. A finding that the work in chapter 6 might go some way to

explaining.

e Ray et al. [227] represented measured surface deviations in turbine rear frame
struts using an interpolating RBF model in order to identify sensitive regions of
the geometry before employing FFD in sensitive regions across 12 alternative design

configurations.
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There are also researchers who are considering uncertainty from alternative perspectives,
outside of engineering design, who are also applying modelling approaches in the face of

uncertainty.

e Mangado et al. [161] provide a comprehensive review of uncertainty propagation
approaches, including characterization of the inputs, in biomedical engineering,
including a table to case studies within the literature and the types of characteri-
zation and models used. They point to the work of Baldwin et al. [9] who applies
PCA and mesh-morphing based on a small sample of scanned knee joints. The
work in this thesis could be applicable in this field, although measurement sample

sizes may be more limited.

e Chiles et al. [39], for example, use co-Kriging where the covariance is identified from
the structural data to model geological potential fields and quantify the uncertainty
in the resulting models. Such uncertainty is analogous to the measurement error

in our problem.

e Poniatowska [214] models free-form surfaces based on CMM data in order to iden-
tify and remove systematic machining errors (the machining pattern model, MPM).
The fitting routine presented uses NURBS to fit the surfaces and works on the
premise that the model “should not contain any effects of random phenomena...,
while the model residuals should not include the systematic component”. The it-
erative routine tests for normality of the residuals using the Kolmogorov-Smirnov
(KS) statistical test, and uses Moran’s I statistic [64] to ensure spatial randomness.
This is essentially a constrained local downhill search. Poniatowska [214]| assumes

that the CMM measurement error is not significant.

Figure 3.9 splits ‘characterization’ and ‘implementation’ into generic procedures, and
shows an overview of the methods that other researchers, including those discussed above,
have applied to problems with a number of differing data types, analysis features, and

overall goals.
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Figure 3.9: Examples of non-intrusive methods used to characterize measured
geometry and to apply it to existing analysis

3Details of methods used within proprietary software packages, including Zeiss ALYPSO[324] and
Mitutoyo COSMOS[179] for example, are not publicly available. However, a paper written to assess
software accuracy by [301] stated that “all” of the packages tested in their work “were based on the
Gaussian least-squares method”. Individual companies and users can also implement their own propri-
etary processes using coding interfaces within some software.

“Rozza and Manzoni [240] refers to mappings on sub-domains which can be built “by hand” for
“geometrical reduction”.

SRoss and Cheah [238] assess the benefits of fitting distributions to data sets in order to improve
UP estimates of product life-cycles. They conclude that use of data provides “opportunities to better
characterize data and increase confidence in the results”, when compared with the use of assumed
“default” distributions. However, no examples of similar studies have been found applied to engineering
design problems.

5Tootkaboni et al. [291] apply PCE to propagate uncertainties in design variables in a topology
optimization.

"Rajabi [222] compare the results of PCE and surrogate based propagation in the prediction of
behaviour of groundwater systems.
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In the remaining chapters we present some inspection data sets representing ‘real’ vari-
ation in geometry and the means by which the methods in chapter 2 have been applied
using the logic shown in figure 3.8 and an appropriate means of implementation as shown

in figure 3.7.

8Gul et al. [96] use emulators to model local regions (the uncertain space to which we refer in this
thesis) of the response in order to predict uncertainties in machining parameters due to variation in
tool geometry and material properties. They refer to the use of these uncertain space models as “in-situ
emulators”.

9Examples in the literature for the use of FFD for measured uncertain geometry have not been
found. However, the approach is often applied to RDO (sections 2.11 and 2.5).

0Examples in the literature for the use of RBF morphing for measured uncertain geometry have not
been found but Petrone et al. [205] apply the ANSYS RBF morph to the robust design of a Formula 1
front wing in the face of uncertainty in the steering and tyre geometries.






Chapter 4

Uncertainty characterization using

existing parameters

In this chapter, an approach has been developed for applying coordinate measuring ma-
chine point cloud data for firtree and dovetail slot flanks (figure 4.1) in an uncertainty
framework. Data analysis and fitting have been applied to a true data set, resulting in a
statistical description of the flank angle (an existing design parameter): the character-
ization step highlighted in figure 1.4 and shown in greater detail in figures throughout
chapter 3. Given these characterized parameters, and an existing analysis code, UP and
DSO, as described in sections 2.4 and 2.5, could then be applied to analysis chains to

produce realistic predictions of uncertainty in performance (here, expected disc life).

91
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Turbine blade to Fan blade to disc
dovetail-type

attachment

disc firtree-type
attachment

Figure 4.1: Images illustrating firtree and dovetail type attachments to turbine
and fan discs, images from Dailey, G. M. (Rolls-Royce plc., Derby, GB) [45] and
Ventura and Klinetob [299]

4.1 Problem description: firtree flank angle uncertainty

Whether in the fan or turbine, the attachment of each of the blades to the supporting
disc is critical. Single blade loss is not desirable but can be contained, however disc
failure could be catastrophic to an engine or aircraft as a whole. Discs are therefore
inspected and replaced periodically during service. Increasing both their total life prior
to replacement and the allowable period between inspections would be hugely beneficial.
In addition, both blades and discs are expensive to produce; a reduction of scrappage
and rework could result in significant savings. The geometric shape of the joint, typically
a firtree or dovetail (figure 4.1), is critical to its performance. These designs rely on the
contact between angled flanks to restrain the blades and transfer load from centrifugal
forces!. The notches are radiused to minimize stress concentrations where failure ini-
tialization usually occurs. However, manufacturing processes and service conditions at

elevated temperatures may result in uncertainty in the disc slot and blade joint shapes

affecting component performance in terms of expected life.

A set of CMM data for broached and shot peened firtree-shaped slots in high pressure
turbine discs was provided by Rolls-Royce plc. It is suggested by experienced designers,
and demonstrated in a study by Deshpande et al. 55|, that the shape of the firtree

pressure flanks, and in particular their angles, is critical to disc performance in terms of

!The load on one 10cm long turbine blade attachment can exceed 18 tonnes; the weight of a fully
laden double decker bus, in temperatures of up to 1600°C. The much larger fan blade, although moving
more slowly than the turbine blade, still causes large centrifugal loads on the attachment but over a
much larger area and at the greatly reduced temperatures of the ambient air.
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expected life. Appendix B describes the means by which life is predicted, and the critical

performance parameter, the peak principal notch stress.

68 slots have been measured over twelve discs with a touch-based Mitutoyo CMM with
Renishaw SP25M probing system, figure 1.5, chapter 1. Each slot has four measurement
sets over the cross-sectional shape (front and rear, left and right). Each data set is a
point cloud given in the Cartesian coordinate frame with origin at the centre of the disc
and each slot at 90 degrees to vertical. There are three pressure flanks per data set (a
total of 408 flanks measured twice each (front and rear)). The CMM probe uses a 0.5
mm diameter ruby stylus and the scanning increment is set in the region of 20 to 30 pum.
The resolution for this probing system is claimed to be less than 0.1 ym by Renishaw
[231]. An illustration of the point cloud for a full slot is shown in figure 1.6, chapter 1.
A single data set (of artificially generated variations to dummy geometry) is shown in
figure 4.2.

120 T T
—Nominal flank
110 - - Measurement point cloud
I N © Nominal tangency points
’ ) X Actual tangency points (unknown for real data) |

100 -

90 -

80 -

70

60

60 80 100 120 140 160 180 200 220
X

Figure 4.2: Example disc firtree slot measurement data set (artificially generated
data and geometry) for a single pressure flank with nominal geometry shown for
comparison

Point cloud fitting routines typically assume random error in the measurements and, to
be of any use in assessing performance variance, the error must be sufficiently small com-
pared with form variation. A number of authors, such as Weckenmann et al. [306] and
Dowling et al. [61], discuss the range of potential errors through measurement. Erkan
et al. [63] reviews errors introduced through CMM tip radius correction software which,
although potentially significant, are shown to be in the order of 1.0 x 10~%mm for Mitu-
toyo software using a similar probe radius and scanning increment. We can surmise from
the literature that tight process and environmental controls and calibration, combined
with highly developed hardware and software, make these assumptions reasonable. Here,

we aim to define a fitting routine for pressure flank data that is:

e efficient in its implementation,
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e sufficiently accurate to capture the underlying geometric uncertainty,

e fits appropriate parameters.

4.2 Characterization of uncertain parameters

A standard approach to this type of problem is to first select the type of analytical
definitions for the curve segments, determine which points belong to which curve segment,

and then apply a fitting process to the individual segments, figure 4.3.

Measurement data
set (point cloud)

=1

Registration to
locate line segment
relative to nominal

v

Segmentation to
find segment end
data points

Linear least-squares
regression or orthogonal
regression

Single fitted
straight-line curve
segment angle

A\ 4

Angle or rotation
from nominal

”

Figure 4.3: Workflow: a typical fitting process to determine the angle of a
straight-line curve segment

By inspection, the data (figure 4.2) appears to represent a straight-line pressure flank
with tangent arcs at either end, in line with the nominal design intent (a straight line
‘flank’ with a tangent arc at either end). The nominal design is also shown in figure 4.4.

There are additional features present beyond the contact flanks and their tangent arcs.
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These additional arcs and lines are included in the measurement data, however in this

study we assess the effects of variation in contact flank, and the flank angle in particular.

Segmentation with common tangents is notoriously difficult and inaccurate, or even
impossible (section 2.7.2). In addition, intuitively, if any points from the arcs are included
through inaccurate segmentation then their positions could have a disproportionate effect
on the line angle prediction and we would be relying on the segmentation to determine
the line length. Therefore, in this case the arc-line-arc segment (A-B-C-D in figure 4.4),
assuming a tangency constraint at both line endpoints, is fitted in a single process akin
to orthogonal least squares regression (section A.7.2): the minimization of a root mean
squared error (RMSE). In this case, the combined arc-line-arc segment is defined in two
dimensions by the arc centres ((z1,y1) and (x2,y2)) and corresponding radii (r; and
r9), figure 4.4 (6 parameters). The parameter of interest: flank angle (a) can then be
calculated from these values geometrically, along with additional parameters of interest
such as flank length (7).

This six-variable optimization is performed using an evolutionary particle swarm based
global-local search algorithm (described in section A.4.2, and by Toal et al. [289] for
kriging hyperparameter tuning).

Unfortunately, the segmentation problem is then only deflected to the ends of the arcs,
instead of the ends of the straight line. The questions, “how many of the data points,

and which ones, should be included to minimize fitting error?” needs to be answered.

One wishes to include the maximum number of relevant points whilst ensuring that points
from the next tangential geometric segment boundary are not included. We use a single
data set to test the RMSE fitting approach using a nominal geometry with prescribed
orthogonal random perturbation of the order of the observed variation. The number of
data points included for fitting is plotted against the resulting angle discrepancy from
nominal in figure 4.5. The ‘true’ flank angle variation, in this case is known to be zero.
Figure 4.5 illustrates that the fitted flank angle is most accurate (there is no angle change
introduced by the fitting process), not when only points expected to be within the region
of the nominal flank itself are measured, but when at least 10 points within the tangent
arcs are also included (circles, rather than crosses), i.e. direct regression of the segmented
straight-line curve section introduces error (crosses). Intuitively, as shown in this test,
extending too far (into additional geometric features) results in the accuracy of fit being
further compromised (‘plus’ markers). Of course, if we can be sure exactly which points

belong to which segment then the result is also correct (the star).

It is not possible to simply define & and y coordinate values of the extents based on
the nominal design. This is because the true measurements can deviate considerably
from the nominal position by an unknown magnitude or direction. Accurate registration
(section 2.7.2) of the curve would first be required; again notoriously difficult when curve

or surface segments are tangent.
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Figure 4.4: Firtree slot pressure flank cross-sectional definition, showing defining
parameters, |[derived parameters|, and data point regions

In conclusion, the plot, figure 4.5, shows that, for curves joined at tangents, whatever the
registration and segmentation process, error will be introduced during the RMS fitting
process, unless additional segments either side of the segment of interest are included
in the fitting process. In addition, further points beyond these segments that are not
included in the fitted definition, must not be included.

Here, we therefore propose extending the global optimization to include the end point
locations (to define the extents of the data set) segmentation and fitting can be combined,
and the requirement for registration removed. By including arc segments either end of

the flank line of interest during the fitting process, greater accuracy can be guaranteed.

The proposed method is to increase the number of variables in the optimization to eight.
The extents of the arc-line-arc segment are defined as two distances along the curve
from the first point (at 1 unit) to the last point at n units, bounded by the nominal
extents of the straight line plus a tolerance. This approach increases the expense of the
optimization but is designed to ensure that the variance in fitted parameters, particularly

flank angle, is as small as possible. The global optimization routine should be able to
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Figure 4.5: Number of data points used for fit vs. predicted angle for a single
pressure flank, illustrating variation of fitted angle with point selection

ensure convergence in the optimization and deal more easily with the increase in variables

than local routines. Figure 4.6 shows the proposed workflow.

The workflow performs:

e global evolutionary optimization using a particle swarm based optimizer, section
A.4.2, and uses the

e orthogonal root mean squared error calculation (section A.7.2) as the objective

function.

This approach is tested on an artificially generated data set created by displacing and

perturbing points on an example nominal curve segment, figure 4.7.

Using an artificial point cloud based on the true geometry, an offset of 0.1 mm is intro-
duced in both the xz and y directions. In this case, the proposed fitting routine results in
a predicted angle that differs from nominal by 0.0063 degrees. This process is repeated
20 times with an offset randomly drawn from a uniform distribution in the interval
[—0.13,0.13] in both z and y. The mean predicted error over the 20 fits is 0.0024°. The

convergence of the particle swarm optimization (PSO) algorithm for seven of the fits is
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Figure 4.6: Workflow: the combined segmentation and fitting process for a firtree
or dovetail contact flank

given, figure 4.8. Convergence is reached for all 20 data sets well within 3000 evaluations
(60 generations of population size 50), therefore this number of generations is chosen for

all further fits in order to minimize expense.

To compare the proposed eight-variable approach with the typical registration-segmentation
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Figure 4.7: Scatter plot showing an artificially generated data set with normally
distributed perturbations fitted using an eight-variable optimization procedure
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Figure 4.8: Convergence plots of the particle swarm optimization used to fit
pressure flank angle using eight variables (convergence shown for seven fits out
of 20 for clarity)

type approach (figure 4.3), 120 sets of points are generated with a random angular varia-
tion distributed N(0, 0.5%) degrees and a random translation distributed N(0,0.05?) mm.

Five alternative approaches are compared:

(i) orthogonal regression fitting of the line only based using region between designed

line end points,

(ii) orthogonal regression fitting of the line and arcs using the designed arc end points

(arcs only fitted to locate and segment the straight line segment),

(iii) orthogonal regression of the designed line only for registration (data re-centred on

design line), followed by fitting as (ii),

(iv) orthogonal regression of the designed line only for registration (data re-centred on

design line), followed by orthogonal regression fitting using half of the points within

the designed arcs, and

(v) the proposed combined eight-variable optimization.

Figure 4.9 plots the actual (known) angle variation against the fitted angle using four

typical approaches. Figure 4.10 shows the same plot for the proposed optimization

approach. Figure 4.11 plots the variation in straight line flank angle output from each

experiment, compared with the histogram in the known error of the fitted values. The

same plot for the proposed method is given in figure 4.12.
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Figure 4.9: Input variation in angle vs. fitted variation in angle for 120 artificially
generated data sets with randomly selected input flank angle (0.0 degrees =
nominal)

The errors from fitting the known input distribution to the output distribution, are
tabulated in table 4.1. There is closest agreement between the input angle and fitted angle
from the combined approach. A statistical Kolmogorov-Smirnov (KS) test (appendix
A.8) confirms the null hypothesis that ‘the input and output angles are randomly drawn
from the same distributions’ cannot be rejected for any of the fits. However, the ks test
statistic shows closest agreement from the proposed method (iv). The error is in the

order of 3% of the measured angular variation for the proposed approach.

Table 4.1: Fitting errors and ks-test p-value and statistic values for straight line
angle fits for point cloud measurements of a straight line with tangential arcs,
using a selection of orthogonal distance based approaches

Type of fit
G G G W) ()
Maximum error | 0.1384 0.0560 0.5374 0.2710 0.0517
Mean error | 0.0206 0.0156 0.0177 0.0018 0.0007
Standard deviation of error | 0.0451 0.0160 0.0560 0.0327 0.0178
ks-test p-value | 0.998  0.999 0.999 0.999  0.999
ks test statistic | 0.050  0.042 0.042 0.033  0.025
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Figure 4.12: Histogram of flank angle showing input angle vs. error in fitting
for that input set, combined eight-variable optimization based fitting (v)

This combined registration-segmentation-fitting and optimization based approach has
also been applied to a data set supplied by Rolls Royce plc.?. Fitted parameters can
then either be used directly to reconstruct and analyse individual manufactured disc
slots, or the set as a whole can be statistically interrogated and distributions drawn for
the parameters of interest. For these data, in order to examine the distribution of flank
angles either the clockwise rotation from nominal or the measured angle from nominal
slot centreline could be considered. Histograms of both for all measured flanks are given,

figure 4.13. The sample statistical moments are also displayed for comparison, table 4.23.

Table 4.2: Sample statistical moments and range of fitted angles and rotations
of pressure flanks for full data set (normalized for confidentiality)

Rotation about firtree axis Rotation about contact flank
Mean -0.0150 0.0076
Standard deviation 0.1081 0.1089
Skewness -0.3568 0.1543
Kurtosis 3.9657 4.0879
Range 0.8618 0.8352

A normal probability plot for each, figure 4.14, confirms that both sets of data closely
follow a normal distribution close to the mean. However, we observe a deviation in
the tails. There is a slightly higher chance of an increase in angle over nominal and a
slightly lower chance of a decrease in angle than would be expected with a truly normal

distribution (confirmed by a positive skewness, table 4.2). A greater chance of negative

2Details of the raw data are confidential but normalized results are discussed in this chapter.
3Skewness and kurtosis are corrected for bias [164].
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Figure 4.14: Probability plots of fitted rotation for full data set (normalized for
confidentiality)

rotation and lower chance of positive rotation are also shown (confirmed by a negative
skewness, table 4.2). Both distributions exhibit a peakiness, or tendency to have more
outliers, greater than that of a normal distribution, i.e. greater than three. We note,
therefore, that an input distribution for uncertainty propagation of a normal nature could

be overly optimistic in the tails. A t-distribution is heavier in the tails, and is shown to

be more appropriate in figure 4.14.

A statistical z-test is performed on the data with the null hypothesis that, assuming
a normal distribution with standard deviation equal to the sample standard deviation,
the data comes from a distribution with mean equal to the sample mean. For both
rotation and angle, it is confirmed that the 95% confidence interval for the mean contains
the sample mean (the hypothesis cannot be rejected at the 5% level). However, if we
hypothesize that the data comes from a distribution with mean equal to the nominal
then the hypothesis can be rejected at the 5% level; we observe a shift from the nominal
design. A KS test is also performed to test the hypothesis that the sample has been
drawn from a fitted t-distribution. This hypothesis cannot be rejected at the 5% level

for either rotation or angle.
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4.3 Implementation of analysis with fitted parameters

The distributions (fitted uncertainties) that have been ascertained could now be applied
in a robust framework as demonstrated in chapter 2 through uncertainty propagation
and robust design of a dovetail joint. Geometric changes in an existing analysis workflow
can simply be made by implementing changes to the existing parameters of the design
geometry prior to any analysis mesh being constructed. Alternatively, geometry manip-
ulation can be made to a meshed geometry. Such approaches are investigated further in
chapters 5 and 6, and applied using linked CAD and analysis software in sections 2.3,
2.4, and 2.5.

4.4 Contributions

It has been shown that direct regression of segmented curves bounded by tangential joins
to surrounding segments, can yield inaccurate values for the measurand: the straight line
angle in this example case. A method by which tangency constraints can be combined
with a traditional least squares approach, and enhanced by simultaneous fitting of the
adjacent curves, has been implemented. The method uses additional location variables
alongside a particle swarm based global optimization to eliminate the need for an addi-
tional registration and segmentation process. With the use of an artificially generated
set of curve segment data sets, it is demonstrated that error is reduced with the use
of the proposed approach. The method has also been applied to a pressure flank angle

fitting problem using ‘real’ data sets.

The approach could be taken for any parameterized composite curve or surface point
cloud measurement set for individual features where the constraint between segments is
known, and is of particular use if the segments are tangential. If, however, it is thought
that the tangency constraint may not be met then further investigation would be needed,
and perhaps a search for step changes in orthogonal error during the fitting process would
highlight lack of tangency. We refrain from investigating such a situation here given that

our true data sets do exhibit tangency.

This chapter is an exemplar of good practice for obtaining accurate distributions of design
parameters given measured uncertainty from manufacture, and it has highlighted pitfalls

associated with segmenting point clouds in this context.



Chapter 5

Implemention of geometric

uncertainty on an existing mesh

When routine measurements are not complex, but are measurements of existing design
parameters, the implementation step in figure 1.4 can be a simple change to geome-
try models. This step appears as “CAD model construction and FEA analysis” in the
DSO workflow, figure 2.10, or “performance analysis”, figure 2.20, and can be applied by
changing the original design model in the CAD tool and then re-meshing for each sample
analysis or iteration. In some cases, however, this is either unsuitable, or not possible,

because:

e a fully parametric workflow for DSO does not yet exist and only UP, not RDO is

considered appropriate,

e small uncertainties mean that computational noise! introduced by re-meshing could

mask effects of interest, or

e re-meshing for each run is prohibitively expensive.

In many cases expense is a driver, however lengthy the meshing process, because the cost
of UP or RDO is inevitably high. The case study presented here is, in fact, subject to

all three constraints.

Here, we present a new approach for implementing geometric changes in hole diameters
directly within a CFD mesh, rather than through the CAD model; “multiple samples
in uncertain space”, figure 2.20. As with many performance predictions, the existing
mesh has been constructed in a largely manual way and its modification is undesirable

because of the many loading conditions for which multiple analyses have been performed

!Computer simulations can contain noise, or non-systematic error, often considered Gaussian in
distribution, and attributed to numerical rounding and discretization.

105
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over months and years. Understanding the effects of uncertainty using the existing mesh
is preferable in this case, with the benefit of “isotopological meshes and one to one
correspondences” between analysis samples [161]. In addition, the meshing tool used

does not include any proprietary morphing facility linked to the geometry definition.

Here, a FFD-based workflow is set up, with further developments to this in order to deal
with some complexities in surface shape. Although not all available data are in the form
of complex point clouds, all analysis meshes are constructed as such, and maintaining
the surface integrity and quality of the meshes is assumed paramount. The proposed

approach ensures that this is the case.

5.1 Problem description: complex meshed holes

The combustor performance parameters of interest in the analysis are the peak near
wall exit temperatures, not because they directly affect the combustor components, but
because the expected variation in this temperature is a critical input parameter for the
design and analysis of downstream components: the nozzle guide vanes (NGVs) and the
turbine. Without an accurate statistical understanding of uncertainties such as these,

pessimistic worst-case scenarios can result in over-design and under-performance.

The input temperature profile (traverse) needed for turbine nozzle guide vane (NGV) and
blade thermo-mechanical design is uncertain. It is usually based upon the output radial
temperature distribution factor (RTDF) profile? and near-wall temperature distribution
factor (TDF)? predicted by the combustor computational fluid dynamics (CFD) analysis
(using Reynolds-averaged Navier-Stokes equations (RANS)), or by experiment. Limited
numbers of experiment are sometimes possible, but there is often a significant difference
observed between experiment and analysis. RTDF (averaged) temperatures match well
when compared with the sector TDF, which shows large discrepancies (over-prediction
of TDF range) close to the walls (figures 5.1, 5.2, and 5.3)%. It is this range that is
critical for the NGVs and turbine blades, with current analyses potentially resulting in

over-design or an inability to meet design requirements.

It has been suggested that geometric variation in port and cooling holes due to manufac-
turing uncertainty may be responsible for some of the near wall variations. In addition,

a process for routinely investigating the effects of changes in measured hole diameters

2

T - Tav
RTDF = —— 5.1
T (5.1)
where T is the temperature averaged over the circumference, T,, is the area averaged temperature

(nominal = 1449.3 K), and T, is the inlet temperature (751.0 K).
3

T - Tav
Ta'u - T’Ln '
where T is the temperature at points around the circumference.
4These figures are illustrative purposes only. The results that they represent are confidential.

TDF = (5.2)
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Figure 5.1: TDF contour map throughout analysis sector exit section, as pro-
vided by Rolls-Royce plc., red = maximum, blue = minimum temperature (scale
removed for confidentiality)

RANS analysis

® CFD
® Experiment

RTDF (%)

Radius

Figure 5.2: Representative sketch of RTDF (%) averaged over area, based on
data provided by Rolls-Royce plc.

would be of use for concession analysis. The existing analysis workflow is given in figure

5.4, showing where geometric uncertainty can be included if mesh manipulation is used.

Inspection processes during manufacture provide data pertaining to the diameters of

both the cooling holes and ports.

Cooling hole data

The measurement data for cooling hole diameters available for this study consist of a
set, of 1580 measured holes of 10 different nominal diameters, distributed through 12
different combustor liners. The holes are distributed around the liner in rows in a single
sector of a liner (figure 5.5). Four holes are measured per row around the full liner at
90°, 180°, 270°, and 360°, with an additional two holes measured in the igniter sectors

in the outer wall, bay 1.
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RANS analysis

® CFD
#® Experiment

TDF (%)

Angle

Figure 5.3: Representative sketch of TDF (%) at 5.92% of the radial extent,
based on data provided by Rolls-Royce plc.

Design parameters

i

Combustor design
geometry (NX)

i

Fluid volume (NX)

Mesh fluid volume (ICEM) Geometric un-
certainty models
RANS analysis (PRECISE) —{Boundary Conditions}

|

Post-processing (Paraview)

Figure 5.4: Flowchart showing the analysis chain for the performance assessment
(flow characteristics including temperature) of the combustion system with the
inclusion of geometric uncertainty at the mesh level

Measurements are taken using precision pins of discrete diameters. The holes are manu-
factured using laser drilling. It is understood that the laser calibration can drift, requiring
periodic recalibration. The order that the holes are drilled is unknown but one would
expect that the cutter works around the liner in rows. It is noted that some of the
measured holes do not appear in the analysis sector, and that the analysis sector is half

of one tile wide but that the tiles are offset from one another so do not align with the
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Outer wall — bay 2

Outer wall - bay 1 Outer wall — bay 3

\

Outer wall — bay 4

Cooling holes in rows on
combustor liner Ports through
combustor liner

Inner wall —bay 1
Inner wall — bay 3
Inner wall — bay 2 Inner wall — bay 4

Figure 5.5: Sector of the combustor liners showing illustrative layout of cooling
holes and ports in rows on liner bays

sector.

Port hole data

The ports are holes in the combustor walls and liners, sometimes referred to as dilution
holes. Figure 5.6 shows an example of a port hole for the combustor of interest, but the
surface shape varies depending on the combustor design. There are a limited number of
measurements available for the port geometry, but this is an uncertainty that is expected
to have a significant effect on temperature predictions. There are four types of tile: outer
primary (OP), inner primary (IP), outer intermediate (OI), and inner intermediate (II).
There are 40 measurements of port diameter for the OP, IP, and II ports and 44 for the

OI tiles (10 or 11 measurements on each of 4 tiles).

Analysis of suitable DOEs determined by characterization of the diameter measurements
can be used to provide useful insight into the expected near wall exit temperature vari-
ation due to cooling hole and port diameter uncertainty. It is hypothesised that these
DOEs can be most readily facilitated through the implementation of FFD-based morph-
ing of the CFD mesh.
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Through port centreline fore/aft: . @ 90"

Figure 5.6: Port hole shape

5.2 Hole diameter uncertainty characterization

There is no curve or surface fitting possible with the available data since measurement is
by offering up a range of pins to gauge diameter. Therefore, it must be assumed that the
holes remain circular and the characterization of the uncertainty is wholly a statistical
review to determine the uncertain parameters and their applicable probability density

functions, i.e. “Fit statistical models of parameters and correlations” in figure 3.8.

Cooling hole uncertainty characterization

A review has been made of the cooling hole measurements to ascertain whether the hole
diameters fit any known statistical distributions and whether there are any correlations
in hole diameters of the same row or tile, for example. Assessments of the data using
the Jarque-Bera and Lilliefors tests conclude that the null hypothesis that the change
in diameter (dd) for the cooling holes is normally distributed can be rejected at the 5%
level. The sample data set is compared with a normal distribution in the plots shown
(figure 5.7). Neither a discrete distribution, such as the Poisson, or an extreme value
distribution were reasonable fits to the data either. Therefore, the diameter variation
cannot be considered to be a single random parameter from which diameter changes are
drawn for uncertainty assessment. There are more than 100 cooling holes in an analysis
sector so it is essential that the holes be grouped in some way in order to facilitate

uncertainty studies.

It is likely that any slippage in hole diameter cutting due to changes in the laser cutting

system over time will affect holes of the same diameter in the same row if they are cut as
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Figure 5.7: Cooling hole diameter data to normal distribution comparison (di-
ameters normalized for confidentiality)

a batch. By plotting (for all 12 engines) the diameters of the holes in one sector against
the diameters of nominally equal holes in the other sectors, the correlations between them
can be assessed. There are 35 sets of holes which are nominally the same diameter and
row. The plots are shown here for three example sets, and the corresponding correlation
coefficients shown (figure 5.8). In general, the correlations are high; we see that, for
example, if the diameter (d) is high in set 1 in the 90°sector, then it will also be high in

all the other sectors of that engine.

In fact, if we assess all of the holes in each of the rows against each other, then we can
also conclude that, in general, the correlation is high, excepting a couple of outlying
points. Correlations are shown here for row ACR (set 4) with two outlying points (found

by observation) removed, figure 5.9. Each axis is a set of holes of the same diameter.

Other assessments were made to:
e check for patterns through the expected order of manufacture but, given only four

measurements per row, only the most distinct of trends would be discernible: none

were observed,

e look for distributions according to hole nominal diameter: none were observed, and
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Correlation matrix (Set 1) Correlation matrix (Set 4)
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Ignitor sector 2
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(a) Set 1 of 35 (b) Set 4 of 35

Correlation matrix (Set 35)
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Figure 5.8: Correlation matrix plot for cooling holes, same nominal size and row
(values on axes removed for confidentiality)
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Figure 5.9: Correlation matrix plot for cooling holes in the same row (values on
axes removed for confidentiality)
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e search for correlations between holes on the same tile: none were observed.

Given the strong correlation between the hole diameter variability in individual rows, the
uncertainty study requires that the sensitivity to variability in hole diameter throughout
the rows (the distribution of the residuals, figure 5.10) be considered first, and separately
to the across-row variation. To assess the effects of both uncertainties at the current
nominal design, multiple runs of the CFD analysis are required where hole diameters are

modified for each run.

Port hole uncertainty characterization

Considering each tile type individually, the distribution of their measured port diameters
has been compared with a normal distribution (figure 5.11). OP, OI, and II ports are
closest to a normal distribution and, depending on which statistical test is used it is
possible to conclude that a hypothesis that the samples are drawn from a normal distri-
bution cannot be rejected at the 5% level. It is not possible to reach the same conclusion,

however, for the IP ports.

An assessment of correlations suggests that tiles on which the nominal diameters are
largest (OI and II), there appears to be a significant correlation between the tiles mea-
sured, i.e. if a hole is large on one OI tile then the same hole is likely to be large on
another OI tile. However, the quantity of data is very small. In this case, evaluation
of output temperatures should be made using the actual measurement points. This will
provide an initial assessment, and demonstrate the potential of the proposed methodol-
ogy, but for statistically rigorous review additional measurement data would be required

in order to include any correlations and to allow accurately fitted distributions.
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Figure 5.11: Port diameter measurement data normal probability plots and
cumulative distribution (cdf) plots for comparison with a normal distribution
(data normalized for confidentiality)

5.3 Implementation of generic hole diameter change in a

fluid volume mesh

In order to implement changes in cooling hole and port diameters, whilst maintaining
the integrity and topology of the CFD mesh on a local scale, a mesh morphing based

approach is proposed:

1. determine a grid (lattice) of control points within which mesh vertices (nodes) can

move and outside of which they remain fixed, then

2. move the grid points within the lattice boundary, using a free-form deformation

(FFD) algorithm to position the remaining nodes within the lattice.

The most commonly documented and readily available FFD algorithm is that of Seder-
berg [250, 188|, which uses Bernstein polynomials to define the shape of the deformation
within the bounds of a cuboid lattice with lattice points that are equally spaced along

the edges, section 2.11.

Hole through a flat plate

First, a generic hole through a flat plate, within a cuboid lattice is considered. The
mesh volume for such a problem can be visualized as shown in figure 5.12. The diameter

changes to be made require that:

e the positions of the points on the extremities of the cuboid containing this mesh

region remain fixed,

e the hole remains cylindrical,
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Figure 5.12: Illustration of region of mesh extents requiring morphing through
a hole (square; cuboid control lattice)

e clements maintain their quality (do not become too skewed for example), and

e there is a smooth transition in element size throughout the region and with the

fixed elements surrounding it.

With the Sederberg algorithm all of the control points influence all points in the mesh so
that it is not possible to meet all these constraints. Continuity and mesh size smoothness
can be maintained by ensuring there are enough carefully positioned control points but
the corner control points exhibit a ‘pull’ (influence) on the mesh that causes circularity
of the hole to be lost. This is not a problem outside of the hole, but could result in sliver
elements at the lattice boundary. The difficulty is illustrated by using the Sederberg
algorithm to deform a cylinder, figure 5.13.

Given the above limitations of the FFD technique for maintaining shape integrity, a
modification of the readily available FFD code is required. It might be possible to modify
the FFD to utilize alternative curve formulations such as those described by S6bester and
Forrester [264]. However a generic circular hole, where circularity is maintained (or even
where not), requires only modifications to nodal positions radially. As such, the problem
could be greatly simplified by converting the vertex coordinates to a polar coordinate
system. This then allows the deformation to be conducted in (7, z)-space, maintaining

circularity and fixing 6.

The proposed approach for editing the diameter of a generalized circular hole through a
flat surface is described in the flowchart of figure 5.14. In this polar case, the extents of
the lattice form a dumbbell shape (figure 5.15).

By following the workflow described in figure 5.14 through, the FFD process can be
illustrated clearly in the two polar dimensions. Consider region 1 of figure 5.15b: if

the points are transformed to polar coordinates (r,0,z), € is ignored as it will be kept
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Figure 5.13: Free-form deformation (FFD) of a cylinder using 16 control points

constant, and r and z are normalized such that their range is from 0 to 1, then the
nodes will lie on a [0,1] grid of points. For this central region 1 (the hole), a 2 x 2
lattice is constructed around the points and the grid is morphed by moving the control
points at » = 1 according to the proposed change in radius. This is shown using a
regular grid of points in figure 5.16. The increase in cell size in the r-direction is spread
evenly throughout r. The remaining regions are also normalized such that the nodal
points are distributed over a 1 x 1 (r, z) square. Only the inner-most lattice points are
moved, ensuring that nodal positions at the extremities are maintained (C° continuity),
and there are four control points in the z-direction to ensure tangency at the vertical

boundaries (C! continuity) when using the (figure 5.17).

In the r-direction there is a step change in element size at the region boundaries. To
maintain continuity in this respect (C? continuity), additional grid points are required. In
order to determine the positions to which any additional control points need be moved, we
turn to the Bézier spline, section A.7.3. For a smooth connection between two successive

Bézier curves defined by n + 1 control points p and m + 1 control points q, the position



Chapter 5 Implemention of geometric uncertainty in existing meshes

117

Select set of nodes from full
mesh which lie within a cylin-
drical region containing the
circular hole (figure 5.15)

1

Split into morphing regions
1 to 5, each on [0,1] in (r, 2)

Region 1 Regions 2 & 4 Regions 3 & 5
Create a 2 x 2 FFD Use 2 x 4 FFD Use 4 x 4 FFD
grid and morph grids and morph grids and morph
by moving all by moving (1,0), by moving (0, 0),
r = 1 grid points (1, %) grid points (0, %), (%,0),
1 (3,3) grid points

Convert back from (7,6, z)
to (z,y, z) at true scale

1

Re-combine with
nodes from full mesh

Figure 5.14: Flowchart showing the use of free-form deformation (FFD) to alter
hole diameter in a computational fluid dynamics (CFD) mesh of a hole through
a flat plate by adjusting nodal positions

(a) Full polar lattice mesh extents (b) Polar lattice mesh regions

Figure 5.15: Illustrations of region of mesh extents requiring morphing through
a hole (polar system; cylindrical control lattice)
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Figure 5.16: The free-form deformation of region 1 (the hole) using transforma-
tion to polar coordinates

of the point of intersection can be calculated [264] as:

(n) _ 40 _ ™M 1)y, " (n-1)
p q el U S pripey A (5.3)

In this case, the intersect is pre-defined as the modified radius of the cooling hole. Re-

arranging the above equation gives an equation for the original (Y r-coordinate:

q<1>:m+” pm — " 1)
m m-+n

(5.4)

5
If, for example, using the normalized square regions, an increase in radius of 0.2 normal-

0
ized units is applied then this results in q(Y) = 1.6, where n =1, m =3, and p = L 2] .

Considering the external region to be a unit square, q) can be calculated to be at

r= 1%. This polar deformation is shown in figure 5.18.

Once the deformation has been made in the normalized polar coordinate system, the
new point positions can be re-scaled and combined with the original 8 values to convert
back to Cartesian coordinates and then used to replace the nodal positions in the original

mesh, figure 5.19.
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Figure 5.17: The free-form deformation of regions 2, 3, 4, and 5 (outside the
hole) using transformation to polar coordinates

Hole through a curved component (bottom part of a combustor port)

In reality, the surfaces through which holes are meshed are not often flat. The combustor
casing cooling holes and ports are cut through curved surfaces (where z changes with r
for the surface nodes). If the curvature is known, then a relatively simple transformation
of the nodal points in the surrounding region can be applied prior to deformation, and in
reverse to re-locate nodes within the original mesh. If the surface is complex, or curvature
unknown, a generic approach is proposed, figure 5.20. The scheme removes the curvature
in way of the holes by first modelling the generic surface using the existing surface nodes
as the sample points for a Kriging [78] fit, although other surface fitting techniques could

be used. The resulting predictor (Z) is subtracted from all of the nodal z-coordinates to
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Figure 5.18: The free-form deformation of region 3 using transformation to polar
coordinates, showing smoothing with an additional two control points

Figure 5.19: Ilustration of the FFD of a mesh through a hole in a flat plate
using mocked-up example node set (original nodes = black, morphed nodes =
red and blue)
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remove, and then later re-instate, the curvature. To perform this modification for top
and bottom surfaces that are not matching, the morphed region must also be split at a

hole mid-plane.

For example, consider the lower section of the port (where the curvature is not extreme)
(figure 5.21a)% and, using the Kriging predictor fitted to the nodes on the lower surface

(figure 5.22)% first perform a coordinate transformation on all the points (figure 5.21b)":
zt; = 2i — Z(Ti, Yi).- (5.5)

The central hole section (1 lower) can be isolated from the rest of the mesh (the points,

that when transformed, lie above the z = 0 plane). If the original positions of these

points are taken (figure 5.23a)%, and a transformation is performed to ‘flatten’ the region
using the same predictor (figure 5.23b):

== 5.6

= (5.6)

7

then FFD can be performed in the same way as previously demonstrated (figure 5.23c)",
before ‘un-flattening’ and converting back to true scale. Regions 4 and 5 can be deter-
mined and morphed from their transformed positions (they do not need ‘flattening’),
before transforming and converting back to their original relative surface positions and
scale (figure 5.24)6.

When the morphed nodes of the lower part of an example port hole with artificially
large increase in diameter are combined, the resulting morphed nodes in figure 5.25% are

produced.

This methodology is ‘neat’ and generic but limited to solids with surfaces where a mid-
plane can be defined through the entire hole, and where there is no extreme curvature

(no large changes in z; also a limitation of standard Kriging).

5A limitation of the method is that this must be possible, i.e. a mid-plane must create a full circle
with no gaps.
5Scales on all port geometry removed for confidentiality.
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9. Re-combine with nodes
from full mesh, and re-
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Figure 5.20: Flowchart showing the use of free-form deformation (FFD) to alter
hole diameter in a computational fluid dynamics (CFD) mesh of a hole through
a solid with non-specified curvature on it’s surface by adjusting nodal positions
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Top section
of hole (see Lower half
section 5.4) of region @
N N ?  transformed
Lower half Regions
of region @ @ & @
transformed
Regions
@«® | i
X X
(a) Original example port mesh points (b) Example port bottom mesh points
(bottom section isolated) transformed using Kriging predictor)

Figure 5.21: Example port bottom section Kriging-based transformation (step
4 in figure 5.20, regions as figure 5.15b)
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(a) Fitted surface (normalized for confidentiality)
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(b) Kriging predictor error (normalized for confidentiality)

Figure 5.22: Kriging fit (for step 4 in figure 5.20) to the bottom solid surface for
port deformation, showing Kriging predictor error (section 2.8)
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(b) Lower half of region 1, points ‘flattened’

Figure 5.23: Example port region 1 (lower) morphed using free-form deformation

in polar coordinates

(¢) Lower half of region 1, blue = deformed
(morphed) points after ‘flattening’
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Figure 5.24: Example port regions 4 and 5 (lower) free-form deformation (ver-

tical (z) coordinates remain unchanged)
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Figure 5.25: Example morphed port lower section (original points = black, new
points = green)
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5.4 Refinement of the generic hole diameter change imple-
mentation for application to complex port surface ge-

ometry

Unfortunately the port geometry for the case study includes an additional feature that
renders the generic solution developed in section 5.3 inapplicable: there is a step in the
complex surface. The step makes the Kriging surface impossible to construct because,
on the vertical surfaces of the component, there can be multiple z values for each single

(r,0) or (z,y) position. However, because we wish to:

e remove and then re-instate z, and

e maintain a surface in the vertical region,

it is proposed that, for this known individual port geometry, the nodes in the region of
the step can be treated in a geometry-specific way. Ports in a number of combustors
exhibit this feature such that development of a problem-specific solution is of interest

despite its limited range of application.

The workflow used for the stepped geometry is given in figure 5.26. The fundamental
difference between the methodology for the non-stepped and stepped surfaces is that the
non-stepped bottom section is morphed in its transformed state, whereas the stepped
surface is morphed prior to applying corrective nodal displacements to the surfaces. One
can imagine that further steps could be made to enhance this approach for components
with steps with non-planar tops where both a transformation and a correction would be

required.

The port-specific morph requires the user to input a number of fixed nominal values for
each port, in addition to the radius change, in order to split the mesh into a slightly
different set of regions, figure 5.27. These parameters are shown on a cross-section of a

port in figure 5.28.

The first correction is applied to the morphed nodes that exist within the extents of
the vertical surfaces in z, and above a pre-determined mid-point on the fillets. These
are the morphed nodes shown in figure 5.30%. This example uses an artificially large
increase in hole radius for demonstration purposes. The morphed nodes originally on
the vertical surface, must be corrected by placing them back onto the surface. This
correct x location (shown in red) is found by using a vertical Kriging predictor fitted to
the original vertical surface nodes. The z-location of the nodes aligned with the step
must also be adjusted. This correction is prescribed by calculating the distance to the
vertical surface and reducing the displacement linearly to zero at = 0. The correction

is shown on one side of the port in figure 5.30°.
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Import mesh and surface mesh

i

Fit top (horizontal and vertical)
and bottom surface Kriging models

Bottom (not stepped) Top (stepped) !
Y

Transform and ‘Hatten’ mesh Split mesh into regions ac-

(using bottom Kriging model) cording to flat rim location

i i

Split mesh into three re-

gions according to loca- Morph (in polar coordinates)

tion w.r.t. surface location i
i Correct for diveregence from
Morph (in polar coordinates) surface using top Kriging models

Export morphed mesh

Figure 5.26: Flowchart showing the modification of port diameters in a CFD
mesh using free-form deformation

Below the same pre-determined mid-point on the fillets, morphed points must also be
moved back towards the surface, but moving them in x would create potentially large
skew in elements in the region. Therefore, these points are corrected in x only by the
value of dx at the top of the fillet, and then by dy at this new position. The resulting
nodal positions are shown in figure 5.31% and 5.326. All of the corrected nodes are shown
in figure 5.33.

The final nodal positions for the morphed nodes in the top stepped section for the

negative radius change example are shown in figure 5.346.

This algorithm has been applied to the CFD mesh for analysis runs where an individual
port is morphed to a measured diameter value, and further runs where all measured ports
are morphed. Each of the resulting meshes has been checked for quality using the ICEM
mesh quality checker. For the magnitudes of changes needed, the new meshes meet the

same mesh quality requirements as the original mesh.
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Figure 5.27: Cross-section through inner primary (IP) port showing geometrical
extent parameters needed as inputs to morphing process

vertical extent
top of step (rim)

top of hole

hole centre

Figure 5.28: Illustration of regions of mesh extents at the top of a port hole (sec-
tion with a step) requiring morphing (polar system; cylindrical control lattice)
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Figure 5.29: Regions la and 1b prior to application of corrections for step and
fillet
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Figure 5.30: First correction made to morphed nodes to ensure port surface
shape is maintained (adjustment by dz for points between the fillet mid-point
and the rim)
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— Extent of morphing region 1b
-----Extent of region 1a after morphing
Morphed nodes
* Morphed nodes needing additional correction
X Corrected nodes

Figure 5.31: Second correction made to morphed nodes to ensure port surface
shape is maintained (adjustment by dz and dy for points between the fillet mid-
point and the top of the hole), x — y view

Morphed nodes
+ Morphed nodes needing additional correction
X Corrected nodes

Figure 5.32: Second correction made to morphed nodes to ensure port surface
shape is maintained (adjustment by dx and dy for points between the fillet mid-
point and the top of the hole), x — z view
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Figure 5.33: Corrected nodes in region 1, x — y view
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Figure 5.34: Morphed nodes in top section (large positive displacement exam-
ple), z — z view (original points = black, new points = green)
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5.5 Contributions

A novel polar-coordinate based free-form deformation scheme for the application of mea-
surement uncertainty to the diameters of meshed holes, and an associated Kriging-based
transformation for holes in generic complex surfaces, has been presented. This approach
allows for small magnitude geometric changes to be applied to large and complex pre-
existing meshes without the requirement for significant manual intervention. The process
can be applied to any mesh through curved surfaces. The top and bottom surfaces are
not required to take the same form. The only limitation to the approach is that, in the
region close to each hole, where the mesh is to be manipulated, the surfaces must be
smooth and continuous. This requirement is a stipulation of the surface fitting techniques

that are applied.

In the case of a typical combustor port, as provided by Rolls-Royce plc., the outer surface
exhibits a step in the surface. In this case a problem-specific approach has been taken
to transform the data points prior to deformation in order to maintain mesh quality and

ensure that surface nodes remain attached to the surface.

It is shown that the polar-coordinate based morph is efficient for implementing changes
within generic smooth surfaces. Given the array of components in existing products that
contain circular holes, this approach could be widely applicable in engineering design.
The RBF morph that has been discussed in section 2.11 and applied in chapter 6 could
also have application for these kinds of problems. However, the difficulties associated
with surface nodes being constrained on to existing geometric surfaces would still be
encountered. As such, the RBF morph would most likely provide an alternative means
of ensuring smooth continuous meshes, but not an additional way to define the ‘along-
surface’ movements of surface nodes. A combined RBF morph and Kriging or RBF-based

surface transformation based approach might warrant further investigation.






Chapter 6

Uncertainty characterization and
implementation with re-fitted

parameters

Having characterized existing parameters using point-cloud data from inspection mea-
surements in chapter 4, and implemented changes to an existing analysis mesh based on
measurements of existing parameters in chapter 5, we now look into a more complex and
ubiquitous problem, where measurement data shows geometric changes that cannot be
represented using existing parametrizations. In this chapter, we return to the firtree to
investigate both the most appropriate means of accurately characterizing uncertainty,
and the means by which new parameters can be sampled, and implemented through
modifications to pre-existing FEA meshes, i.e. the application of both steps presented

in figure 1.4.

A Kriging-based fitting routine, developed for fitting useful curves to CMM point data,
is presented in this chapter. An approach for extracting a suitable set of uncertain
parameters and their distributions from these curves; a ‘pseudo-curve’ sample for UP
and RDO studies, is proposed and demonstrated. It is then shown that, through the use
of the RBF morphing technique, meshed geometry can be manipulated using samples of

these fitted parameters in order to implement changes in existing analysis workflows.

6.1 Problem description: firtree flank contact surface un-

certainty

A second set of data pertaining to ‘firtree’ joints has been provided by Rolls-Royce plc.
This set is generated using the same CMM and probing system described in chapter 1

but, unlike the data used in chapter 4, provides points on the blade root (example blade

137
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Figure 6.1: Photograph of an example turbine blade with ‘firtree’-type attach-
ment to disc, courtesy of Rolls-Royce plc.

Tangent

point (apex
Measurements of curve)
along flank \

apex

y
N
T< X
z
dsecond

ditop

Figure 6.2: Schematic showing location of turbine flank measurements on turbine
blade ‘firtree’ joints

shown in figure 6.1), rather than the disc slot, and measurements are made along the

apex of ‘barrelled’ flank surfaces, figure 6.2.

The data points (27 in all) are given in two dimensions: fixed z, and y (z along the
nominally straight-line blade flank and y perpendicular to the nominal flank at equal

intervals along ). A typical normalized data set for a single blade (six flanks) is plotted
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Figure 6.3: Example normalized data set for a single blade (six flanks) (normal-
ized for protection of sensitive information, nominal flank line at y=0.5)

in figure 6.3. The gaps in the data are due to the clamping fixture used during use of
the CMM.

By inspection, it is clear that the nominally straight line apex is not, in fact, straight at
all. The most appropriate analytical representation needs to take account of:

(a) curve position (registration),

(b) measurement noise, and

(c) any gaps or non-uniformity in the measurement point locations.

In addition, the parameters defining the curve must:

(d) be small in number for practicable uncertainty studies, and

(e) ensure accuracy of fitted statistical parameter distributions.
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Characterization Implementation
Curve or Variable reduction -
Measurement R Statistical CAD geometry or
~——>» surface —» & selection > .. TP . .
data sets o A model fitting mesh manipulation
fitting (parametrization)

Figure 6.4: Extended steps as a precursor to geometric uncertainty propagation
and robust design optimization

Approaches can either maintain or eliminate correlations between parameters, but if
variables can be selected so as to be independent then subsequent uncertainty studies

can be greatly simplified.

Where, in chapter 4, the characterization process is one of curve fitting alone, here this
step is split into ‘fitting’ and ‘variable reduction and selection’ processes, figure 6.4. The
fitting task ensures the accuracy of the initial measured data by addressing (a) to (c),

and the reduction and selection process meets requirements (d) and (e).

Once suitable parameters with accurately determined statistical properties are known,
their distributions can be sampled within an UP or RDO framework, facilitated through

modifications to the CAD model or mesh.

6.2 Curve fitting

It is proposed that Kriging, or surrogate model, based curve fits can be utilized to
both effectively model measured curves (with known measurement error magnitude),

and define an appropriate set of variables for uncertainty analysis.

6.2.1 Representing flank ‘pitch’ or ‘crown offset’ (registration)

An offset in the data compared with the nominal is observed. This could be attributed
to an error in jig positioning or in the manufacturing of the individual flank, or to the
presence of a discrepancy in the position of the flank relative to a fixed datum on the
firtree root, i.e. an uncertainty in the firtree branch spacing, or ‘pitch’. One must
determine whether this pitch information can be extracted from the shape uncertainties,
such that it might be considered independently during analysis; a problem of registration
of the data.

The measurements are initially made at a distance, d, from a reference flank position
and design angle, figure 6.2. y is then calculated by subtracting the nominal distance for
each ‘crown’. Clearly this results in the inclusion of any overall movement in the flanks

relative to each other in the measurements. This is visible in the data, figure 6.3, as a
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difference in the average vertical position of the curves with respect to each other. The

‘true’ difference between the flank apex positions is referred to as pitch.

If one considers that the data includes both a pitch change between flanks, as well as an
angle along the flank, and a waviness consisting of shape and roughness, then one could
remove either the offset due to pitch, or both the offset and the angle, from the feature

prior to embedding the data in the geometry.

It is not possible to determine with certainty how much of the data offset from nominal
can be attributed to the surface variation, and how much can be attributed to distortion
of the overall firtree shape, i.e. flank pitch, twist etc. Indeed, if one was to consider
studying the effects of such changes, measurement of the related parameters, such as
notch radii and other overall shape parameters would be required. Therefore, a pragmatic
approach is taken; the angular variation is considered to be part of the local flank shape
and is not filtered from the data but the overall shift, or pitch, is removed by locating
the mean position of a linear regression line and data points on the nominal flank apex,
figure 6.5.

6.2.2 Accounting for measurement error
Classical analytical curve fitting

Observed in the data sets, as in most CMM data sets, are two types of shape information:
the large scale trends in the data, and the smaller scale surface roughness. It is assumed
that the large-scale trends are correct; the accuracy of the measurement equipment is
sufficient to represent these. However, measurement data are subject to noise due to
the inherent inaccuracies of the machinery, environmental factors, and human factors,
in addition to the true surface roughness of the part. In order to fit a curve to the data
one must decide on an approach to fitting that is suitable given the intended use of the

fitted curve and what is known about the accuracy of the measurements.

Initially, polynomial regression models are fitted. It is determined using the null hy-
pothesis discussed in section A.7.1 that, for an example blade, a polynomial with degree
greater than four would be likely to result in over-fitting (the convergence of the variance

is plotted for six flanks, figure 6.6).

Polynomials of degree one (linear) through to degree four are fitted through the data sets
using classical least squares (see section A.7.1). For comparison, an ‘over-fitted” degree
nine polynomial fit is also applied. We also apply a smoothing spline fit through the
data, and an interpolating spline for comparison (see section A.7.3). The fits are shown

for three example flanks, figures 6.7, 6.8, and 6.9.
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Figure 6.5: Example data set for a single blade (six flanks) (normalized for
protection of sensitive information) showing linear regression line and offset to
compensate for flank pitch

It is clear that interpolation of the points can produce anomalies when the curves are
extended into regions without measurement (the extremities and the gap). This can be
avoided to some extent with the regression fits. However, the spline smoothing factor is
somewhat arbitrary, and the fixed polynomial curve form defines the resulting variance
of the deviations of the points from it. In reality, a ‘real’ value for the variance of
measurement data points is, at best, obtainable from tests of the measurement system,
and at worst, expected to be consistent over all the flanks. Therefore, we turn to an

approach used extensively in optimization for meta-modelling: Kriging (see section 2.2).

A regressing Kriging-based curve fit with known noise

Kriging is a specific form of radial basis function modelling that assumes that data
points are drawn at random from a Gaussian normal distribution (section 2.2.1). Given
that error in measurement manifests as noise in the data points, it is reasonable to first

consider regressing Kriging, section 2.2.2, where this ‘noise’ is represented by a term .
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Figure 6.6: Decline of the combined data point variance, o2,, from the fitted
model with increasing polynomial degree (example data set for a single blade
(six flanks))

This approach has been employed, for modelling digital image based measurements, by
Wang et al. [303]. In later work Wang et al. [302] allow for known variations in error
magnitude by applying a varying scaling factor to the regression term. However, A\ has no
direct relationship with the value of the noise magnitude (or its variance) and needs to be
estimated along with other parameters of the Kriging model. Here, instead, we look to a
refinement to the regressing Kriging algorithm where it has been modified to define the
noise explicitly as a known, or estimated, variance. In the case of measurement points
one may at least know the typical degree of uncertainty for a particular measurement

type, or may even have a value of the expected magnitude of the error.

Therefore, we take the approach of Picheny et al. [207] and consider y;’s to be realiza-
tions of ffz = Y;-(X(i) + £;) where ¢; are normally distributed independent measurement
errors, then one can consider the expressions thus far in terms of 72, the variance of the

measurement error (noise) variable.

Picheny et al. [207] define the Kriging predictor in terms of a matrix of covariance kernels,
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Fitted flank curves for convex side, top flank
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Figure 6.7: Data points and seven different flank apex curve fits for example
convex side top flank (normalized)
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Figure 6.8: Data points and seven different flank apex curve fits for example
convex side middle flank (normalized)
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Fitted flank curves for convex side, bottom flank
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Figure 6.9: Data points and seven different flank apex curve fits for example
convex side bottom flank (normalized)

K, where k;; = Ugwij. Thus K is equal to V in section 2.2. According to Picheny et al.

2

[207], the noise variance 7% can be added to the leading diagonal of this covariance matrix;

(02 + 72 o211 2 021/1173 e i
o%hoy o+ 72
V=(V+70) = (T +71) = |03, N , (6.1)
_021#”71 02—|—7'2_

in much the same way as the ‘noise parameter’ \ can can be added to the leading diagonal
of the correlation matrix, ¥. This parameter 72, however, has physical meaning, where
A does not. Where, for an interpolating model one could divide through the covariance
matrix by o2 (equation 2.11), to result in a correlation matrix ¥ independent of o2,
this is now not possible. Therefore, instead of substituting this expression for V, one

maintains V in the likelihood. A solution for fi can then be expressed as

1T\~7*1y

= qrv-1p
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by taking derivatives with respect to y, but an analytical expression for 62 and 72 in

terms of V cannot be found. The concentrated In-likelihood function then becomes

In(L) &~ —In(|V]) = (y = 11)"V(y — 1p), (6.3)

[207]; a function of o2 and 72 which are both parameters to be estimated using the
preferred optimization routine along with @ and p. Following through the same logic,

the predictor (also known as the Kriging mean) becomes
§x7) = o+ VIV (y - 170, (6.4)
and the error (also known as Kriging variance) can be evaluated as

(1—vTv—11)2

2/ % 2 T~x7—1
s(x ) =0c“—-—v 'V v+ -
(<) 1Tv-11

7 (6.5)

where v is a vector of correlations between the existing points and the new point at x*

multiplied by 2.

Therefore, in a problem where noise exists in the data points, one can consider including
noise as a parameter, A, in the correlation matrix, with the advantage that computational
effort can be reduced with the ability to evaluate o analytically. If, however, one wishes
to determine an estimate of its value, or input a known variance, then noise can be

2. Its value, along with the value of o2, can then

added to the covariance matrix as 7
be determined by numerical optimization given suitable bounds. The same approach
can be taken if the data point variance 72 is known, and only ¢? is then determined by

numerical optimization.

This methodology could potentially be extended to problems where the noise varies de-
pending on the data point, in which case A and 72 become diagonal matrices; diag([A1...\,])
and diag([77...72]) [207], rather than constants: the heterogeneous case. This can lead to
problems of over-fitting and an alternative based on bootstrapping [37] is discussed by
Yin et al. [322].

However, one discovers that the process of maximizing the likelihood in order to deter-
mine 72 and o2 is sensitive to the range of values allowed for their calculation; plotting
the negative In-likelihood over a range of values of 72 and o2 for an individual problem
shows that there is not a clear minimum, figure 6.10, where a similar exercise using A
yields clear results and a robust solution, figure 6.11. It is noted that one finds that the
value of 02 is the same, to the computational precision of 5 significant figures, whether

the likelihood is maximized by specifying A, or 72 and ¢2. The explanation is thus:
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Negative In—likelihood
Negative In—likelihood
Negative In-likelihood

Negative In—likelihood
Negative In—likelihood
Negative In—likelihood

Figure 6.10: Negative In-likelihood plotted for a range of o and 72 values for
fixed 6

V can be divided through by o2 + 72 such that

- 2 2 2 b
1 e s e i
0.2
0_2_’_7_*2@0271 1
2 2\ —1x; 2
(O' +7 ) V = 0207_’_7_2¢3,1 1 s (66)
2
_0207_1_7_21#”’1 1 ]
and if 72 is significantly smaller that o2 then the term % tends to 1 and
V= (624 72)®. (6.7)

2 .
o757, then 72 is known as the nugget

and v is the scaling factor [207]. Equation (2.15) then becomes an estimate for o + 72

If this term is expressed as (1 — v) where v =

where 02 4+ 72 ~ ¢2 if 72 is very small or the data are interpolated.
Given this knowledge, one can improve the robustness of the fitting routine with noisy

data where 7 is of interest by either

e considering carefully the bounds for ¢? and 72, or scaling y such that bounds for

0? and 72 don’t vary between data sets, or
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Figure 6.11: Negative In-likelihood plotted for a range of A\ values for fixed 6

e considering 72 to be very small, calculating ¢? using the A approach, and then
fixing the value of o2, or performing a further local search around the o2 and 6

values yielded.

The second approach will ensure stability of the process for different data sets. However,
given that the data sets involved in this problem are similar in magnitude for both y
and uncertainty in y, it is considered sufficient to scale y. One can test this approach
by performing the global optimization routine multiple times for the same data set. The
same model is reached for all trials. It is also clear that both approaches; with A, or o2
and 72, should result in the same line if 72 is not fixed, as illustrated by the fit on a

sample data set, figure 6.12.
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Figure 6.12: Kriging fit for example noisy one-dimensional data set, optimizing
In-likelihood by varying different hyperparameters

6.2.3 Universal Kriging for dealing with gaps in measurement data

Given that a section of the data set is ‘missing’ (caused by the fixture holding the
component in place during measurement), and that data exists from 0.05 to 0.95 in x
when normalized but the ends of the flank extend from 0.00 to 1.00, the curve fit must
appropriately fill the gaps. The classical approaches and ordinary or regressing Kriging
all ‘fall short’ in this respect as they either result in curve behaviour in these regions that
is overly dependent upon local trends at each end of the missing patch, or tend to return
to the mean value. To address this difficulty one can consider using universal Kriging
[44, 79]. Universal Kriging uses a mean term, /i, that is a function of x. This term allows
an overall known trend in the data to be included. For typical surrogate modelling
problems this is unpopular because one does “not usually have apriori knowledge of the
trends in the data and specifying them may introduce inaccuracies” [79]. However, if an
appropriate function is chosen, this mean term can ‘guide’ the model through regions of

missing data.

If the mean term is considered to be an m-order polynomial regression with coefficients

a; for © = 1,...m then

a(x) = Z a;vi(X). (6.8)
=0
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Figure 6.13: Universal Kriging models and associated mean functions for exam-
ple noisy one-dimensional data set

It makes sense for the order of the polynomial to remain low to avoid over-fitting as
previously discussed. A quadratic polynomial is used here as a ‘guide’, or ‘trend’ for the
universal Kriging model. Following from equation 2.14, the non-biased linear generalized-

least-squares estimator for & becomes

viwly

a=2>7Y
vIw—-1p’

(6.9)
where v is a matrix of polynomial terms calculated at each x. The model variance and
predictor can then be calculated by replacing p with g = av in equations (2.15) and
(6.10). The resulting models and associated quadratic mean functions for an example

normalized data set are plotted, figure 6.13.

Similarly to ordinary Kriging, the noise value can be specified by setting the value of 72.
Figure 6.14 shows the resulting model as 7 is varied from near-interpolation at 7 = 0.05
to T =0.1.

Given that the data in this problem contains some noise, that the level of that noise
is unknown, but that a value of noise is informative, it is appropriate to use regressing
Kriging with o2 and 72 as parameters, rather than \. Given also that there is a large
gap in the data, it is appropriate to use universal Kriging, rather than ordinary Kriging.
The resulting fits for three example flank data sets are shown, figures 6.15, 6.16, and

6.17. This is a novel approach in its application to geometry modelling.
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convex side middle flank (normalized)
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Figure 6.17: Data points and nine different flank apex curve fits for example
convex side bottom flank (normalized)
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There is no perfect solution to this fitting process; a gap over a large proportion of
the surface will always require some level of ‘guesswork’. Here, although the universal
Kriging approach still results in a slightly uncharacteristic dip in some surfaces, this is
considered the most appropriate routine. Only further measurements could refine this.
Assuming that we have an accurate depiction of the curve defining the deviation from the
nominally straight barrelled flank surface for a number of flanks, a set of appropriately

defined uncertain variables is now required.

6.3 Variable reduction and selection for statistical model
fitting

Observation of multiple sets of the fitted curves, such as those in figure 6.18, shows
distinct trends for each of the flanks. Given that one can observe these trends ‘by
eye’, one can hypothesize that it should be possible to represent these curves and their

variation (uncertainty) mathematically.

Each of the existing fitted curves are defined by the Kriging predictor (or Kriging mean):
I(x") = p+9" ey —17), (6.10)

which is a function, in a single dimension, of # and y (a vector of 27 measurement point
locations in y; the response vector), a regression parameter (either 7 or \), and 0. Two
processes are proposed for parameterizing the curves to enable them to be sampled using
many fewer variables, and then for ‘pseudo-curves’ to be created for implementation in
geometric models. The first process is described by the flowchart in figure 6.19 and
section 6.3.1. The second possible process is described by figure 6.20 and section 6.3.2.
Both approaches propose interpolating refits of the Kriging model such that the regression
parameter (7 or A) is removed, and then the size of the response vector y is reduced, whilst
also attempting to ensure that it is informative for uncertainty modelling (statistical

models can be fitted to the resulting variables).
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Convex top Concave top

X X

X X

Figure 6.18: Measured curves (all 46 blades), fitted using universal regressing
Kriging
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Figure 6.19: Proposed workflow for parametrization of uncertain curves using
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Figure 6.20: Proposed workflow for parameterization of uncertain curves using
principal component analysis (PCA) to determine uncorrelated point variables
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6.3.1 Parameterization of uncertain curves using correlated points

Here, the measured curves are refitted using interpolating Kriging by evaluating the
Kriging predictor at increasing numbers of evenly distributed points. The convergence
of the curve fit is evaluated over the full set of 46 blades and 6 flanks. An example of

the convergence of a single blade is shown in figure 6.21.

04

2 points
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- = 6 points
——8 points

10 points
—True curve

-0.4

0.15

0.05

Root mean squared error (RMSE)
over 101 predicted points
o

N
IS
o
©

10 12 14 16 18 20
Number of points

Figure 6.21: Convergence of curve refit using increasing numbers of evenly dis-
tributed points for a single blade firtree, convex side top flank

A convergence criterion can be set as, for example, RMSE<0.05. To specify the number
of points required, we select the number of points for which 99.87% of curves reach the
convergence criteria, i.e. curves requiring greater than three standard deviations above
the mean number of points are discounted. This results in a requirement for 8 and 7, 9
and 8, and 4 and 4 points for the top, middle, and bottom flanks respectively. The refits

based on this number of points are plotted for the convex side top flank, figure 6.22.

Plotting histograms of the eight sets of y-values at the points, figure 6.23, reveals an
impression of their distributions, some of which appear Gaussian. Chi-square significance
tests have been conducted to test the hypothesis that the samples of y have been drawn
from a normal distribution with mean and standard deviation estimated by the sample
values. The hypotheses cannot be rejected at the 5% level for any of the 8 point locations.
A histogram of the fitted fs can also be plotted, figure 6.24. It is clear that there are a
number of ‘outlying’ curves, where the 6 value indicates curves with a different underlying
shape (values changing along x at a significantly different rate, or smoothness). These
are shown in figure 6.22 and removed for sampling. However, where there are significant

numbers this could suggest more than one distinct ‘family’ of curves to be sampled.

Given a set of z locations, with corresponding distributions of y, it is now possible to

sample y values, in order to create ‘pseudo’ curve sets, as required. It is clear, however
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Figure 6.22: Measured firtree flank (convex top) curves refitted using 8 evenly
distributed points (46 blades)

that there is not only correlation between the x-values as defined by ¥, but also in the
values of y. The Iman-Conover approach to sampling with correlation is used, section
A.8.4. To demonstrate the approach, we show a set of 30 ‘pseudo-curves’ sampled ran-
domly from the y distributions, figure 6.25. The correlation structure is shown using
the scatter plot, 6.26. This set is used for demonstration purposes, but one could also
sample using some kind of space-filling algorithm over the range of ys, thereby enabling

models of the uncertain space to be made.

To demonstrate that the process works for alternative numbers of evenly spaced points,
the process is repeated with a ninth point. The ‘pseudo-curves’ are plotted in figure 6.27

and correlation structure shown in figure 6.28.

This approach has been presented by the author of this thesis in a conference paper [81].
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Figure 6.23: Histograms of y-values drawn from refitted firtree flank (convex top)
curves with evenly distributed x-values (34 blades (outlying sets removed)).
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Figure 6.24: Histogram of 6 values drawn from refitted firtree flank (convex top)
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Figure 6.25: Random sample of 30 ‘pseudo-curves’ from the determined ex-
tracted y-distributions using the Iman-Conover correlated sampling method (8

variables)
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Figure 6.26: Scatter plot of 30-point Monte Carlo sample of curves using 8
correlated variables and the Iman-Conover correlated sampling method



Chapter 6 Characterization and implementation with re-fitted parameters

161

0.4

Figure 6.27: Random sample of 30 ‘pseudo-curves’ from the determined ex-
tracted y-distributions using the Iman-Conover correlated sampling method (9
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Figure 6.28: Scatter plot of 30-point Monte Carlo sample of curves using 9
correlated variables and the Iman-Conover correlated sampling method
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6.3.2 Parameterization of uncertain curves using principal components

Section 6.3.1 results in reasonably well fitted parameters defining the uncertainty in the
geometry, i.e. normal distributions can be fitted to the parameters with confidence at
the 5% level once outliers are removed. However, the need to fit correlations between
the variables, as well as fitting distributions, introduces an additional step in the process
where inaccuracy can be introduced. A potential alternative is the use of principal
components (PCs) instead of evenly distributed points locations. PCA is shown on
known curves in appendix A.9.6, and then tested on the firtree flank measurement data

sets here.

Considering the two-dimensional data sets from section 6.1, we have measurements rep-
resenting curves along 6 flanks on each of 46 turbine blade firtree roots. If each flank has
a different ‘type’ of curve, then there are 46 sets of measurement points defining each
flank curve. There are 27 measurement points along each flank, i.e. 27 variables. In
section 6.3.1 27 points were replaced by an equally spaced set of 8 alternative points and
the hypothesis that the new points (variables) could have been drawn from a normal dis-
tribution could not be rejected. Sets of ‘pseudo-curves’ could then be drawn from these
distributions using a correlated Monte Carlo sample [114]; an enabling methodology for

uncertainty or robust design studies of the component, figure 6.19.

Now, we consider that PCA could be used beneficially in this case. In particular, deter-
mining a set of uncorrelated variables could be preferable and PCA might be considered
a more general approach. We begin by taking the most straight-forward path: use PCA
to reduce the existing 27 measured variables to a smaller number of principal compo-
nents. For the data pertaining to the convex side top flank e.g. figure 6.18, we find that
78.5% of the variance can be explained by one PC. However, it takes 8 PCs to represent
97.5% of the variance, and 27 to represent it all. Histograms of each of these variables
are plotted and normal and stable distributions [186, 187], described in appendices A.8
and A.9, are fitted, figure 6.29. It is not possible, at the 5% level, to reject the hypothesis

that the sample has been drawn from a normal distribution for any of the PCs.

With this approach, if the distributions fitted were deemed reasonable and the number
of PCs selected sufficiently represented the variance, a sample could be taken from these
PCs, converted to original variables, and then the resulting ‘pseudo-curves’ fitted from
these points, using a regressing Kriging model or alternative, to take account of the gap
in the data. However, this approach means that statistical distributions are being fitted
to data that is known to contain measurement error. It is proposed that a preferable

approach is to remove measurement noise and any gaps prior to variable reduction.

If we begin by using our universal regressing Kriging models to predict the y-locations at
a large number of defining points along each measured curve, then we start with a large

set of y-locations that define each of the curves as a set of discrete point locations. Here,
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we predict y-locations at 101 points. The process can now follow the process shown in
figure 6.20.

Linear PCA is performed on the data sets. For the convex side top flank, the ‘importance’
of each PC (% of the variance that is explained by each component) is plotted in figure
6.30. The first 20 principal components explain 100% of the variance and the first 8
explain 98.9%!.

Each of the principal components can be plotted against each of the others and outliers
can be observed where points lie outside of the typical ‘trend’ line. For example, when
the first component is plotted against the eighth component in figure 6.31 the first data
set (component) is highlighted as an outlier. There is, however, a popular mathematical
approach to identifying the outliers: using Hotelling’s T? statistic. This statistic is a
“measure of the multivariate distance of each observation from the center of the data
set”, [168]. However, no curves are identified as ‘extreme’ (there are no outliers) when

applying Hotelling’s T? statistic in this case.

Using linear PCA we can, therefore, represent all of the curves using principal compo-
nents. The convergence of the RMSE of the resulting curve representations are shown in
figure 6.32 for an example curve. It is observed that the RMSE is an order of magnitude
smaller than the RMSE when evenly distributed points are used, figure 6.21. This is
true for all data sets. A single curve is reconstructed using increasing numbers of PCs
in figure 6.33, and a selection of convex top flank curve refits using 8 PCs are shown in
figure 6.34.

In order to sample the uncertain space for UP using the PCs, reasonable fits to statistical
distributions are needed. Using the convex side flank, histograms of the first 8 principal
components are plotted with fitted normal distributions and stable distributions in figure
6.35. x% goodness of fit tests are applied in all cases. The null hypothesis that the PCs
are drawn randomly from a normal distribution with sample mean and sample variance
cannot be rejected at the 5% level for PCs 1-4, and 7. The remaining three PCs cannot
be fitted well using normal distributions, but, by observation, the stable distributions
offer a clear improvement. Unfortunately, the y? test statistic cannot be computed
reliably for the stable distribution in these cases. These results might suggest that, in
this case, normal distributions would be sensible where the normality hypothesis cannot
be rejected at a reasonable level, but that a stable distribution be used, if it results in a
visible improvement, where the hypothesis can be rejected. However, when the normality
hypothesis cannot be rejected, the stable distribution tends to be almost identical to the
normal distribution. When the hypothesis veers close to rejection, a stable distribution
appears to represent the data better. This trend is observed for all flanks, some requiring

fewer PCs to represent the same proportion of the variance. Given these observations,

"When the number of variables (or dimensions, N) is greater than the number of observations (n),
all the variation in the observations can be fully explained using (n — 1) principal components i.e. 45
components in this case [168].
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we propose that stable distributions could, in fact, be more appropriate in general, than

their normal counterparts.

We also observe that, for the first principal component in particular, the true distribution
may be truncated. With very little data it is difficult to confirm this. However, it
might be pertinent to consider truncating the samples for UP in order to ensure that

performance variation predictions are not overly pessimistic.

Given these findings, it is now possible to select a Monte Carlo sample of ‘pseudo-curves’
using the eight independent principal components, distributed according to a stable
distribution with parameters as fitted to the sample PCs. An example of such a sample
is plotted in figure 6.36. We observe two undesirable properties of the curves that have

been introduced by using the PCA approach:
1. the peak at x ~ 0.1 that is visible in only one of the measured curves becomes a
feature of note, in that it influences sample curves, and
2. there is at least one curve that appears to be somewhat unusual in shape compared

with the others.

We next turn to the approach used without PCA, i.e. the interrogation of the # param-

eter.
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(PCA on 27 data points measured on convex side top flank of turbine blade
firtree root)
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Figure 6.34: Measured firtree flank (convex top) curves refitted using 8 principal
components (selection of 7 blades)
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Figure 6.36: Random sample of 50 ‘pseudo-curves’ from eight fitted principal
component stable distributions, representing firtree flank convex top curves
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6.3.2.1 Enhancing the parametrization of uncertain curves using 6

When a curve is fitted through a small number of sparsely distributed points using a
Kriging model, the resulting curve is defined by the point locations and the additional
Kriging hyperparameters determined by maximizing the In-likelihood. For an interpo-
lating model this is just one parameter 6. For a set of sparsely spaced points, changing
the 6 value modifies the curve as shown in figure 6.37, where an interpolating Kriging
model is constructed through a set of sparse points and a set of Kriging model curves

with varying theta, and therefore likelihood, are also plotted.
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Figure 6.37: Interpolating Kriging model through 12 sparse points, showing
maximum likelihood curve with 6 = 1.8664, and alternative curves with varying
values of 6

The real data sets about, after regression, are, however, almost fully defined by the 101
predicted points, i.e. as the number of points defining the curve increases, the range
of feasible 0 values decreases exponentially with the number of known points. In other
words, 6 becomes a property of the curve that depends entirely on the the point locations.
As such, it should not be included as an additional variable in the PCA. It does, however,

provide us with a significant insight into the data. 6 describes the ‘waviness’ of the curve.

If, prior to PCA, the set of curves defined by 101 points are modelled as a set of inter-
polating Kriging models then a 6 value is then known for each fitted curve. A histogram

of the 6 values for each of the 6 sets of 46 curves are plotted, figure 6.38.
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Figure 6.38: Histograms of # for each flank with fitted normal distributions

It is clear from these plots that there are groupings of curves in each flank set. We can
also observe some potential outliers. In particular, the convex side top flank, to which our
previous demonstration has related contains an outlying curve (which, not surprisingly,
turns out to be the curve with the extra peak at = =~ 0.1. It also has two distinct
groups. By repeating the PCA process separately for the curves in the two groups we

can determine a reduced set of variables for each group.

34 of the measured curves belong to the largest set. This set has a RMSE of 0.01 after 8
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principal components, figure 6.39, and at this point, 99.1% of the variance is explained,

figure 6.40. The distributions of these PCs, given in figure 6.41, can be fitted using

normal, or stable, distributions; the hypothesis that the samples have been drawn from

a normal distribution with sample mean and variance cannot be rejected at the 5% level.
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The remaining set contains 11 flanks. The variance in this set can be fully explained by

only two PCs, figure 6.43, and the RMSE is insignificant, even using only one PC, figure

6.42. The distributions of these PCs, figure 6.44, however, appear to fit more closely to

a uniform distribution than a normal one. A x? goodness of fit test for normality rejects

the null hypothesis at the 5% level. It is difficult to draw any conclusions from only 11

data sets. However, in this case, a uniform distribution would be preferable for drawing
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samples. If a transformation to normal is used and goodness of fit test used on this small

sample, the hypothesis as such cannot be rejected at the 5% level in either case.

A MC sample of 50 curves is drawn from each set, using the fitted distributions. The
resulting samples are plotted, figures 6.45 and 6.46.

The samples are clearly very much less noisy than the MC set in figure 6.36. The outlying
curve is no-longer affecting the sampling of characteristic curves, and multiple families
of curves can now be accounted for. The two families determined through this approach

are visible by observation in the full sample shown in figure 6.18.

Groups such as these would require additional analyses, i.e. having two groups means

that, for surrogate based UP, response surface models of the uncertain space will need

to be built for the effects of both curve, or surface, families. In this case, a model over 8

variables for the first family and a model over only 2 variables for the second. When a

MC sample is then made of the surrogate for UP, the model to be used for each sample
34

will be selected based on the probability of each family occurring: P; = 4z and Py = %.
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Figure 6.41: Histogram of first eight principal components with fitted distribu-
tions (PCA on 101 interpolating Kriging points on fitted convex side top flank
of turbine blade firtree root), first group
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Figure 6.43: Percentage variance explained by principal components for convex
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Figure 6.46: Random sample of 50 ‘pseudo-curves’ from two fitted principal
component uniform distributions, representing firtree flank convex top curves,
second group



Chapter 6 Characterization and implementation with re-fitted parameters 181

6.4 Summary of uncertainty characterization of measured

curves

A series of procedures to characterize measured curves, for the subsequent study of
the effects of uncertainty, has been developed. Through application to sets of turbine
blade contact flank measurement data, in section 6.2 it is demonstrated that, by use of
universal regressing Kriging with a parameter 7, we can account for measurement error
and gaps in point cloud inspection data. Given a set of these noise-free and gap-free
curves, two alternative approaches have then been considered for reducing the number
of variables that represent the curves, section 6.3: using either correlated evenly spaced
point locations, or a reduced set of independent principal components. In the first case,
the Kriging parameter 6 is used to identify outlying curves and families of curves. In
section 6.3.2.1, this method is then combined with the PCA based approach to provide a
more effective means of reducing the number of variables whilst ensuring that statistical
models of their variation are as accurate as possible. It has been shown that assessment
of RMSE convergence can provide a means of selecting the number of PCs which is
more meaningful that the somewhat arbitrary choice of % variance explained at which
to make the ‘cut-off’. The recommended characterization workflow (a combination of
figures 6.19 and 6.20) is given in figure 6.47. This workflow includes the conversion of
the reduced parameter set sample to a set of fully-defined ‘pseudo-curves’ defining the
uncertain geometry to be analysed. It is the method by which these curves are included

in an existing analysis that is the subject of the following section (6.5).
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Figure 6.47: Proposed workflow for a ‘f-enhanced’ parameterization of uncer-
tain curves using principal component analysis (PCA) to determine uncorrelated
point variables

6.5 Implementation of geometric changes

Given that we now have a means of generating ‘pseudo-curves’ from CMM measurements
of curves, we next need an approach by which to alter existing analyses to reflect sampled
uncertain geometry. In this case, each sample is represented as an interpolating Krig-
ing model (through 101 points) of the distance of the sampled curve from the nominal
geometry. The nominal geometry is a straight line (along the apex of a partial section
of a cylindrical surface as shown in figure 6.2). It could be possible to modify the CAD
model of the geometry and then re-mesh it for analysis, but this route could be imprac-
tical if meshing and applying boundary conditions is an intricate and manual process.
Re-meshing could also introduce unwanted noise and expense, as discussed in chapter
3. It is proposed that RBF morphing could be used to enable existing meshes to follow
uncertain geometries without excessive distortion, removing the need for re-meshing and
providing a more robust solution to the integration of geometric uncertainty in existing

analysis workflows.

Initially, a simple rectangular two-dimensional mesh is considered. This mesh represents
the original mesh with no geometric uncertainty. From the uncertainty characterization

process we have a sampled ‘pseudo-curve’ defined by 101 point locations. A Kriging
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model can be fitted to these points cheaply as there are so many points and the the
range of potential 6 values is known. This is a model of the orthogonal distance from
the existing straight-line surface. The value of this distance can be predicted at each of
the existing boundary node positions using the Kriging model. By also specifying the
displacement of the base nodes to be zero, it is then possible to morph the mesh. The
RBF morph is performed by fitting an interpolating RBF model to the combined set
of nodal displacements, d, with the x — y coordinates in real space equivalent to x in
a two-dimensional response surface problem. The nodal displacements for the interior
nodes are then predicted using the fitted RBF model. The results of this process are
illustrated in figure 6.48 for RBF models that use three different basis functions. A
Gaussian RBF based morph results in elements that appear more highly distorted than
the other models with displacements extending beyond the surface locations, figure 6.48.
This finding concurs with that of de Boer et al. [47], who determined that the Gaussian
RBF resulted in large mesh distortions for their examples. It is maybe not surprising
that the model is essentially fitting a surface that rapidly changes from ‘flat’, at the zero
displacement boundary points to extremely ‘wavy’ at the remaining points. Gaussian

models can perform badly when waviness is significantly variable throughout a dimension.

The process of implementing this morph on a two-dimensional mesh is described by the
flowchart, figure 6.49. The grey boxes show how RBF morphing is typically used: making

modifications to existing meshes using new geometric models for design optimization.

The measurements that are available, however, pertain to the ridge on a solid mesh. In
order to morph a solid mesh we propose a two-stage RBF morph. If the measurement
data was a point-cloud representing a surface, and the ‘pseudo-curve’ was, in fact, a
‘pseudo-surface’, then the morph is simply an extension of the process demonstrated
thus far, but with x consisting of the three Cartesian coordinates of each nodal point,
and d the displacement of the surface nodes. In this case, however, a prediction of the
displacements of the surface nodes that aren’t measured (beyond the location of the curve
alone) is needed. The approach used here is to first use the RBF morphing technique to
morph only the surface nodes. In this case x are the two-dimensional x — y coordinates
of nominal curve combined with the coordinates of the edges with zero deformation. The
fitted RBF function is then used to predict the locations of the surface nodes in between.
To demonstrate this, a constant displacement is given to a straight-line curve on a flat
surface, figure 6.50. The same three RBF basis functions as used for figure 6.48 and

discussed in section 2.11 are applied.

Applied to the sampled ‘pseudo-curve’, this results in the surfaces shown in figure 6.51.
If the flat surface is replaced with the original ‘barrelled’ flank surface then the morphed

surface is transformed to that shown in figure 6.52.

These surface deformations, combined with any constrained (zero deformation) nodes, are

the response for our second RBF model, and x is now composed of the three-dimensions
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Figure 6.48: RBF morph of randomly sampled curve from a convex side top
flank, first group set, using Kriging predictor at nodal coordinates of boundary
in x

x —y — z of each of the nominal nodal positions of the solid mesh. If the original mesh is
the regular mesh in figure 6.53, then the resulting deformed mesh using the cubic spline

basis is shown in figure 6.54.
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Figure 6.54: RBF morph of ‘barrelled’ flank surface with ‘pseudo-curve’ defor-
mation along the apex in a sold mesh, using a thin plate spline basis
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6.6 Summary of the implementation of uncertainty in geom-

etry as sampled ‘pseudo-curves’, using mesh morphing

The full implementation process, as demonstrated in section 6.5, for a solid mesh is

shown in figure 6.55.

Sample
‘pseudo’-
curve or
surface

|

Fit interpolating
Kriging model (or
alternative) to sample

|

Original mesh

v

. . Model of
Predict deformation Curve .
. deformation
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i
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Predict positions of |
surface nodes
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Create RBF model of
all solid nodal
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Predict positions of Morphed mesh for
interior nodes sampled geometry

-Surface

v

Figure 6.55: Workflow for the implementation of uncertain changes in an existing
analysis solid mesh using RBF morphing

This approach enables a precise representation of sampled geometric uncertainty in an
existing mesh. The modifications are made to nodal positions only and associated bound-
ary conditions need not be modified. Given a point cloud of surface measurements, or
a ‘pseudo-surface’; instead of a ‘pseudo-curve’ the workflow can be simplified through

removal of the added processes shown in grey.
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6.7 Summary and contributions

Throughout this chapter a method has been developed by which real measurement data,
in this case a set of point clouds representing a nominally straight-line turbine blade
firtree flank apex, can be converted into a significantly reduced-size set of variables
which can be sampled in order to create ‘pseudo-curves’ or ‘pseudo-surfaces’. In turn, we
have shown how these sampled curves or surfaces can be analysed through modification
of existing meshes. The full generic process is provided in detail in figure 6.56. This
flowchart is an expanded version of figure 6.4 for geometry where point cloud inspection
data are available. The fitting part of the process is simply described as a “regression
fit” in this workflow because the ‘best’ curve fitting approach may vary depending on
the specific data. The universal Kriging approach used for the supplied data set was,
however, shown to perform well in this case. The use of Picheny’s regression parameter
7 is also beneficial [207].

Although the workflow has been demonstrated on ‘real’ data sets, the data has all been
normalized for confidentiality and, for this reason, the approach has been applied to a

fabricated mesh section, rather than a mesh of the true design.

A number of well-developed methods have been combined to successfully address a prob-
lem to which they have not previously been applied. Here we highlight a number of

contributions, where the approach used is novel in this particular application.

e The use of fixed-variance Kriging (Kriging reformulated using the work of Picheny
et al. [207]) to fit point cloud measurement data, i.e. using the ‘nugget term’ to

filter noise of a known magnitude (measurement error).

e The use of Universal Kriging to approach the ‘gappy data’ problem with a visible

trend (dealing with gaps, occlusions, and sparse points).

e The development of a combined Kriging and PCA based approach to reformulating
the parameterization of curves and surfaces where both
— (i) the number of parameters needs to be minimized,

— (ii) the statistical distributions defining parameters need to be meaningful (to

be accurately represented using a probability density function), and

— (iii) variables must either be independent, or correlations identified and main-

tained.

e The use of RBF morphing in an uncertain geometry context.

The methodology for re-parameterizing curves and surfaces defined by large sets of point

locations is particularly novel in the use of the # parameter to identify curve ‘families’
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and outliers, thereby improving the ability of the PCA approach to fit distributions to
the defining variables. In addition, for both the artificial functions considered, and the
‘real’ data set, it appears that the recently developed stable probability distribution could
offer a more appropriate distribution in some cases when sampling uncertain variables.
It should, at the least, be included for consideration. Typically, engineers have used the
assumption of normality of variables for uncertainty modelling, which could be overly
pessimistic. We also note the use of RMSE convergence in the selection of PCs having
some novelty in this application. Our findings, that convergence occurs beyond what
might be considered a suitable percentage of variance to represent, might go some way
to explaining the findings of Garzon and Darmofal [88] as discussed in chapter 3. Further
research on additional data sets would be required to draw conclusions from these find-
ings, but including RMSE convergence assessment in the PCA procedure when applied

to geometry certainly appears to be beneficial.
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Chapter 7

A summary of the proposed
data-driven geometric uncertainty
integration methods for design, and

contributions made

7.1 Process and methods overview

This thesis has used the three case studies (chapters 4, 5, and 6), where data have
been available, to demonstrate the accurate representation of geometric uncertainty for
application to existing analyses. Doing so through an automated process is difficult
due to the differing nature of various sets of measurement data. Here, we discuss how
the approaches developed through the case studies broadly follow the available methods
detailed in chapter 3. The flowchart (figure 7.1) is based upon the uncertainty characteri-
zation workflow from figure 3.8, which shows how point cloud measurement data sets can
be converted to usable parameter sets for sampling. In addition, the flowchart includes
the implementation step of the process, which utilizes a sample of this parameter set.
It is assumed that both the analysis, and the measurement process, are expensive such
that very large samples of either are not possible. Therefore, requisite steps of dimension
reduction (to enable sampling of expensive analyses) and statistical distribution fitting
(to enable UP when many fewer measurement data sets exist than the thousands needed
for direct MC) are included.

The chart, therefore, provides an outline process for integrating inspection data into

existing analyses for the facilitation of uncertainty and robustness studies. The steps

193
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recommended through each of the case studies are highlighted. These are largely auto-
mated processes, which are preferable to the alternative manual processes shown in grey

boxes.

In chapter 4 (process shown in blue in figure 7.1) we provide an exemplar of reliable fit-
ting using existing design parameters to characterize uncertainty. We apply constrained
global optimization, using a particle swarm based algorithm (section A.4.2), to
find the parameters of interest. Statistical models are then fitted using the normal dis-
tribution (section A.8.1) and tested using the z-test (section A.8.3). Implementation of
analyses using sampled parameter values then becomes a simple modification of numeric

values in existing code, under certain circumstances.

In chapter 5 (process shown in red in figure 7.1), the opposite is true: characterization
of uncertainties is relatively simple as no curve fitting is required, but implementation is
difficult because existing code is not set up for automated meshing, and the analysis is
expensive and complex. An adaptation of the free-form deformation method (section
A.10.0.1) has been adopted in this case.

The data from chapter 6 are representative of typical free-form geometry. It is not ob-
vious, in this case, how to parameterize the measured geometry to best effect. The
recommended approach developed by the author (shown in green in figure 7.1) uses
Kriging models (section 2.2), PCA (section 2.10), and statistical modelling with nor-
mal distributions (section A.8.1) assessed using the y? goodness-of-fit test (section
A.8.3), or stable distributions (section A.8.2), to do so effectively, prior to continuing
to apply meta-modelling methodologies (RBFs, section 2.2) as an RBF morph (section
A.10.0.2).

The developed detailed approaches, along with the overall flowchart (figure 7.1, provide a
clear process for automating the integration of point-cloud inspection data into existing

analyses in order to inform design decisions in an uncertainty framework.
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7.2 Conclusions and contributions

There are relatively few attempts to integrate measurement data with the process of ro-
bust design available in the literature. More commonly, uncertain geometry is applied to
relatively fast-running problems without complex meshes. In order to enable integration
of these design tools with existing analyses, facilitating technologies are required. In this
thesis, through application to three different data sets, such automating technologies

have been explored.

1. After identifying that existing design parameters can be fitted to point cloud data
in the case of turbine blade firtree flank cross-sectional measurements, it has then
been possible, through appropriately constrained global optimization, to determine

the statistical distribution of flank angle.

2. Given a set of measurements for existing design parameters for a highly com-
plex analysis workflow where a time-consuming and manual meshing process had
been undertaken for the nominal design, an automated approach to modifying
meshes through holes, based on free-form deformation in a polar coordinate refer-

ence frame, has been presented.

3. Given multiple sets of point cloud measurement data, which deviate from the nom-
inal in a free-form manner, a sophisticated combination of Kriging-based curve fit-
ting and dimension reduction by means of principal component analysis has been
applied for uncertainty characterization. An automated process based on RBF
morphing has then been adopted to demonstrate the implementation of geometric

changes sampled from fitted statistical distributions of the reduced variable set.

We then presented an overall approach to integrating inspection data based on these
case studies in section 7.1. Throughout the thesis, the methods applied have been well-
established, but their application in this context has previously been limited. When
approaching each of the real problems, the ‘standard’ approaches have ‘fallen short’ of
having the ability to represent the data as required, leading to use of alternative, usually

surrogate and DSO based methods, in novel ways, as reviewed below.

The first study (chapter 4) presented a ‘simple’ problem of fitting known parameters
to point cloud data. Commonly, fitting of straight lines, or other basic features, to
point clouds involves the identification of the points that exist within the feature by
segmentation, followed by a least-squares, or similar, fit. In cases where it is difficult
to locate the boundaries of the feature, it is not clear how best to proceed. Given that
uncertainty studies require accurate representation of relatively small changes, and that
errors at end point locations can have a disproportionate effect on the angle of the fitted

line, standard processes are unacceptable. Indeed, even removing points close to the edge
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of the straight-line feature for ‘safety’ is shown to have a significantly detrimental effect
on the accuracy of the fitted line angle. Segmenting the data well beyond the curve
of interest and applying a constrained global optimization procedure has been shown
to be necessary in this case. Such global methods applied to full data sets with little
segmentation, are likely to be beneficial in the integration of many measurements of

uncertainty.

To integrate uncertainty as changes to existing parameters in an already complex, expen-
sive, and largely manual analysis, in chapter 5 we turned to free-form deformation. As a
means of controlling free-form shape changes in an intuitive manner, and for controlling
such changes using a set of control point locations this approach has many advantages.
However, given that every point within a control lattice is influenced by the movement
of any control point, ensuring that the shape matches the measurements can be difficult,
if not impossible. The data supplied in this case took the form of diameters of holes
through non-flat surfaces. In this case, ensuring circularity of the holes in the meshes,
and maintaining surface nodes on surfaces, proved impractical with traditional free-form
deformation. A polar-coordinate based approach was developed for maintaining hole cir-
cularity whilst Kriging-based models of the surfaces were used to first transform complex
surface shapes to flat-plate locations before morphing the nodal positions. A problem-
specific alternative, again using Kriging models, although any surface-fitting model could

be applied, has been used for the special case of holes in ‘stepped’ surfaces.

A major point of the novelty in the work appears through the approach developed to
deal with ‘free-form-type’ point-cloud data throughout chapter 6. Initially, we apply
universal Kriging to deal with ‘gappy’ measurement data with a visible trend, and the
use of fixed-variance Kriging (reformulated using the work of Picheny et al. [207]) using
the nugget term to filter noise of a known magnitude (measurement error). Neither of
these methods are typically applied to measurement data, rather for response surface

modelling.

Following on from the ‘error filtering’ step, an innovative Kriging-based approach to
reformulating the parameterization of curves and surfaces is presented. For uncertainty

studies of the type discussed, there is a requirement for:

i the number of parameters to be minimized,

ii the statistical distributions of defining parameters to be meaningful (to be accurately

represented with a probability density function), and
iii the variables to either be independent, or correlations identified and maintained.
By first parameterizing the measured curves using a large number of points through an

interpolating Kriging model it is possible to use the hyperparameter 6 to categorize the

curves and detect outlying data sets. This is particularly original, not least because
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Kriging is seldom used to represent geometry. Given this grouping of the data, principal
component analysis has then been used to reduce the large defining set of point locations
to a smaller set for each group effectively. For the data available, well-fitting statistical
distributions for each of the variables resulted. In this case, stable distributions were also
highlighted as a potentially better distribution function to use in these cases, in preference
to the typically ubiquitous normal distribution function: a density function that is state-

of-the-art, and somewhat unique in its use for stochastic analysis in engineering design.

Given the then reduced set of variables defining the uncertainty in a nominally straight
line component feature, RBF morphing using a thin-plate-spline based RBF function
has been demonstrated on a representative solid mesh. Although the RBF morphing
technique is not new, its particular relevance in geometric uncertainty studies has been
highlighted. Given sampled models of the uncertainty of the type developed through the
presented process, RBF morphing is the ‘tool of choice’ for implementation. No workable

and practicable alternatives have been identified.

7.3 Future work

A framework for integrating measured point-cloud uncertainty with design analysis has
been developed. It has been tested on a number of cases, but further work would be

required to ensure that the approaches are applicable in many more cases.

In particular, the process developed throughout chapter 6 should be applicable, and
could potentially be even more beneficial, if applied to measurements over surfaces or
full components. Currently, a large quantity of inspection data are collected at limited
point locations or along specified curves due to the cost and time associated with gath-
ering larger data sets, but this cost is reducing with developments in measurement and
imaging technology. Therefore, further work to implement and test our approach on such

measurement sets would be useful going forward.

There are also other areas where the author recommends further research to add to
existing findings and approaches. RBF morphing, for example, is usually used to morph
meshes where parametric changes can first be made to designs through a linked geometry
model, and applied to DSO. In chapter 6 it is used to make free-form-type changes to
a mesh. It could, however, have uses for cases such as that of chapter 5. The difficulty
here is that the modified surface node positions (or movements) must be known in order
to apply the RBF morph to the interior nodes. Further investigation is required, but it

might be possible to enhance or simplify the current procedure using this method.

Another such area is where an original combination of steps has been used to parameterize
curves using large sets of Kriging model point locations. This approach incorporates

principal component analysis. The most elementary form of PCA - linear PCA - has
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been used, and although it had resulted in variables with well-fitting distributions for
our case study, there may be circumstances under which some more sophisticated versions
of PCA or non-linear PCA could prove better suited. It would be prudent to assess these

using further data sets.

Finally, we use Kriging (and its € hyperparameter) to represent the data for variable
reduction, but then use a non-Gaussian radial basis function for interior nodal point
morphing in the implementation of the sample of the variables. In this case, an addi-
tional fitting process is required because there are additional zero deformation points
included for creating the RBF model. However, in the case where the measurement data
fully represents a component all surface nodes locations would have been included in an
interpolating Kriging model. Investigation as to the appropriateness of this model in the
prediction of interior node positions would be an interesting study, perhaps leading to
a reduced cost overhead in such cases. Here, we point to the additional complexity in
these cases of determining how best to define the points: orthogonal from nominal, or
using some alternative spherical coordinate frame, for example. We also note that the
f parameter used for identifying curve families would become two 8 values for a surface

and that further development and testing would be needed here.

In conclusion, a number of techniques have been applied throughout this thesis such
that geometric uncertainty studies can more easily and effectively be informed by ‘real’
data from inspection using existing analyses. Routine inspection often results in data
akin to that of our case studies meaning that this work is useful and applicable to many
robustness problems. However, further work could enhance these approaches to increase

their applicability to a more extensive range of problems.
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Methods: the detail

A.1 Space-filling sampling plans

A.1.1 Full-factorial sampling

Intrinsically, the most simple space-filling approach is a full factorial design [72]|, where
all ‘strata’ (or ‘bins’) of an equally spaced grid are sampled at their centre, figure A.1.

There are a number of major flaws in the full-factorial approach when applied to model
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Figure A.1: Full factorial sampling in two dimensions, 25 x 25 samples

building:

e the resulting designs of experiments must be of a specific size, i.e. the number of

samples must be a product of the number of levels in each dimension,

e sets of points overlap when projected onto any single axis which is arguably an

unnecessary duplication,

201



202 Appendix A Methods: the detail

e depending on the problem, such an approach can lead to considerable unnecessary

expense in sampling the extremities where few points lie in reality, and

e there is a possibility of aliasing (missed function features) if the true function is

cyclic or contains cyclic features.

The method was first introduced as an alternative to the investigation of individual
factors concurrently. It is seldom used now in experimental design but is representative
of many surface measurements from probes due to sampling on a time, rather than a
spatial, scale [245].

A.1.2 Pure random sampling

Instinctively, one might consider drawing pseudo-random [216] values from a uniform dis-
tribution in each dimension as a representative sample throughout a hyperspace. How-
ever, as we observe from an example of such a sample (figure A.2a), a number of points
with values of one of more vary similar variable values can be created or some regions
overlooked completely. To cover the full space, we add more and more points, tending in
number back to a full factorial or more (figure A.2b). However, this sample continues to

exhibit the same undesirable behaviour, in particular the wasted cost of almost identical

points.
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Figure A.2: Pure uniform random sample in two dimensions

A.1.3 Optimal Latin hypercube sampling

Latin hypercube sampling (LHS) was introduced by McKay et al. [172] for statistical
approximation using computer experiments as an alternative to full factorial or pure
random sampling. It is a development of stratified sampling where, for uniformly dis-

tributed variables (or in a design case, equally important regions across the design space),
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projections of the selected points onto axes are made as uniform as possible “by splitting
the range of that variable into a relatively large number of equal sized bins and gener-
ating equal sized random sub-samples within these bins” [78]. Each variable is split into
strata and they are sized for equal calculable marginal probability (|64] and [277]), or
proportion if considering discrete subsets of a population. Random stratified sampling
then draws randomly from the ‘bins’, whereas Latin hypercube sampling, based on the

Latin square® (figure A.3), draws randomly only once from each strata e.g. figure A.4.

A B C D
B C D A
Cc D A B
D A B Cc

Figure A.3: Latin square, 4 samples

The LHS points can either be central to the strata; a lattice sample [195], or more likely
taken assuming equal probability across each strata, distributing points randomly within

‘bins’. This scheme removes the ‘overlap’, reducing the expense of sampling the entire

LA Latin square is an N x N matrix with each line and column a permutation of 1, 2, ..., N such
that each number only appears once in each line and column.

0.2 e

0 02 04 06 038 1

%4

Figure A.4: Random Latin hypercube sampling in two dimensions, 25 samples,
points with equal probability across strata
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space, but the random nature means that this type of sample may not always exhibit

the ‘best’ space-filling properties.

To improve upon the LHS, a number of researchers have developed optimal Latin hy-
percube (OLH) designs based on various optimality criteria. Popular criteria include the
mazimin criterion of Johnson and Moore [121] and Morris and Mitchell [181]’s scalar-
valued rank to order alternative plans by their space-filling ability. The Morris and
Mitchell [181] approach requires some form of global optimization routine and as such
they choose simulated annealing (section 2.3). Forrester et al. [78] use an evolutionary
algorithm by Box [18] to the same end. Figure A.5 provides a two-dimensional example
of an OLH sample constructed using the Morris and Mitchell [181] criteria, compared

with an equivalent random LHS.
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Figure A.5: Optimal (using Morris and Mitchel [181] criteria) Latin hypercube
sample in two dimensions (25 samples, points with equal probability across
strata), compared with a similar random Latin hypercube sample

These optimal? designs are extremely popular for building response surfaces (models of
the design space also referred to as surrogate models or meta-models) but they do have
one small pitfall: if the resource available to evaluate the points is unexpectedly changed
then the sequence of points whose evaluation has completed will not necessarily be space-
filling if cut short, or easily extended if additional resource becomes available. To combat
this one could use an alternative plan based on, for example, ‘Sobol’ sequences such as
LP7 [265]. This is not so well regarded, but the space is filled sequentially so the process
may be interrupted at any point. Or, one must determine an easily reachable initial
sample number prior to using other appropriate criteria to update the sample in regions
of interest [78].

2Note that, as the number of points and dimensions increases, the number of possible permutations
of a Latin hypercube increases at an incredible rate. For example, McKay and Rogoyski [171] calculate
that there are more than 7.58 x 10?* permutations for a Latin square with just 10 points and 1.5 x 10%° for
15 points. As such, a truly ‘optimal’ Latin hypercube sample is untenable at a workable computational
cost when large numbers of points are needed, rather they are ‘optimized’ at practical expense.
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A.1.4 Orthogonal array based sampling

Orthogonal arrays (OAs), introduced by C. R. Rao in the 1940s, popularized by Genichi
Taguchi, and explained by Ross [237] for quality engineering and in detail by Hedayat
et al. [103] and Stufken [278], are also samples that derive from a stratified approach.
They are a type of fractional factorial sample; a partial set of a full-factorial experiment
selected in order to understand the main effects and low-order interactions, reducing the
number of samples by ignoring high-order interactions between variables [182]. The OA
is a matrix consisting of rows of experiments with entries from a set of symbols, or levels.
If each npa X toa sub-matrix, where npa is the number of variables (factors), contains all
possible 1 X toa row vectors at the same frequency, then the OA is said to be of strength
toa. A Latin hypercube can be considered a special case of an orthogonal array where
the number of experiments, or rows, is equal to the number of levels and the strength is
one. Certain properties of some OAs are a distinct advantage for experimental design,
in particular: uniformity properties over the entire space, and orthogonality, or lack of
correlation, between design vectors [19]. It should be made clear here that “an orthogonal
array is not an array whose columns or rows are orthogonal” in the sense that their inner

product is zero, Hedayat et al. [103]3.

Figure A.6 illustrates two different OA designs. Construction of OA designs is not via
a simple repeated algorithm, but using tables of designs that have been identified. A
library of such OAs, produced by Sloane [261], accompanies the book by Hedayat et al.
[103]. Figure A.7a shows an orthogonal design based on the OA in figure A.6a with
random perturbations within the three levels. To combine the desirable properties of
the Latin hypercube with those of the OA, Tang [283| introduced the OA-based Latin
hypercube for design of computer experiments. The OA is transformed into a LHS whilst
preserving its combinatorial structure, figure A.7b; each of the nine samples lies within
one of the OA level combinations and none of the samples lie within the same nine rows

or columns (strata for the hypercube).

Although OA-based samples are described for use in modelling, Sandor and Andrés
[244] apply them for the estimation of multivariate normal probabilities by employing a
transformation based on a truncated normal density to a sample made using a uniformly
distributed probability density function. Sandor and Andras [244| use the methodology
used by Vijverberg [300] which is often applied to determining probabilities of rare events;
importance sampling. Leary et al. [148] extend the OA approach to OA-based Latin

hypercube samples.

3Tt is, in fact, the least squares estimators for the design vectors in a linear regression model of the
design space that are orthogonal, or uncorrelated, and only if the strength of the OA is two or greater,
[278, 103, 19]. According to [103], the name was first coined for these specific combinatorial structures
of arrays by K. A. Bush in his thesis of 1950.
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0 0

0 0 0 0
0 2

1 0 0 1 1
1 1
112 1 0 1
2 0
| 2 1 1 0
2 2

(a) Sample-size 9, with 2 factors, 3 levels, (b) Sample-size 4, with 3 factors, 2 levels,
and of strength 2 (OA(9,2,3,2)) and of strength 2 (OA(4,3,2,2))

Figure A.6: Examples of orthogonal arrays
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(a) Orthogonal design (orthogonal array (b) Orthogonal array based Latin hyper-
based random sample) cube sample

Figure A.7: Orthogonal array based samples in two dimensions (9 points)

A.2 Kriging with known noise

In the regressing Kriging approach by Picheny et al. [207] there are two variance param-
eters: the noise variance 72, and the Gaussian process variance o2. In this example, 7 is
fixed as 0.05 for the 1-dimensional example and 1.5 for the 2-dimensional example. o2
is found by optimization, although it is sometimes appropriate and feasible to search for
both, or for 7 using a fixed o2. Figures A.8 and A.10 show, as expected, a very similar
fit to the regressing Kriging models in section 2.2.2. Again, a minimum does exist, figure

A9.
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Figure A.8: Regressing Kriging fit with a fixed noise parameter in a single

dimension
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Figure A.9: Variation in negative In-likelihood using regressing Kriging with a
fixed noise parameter in a single dimension, 40-point sample
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Figure A.10: Regressing Kriging fit with a fixed noise parameter in two dimen-

sions
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A.3 Local searches for an optimal design

Considering the definition of optimization given in section 2.3, if f is a linear function
of independent variables with linear constraints (g) then long-established and efficient
linear programming procedures based on active set methods such as simplex methods can
be employed [216]. In many commercial codes enabling such approaches these routines
have been superseded by interior-point methods first published by Karmarkar [128] who
suggested that they converged much faster and could allow polynomial constraints [216].
These approaches have also been developed for quadratic objective functions and this is

termed quadratic programming [91].

If there are no constraint functions (g) then a large number of unconstrained methods
can be applied [91]. These include Newton’s method and other second derivative meth-
ods, first derivative based quasi-Newton methods, and methods where the derivatives are

approximated using finite differences.

If the constraints are non-linear then a number of approaches can be taken as described
by Keane and Nair [130]. Possibly the most obvious, but not necessarily always feasible
approach, is to transform the problem such that constraints are eliminated entirely if,
for example, there is a direct known relationship between the constraint and one of the
variables. If it is not possible to remove the constraints then equality constraints can be
included through the use of Lagrangian multipliers, which alter the objective function to

include a subtracting of the scaled equality constraint values at x, i.e.

find
xcR"”

which minimizes

£ = 3" Mpyygs (). (A1)
j=1

The multipliers (\(z);) become additional variables in the minimization problem but
reduce it to the solution of a set of coupled non-linear equations. This approach can
be extended to include inequality constraints by the addition of slack variables to the
objective function. However, this methodology is limited by the requirement to include
only constraints that are active at the optimum point and it is not always known which
constraints these are. As an alternative Keane and Nair [130] introduce Zoutendijk’s
feasible directions method [327|, which can be used for only inequality constraints but
focuses on drawing the optimizer away from constraint boundaries. Starting at an ac-
tive constraint boundary, it determines the direction in which the search will move by
maximizing a linear function itself subject to linear constraints, by linear programming.
If another constraint is hit, then the process is repeated, until an optimum is found
and a local unconstrained search is carried out. This method can become particularly

inefficient if the optimum lies in a relatively ‘flat’ region.
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A popular and intuitive approach to dealing with non-linear constraints, is to apply a
penalty function to any points where constraints are violated. This results in a number
of difficulties, particularly for gradient-based searches, due to the effective discontinuity
of the new objective function. A number of variations on this basic idea, including
combined Lagrangian and penalty function based methods, are described by Keane and
Nair [130]. Penalty function based approaches are none-the-less popular and, with some
improvements can address some of the difficulties. For example, penalties may be applied
separately for each constraint, the penalty may be made to vary depending on the size
of the violation and could even be made to extend within the feasible (interior) space
[78].

The most established method for applying non-linear constraints in local searches is
sequential quadratic programming (SQP). SQP uses a quadratic approximation to the
the ‘Lagrangian’ (the modified objective function after applying Lagrangian multipliers).
The minimization of the ‘Lagrangian’ is iterative and uses linear constraints, resulting

in an efficient process. It also allows for the active constraints to change at each step.

A.4 Global searches for an optimal design

Universally, these methods search the potential design space using some kind of iterative
approach. The key difference is that the chosen locations at which evaluations of the
function are obtained are chosen not necessarily moving closer to the optimum at each
step in the process. They all include some random element of test design point selec-
tion and were popularized by the introduction of evolutionary strategies such as genetic
algorithms (GAs) [92], introduced by Holland [105], where the point selection seeks to
mimic natural selection. Many are described as heuristic methods due to the inexact,
but globally improved, nature of the result. Developed in a similar period, there is also
simulated annealing [194], which is analogous to the search for the minimal potential
energy condition played out by cooling crystal structures. More recently, particle swarm
based methods [289)], introduced by Eberhart and Kennedy [62], that attempt to mimic
the behaviour of flocking birds, have been proven to work well on some engineering

problems.

In the case of constraints applied to global searches, one could deal with the constraints
as discussed above, by modification of the objective function with a penalty term. Fur-
thermore, the difficulties experienced with penalty functions by sequential gradient-based
descent methods due to discontinuities are somewhat less critical if the search is moving
in a non gradient based manner. There are other ‘repair’-based techniques given a short
overview by Keane and Nair [130], which result in ‘flat’ regions where constraints are

violated, but these “are not simple to implement” or “widely popular” [130].



Appendix A Methods: the detail 211

A.4.1 Genetic algorithms

The development of the genetic algorithm is usually attributed to John Holland, whose
work of the previous decade was published in a book on the subject in 1975 Holland
[105]. Goldberg [92] provides both the most commonly referenced tome on the subject
of genetic algorithms and the basis of the genetic algorithm function (ga) in MATLAB.
The popularity of genetic algorithm based searches for improvement has been growing
ever since and continues to do so. Rather than using supplementary information about
gradients, as most local searches do, genetic algorithms attempt to replicate the natu-
ral process of Darwinian evolution using only the fitness (objective function values) of
parents (points) to move towards an optimal individual (design). Historically, these al-
gorithms typically began with a random population represented as a set of binary strings
(chromosomes) but more recently it has become more usual to use real coded approaches,
where the chromosomes are defined by the double-precision floating-point format, if the
variables are either continuous or of mixed format [28, 167]. The MATLAB (ga) function

even uses, by default, a real-coded approach for integer optimization problems [51].

Given an initial population and corresponding fitness values, further populations (gen-
erations) are then created from this initial set by probabilistic processes of reproduction,
crossover, and mutation. Reproduction and crossover reward fitness i.e. a chromosome
with a higher ‘fitness’ value has a greater probability of ‘mating’ and producing ‘off-
spring’ for the subsequent generation. Mutation is a secondary ‘insurance policy’ which
randomly introduces changes to chromosome values with a given probability of occur-
rence. The probability of mutation is very small but works to reduce the chance of missing
something important: in nature, a characteristic that could increase fitness, in engineer-

ing, an undiscovered region of the design space with the potential for high-performance.

The ga function in MATLARB allows the probabilistic definitions of the functions defining
the above processes to be user-defined, but for the engineering problems encountered

during this thesis, the default values and functions for continuous variables suffice.

e A population size of 50 (selected using a uniform distribution over the variable

space) for problems with five or fewer variables.
e A maximum of 75 generations unless an alternative convergence criteria is specified.

e A function to select the parents for the next generation (selection function) which
“lays out a line in which each parent corresponds to a section of the line of length
proportional to its scaled value. The algorithm moves along the line in steps of
equal size. At each step, the algorithm allocates a parent from the section it lands
on. The first step is a uniform random number less than the step size.” [167].

This is equivalent to ‘roulette-wheel’ selection [155, 92] where the probability of
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selection of the 7" individual is:

f(xi)
Pi= ——7-"—, (A.2)
' Z?:1 f(xi)
differing only in so much as the starting point is at a random point at the beginning
of the line, rather than a random point anywhere in a full circle. It is ensured that
a minimum of 0.05 x ‘the population size’ individuals survive to the following

generation.

e A ‘scattered’ crossover function is used; the parent parameter values are switched at
random. Practically this is applied using a random binary vector for each ‘mating’
where values of 1 result in a ‘switch’ (the value from the second parent) and values
of 0 maintain the value from the first parent. Other than ‘elite’ children (surviving

parents), 80% of the next generation are produced by crossover.

e A Gaussian mutation function is used, in the unconstrained case, which adds a
random value dz; ; for all parents ¢ and dimensions j at each generation k& where
dz; N(0,0%). o1 is the range of the initial population for an unbounded problem
and reduces linearly to zero at the final generation. In a constrained problem the
mutations are directional and the direction and step size are randomly generated

to ensure bounds and constraints are satisfied.

e Prior to selection, a ‘scaling function’ scales the raw fitness scores based on the

rank of each individual, removing the effect of ‘scale’ in the fitness function.

e The optimization process stops prior to completing the specified number of gener-
ations if the improvement over the most recent set of improving generations is less

than a pre-set tolerance .

When non-linear constraints are introduced the MATLAB ga function employs the
penalty-based “globally convergent augmented Lagrangian algorithm” developed by Conn
et al. [43].

A.4.2 Particle swarm optimization

The particle swarm, first developed by Eberhart and Kennedy [62|, was inspired by
the behaviour of flocks of birds. To select a feeding site they use both new knowledge
(observing other birds) and their own memory of the best spots to select the best location.
This summary is based on the description given by Toal et al. [289]. An initial set
(population) of particles (the birds) is selected using, for example, a perturbed Latin
hypercube [172] sample within the given bounds. Each particle is given a random initial
velocity and the objective function evaluated at the current location for all particles. The

current global best position (x,44) and individual best position (x,;) are then calculated.
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The velocities of each particle are then updated for the i*" iteration according to the

following formula.
Viji=wV; + C1T1(Xpb - x;) + 62"°2(ng — X)), (A.3)

where w is the inertial weight with wV'; giving the current particle velocity. ¢; and ¢
are constants defining ‘cognitive’ and ‘social’ behaviour of the swarm and r; and ry are
random vectors in the range [0,1]. In terms of the search algorithm, ¢171(x,b—x;) pushes
a point towards it’s own previous best location, and cara(x4b—x;) determines how much
influence the current global best position has on the velocity of each point. The original
algorithm used ¢; = ¢o = 2.0. Given this new velocity, the new particle positions are
simply calculated as:

Xit1 = X + Viy1, (A.4)

the objective at each point evaluated, and the process repeated for a given number of

generations, or until a specified stopping criterion is reached.

Refinements of the process that remove the need to specify a reducing inertial weight
have been developed. This involves the use of a constriction factor, ®pgo, alongside a

choice of maximum velocity. The velocity is then calculated as:

Vi1 = PpsolVi+ ciri(xp — Xi) + cora(xgp — X5)], (A.5)
where 5
Ppso = : (A.6)
12— dpso — \/Pbso — 40Psol
and
Vi+1 § Vmaxy (A7)

with ¢pso = ¢1 + ¢c2 and ¢pso > 4.

Further developments to the approach are the hybridized PSO algorithms, where local
searches are combined with the global routine described above. Here, the algorithm
of Toal et al. [289] is applied. During each iteration, after the objective function has
been evaluated at each point, a single particle is selected for refinement using sequential
quadratic programming (SQP), which can be derived from Newton’s method, [185]. The
location of this selected particle is then refined by using a partially converged run of
a local optimization routine e.g. fmincon [163]. In addition to this local refinement
of a selected individual particle on each iteration, a proportion of the particles are re-
initialized (replaced with a new set) prior to the next iteration. The positions of the new
set are selected to fill unexplored regions using a maximin distance criterion [181, 78§].
This hybridization provides further global coverage to minimize the chances of missing

a true global minimum.
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At the final generation, a fully converged local search is performed at the selected ‘best’

particle to find the minimum point.

We present an example function, based upon a small section of the ‘bird function’ by
Mishra [178]):

flz1,22) = sin(—103L’1)e’(l_cc’s(_loa’?))2 + cos(—103U1)e(1_Sm(_105”’2))2 + (1021 — 10302)2,
(A.8)

which exhibits multiple local minima across a two-dimensional space, figure A.11.
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Figure A.11: Example surface function example for demonstration of global
searches

Figure A.12 shows the minima located using MATLAB’s fmincon search using a random
starting location, the genetic algorithm (ga with default options) based search result, and
a particle swarm based search with an initial LHS, a population of size 50, 60 generations,
and a maximum velocity of 0.075, i.e. each particle (point) is given a random velocity in

the range |—Vmax,Vmax|, and f(X) evaluated at each point.
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Figure A.12: Global search examples

A.5 Monte Carlo (MC sampling)

The ‘father’ of sampling, the Monte Carlo method [266], was not the first ever foray into
statistical sampling but its ‘invention’ was certainly pivotal in many fields. Its use was
made practicable by the development of the first computers, and was the ‘brain child’ of
Stanislaw Ulam, working with John von Neumann on a model of a thermonuclear reaction
[175]. Independently, the same method was in fact developed by Enrico Fermi, but it was
Ulam, along with Nicholas Metropolis who first published the method [176], and coined
the name Monte Carlo. The basic premise of Monte Carlo is that a simple random
sample of a system can be used to approximate the behaviour of the true system, and
that as the size of the random sample increases the accuracy of the prediction converges
towards the truth. In the case of a stochastic process with random input, we wish
to predict the characteristics of the output pdf, based on a given input distribution:
uncertainty propagation (UP). The advantage of MC is that it can be used to predict
the full distribution and all its characteristics, and provides unbiased estimates of the

mean and variance [307]:

L
hiv=F=7 > fi (A.9)
=1
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and
N

1 _
6?(]\[_1) “N_1 Z (fi — f)2

=1

where N is the sample size and f is the performance function.

(A.10)

Figure A.13 shows the use of simple random sampling in two dimensions to illustrate

Monte Carlo sampling of variables with uniform or normal probability distribution func-

tions.
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Figure A.13: Monte Carlo random sampling in two dimensions, 500 samples

The difficulty with simple random Monte Carlo sampling is one of expense. Although,

since its conception, computing power has reached levels not imagined in 1949, the com-

plexity of the computational models has also increased and continues to do so.

By

central limit theorem®, it can be shown that the estimated probable error [266], using

Monte Carlo reduces by a factor of 1/v/N, independent of the number of variables (di-
mensions) [216]. Despite the dimensional independence of the method, convergence of

4 Central limit theorem was so-called by Georg Polya in 1920 [213]. The theorem takes many guises,
now covers a variety of different results [25], and is described in many statistical texts including Sobol’

[266] and Larsen and Marx [146].
developments with Poisson, Cauchy, and Levy, to name only a few [71].

Its foundations lie with Laplace, Chebyshev, Markov, and later
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typical engineering problems can require thousands of evaluations (samples) rendering
its use impossible for complex problems. For this reason active research continues to this

day seeking to improve dramatically on the cost of this established and reliable method.

McKay et al. [172] uses samples from uniformly distributed input variables and proves
mathematically that, for an equally sized sample, “Latin hypercube sampling is better
than random sampling for estimating the mean and the population distribution func-
tion". Where the input variables are distributed normally, or with any exponentially
diminishing pdf, bounds that artificially truncate the sample are needed in order to
define the equally probable strata. For normally distributed variables, however, this
problem can be overcome by constructing a random LHS by perturbing a simple random

sample drawn from the normal distribution, a technique introduced by Stein [274].

There are also a number of more recent developments of the basic Monte Carlo approach,
developed mainly in financial modelling for investment banking, to reduce the numbers of
sample points required. These are referred to as quasi Monte Carlo and differ from simple
random Monte Carlo by sampling according to a low-discrepancy® sequence: Halton or
Sobol, for example. A popular derivative of this kind of Monte Carlo for uncertainty is
Markov chain Monte Carlo [3] where the sampling sequence is a random walk where each
new sample is not independent of the previous ones. In this way, a sample that more

closely resembles the desired distribution can be obtained with fewer samples.

However, none of these methods reduces the number of samples by the orders of magni-
tude that would be required to make them significantly useful in engineering design cases
given the long-running workflows and, without exception, any other related methods are
subject to the ‘curse of dimensionality’; the number of samples required increases to the
power of the number of dimensions, described particularly succinctly by Forrester et al.
[78].

A.6 Quadrature

Instead of estimating the full distribution of the performance, it is often considered
reasonable for RDO to estimate only the mean and variance of the performance function.

Given that the mean and variance are integrals:

+oo
i :/ f(zy..wp)P(xy...xp)dzy...dxy, (A.11)
and oo
O’]% = / (f(@1.p) — puf)?P(21..00)dy .. day, (A.12)

5Discrepancy is a measure of how far from equidistribution a sample is, i.e. low-discrepancy samples
avoid regions of missing samples that can be introduced by an entirely random sample.
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where P is the joint pdf of the variables x;, it is also possible to use long-established

numerical integration techniques for their estimation®: quadrature.

Full quadrature

The function is split into intervals and evaluated at the abscissas (the ‘sample’ points).
Quadrature methods can be described as open or closed depending on how the extremi-
ties of the function are considered, simple or Gaussian with equally spaced or weighted
abscissas, non-adaptive or adaptive where integrals are evaluated over the full range, or
split. Quadrature may be applied after variable transformation and in multiple dimen-
sions. Without exception though, all full quadrature schemes require large numbers of
function evaluations. In addition, as the number of dimensions and required tolerance

increases, the number of evaluations increases in an exponential manner.

Quadrature rules date back to “Newton, if not farther” [216]. The simplest historical
rules include the ‘trapezoidal rule’, ‘Simpson’s rule’; and ‘Bode’s rule’ and ‘extended’ or
‘composite’ rules based on these are detailed by Press et al. [216]. All integral formulae
are some form of weighted sum of evaluations at the sample points. For linear functions,
even the simplest rule is exact, but for non-linear functions, or those of an asymptotic
nature (we are dealing with both), the error in the integral estimation can be high,
even with a large number of points. For cases of improper integrals, where the limits
are infinite (such as the normal Gaussian pdf) it is typical to use extended rules such
as the ‘extended mid-point rule’, or more commonly use transformations or expansions
to split the integral into a set of simpler integrals e.g. Fourier transforms or Taylor
series expansions. The polynomial chaos expansion (PCE) is one such expansion used

specifically to expand a pdf.

Gaussian quadrature has non-uniform distribution of abscissas and it is possible to choose
the weights to result in an exact solution for the integral of a polynomial function.
Most popular algorithms for determining abscissas are are now based on the Gaussian
approach: calculation of abscissas and weights to provide a precise answer for a specific
type of function. Examples include the Gauss-Legendre or Chebyshev algorithms for
problems with finite bounds, and Gauss-Laguerre or Gauss-Hermite for infinite bounds
[135].

Most implementations of quadrature now include adaptive schemes. Standard schemes
increase the number of sample points to the next available level (usually a large increase
in evaluations) and compare the predictions from the two sets to give an error estimate.
If the error is sufficiently small then the last set of points has been deemed superfluous to

requirement but the cost of its evaluation has already been expended. Adaptive schemes,

5These integrals generally do not have exact analytical forms so numerical methods are usually
required.
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however, evaluate this error from the first two sets and if the tolerance is not met, split
the integral into two. They then recursively subdivide the resulting functions until each
of the new functions have a sufficiently small error and the results can be summed. The

MATLAB quadrature tools apply a variation on adaptive Lobatto quadrature [87, 251].

Quadrature schemes increase in complexity when extended to multiple dimensions and
freely available code often only extends to two or three possible dimensions. In addition,
the numbers of function evaluations are still significantly large and as such are restrictive

in their use for engineering uncertainty calculations.

Sparse grids for quadrature

None-the-less, recently Xiong et al. [320] proposed the use of sparse grid numerical inte-
gration as a novel approach to statistical moment estimation for uncertainty propagation
in engineering design. The methodology uses a significantly reduced (sparse) set of ab-
scissas (sparse quadrature (SQ)). As with full quadrature, the accuracy of the integral
is dependent upon the level of polynomial exactness chosen, and as one would expect,
the cost (number of points) increases with exactness. Xiong et al. [320] have proven
the potential of the technique for UP with analytical test problems with up to thirteen
dimensions by comparing with a meta-model based approach and direct Monte Carlo
sampling. Padulo et al. [197] also successfully apply a reduced quadrature based ap-
proach to moment calculation and extend this to RDO via an airfoil design problem. A
toolbox for implementing the selection of sparse grids and their adaptive counterparts is

provided by Klimke [136] and example grids are shown, figure A.14
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(a) Clenshaw-Curtis sparse grid (b) Chebyshev sparse grid

Figure A.14: Example sampling plans (grids) for integration by quadrature (level
5 polynomial accuracy; 145 points)

There are still difficulties, which may not be insurmountable, with SQ:

e it relies on interpolating through a set of fixed points meaning that any ‘noise’ in

the data, from whatever source, renders the results meaningless,
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e there is no probabilistic measure of error in the fit, such that it is difficult to use
the method independently and have an understanding of how well it has performed

in its prediction,

e a mathematical description of the multivariate distribution of the combined uncer-

tain variables is required,

e most schemes developed thus far are based on polynomial exactness, which may

not be appropriate depending on the performance function, and

e if, for any reason, there are failed or missing sample points, the calculation fails.

Although many fewer sample points are required than for MC or full quadrature, SQ can

still be prohibitively expensive for most practical engineering problems.

Once RDO has been employed using an approximation of the mean and central moments
to determine an optimum design point, it will be pertinent to use a propagation technique
to determine the full output pdf at that optimum. Only direct sampling, or RSM building
followed by direct sampling of the model, enable estimation of the full output pdf. If
the resulting point is close to a constraint boundary one may also wish to estimate the

probability of failure, or even propose a further RBDO search locally.

A.7 Classical curve and surface fitting methods

A.7.1 Polynomial models and least-squares regression

It may be assumed that the data points contain only random error (equal, uncorrelated,
normally distributed error), or noise. Our goal is then to find the ‘best’ possible prediction
of the ‘true’ curve assuming that our analytical form (polynomial of a given degree)
is ‘correct’. This is regression, and “the earliest form of regression analysis for linear

7th century. Their

problems was studied independently by Gauss” and Legendre® in the 1
method is a technique which minimizes the sum of the squares of the residuals (differences
between fitted function and given data) to find a best fit” [41], figure A.15. If z is the
variable which is controlled in an experiment, often termed the independent variable, or
regressor and y is the measured variable, dependent variable, regressand, or response,

then the least square method minimizes S, where

S=> (yi — 9x))?, (A.13)
=1

"Carl Friedrich Gauss is usually credited for the inception of least squares [64] in 1795 although he
didn’t publish it until 1809 [267].
8 Adrien-Marie Legendre first published the method of least squares in 1806 [267].
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and g(x;) is the estimated response at each of the n control points, x;. ¢ is a curve
parametrized by u = u;=¢...un,, estimated parameters and the best estimate is ‘trained’

on the data points y;(x;) for i = 1,...,n.
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y =0.55 +2 y2+ x2 = 225
18 . Datg points . e Data points
-+ Deviation from fitted curve (residuals) -+ Deviation from fitted curve (resi duals)
16 20

(a) Straight line residuals (b) Arc residuals
20 : : 25 T
y=0.55x+2 y2+ x2 = 225
18 e Data points e Data points
“““ Orthogonal distance from fitted curve 0 Orthogonal distance from fitted curve
16 20

(c) Straight line orthogonal distances (d) Arc orthogonal distances

Figure A.15: Illustration of residuals and orthogonal distances from a straight
line and an arc

The method that Legendre named the method of least squares referred to fitting a poly-

nomial model (y) with m, + 1 polynomial coefficients:

Mp
i) = > e, (A.14)
§=0
where my, is the polynomial degree.

Prior to fitting, one must determine the most appropriate degree of the polynomial model.
This is critical in any application. A hypothesis test can be conducted as described by
Ralston and Rabinowitz [224] to ensure that over-fitting (where additional parameters
become superfluous to the prediction of the response and instead begin to describe the
noise) does not occur. The polynomial has chosen degree (m,,), and if there is no error
in the data then an additional term and it’s coefficient uﬁiﬁ, will be zero. However,
the errors are in fact considered normally distributed with variance ¢? and points with

unequal importance or unequal measurement accuracy are weighted with variance o2 /w;.



222 Appendix A Methods: the detail

Ralston and Rabinowitz [224] apply the null hypothesis Hy: um +1 = 0 and given that
the curve of maximum-likelihood [216] will lie where the sum of the squared deviations

from the points is minimized, they state an expected value for the variance:

52
02 =—"" (A.15)
4 n—mp—1
where
mp 2
sz Z ;mp)xf) . (A.16)
=0

A null hypothesis that can not be rejected will result in a variance that is independent

of polynomial degree and further increases in degree will result in negligible change in

2

Oy

Having defined the polynomial degree, we turn to minimizing the sum of the squared
deviations of the data points from the model values (S, which is unweighted). Linear
least-squares can be used when the model is “linear in the parameters” [19]|, and the

polynomial model can be written in matrix form as:

y =Zu+e, (A.17)

where y is a vector y1, 42, ...y, of sample response values with a vector of corresponding
errors €. u is the vector of the unknown coefficients, Z is an n by (m, + 1) matrix
of postulated terms (in the case of a polynomial these are zy, = 1,29, = 2,23, =

z2, <. Zmyn = 2P for ). Similarly, S can be expressed in matrix form:

S(u) = (y — Zu)T(y — Ze). (A.18)

By formulating equations for the partial derivatives of the sum of the squared deviations
with respect to each of the polynomial coefficients, the equations are found to be linear

and the unique solution is a minimum [145]; the ‘best fit’. These are the normal equations:

72770 =17y, (A.19)

and there is a closed form solution. Linear least squares is often also termed ordinary
least squares and numerous texts describe the method and approaches to solving this
linear system, e.g. Lancaster and Salkauskas [145], Larsen and Marx [146], Box and
Draper [19], Myers and Montgomery [182], and Press et al. [216]. In particular, we direct
the interested reader to Press et al. [216], for LU decomposition; a splitting of the matrix

(ZTZ) into lower and upper triangular matrices L and U, by Cholesky decomposition; i.e.
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an upper triangular matrix and its transpose, or Gauss-Jordan elimination; incorporating

an identity matrix and using Gaussian elimination.

These methods still exhibit difficulties for complex problems, such as numerical instabil-
ity, round-off error during matrix inversion, or singular matrices in certain circumstances.
In addition, if the Z’s have linear relationships for example, construction of the normal
equations will result in a set of equations without a unique solution. QR decomposition,
or factorization, can be utilized to overcome round-off errors and is a very numerically
stable algorithm [166], used in MATLAB with pivoting for linear least-squares fitting.
When the matrix is near-singular or rank-deficient (there are some independent linear
relationships between columns of Z) singular value decomposition (SVD) (section A.9.2)
is typically used [216, 310].

Where there is more than one ezplanatory variable (regressor), it is termed multiple
regression and we refrain from its discussion here, except to point out that principal
components regression is employed to determine the regressor with most effect on the
response, and is not involved with determining the principal components within the

model of the response, the realm of principal component analysis (PCA, section A.9.1).

Where the set of equations derived by this approach is non-linear, one must take an
iterative approach, or use a general unconstrained minimization routine [163| to converge

to a solution.

There are a number of variations of least squares, linear or non-linear, including weighted
least squares, also termed moving least squares, which is primarily used for multivariate
regression to increase the level of interpolation through specific points, the extreme case
being interpolating moving least squares [145]. There is also iteratively weighted least
squares which revises weights at each iteration [64]. In general, procedures that attempt
to reduce the sensitivity of regeression to uncertainty in the assumptions are referred to
as robust regression. In particular “least squares estimation is known to be sensitive to
outliers” |64], and the study of problem areas in the fit is sometimes referred to as interior
analysis. A further noteworthy inclusion is piecewise regression, or segmented regression,

problems for both continuous and discontinuous function predictions [170, 212, 288, 290].

A.7.2 Orthogonal least-squares and similar fitting routines

Crucially, traditional forms of least squares fitting make one over-riding assumption:
that the error only occurs in the regressand, y, and not in the regressor, . Willink [316]
discusses the use of the non-orthogonal residual in the ISO standard for the expression of
uncertainty in measurement (the ‘GUM’) [116, 117]. In the geometric point cloud prob-
lem, in two or three dimensions, one must consider that error occurs in all dimensions.

Intuitively, the alternative similar method uses the orthogonal distance, or orthogonal
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residual, d, in place of the residual discussed thus far, figure A.15. The minimization

then becomes the minimization of R, where
n

R=> d*(u), (A.20)
i=1

and d is a function of u. The goal is to find

min R. (A.21)

This assumes that the variances in the z, y, and z coordinate measurements are equal.
This is sometimes termed normal least squares. The minimization is generally non-linear

with no closed-form solution so an iterative procedure must be employed.

Alternative orthogonal distance based fitting routines include least absolute deviation
regression, and least median of squares, which is median-based and can be preferable
where the error is asymmetrically distributed or contains outliers [40]. A popular method
in the literature, for inspection, is the minimum-zone method, attributed to Le and Lee
[147], where the distance between the two parallel curves which enclose all the data points
is a minimum. Such a method, as with least-squares, is sensitive to outlying erroneous
data points. It also suffers from a tendency to underestimate the ‘true’ deviation range
from the nominal, especially where the number of measured points is small. It is well
suited where inspection is the primary motive but it falls short as a means of representing

the true curve.

A.7.3 Spline fitting

Splines are a series of piece-wise, or concatenated, curves connected at their end points,
often with tangency or smoothness constraints at intersections. They range from piece-
wise polynomial formulations to extensions of Bézier splines and curves, developed to give
a parametric definition of curves for automobile shape design whilst enabling intuitive
manipulation by designers. The popular rational Bézier spline is parametrically defined
as

K

> W(i)P(i)bi(t)
G(t) = i=0

- : (A.22)
;) W (2)bi(t)

where G is the curve as a function of ¢, the distance along its length from Py, and the
number of control points is Kg + 1. P are control points, W are weights attributed
to the control points. The spline is rational because ¢ and W can be varied between 0
and any value; the parametric definition is rationalized by the denominator term. b is a

vector of basis functions, which are Bernstein polynomials in the case of a Bézier spline.
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Figure A.16: Second order rational Bézier spline, varying weights of control
points P; and Ps

Figure A.16 shows a second order rational Bézier spline with increasing weights, W. Its

order (O) is two because each curve segment is controlled by three (O + 1) points.

In their most generic form, b-splines and their analogous surfaces are termed NURBS,
(non-uniform rational basis-splines), and NURBS surfaces respectively. They overcome
a couple of key limitations of the Bézier splines: the degree of the curve being fixed by
the number of control points, the lack of local control of the curve, fixed continuity and
tangency between segments. This additional flexibility is obviously of benefit when local
geometric perturbations need to be represented. To achieve this, the b-spline is split
using knots and the basis function is a function of a knot vector, T. This means that
local control of weights and degree of continuity is possible and that curve segments do
not have to end at control points. Further detail on the construction of NURBS and
specific splines is available in many texts, e.g. de Boor [48], Salomon [243|, and Farin
[67].

Classical spline fitting (or approzimation) approaches are documented by Dierckx [57].
The routines are either based on:

e weighted or unweighted least-squares, or

e a smoothing criterion in combination with, or constrained by, a least squares func-

tion.

Most fitting methods assume cubic splines and search for the number of knots and their
positions, and the b-spline coefficients [57]. The parameter vector can be large, giving

rise to an expensive optimization problem [85].
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The least-squares problem is formulated as described in section A.7.1, and the alternative

constrained smoothing problem can be formulated as

minimise:

0= "G @)? da (A.23)

1

subject to
n

S= (wi(yi — §(2:)))* < Smaa; (A.24)
i=1

where Sj,q. is a specified number referred to as the smoothing factor, which could have
its origins in the variance of the measurement error if using inspection measurements. k
is the chosen degree of the spline. “n can be seen as a measure for non-smoothness” and
S “as a measure of closeness of fit” [57]. One might also consider the criterion of Powell,

to determine a cubic spline g(z) that minimizes

=S+ (wD";)? (A.25)
j=1

where D" is the third derivative (discontinuity jump) in the spline at the j* knot.
Powell’s method, described by Dierckx [57], is a two-stage process where the minimization
first determines the knots and then the remaining parameters. A similar approach, which
combines (A.23) and (A.25) minimizes:

=3 (@ (T4) - sM(13-))?, (A.26)
i=1
subject to
S = (wi(yi - gz(xz)))z < Smaa37 <A27)
i=1

where T' are the knots and k is the specified degree of the spline.

Further variations on this exist. For example, the MATLAB smoothing spline minimizes

Tn

593wy — §w:))? + (1 — s5) / o)l (:)|2dz, (A.28)
=1

1

where v is a vector of constants, §”(z;) is the second derivative of ¢, and sg is the
smoothing parameter which determines the balance of smoothing to fit, i.e. sg = 0
results in a least-squares linear fit, and sg = 1 results in a natural (‘not-a-knot’ end
conditions) cubic interpolating spline. sg can be specified, a maximum error measure
(first term) value supplied, or a value of sg determined by sg = 1/(1 + %2), where h is

the average data spacing (the expected sg for uniformly spaced data).



Appendix A Methods: the detail 227

A.7.4 Orthogonal distance based spline fitting

The procedures described above are posed algebraically, in a similar manner to poly-
nomial regression; y is a dependent variable, expressed in terms of x and a vector of
parameters defining the function. If however, the spline is defined in terms of ¢, along its
length, a minimization of the squared residuals necessarily normal to the curve, i.e. the
lo norm or the squared Euclidian distance, is required. Given that the spline curve can
be expressed as two individual spline functions x = G, (t) and y = Gy(t) over a given

range of ¢, Dierckx [57] expresses the orthogonal least squares minimization criterion as

S= Z(Wf((wi = Ga(t)? + (i — Gy(t:)*)*. (A.29)

The smoothing criterion can also be extended in an orthogonal sense: minimize

= S(OOTH) - GO@-)R + G4 - CP@-P), (A0

j=1

subject to
S < Smaz- (A.31)

The precise construction of the minimization problem varies, as do the parameters that
are held fixed and the optimization algorithms used. They have in common however, as
Chivate and Jablokow [40]| point out, that curves are usually fitted using the method of
least squares, achieved almost universally by fitting gridded data, or converting scattered
data to a gridded form. Chivate and Jablokow [40] emphasise that a benefit of a para-
metric representation is the ability to robustly calculate intersecting curves, although the
surfaces often need to be extended first. In addition, NURBS benefit from the ability to
define curves and surfaces with discontinuities, and can also represent closed sectional
profiles, e.g. airfoil sections [133]. Chivate and Jablokow [40] recommended parametric
surface fitting over algebraic fitting for gridded data points and introduce a two stage
process of fitting algebraic surfaces to generate a grid, followed by a parametric surface
fit.

The orthogonal least squares problem as expressed (A.29 or A.30) is a single objective
minimization with multiple bounded variables, the number of which depends upon the
chosen parameterization of the curve. In a review of the fitting routines employed in
CMM software for fitting curves to measured data, Dowling et al. [61] state that “the
implementation of optimization routines and approximation algorithms, ..., is not stan-
dardized ..., and much variability exists”. We find that the most commonly published al-
gorithms are Gauss-Newton based local searches. Forbes [76] summarizes this procedure
in a measurement context, although it is also well documented elsewhere, [163, 91, 185].

Atieg and Watson [7| compare three Gauss-Newton based methods and their efficiency in
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terms of number of iterations for circle and sphere fitting. Nocedal and Wright [185] use
a Levenberg-Marquardt trust region based local approach. Divergence and slow conver-
gence are often encountered with these methods, especially where poor starting values
are chosen [76]. If we wish to fit multiple (possibly hundreds of) similar data sets, where
the true geometry may potentially be far from the nominal (the obvious starting point),
a global search may be more appropriate to avoid convergence problems even if speed is

sacrificed.

Given that splines are polynomial-based curve representations, the fitting routines “usu-
ally” utilized within co-ordinate metrology are Gauss-Newton type linear least squares
solutions to orthogonal distance regression [249|. However, the more flexible b-splines
include knots, and their inclusion as variables renders the optimization problem highly
non-linear and the determination of a global optimum is more difficult [297]. According
to Van Loock et al. [297], numerous methods have been proposed to solve this prob-
lem, many requiring a good initial guess of the knot locations and often being unable to

guarantee global optimality.

Approaches to this problem differ in both chosen optimization routine and problem
construction. Many propose a splitting of the optimization into stages (solving for one
set of variables, and then another). For example, Demeulenaere et al. [54] propose a
construction of the problem such that it is convex, by providing a large fixed number of
candidate knot locations so a solution is more easily obtained. Van Loock et al. [297]
enhance this structure to: improve numerical stability, expand the ability to introduce
contraints, and reduce the number of active knots still further. An example of the
application of b-spline fitting to point measurement data was given by Khameneifar
and Feng [133] for the inspection of turbine blade sectional measurement data. Their
optimization considers the measurement uncertainty as a constraint and is a least squares

minimization of the Euclidean distances with constraints on continuity.

Surface-type, rather than curve-type problems introduce further difficulties in terms of
expense due to the number of points and additional coefficients, as well as risking failure
with unevenly distributed points and surfaces of non-zero genus (with ‘holes’, or handles).
Galvez et al. [85] (2012) gives a succinct summary of typical approaches and compares

his GA-based approach with six alternative methods.

There is a large array of global optimization algorithms, as described in section 2.3.
Most examples of their use for curve and surface geometry fitting from measurements
fit NURBS surfaces. Galvez and Iglesias [84] demonstrate the use of a particle swarm
algorithm and Galvez et al. [85] refer to a number of examples of papers demonstrating

the use of global optimization.
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A.7.5 Bayes regression

This review omits the Bayesian approach to regression, which is currently in its infancy
in its application to point cloud measurement. Willink [316] and Lira et al. [156] are
recent examples for straight line fitting to uncertain measurement data. In all the ap-
proaches discussed so far, “parameters are assumed to be unknown but fixed, and are
estimated with some confidence” [164]. With the process utilizing Bayes’ theorem, “the
uncertainty about the unknown parameters is quantified using probability so that the

unknown parameters are regarded as random variables” [164].

A.8 Statistical methods for uncertainty representation

A.8.1 Popular distributions

In this thesis we are mainly concerned with continuous data. It is usual, in the absence

of any other information, to assume the Gaussian normal distribution:

(x1 — H)T ,

202

1

oV 2

P(z) = exp [— (A.32)
for a single random variable x1, figure A.17a. This is a function describing the marginal
(unconditional) probability of drawing each value of 1 randomly. When there are multi-
ple random variables with normal distributions their joint distribution function is given
by:
1 1 Ty7—1
P(x) = ———vexp *§(X —p) Vo(x—p), (A.33)
(2m)3 [V}

where x is a vector of d variables x1, ..., x4, pt is a vector of means and V is the covariance
matrix, which must be symmetric, positive definite for a distribution function to exist.

In these cases, the variables may, or may not, be correlated. Figure A.17b shows an

illustration of the bi-variate case for two uncorrelated variables.

It is common practise in uncertainty studies to also either consider input variables to be
distributed uniformly such as the example in figure A.17a. The probability distributions
may also require truncating, which may be necessary where inspection processes are used
to identify components that exceed tolerance limits and remove them from service, figure

A.17c.
The log-normal distribution, figure A.17d:

P(21) = ——exp {—

2mxy

W] : (A.34)

2

is also a popular distribution in engineering design, particularly for representing material

property variations.
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Figure A.17: Popular distributions in engineering design

When a ‘standard’ distribution function cannot be fitted with reasonable confidence,
section A.8.3, a Kernel density estimator can be used to fit a sample. The Kernel

function is given by

Plz) = nih zn; K. <f" ;Lx) , (A.35)

where z1,z9, ..., 2, are a set of n random samples, K;() is a smoothing function, and
h is the bandwidth. Usually, a normal kernel smoothing function is used, along with a
theoretical optimal value for bandwidth (the MATLAB fitting function uses the optimal
as defined by Bowman and Azzalini [17]). An example of such a fitted distribution is
shown in figure A.18.
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Figure A.18: Kernel function fitted to an example sample

A.8.2 Stable distributions

The stable distribution, applied in chapter 6, can be useful when data sets exhibit heavy

tails or skewness.

A random variable (X) is said to be stable (previously quasi-stable) if, for the sum of

two independent copies of it, the following holds true:
a1 X1+ aaXe = bX +c (A.36)

where a1, ag, and b are positive constants, and ¢ is a constant where ¢ € IR. = means
that the shape of the distribution of each is equal, but that it may be scaled or shifted.
It follows that, for n, iid stable random variables (X1, Xo, ..., Xp,,)

Xi+Xo+ o+ Xy, Sby, X+, (A.37)
Similarly, if there exists a positive constant b and real constant ¢ where
X £bY +o, (A.38)

then two random variables X and Y are of the same type.

It is possible to show that Gaussian, Cauchy, and Lévy distributions meet this criteria
using the closed-form expressions of density. Other than the reflection of the Lévy
distribution, there are no known other stable distributions with closed forms for their
densities [187]. Therefore, to define the stable distribution, the characteristic function ¢

(the Fourier transform of the probability density function P(z)) is used. Given a random
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variable X, its characteristic function is defined as a complex function of ¢:

¢a(t) = Fu[P(2)](2)
= E[e™] (A.39)
= / P (x)dz,

— 0o
where .%, is the Fourier transform with parameters (1,1), and E is the expectation. The
process of determining the probability density function from the characteristic function

is therefore the inverse Fourier transform

P(z) = 7 [6(1))(2)
1 [ g (). (A.40)

:% .

Given the above, if a random variable, X, is stable, then it can be parameterized by
a characteristic function in a number of different ways. Nolan [187] describes the most
popular of these, the first of which, Sy is the “simplest form for the characteristic func-
tion that is continuous in all parameters”. This is the form used by the MATLAB
fitdist function utilised in this work. The second form that Nolan [187] describes (S1)
has “nice algebraic properties”, but the mode is unbounded and the parameters don’t
provide intuitive properties that are interesting in most applications. The So(a, 3,7, 9)

parameterization is described as follows:

X is stable if

. Z+94 1
x<l’ a# (A.41)
YZ + (6 + BEylogy) a=1

where Z has characteristic function

oz (t; a, B) = B[]
exp{—[t|*[1 — iB tanZ® (sign )]} «#1 (A.42)
exp{—|t|[1 +iB Z(sign t) log|t|]} o« =1.

This leads to the characteristic function for X given by Weisstein [314] and MATLAB
[168]:

ox(t;a, B,7,8) = E[e"]

exp{idt — y[t[*[1 + iB tanZ® (sign t) (|v¢|2=) —1)]} a#1

exp{idt — y|t|[1 +iB 2 (sign t) (v]t])]} a=1,
(A.43)

and « is a shape parameter defining the tails (0 < a < 2), § is a second shape parameter

describing skewness (—1 < 8 < 1), « scales the distribution (0 < v < c0), and § locates
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Figure A.19: The stable distribution with varying parameter values

it (—oo < 6 < 00).

Examples of the resulting distributions are shown (figures A.19a, A.19b, A.19¢, and
A.19d). It is noted that the the Gaussian normal distribution is a stable distribution Sg

Witha:2,5:0,’y:%,and5:u.

A.8.3 Hypothesis tests

Often referred to as ‘goodness-of-fit’ tests, there are a plethora of statistical tests for
determining the probability that a sample has been drawn from a particular distribution.
In particular, the z-test and x?-test have been applied during this work to determine
whether a sample of a particular variable has a high probability of having been drawn
from a normal distribution with either sample mean and sample standard deviation, or
sample standard deviation and a mean equal to a nominal design value. Each test uses
a test statistic to assess a null hypothesis. A p-value is calculated: it is “the probability

that that a test statistic, at least as significant as the one observed, would be obtained

assuming that the null hypothesis were true” [315].
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The z-test statistic is

p=2 B (A.44)

where Z is the mean of the n-sized sample, and p and ¢ are the mean and standard
deviations of the normal distribution being tested. If the null hypothesis is correct then

2 has a standard normal distribution. The y2-test statistic is

X = i [(OTEE)T : (A.45)

where data are grouped into IV, bins, and O; are the observed counts and E; the expected
counts is the distribution of the sample is the same as the hypothetical one. It can be
used to test any distribution and the test statistic has a y? distribution if there are

enough counts.

The Kolmogorov-Smirnov two-sample test statistic:

D* = mi}x(]Fl(x) — Fy(2))), (A.46)

the absolute difference between the cdfs (F) of the two data sets, is used to test the

hypothesis that two samples have been drawn from the same distribution.

In hypothesis tests is it common to select a level of significance at which to test the
hypothesis. This is the selected p-value below which it is possible to reject the null

hypothesis. It sometimes referred to as the a-value, and often designated at 5%, or 0.05.

A.8.4 Correlation and the analysis of variance

The analysis of variance (ANOVA) can be applied to data sets to understand which
groups within a population exhibit variation individually, or whether the variance is
spread throughout the groups. This can be critical to reducing the number of variables
for uncertainty studies and robust design. It does, as with most statistical tools, work
most effectively when data sets are large, and works under the assumption that all the
variation, €, is normally distributed N(0, 02). The method tests the null hypothesis that
the groups have equal means, where each group sample y;; = pj + €; (¢ = 1...n; is the
sample from the ' group). By splitting the total sum of squares into a sum of the sum
of squares between the groups (SSR) and within the groups (SSE), it is possible to test
whether the ratio of the two is significantly high using the F'-statistic.

As we have already mentioned, ignoring correlation between input variables by assump-
tion of independence can result in misleading propagation of uncertainties to performance

prediction. Correlated variables have a covariance which is non-zero and the statistical
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correlation is
cor(Xy, Xp) = VXL X2) (A.47)
0X,0X,
Correlation is, however, often difficult to ascertain. Indeed, relationships between vari-
ables can be complex. The simplest means of evaluating correlation is to assume that the
relationships are linear. In which case a linear correlation coefficient can be calculated
between sets of two sampled variables (z; and z2) as

)2
N O DL Rk L Yl (A.48)

(% —naf)(C 23 — na3)’

a function of the sum of the squared residuals using linear regression.

An alternative to the linear coefficient (or Pearson’s correlation) is the rank correlation.
There are two commonly used rank correlation measures: the Kendall rank correlation,
and Spearman rank correlation. They are non-parametric measures of the strength of the
inter-dependency between the two variables of interest. The Spearman rank correlation

coefficient is the most popular, and is defined as

d 2
f— 1 — § s

where dg is the difference in statistical rank between the corresponding variables, i.e.
their numerical position in the sample when ordered in ascending value. n is the number

of sample points.

A.8.5 Sampling with correlation

Multi-variate distributions can be constructed with correlation in some cases, where all
variables exhibit the same distribution type, or exactly the same distribution, but this
is approach is very limited. Instead, copulas can be applied to convert rank correlation
to linear correlation, thereby enabling sampling in multiple dimensions, and for any

marginal distributions.

Copulas make use of the fact that “applying the normal cumulative distribution function
(cdf) ... to a standard normal random variable results in a random variable that is
uniform on the interval [0,1]” and “applying the inverse cdf of any distribution, F', to
a” uniform random variable on [0,1] “results in a random variable whose distribution
is exactly F” [168]|. Given these facts, by sampling a multivariate standard normal
distribution with prescribed linear correlation (in the leading diagonal of the covariance
matrix) it is possible to sample any set of distributions F' with the same correlation. For
example a bivariate standard normal distribution is sampled with a sample size n = 1000,

and linear correlation between x; and x2 of p = 0.8, as illustrated in figure A.20. This
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Figure A.20: Bivariate standard normal random sample

]

Figure A.21: Bivariate standard normal random sample converted to uniform
bivariate sample via normal Gaussian cumulative distribution function

sample can be transformed via the normal cdf, to a bivariate normal sample on [0,1] as

shown in figure A.21.

The difficulty here is that the transformation to F' is non-linear, so the linear correlation
is not, in fact, maintained. If a rank correlation is used, however, the correlation is pre-

served. The linear correlation coefficient p is still needed to parameterize the underlying
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Figure A.22: Bivariate marginal kernel function distributions fitted to random
correlated sample n = 500

multivariate normal distribution. It is possible to calculate this directly from the rank

correlation, the formula being dependent upon the underlying distribution type.

Here, we demonstrate the use of a Gaussian copula to fit two correlated variables. Con-
sider that we have a sample of n = 500, looking like the sample in figure A.22. The
marginal distributions can be fitted using Kernel density functions as illustrated. The
sample can be converted to a sample of the uniform distribution on [0,1], figure A.23,
using the cdf of the kernel function. A copula, of chosen form, can then be fitted to
this uniform sample, resulting in a value of p in the case of the Gaussian copula, and
additional parameters if alternative copulas, such as the ¢-copula are used. A random
sample can then be generated from this copula, figure A.24, and converted back to the
original marginal densities using the kernel function cdf, figure A.25. The process can

be applied in more than two dimensions.

The Iman-Conover method for inducing rank correlation among samples [114] is also
widely used for Monte Carlo (MC) sampling. This is equivalent to the copula approach
where, as above, a Gaussian copula is used. The procedure can be expressed using matrix

algebra, in terms used by Iman and Conover [114], as follows:

The target rank correlation C* is the rank correlation observed in a data set. C is the
rank correlation of our MC sample set. X;Lic is a vector with desired correlation matrix
C and XLj, = X* (a matrix with the same distribution in its rows as X;Lj), where
Lic is a lower triangular matrix that results in LicLjs = C, and X is an n X d matrix

of samples with rows X; (i = 1,...n), if C is equal to C*.
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Figure A.23: Bivariate kernel function sample n = 500 converted to uniform
correlated sample
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Figure A.24: New sample n = 1000 of uniform variables using fitted Gaussian
copula
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Figure A.25: New uniform sample n = 1000 converted back to original marginal
densities

Lic is calculated by Cholesky factorization. Re-ordering X as the corresponding column
of X* results in rank correlation of the input sample set X that is approximately equal
to C.

This method has largely been superseded by the use of copulas in many fields, but its

use is still popular due to the simple matrix implementation as described here.

A.9 Principal component analysis

A.9.1 The fundamentals

“Principal components analysis constructs independent new variables which are linear
combinations of the original variables” [168]. This summary is constructed using multiple
sources: Smith [262]|, Khan Academy [134], and MATLAB [168].

Let us consider a set of two variables x1 and x9. If these two variables are correlated in
some way then it stands to reason that the data could be represented by a single variable
only. In principal component analysis (PCA) the relationship between the variables is
assumed to be a linear one and the original variables are replaced by two alternative or-
thogonal variables; the principal components. In the case where the correlation is deemed
to be high enough, one principal component may be considered sufficient to represent

the data. To illustrate this, a sample, size n = 20, of the population is taken, resulting
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in two corresponding vectors x; and Xa:

x1; | 83075 8.7668  8.1482  8.9724  9.0638 8.9385  9.3133  9.6685
Xg | 27.2343 27.4585 28.4434 29.2260 29.5978 30.3069 30.8454 31.2393
x; | 10.5157 10.5539  9.9300 11.0070 10.7451 10.7874 11.1429 11.1590
xg | 31.9588 32.3425 33.2777 33.4706 34.0862 34.7381 349111 36.3877

X1

11.3752 11.8979 12.0818 12.2834

X2

36.7650 37.1490 38.1741 38.1577

Plotted in two dimensions, this sample is displayed in figure A.26a. The following steps

are then taken to identify the principal components, figure A.26b.

1. Mean-centre the data and scale as appropriate (if the two variables are different

scales or units it is typical to scale, or weight, the variables according to their

inverse standard deviations):

Z Xi(u)
x; = Xz(u) . o; i = 1’ ,d (A50)
a; n

where x;(y,) is the unweighted sample vector, d is the number of variables, and ;)

is the standard deviation of the i unweighted variable (d = 2).

. Calculate the sample covariance matrix (V) of the weighted and centred data:

Vij = cov(xi, %;) (A.51)
= ((xi — i) (xj = 1))

where i =1,...,d, j =1, ...,d, and () denotes the mean.

. Find the two unit eigenvectors of the covariance matrix, and their corresponding

eigenvalues, by solving for all eigenvalues \; and all eigenvectors e; using eigen
decomposition [312]; a form of matriz decomposition of a square matrix also referred

to as matriz diagonalization, i.e. solve
VE = ED, (A.52)
by factorization [313, 276, 53]:

V =EDE "}, (A.53)
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Figure A.26: Finding the principal components of a two-variable sample

where D is the diagonal matrix of eigenvalues and E is the eigenvector matrix.
Consider that

Vez- = )\iei 1= 1, ,d (A54)
and therefore
(V — /\iI)ei = 0, (A.55)
and, in turn
det(V — \I) = 0. (A.56)

The matrix of eigenvectors (E = [e; ez ... e4]) is also sometimes referred to as the
feature vector or the matrix of principal component coefficients, and eigenvectors
can also be termed characteristic vectors, proper vectors, or latent vectors®. These
vectors are the principal component directions, and their eigenvalues (\;) give their

size, or importance, relative to each other.

The vector with the largest corresponding eigenvalue is the principal component. These
steps are also applicable to data sets d > 2. In this case ordering the eigenvectors
according to eigenvalue size allows the most significant components to be identified. The

values of each data point in principal component space can be calculated using:
PT = ETXT (A.57)

This is a coordinate transformation from points set in the standard basis (Cartesian
coordinate system) to the new principal coordinate system. This equation is true for
coordinate transformations iff E is square with linearly independent columns (which is

true for all R), and is orthonormal, i.e. E! = ET and det(E) = 1. These conditions

9

e; (i=1,...,d) are also described as loading vectors [317]
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Figure A.27: Two-variable sample plotted using principal components

are always true for a matrix of unit eigenvectors. To return to the original standard
coordinate space:

X = PET (A.58)

1

P (the original points transformed into the principal component axes)!? are plotted

(figure A.27a).

In this case, one might suggest that the majority of the data could be represented us-
ing only one variable (the principal component, p1), plotted with the second principal
component values set to zero in figure A.27b. In fact, the components can be ranked
in order of relative ‘importance’ by ordering them according the their eigenvalues (this
‘importance’ is really a value of the “variance that is ‘explained’ by the corresponding
principal component” [168]). It is common practice to determine the percentage of the
observed variability that is explained by each component, which is the percentage of the
summed variances (eigenvalues). In this two-variable example, the first principal com-
ponent explains > 98.3% of the variance. By removing the components that have an

insignificant influence on the variance the number of dimensions can be reduced.

Once the significant components have been identified, the ‘new’ data points in the reduced
space P, with some component values set to zero, can be transformed back into the

standard coordinate space (figure A.28a):

X, =P.ET (A.59)

When mean-centring and weighting is removed, the transformed data looks like figure
A.28b. This is a form of linear or least squares regression, where the formulation of the

least squares model is:
X, =1x+P,E"+ R (A.60)

9P is a matrix of score vectors, p; (i = 1,...,d) [317]
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Figure A.28: Two-variable sample defined by a single principal component com-
pared with the original data set, plotted in the standard basis

where R is a matrix of residuals (deviations, in each dimension, of the original points from
their new (regressed) locations). X is the mean vector, which was previously removed by

mean-centring.

A.9.2 The role of singular value decomposition (SVD)

As is shown in section A.9.1, PCA relies on the fundamental relation in linear algebra:
A = EDE™! (A.61)

where A is any symmetric matrix with N independent eigenvectors. This is a decom-
position of the matrix A into two component matrices (a diagonal matrix of eigenvalues
(D with diagonal values );) and a matrix of eigenvectors (E = [eje2...€;]); eigen decom-

position.

Singular value decomposition (SVD) is a splitting of any (j x k) matrix into three com-
ponent matrices:

A =JZKT. (A.62)

J (j x j) and KT (k x k) are orthogonal matrices of singular vectors (left and right),
and X is a diagonal matrix of singular values, ;. Although these two decompositions
appear to be similar, they are not identical unless A is symmetric or complex Hermitian
(a case not discussed here). The reason is that E is clearly orthogonal to E~! but J and
KT are not orthogonal to each other [216].
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To see how SVD can be applied to PCA, we multiply this second relation by the transpose

of itself, and considering that the matrix A is, in our case, X:
XTX = (KxTJ)(IZKT) = K(ZT)KT. (A.63)

As such, the matrix XTX (a positive semi-definite symmetric matrix) has orthogonal
eigenvectors K (KT = K1) and positive eigenvalues ¥? in TX. Similarly, XX has

the same eigenvalues as XTX, and has orthogonal eigenvectors J.

In particular, if the matrix X is standardized (mean-centred and each variable set divided
by its sample standard deviation as in our approach to PCA in section A.9.1), then
the cross-product matrix XX becomes the covariance matrix (not normalized!!) [180].
TS = X2 is equal to the eigenvalue matrix (D) in the eigen decomposition of V
(A\; =X% and E = K).

The most important (with greatest variance) singular vectors K (components) are those
with the biggest singular value (3). These correspond (as we have seen above) to the

eigenvectors K and biggest eigenvalue .

Typically, iterative algorithms are used by mathematical software for the factorization
needed for PCA (through eigen-decompostion or SVD): usually variations on QR fac-
torization [141, 180, 143]. The eigen decomposition functions in MATLAB use either
Cholesky factorization [141] or the QZ (generalized Schur decomposition) algorithm [93],
depending on the structure of the matrix in question. The choice to use SVD is really
one of expense when dealing with large data sets; it can be expensive to compute the
covariance matrix or XTX but there are techniques such as the use of Householder re-
flections 141, 143] that are embedded in SVD code to expedite the process. There is
also argument over the stability of some algorithms over others, although which is likely

to be most robust will be problem size and structure specific.

A.9.3 Variants and alternatives

There are a number of different names for the mathematical methodology described
above, including proper orthogonal decomposition (POD) and Karhunen-Loéve decom-
position. The original concept can be traced back to Pearson FRS [203] [210, 268| and
the basis for the method shown in section A.9.1 can be attributed to Hotelling [107], as
Jolliffe [123] describes. Interest in PCA has recently increased due to its possible appli-

cation to dimensionality reduction'?; a “hot topic” due to the “explosion” [268] of data

"'Normalizing XX using (k — 1) will yield precisely the same matrix V in section A.9.1 (usually
considered to be an unbiased and efficient estimator, but by some measures shown to be biased and
inefficient [263]).

12The general idea if dimensionality reduction is to assume that a high-dimensional data set has an
intrinsic dimensionality [296] much smaller than its original (measured) dimensionality, and to find this
intrinsic set with loss of the smallest possible amount of information.
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that has been able to be gathered and stored computationally over recent decades. This
includes, but is not limited to: scans and images, laboratory measurements, ‘cloud’ data
about internet usage, mobile phone data, meteorological data, etc., across a number of
disciplines and industries, and making practical use of this data difficult given its ‘size’.
It is not, therefore, surprising that many similar techniques have evolved. Here we review
those that are most applicable to our own geometric measurement problem, which is not

dissimilar to an image processing problem.

Mathematically, the dimension reduction problem can be considered in one of two possi-
ble ways: feature reduction (the selection of a subset of the most relevant variables from
a large original set), and dimension reduction (finding a reduced size set of alternative

variable to best represent the original).

The subject of dimension reduction is extensive, and developing at a significant rate.
In the world of computer science it is part of the subject known as data mining, which
encompasses all of the numerical methods designed to interrogate data sets and enable
statistically grounded conclusions to be drawn about them. Data mining is really the
data analytics that forms the basis of decision-making, and when the decision-making
processes itself is automated the methods come under the terms artificial intelligence
or machine learning. Here, we concern ourself with the data analytics only, although
one could consider the process of drawing new ‘pseudo’ curves or surfaces based on this
to be machine learning of a sort, particularly if new data was routinely added to the

measurement (training) set.

In 2009 van der Maaten et al. [296] produced a document to accompany a dimension
reduction toolbox. Within this document he provides a taxonomy of dimensionality
reduction techniques and describes and tests a number of non-linear dimensionality re-
duction techniques that aim to “address the limitations of traditional techniques” (PCA
(classical scaling)). The non-linear methods tested are:

e kernel PCA,

e [somap,

e maximum variance unfolding,

o diffusion maps,

e local linear embedding (LLE),

o Laplacian eigenmaps,

e Hessian LLE,

e local tangent space analysis,

e Sammon mapping,
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o multilayer autoencoders,
e locally linear coordination, and

e manifold charting.

van der Maaten et al. [296] also list some other approaches that were not included in his

review, with reasons for their absence:

e self-organizing maps and generative topographic mapping (GTM), which combine

dimension reduction with clustering,
e independent component analysis (ICA), designed for “blind” source separation, and

e supervised approaches including discriminant analysis and neighbourhood compo-

nents analysis.

Further still, it should be noted that there are also many extensions of the non-linear
approaches that van der Maaten et al. [296] compares, as well as latent techniques that

are data-type specific.

Factor analysis is “closely related to PCA” [317] and was also described by Hotelling
[107] in his early work. One should be careful when researching the literature as “often
the two methods are confused and the two names are incorrectly used interchangeably”
[317].

Correspondence analysis “is a special double-scaled variant of PCA that is much favoured

in French-speaking countries and Canada and in some scientific fields” [317].

A.9.4 Non-linear PCA

An extension to standard (linear) PCA is that of non-linear or categorical PCA, which

address two, perhaps obvious, limitations of the original approach:

1. it is unable to discover or deal with non-linear relationships between variables, and

2. it does not have a built-in mechanism by which non-quantitative (catagorical)

variables can be considered.

Linting et al. [154] provide a detailed description of the method applied to data collected
about childcare environments for six-month old children. It may not be immediately
obvious but the approach to dealing with both of these limitations is the same; in order
to effectively remove the non-linear relationships and convert non-numeric categories

to numeric measurement levels non-linear PCA uses a non-linear transform. During
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this process, the discrete categories and other variables are transformed into category
quantifications. The process is referred to as optimal quantification (also optimal scaling
or optimal scoring). These ‘new’ variables then exhibit variance and a linear relationship
with each other, as is true of their quantitative continuous numeric counterparts when

linear PCA is applicable.

The PCA approach has, thus far, been formulated as an eigenvalue problem solved
using either an eigenvalue decomposition of the correlation matrix (section A.9.1), or a
singular value decomposition (SVD) of the standardized data matrix (section A.9.2). In
order to compare linear PCA with non-linear PCA we express it here as a least-squares
regression problem where the goal is to find the loading vectors (e;, j = 1,...N), such
that the variance of each derived variable (component) is maximized or the sum of the
squared Euclidean distances is minimised. Without decomposition this process is an
iterative optimization procedure. The first step is to find only the first principal axis
(e1), constrained to be a unit vector, that maximises the variance (where g = 0; the

data are mean-centred):

I'xTx
var(Xe;) = HXe1H2 _&aa A6
-1 (A.64)

= el Ve,

or, that minimises the construction error (sum of the squared Euclidean distances) from

the points (X) to the first principal component (Xeje; ):
IX — Xejel||? = tr((X — Xejel )(X — Xeje])T), (A.65)

where tr is the trace (sum of the diagonal elements). Multiplying through, substituting
efe; = 1and V = XTX " and observing that tr(AB) = tr(BA), it is possible to see

n—1"

demonstrate that the two objectives are equivalent:

I|IX — Xerel||? = tr((X — Xere] )(XT — ejef XT))
= tr(XXT) — 2tr(Xeef XT) + tr(Xe; (ef e)ef XT)
= ¢; — tr(Xeje XT) (A.66)
=¢; —tr(e] X" Xe;)

T
=c¢; — ca(ej Vey),
where ¢; and ¢y are constants.

To find the remaining (k*") components (subject to each component being uncorrelated
with the remaining components), the £ — 1 components that have already been found

must be subtracted from X giving:

Xp=X-) (Xese]). (A.67)
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e; can then be found either by maximising
[1X e

or by minimising
1X5, — Xierep ||,

and continuing iteratively by decreasing from k = N to k = 1, all of the independent

principal components can be found.

In non-linear PCA X is replaced with a matrix Q, which contains a set of transformed
variables (q; = ¢;(x;)), for j =1,2,..., N). The goal is still to minimise the squares of
the orthogonal distances between the original data and the principal components. The
equation for the total of all these distances is termed the loss function (fr). fr can be

expressed in terms of component scores (P), recalling that P = (ETX™)T = XE 13:

N
1
fu(Q.P.E) = — > tr((a; — Pej)"(a; — Pey)). (A.68)
j=1
Gifi [90] shows that the minimization of f7, is equivalent to the minimization of 15 [154],
where
L
f12(Q.P.E) = — > “tr((ae; —P)"(qje; — P)). (A.69)
j=1

In these loss functions Q is subject to the same constraints as X, i.e. the variables
are standardized, and the scores (P) have zero mean, standard deviation of one, and
are uncorrelated. The minimization is computed using alternating least squares (ALS),
where Q, P, and E are updated alternately whilst holding the other two fixed.

A.9.5 Updating a PCA estimate

If additional data are available, or likely to be made available regularly then there are
a number of so-called incremental, stream, or online methods of PCA that can be used
to efficiently update previous estimates without re-calculating the covariance matrix and

eigenvalue decomposition [269].

A.9.6 Demonstration of PCA using curves defined by known random
variables

In order to investigate the properties of the principal components and their distribu-

tions that are derived from curves that are created through natural variability in a set

3The j* column of P is equal to Xe;
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Figure A.29: Pre-defined curves with controlling random variables (example set
of 20 randomly selected)

of unknown ‘controlling variables’, sets of curve families are constructed using known

normally distributed random variables. The sets used are:

1. quadratic curves

c1 ~ N(45,5)
y=(2) + 3 ey ~N(51,5) |, (A.70)
c3 ~ N(0.25,0.75)

and

2. a ‘lumpy’ function

y = c3 — c1(x + cq)?sin(c(z + ¢4)) , (A.71)

C3 ~ (
s ~ N(10,1.5)

where ¢y, co, ..., ¢, are the k ‘controlling’ constants; the normal random variables that
control the shapes of the curves of the same family. c¢ is a constant which is fixed at
¢ = 0.12 and is a ‘frequency’ in the sine wave used to construct the ‘lumpy’ curve.
Example sets of 20 randomly drawn curves from each of these curve families are shown
in figure A.30.

The curves are defined by 101 points along them, i.e.  (in Cartesian coordinate space)
=1,2,...,101. These values remain fixed. The variables for PCA are their corresponding
y-values, which make up X = [x1 X2 ... X101] (X = [y1 ¥2 --- yn]T). 7 is the sample size
(number of measurement data sets). It is important to note that although the controlling

constants are normally distributed, the y-values are not multi-variate normal. Therefore,
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Figure A.30: Explained variance of the first principal components found for
10,000 randomly drawn curves

any inference as to the distributions of the underlying PCs is not possible [123]. In the
unlikely case that they are, then it might be possible to use the “sampling properties of
eigenvectors and eigenvalues of Wishart random variables” to sample the resulting PCs
[123].

If PCA is conducted on 10,000 randomly drawn curves of the quadratic type that has
been defined in equation A.70, then it is found that 96.9% of the variance is explained by
just one component, but that 100% is explained using three components (figure A.30a).
This can be shown by using the principal components to ‘back-predict’ the original
variable values for the same set of 20 curves in figure A.31. The curves are identical.
This is perhaps not surprising given that the curves are pre-defined using three random
variables. By plotting histograms of the three variables (c1, c2, and ¢3) (figure A.32)
next to the histograms of the corresponding principal components (figure A.33) it is clear
that these are not all also normally distributed (a Gaussian normal cannot be justified
using a Chi-squared goodness of fit test at the 5% level; the null hypothesis that the
sample is drawn from a normal distribution with sample mean and standard deviation
can be rejected). In order to sample from them for uncertainty propagation it must be

possible to define a distribution to sample from.

We attempt to fit the distributions of the principal components using stable distributions;
“a class of probability distributions” that, although ... first characterized by Paul Lévy ...
in the 1920’s” [187], were not able to be widely and reliably computed until very recently.

These distributions have justifiable application when either:

e the physical system gives solid theoretical grounds to expect non-Gaussian sta-
ble distributions (examples include the gravitational field of stars, and Brownian
motion hitting times (|68, 294]| referred to by Nolan [187])),
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Figure A.31: ‘Back-predicted’ quadratic-type curves, equation A.70
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of many smaller terms (e.g.

e the data sets exhibit heavy tails or skewness where “empirical evidence combined

with central limit theorem” [187] is used as justification.

A detailed definition of the stable distribution is given in section A.8.2. The three
principal component distributions (figure A.34) appear to be best fitted with a stable

distribution, when observing the output of the 10,000 point sample. However, a Chi-

squared goodness of fit test results in a rejection of the null hypothesis in the case of the

third principal component. The p-values for each of the tests are given in table A.1.
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Figure A.34: Histograms of output principal components with fitted distribu-
tions (quadratic function of equation A.70)

H PC1 PC2 PC3

Normal distribution y? test || 0.3922 0.0851 0.0000
Stable distribution x? test | 0.2523 0.2746 0.0099

Table A.1: p-values for x? goodness-of-fit tests on principal component (PC)
values when reconstructing a pre-defined curve with three normally distributed
input variables (sample size n = 10, 000)

Although the stable density for PC 1 is extremely close to the Gaussian distribution, the
goodness-of-fit test returns a significantly worse p-value. Where the distribution is not so
close to normal (PCs 2 and 3), the p-values show, as expected, that the stable distribution
is a ‘better’ fit, i.e. the probability that the sample distribution is observed, given that
the fitted distribution is correct, is higher for the stable distribution. Unfortunately,
although this is true for the third PC, the p-value is not high enough to rule out rejecting
the null hypothesis (Hp: PC 3 is distributed with a stable distribution with parameters
determined by the MATLAB fitdist function).

Repeating the same experiment with sine-type curve results in the variance percentages
explained in figure A.30b and the distributions of the first four principal components
as shown in figure A.35 (the 5* PC explains less than 0.05% of the variance so is not

included. In this case, there is little or no skewness but the 3" PC appears to be
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Figure A.35: Histograms of output principal components with fitted distribu-
tions (‘lumpy function’ of equation A.71)

described more accurately by the stable distribution because it is able to represent the

more peaky mean region. The p-values for the chi-squared tests are given in table A.2.

H PC1 PC2 ©PC3 PC4

Normal distribution y? test || 0.0450 0.1500 0.0000 0.8020
Stable distribution x? test || 0.1798 0.2509 0.0000 0.5779

Table A.2: p-values for x? goodness-of-fit tests on principal component (PC)
values when reconstructing a pre-defined curve with three normally distributed
input variables (sample size n = 10, 000)

Clearly, these tests cannot lead to the conclusion that the stable distribution is always
a more suitable fit for principal components than the normal distribution. It is known
however, that standard goodness-of-fit tests are not always appropriate for stable dis-
tributions. Beaulieu et al. [10] use Monte Carlo based extensions to other methods in
order to ensure that the tail behaviour is better captured. In the work of Nolan [186] a
description of the difficulties associated with assessing stable distribution goodness-of-fit
is given, but it is stated that “it is not surprising that one can fit a data set better with
the 4 parameter stable model than with the 2 parameter normal model”. In this thesis
we stop short of delving into the intricacies of such tests. Instead, we can clearly observe
from the above that this set of curves, controlled by a set of normally distributed ran-

dom wvariables, can be represented by a set of independent principal components that can
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reasonably be represented using stable distributions. If large samples such as these were
available then a fitted Kernel function may be more appropriate but, as is often the case,

one must make assumptions about the distributions where data sets are small.

An additional example curve has been considered, constructed to represent a measured
surface with a moving defect. The function is based on a skewed normal approximation
[5] with skewness and height and width scaling parameters distributed normally and

defect location uniformly distributed:

0 z < ;—3
2 N
== 1 - —1
Sjﬂe 22 (N2 +3X% 22 + g)\%,zzg +9) ﬁ <z< 3y
y(z) = %2 x{ de=e (3Avz — §Ah2P +4) Dzt (A.72)
.2
Bx}ﬂeT(W\Nz —3R NP +T) i <z<
2
2.2 3
L ;e 2 v S z
where
P (A.73)
c3
and
Ay~ N(4,1)
~ U[5,95
“ 5, 95) (A.74)

¢y~ N(1,0.25)
c3  ~ N(1,0.25).

Ten example curves sampled at 100 points representing measurement data points are

shown in figure A.36. Perhaps unsurprisingly, linear PCA is not particularly successful

0.5~

0 10 20 30 40 50 60 70 80 920 100
X

Figure A.36: Ten sets of artificially constructed data sets for a defect feature
evaluated at 100 points

in determining a reduced set of points to represent these data sets adequately. Even with
10000 sets 73 principal components are required to represent 95% of the variance, figure
A.37a. Figure A.37b gives some indication of the non-linearity caused by the shift in

the location of the prescribed defect. Fitted curves using different numbers of principal
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components are shown in figure A.38. 93 components are required to represent 100% of

the variance.
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Figure A.38: Re-parameterization of an artificially constructed ‘defect’ data set
using linear PCA

In reality, we are able to observe that the feature of interest has a varying location in
x. Therefore, if a location parameter can be extracted prior to PCA, the results might
be improved. If this was a real measurement set then the location of each ‘bump’ would
be unknown but it is relatively easy to locate a peak in the data. If the data sets are
all adjusted such that they are centred at the peak of the bump then linear PCA of the
remaining parameters results in significantly improved variable reduction, figures A.39,
A.40, and A.41. 99% of the variance can be represented by just four variables and 100%
by eight variables.

We observe that it can be significantly advantageous to ‘shift’ data and add an extra

variable prior to using PCA to reduce the number of defining variables significantly.

Fitted distributions of the resulting four principal components are shown figure A.42.

We observe that an input uniform distribution for the location variables results in a
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Figure A.39: ‘Centred’ artificially constructed ‘defect’ data set
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Figure A.40: Explained variance of the principal components from ‘centred’
artificially constructed ‘defect’ data set
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Figure A.41: Re-parameterization of an artificially constructed ‘defect’ data set
using linear PCA with 4 new variables and a location parameter

uniform distribution for one of the principal components too. Assessment of the these
distributions again suggests that stable distributions could, in general, be more appro-
priate than normal distributions; the x? goodness-of-fit test is unreliable for the stable
distribution [186, 187] but the null hypothesis that the samples can be drawn from a

normal distribution can be rejected for the third principal component.

If the input variables, including the ‘bump’ position parameter are normally distributed

then the findings are the same but when one of the other parameters is given a uniform
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Figure A.42: Histograms of output principal components with fitted distribu-
tions (‘bump’ function)

distribution:

AN
C1
Cc2

C3

~ N(4,1)
~ N(50,15)
~ U[0.5,1.5]

N(1,0.25),

(A.75)

the distribution of the first principal component (the most ‘important’) becomes difficult

to fit, figure

A.43.
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Figure A.43: Histogram of first principal component with fitted distributions
(‘bump’ function with uniformly distributed height parameter c2)
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We note here that PCs are, by definition, independent so could be used, not just to
reduce the number of variables, but also to provide alternative independent variables for

sampling.

A.10 Geometry manipulation using spatial methods

A.10.0.1 Free-form deformation (FFD); volume-based spatial deformation

The popular algorithm for free-form deformation proposed by Sederberg and Parry [250]
still remains useful today. The formulation is reasonably simple to implement compared
with the surface techniques. There is no optimization required and the resulting meshes

are intrinsically smooth within the control volume.

Sederberg and Parry [250] use a regular cuboid lattice of control points containing the
solid mesh to be morphed. The control points are each the control points of defin-
ing Bézier spline curves, section A.7.3, the weightings of the respective points (b;) being
defined as Berstein polynomials (Sederberg uses trivariate tensor product Bernstein poly-

nomials).

To understand the limitations of this approach, let us first consider a two-dimensional
Bézier curve (B) with three control points (a(® ,a®), and a®)) [264, 311]:

2
B(u) = alb; 5(u), (A.76)
=0

where u is a parameter along the curve in the range [0,1], and b is a quadratic Bernstein

basis polynomial:

bio(u) = < 2 ) u'(1—u)*", i=0,1,2, (A.77)

]

2
where ( . ) is the binomial coefficient'*. By plotting b(u), figure A.45, it can be seen
i

that it is only at the extreme control point positions (a®; (u = 0) and a®; (u = 1))
that the other control points yield no influence on the curve location. This is because a

curve of this definition starts and ends at the first and last control point.

'4The binomial coefficient is sometimes referred to, in probability theory, as “n choose k”, and calcu-
lated explicitly using the formula:
n n!
nC = =
; ( k ) (n — k)k!
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(1)
a .

2@

(a) Bézier curve defined using 3 control points (b) Bézier curve defined using 4 control points

Figure A.44: Example Bézier curves

Increasing the number of control points, and therefore the degree of the Bernstein poly-

nomials (m) defining control point weightings, results in the generalized expressions:

B(u) = Z aWb; o (u), (A.78)

and

bim(u) = ( m ) u'(l—w)™ " i=0,1,..,m, (A.79)

7

defining the curve. Examples of both curves (figure A.44) and their respective Bernstein

polynomials (figure A.45) also show how the vectors a®a® and a™a(m—1) define the
direction of the curve at it’s ends. As such, if a nominally straight line is distorted
using control point movement, the only means of maintaining the same gradient at the
start and end points (with this type of curve definition) is to ensure that these vectors
are also maintained, i.e. there must be a minimum of 5 control points (figure A.46).
Adding more control points increases the degree of the curve and all points on the curve

are influenced by every control point; there is only global, not local control.

Extension of this concept to three dimensions results in a formula for a vector valued

displaced point (X(s,t,u)) as the tensor product of the Bernstein polynomials in each

dimension!®:

15X(s7 t,u) is a vector of the Cartesian co-ordinates of the displaced point, where 0 < s < 1,0 <t < 1,
and 0 <u <1.
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Figure A.45: Example Bernstein polynomials
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(a) Bernstein degree 4 polynomials used in (b) Bernstein degree 4 polynomials used in
Bézier curve with 5 control points Bézier curve with 5 control points

Figure A.46: Example Bézier curves using degree 4 Bernstein polynomials

l o
X(s,t,u) = Z @ =)l
i=1 \

n

3 7;1 (1-t)m s |3 Z (1 — )" *uFAGIR) || (A.80)
j=1 k=1

where A is the lattice of control points a, and [, m, and n are the polynomial degree
(number of points minus 1) in each co-ordinate direction. In three dimensions the de-
formation procedure also follows the same ‘rules’ in each of the dimensions that have
been demonstrated here in a single dimension, i.e. if the bounding box control points are
within a mesh (a local mesh region within a body) then in order to maintain tangency
with the outside mesh the original vectors between the outermost control points must be

maintained and a smaller region within the outer bounding box cannot be controlled in
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an isolated manner.

This three-dimensional volume-based deformation scheme is therefore limited to global
shape changes with no specific local constraints. The original scheme has been developed
by others by using alternative curve definitions. For example Griessmair and Purgathofer
[94] use basis-splines (b-splines), which are piecewise. B-splines follow a similar formu-
lation to the Bézier curve and an extension to a trivariate surface is equally feasible. A

b-spline can be defined as:

Snlt) = Y a0, ) (A8)
=0

noting that m is the degree of the spline, which can be chosen, rather than being de-
termined by the number of control points. ¢ € [k, k("™)] is a combined value of the
summed u’s below a given point on the curve. u € [0, 1] for each curve segment. Segment
end properties (at joints) are determined by the knot vector K = [k(©) k(1) . k(w)].

non-decreasing integer sequence of length ng + 1, where:
ng=m-+n+ 1. (A.82)

End points of a b-spline have m + 1 repeated knot values. The first and last m knots
are external knots. The remaining knots are referred to as internal knots and are not
repeated (the curve is uniform). A Bézier curve is a b-spline with no internal knots. A

periodic b-spline has no external knots. The b-spline basis functions are defined as:

1, if kO <t < k0+) and kO < gG+1)

bio(u) =
0, otherwise (A.83)
t — k0 piti+1) _ ¢

bl,](u) = mbl,jfl('ﬁ) + k‘(i+j+1) _ kj(i+1) bi+1,j71(t),

where j = 1,2, ...,m and b is therefore evaluated recursively.

To increase the flexibility of free-form deformation some researchers have turned to the
more generalized form of the spline; the non-uniform rational b-spline (NURBS)[144].
The NURBS allows for repeated knot values within the curve (non-uniform). It also
allows for the control points to have weightings (w;) (rational). It is also possible to
define a rational Bézier curve by including control point weightings but in general a
Bézier curve is not rational. The NURBS is defined as:

Z?:o wia(i)bi,m(t)
> iz wibim(t)

and the basis functions are defined as in equation A.83.

N (1) = (A.84)

Figures A.47 to A.49 illustrate the piecewise nature of b-spline and NURBS based dis-
tortions on a simple curve. Eleven control points result in a degree 10 Bézier curve and

all control points and corresponding basis functions influence the position of the curve
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at all points except the ends. The knot vector in this case is

0000000000011 111111111]. (A.85)

. Control points
;o Repositioned control poin
i \ = =Original curve
h \ — Distorted curve
, \ O Joint locations

00000000000 (1111111111

(a) Bézier curve with 11 control points, one control point moved
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(b) Basis functions for a Bézier curve with 11 control points

Figure A.47: Example modified (‘morphed’) Bézier curve

Using the same control points and a cubic b-spline where each segment is controlled by

m + 1 = 4 overlapping basis functions requires a knot vector:
00001234567888§8] (A.86)

where the internal knots are equally spaced. Local control is achieved.

A NURBS is used to allow greater flexibility, using repeated knot values to allow local

distortion to be specified using fewer segments. Here, a knot vector:
[00001112333444 4] (A.87)

is used achieving local control with only 4 segments.

We can observe in these simple examples that the array of control points needed is not

obvious, that the control points do not coincide with the curve. An interpolating spline
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(b) Basis functions for a b-spline curve with 11 control points

Figure A.48: Example modified (‘morphed’) b-spline curve

can be defined by calculating control point locations from prescribed joint positions but

for morphing of solid meshes this would become infeasible in the trivariate case.

Beyond these approaches there are other extended forms discussed by Gain [83], which
use non-cuboid lattices or subdivided regions, all of which result in a “proliferation in

control points” and increased “versatility to the detriment of efficiency and ease-of-use”.
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Figure A.49: Example modified (‘morphed’) NURBS curve

A.10.0.2 Radial basis function (RBF) morph; a new volume-based spatial

deformation

Recently, an approach first introduced in the literature by de Boer et al. [47], has been
applied in some CFD meshing and analysis software: notably, ANSYS Fluent with an
implementation by Biancolini [15]. Mathematically the method is similar to the FFD
algorithm of Sederberg and Parry [250] in that point positions or displacements are

determined by a sum of basis functions, which can be weighted!®:

s(x) = Z wih(r) + p(x). (A.88)

However the ‘morphed’ point positions are not controlled by a set of ‘control points
and knots’ (there is no a). Instead, the ‘morphed’ nodal positions throughout the full
mesh are evaluated as a function of their radial distance from the known positions of the

displaced boundary nodes: (r = ||x — x}(j) 1,

16This equation is the same as that given in section 2.2 but with the addition of a linear polynomial
D.
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® QOriginal boundary nodes
® Morphed boundary nodes
* Original internal nodes

* Morphed internal nodes

@r oo msosscmosn e minnanafrne . sesmese

0.3 : :
T e
0} T =~ ] —
. ~
// \,S. ------ by(r)
o1k R S B —Da(r)
s"s,~. —b3(r)
O - —==Dy(r)
.................. . x
oE e ] ® s(xp)=dy
-0-2 ‘ . ‘ ‘ ..‘...lll'll‘l -------- | - ‘ ‘

Figure A.50: RBF based morphing in a single dimension x using a thin plate
spline basis, showing displacements and basis function values as a function of
original z-position

where x{j ) are the basis function centres (c in section 2.2). The basis functions can
be of any chosen form. Any smooth basis function will create a smooth displacement
function but the quality of the remaining mesh will be dependent upon this choice and

the displacements and directions.

To demonstrate the theory a set of nodes (x) in a single dimension are considered. A
small subset of these nodes have known displacements in z (s(xp) = dp). These are
equivalent to the boundary, or surface nodes. The remaining ‘morphed’ nodal positions
must be determined creating an interpolating RBF model of nodal displacements based

on the sample of boundary points. In this example a thin plate spline basis function:
Y(r) =r*Inr (A.89)

has been used. The resulting displaced nodal positions, modelled nodal displacements,
and the corresponding weighted basis functions w;y(r) (denoted b;(r)) are plotted (figure
A.50).

Extending the same principal to a set of points in two dimensions (using a thin plate
spline basis and the same approach as de Boer et al. [47] is illustrated in figure A.51. The
central set of boundary points are displaced in the z1 direction only. The displacement
at any point (s) is also shown, along with an example weighted basis function bg; () (the
basis function associated with 815 boundary point at an original position of (0.3,0.35)

in the example).

de Boer et al. [47] states that “the displacement can be interpolated separately for each

spatial direction”. This is demonstrated in figure A.52 in two dimensions. RBFs and
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Figure A.51: Example 2D RBF based morph with displacement in the z1-
direction using a thin plate spline RBF

displacements are simply modelled in the zi-direction to give s; and in the xo-direction
to give ss.

The work of de Boer et al. [47| compares a number of different basis functions with respect
to final mesh quality and efficiency for a given rotation and displacement combination
for this problem and an airfoil-flap mesh. In this work it is concluded that, out of the

fourteen basis functions tested, the compact polynomial basis function:

Y(r) = (1 —r)*(4r+1), (A.90)

and the thin plate spline were the preferred bases. Distortion of the mesh may not

result in infeasible meshes where displacements are small, such as in sensitivity studies

for uncertain geometry, but may result in significant noise depending on the problem. It

is therefore important to maintain the best possible mesh quality.
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Figure A.52: Example 2D RBF based morph with displacement in the x; and

x1 directions (rotation about blue node) using thin plate spline RBFs

Four radial basis functions are demonstrated (including the two recommended by de

Boer et al. [47]) in figure A.53:

Compact support :
Thin plate spline :

Gaussian :

In addition, the Kriging basis (in 2 dimensions) is also considered:

2
Kriging : ¢(x) = exp < ng‘xg) _ x’(cj)|1.99> .
k=1

(A.96)

Where the radial basis functions are functions of the Euclidian distance between points

and the sample points (basis function centres), the Kriging basis is a function of a non-

Euclidian distance i.e. the distance is scaled according to 6 in each of the dimensions.

Tuning the Kriging model, as described in section 2.2, involves finding the values of 6

where the likelihood is maximized. In this case, however, the result is almost precisely
equivalent to the Gaussian RBF morph ((A.53d) in figure A.53).
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Appendix B

Lifing analysis of an aero-engine

dovetail joint

The dovetail joint is a critical part of the fan blade assembly in an aero-engine, and in
the turbine for some smaller engines. In particular, designers are concerned with the
expected life of the components. As discussed throughout chapter 1, replacing parts
at longer intervals is desirable form an economic perspective. This appendix presents
the construction of a two-dimensional finite element analysis of a dovetail joint, used in
chapter 2 to demonstrate some approaches on a realistic, but reasonably fast-running
analysis. We consider the life of the disc, rather than the blade, to be the performance

parameter in which the designer is most interested in this case.

A two-dimensional plane stress elastic contact analysis of a sector of a rotating disc
containing a single blade with dovetail joint is constructed using NX" for geometry

manipulation and ABAQUS® for analysis. The meshed sector is shown in figure B.1.

Geometry

The disc sector geometry is shown in figure B.2. The split regions are regions of differing
thickness, chosen to ensure that the loading due to mass distribution throughout the disc

are correct, along with the mass of the blade itself.

The nominal dovetail joint geometry is shown in figure 2.7. The nominal design is
symmetric about the sector centreline. The blade is positioned such that an equal gap
exists between the blade and disc dovetails. On application of the load, the first point

of contact is located by the finite element code.

269
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Figure B.2: Nominal geometry of disc sector (mm)
Loads and boundary conditions

The analysis applies centrifugal loading on the blade and disc due to their mass and
angular velocity w = 1250 rad/s. The sector edges on the disc are constrained such that
all points on these edges are free to move in the r-direction (radially) but restrained in
¢-direction (direction of rotation, or hoop direction) (Ug = 0, where U is displacement)
in a cylindrical coordinate system about the rotational axis of the disc. To avoid rigid
body motion, automatic stabilization is specified in ABAQUS®.
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Table B.1: Elastic properties of disc and blade at 600°C

Property Value
Density, p | 8080 kg/m?>
Poisson’s ratio, v 0.395
Young’s modulus, 174 GPa

Material properties

Both the disc and blade have elastic properties based on those of a typical precipitation
hardened Nickel alloy, INCONEL® alloy 706" [270], table B.1. The running temperature

is assumed to be 600°C for the purposes of elastic property selection.

Disc sectional geometry is usually designed to maintain close to constant stress through-
out by varying disc thickness, an analytical formula for which can be derived [102]. In
our two-dimensional simplification, the thickness, and therefore mass distribution, is var-
ied in sections, increasing towards the centre of the disc. The thickness of the blade is
selected to result in a total blade mass of 350g for the nominal design. Any further
change in blade mass due to changes in joint geometry is considered a genuine effect of

geometric changes.

Given that a sector of a rotating disc is being models, the hoop and radial stresses have
been compared with those predicted by analytical theory and formulae [323, 102], prior

to inclusion of the joint itself.

Contact interaction properties

A ‘direct’ equation solver is used with unsymmetric matrix storage allowed, and a full
Newton solution technique specified such that all equations are solved fully at each iter-
ative step. There is a prescribed contact interaction between the disc and blade dovetail
surfaces and ‘finite-sliding’ is considered such that separation, sliding, and rotation, of
finite amplitude are possible. The formulation is ‘penalty’ in both normal and tangential
directions with a constant coefficient of friction of 0.4 applied. An initial increment size
of 0.001 is specified with a minimum of 0.1e — 12 and maximum of 1.0. The maximum

allowed number of iterations is given as 100.

It is noted that the coefficient of friction is unknown and potentially variable spatially,
and over time, in such a situation [241|. There is little consistency in the previous
dovetail and firtree joint studies pertaining to the choice of friction coefficient; Meguid
et al. [174], Papanikos et al. [199], Hammouda and Fayed [99], and Vale et al. [295] use
0.3 to 0.5, 0.0 to 1.5, 0.25, and 0.0 or 0.25, respectively. Here we consider that the

friction coefficient, akin to the applied loads, will affect the stress magnitude but not the

' A nickel-iron-chromium alloy used both for compressor and turbine discs [142].
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proportion of variation in stress in the linear analysis which is being performed here. A
value of 0.4 has been chosen arbitrarily based on the work of Rajasekaran and Nowell

[223] who suggest that the friction coefficient varies between 0.1 and 0.65.

Mesh properties

The finite element mesh consists of quadratic triangular elements (ABAQUS® CPS6M).
The mesh is generated in NX® with mesh seeds of 0.3mm on the notch edges, increasing
to 1.0mm on the sector edges in the region of the joint, and increasing to 4.0mm at the
disc centre, figure B.1. The 0.3mm seed size was determined by assessing the convergence
of the principal stresses in the notch region with decreasing seed size. The nominal model
has a total of 15159 elements with 31559 nodes, and takes 3 minutes and 11 seconds of
central processing unit (CPU) time to complete with seventeen contact iterations and
no cutbacks. The convergence of peak principal stresses in the notch is plotted, for both

blade and disc notch mesh seed sizes, in figure B.3.
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Figure B.3: Plot of notch peak principal stress (N/mm?) convergence with in-
creasing mesh fidelity (seed size (mm)) for dovetail analysis

Stress as a performance measure in lieu of life

The fatigue life prediction of joints such as these is the subject of much ongoing research,
however it is known that mechanisms for fatigue failure, and therefore life, vary depend-
ing upon temperature, and are a combination of low cycle fatigue (LCF), high cycle
fatigue (HCF) [280, 20|, and creep [280|. The radial, low frequency, load cycles result in
plastic strain and notch fatigue from which the LCF-life is predicted, and high frequency
vibration in the hoop direction results in fretting fatigue [173, 223] in the contact region
from which HCF-life is predicted. Here, therefore, LCF-life is considered the dominant
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case, and the analysis has been simplified, using the peak principal stress at the notch as

an indicative measure of the disc dovetail post low cycle fatigue (LCF) life.

Considering the total life approach [292], the number of cycles to failure Ny is given by
Basquin’s equation [115]:
Tar = 0§(2Ny)", (A1)

where o4, is the equivalent fully reversed stress amplitude. 0} and b are material con-
stants: the fatigue strength coefficient and fatigue strength exponent respectively. Includ-
ing the effects of mean stress in this equation requires models such as the Smith-Watson-
Topper (SWT) correction [115]:

Oar = VOmaxOas <A2)

where 0,4, is the peak stress and o, is the stress amplitude. However, it is not clear
which stress is most appropriate. In an equivalent stress (or strain) approach extensions
of the Tresca, or von Mises, yield criteria [11| are used. The alternative critical plane
approaches |287] assumes that cracks initiate on planes of maximum shear stress. In real-
ity, the mechanism can even “shift from one type to another” [287]. The SWT approach
was developed for circumstances where the prevailing mechanism is tensile cracking.
These stress-life approaches are considered applicable where applied strains are elastic.
A strain-life approach is required, however, if strains occur within the elastic-plastic
range, and the equations can be modified accordingly to account for strain, and using
the SWT parameter:

(o) ;o
OmasCa = g (2N)? + o (2Np)Fe, (A.3)
where
Ace
I
a 2 Y

the strain amplitude, and the additional material constants, alf, ¢, and E; the fatigue

ductility coefficient, fatigue ductility exponent, and modulus of elasticity, are required.

Issler and Roos [118] and Posavljak and Maksimovi¢ [215] have applied SWT to the
‘design for life’ of nickel-based alloy dovetail joints (INCONEL 718 disc and INCONEL
939 blade, and steel blade and disc respectively). Issler and Roos [118] predict the
number of cycles to crack initiation under to an applied oscillating radial load. They
compare experimental results with life prediction using FEA and the SWT parameter.
Their use of maximum principal stresses and strains proved to compare favourably with
the experiments. In contrast, the SWT-based life predictions using von Mises stresses
and maximum shear stresses over predicted the component life by a factor of around
sixty. In Posavljak and Maksimovi¢ [215]’s purely analytical study, the principal stresses
were applied using Morrow’s mean correction to improve a design for extended fatigue
life.
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The dovetail joint might also be considered to exhibit the effects observed in notch fa-
tigue. The work of Neuber [292] and Peterson [209] in the calculation of fatigue stress
concentration factors provides equations for stress concentration based on the ratio of
local stresses and strains at the notch (perpendicular to crack growth) to applied ex-
ternal stresses and strains, along with adjustments for notch geometry. The geometric
adjustments are used to account for the effects of geometry using a material constant

“determined from long life fatigue data for sharply notched specimens” [292].

In summary, the life Ny, is proportional to 0,4z OF Oymaza, depending on whether the
loading results in elastic or plastic behaviour. The dovetail disc slot is a notched com-
ponent but an accurate finite element model allows stresses and strains to be evaluated
locally without the application of a stress concentration factor to a notch-free model. It
is the peak principal stress, perpendicular to the expected crack growth direction which
is applicable in the notched cases, and this approach is further endorsed by the work of
Issler and Roos [118] and Posavljak and Maksimovié¢ [215]. Inclusion of additional con-
centration factors due to geometry would only be deemed necessary for “sharp” notches,

and the dovetail design parameters are selected to ensure this is not the case.

The plane stress model

The use of a simplified two-dimensional model limits the analysis to an either plane stress
(thin disc), or plane strain (deep disc), approach. In reality, the true joint will exhibit
stresses somewhere between the two results. However, given that the joint region of

interest is ‘thin’, the plane stress assumption has been used for this study.

B.1 Automation of the analysis workflow

The analysis is automated through a NX parametric CAD model, used for constructing
the joint geometry, and meshing. A python script applies loads, boundary conditions,
and contact properties, to the ABAQUS input deck prior to analysis, and the output is
interrogated using MATLAB for implementation of DSO and UP workflows. The process
is illustrated in figure B.4.
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