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Microcavity-polaritons are quasi-particles formed when light and matter excitations cou-
ple strongly in cavities that have confinement lengths similar to the wavelength of light.
Polariton’s light effective mass, due to the photonic component, in conjunction with their
composite boson nature, allows a transition into a macroscopically occupied quantum
degenerate state (polariton condensate) for temperatures ranging from 4K up to room
temperature. Due to the exciton reservoirs produced under non-resonant excitation
and polariton’s strong interparticle interactions (originating from their matter compo-
nent) potential landscapes for the polaritons can be sculpted with the non-resonant laser
beam(s) pumping the system. The work presented in this thesis is specifically concerned

with inorganic polariton condensates in optically imprinted potential landscapes.

With annular excitation geometries it is possible to form optically trapped polariton
condensates, where the condensate is spatially delocalised from the exciton reservoir.
Implementing this optical trap geometry, the first all-optical polariton bistability under
non-resonant excitation is demonstrated in the spinor of the condensate. Furthermore,
the separation from the exciton reservoir results in significant enhancement of the co-
herence properties. First order coherence times exceeding 1.5ns are demonstrated for
the optical trap excitation geometry; whilst excitation regimes where the condensate

overlaps the reservoir demonstrate sub 100ps coherence times.

For narrow Gaussian excitation geometries, the spatial overlap of the condensate and
the reservoir results in polaritons ballistically propagating away from pump with a well
defined in-plane wavevector. Utilising this inherent in-plane propagation, two freely ex-
panding polariton condensates (a polariton dyad) are shown to remain coupled, even for
separation distances exceeding 100pum. Through an in-depth experimental and theoreti-
cal investigation of the polariton dyad, it is determined that it is critically important to
account for the finite propagation time of polaritons from one condensate centre to the
other (i.e. the coupling is time-delayed). The experimental work in this thesis is then
concluded by introducing all-optical polariton band structure engineering. Utilising op-
tically imprinted polariton condensates and their exciton reservoirs to both create and

image the band structures.
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In addition to the experimental results, experimental procedures and analysis techniques,

that have been developed and implemented to facilitate the research, are presented.
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Experimental (a,d) energy resolved momentum space, (b,e) momentum
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and normalised spectra of (a,d) are shown in (g) with black circles and
blue squares respectively. Note all images are shown in a logarithmic
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Experimental spectral analysis of polariton dyads as a function of separa-
tion distance. (a) Normalised spectral weight of the two most dominant
energy components for each separation distance. (b) The spectral po-
sitions of the two most dominant energy components. Note red points
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weight. (b) The auto-correlation (black) and cross-correlation (red) fringe
visibility as a function of delay time 7, between the two arms of the in-
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presented in [3]. . . . . ...
Results from the full 2D GPE numerical simulation of polariton dyads.
(a) The spectral weight and (b) the spectral position as a function of
the dyad separation distance, note the vertical dashed line corresponds
to the left vertical dashed line in Figure 5.3(b) and the horizontal dashed
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pump density. (c-f) Spatial density distributions as a function of time
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(a) Comparison between the experimental dyad spectra (grey-scale colourmap),

in terms of blueshift from the k| = Opm~! state, with the spectral peak
(or two most dominant spectral peaks when in a multimode state) result-
ing from numerical integration of Equation 5.19 (red points). (b) and (c)
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densates, where the separation distance is ~ 13um for (a,b & c¢) and
~ 8.6um for (d,e & f). The left most column (a & d) shows the real space
intensity distribution of the PL, the middle column (b & e) shows the
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(¢ & f) shows the dispersions. The corresponding colourbars for the left
two columns appear above the columns and scale bars depicting 15um
(in a & d) and 1um™! (in b & e) are in the botttom right hand corner of
each respective frame. Data presented in [4]. . . ... ... ... ... ..
Schematic showing how the potential landscape is dimerised through al-
ternating the inter-condensate separation distances in a 1D polariton crys-
tal. (a & b) show simulated non-resonant pump laser intensity distribu-
tions for (a) a uniform chain (i.e. A = B) and (b) a chain with alternating
inter-condensate separations (i.e. A # B). (c & d) show the horizontal
line profile of the integrated intensity in (a & b) bounded by the horizon-
tal dashed lines. As the potential landscape mirrors the excitation profile
(c & d) equally represent the potential landscape in the direction along
the 1D polariton crystal, where a unit cell is indicated by the grey shaded
TEZIONS. . . . v o v i e e e e e e e e e e
Each panel (a-j) shows the dispersion (top) and real space density dis-
tribution (bottom) of the PL from chains of eight polariton condensates
where separation distance A =~ 10.1um is kept fixed and B ~ (a) 10.1pum,
(b) 9.5um, (c) 8.9um, (d) 8.8um, (e) 8.7um, (f) 8.5um, (g) 8.3um, (h)
8.1um, (i) 8.0pum and (j) 7.8um. The coloured arrows indicate the spec-
tral region of each energy band. Where the splitting of an energy band
is visible there are two arrows of the same colour marking the upper and
lower sub-band. Note that these arrows are only indicators to guide the
eye. All dispersions use the same logarithmic colourscale, as do all the
real space distributions with the corresponding colourbars shown to the
right of (e). The solid bars in the bottom right corner of each real space
distribution correspond to 15um. Data presented in [4]. . . . .. ... ..
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Preface

In the early 2000s the experimental study of macroscopically occupied (quantum degen-
erate) states was dominated by dilute ultra cold atoms following the seminal work of Cor-
nell [5] and Ketterle [6] demonstrating Bose-Einstein condensation (BEC) in rubidium-87
and sodium atoms respectively in 1995. Whilst cold atom systems are useful to investi-
gate fundamental problems, the complexity of building and reading such systems as well
as the extremely low-temperatures required, makes the integrability of them into real
world systems diminishingly small. Exciton-polaritons (simply called polaritons herein)
are solid state composite bosonic quasiparticles capable of condensation with a high de-
gree of controllability and simple optical readout. Furthermore, the critical temperature
for the transition to the condensed state ranges from standard cryogenic temperatures

(4K) to room temperature depending on the specifics of the materials used [7-9].

Polaritons are part light, part matter quasiparticles formed by the strong coupling be-
tween light and matter excitations (here Coulomb bound electron-hole pairs called exci-
tons) and they have a lifetime restricted by the reflectivity of the microcavity in which
they are formed. The improvements in semiconductor growth techniques, including
molecular beam epitaxy (MBE) enabled the growth of samples with high enough Q-
factors and oscillator strength (coupling between photonic and excitonic modes) for the
first irrefutable demonstration of polariton condensation at standard cryogenic temper-
atures in 2006 by Kasprzak et al [8]; it having been predicted in 1996 by Imamoglu et
al. [10]. The sample used in Ref. [8] was a CdTe based microcavity (MC) and by moving
to a microcavity with GaN (a higher bandgap material) as the active material, polariton
condensation was demonstrated at room temperature in 2007 [11]. In 2009 polariton
condensation in a GaAs based MC was demonstrated for temperatures up to 40K in a

sample with reduced disorder [12].






Chapter 1

Introduction

1.1 Microcavity Polaritons

Microcavity polaritons are quasiparticles that are the result of normal mode splitting
under the strong coupling of light and matter excitations when confined in samples that
resemble miniature Fabry-Pérot cavities, with gain medium in the cavity spacer and
where the confinement length of which is comparable to the wavelength of light, hence
‘microcavity’. The gain medium, in the samples of interest, comes in the form of quantum
wells (QWs). The QWs have a bandgap that is narrower than, and fully encapsulated by,
the bandgap of the cavity spacer material thus producing a potential well that confines
excitons in one dimension. The QWs are positioned around the anti-nodal positions of
the photonic cavity mode to maximise coupling between the electromagnetic field and
excitons. Polaritons are neither photons or excitons they exist from the oscillation of
the confined energy between the photon and exciton states, the frequency of which is
charaterised by a parameter called the vacuum Rabi frequency (£2). In the following
section the building blocks for microcavity polaritons are introduced and two coupling
regimes of such systems (strong and weak) will be described. Finally different properties

of polaritons that are of interest for work presented later will be introduced.

1.1.1 Excitons

An exciton is the quasiparticle formed when a negatively charged electron and a posi-
tively charged hole are Coulomb coupled. Excitons can be qualitatively split into those
which are ’tightly’ bound (Frenkel excitons) and those which extend across multiple
lattice sites (Wannier-Mott excitons) [13,14] . Frenkel excitons correspond better to
ionically bound compounds in which the radius of the lowest energy exciton state is
smaller than or comparable to the interatomic separation [15]. Wanier-Mott excitons on

the other hand better suit inorganic semiconductor materials in which electron bands

3
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exist [16]. Let it be noted all work in this thesis uses direct bandgap semiconductors
(GaAs, InGaAs) meaning excitons can be excited/decay directly through single pho-
ton absorption/emission, as the minimum in the conduction band and maximum in the

valence band dispersions occur for the same momentum.

Wannier-Mott excitons can be considered functionally similarly to the hydrogen atom

[16,17], with a comparable Hamiltonian [17]:

H=— .
2my; ¢ 2mj b el

(1.1)

where m; and mj are the effective masses of the electron and hole respectively, € # 1 is
the dielectric constant of the material and 7 = 7. — 7}, denotes the separation of electron
and hole. Drawing further on the analogy with hydrogen, excitons can be characterised
by a Bohr-like radius to describe the spatial extent and by an exciton Rydberg energy
(Rez) (the energy necessary to ionise the first bound exciton state). Excitons as a
composite particle formed of an electron and hole have a resultant charge of 0 and so
have a dispersion for each bound state (n € N > 1) characterised by the free motion of

a quasiparticle with effective mass M = mj; + m} and wavevector k [15-17):

R  h2|K|?

Emn(k) = Eg - 7'L2 2IM

(1.2)

Comparatively to cavity photons, excitons demonstrate a significantly larger effective
mass which means that for most considerations in this thesis the exciton dispersion can

be considered flat (i.e. the final term of the right can be neglected).

1.1.1.1 Exciton confinement in one-dimension

Due to the notable exciton Bohr radius, for bulk GaAs ~ 12.5nm [17], it is possible
to construct confining potentials that are comparable in size to the bulk exciton Bohr
radius, consequently confining the excitons in these directions. Discussion of confinement
shall be restricted to quantum wells (QWs), which are two dimensional planar objects
applying confinement in one direction only, as this is the form of confinement relevant

to the systems considered.

Quantum confinement leads to the perturbation of the band structures and thus exci-
ton energies and wavefunctions. For an infinitesimally narrow QW with infinitely high
barriers the Bohr radius is half that of the corresponding bulk Bohr radius and more
critically the binding energy is four times that in bulk (E%P = 4E3P) [18-20]. In more
realistic scenarios with finite barriers the binding energy does not increase monoton-

ically with decreasing QW width due to tunneling into the barriers for very narrow
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QWs [20-22]. However, broadly it is the case that for confined excitons the binding
energy is larger than that in bulk and thus excitons become more thermally stable in
QWs. Additionally due to the increased overlap of the electron and hole wavefunctions,
the oscillator strength, that characterises the probability of photon absorption/emission,

is enhanced [20,23,24] which is beneficial when coupling light and matter.

Up to now it has not been necessary to burden the discussion on excitons with specifics
on the properties of the valence bands. However, when confinement is introduced the
specifics become important in the lifting of a degeneracy in the valence bands [25-
27]. For semiconductors with a zincblende structure (face centred cubic with a two
atom basis), such as is common in GaAs, the conduction band has s-type symmetry,
with angular momentum [ = 0 and spin s = +1/2, whilst the valence bands have p-
type symmetry with angular momentum [/ = 1 and spin s = +1/2. Considering the
valence bands only, the resultant total angular momentum states are J = [ + s =
3/2,1/2 leading to a six fold degeneracy on the projection J, at the I' point when
neglecting spin-orbit interactions [20, 26, 28]. Spin-orbit coupling splits the two states
with different J producing a four fold degenerate state |J;J.) = |3/2;£3/2,+1/2) and
a two fold degenerate state |.J;.J,) = [1/2;4+1/2). The states |J;J,) = |1/2;+1/2) are
known as the split-off band and have a lower energy (so larger separation from the
conduction band) and are thus neglected in the current discussion. The remaining four
fold degenerate states |J;J,) = |3/2;4+3/2,£1/2) are those that play a role in exciton
formation. Looking at the dispersion around the I' point for bulk GaAs one will see
the states |J; J,) = |3/2;£3/2) show a shallower curve than the |3/2;+1/2) states. In
the effective mass free propagating quasiparticle picture, the effective mass is related
to the second derivative of the dispersion and so the shallower curve corresponds to a
larger mass. Therefore, the states |3/2; £3/2) receive the name "heavy-holes’ (hh) whilst
the |3/2;+1/2) states are called ’light holes’ (lh) [20,26,28]. With the introduction of
confinement, the degeneracy of the hh band and lh band at the I' point is lifted as
the quantisation energies are mass dependent [20,29]. The hh displays a lower energy
separation from the conduction band than the lh [26,30]. As such the heavy-hole exciton

is energetically the lowest bound state and dominates the spectrum [27,31].

Possible transitions between electron states in the valence bands (hh and lh) and the
conduction band in Zincblende QWs are depicted in Figure 1.1. Blue arrows denote
absorption/emission of a right circularly polarised (RCP) photon, and red arrows, ab-
sorption/emission of a left circularly polarised (LCP) photon! [32,33]. The black arrows
denote transitions which cannot occur through simple one photon absorption/emission,
due to the required change in J, exceeding the maximum spin of a photon (+1 in units
of h). With the resulting exciton states consequently referred to as dark excitons. It

is the optical transition selection rules that enable the determination of the spin of an

!Note, linear polarisation photon transitions between the lh and conduction band states are not
included in the figure.
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exciton (equally polariton) directly through polarisation measurements as is discussed

later in Section 1.1.4.

E 1/2;-1/2) 11/2;1/2)

(¢

0+

€hh

3/2;=3/2) 13/2;3/2)

175.J2) 3/2-1/2) Bz "

FIGURE 1.1: Transitions in a QW, ey}, - electron states in the heavy hole valence band,

ern - electron states in the light hole valence band, e, - electron states in the conduction

band, J - total angular momentum, J, - angular momentum projection on the z-axis,

o_ - right circular polarised light (blue) and oy - left circular polarised light (red).

Black arrows denote transitions which aren’t optically active and the resultant excitons
are referred to as ’dark excitons’.

1.1.2 Confinement of light - Microcavities

Microcavities are optical resonators where the confinement length in any direction is com-
parable to the wavelength of the confined light. Confinement can be in one-dimension,
two-dimension or three-dimensions [21]. For brevity discussion is limited to one-dimension
confinement in the form of Fabry-Pérot microcavities as these are the type used in the

work presented here.

Due to the quality of confinement necessary, customisable high reflectivity mirrors known
as distributed Bragg reflectors (DBRs) are used over traditional metalic mirrors. DBRs
are pair periodic structures formed of alternating layers of materials with refractive index
na and 1, where the optical thickness (1;d;, i = a,b) of each layer is Apragg/4 (ABragg
is the central wavelength the DBR is designed for). The 7 phase shift experienced by
a wave reflected at a boundary from low to high refractive index mediums along with
the ABragg/2 round trip through one layer means the reflections from each boundary
constructively interfere, leading to a very high overall reflectivity around Aprqgq. The
region around Apgyqgg for which there is high reflectivity is referred to as the photonic
stopband of the DBR. The overall reflectivity of the DBR. in the stopband can be con-
trolled by the number of pairs of layers deposited. The spectral width of the stopband
is tailored by the refractive index difference of the two materials forming a pair [21,34].
The resulting stopbands can have reflectivities close to 100% spanning up to hundreds
of nm. The reflectivity spectrum of such systems can be calculated using the transfer
matrix method [21,35,36], an example spectrum for a DBR of 28 pairs of AlAs/AlGaAs

is shown in Figure 1.2 (a).
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FIGURE 1.2: Transfer matrix reflectivity spectra (a) DBR consisting of 28 pairs of

AlAs/AlGaAs with Aprege = 807nm and (b) a 5A/2 AlGaAs cavity with 28 pair layer

DBRs front and back. Note in the above calculations A = Ap,q49 and no substrate is
included in the calculations.

A Fabry-Pérot microcavity is formed by separating two DBRs with a cavity spacer 2

that has an optical path length L. = n.d., where 7, is the refractive index and d. is the
geometric length of the cavity spacer. As is true for traditional Fabry-Pérot cavities,
modes fulfilling the resonance condition \,, = 2L./m (equally w,, = mecn/L.), where
m € N > 1, see strong enhancement within the cavity if the mode is within the stopband
of the DBRs®. As a result of the cavity, there is a strong suppression of the samples
reflectivity around the resonant frequency. The free spectral range (FSR), i.e. the
separation between consecutive resonant modes of a cavity, is inversely related to the
length of the resonantor, Aw = ¢mw/L.. Thus using small cavities, i.e. m < 5, makes the
FSR large enough so that only one resonant mode is within the stopband of the DBRs
which, as will be discussed later, prevents mode competition in the creation of polaritons.

The quality of the confinement is quantified via a parameter called the Q-factor:

We
Owe

Q (1.3)

where w, is the angular frequency of the resonant mode and dw. is the FWHM of the
mode. It can be interpreted as the ratio of the energy stored in the cavity to the energy
dissipated in one period. The higher the Q-factor the longer the lifetime of the cavity
photons. The predicted reflectivity spectrum for a microcavity formed of two of the

DBRs, whose reflectivity is shown in Figure 1.2 (a), separated by a 5\/2n. AlGaAs
cavity with A = 807nm is shown in Figure 1.2 (b).

The resonance conditions for Fabry-Pérot cavities, discussed above, quantises the wavevec-
tor only in the direction normal to the surface of the sample (also referred to as the

growth direction 2), k.. There is a continuum of accessible wavevectors within the plane

2The cavity spacer can be viewed as a defect in an otherwise perfectly periodic one-dimensional
photonic crystal.

3The cavity mode in DBR microcavities will be slightly shifted due to the penetration of the fields
into the DBRs, an effect that is not experienced by metallic mirrors.
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FIGURE 1.3: Left - Schematic for a planar Fabry-Pérot cavity. Right - Corresponding
angular dispersion for a cavity with a resonant wavelength of 805nm (1.541eV’) for
0=0.

of the sample (the [£,§] plane) k| = |/kZ + k2, this results in a parabolic shaped disper-
sion of the cavity mode as a function of k)|, which maps to the angle from the normal to
the surface. This is best understood through the calculation of the resonant frequencies
(we = Jw? + wﬁ) as a function of polar angle (6.) inside the cavity from the normal
(where 6, < 7/2). Noting the restraints on w, i.e. wccos(f.) = w, = men/L. the

resonant frequencies are:

we(e) = —T (1.4)

Using an average refractive index (77) of the microcavity, the refractive index of air and
Snell’s law this resonance condition can be expressed in terms of a dispersion relation

as a function of the angle of incidence on the samples surface (6)*;

(mem/d.)

0= =)

(1.5)

An example of this dispersion is shown alongside a schematic in Figure 1.3. In the
effective mass picture this parabolic dispersion implies that the cavity mode photons

gain an effective mass due to the confinement in the growth direction.

Note that whilst for ideal Fabry-Pérot cavities, like those described above, the two DBRs

are parallel to one another; to add another degree of control to the polariton system, the

4Note, the optical path length L. is rewritten in terms of geometrical length and 7. The use of 7 is
reasonable in an ideal cavity formed from thin mirrors as 77 & 7..
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cavity spacer is generally wedged in one direction. The purpose of this wedge is to allow
the energy difference between the cavity mode and exciton to be tuned on one sample.
The angle is very shallow and thus generally the approximation of azimuthal symmetry

remains valid.

1.1.3 Light matter coupling

Cavity quantum electrodynamics can be studied efficiently in a system combining the
two forms of confinement described above, i.e. placing QWs within a microcavity. The
cavity mode couples to the exciton dipole moment with a coupling energy proportional
to the product of the amplitude of the confined electric field and the exciton dipole
moment; let this light-matter coupling energy be denoted Fprps. This coupling can be
expressed in a form that is more conducive to visualising the various regimes of coupling
by considering the frequency 2 = Erj/h that describes the rate of transfer between
the bare modes [37]. In this sense © can be viewed as a form of Rabi frequency with

consideration to the nomenclature established in the atomic community.

When  exceeds all decay rates of the system, i.e. the non-radiative decay of the
exciton (7,) and the decay rate of the cavity (7.), the system is said to be in the strong
coupling regime [21,37]. In the strong coupling regime energy cycles back and forth
between the cavity mode and exciton mode multiple times before finally escaping the
system (generally in the form of a photon tunneling through the DBRs)®. This Rabi
oscillation results in two new eigenstates of the coupled system called the upper and
lower polariton. The polariton states are bosonic quasiparticles that are part light and
part matter and can be seen spectrally as two new energies distinct from the bare cavity
and bare exciton modes, analogous to the normal mode splitting for coupled oscillators.
Strong coupling is often demonstrated via an anti-crossing of the two polariton modes
when the cavity mode crosses the exciton mode, see Figure 1.4. The energetic separation
between the upper and lower polariton when the cavity and exciton modes are degenerate
(B, = E.) is referred to as the Rabi splitting and is equal to 2A€2. Strong coupling in
cavity-polariton systems was first experimentally demonstrated by C Weisbuch et al in
1992 [38].

On the other hand if 2 < 7., 7, then the system is in the weak coupling regime whereby
there is no coherent oscillation of energy between the bare exciton and cavity mode. In
the weak coupling regime one reverts to a system resembling a vectial cavity surface
emitting laser (VCSEL).

With the above requirements for strong coupling in mind, some key parameters that con-

trol the design process of sample production are the cavity decay rate and the placement

®As generally v, > vz, strong coupling can be described as the situation where the probability of a
photon (produced from exciton annihilation) being re-absorbed to create an exciton exceeds that of the
photon escaping the cavity.
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FiGURE 1.4: Anticrossing behaviour of the calculated lower and upper polariton

branches (see Eqn. 1.12) at k; = 0 as the detuning between the cavity mode and

exciton mode is swept from negative to positive. Blue solid line - upper polariton, red

solid line - lower polariton, black solid line - exciton and black dashed line - cavity
energy.

and number of QWs. As the photon-exciton coupling is proportional to the amplitude
of the electric field, QWs are placed around the anti-nodal positions of the confined
electric field. However, excitons retain their composite bosonic nature only in the limit
of low density [21], therefore, groups of QWs centred around each of the electric field
anti-nodal positions are used. This enables a much larger number of excitons to ex-
ist around the maximum ’gain’ regions without crossing the exciton saturation density
(Mott transition) that would result in exciton dissociation and the loss of strong cou-
pling. The QW-QW separation within a group is chosen, for the samples used here, so

that there is negligible overlap of exciton wavefunctions from neighbouring QWs.

As discussed in Section 1.1.2 DBRs are used in place of more traditional metallic mirrors
due to the tunable stopband with very high reflectivity reducing the cavity decay rate.
Unfortunately unlike metallic mirrors which exhibit very low field penetration depths,
for DBRs the electric field penetrates deep into the structures effectively lengthening
the cavity [21,34,39]. In the limit of a large number of DBR pairs the penetration depth
(Lppr) can be defined as [21,34]:

)\Braggnanb

2770|(77b - na)‘ (1'6)

Lppr =

In Ref [34] V. Savona et al. show that the coupling between the cavity mode and exciton
transition is inversely proportional to the effective cavity length (Lefs = Le + 2LpBR)-
So the use of DBRs vastly improves the cavity decay rate, but due to the extension
of the effective cavity length, the coupling strength is slightly reduced. However, as
strong coupling is routinely demonstrated experimentally nowadays, this reduction in
coupling strength is insignificant compared to the benefits of DBRs and thus shall not

be considered further. Lastly, due to the microcavity confinement length the FSR is so
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large only one mode exists in the stopband thus removing any gain/mode competition
and lowering the excitation densities required for quantum degeneracy - discussed later

- thus further reducing the risk of reaching the Mott transition.

1.1.3.1 Strong photon-exciton coupling

The coupled light-matter system is described via the Hamiltonian,

: _ i t t t
H(k)) = ZEC(k:H)akHakH + ZEm(kH)kaka +> hQay, b, + ar by, ) (1.7)
k) k| Ky,

where E, (k) is the cavity mode dispersion and E, (k) is the exciton dispersion® for an
in-plane wavevector kj. aLH (b};\l) and ay, (by,) are the photon (exciton) creation and
annihilation operators for a given k| respectively [21,40]. The creation and annihilation
operators increase or decrease the number of excitations in a state by 1 respectively

obeying the following conditions:

aln)a = vnln — 1)
(1.8)

afln)e = vVn+1jn+ 1),

where |n), is a given Fock state (with occupation n) on which the creation/annihilation
operators act. From these creation and annihilation operators a new operator called the
number operator (N) can be defined N = aa, which gives the occupation of the state on
which the creation/annihilation operators act. The Hamiltonian can be translated into
a matrix depiction that can more intuitively be diagonalised to give the new eigenen-
ergies/states of the system. By expanding the Hamiltonian on the state |n;) ® |n.)
written for brevity as |ngz,n.) in a single particle state (n. + n, = 1) the Hamiltonian

becomes:

o <<1,o|m1,o> (1,0l o, 1>> (1.9)

— \(0.1[1,0) (0, 1]E]0,1)

For demonstration, the expansion of the first term Hyo is shown below, noting that

dependency on k|| has been neglected for simplicity:

5Due to the effective mass of excitons being orders of magnitude larger than the confined cavity
mode, for the relevant values of k|, the exciton dispersion can be considered flat.
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H[1,0) = (E.al - 0) + (1- E.[1,0)) + (1-70(0,1)) + (A2 - 0)
(1.10)
(1,0]H|1,0) = (1,0]1 - E,|1,0) 4 (1,0]1 - hQ0,1) = E

where on the top line of Equation 1.10 the first and last terms on the RHS disappear
because a|0), = 0. Finally the second term on the RHS of the bottom row disappears due
to orthonormality ({7, j|k,[) = 0; x0;;). Following the same procedure for the remaining

elements of the Hamiltonian results in the final form:

(Bl R0
H(k:H)_( ol Ec(kn)> (1.11)

Diagonalising Equation 1.11 yields the eigenenergies:

(k)+E (k)
I 1) 2\/

corresponding to the dispersion relations of the upper (Eyp(k))) and lower (Erp(k)))
polariton branches. These new states are superpositions of the bare exciton and bare

cavity states and can be written as:

|LP (k) = X (k)| X (Ky)) — C(ky)|C(Ky))) (1.13)
\UP(ky)) = C(ky)| X (k) + X (k)| C(Ky))) (1.14)

where X' (k) and C(k)|) are the Hopfield coefficients. The photonic and excitonic frac-
tion of the polariton states can thus be determined via the amplitude squared Hopfield
coefficients [21]

Eup (k) Ex (k) — Evp(ky) Ee(k))
(Ec(k)) + Ex(ku))\/(Ec(kn) — Ex(ky)))? + 40202
Eup(k))Ec(k)) — ELp(k)) Ex (k)
(Ee(hy) + Ea(k)) [ (Beky) = Ba(ky))? + 452622

C(ky)I? = (1.15)

X (k)P =

(1.16)

For the LP branch the photonic fraction is |C(k)|)|* and the exciton fraction is | X (k))|?
with |C(k))|[* 4 |X (k)))|* = 1; note the contributions are swapped for the UP branch.

In Section 1.1.2 it was mentioned that, in general, a shallow wedge is grown into the

microcavity spacer layer to allow tuning of the cavity mode with respect to the exciton



Chapter 1 Introduction 13

Energy (eV)

T 04l 1 1 ]
02} + T -
0.0 sdecoot” "l 1 IR ede=ne-"" 1 1 PACET Boo decoc--” f" 1 e Eoo

40 -20 0 20 40 -40 -20 O 20 40 -40 -20 O 20 40
Angle (°) Angle (°) Angle (°)

FIGURE 1.5: Top row: Polariton dispersions for (left) negative detuning, (middle)

zero detuning and (right) positive detuning. Solid red lines - lower polariton branch

Erp(k)|), solid blue lines - upper polariton branch £y p(kj|), dashed black lines - cavity

dispersion E.(k||) and solid black lines - exciton dispersion E, (k). Bottom row: red

dashed line - photon fraction (|C(k|)|?) and blue dashed line - exciton fraction (|X (k))|?)
of the lower polariton branch for the dispersions in the top row.

mode. The difference in energy between the cavity mode and the exciton mode at k| =0
(0 = E.(0) — E;(0)) is called the detuning. By adjusting the detuning, the properties
of the resulting LP branch can be tuned as necessary (the UP branch is not relevant
to the work conducted here). Figure 1.5 depicts the dispersions and corresponding LP
photon and exciton fractions for a negative detuning (6 < 0), zero detuning (6 = 0) and
a positive detuning (6 > 0). More negative detunings result in a LP dispersion that is
steeper around k|| = 0 which in the effective mass approximation relates to a lighter,
and thus more photonic, particle’. Therefore, negative detunings favour themselves for
condensation as condensation temperature scales inversely with mass as will be discussed
in Section 1.2. The benefit of more positive detunings however is the increased exciton

fraction, which gives rise to elevated interparticle interactions and non-linear behaviours.

"Note the effective mass approximation is only valid for small angles (equally small k||) where the
LP dispersion is approximately parabolic.
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1.1.4 Polariton spin

Polaritons, being quasiparticles formed by the superposition of exciton and photon states
inherit their spin from the constituent particles. Circularly polarised photons have a spin
of £1 (in units of /) determined by the helicity of the polarisation. Excitons also have an
integer spin, determined by the band structure of the upper most valence band and the
conduction band®. Therefore, polaritons are bosons with integer spin and furthermore,
thanks to the optical transition selection rules, the spin of polaritons can be determined
directly via the polarisation of the photoluminescence (PL) [21,32,41]. This can be
seen in Figure 1.6 in terms of the transitions between the electron states of the heavy-
hole valence band and the conduction band. It is cast in a slightly different light in
Figure 1.7 presenting the optical transitions in terms of the creation and annihilation of
excitons referring to absorption and emission respectively. A spin +1 exciton is optically
accessible only via a left circularly polarised (LCP) photon (o) and similarly a spin —1
exciton with a right circularly polarised (RCP) photon (o_).

A perfectly spin polarised polariton condensate (in the absence of any spin relaxation)
would yield a perfectly circularly polarised PL, the helicity of which is determined by
which spin state the condensate exists in. An elliptical or linear PL polarisation corre-

sponds to a condensate that has components in both polariton spin projections.

Additionally it is possible to control the initial spin state of a condensate via the excita-
tion laser. Even under non-resonant excitation (see Section 2.2.1) in which a plasma of
uncoupled charge carriers (electrons and holes) is injected, the relaxation to the Coulomb
correlated exciton states is faster than the electron spin-dephasing time. This allows for
the formation of a spin polarised exciton population which results in a spin polarised
polariton condensate, whereby the relative amplitudes of the two spinor components can

be controlled via the polarisation of the non-resonant excitation beam [1,42].

1.2 Quantum degeneracy - Bose Einstein Condensation

In the early 20th century A. Einstein recieved S. N. Bose’s work on the statistics of
photons which led to his proposal that ideal, non-interacting bosons should undergo a
phase transition to a quantum degenerate state (condensate); with the threshold for con-
densation occurring when the associated de Broglie wavelength becomes comparable to
the interparticle separation [43,44]. The macroscopically occupied quantum degenerate

state is given the nomenclature of Bose-Einstein condensation (BEC).

8In Section 1.1.1.1 both the heavy and light hole valence bands were considered, but the splitting in
energy due to confinement is significant enough that we can neglect light hole excitons in the consider-
ation of our polariton system as the light hole exciton is far detuned from the cavity. Therefore, where
exciton dispersion is referred to this is the specifically referencing the heavy-hole exciton dispersion.
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FicURE 1.6: Exciton transitions between electron states in a QW that are relevant
to microcavity polaritons. hh - heavy hole, ¢ - conduction band, J - total angular
momentum, J, - angular momentum projection of z-axis, o - right circular polarised
light (blue) and o_ - left circular polarised light (red). Black arrows denote transitions
which aren’t optically active and the resultant excitons are referred to as ’dark excitons’
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FIGURE 1.7: Recast of the optical transitions between in the heavy hole valence band

states (hpp,) and the electron conduction band states (e.) in a Zincblende QW in terms

of exciton formation and annihilation. o - left circularly polarised photon, o_ - right

circularly polarised photon, |J, J,) defines the states where J - total angular momentum
and J, is the projection of J on to the z-direction.

Work by London [45] some 13 years later indicated a possible connection between the
observed superfluidity of He [46] and Bose-Einstein condensation. This marked the first
indication that BEC may not be a purely theoretical concept. Nonetheless, it wasn’t
until 1995 that BEC of dilute atomic systems was demonstrated, when groups led by
Cornell [5] and Ketterle [6] independently managed to cool rubidium-87 and sodium

respectively, below a critical transition temperature.

In the following, BEC of an ideal non-interacting gas will be discussed and a more ex-
perimentally applicable interpretation of condensed bosons outside of static equilibrium

will be introduced to describe polariton condensation.

1.2.1 BEC - ideal non-interacting gas in thermal equilibrium

Particles can be split via their spin due to the symmetry of the wavefunction under
particle exchange, those with integer spin are referred to as bosons whilst those with
half integer spin are Fermions. Fermions famously abide by the Pauli exclusion principle
which is to say the highest occupation of any state is 1. Boson’s on the other hand

aren’t subject to any such restrictions and follow the Bose-Einstein distribution:
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1
ne(e, T, p) = Ble—m) _1 (1.17)

where n; is the occupation of the state with energy ¢; at temperature T, where § =
1/kgT. kp is the Boltzmann constant and s is the known as the chemical potential?.

The total number of particles in the system (N) is determined via the integral:

N = /OOO ne(€)gsa(e)de (1.18)

where ne is as defined above and gsq(€) is the density of states of a free particle in

three-dimensions with mass m in a volume V, defined as [47,48]:

3
V [2m)\?
g3al€) = 3 (712> /2 (1.19)

where the energy of the ground state has been set to zero (9 = 0) to simplify the form

of the following functions 0, therefore:

N 1 [2m\2 [ €2 ;
v‘w(#) / A 1% (1.20)

0

When describing total occupation number N it is necessary to consider the contribution
from the ground state € = ¢y separately as the integrand of Equation 1.20 becomes equal

to zero at the ground state. Therefore,

N_No, 1 (2m
vV Vv 472 \ K2

where Ny is the occupation number of the ground state. Note de in the lower integration

N

0 61/2
/€0+5E mdﬁ (121)

limit is infinitesimally small and in most texts the limits are simply left between ¢y and

oo as the integrand equal to zero for € = ¢y anyway.

Equation 1.17 and thus N grows monotonically as p increases towards ¢y therefore the
thermodynamic limit (N, V' — oo while N/V remains constant) corresponds to f asymp-
totically approaching 0 (see footnote 10 for the more general case in which ¢y doesn’t
necessarily equal 0). In the thermodynamic limit a definition of the onset/existence of

a condensed state can be introduced. The maximum possible density of particles in the

9Equation 1.17 places a restriction on the range of values for u because n. > 0 = Pl 151
Ble—p)>In(l)=0=€e¢—pu>0= —u>c= u<e The ultimate limit on u is determined by the
lowest energy (ground) state ey (here let g = 0), thus u < 0.

3
""Note if €o # 0 then gsa(e) = 1 (22)2 (e — €0)'/? and the numerator of the integrands in the
1/2

following functions (Equation 1.20-1.21) are also replaced by (e — €o)
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excited states (Negz/V') is equal to the second term on the RHS of Equation 1.21 in the
limit g = 0. Should N, /V be less than the particle density of the whole system (N/V)
then all particles beyond Ng; (1 = 0) can only exist in the ground state; and in the limit
N/V > Nez(n = 0)/V, there is a macroscopic occupation in a the ground state. With
this in mind we can calculate the necessary conditions for condensation by equating
New(p = 0)/V with N/V [47-49]:

N_ 1 (m 3/“ /2L (2mksT,
Vo oam\ w2 ) f5, P17 T a2 T 2

where the substitution # = ¢/kpT,. has been made!!. The final integral converges and

ol

00 .CCI/Q
/ Sde (1.22)
s _

T

can be represented by ((3)['(2) ~ 2.315 where the first term is called the Riemann
zeta function and the second is the Gamma function [47]. This is to say the density of
particles supported in the excited states converges for three dimensions, consequently
allowing us to determine a critical temperature (7,) and density for condensation to

occur. Introducing the thermal de Broglie wave length for a temperature T:

Ny = 1.23
th mkgT ( )
this can be re-expressed as:
N 233 1 1
—_= =2 ~2.612—. 1.24
\%4 VL3 )\?h )\f’h ( )

Upon the average interparticle spacing becoming comparable to the thermal de Broglie
wavelength a transition to a condensed state will occur in a uniform ideal three dimen-
sional system. Rearranging Equation 1.24 one can cast the condition for threshold in

yet a different light:

win

2 h2 ﬁ
T. = 1.2
mkp (2.612) (1.25)

where . = N/V. So the threshold temperature for condensation (7;) scales inversely
with the mass of the particles, hence why polaritons exhibit condensation temperatures
orders of magnitude larger than cold atom systems. Furthermore, it scales with particle
density, so providing a high density of polaritons can be reached before exciton saturation

occurs, the critical temperature can be increased even further.

"For the general case where ¢o # 0 the substitution becomes = = (¢ — ¢o)/kpTe..
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1.2.2 Reduced dimension BEC - Polariton condensation

In the previous subsection, the density of states for an infinite ideal (non-interacting)
three dimension bosonic system was used. When using the density of states for ideal
infinite systems of lower dimensionality, the integral in Equation 1.21 - 1.22 diverges'?.
This means the maximum number of excited state particles supported is infinite and
as such a condensation threshold can never be reached for finite T, even though the

associated de Broglie wavelength may exceed the interparticle separation [49].

Of course ’infinite’ and ’ideal’ are mathematical constructs that are seldom reasonable
in physical systems. Therefore it is necessary for a slightly altered definition of what
constitutes a BEC to describe less ideal systems that i.e.: (1) have finite interparticle
interactions; (2) are finite in dimension with respect to the propagation length of the
particles; (3) exist in a non uniform potential landscape. The work from Penrose and
Onsager (1956) redefined the condition of BEC as the situation in which one or more
of the eigenvalues of the density matrix (p) describing the system are comparable to
unity [50]. A more experimentally demonstrable condition for BEC comes from consid-
ering the off diagonal elements of the reduced-density matrix (p(l)) which corresponds to
the single particle density matrix. Off diagonal elements of this reduced-density matrix
correspond to coherences of the system; and when considering the projection onto real
(Euclidean) space can be probed via spatial coherence measurements through well estab-
lished interferometric techniques. With this definition (for an infinite system) providing
pW (7,7 ,t) remains non-zero in the limit of the separation of points d = |7 — 7 | — co.
then the system can be considered to be in a condensed state. This requirement of the
off-diagonal terms remaining non-zero is known as the existence of an off-diagonal long
range order (ODLRO). For more realistic systems of finite size if the coherence between
two positions in a system drops off as the separation becomes comparable to Ay, then
the system is in a non condensed state. On the other hand if coherence is maintained
for separation distances far exceeding Ay, then the system is in a condensed phase. The
formation of a well defined ’global’ phase over the entire condensate (i.e. ODLRO), from

an incoherent reservoir, represents a spontaneous breaking of U(1) symmetry [51].

Having overcome the conceptual barrier of defining BEC in reduced dimensionality there
is an additional consideration which for years led to contention on the validity of calling
a polariton condensate a BEC. The lifetime of polaritons, for most samples, is generally
too short for the cloud of polaritons to thermalise to the Bose-Einstein distribution.
Regardless of this in 2006 Kasprzak et al. [8] demonstrated enough of the experimental
conditions, the critical piece of evidence being the coherence across the cloud (demonstra-
tion of ODLRO), for the condensed state to garner the name of a polariton Bose-Einstein

condensate, albeit a non-equilibrium condensate. In the time since then, sample growth

12The integral fails to converge when the density of states scales with the energy term having an
exponent < 0 i.e. when g(e) oc € for & < 0. For an ideal infinite 2D gop(e) o< €® and for 1D
g1p(€) o< e /2 hence condensation is prohibited in the original definition.
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techniques and lattice constant matching have allowed samples with longer and longer
lifetimes to be produced which has enabled demonstration of a Bose-Einstein distribu-
tion of the polariton cloud [52]. This in conjunction with all the additional properties
now routinely demonstrated for polaritons (non-linear intensity response to increasing
pump power, narrowing of linewidth and particularly the long range order [8]) should
finalise the debate that polariton condensation is BEC and not an effect of the non-
equilibrium nature. This said, for simplicity all condensed polariton states in this work

will be referred to simply as polariton condensates.
How are polariton condensates different from a conventional laser?

Given that samples used for polariton condensate research and VCSELs share many
properties a common question is, what makes the polariton condensate a condensate
and not a laser? Firstly, in polariton condensates there is no population inversion.
Secondly the state that undergoes bosonic stimulation differs significantly between the
two. In a laser, bosonic stimulation is from the inverted state directly to the coherent
photonic field, whereas in a polariton condensate the bosonic stimulation occurs from
a polariton reservoir state to a coherent polariton state lower in energy on the lower
polariton branch. The coherent emission seen is a result of stochastic relaxation from
this state due to the finite cavity lifetime. That is to say for lasers there is stimulated

emission whilst in polariton condensation the stimulation is in the cooling stage [53].

1.3 Simulation of polariton systems

Modeling many body interacting particle systems is an impossible task for any moderate
number of particles due to the scaling of the complexity with particle number. It is for
this reason that mean field approaches are used in which individual particle interaction-
s/characteristics are replaced via a system average (mean field) simplifying calculations
dramatically. The most commonly used approaches to numerically simulate polariton
systems today are based off of the Gross-Pitaevskii equation (GPE) and the complex
Ginzburg-Landau equations (cGLE), which were originally developed for superfluidity
and superconductivity respectively [54]. The GPE and ¢GLE consider only condensed
particles, there is no external bath of heat or particles and thus they are incapable
of modeling the phase transition from thermalised to condensed state [55]. However,
both have proved time and time again to reproduce experimentally observed features of

polariton condensates and arrays thereof.

As the polariton system is inherently open-dissipative, due to the finite lifetime, it
requires a balance of pumping and decay to attain a ’steady state’. Correspondingly the
GPE and c¢GLE had to be adapted include decay and pumping. In 2007 M. Wouters
and I. Carusotto introduced the first generally applicable model capable of simulating a

variety of polariton systems [56]. This came in the form of a generalised GPE coupled to
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a simple phenomenological rate equation describing a reservoir of uncondensed particles
that feeds the condensed state:

. .
z"wg;t) — <_ 22’71:13 + %(R(mz) — )+ alp(F 1)) + 29nR> W(7, 1) (1.26)
%%(f’ﬂ = P(7,t) — vrng(7,t) — R(np)[(F,1)|> + DV2ng(F,t) (1.27)

where 1 is the wavefunction of the condensed state, my p is the effective mass of the lower
polaritons, R(ng) describes the gain due to scattering from the reservoir of uncondensed
particles where np is the (areal) density of said reservoir; R(ng) grows monotonically
with ngr. 7 is a phenomenological decay rate of the condensate, « is the polariton-
polariton interaction strength giving rise to the non-linearity of the condensate and g
is the blueshift due to strong interactions between polaritons and the exciton reservoir.
P(7,t) describes the optical or electrical pump, g is a non-stimulated decay rate of the
reservoir and D is a diffusion rate of the reservoir though this is often neglected due to
the significantly larger mass of the the reservoir particles keeping them localised to the

pump region. Finally the occupation of the condensed state is defined as

N = / (7, ) 22 (1.28)

An additional term can be included to account for an external potential, be it due to
defects, strain etc but for simplicity this has been neglected here. Comparable equations
for the cGLE can also be written as is demonstrated in Chapter 3, where additionally
the two components of the polariton spinor are accounted for. In some circumstances
further refinements are made to the model to bring the simulation closer to experimental
observations. Such as the inclusion of a second, inactive, reservoir that feeds the active

reservoir but not the condensed state directly, as is used in chapter 5.

The following Chapter introduces the experimental techniques utilised throughout the

work presented.
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Experimental techniques

2.1 Samples

To achieve strong coupling between light and exciton transitions in QWs it is necessary
to confine the photonic field across the QWs sufficiently long that multiple exciton
absorption and emission cycles can occur before the photon escapes the cavity. A typical
high Q-factor cavity used to achieve this consists of DBRs either side of a microcavity
spacer that contains a series of QWs around the anti-nodal positions of the confined field.
Using multiple QWs to confine excitons allows for a higher exciton density within the
cavity, increasing the coupling strength, whilst remaining below the exciton saturation
density/ Mott transition [57].

The work presented in the thesis is carried out on two samples grown via molecular beam
epitaxy (MBE). The first sample studied is a high-Q 5\/2 Aly3Gag 7 As microcavity with
four sets of three 10nm GaAs QWs inside the cavity, each set centred around an anti-
nodal position of the confined field. The cavity spacer is capped either side with DBR
stacks consisting of AlAs/Aly15Gag.g5As pair layers, 32 on the top and 35 on the bottom
all grown on a GaAs substrate. The resulting sample has a Q-factor of > 16000 and a
Rabi splitting of 9meV [58]. It was designed by P. G. Savvids and S. Tsintzos and grown
by Z. Hatzopoulos in the Microelectronics Research Group (MRG) of the Foundation of
Research and Technology (FORTH) in Crete.

Whilst MBE enables high quality growth, lattice constant mismatch between the various
layers leads to strain that subsequently causes various defects within a sample’s anatomy.
These defects can impinge on the extended propagation of polaritons or the feasibility of
creating minimally perturbed lattices of coupled condensates. Lattice mismatch and the
resulting strain restricts the number of pair layers of the DBRs that can be grown, while
keeping deformation to a minimum, ultimately limiting the cavity lifetime. Therefore,

the second sample studied includes a phosphorous doping in the AlAs layers of the DBR

21
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stacks to compensate for the mismatch and alleviate the strain. The sample consists
of a 2\ GaAs cavity with three pairs of 6nm InggsGagg2As QWs at the anti-nodal
positions of the confined field with an additional QW at the first and last node of
the cavity field. The DBRs are formed of 23 (26) pair layers of GaAs/AlAsg.9sP.02
on the top (bottom) of the cavity. The resulting experimental Q-factor is ~ 12000
with a Rabi splitting of 8meV [9]. Again the sample is grown on a GaAs substrate
but due to the use of InGaAs QWs the lower polariton branch is red shifted below the
bandgap energy of GaAs, consequently the substrate is transparent to the corresponding
photoluminescence, meaning the sample can additionally be probed resonantly from
either the epitaxially grown side or through the substrate. This sample was designed

and grown under the direction of P. G. Lagoudakis and W. Langbein.

2.2 Excitation

2.2.1 Excitation regimes
2.2.1.1 Resonant/Quasi-resonant excitation

Resonant excitation is an optical excitation technique that matches both the energy
and in-plane momentum (equally excitation angle) of the final polariton state. Under
resonant excitation the final state cannot be classified as a condensate, rather it is a
coherent ensemble of polaritons. This is because the phase of the condensate wavefunc-
tion is inherited from the excitation laser rather than determined through spontaneous

symmetry breaking during a phase transition.

Quasi-resonant excitation is similar, except one does not exactly match the energy
and/or angle of the excitation beam with the final polariton state. One form of this
excitation (at zero in-plane momentum) involves pumping with the laser slightly blue
detuned from the bottom of the lower polariton branch. Under this regime, as the
polariton population grows, the blue shift resulting from the non-linear interactions of
polaritons causes the lower polariton branch to become resonant with the excitation
beam. Another form of quasi-resonant excitation, which results in a condensate, is to
excitate the lower polariton branch resonantly but at a high angle of incidence (in-plane
momentum). Due to the phase distorting scattering processes during the transition from
the injected free carriers to the final polariton state, the phase of the final polariton state

is not related to the phase of the excitation laser.

2.2.1.2 Non-resonant excitation

Non-resonant excitation involves injecting a plasma of free charge carriers, which through

phonon mediated channels of relaxation, form a hot exciton reservoir that feeds states on
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the lower polariton branch. As the pumping density is increased a threshold condition
is crossed in which the scattering into the final polariton state exceeds the losses and
a coherent condensed state is formed. As described in the Section 1.2.2, the onset of
coherence formation across the polariton cloud corresponds to the onset of off-diagonal
long range order, which is a definitive indication of condensation. Again, through the
relaxation process with a significant number of scattering events, the phase of the final
condensed state is unrelated to the excitation source. The initial plasma can be injected
either electrically or optically. Herein, only non-resonant optical excitation is discussed
as electrical injection in not used in the work presented; though the general physics

doesn’t significantly differ between optical and electric injection.

To optically excite a plasma of free charge carriers, a laser energetically above the
bandgap of the active material (the QWs) and also above the photonic stopband of
the microcavity structure is used. The purpose of blue detuning above the cavity stop-
band is to maximise the coupling of the pump laser into the cavity and thus quantum
wells. The excitation source used throughout is a single mode narrow linewidth tune-
able Ti:Sapph laser with etalon locking to prevent mode hopping and external reference
cavity locking to bring the linewidth to < 75kHz. The plasma of free charge carriers
interact with optical phonons (OP) to relax into Coulomb correlated electron-hole pairs
(excitons). As discussed in Section 1.1.1.1 there are optically accessible (bright) excitons
with a spin of +1 and optically inaccessible (dark) excitons with a spin of £2. The bright
exciton dispersion itself though can be separated into two regimes, the regime with an
in-plane momentum that can be matched by photons at a given angle < 7 /2 with re-
spect to the normal of the samples surface (i.e. within the light cone) and the regime
which cannot couple to light because the in-plane momentum is larger than optically

accessible.

Excitons outside of the light cone, with high in-plane wavevector k), relax towards
optically active states in and around the reciprocal space trap of the lower polariton
branch through acoustic phonon (AP) interactions. The AP interactions dissipate en-
ergy from the exciton cloud into the crystal lattice, thermalising the exciton cloud to
some extent. However, AP interactions are inefficient, requiring multiple interactions
to dissipate ~ 10meV and taking ~ 100ps. Fortunately, due to the initial states being
outside of the light cone there is no radiative decay and so the exciton lifetime is long
enough to make this relaxation process sufficient [21]. As the energy and k|| decrease,
the excitons begin to be able to hybridise with photons to form polaritons, but this
also introduces radiative decay which dramatically reduces the lifetime. This leads to
the build up of an energetically hot, incoherent reservoir of particles. The reservoir
is often referred to simply as the hot-exciton reservoir because, for this region of k|,
the lower polariton branch asymptotically approaches an exciton contribution of 100%;
see Figure 1.5. The inefficiency of acoustic phonon mediated relaxation combined with

the reduced particle lifetime, due to radiative decay, necessitates that other interactions
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FIGURE 2.1: Left: Three dimensional schematic of the lower polariton branch (LPB),
upper polariton branch (UPB) dispersions along with the free charge carrier plasma,
exciton reservoir and final condensed state. The projection of the condensed state as
measured experimentally in Fourier space is shown on the lower plane. Right: Schematic
demonstrating the process of non-resonant excitation and relaxation processes resulting
in the final condensed state (C), where OP - optical phonon mediated relaxation, AP
- acoustic phonon mediated relaxation, pol-pol - polariton pair scattering. Red (blue)
solid lines - LPB (UPB), black solid (dashed) line - exciton (cavity) dispersion. The light
gray background denotes the region within the light cone and the dark gray background
denotes the optically inaccessible region. Note the condensed states in the schematics
are for freely propagating/expanding polariton condensates; see Section 2.2.2.

=y

such as polariton-polariton scattering become the dominant source of relaxation from

the exciton-reservoir to the lower energy states of the LPB.

At cryogenic temperatures the diffusion length of excitons is small, meaning the hot-
exciton reservoir is localised to the spatial geometry of the excitation beam. This pro-
duces a potential landscape that favours scattering into a particular set of states on the
LPB with a well defined k| that is not necessarily zero. Once losses from these favoured
states are surpassed by the scattering into them (gain), Bose stimulated scattering to the
final state produces a condensate with a spontaneously selected phase, described well
by a macroscopic wavefunction. This non-resonant excitation and relaxation process is

depicted in the schematics of Figure 2.1.

2.2.2 Excitation spatial geometry

The existence of a hot-exciton reservoir under non-resonant excitation affords a highly
tunable method of sculpting 2D potential landscapes, thanks to strong interactions be-
tween polaritons and excitons (pol-ex). The other widely implemented technique to
imprint arbitrary potential landscapes is through the micro-structuring of mesas on the
planar sample [59,60]. The downside to micro-structuring is the resulting potential is

permanent, and so any variation in lattice shape, lattice constant, depth of potential etc
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requires a new section of sample to be processed, at great cost and with slow return time.
Optically imprinting the potential landscape allows for the configuration to be changed
in live time using the same section of the planar sample. The upside of micro-structuring
is the potential landscape is effective even at pump powers significantly below threshold
allowing, for example, the observation of band structures in the linear regime (below
condensation threshold) as well as the condensed regime [61,62]. As the work conducted
during my PhD candidature is only concerned with optically imprinted geometries, these
shall exclusively be considered herein. Within the optically imprinted potential land-
scapes there are two categories of polariton condensate that can be formed, trapped and

freely expanding.

In the trapped regime a potential landscape incorporating a local minimum is imprinted.
Polaritons formed in the region between this minimum in potential and the surround-
ing maximal potential isopleth, ballistically travel towards the minimum. Polariton-
polariton scattering in this enclosed region leads to the formation of a cooled polariton
condensate [63]. As one would expect, such a system can be envisaged as a particle in
a finite potential box with various modes of trapped polariton condensates that can be
formed depending on the exact geometry and magnitude of the 2D potential landscape
imprinted. The supported modes for annular traps include modes similar in shape to the
different Hermite-Gauss modes [1,63-65] or Laguerre-Gauss modes [66]. The trapped
state to condense first is that which has the largest net gain through maximising overlap
with the reservoir. The final condensed state resides inside the dispersion of the propa-
gating polaritons, in the region around k; = 0 and not on the free particle dispersion;

see Figure 2.2(a).

Conversely, in the freely expanding regime, the polariton condensate is spatially coinci-
dent with the pump (and reservoir); such regimes include Gaussian pump profiles. The
potential hill landscape formed by the reservoir causes condensed polaritons to ballis-
tically propagate outwards with a well defined k|| that is not equal to zero. The final
condensed state lies on the dispersion of (lower) free polariton branch, see Figure 2.2(b).
Examples of the type of potential landscapes formed in both regimes are shown in Fig-

ure 2.3.

Each of the spatial geometries have features which are beneficial over the other in partic-
ular circumstances. For example, in the case of the trapping potential, the hot-exciton
reservoir is spatially separated from the final condensed state, demonstrably reducing
the decoherence inducing and spin mixing polariton-exciton interactions [63,67,68]. This
has enabled the first observation of polariton bistability under non-resonant excitation in
the absence of external perturbing fields, see Chapter 3 [1], as well as strongly enhanced
polariton condensate coherence times, see Chapter 4. The benefit of the freely expand-
ing regime is the ability to couple multiple spatially separated condensates in arbitrary
configurations [69,70]. As will be demonstrated, in Chapter 5, with freely expanding

condensates coherent coupling across macroscopic distances far exceeding an order of
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FIGURE 2.2: (a) Dispersion from a ground state trapped polariton condensate using
an annular pump profile on the GaAs sample. (b) Dispersion from a freely expanding
(non-trapped) polariton condensate on the InGaAs sample.

FIGURE 2.3: Potential landscape due to the exciton reservoir in the (left) trapped
regime, where a section has been removed to view inside and (right) freely expanding,
Gaussian excitation regime.

magnitude larger than the FWHM of the pump spots is possible; see Figure 5.1. The
flux of coherent particles from one condensate centre to the other additionally has the

effect of reducing the threshold pump density for each condensate.

2.3 Spatial modulation of light

To be able to produce arbitrary potential landscapes optically, one needs to be able to
sculpt the intensity pattern of the excitation beam. For certain ’simple’ pump geometries
one can use traditional optics; lenses, axicons, masks etc. But to truly harness the power
of the optically injected potential it is much more useful to use a highly adaptable

computer controlled beam shaper. There are numerous forms of device that can achieve
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FIGURE 2.4: Electrically addressable parallel aligned calamitic liquid crystal cells with
the alignment layers horizontal in the plane of the page. From left to right each cell
shows the LC alignment for increasing potential differences between the contacts from
0V (left) to the state with maximum phase perturbation corresponding to Vi,q, (right).

this desired controllability and they are grouped under the term spatial light modulator
(SLM). There are amplitude modulation SLMs that directly change the spatial intensity
pattern of the beam illuminating the SLM, for example digital micro-mirror arrays which
are effectively reconfigurable masks. There are then phase modulating SLMs that instead
imprint a 2D phase profile onto the illuminating beam which when Fourier transformed
(equivalently focused through a lens) results in the desired intensity profile. For example
where a beam Fj, is incident on the SLM, an Amplitude modulating SLM multiplies
the incident beam by a spatially varying term A(zx,y), whilst the term e"?(@¥) =1 (i.e.
¢(z,y) = 0V z,y). A phase modulating SLM, on the other hand, cannot modulate
amplitude directly thus A(z,y) = 1V z,y, but imprints a non-zero phase term ¢(z,y)':

Fout($a y) = A('Za y) : -an(xa y) ' ei~¢(a:,y). (21)

Under non-resonant excitation there is complete freedom over the phase of the excitation
laser, as the lasers phase is lost through multiple scattering events during the relaxation
process. Therefore, it is possible to use any of the forms of SLM mentioned above. The
micro-mirror array type of amplitude SLMs mostly use digital control over each pixel,
which is to say each pixel is either in an ’on’ or ’off’ state and only has displacement in
one axis. This consequently limits the maximum efficiency and resolution of the device
as it is effectively applying a mask to the incident beam deflecting regions, that aren’t of
interest, out of the optical path. The most flexible and high fidelity spatial modulation,
as used throughout the work presented, is achieved using phase-only liquid crystal on
silicon (LCOS) SLMs with a resolution of 1920x1080 pixels.

LCOS phase-only SLMs have a series of electrically addressable pixels with a parallel
aligned nematic liquid crystal (PAN-LC) cell between the contacts, similar to the form
shown schematically in Figure 2.4. A nematic LLC has a degree of rotational symmetry,
defined by the azimuthal and polar angle which the long axis of each molecule (for

calamitic LCs) makes to a reference axis, but demonstrates no positional symmetry.

!Note a phase modulating SLM could also be used in conjunction with polarisers to be implemented
as a direct amplitude modulation. But in general this technique is not as flexible.
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FI1GURE 2.5: 4F configuration used with the SLM and microscope objective lens. Where

f1 is the focal length of the lens Ly, f5 is the focal length of lens L, iris - controllable

aperture for spatial filtering of diffracted modes, Obj - microscope objective lens, SLM

- spatial light modulator and \/2 - half wave plate. F and R correspond to the Fourier
planes and real space planes of the system.

The molecular polarisabilities along the long and short axes of the molecules differ,
consequently in the nematic phase the refractive index is different in the direction of
the rotational symmetry vs the direction parallel to it [71]. A PAN-LC incorporates, for
example, calamitic molecules (cylindrical volume filling) in a nematic phase sandwiched

between two parallel alignment layers.

Looking at Figure 2.4 the cells, from left to right, have different optical thicknesses
(and thus phase retardance) for a linear polarisation parallel to the horizontal axis
(width) of the page (i.e. parallel to the alignment layers). Whereas the orthogonal
linear polarisation (perpendicular to the width of the page) will see no notable difference
in optical path length between the left most and right most cell. The SLMs used are
produced with alignment layers to retard the phase of the linear polarisation parallel
to the long axis of the (rectangular) screen. Additionally the SLMs used are 8-bit
addressable and calibrated such that a O phase delay corresponds to a pixel value of
0 and a 27 phase delay corresponds to a pixel value of 255, with as close to a linear

response of the phase delay vs pixel value as possible.

As phase-only SLMs imprint an arbitrary phase map they are placed at the Fourier plane
of the optical excitation path. A 4F system is then used to project the surface of the
SLM (the Fourier plane) onto the rear focal plane of an microscope objective lens that
then focuses the desired real space image on the samples’ surface. An iris is used at the
real space plane after the first lens, following the SLM, to select the first order diffracted
mode and filter out the zeroth (un-diffracted) and higher order diffracted modes, see
Figure 2.5.
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2.3.1 Phase map/Kinoform calculations

To produce an arbitrary spatial geometry via a phase-only SLM from, for example, a
Gaussian laser beam, it is necessary to calculate the spatial phase map (kinoform) that
needs to be imprinted. There exist a number of techniques used to make these phase
maps from the knowledge (or approximation) of the amplitude map of the beam hitting
the SLM, the desired spatial geometry and an initial guess at the required phase map.
As the theory of this topic that has had some in-depth discussions previously [72,73] 1
will discuss only the techniques used here and will highlight some of the experimental

difficulties in implementing them along with how the problems were overcome.

Broadly, the techniques for phase calculation can be split into two categories, those which
use analytically calculable solutions or a sum (modulo 27) thereof and those which make
use of iterative techniques transforming between the spatial and momentum Fourier

related planes (Helmholtz propagation can also be used instead of Fourier transforms).

2.3.1.1 Analytic

A spatial geometry implemented many times during the work presented in this thesis is
that of an annulus. An annulus can be formed by imprinting an analytic kinoform with
a phase delay that linearly increases with the radius from the centre of the SLM screen.
The gradient of the resulting ramp in phase delay defines the diameter of the annulus
produced. Due to the cyclic nature of phase (i.e. Om = 27) this linear radially changing
phase delay results in a circularly blazed grating. The axicon kinoform can be further
restricted to only allow phases of 0 and 7 resulting in the so called binary axicon. The
binary axicon produces sharper and more symmetric profiles of the resulting annular

excitation geometry and is the form used through out.

For other simple geometries a clean laser image can be produced by using the sum
(modulo 27) of the kinoforms that would create each constituent element. This technique
works well for simple configurations, however when the desired intensity profile becomes
more complex the technique fails to produce usable pump profiles. Figure 2.6 shows
the resulting experimental laser profiles for a pentagon (a) and a 5x5 square lattice (b)
utilising the sum of kinoforms technique. The 'ghost’ spots for the pentagon laser profile
are significantly lower in intensity than the desired pump spots and so the laser profile is
usable. Conversely, for the square lattice, the resulting laser profile shows an additional
layer of comparatively bright spots (i.e. it gives a 7x7 lattice rather than 5x5), whilst
the intensity of the inner spots are greatly suppressed. This effect is expected to be
due to the locations of multiple ghost spots (higher orders) being spatially coincident in
particular locations making them comparatively bright and ultimately resulting in the

intensity map being entirely unusable.
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FI1GURE 2.6: Experimental laser profiles using kinoforms produced by the sum of linear
gratings with desired geometries of (a) pentagon and (b) 5x5 square lattice. The solid
white lines in the bottom right corner of both (a) and (b) correspond to 15um. The
red dashed box in (b) surrounds the region that corresponds to the desired geometry,
the points outside this box are artefacts of the kinoform production technique.

Beyond the analytic kinoforms used to create the laser pattern desired, there are a
series of analytic Zernike polynomial kinoforms. The first order Zernike polynomials are
just linear gratings that displace the first order diffraction pattern (which produces the
desired geometry) from the un-modulated zeroth order reflected beam. Second order
and higher Zernike polynomials allow for correction of small aberrations introduced by
the optical elements. For example one of the second order Zernike polynomials consists
of a radially quadratic phase front that acts as an effective lens. This can compensate
for example, small changes in the optical path length between the SLM and microscope
objective lens?. All kinoforms used here, analytic and iteratively calculated, incorporate

at least first order Zernike polynomials via addition modulo 27.

2.3.1.2 TIterative techniques

For more complex geometries including ones with extended shapes and lattices, simple
analytic solutions are either not possible or do not result in good laser profiles. Therefore,
it is necessary to implement the iterative approximation techniques which are closely
related to the phase retrieval procedures developed in electron microscopy and x-ray
crystallography. Of the different versions of these algorithms the two techniques used
here are Gerchberg-Saxton (GS) and Mixed Region Amplitude Freedom (MRAF) [73].
The simpler of the two is an adaptation of the GS algorithm developed in 1971/1972 for

2Such optical path length changes could be the result of the addition of polarising optics/filters etc.
and this Zernike polynomial prevents the need to reposition the lenses.
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electron microscopy [74]. The procedure used can be summarised by the following list
and flow-chart (Figure 2.7) (all maps depend on the spatial indices x and y, corresponding

to the SLM pixels but these indices are dropped at points in the following for brevity):

1. To start one requires the knowledge of the following three fields. (1) The amplitude
map of the beam incident on the SLM (|Ej,;:|). Generally it is not necessary to
image the beam profile projected onto the SLM screen at the beginning for this
step, rather the beam can be approximated by a Gaussian of suitable width3. (2)
The amplitude map of the desired target geometry, Ag, which is just the square-
root of the intensity map Iy. (3) Finally an initial guess at the phase map required

to modulated the incident beam to be as close as possible to the desired target.

2. Multiplying |F;,;| with the complex exponential of the initial phase map (e*®n+)
gives the first input field in the algorithm EZ.(S). The purpose of the initial phase
guess, which generally contains something like a quadratic phase - having the
effect of a lens, helps the algorithm converge on a result quickly and with maximal
fidelity.

3. A fast Fourier transform of El(:l) (where i is the iteration step) is then calculated
to determine the output field (from which the predicted output intensity map can

be calculated).

4. An intermediate field GV, that combines the targets amplitude map with the
phase from the output field EY

out» 15 then calculated.

5. A new input field EZ-(;;H) is created combining the incident beams amplitude and the
phase map that is the argument of the inverse Fourier transform of G(. It takes
this form because we can only modulate the phase and not the spatial amplitude

directly.

6. This marks the end of one iteration and determination of whether further iterations

are carried out must be made. If further iterations are required go to step 3 with
E(i+1).

m

E.(H_l).

Otherwise the required kinoform is the argument of the complex field

30f course this is assuming the beam is nearly Gaussian, at least around the most intense region.
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FIGURE 2.7: Flow diagram showing the Gerchberg-Saxton phase retrieval technique.

|Ein(z,y)| is the amplitude of the beam incident on the SLM, ¢(x,y) is the initial guess

at the phase required to modulate |E;,(x,y)| into the desired intensity target Iy(z,y)
(Ag = /Ip) at the Fourier transform of the output field Ey(x, ).

For many applications GS is a perfectly adequate procedure, producing clean experi-
mental laser profiles. For regimes where GS fails to produce clean laser profiles the next
option is MRAF. In MRAF the target intensity map is split into two regions, the signal
region (SR) and noise region (NR)*. In the NR the algorithm applies no constraints on
either the phase or amplitude of the fields, in the SR there is only phase freedom and
the output field intensity map converges closely to the target intensity map. There is
a constant mixing parameter M (0 < M < 1) introduced that relates to the split in
intensity between the SR and NR. A smaller M results in a higher fidelity profile in the

4The regions should be chosen such that there is minimal to no intensity in the NR of the target.
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SR but with reduced intensity in the SR. As M is increased the intensity in the noise
region is decreased but at the cost of the fidelity of the resulting laser pattern in the
SR?, see Figure 2.8. With the addition of the mixing parameter, it is necessary to adjust
the intermediate function G® for MRAF. The intermediate functions for MRAF and
GS are:

¢ i i-ar (©)
Gg\/[)RAF = (mvIo|sr + (1 - m)]Eéu)t|NR) et arg(Eoyy)
(2.2)

GO, = Ty o

where subscripts (SR and NR) denote the regions in which each term is to be calculated.
There is one additional constraint that must be enforced in MRAF due to the mixing
parameter, the integrated power in the SR of the target and the mixing parameter
normalised integrated power across the whole output plane must remain constant in

each iteration [73]:

Ysrlo = constant

mZSR\E(i) 2+ (1 - m)ZNR]E((,Z)tP = constant.

out

FIGURE 2.8: Experimental real space laser images of five Gaussian spots between two
solid barriers with the kinoforms calculated using GS (left) and MRAF (the three on
the right) with reducing mixing parameter going to the right.

When M =1 and the SR and NR are selected so that there is zero intensity in the NR of the target
intensity map, then MRAF effectively becomes GS.
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The normalisation of the SR of the target only needs to be computed once at the

beginning of the calculation and the normalisation of F, (0)

out is computed before calculating

G® for each iteration. To minimise computational time, incorporating arrays (defined
once at the beginning of the calculation) that mask out the SR and NR, negates the need
of rastering the entire arrays (maps) each time GE\? rarp is calculated or the normalisation
is conducted. This significantly reduces the time taken per iteration and for the array
sizes used is not a problem for a computer with moderate RAM. Even though the
differences in calculation between GS and MRAF are small, experimentally the resulting
laser pattern fidelity can be vastly different; as is shown in Figure 2.8 and the following
section. The heart of the improvement is from the separation of the fields into a SR, in
which one requires a strong amplitude convergence to the target, and a NR in which no

constraints on amplitude are made.

2.3.2 Comparison of GS and MRAF

As suggested above, iterative techniques such as GS and MRAF only need to be imple-
mented in instances where the desired target geometry contains extended shapes and/or
extended lattices which lead to strong ghost spots. However, which iterative technique
should be used is an additional question that requires consideration of the required
fidelity and efficiency. For lattices of Gaussian-like points, GS is perfectly adequate;
particularly when coupled with the relative intensity stabilisation (see Figure 2.9(a)), as

will be described in the next section.

However, should the pattern include any extended non-Gaussian like shapes, then GS
will generally create a significantly speckled pattern, whereas MRAF can produce a
much smoother profile; but at the cost of efficiency. An example of the experimental
laser profiles for a system of five Gaussian spots between two solid barriers of controllable
height, using kinoforms calculated with GS and MRAF, are shown in Figure 2.9 (b & ¢

respectively).

2.3.3 Relative Intensity Stabilisation

Even with all of the choices of kinoform calculation, highlighted above, including the
Zernike polynomial corrections, there are unavoidable aberrations that stem from e.g.
sample defects or a non-ideal phase front of the beam incident on the SLM etc. To
actively and automatically compensate for these, a relative intensity stabilistion tech-
nique has been designed and implemented. Note that this relative intensity stabilisation
(herein called active stabilisation (AS)) works only in conjunction with the iterative

Fourier transform kinoform calculation techngiues.
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FIGURE 2.9: (a) 576 Gaussian pump spots arranged in a square lattice with the ki-

noform calculated using GS. (b) 5 Gaussian pump spots between 2 barriers, that in

the target intensity profile are smooth, kinoform calculated using GS. (¢) Same target

intensity profile as in (b) but the kinoform is calculated using MRAF with a mixing

parameter M = 0.5. Note in all of the above images relative intensity stabilisation, as
described in section 2.3.3 is implemented.

The AS technique utilses a camera imaging the samples surface, where each pixel has
been mapped onto the corresponding region of the target image. This allows the com-
parison of the experimentally realised laser geometry with the ideal target. A new target
is made considering the deviations measured between the experimentally realised laser
profile and the desired target, following which a new kinoform is produced and then
the resulting experimental intensity map is again compared to the ideal target. This

sequence repeats until the deviations fall below a preset threshold condition.

The comparison between the experimental intensity map and the ideal target can take
several forms depending on the goal. If pumping with Gaussian-like spots and the goal is
to make all spots equal, then the simplest form of correction is to measure the integrated
or peak intensities in the regions around where each spot is meant to be located and then
change the amplitude of each spot in the next target by an amount proportional to the
deviation from the mean. If an unequally pumped regime is desired, then the system can
compare the relative measured intensities (integrated or peak) to the relative intensities
in the ideal target and apply corrections scaled to these. When the excitation is not
formed from a series of Gaussian-shaped, spots it becomes necessary to interpolate the

experimentally measured intensity map to match the dimensions of the ideal target, then
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a pixel by pixel comparison and correction can be made. In all of the work presented

here it has not been necessary to go beyond equalising the intensity of all of the spots.

X X X X X

Integrated Integrated Integrated Integrated Integrated

counts counts counts counts counts
2 -1 0
10 10 10

FIGURE 2.10: Real space images of the experimental laser profile for five spots with
solid boundaries either side that have a peak intensity ~ 40% of the spots. Line profiles
calculated between the two vertical blue dashed lines is shown on the right of each
real space image. (a) Depicts the resultant laser profile after one run of MRAF with
M=0.5 using 20 iterations, (b) shows the laser profile after one iteration of the active
stabilisation (AS) to equalise the peak intensity of the 5 spots, (c) laser profile are two
iterations of AS, (d) three iterations of AS and (e) five iterations of AS.

The AS technique is very effective at stabilising the intensity across many laser spots
reducing the deviations dramatically; see Figure 2.10 & 2.11. The cost of the technique
is of course the time taken for each desired pump geometry to be created with the desired
intensity stabilisation. In the earliest versions of AS that I wrote, the calculations were
executed by the central processing unit (CPU) and would take ~ 30 — 60seconds per
full iteration, each of which consists of however many iterations of the MRAF or GS
algorithm used. For some targets the system converges to the final kinoform in very
few iterations. For example in Figure 2.10 the experimental laser intensity maps of
the five Gaussian pump beams between two solid linear barriers is shown at each step
across five iterations of AS resulting in very uniform intensities. However, other target
geometries are not so quick to converge and a preset cut off number of AS iterations
may be crossed before the measured deviations fall below a set tolerance limit (this cut
off number is set due to computation time but can be manually overridden if desired).
So whilst AS is effective (see Figure 2.10) it made real world probing of large numbers
of large pump geometries time consuming. My colleague J. D. Toepfer has since written
the iterative Fourier transforms algorithms and feedback procedures to be executed
on the graphics processing unit (GPU) which reduces the calculation time by orders

of magnitude allowing for hundreds/thousands of iterations to be computed quickly.
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FI1GURE 2.11: Demonstration of the effectiveness of the relative intensity active stabil-

isation techniques employed on a 5x5 square lattice. (a) histogram of the normalised

integrated counts of the stabilised (black spots) and not stabilised (red spots) pump for

the regions within the circles on the two real space images to the right. (b) Normalised

integrated counts for each of the 25 pump spots from which the histogram in (a) is
produced, black spots - stabilised and red spots - not stabilised.

Therefore, it is possible to traverse large sets of pumping geometries with this intensity

stabilisation active.

2.4 Temporal modulation of excitation

To prevent sample heating from the CW excitation beam it is necessary to modulate
the intensity temporally. One technique is to use a chopper wheel of a desired on-off
ratio spinning at a given frequency. Generally however, it is necessary to modulate the
beam faster than typical single chopper wheels can achieve (typically ~ 10kHz with
1 — 5% duty cycle is used) therefore other techniques are employed. The simplest and
most powerful/flexible technique is to use either an electro-optic modulator (EOM) or
an acousto-optic modulator (AOM) relying on the electro-optic or acousto-optic effect
respectively. In the following, discussion is limited to AOMs as these are what were
implemented here. It should be noted that although the time the laser is 'on’ is short,
due to it being orders of magnitude longer than the lifetime of the polaritons it can
still be considered CW and is often given the term quasi-CW to reflect the temporal

modulation.
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An AOM consists of a transparent crystal that on one edge has a piezoelectric transducer
driven by a radio frequency (RF) source, this drives longitudinal pressure waves inside
the crystal perpendicular to the lasers optical axis. The acoustic wave spatially modu-
lates the refractive index of the crystal (Acousto-Optical effect) producing a diffraction
grating. The diffraction efficiency of the grating is directly controllable via the amplitude
of the RF wave, which is in turn controlled by the voltage driving the AOM controller.
Therefore, it is possible to not only ’chop’ the excitation beam, one can temporally shape
the intensity of the laser into arbitrary patterns via a function generator. It should be
noted that whilst the diffraction efficiency follows the driving voltage, the response is
not perfectly linear across the voltage range applicable, particularly towards the region

of large driving voltages where the diffraction efficiency saturates.

As one of the key reasons for chopping the beam is to prevent sample heating, the first
diffracted order is used to excite the system due to it high extinction ratio in the off
state. One could equally use zeroth diffracted order to access more power in the ‘on’
state, but the ‘off’ states suffers a much lower extinction. It is possible to achieve up
to ~ 80% diffraction efficiency into the first order, so generally the cost in efficiency is
tolerablef.

2.4.1 Global intensity stabilisation

As AOMs are directly and arbitrarily controllable, they can also be used in an active sta-
bilisation of the global intensity to compensate for laser fluctuations and/or mechanical
vibrations altering the excitation density on the sample. Due to the pump laser being
locked to a single cavity mode (monomode operation) with a very narrow linewidth
(< 75kHz), intensity fluctuations are small. One of the primary sources of fluctuations

is the mechanical connection between the liquid He dewar and the banjo flow cryostat.

Whilst the system is built to minimise the existence of these vibrations, it is not ex-
perimentally feasible in our case to remove them entirely. To combat the remaining
fluctuations a feedback system was built that monitors the global intensity of either the
PL or laser in the collection path after the sample. It compares the voltage from the
measured intensity to a reference signal and through the use of OpAmps and a PID
loop gives a feedback to the voltage train driving the AOM. Due to the ‘on’ time of a
typical experiment being 1 — 5% duty cycle at 10kHz, and the bandwidth of the analog
PID loop only being 100kHz, it is not possible for the current system to compensate
fluctuations within a singular quasi-pulse, but rather it minimises fluctuations over an

extended period that would be comparable to that of time integrated measurements.

SNote that the intensity profile of the first diffracted order is proportional to the voltage from the
function generator whilst the the zeroth order is inversely proportional to the driving voltage.
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FiGURE 2.12: Top: Ray diagram demonstrating the imaging of real space using an
infinity corrected objective and lens (L) with focal length f;. Bottom: Depiction of
Fourier space imaging with the addition of a second lens (L2) with focal length fs.

2.5 Types of measurements

Due to conservation laws, optical selection rules and the dissipative nature of the system,
a polariton condensate can be fully characterised via well established optical techniques
without needing to perturb the condensate. This section describes the various measure-

ment techniques used during my PhD candidature.

2.5.1 Real and Fourier space imaging

To image real space (Figure 2.13(a)) an infinity corrected microscope objective lens
focuses the samples’ surface at infinity and a ‘tube’ lens Lq refocuses the real space
onto a detector (normally a CCD/CMOS sensor); see top schematic of Figure 2.12.
Fourier space (K-space) (Figure 2.13(b)) can be imaged with the addition of a second
lens Lo it’s focal length from the rear focal plane of the microscope objective lens, bottom
schematic in Figure 2.12. In the bottom schematic of Figure 2.12 the length ‘b’ is drawn
to be the same as f; which makes each plane (real space or Fourier space) Fourier related
to the one before and after and thus the system is conjugated. However, ‘b’ can take
other values, if b # f] then it is more intuitive to picture the system as Lo imaging the

Fourier plane at infinity and L; refocusing it at the final imaging plane.

2.5.2 Spectroscopy and tomography

Both of the above imaging techniques can be combined, with the use of a spectrometer
or a tuneable Fabry-Pérot cavity, to attain spectral resolution. For the work discussed, a
high resolution spectrometer (75cm) is used with 1200 groves/mm and 1800 groves/mm

gratings. The polariton disperion (energy resolved k-space) is directly accessible through
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FIGURE 2.13: (a) Experimental real space image of a nonagon of coupled polariton

condensates. (b) Fourier space corresponding to the real space in (a). (c) Energy re-

solved Fourier space (dispersion) corresponding to a narrow vetical strip of (b) centered

around k, = 0. All three images are in a logarithmic colour scale with the corresponding
colour bars beneath each image.

angle resolved spectroscopy; where the Fourier space (k-space) is imaged onto the en-

trance slit of the spectrometer, see Figure 2.13(c).

Through tomographic techniques it is possible to reconstruct spectrally resolved two
dimensional real space and Fourier space images. This is achieved by scanning the
corresponding imaging plane (real or Fourier space) perpendicularly across the entrance
slit of the spectrometer and building a stack of the spectrally resolved images from each
step in the scan. Then by combining the rows of constant energy across the stack,
the real or Fourier space image at that energy is reconstructed. The downside of such
measurements is the real space or Fourier space resolution on one axis of the resulting
images is determined by the slit width and step size used when rastering the real or
Fourier plane across the slit. Therefore there is a trade off between spatial/Fourier

resolution and the amount of data taken/acquisition time.

If one were to use a tunable Fabry-Pérot cavity, the spectrally resolved two dimensional
real or Fourier space images can be taken directly, with the resolution determined by
the optics and detector only. The specific energy imaged each time is determined by
the separation of the two mirrors, which is controlled via a linear piezo actuator on one

mirror.

2.5.3 Polarisation resolved measurements

Using various polarising optics (waveplates, polarising beam splitters etc) it is possible

to decompose the PL into the various cross-polarisation contributions, the intensities of
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which can be recorded as a function of time or they can be spatially imaged. It is using
these techniques that the spin state of the polariton condensate can be determined as

discussed in Section 1.1.4.

Figure 2.14 depicts the system used to temporally resolve the cross-circular polarisa-
tion contributions of the PL. The quarter-waveplate (A/4) is set at an angle of 45°,
converting the cross-circular polarisations into horizontal or vertical polarisation. The
polarising beam splitter (PBS) then separates the two linear polarisations, the intensi-
ties of which are temporally measured on two balanced photodiodes. By removing the
A/4 the same setup will then resolve the contributions of the vertical and horizontal
polarisations and the addition of a A\/2 waveplate at 22.5°, in place of the \/4, yields
the diagonal/anti-diagonal contributions. Through these three setups the psuedospin

(equally Stokes vector) of a polariton condensate can be determined.

Rather than temporally resolving the total contribution of each polarisation it is possible
to spatially resolve the polarisation components using a very similar system. To allow
both cross-polarisations to be imaged on a singular CCD/CMOS detector, the PBS can
be replaced with a polariser that separates the two polarisations by significantly less
than 90°.

PDI
|

PBS i PD2

N4
L

FIGURE 2.14: Cross circular polarisation analyser. L - planoconvex lens focusing the
light onto the two detectors, A/4 - quarter waveplate, PBS - polarising beam splitter,
PD1(2) photodiodes.

2.5.4 First order coherence - Michelson interferometer

Michelson interferometers in the mirror retro-reflector geometry (see Figure 2.15) can be
used in the determination of the relative phase between condensates and the calculation

of the normalised first order correlation function:

(E*(r,t)E(r',t+ 7))

(1) =)=
o= = P B et )
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FIGURE 2.15: Actively stabilised Micheleson interferometer. RR - retro-reflector on a

15¢m delay stage, M - mirror on a linear piezo actuator, NPBS - non polarising beam

splitter, L - plano convex lens, PD - photodiode, LP1(2,3) - linear polarisers, A/4 -
quarter waveplate and PID - proportional integral differential loop.

where E(r,t) is the electric field at position r and time ¢ and E*(r,t) is the complex
conjugate thereof. 7 corresponds to the time delay between the two arms of the interfer-
ometer and |1’ — 7| the spatial separation of the regions interfered. g™ (7, |/ — r|) gives

a direct measurement of the degree of phase coherence at 7 and |r/ — 7|.
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FIGURE 2.16: Demonstration of beam inversion via a standard hollow retro-reflector

A modified Michelson interferometer replacing the mirror in one arm with a retro-
reflector is used because retro-reflectors flip an image in two orthogonal directions re-
sulting in the outgoing beam being the completely inverted image of the incident beam.
Additionally if the retro-reflector is positioned with the incident beam displaced by 7,
from the central inflection point, then the outgoing beam is displaced by —27y;s, from
the incident beam, see Figure 2.16. Finally the outgoing beam always propagates anti-
parallel to the incident beam. These features of retro-reflectors enable cross-correlations
over an entire image, and thus demonstration of coherence across the condensate, to be
completed in a single shot. Additionally, controlling the displacement of the outgoing
beam with respect to the beam incident on the retro-reflector (via XY translation stages)
gives direct control over the fringe density and angle in the resulting interferogram. This
is because the retro-reflector displacement controls the relative angle of the beams from
both arms when they are recombined at the imaging plane, Figure 2.15. Which is
equivalent to an additional in-plane wavevector between the two. The retro-reflector is
additionally mounted on a 15cm long delay stage, enabling the temporal phase decay,

and so coherence time (7.,1,), to be accessed.

2.5.4.1 First order correlations

Consider a fully coherent source, the interferogram resulting from a retro-reflector -

mirror Michelson interferometer can be written as:
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Lint (7, 7) = |Ep(F) + ER(7, 1) (2.5)

where Ep(7) = Eo,, (7)) and Eg(7,7) = Eo, (7)eOr(D+3(7) are the electric fields
of the mirror (M) and retro-reflector (R) arms when recombined at the imaging plane.
Eo,,ry and Oy(g) are the amplitude and phase of the mirror (retro-reflector) beam
respectively and §(7) is a phase difference due to a time delay 7 from differences in arm

lengths. Therefore

Ling(7) = Ing (7) + IR(T) 4 24/ Ins (P) I r(T)cos(O(F) +6(7)) (2.6)

where Iprr)y = [Eoy,, R)|2 is the intensity map of the mirror (retro-reflector) arm and
O(7) = (Or(7) — O (7)) 7. There is the expected sinusoidal behaviour of the intensity as
a function of 7. For equally intense (and centrosymmetric, when using a retro-reflector)
fields this sinusoidal term results in complete extinction of intensity at the minima of
the cosine term as 21/Ip/(F)I(F) = In(F) + Ir(F). Note if there is a displacement of
the retro-reflector beam there would be an additional term within the cosine term that
can break the radial symmetry resulting in linear fringes when this additional term is

dominant; this term has been neglected here to simplify the discussion.

To expand the description to include any level of coherence from completely coherent
to completely incoherent fields, Equation 2.6 gains a multiplicative scalar factor to the

cosine term:

Lint (F) = Ing(F) + IR(7) + 27/ T (P IR(F)cos(O(F) + 6(7)) - ¢ (7, 7) (2.7)

where ¢(V) is the first order correlation function, with ¢) = 1 for full coherence, 1 <

g < 0 for partial coherence and ¢g™") = 0 for full incoherence.

Experimentally, there are two methods to determine the level of coherence, one is data
and computationally heavy and the other is a faster determination. The computationally
lighter method is to take the interferogram and two reference images (as well as the

background®), one of each interferometer arm, from which g is determined via

Lina () = Tt (7) = Tn(7)

2/ I (MIR(F)

"Note that the retro-reflector beam is the mirror beam inverted and so Ir(7) = Ins(—7) and the same
holds for Ey,, and 0.

8 As determination of the degree of coherence explicitly looks at the level of extinction between bright
fringes it is critical correct background removal on all images is carried out.

gD (7, 7) - cos(O(F) + 6(7)) = (2.8)
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Taking a line profile perpendicular to the fringes yields a sinusoidal function, the am-
plitude of which is the degree of coherence ¢*). Equally this can be done without the

reference images of each interferometer arm via the fringe visibility

Vis = Lmaz ~ Imin (2.9)

Imax + Imzn
where I,,4. and I,,;, correspond to the envelope functions of the maxima and minima
of intensity respectively for a given line profile perpendicular to the fringes. The benefit
of fringe visibility is that it can be automated and used as a live check of the degree
of coherence during an experiment as all it requires is the interferogram and a singular

background image that can be taken once at the beginning.

The more computationally expensive technique involves scanning the relative arm lengths
of the interferometer in very small step sizes, with relative phase of the arms sweeping
across ~ 6m. This delay is applied via the linear piezo actuator the mirror is mounted
on; see Figure 2.15. Through the interferometer stabilisation setup, described in Section
2.5.4.3, one can scan the position of the mirror in very small step sizes by rotating the
linear polariser infront of the photodiode. Taking interferograms for each step of this
~ 67 scan of relative phase, normalising each as per Equation 2.8 and stacking them,
one can then determine g(!) for every pixel in the interferogram by determining the sinu-
soidal modulation amplitude of the recorded intensity as a function of the piezo actuator
position. This is possible because each step of the piezo actuator relates to a different
optical path length difference between the two interferometer arms, which changes the
d(7) term in Equation 2.8 giving rise to the sinusoidal oscillation. Due to the number of
images that have to be taken in succession for this technique, the active interferometer

stabilisation, described in Section 2.5.4.3, is critical.

2.5.4.2 Coherence length and time

Whilst determining the level of coherence is of interest, it is generally how the coherence
changes as a function of time and/or separation distance that gives more detailed infor-
mation about spatial and temporal characteristics of the system. Coherence length is
impractical to measure in polariton systems as generally the coherence length far exceeds
the spatial extent of a singular condensate. Whilst one could use multiple coherently
coupled condensates separated by a large distance, as will be shown in Chapter 5, the

existence of multiple condensates changes the coherence of the system.

Therefore, generally the coherence time of the condensates is measured using a control-
lable delay stage on the retro-reflector arm allowing the interference of light from time
t (from the mirror arm) with light from time ¢ + 7 (from the retro-reflector arm), where

T can be positive or negative. Calculating g(l)(T) at each value of 7, a characteristic
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decay as |7| increases from zero can be fitted to determine the coherence time. The func-
tion that should be fitted to this decay is dependent on the dominant source of noise
in the signal. For a signal that demonstrates a Lorentzian lineshape - corresponding
to homogenous broadening - one would fit g(!)(7) with an exponential function as the
Fourier transform of a Lorentzian is an exponential. Conversely if one has a dominantly
Gaussian lineshape then one should fit (! (7) with a Gaussian. Of course in experiment

the lineshape is likely to contain both Lorentzian and Gaussian components (Voigt).

2.5.4.3 Active interferometer stabilisation

Interferometric measurements are sensitive to noise/fluctuations on the scale of the wave-
length of the light. Despite best efforts, it is unrealistic to be able to isolate the interfer-
ometer from such small fluctuations in a typical laboratory environment. Therefore, it is
necessary to implement an active stabilisation that can lock the interferometer arms to
have a given phase difference. The technique implemented in the work here is not new,
sharing similarities with that designed by Wehner M. et al. in 1997 [75] and a closer
relationship to that implemented by Lagoudakis K. described in [76].

As depicted in Figure 2.15, the stabilisation setup uses a linearly polarised, frequency
stabilised HeNe laser. A \/2 waveplate is used to set the polarisation to diagonal/an-
tidiagonal and the two interferometer arms contain linear polarisers orientated vertically
in one arm and horizontally in the other to create two cross-linearly polarised beams of
equal intensity. On the mirror arm of the interferometer, the same mirror can be used
for the stabilisation beam, whilst for the retro-reflector arm a mirror firmly mounted to
the retro-reflector is used. Following recombination at the non-polarisaing beam splitter
(NPBS), the two beams go through a A\/4 waveplate orientated at 45° to convert the
two cross-linear polarisations into cross-circularly polarised beams. The summation of
two cross-circularly polarised beams with a phase delay (here related to the relative arm
lengths) results in a linearly polarised beam. The orientation of the linear polarisation
is related to half the phase delay between the cross-circularly polarised beams (2dst4p),
an effect known as optical rotation. This can be seen by writing the two cross-circularly
polarised beams in terms of their components in two orthogonal linear polarisation com-

ponents (Jones vector):

E, : E, :
E,, = 4 e Vst B = . ¢ stab (2.10)
Eyez(ﬂ/2) Eyefz(ﬂ'/Q)

+i(r/2)

noting that E, = E, as these are circularly polarised states and e = =41, the sum

of these is:
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B - ( E(e‘i‘sf“ﬂ’ +ei5f‘ab) ) _ <2Ecos(6stab)> (2.11)
Ei - (e "stab — istab) 2E sin(0s¢ap)
i.e. a field where the components in the orthogonal directions are in phase (linearly
polarised) and the relative amplitude of each is a function of the phase delay between
the cross-circularly polarised beams (the orientation of polarisation depends on dgtqp)-
Therefore the intensity of light focused on the photodiode is directly related to the rel-
ative path lengths of the interferometer arms as well as the angle of the linear polariser
after the A\/4. Using the intensity dependent voltage from the photodiode as the signal
to a proportional-integral-differential (PID) loop, a corrective signal can be sent to the
linear piezo actuator on the mirror arm to compensate for any fluctuations; thus sta-
bilising the interferometer. This system stabilises/locks the interferometer to a desired
phase delay between the arms. Furthermore, by mounting the final linear polariser be-
fore the photodiode on an automated rotation stage one can scan the relative phase delay
between the interferometer arms across a number of wavelengths with great accuracy.
The limiting factor on the number of wavelengths this technique can scan is simply the

extent of travel on the piezo actuator.

2.5.4.4 Single shot interferometry

The active stabilisation of the interferometer and the global intensity stabilisation both
work together to help reduce fluctuations which would otherwise cause the measured first
order coherence to be artificially lowered. The next step to improving interferometric
measurements was to implement triggered single shot interferometry. This involves trig-
gering the camera to acquire an image during a singular quasi-pulse, using an exposure
time shorter than the quasi-pulse duration. This significantly improves interferometric
measurements as using exposure times that span multiple quasi-pulses result in images
that are an average of many condensate realisations, which can artificially reduce the

resulting ¢V measured.

2.5.5 Generalised experimental setup

By careful optimisation of the efficiency of the optical setup, it becomes possible to
simultaneously measure multiple parameter spaces of the PL. For example, Figure 2.17
depicts the schematic of a simplified experimental setup that allows the measurement of
real space (camera 1), Fourier space (camera 2) and spectrally resolved real or Fourier
space (camera 3) simultaneously. By moving flipper mirrors into the beams path camera
3, in Figure 2.17, can additionally be changed to carry out interferometric measurements

(interferometer not shown in the schematic).
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FIGURE 2.17: Simplified schematic of an experimental setup enabling the simultaneous

measurement of real space (camera 1), Fourier space (camera 2) and spectra (camera

3). AOM - acousto optic modulator, SLM - spatial light modulator, NA - numerical
aperture and LP filter - long pass filter.

In the following chapters, the experimental techniques outline above are implemented

to investigate:

1. All-optical spin bistability in non-resonantly driven polariton condensates.

2. First order coherence properties of polariton condensates.
3. Time delayed coupling of spatially separated freely expanding polariton conden-
sates.

4. All-optical band structure engineering using polariton condensates.



Chapter 3

Optical Bistability

3.1 Introduction

The phenomenon of bistability refers to a system supporting two stable solutions over a
range of values for a given driving parameter [77,78]; with the solution reached depend-
ing on what the driving parameter was immediately before i.e. if the driving parameter is
being swept forward or back. This behaviour necessitates that the system has a memory
of the state it was in previously, meaning bistable effects can be used in logic/memory
elements. It is usually demonstrated by means of a hysteresis loop in the plot of the
measured observable vs driving parameter where the area of the hysteresis loop corre-
sponds to the strength of the bistability. Optical bistability specifically concerns itself
with bistable effects within optical systems and thus is of interest for optical transistors

and optical memory, both of which are highly desirable.

Optical bistability has previously been demonstrated in systems such as cold atoms [79],
lasers [80], self-electro-optic effect devices [81] and Fabry-Pérot cavities containing non-
linear materials [82,83]. In polaritonic systems bistability was limited to being observed
under quasi-resonant /resonant optical excitation [84-89] or with electrical biasing [90,91]
and under non-resonant electrical injection with a perturbing magnetic field [92]. For
resonant excitation bistable effects have previously been described via a Kerr-like non-
linearity resulting from polariton-polariton interactions [84] and by analogy to optical
parametric oscillators [85]. Bistability was observed in the luminescence intensity under
electrical injection in the presence of an external magnetic field and the effect was at-
tributed to an electrostatic screening of the injected charge carriers creating a positive

feedback for the backward sweep of the driving current [92].

Due to the one-to-one correspondence between the circular polarisation of light and the

polariton spin, as described in the Section 1.1.4, bistability and even multi-stability in

49
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the spinor of a polariton condensate was demonstrated under quasi-resonant optical ex-
citation of a cylindrical mesa by rotating the polarisation of the optical pump [86]. Spin-
bistability was also shown under non-resonant optical excitation of a mesa while keeping
the optical excitation constant by sweeping a biasing electrical field that introduced an
energy splitting between two linear polarisation modes [90]. Under non-resonant ex-
citation and in the abscence of external perturbing fields, the preferable operation of
all-optical memory elements, both polariton bistability and spin-bistability remained

elusive before the work presented in this chapter, despite theoretical predictions [93].

3.2 Path to realising all optical bistability under non-resonant

excitation

The fundamental difference between resonant and non-resonant optical excitation is the
presence, in the latter case, of a hot-exciton reservoir, and the concomitant exciton-
polariton interactions. The observation of polariton bistability (from herein explicit
distinction between bistability and spin-bistability may not always be made) is critically
dependent on the noise/population fluctuations being too small to bridge the two stable

solutions of the system as otherwise this would collapse the desired hysteresis loop.

Therefore to realise bistability under non-resonant excitation it is paramount to iso-
late the polariton condensate from the exciton reservoir as much as possible. Exciton-
polariton pair scattering events are a significant source of decoherence [2,63,67], pop-
ulation fluctuations and are also a strong source of spin mixing [68] all of which are

detrimental to any bistable regime in intensity or spin.

To separate the polariton condensate from the exciton reservoir an optical trap pumping
regime is employed in the form of using an annular excitation beam which produces a
trapping potential landscape with a minimum in the centre [42,63,64], see Figure 3.1. A
spatial light modulator is used to produce the desired pumping geometry by imprinting
a 2D binary axicon phase profile on the excitation beam, as described in Section 2.3. It
is critical to note that the trapped state formed maximises net gain which corresponds
to having the largest overlap with the reservoir, generally this is the highest order mode
supported by the trapping potential. Therefore, the size of the annulus has a significant
impact on the existence and/or strength of the bistability. One expects the largest
hysteresis loop when the trap is the maximum size that supports only the ground state

as this will relate to the system with minimum condensate-reservoir overlap.

The sample used for this work has an AlGaAs microcavity with GaAs QWs produced by
the group of P. G. Savvidis [58] as described in Section 2.1. It is cooled to ~ 6K using
a continuous flow cold finger cryostat. The sample is excited with a linearly polarised
continuous wave (CW), monomode laser, tuned to the first minimum in reflectivity, en-

ergetically above the stopband, at 754nm. The intensity of the pump laser is modulated
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FIGURE 3.1: Schematic of the optical excitation scheme from [1]. An intensity map of
the pump beam is shown by the red ring on the microcavity. The black mesh represents
the confining potential barrier produced by the exciton reservoir, a section is cut out
to show the rainbow-coloured centrally trapped condensate that is close to a Gaussian
mode. The red and blue spheres show the spin-up and spin-down constituent states of
the condensate respectively with the arrow representing the coupling between the two.

into triangular pulses with symmetric rise and fall using an AOM driven by a triangular
voltage train from a function generator. Finally the pump beam is focused onto the

sample surface using a 0.4 numerical aperture (NA) microscope objective lens.

The spinor of the polariton condensate is probed directly by the degree of circular
polarisation (DCP) of the PL. This can be represented by the Sz component of the

Stokes polarisation vector, defined as

IO’+ - IO',
= " 1
Sz L, +1, (3.1)

where I, and I,_ correspond to the measured intensity of the right-circular and left-
circular polarised light. To resolve the intensities of the cross circular polarisations of
the PL a quarter waveplate (A/4) is used to convert the cross circular polarisations
into horizontal and vertical polarisations which are subsequently split via a polarising
beam splitter (PBS) and recorded simultaneously using two photodiodes balanced to
account for any imbalance introduced by the optics such as the PBS. Simultaneously to
recording the cross circularly polarised intensities there is a photodiode recording the
excitation beam which allows one to plot the DCP vs excitation power!. A schematic

of the experimental setup is shown in Figure 3.2.

!To account for any non-linear response of the AOM to voltage it is critical to measure the pump
intensity simultaneously to I, and I,_.
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FIGURE 3.2: Schematic of the experimental setup from [1] where AOM - acousto

optical modulator, SLM - spatial light modulator, PBS - polarising beam splitter, DBS

- dichroic beam splitter, Obj - 0.4 numerical aperture microscope objective lens, L

- plano-convex lens, A/2 and A/4 - half and quarter waveplates respectively and PD

(1,2,3) - photodiodes measuring the spin components of the photoluminescence and the
corresponding laser intensity.

3.3 Results and discussion

Figure 3.3 shows a typical experimental hysteresis loop in the DCP of the PL vs the
optical excitation power, as it is swept from below threshold to several times threshold
and back in the trapped spinor polariton system. The spin reversal on the forward sweep
of excitation power, shown with the red dashed line in Fig. 3.3, was previously shown
with time integrated measurements [42] where it was attributed to a transition from a
synchronised phase evolution of the two spinor components to a desynchronised phase
evolution regime. For decreasing excitation power, shown with the solid blue line in Fig.
3.3, there is backwards spin reversal but at a significantly lower pump power compared

to the power of the spin reversal in the forward direction, thus opening a hysteresis loop.

The effect can qualitatively be reproduced, see Figure 3.4, using the same complex

spin-dependent Ginzburg-Landau model coupled to the reservoir rate equation (cGLESs)
2

L OvL(t
zhdjait() = {Cko’l/Jj:P + al\wﬂz + hgrny +

+ % (Rrnt — o) poos + Az, (3.2)

2The numerical simulations were carried out by K. Kalinin and N. G. Berloff
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FIGURE 3.3: Measured third Stokes component, Sy, representing the degree of circu-

lar polarization (DCP) vs pump power displaying the characteristic hysteresis loop of

bistability for an annulus of ~ 16.1um diameter and 1.67ms sweep time at a detuning
of —7.6meV. Data published in [1].

on(t)
ot

= — (’7R+RR|T/&|2) n(t) + P(t), (3-3)

as in [42], where o > 0 is the strength of the repulsive interaction between polaritons
with the same spin, a1 < 0 characterizes a weak attractive interaction between polaritons
of opposite spin and A is the Josephson coupling term. vr and ¢ are the decay rates
of the reservoir and condensate respectively, Rg is the scattering rate from the reservoir
into the polariton condensate, Py is the relative pumping rate of the reservoirs for each

spin state and gr is the blueshift originating from interparticle interactions with the

reservoirs.
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F1cURE 3.4: Numerically simulated Sz vs excitation power qualitatively reproducing
the observed hysteresis. Data published in [1].

3.3.1 Analogy to a driven damped pendulum

To develop an intuitive picture for the nature of polariton spin bistability it is best
to draw analogues with the driven damped pendulum (DDP). First it is necessary
to non-dimensionalize the ¢GLEs (Eqgs.3.2 - 3.3) using v+ — /hyc/aops,nye —
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2mryo/hng,t — t/yc and introducing U, = 1 — ay /o, g = 2mgr/h, R = 2mRgr/h, J =

A/hye,y = Yr/v0:b = hRR /a0, px = h/2m g Py, e = n—1,p = (|4 |* +[¢-]*) /2. One
can then reduce Eqs.3.2 - 3.3 to the form of a DDP;

O + B(p)O = —Ihins(p) — Ir(p) sin® (3.4)

where © is equal to the phase difference between the two spin components in the po-
lariton system and the angular displacement for the DDP, 8 is a damping coefficient
(positive above threshold) that increases with pump power to a saturation value of
1/2 in the polariton system. I, is equivalent to the driving torque and I, is the
torque required to overcome any resistive torques (gravity when © < 7 and damping
for all ©). The functional form of the parameters in the non-dimensionalised basis are
B(p) =1/2=~/2Rp(1+ €), Tnias(p) = Uapsie/2(2+€), Lex(p) = Jpst(Ua — gb/ (1 + €) R?p)
and pgt = [(€ + 2) Rp — 27]/2b which is the stationary solution dp/dt = 0.

DDPs exhibit two forms of solution [94], fixed point and limit cycle. The former relates
to the regime in which the driving torque is unable to overcome the resistive torques,
i.e. if the ratio I = |Ipjas|/|[Icr| < 1. In this regime under a constant driving torque the
pendulum will reach a stable position with fixed angular displacement (@ = 0) from
the vertically down position. Conversely under constant driving torque if the maximum
resistive torques are lower than the driving torque (i.e. I > 1) then the pendulum
will continually overturn (@ # 0). In the spinor-polariton system, fixed point solutions
correspond to a state where the phase of the two spinor components evolve synchronously
(constant phase difference) which correlates to the upper branch of the hysteresis loop.
Limit cycle solutions correspond to the regime where the phases of the two components
evolve desynchronously (non-constant phase difference) relating to the lower branch of
the hysteresis loop. Herein the two regimes will be referred to as synchronised (S) and

desynchronised (D) respectively.

In the following the formation of bistability in a DDP as the driving torque is swept
forwards and backwards is described and comparisons are made to the trapped spinor
polariton condensate, this is represented schematically in Figure 3.5. On the forward
sweep (increasing) of the driving torque (74) the DDP starts in a synchronised regime,
with O slowly increasing only as 74 is increased but it is always able to reach a stationary
position (Figure 3.5 panel 1-2). There is a transition point when 74 reaches a critical
value (7, ) that has a corresponding stationary position of © = /2, which equates to the
position of maximal resistive gravitational torque (Figure 3.5 panel 2). Should 74 > 7¢,
then the system transitions into a desynchronised regime where no stationary position
exists, this corresponds to the switch in the sign of Sz on the forward branch of the
spinor polariton hysteresis loop (Figure 3.5 panel 2-3). In the reverse direction (backward
sweep) starting with the DDP overturning (in a desynchronised regime, Figure 3.5 panel

4) and reducing 74 to be equal to 7. the DDP will remain in the desynchronised regime
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due to inertia in the form of angular momentum. The DDP will only transition back
to a synchronised regime when the damping has had sufficient time to dissipate enough
energy that 74 and the angular momentum are unable to overcome the resistive torques;
this occurs for 74 < 7., creating a hysteresis loop (Figure 3.5 panel 6). How much lower

the driving torque can be for the reverse transition is determined by sweep rate and level

of damping.
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FIGURE 3.5: Panels 1-6, schematics of the state of a driven damped pendulum with

arrows representing the different torques [1]; the driving torque (black), the gravita-

tional torque (red) and the total torque (blue). The positions corresponding to panels

1-6 are highlighted on the plots of Sz vs pump power and |A|? vs time, where |A|? is

the pump intensity in the case of the spinor polariton condensate and the magnitude
of the driving torque in the case of the driven damped pendulum.

3.3.2 Effect of exciton-polariton interactions

As alluded to in Section 3.2 polariton-exciton (pol-ex) interactions are highly delete-
rious to bistable behaviour due to the various (total and spin dependent) population
fluctuations and noise they induce. At low temperatures, the exciton diffusion length is
small making the reservoir co-localised with the excitation laser geometry. Therefore,
the effect of pol-ex interactions can be investigated by changing the trap size and thus
changing the overlap, 2, of the condensate and the hot-exciton reservoir. Figure 3.6
shows the hysteresis area as a function of annular trap diameter; the solid black dia-
monds are for a detuning of —7.6 meV and the solid black circle is for a detuning of —11.2
meV. The red dotted line in Figure 3.6 shows an estimated functional form for €2 as-

suming a Gaussian-shaped condensate and an annular trap with Gaussian cross section,
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the width of the condensate and annular profile are approximated from the measured
PL under different annular pump diameters. For trap diameters in the range 11.8m to
17.9pm the hysteresis area increases monotonically as € decreases/the trap diameter is
increased. For trap diameters exceeding 17.9um the trap can support the coexistence
of the Gaussian-shaped ground trapped state and the first higher-order Hermite-Gauss-
shaped 191 mode [64] which increases 2 sufficiently to collapse the hysteresis loop. The
impact of pol-ex interactions is further exemplified by the solid black circle in Figure 3.6
depicting the hysteresis area for a trap of 13.1um diameter at a more negative detun-
ing. The notable increase is hysteresis area results from the reduced exciton Hopfield

coefficient and thus weaker interparticle interactions.
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FIGURE 3.6: The dependence of the hysteresis area (symbols) on the diameter of the

annular pump at ~ 6K with a 1ms sweep time. The dotted red line shows the estimated

overlap between the condensate and exciton reservoir, €2, vs the annular pump diameter.

The vertical dash-dotted line separates the regimes wherein only the ground state, g,
or both 1o and first excited state, 11, coexists. Data published in [1].

Furthermore, as the trap diameter is reduced from 17.9um the reduction in hysteresis
area is not only the result of a narrowing of the hysteresis width, the height also decreases;
i.e. the strength of the spin flip is reduced for increasing overlap; see Figure 3.7. This
further demonstrates that the observed behaviours are most likely a result of the overlap
of the condensate with the reservoir as the reduction in spin-flip indicates that there is

increased spin-mixing which pol-ex interactions are a strong source of.
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FIGURE 3.7: Measured third Stokes component, SZ, representing the degree of circular

polarization (DCP) vs power demonstrating the effect of annular pump diameter (D)
on the measured bistable behavior. (a) - D=20.0um, (b) - D=17.9um, (c¢) - D=16.1pm,
(d) - D=15.4pm, (e) - D=14.6pm, (f) - D=14.0um, (g) - D=13.4pum, (h) - D=13.0pm,

(i) - D=12.3um, (j) - D=11.8um.

3.3.3 Effect of temperature

In Figure 3.8 the effect of temperature on hysteresis area is experimentally probed.

The temperature range, 4 K to 40 K, was selected as the system remains in the strong

coupling regime [58]. Due to temperature affecting various parameters of the system

including exciton linewidth, exciton diffusion length and exciton-photon detuning, it
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is not reasonable to associate the measured collapse of hystersis area onto any one
parameter. Rather we can conclude that the effects combine to suppress the hystersis

area.

Normalized
Hysteresis Area
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*

5 10 IS 20 25 30 35 40
Temperature (K)

FIGURE 3.8: Temperature dependence of the hysteresis area for a ~ 15.4um diameter
annular pump with a sweep time of 1ms. Data published in [1].

3.3.4 Effect of sweep time

The suitability of the bistable spinor polariton system for potential applications in
volatile memory depends on the range of times wherein the bistable behaviour is stable
(non-collapsing). Hysteresis area is plotted as a function of the sweep time (7p) in Fig-
ure 3.9, demonstrating stable (non-collapsing) bistability for sweep time spanning five

orders of magnitude Tp € [10pus, 1s] 3.

The dependence of the hysteresis area on the sweep time exhibits a double decay be-
haviour indicated by the solid black and dashed red lines in Figure 3.9. A double power-
law decay in hysteresis area vs sweep time has been reported to be due to quantum-
fluctuations [95]. Experimentally an evolution from a double to a single power-law decay
was demonstrated when increasing the average photon number and it was ascribed to
a dissipative phase transition between the quantum regime and the thermodynamic
limit [89]. However, the behaviour was reported to be critically dependent on the laser-
cavity detuning and here spinor bistability is realised under non-resonant optical exci-
tation. The origin of the double decay characteristic of the hystersis area vs sweep time

demonstrated here is at this point an open question.

3.3.5 Effect of excitation laser

As shown in Figure 3.3 & 3.7 when the trap supports only the Gaussian-shaped ground

state, when just above threshold, the system always shows a strong positive DCP. This

3In the experimental work carried out for Figure 3.9 the ratio of the time interval between successive
sweeps (Tsep) and the sweep time is kept constant at Tsep /TP = 5.
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F1GURE 3.9: Hysteresis area as a function of sweep time, Tp, for ~ 13.1um diameter
annular pump recorded at ~ 6K. Data published in [1].

is an effect of the angle of the linear polarisation in conjuction with the birefringence
of the microcavity leading to a favourable pumping of one spin state. By placing a \/2
waveplate after the polarising element (PBS) in the excitation path and rotating it one

can switch the sign of the DCP immediately after threshold, as expected.

As a final remark it should be noted that the characterisation of the parameter space
discussed above was conducted using a mono-mode CW laser, the effect disappears when
switching to a multi-mode CW laser. The later introduces density fluctuations in the
exciton reservoir that are mirrored in the condensate populations which collapse the

hysteresis loop [96].

3.4 Concluding remarks

In this work the first experimental realisation of all-optical bistability under non-resonant
excitation of a spinor polariton condensate is presented. The hysteresis loop can quali-
tatively be reproduced via mean-field modeling using spin-dependent Ginzburg-Landau
equations with an internal Josephson coupling term between the spinor components. A
mechanical analogue of the system in terms of a driven damped pendulum is provided

to visualise the behaviour physically.

The detrimental nature of polariton-exciton interactions on bistable effects is probed by
controlling the overlap of the trapped condensate with the pump induced exciton reser-
voir. By changing the excitation geometry, control over the hysteresis area is demon-
strated going from a spin-discriminator (i.e. spin flip but no hysteresis) to a system with
very strong bistability. We additionally obtain non-collapsing bistability hysteresis loops
for a record range of sweep times in polariton systems, [10us, 1s], making the system

promising in terms of volatile memory elements and spin switches.
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Chapter 4

Polariton coherence time

Due to their excitonic component, polaritons demonstrate strong interparticle interac-
tions which are responsible for the notable blueshift in inorganic systems [53,97]. Whilst
assigning a specific value to the strength of polariton-polariton interactions has previ-
ously yielded results spanning a large range of values [98-101], it is noted that the inter-
action strength increases with increasing exciton fraction. As such, under non-resonant
excitation, the strongest interactions a condensate of polaritons will experience is with
the exciton-like reservoir (denoted pol-ex interactions) which is co-localised with the
non-resonant excitation beam. In the previous chapter, the deleterious effect of pol-ex
interactions on the existence of bistability under non-resonant excitation was demon-
strated [1]. These strong pol-ex interactions are also anticipated to be a limiting factor
on the coherence properties demonstrated by polariton condensates. It is the purpose of
this chapter to investigate the coherence properties of polariton condensates, specifically
the effect of the reservoir present under non-resonant excitation. The work presented

here is focused on the first order correlation function.

4.1 Experimental procedures

To asses the impact of the pol-ex interactions, the coherence properties of condensates
spatially separated from and spatially coincident with their reservoirs are investigated.
Optically trapped polariton condensates (denoted OT) serve as a platform to separate
the condensate and the reservoir, they are created via annular non-resonant excitation
profiles with dimensions that result in condensation in the zeroth order trapped mode.
The condensates spatially coincident with the reservoir are produced by pumping with

a flattened Gaussian/top hat excitation profile (denoted TH).

The work is carried out on the InGaAs QW sample [9] as described in Section 2.1.

The sample is held at ~ 6K using a continuous flow cold finger cryostat and is excited

61
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FIGURE 4.1: Schematics showing (left) the interferogram for a top hat excitation with

a time delay of 57ps between the arms of the interferometer. (Right) the interferogram

for an annular optical trap excitation with ground Gaussian shaped trapped state with
a time delay of 840ps.

non-resonantly with a CW monomode laser, tuned to a minimum in reflectivity, ener-
getically above the stopband at ~ 800nm. Global intensity stabilisation as described
in subsection 2.4.1 is implemented to minimise quasi-pulse to quasi-pulse fluctuations.
The excitation beam is circularly polarised to create a maximally spin polarised con-
densate to minimise the additional dephasing interactions between the cross-polarised
components of the spinor. The intensity of the laser is modulated in time into square
pulses to prevent sample heating and it also enables single shot triggered acquisition as
described in Section 2.5.4.4. As in all work in this thesis, the beam profile is shaped
via imprinting a phase map on the beam with a phase-only SLM. Then when focused
through a 0.4NA microscope objective lens the desired spatial profile is projected on to

the samples surface.

First order coherence measurements (g(!) (7)) are carried out using a Michelson interfer-
ometer in the retro-reflector - mirror configuration. The retro-reflector is mounted on a
controllable delay stage capable of imposing time delays (7), spanning 1ns, between the

arms; see Section 2.5.4.1.

4.2 First order coherence

To form a baseline on which to compare the coherence properties of polariton condensates
spatially separated from the exciton reservoir, the first order coherence as a function of
delay time is measured for the spatially coincident condensate-reservoir regime. The
points in Figure 4.2(a) correspond to the experimentally extracted visibility! vs delay
time for TH excitation profiles of various sizes. Note the points plotted specifically
correspond to the average visibility across the FWHM of the near-Gaussian intensity

profile of the interferogram and the error bars are the standard deviation across the

!The analysis technique of visibility extraction is described in the section at the end of this chapter.
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FIGURE 4.2: (a) Points - experimentally extracted visibility vs time delay (7) where
each point is the average visibility across the FWHM of the intensity profile of the
interfergram (see Figure 4.3 for graphical representation), the error bars correspond
to the standard deviation in visibility across the same region. Solid lines - Gaussian
profiles fitted to the experimental data to extract the coherence time. The four colours
correspond to different size condensates spatially coincident with the reservoir. (b)
Extracted coherence time for the four condensate sizes vs the integrated area where the
intensity exceeds 10% of the maximum intensity. Note the red dashed line in (b) is a
quadratic function to guide the eye. Data presented in [2].

same region. The experimental points are then fitted with Gaussian functions® and
the coherence times extracted (as described in subsubsection 2.5.4.2) and plotted in
Figure 4.2(b). The marked increase in coherence time observed as the condensate size

is increased, was theoretically predicted in Ref [102].

Figure 4.3(a) shows an interferogram from an optically trapped polariton condensate, the
solid black line shows the intensity profile of the interferogram in the vertical direction
and the two horizontal lines represent the boundaries of the corresponding FWHM.
Figure 4.3(b) is a colour map of the extracted visibility for each row of the interferograms
for delay times spanning the range 0 — 830ps; note the dashed lines again represent the
region that corresponds to the FWHM of the intensity profile in (a). Figure 4.3(c) shows
the visibility averaged across the FWHM region for each delay time, with the standard
deviation shown by the error bars. Fitting the decay with a Gaussian function centred
at Ops and with zero vertical offset (solid red line in Figure 4.3(c)) a coherence time of
Teoh = 1.54ns is extracted; a coherence time orders of magnitude larger than the longest

coherence time found under TH excitation (see Figure 4.2).

The significant enhancement of 7.,, exhibited by the optically trapped polariton con-
densate is attributed to the suppression of pol-ex interactions due to the spatial delo-
calisation of the condensate and the reservoir. When increasing the excitation power in
the optically trapped regime, the overlap between the condensate wavefunction and the

reservoir increases due to the pol-pol interactions causing the condensate to spread. This

2The Gaussian shape of the decay is also a feature predicted theoretically for excitation regimes
around threshold [102].
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FIGURE 4.3: (a) The real space intensity distribution for the interferogram from an
optically trapped polariton condensate. (b) The resultant visibility extracted for each
row for delay times spanning from Ops to 830ps. The solid black curve superimposed
on (a) depicts the intensity distribution along the vertical axis and the two horizontal
dashed lines in (a & b) mark the FWHM of the Gaussian intensity profile. Note the
colour bar for (a & b) is shown above (a), with it representing normalised intensity for
(a) and visibility for (b). (c¢) The visibility as a function of delay time () averaged
across the FWHM of the Gaussian intensity profile, error bars shown correspond to the
standard deviation in visibility across this region. The solid red line in (c) shows the
Gaussian fit of the visibility decay with a coherence time 7. = 1.54ns. Data presented
in [2].

manifests itself in a reduction of 7., as a function of excitation density as shown in Fig-
ure 4.4. In Figure 4.4 the coherence time is plotted vs the number of counts integrated

over the reference image for interferometer mirror arm at each excitation power.

4.3 Discussion

As has been demonstrated above, the first order coherence time of polariton condensates

can be improved by orders of magnitude by moving from excitation regimes where the
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F1GURE 4.4: Coherence time vs the counts integrated in the mirror arm reference
images for increasing excitation powers (left-to-right).

condensate and reservoir are spatially coincident to those where the two are separated.

With the latter excitation regime, coherence times in the order of several ns are realised.

In polariton lattices even the best techniques to date allow only the tuning of nearest
and perhaps next nearest neighbour interaction strengths, see chapter 5 and Ref [103].
The work here opens up the possibility to develop an external, truly arbitrary, (any-
to-any) coupling platform for polariton lattices. The coherence times attainable with
freely-expanding condensates are insufficient to be able to collect photoluminescence
from one condensate of a lattice, arbitrarily redirect and then project back onto another
condensate in the lattice, whilst maintaing coherence. However, with coherence times

well within the ns scale for the OT condensates it may well be possible to achieve this.

4.4 Acknowledgments

The work presented on the first order coherence properties of polariton condensates is
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4.5 Appendix - Polariton coherence time

In this section the analytical techniques for extracting the visibility from interferograms

are described.

Starting with the background corrected interferogram, the first step is to take a single
pixel line profile perpendicular to the fringes, Figure 4.5. Then utilising Fourier filtering

of this line profile one can determine the oscillation period of the fringe modulation
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FIGURE 4.5: (a) Colourmap of a typical normalised real space interferogram of an op-
tically trapped polariton condensate. (b) Single-line line profile along the solid vertical
line in (a)
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FIGURE 4.6: Region of the complex fast Fourier transform of the line profile Fig-

ure 4.5(b). The dark grey background corresponds to the regions relating to the in-

terference fringe modulation whilst the light grey region corresponds to the carrier
envelope.

due to interference and the overall intensity carrier envelope. Before computing the
complex Fast Fourier Transform (FFT) it is beneficial to pad the line profile with zeros
as the resolution of the FF'T is proportional to the number of points in the array being

transformed. Note here the line profiles are padded to 2048 points.

Broadly, the resulting FFT can be split into two regions, with the low frequency com-
ponents corresponding to the carrier envelope and DC terms and the peak at higher

frequencies corresponding to the interference modulation, Figure 4.6.
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FIGURE 4.7: (a) Complex fast Fourier transform of the line profile as shown in Fig-

ure 4.6 with low pass frequency filtering (with a cutoff of 0.04 pixels~!). (b) Black solid

line - the line profile as shown in Figure 4.5(b), red solid line - the carrier envelope
calculated by the inverse FFT of (a).

The carrier envelope (Env) can be extracted by zeroing the contribution from all fre-
quencies above a cut-off point® (long-pass filtering) and computing the inverse FFT.
This process is shown in Figure 4.7, with the final Env shown by the solid red line in
(b). The central position of the peak, in the magnitude of the FFT, at higher frequencies
corresponds to the spatial frequency of the interference fringes (v). It is beneficial, in
terms of consistently locating the correct peak, to perform short-pass filtering on the
FFT of the line profile to remove the DC and carrier envelope components from the
FFT.

The line profile can then be fitted with:

Fit(x) = Env(z) (1 + Vcos(2mvx + ¢)) (4.1)

using the extracted Env(z) and seeding v with the value extracted from the Fourier
analysis and the visibility (V') can then be extracted. Figure 4.8 shows the line profile
from Figure 4.5 as the solid black points, with the fitted Equation 4.1 shown by the red

dashed curve. This technique remains robust, even for low visibilities.

Repeating this procedure for every column in Figure 4.5(a) within a region of interest
(typically larger than the FWHM of the horizontal intensity profile) it is possible to
construct a 1D visibility map for every interferogram. Then repeating this procedure
with the interferogram for every delay time step, one creates the visiblity map as shown
in Figure 4.3(b), where each column is the 1D visibility map of a singular interferogram.
In the visibility vs delay time plots above, the points correspond to the average visi-
bility over the FWHM from each 1D visiblity map and the error bars are the standard

deviation.

3The final result of the visibility extraction process is relatively insensitive to the exact value of this
cut-off frequency, but if it is set too low then the failure rate increases.
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FIGURE 4.8: Black points - experimental line profile from Figure 4.5(b). Red dashed

line - result of fitting Equation 4.1 to the experimental line profile, using the carrier

envelope from Figure 4.7 and the interference fringe modulation frequency extracted
from the FFT of the experimental line profile.



Chapter 5

Time delayed coupling of spatially

separated polariton condensates

5.1 Introduction

Whilst optically trapped polariton condensates exhibit significantly enhanced first order
coherence times, freely expanding polariton condensates afford an easy way to coherently
couple multiple spatially separate condensates. To usefully develop extended coupled
lattices of freely expanding polariton condensates, it is of utmost importance to under-
stand the building block, namely two coupled freely expanding polariton condensates (a
polariton dyad); see Figure 5.1. It transpires that the correct formalism for describing
the coupling in such a system, is in terms of time delayed coupled oscillators. Where it is
necessary to explicitly include the time delay within the coupling terms when the charac-
teristic timescales (e.g. oscillator period) are shorter than the propagation time between
the coupled nodes/oscillators. Time delay is common place within many fields [104-106],
including biological mechanisms, perhaps most important of which are coupled neurons

forming networks [107].

Previous works on coupled spatially separated polariton condensates have been based
upon a phenomenological instantaneous coupling. Where the coupling can take the
form of a conservative Josephson-like (phase) coupling [108-111], a dissipative (also re-
ferred to as radiative) coupling which corresponds to a direct particle exchange [69, 70]
or a mixture of both [112,113]. For a dyad of freely expanding polariton condensates,
coupling is in the form of radiative coupling beyond the near-field and as such is concep-
tually different from the formalisms developed for coupled trapped condensates. Fur-
thermore, when increasing the separation distance, the assumption of instantaneity nec-
essarily breaks down, due to the finite speed at which polaritons propagate. As will be

demonstrated here!, it is essential that the time delay incurred from the finite polariton

!The work in this chapter is presented in Ref [3].
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0.001 0.1

FIGURE 5.1: Left - Schematic showing two coupled spatially separated freely expand-
ing polariton condensates with experimental interference pattern. Right - Real space
photoluminescence distribution for a dyad with a separation distance exceeding 110um,
Data presented in [3]. The solid black line in the bottom right corresponds to 50um.

propagation speed is accounted for, even for closely separated condensates. The time
delayed coupling results in unique spectral phenomena and corresponding dynamics of

the overall system.

In the following the experimental methodology of investigating the coupling of spatially
separated, freely expanding, polariton condensates is introduced. Experimental findings
are discussed in conjunction with numerical simulations via mean field theory as well
as being described in terms of time delayed coupled oscillators. Finally conclusions are
drawn and potential paths for future research/applications of coupled freely expanding

polariton condensates are proposed.

5.2 Experimental realisation

To properly characterise the properties of a dyad of polariton condensates, a series of
in depth experimental investigations are carried out. These include spatial (¥(z,y)),
Fourier (¥ (k,,k,)) and spectral dependencies on the separation distance (d) between
the condensates, as well as interferometric measurements to gain ps resolution of the
systems dynamics. The spatial, Fourier and spectral dependencies were taken simulta-
neously utilising three CCD/CMOS detectors and a high resolution 75cm spectrometer
with either a 1200g/mm or 1800g/mm grating. The interferometric measurements use
the Michelson interferometer in the mirror retro-reflector configuration with the retro-

reflector on a 15cm double pass (total 30cm maximum) delay stage; see Section 2.5.4.

The sample used is the InGaAs QW structure described in Section 2.1, cooled to ~
6K via a cold-finger flow cryostat. A blue-detuned mono-mode CW laser at 785nm,
temporally modulated at 10kHz with a duty cycle < 5% is used to excite the sample.
Again the spatial profile is created via the phase-only SLM and great care is taken to
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minimise intensity fluctuations, both in the relative intensities of the pump beams as
well as the overall intensity of the pump profile, from one separation distance to the

next.

As will be discussed in the following section, a key parameter is the relative phase
of the two condensates. The relative phase can be determined via the fringe pattern
created. As the dyad is a simple linear geometry, the resulting fringes are linear with
the modulation parallel to the axis connecting the condensate centres. In the regime of
equal pump intensities for both condensates, there are only trivial (0, 7) phase differences
observed. Therefore, the relative phase can be determined by the existence of a bright
fringe (intensity maxima) or dark trough (intensity minima) at k) = 0, corresponding
to the condensates being in-phase and anti-phase respectively. The relative phase can
equally be described in terms of the parity of the wavefunction describing the dyad, with

in-phase equating to even parity and anti-phase to odd parity.

By orientating the dyad parallel to the entrance slit of the spectrometer, the relative
phase of each spectral component can independently be determined via the correspond-
ing fringes in the momentum/in-plane wavevector axis of the energy resolved Fourier
space image. These calculations are carried out in Fourier space as there is better
contrast across the image due to the exponential decay of polariton population with in-
creasing distance from the condensate centres in real space. This said, it is still possible
to resolve the fringe at the centre of the dyad in real space for all but the very large

values of d.

5.3 Results and discussion

5.3.1 Spectral response

The investigation into the polariton dyad was initially motivated by the observation,
that under CW excitation, for most separation distances, the spectrally resolved Fourier
space consists of two energies with well defined but opposite parity, see Figure 5.2(a,b
and c). With only narrow regions of separation distance that result is a predominantly
single energy state Figure 5.2(d,e and f). The existence of multiple energy states, for
most dyad separation distances, is a feature that exists for all excitation powers including
threshold.

Figure 5.3(a) shows the normalised contribution (spectral weight) of the two most dom-

inant energy states? for more than 400 dyad separations in the range 5um < d < 66um.

2Note that for some values of d, there are more than two energy states present. However, the spectral
weight of the third energy state at threshold only contributes, at most, a few percent to the overall system
and as such the discussion is focused on the two most dominant states.
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FIGURE 5.2: Experimental (a,d) energy resolved momentum space, (b,e) momentum

(Fourier) space |¥(ky,ky)|? and (c,f) real space |¥(z,y)|* for a dyad with separation

d =12.7pm (a,b,c) and d = 37.3um (d,e,f). The integrated and normalised spectra of

(a,d) are shown in (g) with black circles and blue squares respectively. Note all images

are shown in a logarithmic colour scale with the colour bars beneath the corresponding

columns. Additionally the energies given are the energies above that at k, = 0. Data
presented in [3].

Red dots correspond to even parity states and blue squares correspond to odd par-
ity states. There is a clear periodic, continuous transition between the system being
dominated by an even-parity state and an odd-parity state, with the regions between
demonstrating notable contributions from both parities. Figure 5.3(b) shows the cor-
responding spectral positions, demonstrating that one oscillation period in the relative
spectral weight contribution of a given parity (starting from a vanishing spectral weight)

corresponds to a continually red shifting branch.

Considering, for example, an odd-parity state, positions of minimal spectral weight
correspond to a discontinuous jump in the energy of said state. In the direction of
increasing d, this jump is from a state that is maximally red shifted from the isolated
condensate (denoted by the horizontal dashed line Figure 5.3(b)) to an energy in the
region of the isolated condensate energy; marking the death of one branch and the start of
new one. This discontinuous jump in the odd-parity state occurs in the region of maximal
contribution from the even-parity state. As d is increased further, the spectral position
of the 'new’ odd-parity band shows a continuously increasing redshift. A zoomed in
region of separation distances from Figure 5.3 is shown in Figure 5.4 for clarity. These
features (i.e. a decrease in the systems collective frequency as well as discontinuous

jumps relating to phase-flip transitions) are characteristic of time-delay systems as the
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FIGURE 5.3: Experimental spectral analysis of polariton dyads as a function of sep-
aration distance. (a) Normalised spectral weight of the two most dominant energy
components for each separation distance. (b) The spectral positions of the two most
dominant energy components. Note red points correspond to even parity states whilst
blue points correspond to odd parity states. The horizontal dashed line in (b) corre-
sponds to the energy of a single isolated condensate in the same region of the sample
with the same excitation density. The vertical dashed lines in (b) correspond to the
two states shown in Figure 5.2. Data presented in [3].

time delay is increased [114]. The same characteristic behaviour is demonstrated by
the even-parity states. Furthermore, the spectral width of each band (the difference
between the minimally and the maximally red shifted state of a single branch), for
both parities, decreases as d increases, asymptotically tending towards the unperturbed

energy of isolated condensates.

5.3.2 Dynamics and coherence

In all of the distance dependence measurements, the images are taken with exposure
times that far exceed the modulation period of the excitation laser. With the resultant
images consequently being an average of many condensate realisations. The clarity of
the features observed, as shown in Figure 5.2, demonstrates the robustness of the state
the systems relaxes into. However, for the separation distances demonstrating multi-
ple spectral components, the above techniques are insufficient to concretely determine
whether the system stochastically chooses one of the spectral components observed in

each realisation, or whether the components coexist in every realisation.

The use of CW excitation (albeit quasi-CW) rules out the use of Streak systems to

gain sufficient time resolution to determine what, if any, the dynamics of the system
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FIGURE 5.4: A zoomed in view of the data in Figure 5.3 showing just over one oscillation
period of the spectral weight corresponding to the full extent of one energy branch. Data
presented in [3].

are. To achieve the necessary resolution in time, auto- and cross-correlations between
the condensates are recorded, utilising the Michelson inteferometer (as described in
Section 2.5.4) with a controllable time delay 7 between the arms. For two equally
populated (with sufficiently long time averaging) condensates ¥ o, each of which being
formed of two coexisting and equally weighted opposite parity energy states, the complex

amplitudes of the condensates can be expressed as:

W1 (t) = o el 4 ei(oh)) (5.1a)
Wo(t) = g (e~ wel — ei(oh)) (5.1b)

where 1)y is a time independent real amplitude and w, = E./h and w, = FE,/h are
the angular frequencies corresponding to the even and odd parity states respectively.
The resulting auto-correlation, i.e. the interference of one condensate at time ¢ with
itself, delayed in time by 7, is denoted by Iyuso(7) = (|1 (t) + Wi (t + 7)|);. Where the

angled brackets, with subscript ¢, corresponds to time averaging so as to be compatible
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FIGURE 5.5: (a) Energy resolved real space of the PL from a dyad with d = 10.3um

pumped at 1.5 times the threshold density of a single condensate, demonstrating two

opposite parity energy components of nearly equal spectral weight. (b) The auto-

correlation (black) and cross-correlation (red) fringe visibility as a function of delay

time 7, between the two arms of the interferometer showing clear decay and revival of
fringe visibility. Data presented in [3].

with experimental observation due to the accessible exposure times. Similarly the cross-
correlation, i.e. the interference of condensate 1 at time ¢ with condensate 2, delayed in
time by 7, is written Io.oss(7) = (|W1(t) + Ua(t + 7)|?);, with the resulting functional

forms:

Touto(T) = 4|1 |? <1 + cos <A27) cos (m)) (5.2a)
Lo (7) = 4ol (1= s (57 ) sin ar)) (5.2b)

where @ = (we + w,)/2 is the average (fast) frequency and A = w. — w, corresponds to
the beat frequency that manifests as a modulation in intensity as a function of 7. The
intensity modulation as a function of 7, due to the coexistence of two energy states,
results in a periodic decay and revival of the fringe visibility (following the modulus of
a sinusoidal function) in the interferograms as a function of 7. This behaviour is clearly
visible in Figure 5.5 which shows the experimental fringe visibility of the auto- and cross-
correlations as a function of 7 for a dyad with separation d = 10.3um, where the system
exhibits two spectral components of nearly equal spectral weight. Whilst both cross-

and auto-correlations show the beating behaviour, the coexistence of the odd and even
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parity states leads to a m phase shift between the modulation of the two correlations;
see Equation 5.2 and Figure 5.5. Experimentally, the periodic decay and revival of the
fringe visibility exhibits an additional decay with 7, due to the finite coherence time of

the condensates (individually and as a dyad).

From the experimentally measured energy difference between the two opposite parity
states (270ueV), the predicted fringe visibility modulation period is ~ 15.3ps, in good
agreement with the experimental findings. These features strongly support the asser-
tion that the two opposite parity states coexist and the system does not stochastically
chose one in every realisation. Physically this modulation in fringe visibility is the
manifestation of a persistent coherent oscillation of polariton population between each
of the condensate centres. The coherent particle oscillation between the condensates
is a feature reproduced when numerically simulating the system, in a state with two
well populated energy states, via a generalised Gross-Pitaevskii equation model®, see

Figure 5.6.

As discussed above, the dyad demonstrates regimes in which the two coexisting spectral
components result in a coherent oscillation of population between the two condensate
centres. There are also regimes in which this effect is suppressed due to the system pop-
ulating primarily one energy state. This is confirmed experimentally in Figure 5.7 by the
blue data, for d = 20um corresponding to one dominant energy state, showing minimal
fringe visibility modulation compared to the red data, for d = 20.5um corresponding to

two notably occupied energies, which shows strong decay and revival.

An additional, initially unexpected, feature is that the existence of a second coupled
condensate centre significantly increases the first order coherence time of the system
when compared to the isolated condensate at the same excitation density. This feature
persists as the excitation density is increased, as shown in Figure 5.7(b), demonstrating

an increase in coherence time exceeding 100% for all excitation densities tested.

5.3.3 Time delayed oscillators model

As mentioned in the introduction to this chapter, previous models of coupled polariton
condensates use an instantaneous coupling (be it conservative, dissipative or both).
However, it turns out such models are incapable of reproducing the rich phenomena
observed experimentally here with freely expanding polariton condensates. Additionally
it is intuitively difficult to combine the construct of instantaneous coupling with two
condensate centres macroscopically separated. For the coupling of freely expanding

polariton condensates, polaritons from each condensate centre must travel, inducing

3The GPE model used here incorporates an active and an inactive reservoir, whereby the active
reservoir observes stimulated relaxation into the condensate, whilst the inactive reservoir sustains the
active reservoir, but does not directly contribute to the condensate due to conservation constraints
[108,115].
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FIGURE 5.6: Results from the full 2D GPE numerical simulation of polariton dyads. (a)
The spectral weight and (b) the spectral position as a function of the dyad separation
distance, note the vertical dashed line corresponds to the left vertical dashed line in
Figure 5.3(b) and the horizontal dashed line is the energy of an isolated condensate
with the same excitation pump density. (c-f) Spatial density distributions as a function
of time for a dyad operating in a two energy state, the corresponding energy resolved
momentum space is shown in (g). The trajectory of the imbalance between the two
condensate centres density (z) and relative phase ¢; — ¢2 for a single oscillation period
for the state corresponding to (c-g). Data presented in [3].

a phase (equally time) delay. Additionally as mentioned the observed behaviour of
transitions between the two parity states (phase-flips) with discontinuous changes in
frequency are universal characteristics of time-delayed coupling in non-linear systems
[114,116-119].

The problem is reduced to 1D to simplify calculations, as even in this reduced dimen-
sionality, the key physical features are captured. Considering a system of two finite
complex (the imaginary component giving the system gain) delta like potentials (V' (z))
separated by a distance d, the time-independent non-hermitian single particle problem

is formulated as:

R
2m

E¥(z) = ( +V(2) - ih%> U(2) (5.3)

where:
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FIGURE 5.7: (a) Extracted visibility from the self interference as a function of delay
time for: (black points) an isolated freely expanding polariton condensate, (blue points)
a polariton dyad (d = 20um) condensed in an approximately single energy state and
(red points) a polariton dyad (d = 20.5um) condensed in a two energy state. The overall
visibility decay as a function of 7, exhibited by the isolated condensate and polariton
dyad yields the corresponding coherence times (71 & 72 respectively). These coherence
times extracted and shown as a function of pump power (normalised to threshold of an
isolated condensate) on the left axis of (b). The ratio of the dyad coherence time (73)
and the isolated condensate are shown on the right axis of (b). Data presented in [3].

(5.4)

and Vp € C and m is the effective mass of the polaritons in the lower dispersion branch.
Specifically V; is in the first quadrant of the complex plane, i.e. (V) > 0 and (V) > 0,

denoted as C*. Additionally restricting solutions to waves propagating away from their

corresponding condensate centre, i.e. k € CT, the eigenfunctions to Equation 5.3 are:

—ik
Aet z

ik —ik
Betkr Qe x,

U(x) =

ik
De'ke,

x < —d/2
|x| < d/2
x>d/2

(5.5)

The resonance condition for a system with such a potential landscape takes the form:

with the corresponding resonant states:

m¢:—W+§WMyW&%,

n € 7,

(5.6)

(5.7)
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FIGURE 5.8: (a) Imaginary component of the eigenenergies from Equation 5.8 and (b)
the corresponding real component. The two-delta peak potential has R(Vy) = lmeV pm
and $(Vp) = 2meV pum. The two largest positive imaginary components for every value
of d are shown as solid lines whilst the rest are shown as points. Data presented in [3].

where V = mVj /h? and W,, are branches of the Lambert W function. Equation 5.7 de-
scribes infinitely many solutions of even (+) and odd (-) parity states with corresponding

complex valued eigenvalues:

h2k2 ihry
E, =t e 5.8
nE T Tom 9 (5-8)

Figure 5.8 shows the imaginary (a) and real (b) components of the eigenvalues for the
odd (blue) and even (red) parity states; showing a qualitative agreement between the
toy model energy bands and those experimentally measured (Figure 5.3). There is
a periodic switching between an odd or even parity state having the largest positive
imaginary component (gain), in agreement with the oscillatory (phase-flip) behaviour
of the experimental spectral weights shown in Figure 5.3(a). There are regions between
these, where neighbouring odd and even parity branches have equally large positive
imaginary components, resulting in equal population of both states. There are also
regimes in which two consecutive branches of the same parity have equal imaginary
components/populations, these correlate to the discontinuous jump in frequency (death
of one branch and the start of a new branch). This stepwise jump occurs at the point

of maximal occupation of the opposite parity branch, as seen experimentally. Note, the
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coexistence of two opposite parity energy states, for some separations, at threshold is
due to similar values of gain, but above threshold even more states could reasonably

have sufficient gain to additionally condense.

Whilst the time-independent 1D toy model is capable of reproducing some of the spec-
tral phenomena experimentally observed, the results turn out to be proportional to the
Lambert W function that naturally arises in time delayed differential equations [120].
This indicates the dynamics of the system are of significant interest, therefore the de-
scription is extended further, to the time-dependent regime where nonlinear interparticle
interactions can additionally be accounted for. The overall system (¥(z,t)) can be writ-
ten as a super position of two expanding waves (1 2(x,t) = c12(t)$1,2(z)) emanating

from the two condensate centres, displaced from one another by a distance d:

U(z,t) = c1(t)p1(x) + ca(t)p2(x). (5.9)

Where the ansatz,

$12(x) = Ve FlrEd/2l (5.10)

is used, where k = k. + ix where k € CT. Restricting k to the first quadrant of the
complex plane ensures that the resulting waves flow away from the condensate centres
(ke > 0) and are normalisable (x > 0). Plugging Equation 5.9 into the full time-

dependent version of Equation 5.3 and integrating over spatial parameters yields:

ih (éi +/\/120'j) = F(Ci, Cj) (5.11)

where i = 1,2, j =3 —i and Mg = [*°_ ¢5(x)¢1(x) dx is the overlap integral of the two

contributing wavefunctions. Explicitly:

N = (cos(kcd) + l:sin(kcd)) e " ~ cos(ked)e ™™ (5.12)

C

where the simplification on the RHS can be made as k/k. < 1, due to the condensate
energy (o k.) being far greater than the linewidth (o< ). Additionally the term F'(¢;, ¢;)
on the RHS of Equation 5.11 has the form:

k2 ik, W2k -
F(ci,cj) = <2m ! ; > (¢i + Ni2cj) + ([Vo — Zm] ¢ + Voed“lcj> K (5.13)

ih2k , .-
+ <[Vo — Zm} cj + Voe’kdcz) ke .
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As can be seen in Equation 5.11, the temporal dynamics of both wavefunctions are
combined. To separate the temporal dependencies for each wavefunction, note that

Equation 5.11 for both condensate centres can be written in vector/matrix form as:

() () () -
N 1 1 F(ca,c1)

1 Mo

where the matrix M = I on the LHS is invertible for all conditions of
12

relevance as M1s < 1 while d > 0. To simplify the expansion, let us consider the case of

weak coupling, which can be parameterised as the regime where the spatial overlap of

#d is small. In this case all terms

the wavefunctions (Nj2) is small, i.e. the term & = e~
O(£€2) and higher can be omitted. Additionally assuming that the resonance condition

from the time independent toy model (Equation 5.6) is satisfied

the; = @ — ih% + K (Vb — zh%)] c + Vgﬁeikdcj. (5.15)
2m 2 m

Note that when ¢; = £¢; and solving for stationary states, Equation 5.15 yields results

consistent with the time independent model above (Equation 5.7). Equation 5.15 shows

that interaction between the condensates is in the form of a coherent influx of particles

originating from the centre of condensate j propagating onto condensate i (and vice

versa), with a phase delay of e*¢¢., When ¢; and c; are oscillating at a fixed frequency

w, the phase delay term can be recast into an effective time delay:

ekde(t) = e ej(t — 1g), (5.16)

where the exponential on the RHS originates from the one dimensional spatial decay of
the wavefunction due to the finite lifetime of the polaritons. The time delay 74 in the
interaction originates from the finite time it takes a polariton, of given wavevector k, to

propagate between the two condensate centres. Specifically it is defined as:

kod

w .

(5.17)

Td =

For weak coupling, in which case the change in frequency w from that of the isolated

condensate wq is small, the time delay 7, is proportional to:

keod

wo

(5.18)

Td ~
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where again d denotes the separation distance between condensate centres and k. g is

the real component of the complex wavevector for the isolated condensate.

Expanding the system further, to include local nonlinear interactions, reservoir gain and
blueshift, the full non-linear equations of motion for the coupled system of two polariton

condensates becomes:

2 R A
16 = (Q + %7@4,1‘ + Oc\cilz) i+ JePe(t —dfv), (5.19a)
fa;=—(Ta+ Rleil*)na; + P. (5.19b)

Where g is the polariton-reservoir interaction strength, a is the condensate polariton-
polariton interaction strength, n 4 ; denotes the active reservoir of condensate ¢ and R is
the stimulated scattering rate from the active reservoir to the condensate. I' 4 is the non-
stimulated decay rate of the active reservoir and P is the pump. It has been assumed
that the dynamics of the inactive reservoir are slow compared to that of the condensate
and active reservoir, thus the inactive reservoir is approximated as being static. The
effect of the inactive reservoir is absorbed into the term €2 = Qg — iI', describing the self
energy of the condensate, where I' is the effective linewidth of the propagating polari-
tons. The inter-condensate coupling is denoted as Je*® = Vyke "%, Equation 5.19 is thus
a discretised Gross-Pitaevskii equation in which the inter-condensate interaction is time
delayed; this markedly increases the dimensionality of the phase-space as well as the
complexity of the coupled system. Furthermore, the system now shares strong similari-
ties with the Lang-Kobayashi equation [121], where each condensate acts as an antenna
radiating radially symmetric expanding waves. These sources interact, maximising gain
by adjusting their shared oscillation frequency and the phase difference between the
sources. The interaction is necessarily time delayed due to k.od > 1, this is similar to

coupled semiconductor laser systems that also arrive at time-delayed dynamics [122].

As the coupling is in the form of a coherent influx of particles, it’s amplitude will decay
spatially in the same manner as the particle density. For 2D in the linear regime, the
spatial decay is well modeled by a 0-order Hankel function of the first kind (Hél)) [123].
This behaviour is experimentally corroborated by looking at the spatial decay of an
isolated condensate, pumped with the same excitation power as each of the condensates
in the dyad and in the same region of the sample. Therefore the distance dependence of

the coupling amplitude (J(d)) takes the form:

J(d) = Jo ‘H(()l)(kod)) (5.20)
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FIGURE 5.9: (a) Comparison between the experimental dyad spectra (grey-scale
colourmap), in terms of blueshift from the k|| = Opm~! state, with the spectral peak (or
two most dominant spectral peaks when in a multimode state) resulting from numerical
integration of Equation 5.19 (red points). (b) and (c¢) demonstrate how the spectral
composition and imbalance vs phase trajectories change when going from a single mode
anti-phase (d = 20pm) to a single mode in-phase (d = 21pum) state. Parameter values
used: hQ = (1.22 —i0.5)meV, hic = 0.1peV, AR = 0.5ueV, hg = 0.5ueV, v = wo/keo =
1.9pum ps~t, P =100ps—!, 'y = 0.05ps— !, hJy = 1.1meV kg = (1.7+140.014)um~! and
B = —1. Data presented in [3].

where Jj is, in principle, the coupling strength for vanishingly small separation distance.
Numerical integration of Equation 5.19 from a initial conditions of white noise is car-
ried out and shows excellent agreement with experimental findings; see Figure 5.9. The
red dots in Figure 5.9 show the resulting spectral peak from numerical integration of
Equation 5.19 when in a regime of single mode operation, or the two most dominant
spectral peaks when multiple spectral components exist. They are plotted on top of
a grey-scale colourmap of experimentally measured, normalised spectra of a polariton
dyad vs the dyad separation distance; from which the points in Figure 5.3 are extracted.
Figure 5.9(b and c¢) show the transition in spectral composition and phase space char-
acteristics, when increasing d from 20pum to 21um. The phase space diagrams show
fixed points (single mode regimes) or a limit cycles (multi-mode regimes) in the phase
difference ¢ = arg(c; * c2) vs normalised population imbalance phase maps. The system
starts in a fixed point, anti-phase, single mode operation state (left) then goes through
a series of dynamic limit cycle solutions demonstrating multi-mode operation (middle

two) and finishing in a fixed point, in-phase, single mode operation (right).
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5.4 Conclusions

An in depth experimental and theoretical investigation into the polariton dyad, the
building block of all coupled freely expanding polariton lattices, has been conducted.
It transpires that for coupled freely expanding polariton condensates, in the coupling
term it is necessary to explicitly take into account the time it takes for polaritons to
propagate between the condensate centres. Through implementation of a time delayed
dissipative/radiative coupling between the condensate centres (pump regions) it has
been possible to semi-quantitatively reproduce spectral and dynamical features, found
experimentally, via a set of dynamical equations resembling the Lang-Kobayashi equa-
tion. The necessity of time delayed coupling means the system exists in a non-bounded
phase space of solutions. This complexity then favours the system for possible future
applications in reservoir computing, whereby the internal dynamics of the system are
used to solve problems in a manner similar to the comunication between neurons, hence

the name neuromorphic computation.

Note that, numerically, the system remains well represented via the 2D Gross-Pitaevskii
equation with the addition of a second, non-active, reservoir that replenishes the active

reservoir.
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Chapter 6

All optical band structure

engineering

6.1 Introduction

Particles subject to potential landscapes with discrete translational symmetry exhibit
bands of allowed energies in the dispersion, where the specific features correspond to the
Bloch states of the potential landscape [124,125]. Band theory is able to describe the
optical properties of materials well, via consideration of the atomic arrangement within
a crystal. Reverse engineering this, i.e. creating an artificial crystal by periodically
patterning a material to achieve desired optical properties, is the field of band structure
engineering. When producing artificial crystals it is possible to break the translational
symmetry locally or introduce specific boundaries which can result in interesting phe-
nomena, including defects and surface states which demonstrate reduced dissipation of
energy into the bulk of the crystal [126].

In polariton systems, to date, band structure engineering was conducted via either pat-
terned metallic deposition on top of the sample [127,128] or microstructuring the sam-
ples themselves into arrays of micropillars [59,61,62,129,130] to create periodic potential
landscapes in the plane of the sample. Features such as Dirac cones and flatbands have
been experimentally demonstrated with polaritons utilising etched lattices in Lieb [62]
and honeycomb [59,61] geometries. In addition, theoretical proposals have been made
for Bloch oscillations [131] and spontaneous formation of currents [132]. The limitation
with the previous state-of-the-art is that the potential landscapes formed are permanent.
Thus should one want to investigate a new geometry or lattice constant, for example, it
requires an entirely new sample to be made or at least a new section to be patterned.
This comes at the cost of resources and time and there is still no guarantee that the
parameters of the new sample will be correct. It is thus paramount that a live tunable

technique, preferably all optical, for band structure engineering is created.
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This chapter introduces, and demonstrates, the ability to use non-resonantly injected
polariton condensates for all-optical band structure engineering. Polaritons interact
strongly with excitons and thus by shaping the spatial geometry of the exciton reser-
voirs, which mirrors the shape of the non-resonant excitation laser, it is possible to
create arbitrary and tunable potential landscapes using the same section of planar (non-
patterned) sample [1,3,69,70,133]. The geometry of the potential landscape can then
be changed at the refresh rate of the LCOS SLM screen (60Hz).

6.2 Experimental techniques

This work is carried out on the planar distributed Bragg reflector (DBR) microcavity
with a 2A GaAs cavity containing eight 6nm InGaAs QWs, organised in pairs at the three
anti-nodal positions of the confined field, with an additional QW at the final node either
side of the cavity [9]. The sample is cooled to ~ 6K using a cold finger flow cryostat
and is excited with a monomode continuous wave laser, blue detuned energetically above
the stopband to maximise coupling in efficiency. The laser is modulated in time into
square wave packets with a frequency of 10kHz and a duty cycle < 5% to prevent sample
heating. The spatial profile of the excitation beam is sculpted using a phase-only spatial
light modulator to imprint a phase map so that, when the beam is focused via a 0.4 NA
microscope objective lens, the desired real space is projected onto the samples surface.
The same objective lens is used to collect the photoluminescence which is then directed
into the detection setup. Note the relative intensity stabilisation technique, described

in chapter 2 is implemented.

6.3 One-dimensional polariton artificial crystal

6.3.1 Band structure

To demonstrate the fundamental applicability of this technique for band structure en-
gineering, the first geometry investigated is a chain of polariton condensates formed by
narrow (FWHM ~ 2um) Gaussian, non-resonant pump spots. This constitutes the sim-
plest periodic potential possible, and even for a modest number of condensates demon-
strates condensation into single particle Bloch states as the excitation density crosses

condensation threshold; see Figure 6.1.

The colourmaps in Figure 6.1 show the experimental photoluminescence intensity distri-
butions in real space (a & d) and Fourier space (b & e) along with the corresponding dis-
persions (c & f) for chains of eight equally separated condensates, with inter-condensate

separation distances of ~ 13um (a, b & ¢) and ~ 8.6um (d, e & f) respectively. The
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condensed system is characterised in real space by high intensity regions in the immedi-
ate vicinity of the pump spots, with interference fringes between them. The dispersions
show energy bands with periodicity (as a function of inplane momentum) corresponding
to all repetitions of the reduced Brillouin zone, of the polariton artificial crystal, that
exist within the free particle dispersion. In comparison, the dispersions for a singular
polariton condensate and a dyad, show energetically narrow component(s) and in the
case of the dyad simple interference fringes between the condensate nodes on the free
particle dispersion; see chapter 5 [3]. The occupation of energy bands for the chain indi-
cates that polaritons created at the pump centres sense the periodicity of the potential
landscape which results in the macroscopic occupation of coherent Bloch states; even
for a modest number of condensates. Furthermore, comparison of the top and bottom
row of Figure 6.1 clearly demonstrates that the energy band(s) in which the condensates
exist is directly controllable by changing the excitation profile (specifically in Figure 6.1,
the inter-condensate separation distance). The dominant occupation of a ’sub-region’
of energies within the energy bands is a result of the system being in the Bose con-
densed regime, an effect also observed in etched polariton systems above condensation
threshold [62].

In addition to the formation of energy bands, there is a Talbot interference pattern [134]
in the regions either side of the chain, see Figure 6.1(a & d). Similar features have
also been observed in polariton condensation using a chain of etched mesa traps [135].
Further demonstrating the ability to harness optically imprinted condensates and the
concomitant potentials to achieve effects observed in etched/patterned systems with the

addition of tunability.

6.3.2 Band splitting

Alternating the inter-condensate separation distances along the 1D polariton crystal
(A—B—A—-..—A), as shown schematically in Fig. 6.2, causes the energy bands observed
above to split. The size of the energy gap that opens is dependent on the difference
between the distances A and B. Figure 6.3 shows the experimental PL dispersion (top
image in each panel a-f) and the real space intensity distribution (bottom image) for
chains of eight polariton condensates, where the separation distance A is held constant at
~ 10.1pm, as B is reduced from ~ 10.1um (a) to ~ 7.8um (j). As the difference between
A and B crosses a threshold (from Figure 6.3 (c) to (d)) the energy splitting becomes
larger than the respective linewidths and the energy gap becomes discernible. As the
difference between A and B is increased further, the energy gap opened continues to
increase (Figure 6.3(d) to (g)) and eventually the top of band N mixes with the bottom
of band N + 1 (where N € N) as can be seen in Figure 6.3(g) to (j).
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FI1GURE 6.1: Photoluminescence from chains of eight equally separated polariton con-
densates, where the separation distance is ~ 13um for (a,b & ¢) and ~ 8.6um for (d,e
& f). The left most column (a & d) shows the real space intensity distribution of the
PL, the middle column (b & e) shows the Fourier space (k-space) intensity distribution
and the right hand column (c & f) shows the dispersions. The corresponding colourbars
for the left two columns appear above the columns and scale bars depicting 15um (in
a & d) and lym~! (in b & e) are in the botttom right hand corner of each respective
frame. Data presented in [4].
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FIGURE 6.2: Schematic showing how the potential landscape is dimerised through
alternating the inter-condensate separation distances in a 1D polariton crystal. (a & b)
show simulated non-resonant pump laser intensity distributions for (a) a uniform chain
(i.e. A= B) and (b) a chain with alternating inter-condensate separations (i.e. A # B).
(¢ & d) show the horizontal line profile of the integrated intensity in (a & b) bounded by
the horizontal dashed lines. As the potential landscape mirrors the excitation profile (c
& d) equally represent the potential landscape in the direction along the 1D polariton
crystal, where a unit cell is indicated by the grey shaded regions.
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FIGURE 6.3: Each panel (a-j) shows the dispersion (top) and real space density distri-
bution (bottom) of the PL from chains of eight polariton condensates where separation
distance A ~ 10.1uym is kept fixed and B ~ (a) 10.1ym, (b) 9.5um, (c¢) 8.9um, (d)
8.8um, (e) 8.7um, (f) 8.5um, (g) 8.3um, (h) 8.1um, (i) 8.0um and (j) 7.8um. The
coloured arrows indicate the spectral region of each energy band. Where the splitting
of an energy band is visible there are two arrows of the same colour marking the upper
and lower sub-band. Note that these arrows are only indicators to guide the eye. All
dispersions use the same logarithmic colourscale, as do all the real space distributions
with the corresponding colourbars shown to the right of (e). The solid bars in the bot-
tom right corner of each real space distribution correspond to 15um. Data presented
in [4].

6.3.3 Broken symmetry - Defect state

Another pathway in band structure engineering is the introduction of local defects to
the periodicity of the potential landscape. In the optically imprinted polariton crystal
introduced here there are numerous way to imprint a defect, including changing the
intensity and/or size of a given pump spot in the excitation geometry or by changing one
separation distance in a 1D chain of otherwise uniform separation distances. Figure 6.4
shows the real space intensity distribution (a), dispersion (b) and an energy resolved
strip of real space (c) of the PL from two chains of six polariton condensates with inter-

condensate separation distance ~ 10.2pum, where the ends of the chains are separated
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FIGURE 6.4: Photoluminescence from a chain of 12 polariton condensates, with a
uniform inter-condensate separation of ~ 10pum except between the central two con-
densates where the gap is only ~ 8.8um. (a) Shows the real space intensity distribution
of the PL, (b) shows the corresponding dispersion with the characteristic flat band of
a localised state spectrally in the gap between two spatially delocalised energy bands
and (c) shows an energy resolved strip of real space going along the chain. (d) shows
the line profile going across (c) centred at the spectral position of the red dashed lines
corresponding to the condensed state that is delocalised across the chain. (e) is the
line profile across (c) centred on the blue dashed lines in (¢) corresponding to the lo-
calised defect state. The intensity colourmaps all use the same colourscale defined by
the colour bar on the top left. Data presented in [4].

by ~ 9.1um!. The dispersion contains the energy bands, as have been observed and
discussed above, with the addition of a new flat band (spatially localised) energy state
in the gap between two bands. Figure 6.4(e) shows the line profile of the energy resolved
real space, centred around the energy of the flat band (highlighted by the blue dashed
lines in (c)). As anticipated by the flat nature of the band in the dispersion, this state
shows very strong localisation on the condensates forming the defect, with negligible
occupation across the rest of the chain. Conversely the energy relating to the delocalised

state shows suppression in the region surrounding the defect.

lie. Tt is a chain of twelve condensates with a uniform inter-condensate separation distance of
~ 10.2pm, where the central separation distance has been shortened to ~ 9.1um to introduce a defect.
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FI1GURE 6.5: Energy bands calculated using Bloch’s theorem for complex valued Gaus-
sian potentials in a uniform lattice constant & = 12.4um. The colouring denotes regions
of high (red) and low (blue) optical gain. Data presented in [4].

6.3.4 Simulation

From Bloch theory, solving the single particle eigenenergies in a complex potential results
in the bands depicted in Figure 6.5, where colour relates to the single particle gain.
The resulting bands show enhanced gain (large positive imaginary values) in the high
symmetry regions that also demonstrate high occupation in the experimental dispersions
(the T' and M points of the Brillouin zone). This is a result of the group velocity

becoming zero at these points, thus inhibiting dissipation of energy.

More generally the system can be simulated utilising the generalised Gross-Pitaevskii

equation with both an active and an inactive reservoir, as described in section 1.3.

6.4 Conclusions and outlook

In the work presented in this chapter, an all-optical technique for band structure en-
gineering is proposed and experimentally demonstrated. The technique harnesses the
inherent potentials that exist under non-resonant optical injection of polariton con-
densates to create periodic potential landscapes which are probed and imaged via the
condensates themselves. Furthermore, the potential landscape can be changed as de-
sired using the same section of un-patterned sample by adjusting the geometry of the

excitation laser.
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The creation of allowed energy bands in the dispersions is first shown for linear chains of
uniform inter-condensate separation. Where, by adjusting the separation distance, differ-
ent energy bands can selectively be condensed into. Band splitting is then demonstrated
via alternating the inter-condensate separation distances along the chain. It is shown
that the spectral size of the gap opened can be controlled by adjusting the difference
between the two separation distances within the chain. Beyond the existence of band
structures and the ability to split the bands, defect state creation and lasing is demon-
strated by breaking the symmetry locally. This is achieved by adjusting one of the
inter-condensate separation distances in a chain of otherwise uniform separations. The
resulting defect demonstrates the characteristic flat band dispersion and high degree of

spatial localisation.

This work constitutes the creation of an all-optical polariton artifical crystal that demon-
strates a high degree of controllability including band splitting and defect state conden-

sation.

6.5 Acknowledgments

The work presented in this chapter is the result of experimental work by the author in
conjunction with simulations carried out by H. Sigurdsson. A paper based on the work
presented in this chapter with input from J. Ruostekoski and P. G. Lagoudakis is in

preparation at the time of writing [4].

6.6 Appendix - Polygons

In addition to the investigation of finite linear chains, there was a line of research con-
ducted where the chains are folded back onto themselves forming polygons. For even
numbered polygons with uniform or alternating separation distances and odd polygons
with uniform separation distances, there exist discrete rotational symmetries that would
result in angular Bloch waves subject to periodic boundary conditions. Defects can
then be introduced in several ways, including removal of a pump spot or utilising odd

numbered polygons with alternating separation distances, see Figure 6.7(a).

The two-dimensional circular nature of polygon geometries, in conjunction with all-to-
all coupling (as a result of the macroscopic distances over which polariton condensates
can couple, see chapter 5), results in complicated Fourier space distributions (e.g. see
Figure 6.6-6.8). As a result, interpretation is notably more difficult than for 1D chains or
2D lattices and so this is an area that requires further investigation before conclusions
can be drawn. Nonetheless, interesting features were observed when experimentally

investigating these geometries, some of which are shown below.
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FIGURE 6.6: Photoluminescence distributions in real space (a & ¢) and Fourier space
(b & d) for octagons of polariton condensates. The top row corresponds to an octagon
with uniform inter-condensate separations of ~ 10.4pum and the bottom row to an
octagon with separation distances alternating between ~ 14.5um and ~ 29um. The
solid bars in (a & c) represent 15um and in (b & d) 1um~'. Data presented in [4].

Figure 6.6 shows the PL intensity distributions in real space (a & c¢) and Fourier space
(b & d) for an octagon with a uniform inter-condensate separation distance of ~ 10.4um
(a & b) and an octagon with alternating distances of A ~ 14.5um and B ~ 29um (c
& d). The Fourier space demonstrates a singular bright narrow ring for the uniform
octagon, whereas, the staggered octagon demonstrates two concentric rings (distinct

energy components).

Figure 6.7 shows the experimental photoluminescence distributions in real space (a),
Fourier space (b) and the corresponding dispersion (c) for a nonagon with separation
distances alternating between A ~ 9.7um and B ~ 31uym. In comparison to the oc-
tagons, one clear distinction in the Fourier space distribution is that the features show
significantly less contrast. This could be an indicator of states with some degree of
spatial localisation due to the defect in separation distances (top of the nonagon in Fig-

ure 6.7(a)) as this reduction in contrast is not observed when there is no defect (i.e. for
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FIGURE 6.7: Photoluminescence from a nonagon with alternating with separation
distances of ~ 9.7um and ~ 31um in (a) real space, (b) Fourier space and (c) the
corresponding dispersion.

uniform nonagons) see Figure 6.8. To be able to confirm this, energy resolved tomog-
raphy of the real space and Fourier space is conducted for an alternating nonagon, the

results of which can be seen in Figure 6.9 and Figure 6.10.

Figure 6.9(a) shows the spectra for each condensate centre, for a nonagon with A :
B =1 : 14 (real space distribution of laser and non-energy resolved PL shown in (c
& d) respectively), calculated by integrating the counts over regions surrounding each
condensate centre in the tomographically reconstructed real space distribution for each
energy. To quantify the level of localisation it is beneficial to consider the relative
contribution of each condensate centre, for each energy, as is shown in Figure 6.9(b).
The horizontal dashed line in (b) marks a value of 1/N where N = 9 - denoting the
contribution value one would get when all condensate centres are equally occupied. For
the spectral position corresponding to the largest occupation on the defect site (shown
by the vertical dashed lines), the defect shows an enhancement of ~ 67% in occupation
whilst condensate centres 1,2,5 and 6 show notable suppression. This spectral position

additionally corresponds to the brightest spectral mode of the entire system.
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FIGURE 6.8: (a) Real space and (b) Fourier space of the photoluminescence from a
nonagon with a uniform separation distance of ~ 17.4pm.
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FIGURE 6.9: Alternating nonagon where the ratio of the separations A and B is 1:1.4,
(a) shows the integrated counts calculated for regions around each condensate centre
(numbered 0-8 corresponding to the numbers in (d)) vs energy. (b) Shows the relative
contribution of each condensate centre to each energy. The horizontal dashed line cor-
responding to the value of 1/9, condensate contributions larger than this correspond to
an enhanced occupation and contributions below this line corresponds to a suppression
of occupation. (c) Real space distribution of the excitation pump laser and (d) real
space distribution of the photoluminescence (not energy resolved). Note the vertical
dashed lines in (a) and (b) mark the brightest overall energy, that also has the highest
localisation on the defect. The reconstructed real space of the PL at this energy is
shown in Figure 6.10. The solid vertical white lines in (¢) and (d) correspond to 15um.
Data presented in [4].
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FIGURE 6.10: Tomographically reconstructed real space distribution of the alternating

nonagon with a separation ratio A : B = 1 : 1.4 at the energy demonstrating the

strongest localisation and overall intensity, corresponding to the vertical dashed line in
Figure 6.9 (a & b). The solid white line represents 15um. Data presented in [4].



Chapter 7

Conclusions, future steps and

final remarks

The ease of creation, control and optical readout of polariton condensates has made
the platform evermore appealing for potential use in a wide variety of applications from
optical switches, transistors and lattices for possible future use in neuromorphic compu-
tation. Depending on the specifics of the sample, condensation can occur at standard
cryogenic temperatures with GaAs, InGaAs & CdTe and up to room temperature with
high bandgap inorganic materials such as GaN or organic active materials. Whilst the
development of room temperature polariton systems has seen vast bounds in recent
years [7,136], they don’t yet show significant enough in-plane propagation for use in the
areas investigated in this thesis. Therefore consideration is limited here to inorganic

systems at standard cryogenic temperatures.

7.1 Experimental results

This thesis has specifically been concerned with the control of polariton condensates via
optically imprinted potential landscapes, formed by the strong interactions between po-

laritons and the incoherent hot-exciton reservoir present under non-resonant excitation.

In chapter 3 the first demonstration of all-optical polariton bistability is shown in the
spinor of an optically trapped polariton condensate. The strength of the bistability can
be quantified in terms of the area encapsulated by the hysteresis loop. The observed
suppression of this area as the overlap of the condensate with the exciton reservoir is
increased, supports the determination that polariton-reservoir exciton interactions are
what previously precluded the observation of all-optical bistability in non-resonantly

pumped polariton condensates. This is further supported by the observation that the
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hysteresis area increases as the exciton fraction (and concomitant interparticle interac-

tion strength) is reduced.

Increasing the temperature of the sample is shown to collapse the hysteresis completely as
temperatures reach ~ 35K . The exact origin of this collapse with temperature increase
is difficult to discern as temperature affects multiple parameters, including, detuning
(increasing temperature causes the detuning to become less negative) and an increased
linewidth of the exciton transition (note however, strong coupling is maintained through-
out the temperature range investigated). Finally it is demonstrated that the bistable
behaviour persists without collapsing for excitation power sweep times spanning five
orders of magnitude, from 10us to 1s, showing future potential of the system in areas

such as spin switches and volatile spin memory.

The spatial separation of the condensate from the exciton reservoir, in optically trapped
polariton condensates, was additionally anticipated to greatly enhance the coherence
properties of the system. In chapter 4 the coherence properties of condensates spatially
separated from and spatially coincident with the exciton reservoir are investigated. The
work presented specifically considers the first order coherence properties. First order
coherence times, exceeding 1.5ns are demonstrated for the optically trapped polariton
condensate, where spatially coincident condensates only achieve coherence times on the
order of tens of ps. This opens the door to potential techniques for externally coupling

any two polariton condensates in a lattice - i.e. a route towards any-to-any coupling.

When increasing the excitation power, a reduction of coherence time was observed for the
optically trapped polariton condensates. However, in the range tested, the coherence
time remains greater than 1ns. The reduction observed is attributed to an increased
overlap of the condensed state with the exciton reservoir due to the pol-pol interactions

in the condensate causing it to spread.

It was also observed that the coherence time of polariton condensates, spatially co-
incident with the exciton reservoir, increased as the size of the excitation pump and
consequently the condensate is increased. This enhancement is due to the increased
coherent polariton population, in conjunction with the reduced in-plane wavevector of
the condensed state due to the flatter potential landscape. Even with this enhancement

though, for the largest condensates tested, the coherence time remained sub 100ps.

Whilst optically trapped polariton condensates demonstrate first order coherence times
orders of magnitude greater than the spatially coincident condensates, the spatially coin-
cident condensates afford an easy way to couple multiple condensates across macroscopic
distances. The potential landscape produced by a Gaussian excitation spot causes po-
laritons to ballistically propagate radially outward with a given wavevector, thus these
condensates are referred to as freely expanding. In chapter 5 an in-depth experimen-
tal and theoretical investigation of the simplest basis of any freely expanding polariton

condensate lattice (i.e. a dyad) is conducted.
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It is observed that for most separation distances a polariton dyad exhibits two opposite
parity energy states with notable occupation. As the separation distance is increased,
the relative spectral weight of each parity oscillates in a near-sinusoidal manner, with
a 7 phase difference between the oscillations for each parity. Consequently, there are
small ranges of separation distance that alternatingly correspond to either the even or
odd parity state having negligible occupation, and the system is effectively single mode.
With increasing separation distance between two consecutive single mode operation dis-
tances, there is a reduction in the collective frequencies of the system, a phase flip of
the dominant state along with a discontinuous jump in energy. This results in a series
of redshifting energy branches with alternating parity as a function of separation dis-
tance. Such features are characteristic of time delayed coupled oscillators as the time
delay is increased. As such, it is critically necessary when modeling, that the coupling of
freely expanding condensates accounts for the finite propagation time between conden-
sate centres. In other words the coupling is time delayed, a property that was missing
in previous works where instantaneous couplings were assumed. This dramatically in-
creases the complexity of the system, but also indicates that it could have applications

in the future for neuromorphic computation.

Additionally, interferometric measurements on separation distances with multiple energy
states were carried out as a function of delay time between the arms of the interferometer.
The interferograms exhibit strong decay and revival of the interference visibility as a
function of delay time. Thus conclusively determining that the two energy states coexist
with one another, rather than the system stochastically choosing one of the two in each

realisation.

Finally the experimental investigations presented are concluded in chapter 6, where an
all-optical bandstructure engineering platform is introduced, harnessing the interactions
between polaritons and exciton reservoirs that are present under non-resonant excitation.
By spatially sculpting the non-resonant excitation laser it is possible to create an all
optical polariton artificial crystal. Band structures are initially demonstrated using the
simplest periodic potential, namely a 1D chain polariton condensates formed by a chain
of equally sized and separated Gaussian pump spots. The band into which the system
condenses is shown to be controllable via adjusting the separation distance between
neighbouring pump beams. By alternating the separation distances in the chain of
pump spots band splitting is clearly demonstrated. Where the size of the energy gap
opened is shown to be dependent on the difference between the two separation distances
used. In addition, defect state lasing is also experimentally demonstrated using a chain
of condensates with uniform separation of the pump spots, except for the separation

distance at the centre of the structure, which is different.

Lastly some results are shown from polygon pump geometries, where, rather than hard
boundaries there is a periodic boundary; this time in the discrete rotational symmetries.

By breaking these symmetries using nonagons with alternating side length, localisation
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on the defect point is demonstrated via energy resolved tomography of the real space

distributions.

7.2 Experimental techniques

I was fortunate when starting my PhD candidature to be presented an empty optical
bench as it has allowed me to develop the skills necessary to design, build and run
complex optical setups. It also afforded me the opportunity to develop techniques to
improve the usability of optically imprinted polariton setups. One of which is the de-
velopment of live active feedback on the kinoform calculation procedure to bring the
experimentally realised excitation profile closer to the desired geometry, accounting for

optical imperfections in the system.

7.3 Final remarks

I have enjoyed my PhD candidature immensely, the field of polaritonics is fast moving,
exciting and holds promise for many future applications. The community of people are
extraordinary and I’m very lucky to have met the people in the community I have and

I look forward to meeting those (new and old) I have not met yet.
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