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Systems of multiple current sheets arise in various situations in natural plasmas, such as
at the heliospheric current sheet in the solar wind and in the outer heliosphere in the
heliosheath. Previous three-dimensional simulations have shown that such systems can
develop turbulent-like fluctuations resulting from forward and inverse cascade in wave
vector space. We present a study of the transition to turbulence of such multiple current
sheet systems, including the effects of adding a magnetic guide field and velocity shears
across the current sheets. Three-dimensional hybrid simulations are performed of systems
with eight narrow current sheets in a triply-periodic geometry. We carry out a number
of different analyses of the evolution of the fluctuations as the initially highly ordered
state relaxes to one which resembles turbulence. Despite the evidence of forward and
inverse cascade in the fluctuation power spectra, we find that none of the simulated cases
have evidence of intermittency after the initial period of fast reconnection associated
with the ion tearing instability at the current sheets. Cancellation analysis confirms that
the simulations have not evolved to a state which can be identified as fully developed
turbulence. The addition of velocity shears across the current sheets slows the evolution
in the properties of the fluctuations, but by the end of the simulation they are broadly
similar. However, if the simulation is constrained to be two-dimensional, differences are
found, indicating that fully three-dimensional simulations are important when studying
the evolution of an ordered equilibrium towards a turbulent-like state.

1. Introduction

In this paper we consider the evolution of systems of multiple current sheets, using
hybrid simulations with particle-in-cell (PIC) ions to correctly model key aspects of the
physical processes involved, such as reconnection. Such systems, as well as being an in-
teresting case to study in their own right, occur in several situations. For example, in
the heliosphere the magnetic field in the solar wind has a polarity connecting towards
or away from the Sun, and regions of outward and inward polarity are separated by
a thin region known as the heliospheric current sheet (HCS) (Owens & Forsyth 2013).
Misalignment of the Sun’s rotation and magnetic axes leads to a warped HCS which ex-
tends at low heliolatitudes throughout the heliosphere. Combined with the spiral pattern
of the heliospheric magnetic field, this leads to multiple, embedded current sheets with
field reversals in the outer heliosphere, as observed by the Voyager spacecraft up to the
heliospheric termination shock (HTS) and beyond into the heliosheath (Burlaga & Ness
2011).
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Recent interest in the effects of these current sheets, particularly multiple current sheet
(MCS) systems, has been stimulated by discrepancies between simple theories of shock
acceleration and Voyager observations of the anomalous cosmic ray (ACR) component
(Stone et al. 2005, 2008). Using particle-in-cell (PIC) simulations Drake et al. (2010)
investigated particle energization from energy release in a system of closely-space cur-
rent sheets. A similar system was studied by Burgess et al. (2016) using a 3-D hybrid
simulation (particle ions with fluid electron response) including pick up ions as found in
the outer heliosphere. A major result of this study was that the highly symmetric and
ordered initial state of a MCS system evolves to a complex three-dimensional state, with
a long time end state which appears to become close to well-developed turbulence. A
power law form of the power spectrum of magnetic fluctuations develops due to both
inverse and forward cascade, and fluctuations are anisotropic for the case when a guide
field is present, as found for solar wind turbulence.
In this paper we address specifically the transition to turbulence of an MCS system,

in order to fully characterize the resultant fluctuations. The concept of universality is
often invoked when considering plasma turbulence, and it is pertinent to consider the
properties of apparently turbulent fluctuations generated by different initial conditions in
simulations. For this reason the study of the MCS system is interesting in that it might
represent an alternative method for initializing simulations of turbulence. One advantage
of the MCS system is that velocity shear can be included in the initial conditions, so
one has the possibility of producing turbulence with various levels of mean velocity shear
fluctuations. Furthermore, the characterisation of turbulent or nonlinear fluctuations
and intermittency in complex and kinetic systems, where dissipation mechanisms are not
fully understood, is important for the ongoing study of structure formation in nonlinear
systems (Matthaeus et al. 2015). Comprehensive analysis of intermittency in one such
complex system, here the ion kinetic MCS system, can therefore provide a valuable point
of comparison for future study.
The paper is organized as follows: We first describe the simulations we have performed

and their initialization, then the results of a number of different analysis techniques
(power spectra, intermittency metrics, cancellation analysis and cross-helicity against
residual energy) are presented, and finally we conclude with some discussion of the results
of the simulations and implications for the use of multiple current sheet systems to study
plasma turbulence.

2. Simulations

We investigate the evolution of turbulence from a multiple current sheet system using
the three-dimensional hybrid simulation code HYPSI, as used previously to study the
evolution of heliospheric ion-scale current sheets (Gingell et al. 2015; Burgess et al. 2016).
The hybrid method combines a fully kinetic, particle-in-cell treatment of the ion species
with a charge-neutralizing, massless and adiabatic election fluid. Maxwell’s equations
are solved in the low-frequency Darwin limit, with zero resistivity, using the CAM-CL
method described by Matthews (1994).
The three-dimensional simulations use a grid of (Nx, Ny, Nz) = (120, 120, 120) cells

with resolution ∆x = 0.5di, where di = vA/Ωi is the ion inertial length. The size of the full
simulation domain is therefore (60di)

3. All boundaries are chosen to be periodic. Distance
and time are normalized to units of the ion inertial length di and inverse ion gyrofrequency
tΩ = Ω−1

i , respectively; velocity is normalized to the Alfvén speed vA. In order to reduce
noise as far as possible given the constraints of the available computational resources,
the ion phase space has been sampled with 200 pseudo-particles per computational cell.
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Abbreviation Description Guide Field, Bg/B0 Velocity Shear, uy/vA
AP Anti-parallel 0 0
GF Guide field 1 0
SH Super-Alfvénic velocity shear, 3D 0 [6,−8, 2, 1,−2, 4,−3]

SH2d Super-Alfvénic velocity shear, 2.5D 0 [6,−8, 2, 1,−2, 4,−3]

Table 1. Summary of simulations discussed in this paper.

The simulations are initialized with eight current sheets parallel to the y-z plane,
with spacing 7.5di. We use a “force-free” equilibrium which consists of a rotation in
the magnetic field with uniform density. Each current sheet therefore has the following
magnetic structure:

Bx(x) = 0, (2.1)

By(x) = ±B0 tanh(x/L), (2.2)

Bz(x) = ±B0 sech(x/L), (2.3)

where the B0 is the background magnetic field strength. The magnetic field reverses over
a length scale L = di. In contrast to the Harris current sheet equilibrium often used
in other studies (e.g. Drake et al. 2010), both the magnetic field strength and density
are uniform over the current sheet. Ions are initialized with a Maxwellian distribution
function, with plasma beta βi = 0.5. For the plasma conditions chosen, we have verified
that evolutionary differences which arise from the use of non-Maxwellian distribution
functions required at kinetic scales (see Neukirch et al. 2009; Wilson & Neukirch 2011)
are negligible.

In addition to the initial conditions described above, referred to hereafter as the “anti-
parallel” or AP case, two variations are also described in this study. In the guide field
(GF) case a uniform Bz component is added, such that initially Bz = By and the
background field strength B2

g = B2
y + B2

z = B2
0 . This corresponds to a rotation of the

background magnetic field without a change in the background field strength. In the
super-Alfvénic velocity shear case (SH), a variable bulk velocity uSH = (0, uy(x), 0) is
included between each current sheet, such that each of the current sheets is subject to
a different velocity shear. The initial bulk velocities between the current sheets in order
of increasing x coordinate are as follows: uy/vA = [6,−8, 2, 1,−2, 4,−3]. Each velocity
shear layer is initialized with the same width as the magnetic shear layer L, such that
the initial bulk velocity is given by:

uy,total(x) =

7
∑

i=1

1

2
uy,i

(

tanh

(

x− xc,i

L

)

− tanh

(

x− xc,i+1

L

))

, (2.4)

where xc,i is the center of a given current sheet. Note that the net bulk velocity in the
simulation is zero. In this case, each current sheet is subject to a super-Alfvénic velocity
shear in addition to the magnetic shear. We also discuss a “2.5D” version of these initial
conditions (SH2d), for which all three components of the fields and moments do not vary
in the z-direction, e.g. Bxyz(x, y, t).

The full set of simulations discussed in this paper, including relevant abbreviations, is
given in table 1.
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Figure 1. Line integral convolution visualisation of the magnetic structure at tΩi = 300 for a)
anti-parallel, b) guide field and c) super-Alvénic shear simulations. (The plots are produced in
MATLAB with routines from Toolbox image.)

3. Results

The evolution of the simulations in time can be summarised as follows (Burgess et al.
2016): (i) linear growth of the tearing instability from the symmetric, highly ordered ini-
tial state; (ii) nonlinear growth of the tearing instability, characterised by island merging
and reconnection across several current sheets; (iii) saturation of the tearing instability,
and relaxation towards a chaotic, “turbulent” state. The magnetic structure at the end of
the simulation for the anti-parallel (AP), guide field (GF) and super-Alfvénic shear (SH)
cases is shown in Figure 1. These figures visualize the field line topology (but not field
strength or direction) using a line integral convolution, for which a randomly generated
field of noise is smeared out over magnetic field lines. This provides a dense represen-
tation of the most important features we discuss in this paper, i.e. the development of
magnetic islands of varying scales, without the clutter of following multiple field lines in
three dimensions. The time evolution of the tearing instability and associated magnetic
structure for these multiple current sheet systems is described in detail by Burgess et al.
(2016). Discussion of the effects of other instabilities on the evolution of single three-
dimensional ion-scale current sheets, including the drift-kink, firehose and ion cyclotron
instabilities, can be found in Gingell et al. (2015).
We find that growth and merging of magnetic islands by reconnection in the AP case

generates an apparently three-dimensional and isotropic cascade of magnetic vortices. In
the GF case, the magnetic structure remains largely two-dimensional, and the x− z and
y − z planes in Figure 1(b) are therefore dominated by the z-directed mean field.
The introduction of super-Alfvénic shear in the SH case stabilizes the tearing instability

(e.g., Chen & Morrison 1990; Landi & Bettarini 2012; Cassak & Otto 2011; Doss et al.
2015), leading to persistence of some of the initial current sheets longer than in the
zero shear, anti-parallel case. Thus, the inverse cascade by merging of magnetic islands
is less advanced in the super-Alfvénic shear, and the scales of the magnetic islands are
consequently smaller in Figure 1(c) than in Figure 1(a). From other simulations (not
shown) we note that the reconnection rate is significantly reduced only when super-
Alfvénic shear velocities are imposed. This dependence of the reconnection rate on shear
velocity therefore enables local modulation of the magnetic structure by introducing
significant differences in the shear at each current sheet. For example, including a single
super-Alfvénic shear layer with a set of zero or sub-Alfvénic shear layers leads to a
magnetic structure in which a single, persistent current sheet is embedded within a
background of magnetic islands.
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In order to characterise the apparent cascade seen in the magnetic structure in Figure
1, we examine the time evolution of the spectrum of magnetic fluctuations. These spectra
are shown for the anti-parallel case in the top panel of Figure 2. Each spectrum shown
is the trace power spectrum of the full three-dimensional box, integrated over shells of
constant k. At early times, strong peaks in the power spectrum are associated with spatial
harmonics of the current sheet separation scale. The evolution from t = 0 to tΩi ≈ 150
consists of in-filling of the spectral peaks, generating a power law spectrum approximating
EB(k) ∼ k−8/3. For inertial MHD turbulence, one might expect a Kolmogorov power
law exponent −5/3. Here, the steeper slope may be a consequence of the inverse cascade
associated with merging of magnetic islands.
In order to quantitatively follow the time evolution of the spectral properties, it is

possible to use the value of the exponent α of the isotropically integrated magnetic power
spectra, obtained through a fit with the power-law EB(k) ∼ k−α. Examples of such a fit
over an appropriate range of wave-vectors, are shown in the top panel of Figure 2, at some
different times in the simulation, highlighting the variation of the scaling exponent with
time. The range of wave-vectors is chosen to approximate the inertial range. Given the
ion kinetic scales and the constraints of the size of the simulation domain, the inertial
range is therefore limited to approximately half a decade in k-space. We note that at
high-k, close to the grid scale, the apparent rise in power is an artifact of the isotropic
integration of the full three-dimensional magnetic spectra, and is not associated with
particle noise. The evolution of the spectral index for different simulation cases is shown
in the bottom panel of Figure 2. The initial values are estimated by fitting the envelope
of the spectral peaks observed at early times, and do not carry any significance in terms
of nonlinear energy cascade. At tΩi ≃ 25, the spectral peaks have already merged and the
spectrum is flat. At following times, it starts to broaden and steepen, with the spectral
index increasing from zero to about α ≃ 3 at tΩi ≃ 150 for the AP run, or to α ≃ 2.7 for
the SH and GF runs. At later time, tΩi & 250, an approximate steady state is reached
at α ≃ 2.6 for the AP and SH runs, while α ≃ 2.1 for the GF run.
Although the magnetic spectra have been isotropically integrated over the three-

dimensional k-space, the initial conditions may introduce sources of spectral anisotropy.
The multiple current sheet system is itself anisotropic, however in the AP case fast growth
of the tearing instability and associated fluctuations evolve the system towards an ap-
proximately isotropic state by tΩi & 25. However, the guide field is known to introduce
anisotropy in the magnetic spectrum of an MCS system (Burgess et al. 2016). In the
GF case, a relative reduction in the power in the parallel direction compared to the per-
pendicular direction, visible also in the magnetic structure in Figure 1(b), leads to an
effective reduction of the spectral index for the isotropically integrated spectrum. This
difference is reflected in the reduced α of the GF run compared with the AP and SH
runs at late times, visible in the lower panel of Figure 2. Velocity shear is also known
to introduce spectral anisotropy (Wan et al. 2009). However, in the SH case presented
in this study, for which we have a set of oppositely directed velocity shear layers with a
range of magnitudes and net zero bulk velocity, the system nevertheless evolves towards
an isotropic state over a time scale determined by the saturation of the tearing instability,
approximately tΩi & 150. Hence, towards the end of the simulation for the AP and SH
cases, spectral anisotropy is not expected to affect any statistics for which isotropy is
assumed.
The description of turbulence requires a more detailed description than simply the spec-

tral analysis. In fact, fully developed turbulence is characterized by intermittency (Frisch
1995), or lack of scale-invariance of the field fluctuations, which in turn leads to non-
uniform distribution of energy dissipation at small scales. For this reason, it is custom-
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Figure 2. Top panels: magnetic power spectra for the AP run, at different times, with the
power-law fit. Bottom panel: the time evolution of the spectral index α obtained from the fits
for the three runs. The horizontal line marks the scaling exponent value 8/3.

ary to estimate the scale dependence of the statistical properties of the two-point field
increments ∆B(x, l) = B(x + l) − B(x), where l is the scale parameter. A complete
description is provided by the Probability Distribution Functions (PDFs) of the scale-
dependent, standardized field increments. In turbulent flows these are usually Gaussian
at large scale, and have increasing tails as the scale decreases, because of the formation
of large amplitude structures that concentrate on smaller and smaller scales. This is the
signature of intermittency, a process naturally and universally arising in fully developed
Navier-Stokes or MHD turbulence (Frisch 1995). PDFs of longitudinal magnetic field
increments of the x component are shown in Figure 3 at two times (tΩi ≃ 150 and
tΩi & 300), and for three different scales. It is evident that PDFs at different scales
collapse on a roughly similar (Gaussian) shape, shown with a dashed line, with weak
deviation of the tails. At large scale, the PDF is slightly leptokurtic, i.e. tails are lower
than Gaussian, while at smaller scale they progressively increase toward weakly hyper-
kurtic values. This is an indication of weak scale dependence, or intermittency, so that
the field is nearly self-similar. Similar behaviour is observed for all times, for all field com-
ponents, for all simulation cases. However, we note that for small scales at tΩi ≃ 150,
the tail regions of the PDF are more hyperkurtic than at tΩi ≃ 300, as a remnant of
the fluctuations generated by the tearing instability during the period of fast, nonlinear
reconnection, which saturates at t ∼ 100.
A more quantitative estimate is given by means of the PDF structure functions, i.e. the

high-order moments of the PDFs, Sq(∆B) = 〈|∆b|q〉, with the brackets indicating spatial
averages (Frisch 1995). In turbulent flows, it is expected that the structure functions scale
as power-laws of the separation l, Sq(l) ∼ lζq , in the inertial range. The behaviour of the
scaling exponents with the moment order q is indicative of the presence of intermittency.
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Figure 3. Examples of the PDFs of the longitudinal field increments of the x component, ∆Bx,
at three different scales (different colors), estimated at two times in the simulation, for the
anti-parallel case. The weak scale dependence is highlighted by the comparison with a reference
Gaussian (dashed lines). A similar behaviour is observed at all times, for all the field components,
and for all simulation cases (not shown).

In particular, the linear dependence ζq ∝ q indicates self-similarity, while deviation from
such linearity indicates intermittency. Due to the limited extension of the inertial range in
the numerical simulations, Extended Self-Similarity (ESS) (Benzi et al. 1993) has been
used, as customary. In this case, the structure functions Sq are plotted as a function
of the second order moment S2. The corresponding extended-range fit with the power-

law Sq(S2) ∼ S
ξq
2 gives the scaling exponents ξp ∝ ζp, which can therefore be used

to measure deviation from self-similarity. Intermittency models can be used to fit the
function ξq, providing a quantitative estimate. Here we use the p-model (Meneveau &
Sreenivasan 1987), whose prediction for the structure functions anomalous scaling is ξq =
1−log2

[

phq + (1 − p)hq
]

. Here p ∈ [0.5, 1] is the parameter that quantifies deviation from
self-similarity, with p = 0.5 indicating absence of intermittency and p > 0.5 indicating
increasing intermittency. Figure 4 (top-left panel) shows one example of ESS structure
functions for AP case at the end of the simulation, for the Bx component. Power-law fits
are also indicated. Figure 4 (top-right panel) shows the order dependency of the scaling
exponents ξq, along with the p-model fit, for the same case as in the top-left panel, again
taken the end of the simulation (tΩi = 300) and at earlier times. In the bottom panel, the
time evolution of the parameter p obtained from the fit is shown, for the x component,
and for all three cases. For the AP and GF cases the intermittency parameter reaches a
stationary value p ≃ 0.6 at early times in the simulation, around tΩi ≃ 50. Such value
indicates a very weak degree of intermittency, in agreement with the observation of the
scale-dependent PDFs. On the contrary, no intermittency (p ≃ 0.5) is observed for the
SH case.
An alternative use of the structure functions to determine intermittency is to eval-

uate the kurtosis, or the normalized fourth-order moment K(l) = S4(l)/S2(l)
2, which

describes the scale-dependent flatness of the distribution functions. For Gaussian field
increments PDFs (e.g. at large scale) the kurtosis has a definite value KGauss = 3. Again,
for intermittent fields the kurtosis increases as the scale decreases, indicating the pres-
ence of enhanced tails of the distributions. Conversely, constant kurtosis is found for
self-similar, non-intermittent fields. An example of scaling dependence of the kurtosis
is shown in the top panel of Figure 5, where the weak increase towards small-scales is
visible. At large scales, a value K < 3 is observed, confirming the presence of low-tailed
PDFs. This is consistent with the observation of low-tailed PDFs for large scales at mid-
and late-times in Figure 3. These sub-Gaussian statistics are generally associated with
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Figure 4. Top left: one example of structure functions (ESS is used), for the Bx increments
in the AP run, at the final time of the simulation. Power-law fits are indicated. Top right: the
anomalous scaling of the structure functions exponents ξq at three different times, along with the
p-model fit, for the Bx increments in the AP run. Bottom: the time evolution of the parameter
p for the Bx components, for all three runs.

large scale, coherent equilibria. In our case, this indicates that a remnant of the initial
current sheet configuration is still present. At smaller scales, after a roughly steady in-
crease in the inertial range, the kurtosis reaches values slightly larger than the Gaussian
value K = 3, indicating the presence of weakly higher tails, although the bulk of the
PDF remains Gaussian. The differences among the three runs are recovered in the kurto-
sis values, again showing a less developed turbulence in the SH run. In the bottom panel
of Figure 5, the time evolution of the maximum value of the kurtosis over the whole
range of scales is shown. This indicates the time of maximum deviation from Gaussian,
which was confirmed as occurring at small scales. The deviation from K = 3 is weakly
variable after tΩi = 100, and reaches a steady value close to Gaussian at tΩi = 250.

The full dependence of the kurtosis K on both scale and time is shown for the AP
and SH cases in Figure 6. For the AP case, the regions of high kurtosis K > 6 during
the earliest period of significant reconnection, tΩi ∼ 20, are associated with multiples of
the current sheet separation scale 7.5di. This is consistent with the growth of a tearing
instability on each current sheet. In contrast, for the SH case we find that the breaking of
the symmetry due to variable velocity shears between current sheets removes the peaks
associated with the separation scale, and instead high kurtosis is found at the smallest
length scales. This case is consistent with a turbulent state with high intermittency.
However, as also shown in Figures 4 and 5, this state is not maintained beyond tΩi ∼ 50.

Even in those cases where the turbulence is not fully developed, the properties of
the flow can be described in terms of the chaotic nature of its fluctuations using the
so-called cancellation analysis. This was first introduced in the framework of fluid turbu-
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lence and for the magnetohydrodynamic dynamo (Ott et al. 1992). Subsequently, it has
been used to describe the scaling properties of MHD structures in two-dimensional sim-
ulations (Sorriso-Valvo et al. 2002; Graham et al. 2005; Martin et al. 2013) and for solar
photospheric active regions (Abramenko et al. 1998b,a; Sorriso-Valvo et al. 2004, 2015;
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De Vita et al. 2015). It was pointed out that the cancellation analysis could represent a
phenomenological measure of the fractal dimension of the field structures (Sorriso-Valvo
et al. 2002). In analogy to the fractal singularity analysis of the measure of a positive
defined signal, cancellation analysis is based on the study of the singularity of a signed

field. In particular, if a suitably defined measure of a field changes sign on arbitrarily fine
scale, then the measure is said to be sign-singular (Ott et al. 1992). The quantitative
description of such a singularity gives information on sign changes, which is relevant in
the presence of sign-defined, smooth coherent structures, such as the ones that arise in a
turbulent cascade.
For a scalar field f(r) with zero mean, defined on a d-dimensional domain Q(L) of

size L, its signed measure is the normalized field across scale dependent subsets Q(l) ⊂
Q(L) of size l,

µ(l) =

∫

Q(l) dr f(r)
∫

Q(L)
dr |f(r)|

. (3.1)

Performing a coarse-graining of the whole domain, the sign-singularity of the measure
can be quantitatively estimated through the scaling exponent of the cancellation function
(or cancellation exponent) κ, defined as

χ(l) =
∑

Qi(l)

|µi(l)| ∼ l−κ , (3.2)

the sum being over all disjoint subsets Qi(l) covering the domain Q(L). In a turbulent
field, cancellations between positive and negative fluctuations occur when integrating over
large size subsets, thus providing a small contribution to the signed measure. Conversely,
for a subset of the typical size of the structures, the increasing presence of sign-defined
patches of field reduces the cancellations. The cancellation exponent can thus provide an
effective measure of the way the field cancellations change through the scale. For example,
for a smooth field the cancellation function does not depend on the scale, and κ = 0;
on the other hand, a homogeneous field with random discontinuities (like a Brownian
noise) has κ = d/2. Exponents between those two values indicate the presence of smooth
structures embedded in random fluctuations. Moreover, their values can be related to
the geometrical properties of structures, through the phenomenological relationship κ =
(d−D)/2, where D is the fractal dimension of the typical structures of the field (Sorriso-
Valvo et al. 2002). Conversely, exponents κ > d/2 indicate cancellations that are more
efficient than for a random field, suggesting the presence of pairs or groups of structures
that efficiently cancel each other. In this case, the phenomenological relationship for the
fractal dimension D does not hold.
Cancellation analysis has recently been used to track the time evolution of turbulence

in a two-dimensional numerical simulation of the Hybrid Vlasov-Maxwell equations (De
Vita et al. 2014), showing its ability to highlight the transition to turbulence. Moreover,
could accurately describe the formation and the geometrical characteristics of the main
structures generated by the nonlinear interaction, independent of the type of turbulence.
Here we adopt a similar approach, and use the current components ji (with i = x, y, z) to
estimate the cancellation function (3.2) at each time in the three simulations, obtaining
a time dependent estimate of the fractal dimension D of the structures that form in the
system.
The top panel of figure 7 shows three example of scaling of the cancellation function

χ(l) for the component jz in the AP run, at three different times. Cancellation functions
computed for the other current density components show similar features for all runs (not
shown). At early times, an apparent break in the slope suggests that a double power-
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law scaling range may be identified, roughly covering the inertial range. Interestingly,
the break between the two scaling laws is located near l⋆ ≃ 7di, i.e., close to the initial
current sheets separation. This feature is confirmed by the analysis of a run with only
four current sheets (not shown), for which the cancellation function has a break again
near the initial current sheets separation scale 15di. For the four current sheet case, this
break much more clearly persists at late times. Given the apparent break, the cancellation
functions have been fitted with two power laws, in the small-scale and large-scale ranges,
respectively below and above l⋆. The exponents κ obtained from the fit have been used to
estimate the corresponding fractal dimensions Dsmall and Dlarge, whose time evolution is
shown in the bottom panels of figure 7 (thin and thick lines, respectively), for the three
runs (different colors and line style). Observing the time evolution of D, the following
features can be highlighted in the large and small scale ranges.
(i) In the small scale range (thin lines), the field is initially smooth (Dsmall = d =

3). Successively, the parameter Dsmall gently decreases during the onset of turbulence,
indicating the formation of small-scale structures. In the AP run, for tΩi & 100 structures
reach a steady, quasi-2D geometry (Dsmall ≃ 2.2), corresponding to the formation of
current sheets. A similar behaviour was observed in the small-scale evolution of two-
dimensional Vlasov-Maxwell turbulence (De Vita et al. 2014), where a 3D-extrapolated
dimension Dsmall ≃ 1.5 was measured. In the SH run, the presence of velocity shears
accelerates the nonlinear transfer, favouring an early appearance of small-scale structures,
which eventually reach a steady geometry around the same time as for the AP run. On
the contrary, in the GF run saturation is reached at a much later time, tΩi ≃ 250,
showing that the guide field effectively slows down the small-scale nonlinear interactions.
However, the fractal dimension settles at Dsmall ≃ 1.8, so that slightly disrupted current
sheets are formed.
(ii) In the large scale range (thick lines), the early stage of the simulation is charac-

terized by the presence of the initial current sheets. Because of the alternation in the
current sign, cancellations are enhanced (κ > d/2) on those scales, and the fractal di-
mension cannot be estimated. For the AP run, at tΩi & 100 nonlinear interactions and
magnetic reconnection progressively disrupt the initial current layers, eventually forming
quasi-2D large-scale structures (Dlarge ≃ 1.9 at tΩi ≃ 300). This is also visible in the
top panel of figure 7, where the difference between small-scale and large-scale scaling
exponents decrease with time. This is again the signature of the transition to turbulence.
However, at the final time of the simulation the dimension seems to be still increasing,
and has not reached a clear saturation. Moreover, structures in the two ranges of scales
reach different dimension, Dsmall 6= Dlarge, so that a scale separation due to the initial
conditions is still present. The GF and SH runs show similar features. However, in these
cases the formation of structures is even slower than for the AP run, so that at the end
of the simulation Dlarge ≃ 1 and the difference between large- and small-scale structures
is more evident. This is in agreement with the slower evolution of magnetic islands in
the presence of super-Alfvénic shears (as described previously) and the two-dimensional
nature of the turbulence in the GF case.
The above observations suggest that, although the spectral indexes reach steady val-

ues around tΩi ≃ 250, the turbulence has not fully developed yet, and the large-scale
signature of the initial current sheets is still affecting the formation of the structures.
This is even more evident when guide field or velocity shears slow down the nonlinear
interactions and large-scale magnetic reconnection.
Finally, we can characterise the magnetic fluctuations present in the simulation by

examining the distribution of the cross-helicity and residual energy of fluctuations as
described by Bavassano & Bruno (2006), and utilised more recently for solar wind turbu-
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Figure 7. Top panel: the cancellation functions of the jz component, χ(l), at three different
times, for the AP run. Power-law fits are indicated in two ranges of scale above and below the
break at l⋆. Bottom panels: the time evolution of the fractal dimension Dsmall (upper window,
thin lines) and Dlarge (lower window), for all three runs.

lence by Wicks et al. (2013). We calculate the increments in magnetic field B and bulk
velocity V from 1D trajectories through the simulation domain with constant y and z
such that

δb(x, l) =
B(x) −B(x+ l)
√

µ0min0(x, l)
(3.3)

δv(x, l) = V(x) −V(x + l) (3.4)

where l is the spatial lag. The local mean field and density are given by

B0(x, l) =
1

l

∫ x′=x+l

x′=x

B(x′)dx′, (3.5)

n0(x, l) =
1

l

∫ x′=x+l

x′=x

n(x′)dx′, (3.6)

and the Alfvénic part of the fluctuations are therefore given by:

δb⊥(x, l) = δb(x, l) ·
(

1− b̂0(x, l)b̂0(x, l)
)

, (3.7)

δv⊥(x, l) = δv(x, l) ·
(

1− b̂0(x, l)b̂0(x, l)
)

, (3.8)



Turbulence from Sheared Current Sheets? 13

σ
c

-1 -0.5 0 0.5 1

σ
r

-1

-0.5

0

0.5

1(a)
log

10
(P(σ

c
,σ

r
)), l = 10

0

0.5

1

1.5

2

2.5

σ
c

-1 -0.5 0 0.5 1

σ
r

-1

-0.5

0

0.5

1(b)
log

10
(P(σ

c
,σ

r
)), l = 10

0

0.5

1

1.5

2

σ
c

-1 -0.5 0 0.5 1

σ
r

-1

-0.5

0

0.5

1(c)
log

10
(P(σ

c
,σ

r
)), l =10

0

0.5

1

1.5

σ
c

-1 -0.5 0 0.5 1

σ
r

-1

-0.5

0

0.5

1(d)
log

10
(P(σ

c
,σ

r
)), l = 10

0

0.5

1

1.5

2

2.5

3

σ
c

-1 -0.5 0 0.5 1

σ
r

-1

-0.5

0

0.5

1(e)
log

10
(P(σ

c
,σ

r
)), l = 10

0

0.5

1

1.5

2

2.5

σ
c

-1 -0.5 0 0.5 1

σ
r

-1

-0.5

0

0.5

1(f)
log

10
(P(σ

c
,σ

r
)), l = 10

0

0.5

1

1.5

Figure 8. Distribution of fluctuations as a function of residual energy σr and cross helicity
σc, for the cases AP (left column), SH (centre column) and SH2d (right column). Distribution
functions have been calculated for the periods tΩi = 40−60 in the top row, and tΩi = 280−300
in the bottom row, with lag l = 10di.

where b̂0 = B0/B0. We can therefore calculate the scale dependence, normalized cross
helicity and residual energy respectively as follows:

σc(x, l) =
2δv⊥(x, l) · δb⊥(x, l)

|δv⊥(x, l)|2 + |δb⊥(x, l)|2
, (3.9)

σr(x, l) =
δv⊥(x, l)|

2 − |δb⊥(x, l)|
2

|δv⊥(x, l)|2 + |δb⊥(x, l)|2
. (3.10)

The combined distribution functions of the cross helicity and residual energy are shown
for the antiparallel and velocity shear simulations in Figure 8. We have selected a scale
l = 20, within the apparent inertial range of the magnetic spectra. The figure shows the
combined distributions for every available time step during the period tΩi = 40 − 60,
during the period of peak intermittency. For all simulations, we find that the power is
distributed along the outer edge of the circle. Here σ2

c+σ2
r = 1, and therefore |δv⊥||δb⊥| =

|δv⊥ · δb⊥|. Hence, the magnetic field and velocity fluctuations are closely aligned. In
the antiparallel case, there is much greater power in the lower half of the circle, σr < 0
and the fluctuations are therefore strongly magnetically dominated. Additionally, the
fluctuations are found in the region σc ≈ 0, which implies that forward and backward
propagating Elsasser fluctuations are balanced; unsurprising for a simulation which is
initialized with zero cross helicity. The fluctuations present in the guide field case at the
same time have the same distribution as for the antiparallel case in Figure 8(a).

In the 3D super-Alfvénic velocity shear case at early times, shown in Figure 8(b),
we find high power along the full circumference of the circle σ2

c + σ2
r = 1. This implies

that simulation contains regions in which fluctuations are velocity-dominated σr > 0,
and strongly unbalanced σc ≈ ±1. This is consistent with the persistence of super-
Alfvénic flows in the simulation, where velocity dominates the energy partition. As with
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the antiparallel case, there is little power in the central region σc,r ≈ 0, for which magnetic
field and velocity fluctuations are unaligned.
At the end of the simulation, tΩi = 300, the distribution of fluctuations in the 3D SH

case shown in Figure 8(e) more closely resembles the antiparallel case in Figure 8(a,d),
i.e. with very little power in the velocity-dominated σr > 0 region compared to the
magnetically dominated region. Hence, mixing of the super-Alfvénic bulk flows is more
efficient than reconnection of magnetic flux. However, if the velocity shear simulation
is performed in two dimensions, as for the SH2d case shown in Figures 8(c,f), we find
that the full ring of fluctuations seen in Figure 8(b) persists even to tΩi = 300. The
extra degree of freedom in the 3D simulations therefore allows for more efficient mixing
of the bulk flows, and structures which generate velocity-dominated fluctuations are less
prevalent in the end state.
In the solar wind, analysis of turbulent magnetic fluctuations present in data from the

Wind spacecraft have shown significant power in the region σc ≈ 1 and σr . 0 (Wicks
et al. 2013). Fluctuations in this region are strongly unbalanced, with very pure outward
propagating Elsasser fluctuations, are Alfvénically equipartitioned (δb⊥ ∝ δv⊥) and
aligned. Hence, the character of the fluctuations generated by a system of reconnecting
current sheets is significantly different from that observed in the near-Earth solar wind.

4. Conclusions

In this study we have presented, using several methods of analysis, the first com-
prehensive analysis of an apparently turbulent or disordered system which has evolved
by the relaxation of an ordered system with magnetic and velocity shear. We have pre-
sented results for a set of three-dimensional hybrid simulations of a multiple current sheet
system, relevant to Kelvin-Helmholtz driven turbulence in the flanks of planetary mag-
netospheres (Stawarz et al. 2016), and the bunching of the heliospheric current sheet in
the outer heliosphere (Burlaga & Ness 2011). Previous studies (Burgess et al. 2016) have
shown that the MCS system evolves from an ordered equilibrium towards a disordered
state of interacting magnetic islands (see Figure 1). The evolution in all the simulations
presented here is driven principally by the ion kinetic tearing instability, leading to re-
connection across several current sheets as magnetic islands grow to scales larger than
the sheet separation. We find that the rate of reconnection is reduced in the guide field
(GF) and super-Alfvénic shear (SH) cases (compared to the anti-parallel AP case) due
to stabilisation of the tearing instability.
Indeed, the trace power spectrum of magnetic fluctuations, shown for the anti-parallel

case in Figure 2, demonstrates that power is distributed from the initial sheet separation
scales in an apparent cascade to both smaller and larger scales. The inverse cascade is
consequence of the rapid merging of magnetic islands during the nonlinear phase of the
tearing instability, and slower coalescence of magnetic islands between adjacent current
sheets in the later phase of the evolution. This second phase, in particular, is similar
to the inverse energy cascade observed for 2D fluid turbulence (Biskamp 2003). For all
the simulations discussed here, the spectrum saturates by tΩi ∼ 150. The power law
exponent α = 2.6 in the AP case, falling between typical solar wind values of α = 5/3 in
the fluid range, and α ∼ 2.8 at ion kinetic scales.
However, despite the apparent forward and inverse cascade visible in the evolution

of the magnetic topology and spectra, none of the simulations discussed in this study
have evidence of intermittency after the period of fast reconnection, tΩi & 100. For
example, at late time the kurtosis of the PDF of magnetic fluctuations for all simulations
K(l) . 3 over all scales l, indicating a Gaussian or slightly sub-Gaussian PDF. The lack
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of intermittency is also supported by analysis of the scaling of the structure functions in
Figure 4. Due to this lack of intermittency, we can conclude, that the the chaotic state
observed at late times is not strictly a turbulent state.
During the period of active reconnection, tΩi < 150, Burgess et al. (2016) found that

the tearing instability is able to generate regions of local temperature anisotropy, in agree-
ment with recent observations (Hietala et al. 2015). These regions of local temperature
anisotropy may lead to the localised growth of micro-instabilities (Gingell et al. 2015),
and therefore act as a source of intermittency. Although the results presented in this
paper demonstrate that the system is intermittent during the early reconnecting phase,
we can conclude that any intermittency associated with ion kinetic micro-instabilities is
transient, i.e. does not persist once the source of significant temperature anisotropy has
become inactive.
Cancellation analysis reveals a clear break in the behaviour of the system at scales

above and below the initial sheet separation scale, particularly in the SH and GF cases.
In the GF case, the fractal dimension for scales below the separation scale Dsmall ≃ 1.8,
indicative of a slightly disrupted current sheets. Above separation scales Dlarge ≃ 1,
indicative of quasi-1D structures (i.e. flux ropes within the magnetic islands). That
Dsmall 6= Dlarge in all cases at tΩi = 300 suggests that signatures of the ordered ini-
tial conditions are still present in the simulation, and hence we have not yet reached a
saturated state. This leaves the possibility that a truly turbulent (i.e. intermittent) state
may still develop at much later times. However, the significant computational resources
necessary to run a hybrid simulation over these time scales leads to the conclusion that
the MCS configuration may not be as useful for generation of turbulence as those based
upon decay of a superposition of wave modes. However, the system remains important
to studies of turbulence arising from an initially ordered state, or those focused on the
comparison of these systems to decaying turbulence.
The set of simulations presented in this paper also allows a direct comparison to

be made of the turbulent or chaotic state in a system which includes super-Alfvénic
velocity shear to the zero shear case. In the SH case, the later saturation of the magnetic
spectrum and the slower growth of magnetic islands are consistent with a reduction in
the reconnection rate. However, during the period of fast reconnection tΩi ∼ 40− 50, the
anomalous scaling of the structure functions, the higher kurtosis of magnetic fluctuations
at small scales, and the lower fractal dimension at small scales all demonstrate that the
super-Alfvénic shear drives fast, nonlinear structure formation below the sheet separation
scale. During this period, we also find that the PDF of Alfvénic fluctuations in the SH
case shows significant power in the velocity-dominated and strongly unbalanced regions of
(σc, σr) space (see Figure 8). However, we can conclude that this clear difference between
the character of the turbulence in the SH and AP cases is not persistent; by tΩi = 300 the
analyses presented in this paper show similar results for the AP and SH cases, or a trend
in that direction. We further note that the differences observed in cases which include
velocity shear layers are only significant if the shear is super-Alfvénic. Variations upon
the SH initial conditions with reduced intra-sheet bulk velocities show neither reducing
in the reconnection rate, nor velocity-dominated Alfvénic fluctuations in (σc, σr) space.
In combination, these results are a clear demonstration of both the current limitations

of simulations of turbulence, and the caution required in their analysis. We reiterate
that a power law in the magnetic spectrum is not a sufficient measure of turbulence,
and particular attention must be paid to quantitative measures of intermittency. The
difference between the power law exponent α of the magnetic spectra measured here
and previous measurements in the solar wind observation or more traditional turbulence
simulations may be due to the limitation of the box size and grid resolution of our hybrid
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simulations. Likewise, we may find a more intermittent state over much longer time
scales than the simulations discussed here. Finally, clear differences between otherwise
identical 2D and 3D runs, such as those shown in Figure 8, underline the importance
of the application of fully three-dimensional simulations when studying the transition to
turbulence from an ordered equilibrium.
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