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ABSTRACT

Faculty of Engineering and Physical Sciences

SCHOOL OF CHEMISTRY

Doctor of Philosophy

by Lee Steinberg

Topological data analysis techniques are applied to distinct problems in chemistry, to

determine their efficacy and gain new understanding of chemical systems. The mapper

algorithm is utilised to understand the underlying descriptor space of a solubility pre-

diction data set. Insight from the resulting topological summaries was able to create

more consistent solubility models. Persistent homology is then used to create a series of

metric spaces for molecular shape. It is shown that these metric spaces correlate with

other molecular descriptors, and also allow for the accounting of molecular flexibility.

This molecular flexibility is further explored with persistent homology. By constructing

a point cloud of individual conformers, a technique to characterise the conformational

spaces of various molecules is developed. Alanine dipeptide is shown to have a toroidal

conformational space, and persistence is then used to locate extrema on its torsional free

energy surface. Pentane is then studied, and shown to also have a toroidal conformational

space, or a Möbius band when symmetry is taken into account. The conformational

space of cyclooctane is shown to be non-manifold, and the separate manifold components

separated. It is found that there are separate spherical and Klein bottle components,

before the single point energy landscape of the sphere is also analysed and extrema

located.

Finally, simulated water networks are analysed through persistent homology. The gen-

eral use of persistence to analyse simulations is studied, and persistence is shown to

be a well-behaved descriptor. A size-agnostic persistence descriptor is generated, and

used with a support vector machine to understand the differences in simulated water

networks. Atomistic and coarse-grained water potentials are compared, and similarities

between potentials are related to topological features.
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Chapter 1

Introduction

1.1 Chemistry as a Data Driven Science

Chemistry has always been a data driven science. The year of writing of this thesis (2019)

is the 150th anniversary of the publication of Mendeleev’s periodic table (Figure 1.1),

and his work was a triumph in data science. Mendeleev was not the first to notice that

the elements showed a periodicity when arranged in mass order, but he also speculated

that this property was fundamental in nature. He argued that discrepancies between

predicted and actual behaviour were due to experimental measurement errors, or the

fact that certain elements were undiscovered [1]. These predictions were later proven to

be correct, with the discovery of the elements scandium, gallium, and germanium.

Figure 1.1: Mendeleev’s 1871 published periodic table. His first table was published in
1869, but the 1871 version predicted the existence of scandium, gallium and germanium,

as evidenced by the gaps present.

Obviously, the field has greatly changed since 1871 - although as of 2019 there is still no

officially recommended IUPAC periodic table [2]. However, chemistry, like all sciences,

has at its heart the notion of gaining insight from data. Furthermore, recent years have

seen an explosion within the field of ‘big data’, and chemistry has certainly benefited

1
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from this. This thesis seeks to make a dent within the field, in particular exploring the

use of relatively new mathematical techniques, known collectively as topological data

analysis, and their application to a series of chemical problems.

1.2 Big Data, Big Chemistry

There has been a global explosion of data, and as mentioned chemistry has not been

immune to this. Chemical databases have become a useful tool for chemists of all types,

allowing them to easily access information of all kinds [3]. Such databases are naturally

different chemical spaces, which can then be endowed with mathematical properties,

and studies can be performed. For example, when designing a new drug to target a

particular protein it is reasonable to begin the search with the molecules that are known

to act against this target, and use a notion of ‘nearness’, or similarity, to determine

which molecules should be tested. Thankfully, the advent of open chemical databases

has enabled researchers to more easily access this information through the internet.

Rather than provide an exhaustive list of these databases (which will no doubt be out

of date by the time this is being read), instead a brief introduction to the following list

of databases will be discussed:

• The Protein Data Bank

• The Cambridge Structural Database

• PubChem

• ChEMBL

• ZINC

• GDB

The Protein Data Bank (PDB) [4] is a database for large biomolecules, containing their

three-dimensional structures. Established in 1971, the PDB now contains approximately

150,000 depositions, often found using X-ray crystallography or NMR spectroscopy. The

PDB is often used to find starting structures for molecular dynamics simulations of

complex protein systems.

The Cambridge Structural Database (CSD) [5] is a database for small-molecule crystal

structures. In mid 2019, the CSD had its millionth deposition, since its establishment in

1965. The database has various uses in computational chemistry, for example screening

favourable interactions to determine if a potential new molecule has a similar crystal

structure.
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PubChem [6] is a large multi-purpose chemical database. It can be considered as a

series of smaller databases, with three of these considered primary: Compounds, Sub-

stances and BioAssay. Compounds contains approximately 100,000 pure chemical com-

pounds and their physical properties. Substances is a database of approximately 200,000

mixtures, complexes, and uncharacterised substances. BioAssay data is the output of

high-throughput screening programs, containing over 250,000 bioactivity endpoints. The

sheer variety and volume of PubChem data leads to its wide use in computational chem-

istry.

ChEMBL is a database of assay data [7]. ChEMBL is manually curated, containing

approximately two million compounds in 1,100,000 assays. ChEMBL is often used in

the development of screening libraries in lead identification, or as an input for molecule

generation algorithms.

The ZINC database [8] is a database of commercially available compounds. This is useful

for virtual screening, as it can be guaranteed that the desired compound can be pur-

chased from standard vendors. However, as all of ZINC is commercially available, it can

lead to issues with novelty when designing new therapeutics or agricultural compounds.

The GDB is a series of databases of small molecules. The GDB is a database created

by the group of Reymond at the University of Bern, Switzerland [9], and in contrast

to the other databases discussed, can be considered as a graph enumeration database.

For example, the GDB-17 contains all organic molecules up to 17 atoms of C, N, O

and F. This contains approximately 50,000,000 molecules. Such data sets are useful

when designing algorithms to efficiently search ‘chemical space’. Furthermore, data

sets such as the GDB are useful to be sampled. For example, the QM9 data set [10]

is a subset of the GDB-17 data set. This data set contains geometric, electronic and

thermodynamic properties of 134,000 molecules, which could be used for benchmarking

methods of predicting properties of small organic molecules.

1.3 Traditional Statistical Techniques and their Breakdown

The sheer size of chemical databases, coupled with the exponential increase in computing

power, has led to an explosion in the use of data science and statistical techniques within

chemistry. Broadly, a data science project can be split into three main themes:

1. Data Collection & Preparation

2. Model Building

3. Prediction
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In all three of these themes, statistical techniques are important. When preparing data,

statistical methods are used to impute missing values. Machine learning models are

all inherently statistical in nature, and therefore the construction of useful models re-

quires an understanding of their underlying statistical assumptions. Lastly, assessing

the performance of model prediction is often performed using statistical metrics and

heuristics.

However, focusing on the model building aspect in more detail, a problem becomes

apparent. In particular, construction of a useful and efficient model requires an inherent

understanding of the underlying structure of the data set - and a misunderstanding of

this can make constructed models worthless.

This problem is perhaps most famously illustrated with Anscombe’s quartet [11] or

the more recent ‘Datasaurus Dozen’ [12] These data sets are pathological, designed to

illustrate the flaws in simply calculating summary statistics without first visualising the

data. The Datasaurus Dozen can be seen in Figure 1.2. Various statistics are identical

with all of the data sets, even though it is clear that the data sets themselves vastly

differ. For example, the Pearson coefficient r is identical, and small (0.07). However, it

would be foolish to state there are no relationships between the dimensions of the data

sets.

For each data set within the dozen, different models would find use for a hypothetical

prediction. For some data sets, it would be possible to transform the data onto a straight

line. For others, a clustering algorithm may be more useful. Furthermore, some data

sets could be analysed using a combination of clustering and regression. However, this

insight would not be possible without first visualising the data.

However, visualising the data set is only half of the story. Most data is inherently

high dimensional, and the manifold hypothesis states that a high-dimensional data set

tends to lie in the vicinity of a low-dimensional manifold [13]. Understanding the data

therefore requires some sort of dimensionality reduction, or projection. This projection

will in general lead to a loss of information from the original data (although this is not

guaranteed). An example of this can be seen in Figure 1.3, where a torus is projected

onto two dimensions such that it looks like an annulus.

The problems of projection and visualisation directly oppose each other. On the one

hand, to create useful data models, the underlying structure of the data set should

be understood, and visualisation aids this. On the other, visualisation of high dimen-

sional data can lead to incorrect conclusions being made regarding the data’s structures.

Clearly, there is a need to develop methods that work in high dimension, that assist in the

elucidation of data structure information. Recently, the mathematical field of topology

has found use in this problem.
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Figure 1.2: The ‘Datasaurus Dozen’ series of data sets. σx, σy, x̄, ȳ, and the Pearson
coefficient r are identical (to two decimal places) between all of the data sets, although

they clearly have markedly different relationships.

1.4 Topology: A Brief Introduction

At its heart, topology is about what it means to be ‘connected’ - in a mathematical

sense. Historically, topology has always been viewed as a particularly pure subject, with

very few direct applications. Although one of the first published papers in the field was
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Figure 1.3: Illustration of the projection process applied to a torus. The torus (left) is
projected to look like an annulus (right). This leads to a loss of information regarding

the topology of the original object.

Euler’s 1736 work on the Königsberg seven bridges problem, toppology has since evolved

to be less of an applied mathematical field.

Topology studies the properties of (often geometric) objects that do not change through

continuous deformations. Depending on which classes of deformations are allowed, dif-

ferent topological equivalences are defined. The most famous of topological equivalences

is the ‘homeomorphism’:

A homeomorphism between two topological spaces X and Y is a continuous

function that maps each point in X to a distinct point in Y (it is injective),

the entirety of Y is mapped onto (it is surjective), and whose inverse is also

continuous. If such a function exists, the two spaces X and Y are said to be

homeomorphic.

The homeomorphism is a flexible equivalence relation. Within a homeomorphism, all

objects are constructed of the world’s most malleable dough - and the only things that

are disallowed are gluing and tearing. It should be obvious that all convex polyhedra

(such as the Platonic solids) are homeomorphic to the sphere S2. Another famous

pair of homeomorphic spaces are the torus and coffee cup - the handle of the cup is

the ring of the torus. However, some spaces have less intuitive homeomorphisms, for

example it can be shown that a homeomorphism exists between Sn with a single point

removed and Rn. For example, S1/{∗} is homeomorphic to R through the trigonometric

tangent function. Homeomorphic spaces have identical topological invariants. There are

innumerate topological invariants, but a few important ones are listed below:

• Cardinality: The number of elements of a space

• Betti numbers βn: The number of n-dimensional holes in a space

– Related to βn is the Euler number χ, the alternating sum of Betti numbers.

For convex polyhedra, this is often written as χ = nvertices−nedges+nfaces = 2
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• Path-connected: A space is path connected if any two points can be connected by

a path

Discussing objects through their topology rather than geometric properties is actually

an everyday occurence. A common set of examples are maps of rail networks, such as

the London Underground or Paris Metro. Here, the relative distance between stations

is not relevant - if you want to use the rail network you simply want to know how

to get to your destination. This is a topological property - it is how the network is

connected. This work uses a modern branch of topology known as topological data

analysis to understand how various chemical objects are connected: chemical shape

space, conformational spaces, and water networks.

1.4.1 Topological Data Analysis

Chapter 2 contains the theory and mathematics behind topological data analysis. Here a

general introduction regarding motivation is presented.

Before the topology of data can be discussed, it is important to first comment on the

data collection process. Figure 1.4 shows an idealised cartoon of data collection. In this

example, the data being sampled exists on a two-dimensional manifold, with a single

hole. A series of data points is collected, the lower half of the image. From the sampled

Figure 1.4: A cartoon illustrating the data collection process. Individual points are
sampled from some high dimensional topological structure.

points, is it possible to understand the structure of the original data set? For example,

could one conclude that there is a hole in the data? If it were possible to sample an



8 Chapter 1 Introduction

infinite number of points, the answer is yes - an infinite sample of points would recreate

the topology of the original manifold exactly, provided the dimensionality was high

enough. The sampling of an infinite number of points is clearly impossible. However,

without an infinite number of points, there is no way to say for certain what the original

data structure was.

In fact, the situation is even more bleak. Without the limit of infinite sampling, there

is a potentially infinite number of points between any two sampled points, and each

sampled point is isolated. To be able to discuss the presence of a hole, it is necessary to

create some higher structure on the data set, to join it up in some way. In particular,

the joining up method shouldn’t fill in the hole, but give it the correct boundary.

Topological data analysis deals with the question: how can the data be joined up, and

what can be learned from it? The two main threads of topological data analysis differ

in their methods of joining the data. Persistent homology [14] constructs a series of

topological structures on the data set, and seeks to understand which topological features

are common. Mapper [15] creates a single topological space, by clustering various local

sets of data points.

1.5 Topology and Chemistry

Ideas in topology have found use in chemistry through history. For example, Hückel

theory, used to calculate the molecular orbitals of π systems, reduces to calculating

adjacency matrices and other graph theory properties - and graph theory is certainly a

cousin of topology, even if it is its own rich area of study.

Using this definition, any chemical descriptor derived from a skeletal formula, or molec-

ular graph, can be described as a topological descriptor of the molecule. However, when

referring to a topological descriptor, chemical informaticians often mean properties such

as the Wiener index. Given a molecule, and the graph distance metric (i.e. the dis-

tance dij between two atoms is the number of bonds between them), the Wiener index

is defined as [16]:

W =
∑
i<j

dij (1.1)

The Wiener index, although simple, correlates well with various physical properties

such as alkane boiling points [17], and their van der Waals surface area [18]. However,

the Weiner index is fairly degenerate, with different molecules having identical values.

Furthermore, it does not take into account properties such as functional groups.

There are many other uses of topology in chemistry, outside of informatics. For example,

Flapan uses three tiers of chirality [19]

1. Geometric chirality: No rigid motion takes a molecule to its own mirror image
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2. Chemical chirality: A molecule cannot transform itself (through conformational

changes) to its own mirror image at room temperature

3. Topological chirality: A molecule cannot be transformed into its mirror image

assuming complete flexibility

A molecule which is chemically chiral may not be topologically chiral. However, topo-

logically chiral molecules are chemically chiral. This hierarchy is particularly useful

when studying molecules such as Möbius ladders [20], or those containing non-planar

molecular graphs (where planar is used in the graph-theoretical sense) [21].

The language of topology is also useful when studying proteins and other macromolecules.

For example, some proteins contain knots of various complexity. These knots have been

used to explain structural stability, in that active sites become slightly more favourable

[22]. Within polymers in general, circuit topology is used to explain its intra-molecular

contacts, which has implications for folding kinetics [23].

The topology of potential energy surfaces has also been widely studied. Peterson et al

relate the number of critical points of a potential energy surface to its global topology

through the relationship between Betti numbers and Euler characteristic [24]. Further-

more, work such as those by Karplus and Becker [25], and Doye [26], attempting to

transform potential energy surfaces into network representations of transitions between

basin states can be considered topological - they reduce the potential energy surface into

a discussion about how it is connected.

However, the regularity with which topology is mentioned in chemistry has caused con-

cern, as written in a Nature editorial by Michelle Francl [27]. For example, some of the

instances within which topology is mentioned are actually geometrical properties. These

properties include the coiling of DNA, which does not change the topology of DNA in

the mathematical sense [28]. Although sometimes a little too pessimistic - Francl states

that potential energy surfaces all have the same topology as a piece of paper, which can

be seen to be untrue from a hypothetical molecule with a single free torsion angle - it

is certainly important to ensure that chemists believe they are in the correct branch

of mathematics. In particular, one does not want to be searching topological literature

when actually the work of interest is instead one of differential geometry. This work

endeavours to ensure that all of its uses of topology would be recognised as such by a

mathematician.

1.6 Structure of Thesis

The general aim of this work is to detail some of the uses of topological data analysis to

chemical problems.
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Chapter 2 details the main theory of topological data analysis. Beginning with persistent

homology, the chapter introduces the notion of simplicial complexes, which can be used

to generate topological structures on sampled data points. The methods of linear algebra

are then used to define homology groups, which allow the calculation of holes in these

topological structures. Then, the ‘persistent’ is put into persistent homology, by showing

that a nested sequence of topological structures enable the elucidation of holes in a

data set, as well as showing their significance. To allow the calculation of statistics on

persistence, various representations of persistent homology are introduced, as well as

metrics defined, allowing the persistent homology of different data sets to be calculated.

Leaving persistence behind, the mapper algorithm is then presented as an alternative

topological data analysis technique. The mapper algorithm is shown to be able to

generate a simplicial complex representation of a data set, but requires a wide range of

parameters.

The main body of this work is split into three general sections: using topological data

analysis to generate a space comparing molecular shapes, the application of topological

techniques to understand the underlying conformational space (and energy landscape)

of molecules, and finally the use of persistent homology to understand the structure of

simulated water networks.

Chapter 3 introduces the notion of chemical space in general, as well as describing how

this space changes depending on the description of the molecules used. The mapper al-

gorithm is used to understand a general descriptor space. Insights from mapper are then

used to improve solubility modelling. Persistent homology is then used as a descriptor

for chemical shape, and then used to create a series of metric spaces for molecular shape.

These metric spaces are then analysed through dimensionality reduction, and combined

using data science techniques. The effect of different variants of persistent homology

on the resulting metric space is analysed, as well as the use of persistent homology to

create metric spaces dependent on an ensemble of molecular conformation, rather than

a single low energy conformer.

Moving onto a problem which is more fundamental, Chapter 4 utilises persistent homol-

ogy in the characterisation of molecular conformational spaces. Firstly, the notion of a

conformer and conformational space is formalised, before two different representations

of a conformational space, for the same conformer set, are detailed. Persistent homol-

ogy is shown to be able to study both the conformational space and energy landscape

itself, by the use of different functions on simplicial complexes. Through the use of three

examples, alanine dipeptide, pentane, and cyclooctane, persistent homology is shown to

be able to compare the two different representations, and verify that the expected con-

formational space can be found. The rigid geometry hypothesis is tested, showing that

the conformational space is indeed independent of bond stretching and bending. With a

combination of data science techniques, extrema on energy landscapes are located, and

shown to correspond to those that are expected.
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The use of persistent homology to analyse water networks is the focus of Chapter 5.

Firstly, persistence is shown to be a well-behaved descriptor, that varies smoothly over

time. A new representation of persistent homology is created, which is described as

‘size-agnostic’. This descriptor is used to compare simulated water networks of different

molecular mechanics models, sizes, and temperatures, using machine learning techniques.

Furthermore, the descriptor is analysed through dimensionality reduction, allowing the

differences of various simulations to be analysed in terms of their persistent homology.

Some of the work discussed in this thesis has been published in peer-reviewed articles

or on preprint servers. Chapter 3 discusses some work previously published in [29],

although it extends this work in places. Chapter 4 has been partially published in [30],

and the published article describes the mathematics in more detail. Finally, results from

Chapter 5 can also be found in [31].





Chapter 2

Theory of Topological Data

Analysis

This chapter is designed to present the mathematical preliminaries of topological data

analysis to a chemist. Therefore, it does not claim to be an exhaustive description, and

in particular formal proofs are eschewed. The chapter follows a series of arguments,

aiming to convince the reader that topological data analysis is on sound logical footing.

The chapter first introduces the idea of a simplicial complexes, combinatorial building

blocks of topological spaces. Algebra on these complexes is then defined, leading to the

notion of homology groups, a mathematical definition of holes. This is then extended

to data, through persistent homology. The discussion of persistent homology is then

continued to different representations of persistence, so all of the mathematical topics

of persistence used in this work are found in one location.

The chapter then moves onto the mapper algorithm. Explained via examples, the map-

per algorithm is shown to create single network-like summaries of data sets. The different

parameters for the mapper algorithm are discussed, demonstrating the difficulty in cre-

ating useful mapper networks. Finally, the chapter closes with discussions regarding

previous uses of topological data analysis in chemistry.

There are a range of texts that can be used for a more complete treatment of the concepts

within this chapter. With regard to homology theory, the reader is directed to Hatcher

[32], a standard reference book. A treatment of persistence can be found in [33], and [34]

contains a series of algorithms for its computation. A perspective of algebraic topology,

with reference to its use in biomolecular systems, can be found in [35]. A more recent

introduction to persistent homology, designed for neuroscientists, can be found in [36].

13
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2.1 Persistent Homology

2.1.1 Simplices and Simplicial Complexes

Within algebraic topology, the notion of a k-simplex is fundamental, as they can be

considered as combinatorial ‘building blocks’ of topological spaces. A k-simplex, denoted

σ, is the smallest convex set in a given Euclidean space Rd that contains k + 1 vertices

{vi}, i ∈ Z, 0 ≤ i ≤ k, where each pair of vertices is linearly independent. These

have familiar geometrical interpretations - a 0-simplex is a point, a 1-simplex a line, a

2-simplex a triangle, and a 3-simplex a tetrahedron. When it is necessary to keep track

of individual vertices, a k-simplex will be represented as [v0, v1, . . . , vk−1, vk], and the

removal of the jth vertex is denoted as [v0, v1, . . . , v̂j , . . . , vk−1, vk]. The k − 1-simplex

created by removal of a vertex from a k-simplex will be referred to as a face of the

k-simplex.

An abstract simplicial complex K can be considered a set of simplices, where it is required

that any face of σ in K is also in K. In other words, there are no missing ‘building

blocks’ in K. The geometric realisation of K is the embedding of K in some Rn, where

it is also required that the intersection between any two simplices {σ, σ′} ∈ K is either

empty or a shared face of both σ and σ′. The geometric realisation therefore differs

from the abstract simplicial complex by restricting the ‘embedding’ of simplex building

blocks, where the intersection restriction is trivial for the abstract simplicial complex.

In general, the geometric realisation of an abstract simplicial complex will be used, and

this will be referred to as a simplicial complex. Figure 2.1 shows two sets of simplices.

Figure 2.1(a) is a valid simplicial complex. On the other hand, Figure 2.1(b) is not

a valid geometrical representation of a simplicial complex - the left structure has an

intersection which is not in a shared simplex face. Furthermore, the right structure is

missing a 0-simplex, therefore it is not even a valid abstract simplicial complex.

(a) (b)

Figure 2.1: A simplicial complex (a) and a set of simplices that do not form a [geo-
metric realisation of a] simplicial complex (b)

Simplicial complexes are the general combinatorial objects that will be discussed in this

chapter. However, before the study of holes in simplicial complexes can be formalised,

it is first necessary to introduce methods of linear algebra. For the reader less equipped
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with such methods, various textbooks are available, such as [37]. Furthermore, obscure

terms are formally defined in the text.

2.1.2 The Boundary Map

To perform linear algebra on the simplices of K, the notion of a general vector space is

required.

A vector space V over a field F is a set of elements {α, β, γ, . . .} ∈ V along

with the following operations:

1. A vector addition, satisfying:

(a) α+ β = β + α (Associativity)

(b) α+ (β + γ) = (α+ β) + γ (Commutativity)

(c) There exists an element 0 ∈ V such that α + 0 = α (Existence of

an identity)

(d) For every α ∈ V there exists an element α′ ∈ V such that α+α′ = 0

(Existence of an inverse)

2. For c ∈ F and α ∈ V, the scalar product cα ∈ V is defined and satisfies:

(a) c(α+ β) = cα+ cβ (Distributivity with respect to vector addition)

(b) (a+ b)α = aα+ bα (Distributivity with respect to field addition)

(c) (ab)α = a(bα) (Compatibility with field multiplication)

(d) 1α = α (The multiplicative identity in F is the identity of scalar

multiplication)

In textbooks, rather than the creation of vector spaces over fields, the objects used for

homological algebra are modules over a ring R, often the ring of integers Z. However,

this ring is not suitable for computation (it is infinite), and the use of a ring leads to

other complications such as torsion within algebraic topology. Further details regarding

the differences between fields and rings can be seen in Appendix C.

Computation therefore uses the notion of a vector space over a finite field F. This is

most commonly the field Zp ≡ Z/pZ where p is prime. In this work, the field chosen is

Z2 = {0, 1}, unless otherwise stated. This choice allows computation to become more

efficient, and ensures that simplicial orientation does not need to be defined (within Z2,

−1 and 1 are equivalent). Furthermore, all illustrations and discussions in this chapter

will use Z2 as the field of coefficients. Physical scientists are often familiar with the

notion of vector spaces over the field R.

Alongside the field of coefficients, the elements {α, β, . . .} must be determined. The

elements are chosen to be the set of p-simplices, and the resulting vector space will be

denoted Cp(K). Elements of Cp(K) are referred to as p-chains.
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Consider the simplicial complex in Figure 2.2. Formally, this is the complex K =

{[v0], [v1], [v2], [v0, v1], [v1, v2]}. C0(K) is the vector space generated by the vertices

of K: {0, [v0], [v1], [v2], [v0] + [v1], [v0] + [v2], [v1] + [v2], [v0] + [v1] + [v2]}. Similarly

C1(K) = {0, [v0, v1], [v1, v2], [v0, v1] + [v1, v2]}. As there are no higher order simplices

in K, Cp(K) = {0} for p > 1. From this example, it should be clear that elements of

Cp(K) can be identified as taking a (potentially zero) selection of p-simplices from K in

the case of coefficients in Z2.

v0 v1 v2

Figure 2.2: An example simplicial complex with labelled vertices

Next, a linear map between vector spaces of consecutive dimension Cp(K) → Cp−1(K)

is defined. This map is the algebraic equivalent of the geometric notion of boundary.

The boundary map is defined on individual simplices:

∂pσ =

p∑
i=0

[v0, . . . , v̂i, . . . , vp] (2.1)

with an example seen in Figure 2.3. Here ∂1([v0, v1]) = [v0] + [v1]. Through linearity, it

v0 v1

∂ =

v0 v1

Figure 2.3: A cartoon illustrating the operation of the boundary map on a 1-simplex.
A 1-simplex is mapped to its two endpoint vertices.

is possible to define the effect of the boundary map on p-chains, and this is illustrated

in Figure 2.4. In this case ∂1([v0, v1] + [v0, v2]) = [v0] + [v1] + [v0] + [v2] However, in Z2

1 + 1 = 0, therefore ∂1([v0, v1] + [v0, v2]) = [v1] + [v2]. In a similar way, for any simplex

v0 v1

∂ =

v2

v1

v2

Figure 2.4: A cartoon illustrating the operation of the boundary map on a 1-chain.
The boundary coincides with geometric intuition.

K, the boundary map ∂p can be calculated for any element of Cp(K).

The boundary operator takes elements of Cp(K) to Cp−1(K). It might be natural to

ask: what does successive operation of the boundary operator achieve? It is a standard
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exercise to show that ∂p−1 ◦ ∂p = 0, illustrated for the field Z2 in Appendix E, with the

more general case of the ring Z in Hatcher [32].

2.1.3 Homology Groups

Now the boundary map has been introduced, it is possible to discuss how it can be used

to detect holes in simplicial complexes. In particular, subclasses of p-chains based on the

result of the application of the boundary map are defined. The first subclass, p-cycles,

are defined as:

Zp = ker ∂p = {σ ∈ Cp | ∂(σ) = 0}

i.e. the set of p-chains which are sent to 0 by the boundary map. The second class,

p-boundaries, are defined as:

Bp = im ∂p+1 = {∂(τ) | τ ∈ Cp+1(K)}

the set of p-chains which are the result of applying the boundary map to p + 1-chains.

From the relation ∂p−1 ◦ ∂p = 0, it is clear that every element of Bp is an element of

v0 v1

v3 v2

K

v0 v1

v3

σ ∈ C1(K)

v1

v3

τ ∈ C2(K)

v1

v3 v2

σ′ ∈ C1(K)

v0 v1

v3 v2

σ′′ ∈ C1(K)

v0

Figure 2.5: A simplicial complex K, and a series of subcomplexes {σ, τ, σ′, σ′′} ⊆ K
Shaded areas represent filled simplices, whereas a white background signifies that it is
unfilled - K contains only one 2-simplex. The operation of the boundary map on the

p-chains present in K allows homology groups to be defined.

Zp. The vector spaces Bp and Zp contain all of the necessary information to compute

the holes in K. This is perhaps best illustrated by example (Figure 2.5). Begin with

the simplicial complex K. This is clearly a simplicial complex with a hole. Consider the

chain σ. This is sent to zero by the boundary map. However, σ does not enclose a hole

- it is actually the result of the operation of ∂2 on τ , a boundary of a 2-chain.
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In contrast, the chain σ′ is also in the kernel of ∂1, and it is not an element of the image

of ∂2. This is because it encloses a hole, and is also true of σ′′, which encloses the same

hole. Algebraically, this is dealt with by noting that σ′′ − σ′ = σ = ∂2(τ). This implies

the quotient vector space ker ∂1
im ∂2

contains the same class representing σ′′ and σ′.

In general, this quotient is the vector space generated by the p-cycles of K that are not

boundaries. The following quantity:

Hp(K) =
Zp(K)

Bp(K)
(2.2)

is defined, the pth homology group of K.

2.1.4 Betti Numbers

The homology groups themselves are fairly unwieldy objects, but can be easily related

to geometric quantities. In particular, the pth Betti number βp:

βp(K) = dimFHp(K) (2.3)

carry topological information, counting p-dimensional holes. The notation can be de-

scribed as the amoount of copies of F needed to describe Hp(K). Betti numbers of small

degree have obvious geometrical interpretations:

1. β0(K) is the number of connected components of K

2. β1(K) is the number of holes bounded by a loop in K, such as those found in a

ring

3. β2(K) is the number of holes bounded by a surface in K, such as those found in a

sphere

With some simple spaces and their associated Betti numbers (up to second degree)

described in Table 2.1. Other spaces and their Betti numbers are introduced as needed.

Space β0 β1 β2

Rn 1 0 0
S1 1 1 0
S2 1 0 1
T 2 1 2 1
Borromean rings 3 3 0

Table 2.1: Some topological spaces and their associated Betti numbers
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An example calculation of the Betti numbers of the Klein Bottle and real projective plane

can be found in Appendix D. These examples begin with a complex homeomorphic to

the space of interest, and work through the process of calculating the homology groups

themselves. Furthermore, they also illustrate the importance of the choice of F, with

the resulting Betti numbers shown to be dependent on this choice. This result is later

shown to be useful when classifying spaces through homology.

2.1.5 Applying Homology to Data

Having discussed the calculation of homology groups and Betti numbers, it is of interest

as to how we can apply these methods to data. A data set of m measurements of

nfeatures variables can be considered to be m points in some subset of Rnfeatures . Of

interest here is therefore: what structure can be added to these isolated points such that

a useful topology is found? Clearly the answer here depends on the exact meaning of

‘useful’ - but a possible construction has already been discussed: the simplicial complex.

In general, the sampled data points can be considered as vertices, and relationships

between k+ 1-tuples of points determine the presence of k-simplices. This is all perhaps

best understood via example.

2.1.5.1 The Vietoris-Rips Complex

The Vietoris-Rips (Rips) complex V Rr(S) was originally developed by Leopold Vietoris

as a means of calculating the homology of metric spaces [38]. To construct the Rips

complex on a finite subset of points S, the following procedure is used:

1. Define a parameter r

2. For all subsets s ⊆ S

3. If diam s ≤ 2r, include the simplex with vertices in s

Geometrically, this is equivalent to creating balls of radius r around the points in s,

and including the simplex if there is a non-zero intersection between all pairs of balls.

The Rips complex is completely defined by its 1-skeleton, as it only depends on pairwise

relationships. It is clear why the Rips complex is commonly used, as it can be calculated

directly from a distance matrix, and there are various algorithms for its efficient com-

putation [39, 40]. This simplicity has topological consequences. Most importantly, the

Rips complex does not necessarily have the same topology as the union of balls used in

its creation (the nerve theorem [32]). An example Rips complex can be seen in Figure

2.6, for a 2D point cloud. The Betti numbers for this complex are β0 = 2, β1 = 1, and

βp = 0 for p ≥ 2.
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r

Figure 2.6: An example Vietoris-Rips complex constructed on a 2D point cloud.
Yellow and green are used to denote 2- and 3-simplices respectively. Circles are used to
illustrate the r-balls from which the Vietoris-Rips complex is constructed, and do not

actually appear in the complex.

2.1.6 The Choice of r

The Vietoris Rips complex is highly dependent on the value of r. At r = 0, every point

is isolated, and β0 is the number of points in the set. In contrast, lim
r→∞

β0 = 1, and

lim
r→∞

βn = 0 for n ≥ 1. Therefore, a natural question would be: what value of r best

recreates the topology of the point cloud?

Again, discussion is motivated by example. In this case, the point cloud of interest is

the set of vertices of a regular hexagon, of nearest neighbour distance R. A series of

Rips complexes for this data set created for r ∈ {0, r,
√

3R} can be seen in Figure 2.7.

The value of r that leads to the Rips complex recreating the topology of the hexagon is

r = R. However, if there was a small amount of noise in the sampling procedure, the

optimal value of r would likely change. Furthermore, in the general case, the homology

groups of the underlying space is unknown - we are trying to estimate them through

the simplicial complex. However, this notion of altering the parameter r can be used to

define persistent homology.

2.1.7 Persistent Homology

For persistent homology, a nested sequence of simplicial complexes is required:

K0 ↪→ K1 ↪→ . . . ↪→ KN (2.4)

where K0 ⊆ K1 ⊆ K2 etc., and ↪→ denotes an inclusion map. It is clear that this

property is satisfied by a sequence of Vietoris-Rips complexes with increasing r.
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r = 0

β0 = 6

βp = 0 for p ≥ 1

r = R

β0 = 1

β1 = 1

βp = 0 for p ≥ 2

r =
√

3R

β0 = 1

β1 = 0

β2 = 1

βp = 0 for p ≥ 3

Figure 2.7: A series of Rips complexes constructed upon the point cloud of the vertices
of a regular hexagon, with a nearest neighbour distance of R. Betti numbers are also
seen. The second degree feature seen at r =

√
3R is a consequence of the Rips complex

not satisfying the nerve theorem.

Let 0 ≤ i ≤ j ≤ N . The inclusion maps of Equation 2.4 lead to induced maps in

homology:

f i,jp : Hp(Ki)→ Hp(Kj) (2.5)

The p of f i,jp is now made implicit for clarity. Each degree of homology is studied

independently. Three classes within homology groups are defined based on these f i,j :

• Classes α that are born at i. These are classes where α 6= 0 and α 6∈ im f i−1,i

• Classes β that persist from i→ j. These are classes where f i,j(β) 6∈ im f i−1,j

– This implies that β also persists from i→ i+ ε if i+ ε < j

• Classes γ that die at j. These are classes where γ ∈ ker f j−1,j or f j−1,j(γ) =

f j−1,j(γ′) and γ′ was born before γ

– The first requirement defines classes that are ‘filled in’ at j, whereas the

second defines classes that merge with older classes. The older class is given
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preference to ensure that a suitable basis can always be found for the merged

class.

– There is no certainty that all classes will die. For example, the limiting

behaviour of the Rips complex as r →∞ is to have one connected component,

therefore a zeroth degree homology class does not die. Such a class may be

said to live to infinity.

– The number of points that live to infinity of degree p is referred to as the pth

persistent Betti number. This work will also use the term ‘persistent’ to refer

to features that live far longer than others in persistent homology.

Given a sequence of nested simplicial complexes parameterised by some δ (often referred

to as time), the persistent homology procedure returns a set of homological classes. Each

homology class can be identified with a birth and death time (δb and δd respectively).

Features that are born and die soon after are often considered to be topological noise,

whereas classes that persist for an extended period are considered to be true features

of the underlying structure. However such definitions should be used as guidance only.

A video showcasing the calculation of the persistent homology of the Rips complex on

the vertices of a regular hexagon can be found at [41], although it is important that the

persistence diagram representation is first understood to make best use of the video.

2.1.8 Persistence Diagrams and Barcodes

The most common methods for representing the information given through the persistent

homology procedure are known as [persistence] diagrams and barcodes. The persistence

diagram is a plot of δb vs δd, whereas the barcode is a series of lines, one for each feature,

stretching from δb to δd.

Figure 2.8(a) contains a data set sampled from two circles, centred at (0, 0) and (1, 1)

with radius 1, with normally distributed random noise. Persistent homology was calcu-

lated for the sequence of Rips complexes with the standard Euclidean (l2) metric, and

the corresponding persistence diagram and barcode can be seen in Figures 2.8(b) and

2.8(c) respectively. Although the persistence diagram and barcode contain the same

information, related persistent homology concepts are easier to understand depending

on representation. For example, it is easier to extract the number of features that per-

sist between δ and δ′ from the barcode, as this is simply the number of lines that pass

through both ends of the interval. In contrast, relationships between δb and δd are more

obvious in the diagram representation, as well as persistent homology metrics being

easier to define.

In this work, the persistence diagram representation is preferred to the barcode repre-

sentation. Zeroth, first, and second degree homological features are coloured black, red,

and blue respectively.



Chapter 2 Theory of Topological Data Analysis 23

(a) Intersecting circle data

(b) Persistence Diagram

(c) Persistence Barcode

Figure 2.8: A (synthetic) data set of two intersecting circles with noise, and the
data set’s corresponding Rips persistence diagram and barcode. Black and red features

correspond to zeroth and first degree homology respectively.
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2.1.9 Metrics on Persistence Diagrams

A persistence diagram can be considered to be a multiset of points ∈ R2, where each

point is also given a multiplicity. By giving each point a multiplicity, the persistence

diagram is able to handle two persistent features with identical birth and death times

This enables the definition of metrics on the space of persistence diagrams, in particular

the p-Wasserstein metrics:

dWp(PD1, PD2) = inf
φ:PD1→PD2

 ∑
x∈PD1

||x− φ(x)||p

 1
p

(2.6)

Where φ is a bijection (i.e. a matching between every unique point in PD1 to a unique

point in PD2). The p-Wasserstein metric can therefore be considered as finding the

optimal matching between persistence diagrams. However, this matching contains an

important caveat. In particular, as φ is a bijection, the two persistence diagrams must

contain the same number of points (including multiplicities) - which is not the case in

general.

This issue is resolved by the presence of the diagonal, which can be considered to be

the multiset of points that are born and die at the same time. In principle, there can

be an infinite number of points with this property. An infinite degeneracy is therefore

associated to each point on the diagonal (δ, δ). This therefore allows bijections to be

defined between persistence diagrams with different numbers of features. Furthermore,

this ensures that points in a persistence diagram do not appear and disappear out of

nowhere. Instead, they are considered to come from the diagonal.

In practice, this increases the number of points that need to be computed, and the

number of bijections that need to be considered. Furthermore, this definition can handle

points that live to infinity, and lead to an infinite distance if the two persistence diagrams

have different persistent Betti numbers.

The bottleneck metric can be considered as the limit of p-Wasserstein distances as p→
∞, and can be written as:

dB(PD1, PD2) = inf
φ:PD1→PD2

[
sup

x∈PD1

||x− φ(x)||∞
]

(2.7)

The bottleneck metric is computationally cheaper than the p-Wasserstein metrics, and in

particular the stability theorem for persistence diagrams utilises the bottleneck metric.

The stability theorem ensures that slight changes for persistent homology input only

causes slight changes in the resulting output [42].
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2.1.10 Average Persistence

In principle, the process of data collection is inherently noisy. Therefore, it is desirable

to be able to perform statistics on results, persistent homology included. For example, if

persistent homology is to be used to study equilibrium properties of chemical simulation,

it is important to be able to in some sense ‘average’ the persistent homology, and make

conclusions from the average behaviour. This will ensure small deviations are removed

from the persistence. Given a set of persistence diagrams PDi, a hypothetical average

persistence diagram PD could minimise the following:∑
i

dB(PD,PDi) (2.8)

i.e. the average persistence diagram is the one closest (in the bottleneck metric sense)

to the individual persistence diagrams. However, such a definition is not unique. This

effect is illustrated in Figure 2.9, where there are two potential choices for the average

persistence diagram that minimise Equation 2.8.

Figure 2.9: An example where the mean defined in 2.8 is not unique. For two per-
sistence diagrams (blue and red) the green and black sets are both equidistant. Wavy
lines are used to indicate that the points are not close to the diagonal, and therefore

bottleneck distance matching will not send any points to the diagonal.

As diagrams and barcodes both lead to non-unique means, other persistence represen-

tations, more amenable to statistics, have been developed. These are designed to have

one or more of the following properties:

• Averaging is possible and unique

• Representation is a metric space, allowing computation of distances

• Representation is an inner-product space, allowing computation of scalar products

• Space allows vectorisation, for use in machine learning techniques
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• Space allows computation of real-valued useful characteristics of initial persistent

homology

In this work, persistence landscapes [43] and persistence images [44] are discussed. These

representations fulfill all of the above criteria, and are used to accomplish different tasks.

Here, a brief introduction to their computation is presented. Other representations

include persistence entropy [45, 46, 47] and persistence vineyards [48].

2.1.11 Persistence Landscapes

The persistence landscape was first defined by Bubenik in [43]. The persistence diagram

is transformed into a sequence of nested functions, and inherited properties are used to

define means and distances.

For a given degree homology, each point in the persistence diagram (δb, δd) is transformed

to a piecewise linear function:

f(δb,δd)(x) =


0 x 6∈ (δb, δd)

x− δb x ∈
(
δb,

δb+δd
2

]
−x+ δd x ∈

(
δb+δd

2 , δd

) (2.9)

This can be considered to be a rotation such that the diagonal becomes the x-axis,

before lines of gradient 1 are drawn to and from each persistent point. The persistence

landscape, denoted Λ is then the sequence of functions λk(x) where λk(x) is the kth

largest value of f(δb,δd)(x) for all persistent points. To ensure that algebra can be defined

between two different persistence landscapes, λk = 0 if the kth largest value does not

exist. The persistence landscape for the first degree homology of the data set found

in Figure 2.8(a) can be seen in Figure 2.10. As the persistence landscape is a set of

functions, several useful properties are inherited. The mean persistence diagram Λ can

be defined on a set of landscapes Λi by finding the mean of the individual landscape

functions λik.

λk =
1

N

N∑
i=1

λik(x) (2.10)

with Λ being the set of λk. Furthermore, distances between landscapes can be defined

using standard lp distances:

dp(Λ1,Λ2) =

[ ∞∑
k=1

∫
|λ1
k(x)− λ2

k(x)|p dx

] 1
p

(2.11)

A useful property of persistence landscapes, proven in [49], is that any real, linear

functional, when applied to a persistence landscape results in a real-valued random
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Figure 2.10: The first degree persistence landscape for the data found in Figure 2.8(a).

variable that is approximately normally distributed.

Y =

∫
fΛ dx

√
n(Ȳn − E[Y ])

d−→ N(0,Var(Y ))

(2.12)

Where
d−→ is used to denote a limit in distribution. Often, this functional is set to 1:

Y =
∞∑
k=1

∫
λk(x) dx ≡ ||Λ||1 (2.13)

Persistence landscape computation can be performed using two methods, both detailed

in [49]. The first is a rigorous calculation of persistence landscapes using its critical

points. The second calculates persistence landscapes over a grid. Although non-exact,

the second method is considerably faster, and allows for easier computation of landscape

statistics. However, care must be taken when comparing landscapes, as operations need

to be performed to ensure the grids match.

2.1.12 Persistence Images

In contrast to persistence landscapes, which transforms a diagram into a set of functions,

the persistence image transforms a diagram into a matrix in Rn×n. This representation

can be represented as a single-channel image, as an n × n grid of pixels with intensity

in R. Such objects are well-suited for machine learning techniques. For example, the
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original implementation of persistence images [44] constructed a classifier on the well-

known MNIST handwritten letter/number data set [50].

Similarly to the persistence landscape, a persistence image is calculated for each degree

of homology. Firstly, points are transformed from a birth-death representation (δb, δd)

to birth-persistence coordinates (δb, δp ≡ δd − δb). Each point is then represented by a

Gaussian function, centred at (δb, δp):

gi(x, y) =
1

2πσ2
e−[(x−δb)2+(y−δp)2]/2σ2

(2.14)

Where i has been introduced as an index to iterate over features in the persistence

diagram. The various functions gi are transformed into a single surface:

ρ(x, y) =
∑
i

f(x, y)gi(x, y) (2.15)

Where the weight function f(x, y) is necessary to account for the diagonal, with prop-

erties discussed later. ρ(x, y) is transformed into the persistence image by discretising

R2 into pixels, and integrating ρ(x, y):

Iρ(p) =

∫∫
p
ρ(x, y) dy dx (2.16)

The presence of the weight function may at first seem unnecessary, but becomes clear

when the presence of the diagonal is considered. As previously discussed, each point of

the diagonal (δ, δ) has infinite multiplicity. If this was not appropriately dealt with, the

pixels of the persistence image containing the x-axis would have a value of infinity. The

weight function is therefore defined to remove this by being equal to 0 at the x-axis.

The choice of weight function is a parameter for the user. In this work, the weight

function is defined as:

f(x, y) =
y

ymax
(2.17)

Where ymax is the maximum value of the filtration parameter used in the original per-

sistence calculation. This definition fulfils the general intuition of ‘persistent features

that live for a while are topologically relevant, whereas features which are born and die

quickly are topological noise’. However, when using this definition, care must be taken

when comparing persistence images that ymax is the same, or the weight function would

differ. The first degree persistence image for the data of Figure 2.8(a) can be found in

Figure 2.11.

2.1.12.1 Comparison of Landscapes and Images

Both landscapes and images satisfy the ‘useful properties’ of a persistence represen-

tation as defined in Chapter 2.1.10. However, they both have different strengths and
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Figure 2.11: The first degree persistence image for the data found in Figure 2.8(a),
coloured by image intensity. The vast majority of the image contains no features.

weaknesses.

Firstly, the transformation from a persistence diagram to its persistence landscapes is

entirely reversible. The same is not true for the persistence image. Furthermore, the

central limit theorem defined in Equation 2.12 provides a wide variety of quantities

that could be used in the comparison of landscapes, alongside estimates of statistical

significance.

On the other hand, the weighting function f(x, y) of an image allows control of which

points are seen as significant. For example a sigmoidal function would treat all points

on its plateau equally. However, this flexibility does lead to the added complication that

comparison of images is only reasonable if they were constructed in precisely the same

manner.

2.1.13 Persistent Homology Software

Several software suites have been developed for the computation of persistent homology,

and this work does not endeavour to be an exhaustive list. However, it would be remiss

to not include a brief comparison of the software used in throughout this work.

The R package TDA [51] provides some tools for persistent homology computation in

the R statistical software package. This includes Rips persistent homology on arbitrary

distance matrices, as well as the more computationally expensive alpha shape complex

[52]. Furthermore, the TDA package contains routines that can calculate approximate
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confidence intervals for persistence diagrams [53], allowing estimates as to which fea-

tures are topologically relevant. The package is also able to calculate Wasserstein and

bottleneck metrics between persistence diagrams.

The C++ program Ripser is designed for the efficient computation of Rips complexes

of arbitrary distance matrices [54]. It is time and memory efficient, but severely limited

by its lack of other complexes. Unlike the R package TDA, Ripser is able to compute

persistent homology over any Zp basis.

The python library GUDHI is designed to be the most flexible of the persistent homology

softwares discussed [55]. As well as Rips and alpha complex persistence, GUDHI is able

to calculate persistent homology of any user defined sequence of simplicial complexes,

through the underlying simplex tree object [56]. GUDHI can also perform persistent

homology calculations over any Zp basis. Lastly, GUDHI can be used via the underlying

C++ library, which contains more features such as the Cech complex [57], as well as

software to produce persistence landscapes through the persistence landscape toolbox

[49].

2.2 The Mapper Algorithm

Mapper is another technique of topological data analysis, distinct yet related to per-

sistent homology. Rather than the creation of a series of nested subcomplexes, and

analysing how the topology changes, the mapper algorithm [58] is a method designed to

produce a single low-dimensional simplicial complex from which information about the

underlying data may be extracted. Firstly, the 1-dimensional mapper algorithm will be

discussed, with reference to an example. From this, the general mapper algorithm can

be introduced.

The 1-dimensional mapper algorithm requires the following as input:

• A data set X

• A metric d on X

• A filter function f : X → R

– This is often referred to as the lens

• A covering of R by overlapping intervals (ai, bi)

Figure 2.12 contains a cartoon illustrating the entire algorithm. X is represented by

the 2D point cloud in the centre of the image. d is the Euclidean distance in R2. f is

the height function, taking every point in X to its y-coordinate. The covering is seen
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h
(x

)

Figure 2.12: A cartoon illustrating the 1-dimensional mapper algorithm. The point
cloud is seen in the centre, and the filter function (height) alongside its covering found
on the left. The pre-images of the covering patches are found, and clustering performed
on these pre-images. If two clusters from distinct patches share the same point, they

are then joined by a connection. This results in the network seen on the right.

by the overlapping rectangles. Given a ‘patch’ in the covering, the mapper algorithm

firstly determines the points in the pre-image of the patch. For example, the points in

X inside the red interval. A clustering algorithm is performed on this pre-image, using

the metric d as the clustering parameter. For the red pre-image, this would result in 2

clusters. When this is performed for all of the patches, the result would be the nodes

found on the right of Figure 2.12. Two nodes n1 and n2 are connected if n1 ∩ n2 6= ∅.

By definition, this cannot occur between nodes from the same patch, leading to linkages

between patches being found. The resulting network of Figure 2.12 clearly captures

information about the relationships in X. In particular, the network contains the hole

present in X, and shows how different regions of X merge and split as a function of

height.

The general mapper algorithm is defined for any filter function f : X → P, rather than

the 1-dimensional R. The only requirement of P is that it is able to admit a similar

covering of overlapping intervals. The most intuitive way of creating this space is to

simply use a sequence of 1-dimensional filter functions f such that P is some Rn, but

this is not by any means the only method - for example, the filter function could be

defined as f : X → S1, with a cover of angular patches.

The remaining step to define the general mapper algorithm is to note that P could have

a topological dimension different to 1. In turn, this leads to each patch of the cover being

parameterised by two variables, with more than two patches able to overlap. Rather

than only connections possible between any nodes, higher order simplices can occur. In

general, the p-simplex between nodes ni where 1 ≤ i ≤ p is present if
⋂
i ni 6= ∅.
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2.2.1 Mapper Parameters

Mapper is a highly parametrised algorithm, and therefore care must be taken to ensure

that the resulting networks will be useful. The most important parameters are the choice

of metric and lens. Changing these could feasibly lead to entirely different networks, as

it is akin to fundamentally changing how the data is understood. The covering of P can

also be changed, with the number of patches and percentage overlap parameters often

referred to as the resolution and gain of the cover respectively. In contrast to changing

the metric or lens, work has been carried out to understand how the choice of resolution

and gain impacts the network [59, 60], often referred to as investigating the stability of

mapper. The last parameter for mapper is the choice of clustering algorithm (and its

associated hyperparameters). It can be shown that the choice of clustering algorithm

can lead to different partitions, and therefore a different resulting network [61].

The main method for determining if observations gained from mapper networks are real

is to create networks with different parameters, and to see if the conclusions still hold.

Conclusions that can be made from a wide variety of network parameters are considered

to be real relationships within the data.

2.2.2 Mapper Software

There are a few software implementations of the Mapper algorithm. The most well

known is commercial software produced by Ayasdi [62, 63]. However, this software is

proprietary, with the lenses in particular sometimes behaving as a black box. There

are also issues with regards to data ownership when using Ayasdi’s implementation of

mapper, and for this reason large companies with sensitive data may choose to use a

different implementation if terms with Ayasdi are unable to be agreed.

The open-source implementations of mapper tend to be written in python. Mullner and

Babu’s version, known as ‘Python Mapper’ was written in 2013 [64]. However, this has

been superseded by KeplerMapper [65], which is more fully featured and part of the

growing set of python libraries for topological data analysis, Scikit-TDA [66].

2.3 Previous Applications of Topological Data Analysis in

Chemistry

Within materials science, persistent homology has already found a wide range of ap-

plications. Recent work includes pore-geometry recognition [67, 68], where persistent

homology was shown to be a powerful descriptor for both pore shape and size in crys-

talline materials. This success is perhaps unsurprising - homology is the study of holes,
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after all. However, the persistence descriptor described in this work is dependent on

the size of a hypothetical probe, and it is this feature that makes the work so powerful.

Probes of different size can be used, enabling materials to be screened for their efficacy

at storing different molecules. Persistence has also been used to study covalent networks

supported on crystalline materials [69], and used to create a descriptor quantifying the

homogeneity of the network. Furthermore, persistent homology has been used to create

topological descriptors for fullerene stability [70]. Persistence landscapes have also been

used to study models for phase transitions [71], and were able to study topological prop-

erties of the configurational space. There is a wide body of work studying the persistent

homology of time-series [72, 73], but there does not yet appear to be any application of

this to chemical systems, particularly lose with interesting underlying dynamics.

A large body of work applying persistent homology to materials has been carried out by

Hiraoka et al. This work includes the detection of different phases of materials [74, 75,

76], and order-disorder transitions [77]. A recent review of this work has been written

[78]. In contrast to the work discussed previously on crystals, the methods developed by

Hiraoka have found use studying amorphous and glassy materials. Although the studies

performed in this work are similar to those discussed, it is noted that Hiraoka et al study

single frames of simulation, and draw conclusions from lone persistence diagrams - such

as relating curves of persistent points to geometric constraints of the system. In this

work, efforts are made to use average properties of persistence diagrams.

There have also been many successes in the application of persistent homology based

techniques within the study of biomolecules - a field suggested as an area of study

with topological data analysis early in its lifetime [79]. Guo-Wei Wei and colleagues

have developed topological descriptors for protein rigidity, based on barcode lengths

[80, 70, 81]. They have also developed various filtration parameters (such as normali-

sation of distances by charge) which have proven useful in deep learning frameworks to

predict biomolecular properties [82, 83, 84], or a classifier of proteins [85]. A review of

these methods can be found in [86]. Furthermore, their element-specific persistent ho-

mology has been shown to be suitable for protein-ligand interactions [87]. Outside of this

group, Emmett et al used a more classical persistence approach to characterise the scale

and conformation of loops in protein folding [88, 89], and derived persistent homology

variables have been related to quantities such as protein compressibility [90]. Folding

pathways have been analysed using mapper, elucidating transitions between low-density

states [91]. Also, two-dimensional persistence has been successful in virtual screening,

by studying filtrations of both Rips complexes and atomic charges [92, 93].

Persistence landscapes have also had a series of applications to biomolecules, in partic-

ular to protein binding [94, 95]. Using the well-defined statistics on persistence land-

scapes, a simple classifier was able to detect conformational changes of a 370 amino acid

maltose-binding protein, from its open to closed form. Furthermore, using short-loop

[96] software designed to recover the shortest basis for first degree homology classes, the
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authors were able to identify the active site residues themselves. Similar work has also

been performed by Haspel et al [97]

Persistent homology has been previously used to study water networks. Xia et al used

persistent homology to analyse the difference of water networks of simulated NaCl and

KSCN solutions [98], and were able to relate features of persistent barcodes to two

morphological types of aggregation. Recently, this work has been extended to osmolyte

solutions [99]. Weighted persistent homology has also been developed in a similar manner

to the element specific persistent homology mentioned earlier, and has been used to

study hydrogen bonding networks [100, 101]. For this work, the average persistence

entropy was used to take into account statistical fluctuations of the simulated systems.

However, such properties are difficult to interpret and relate back to network properties

of the water.

Interestingly, chemistry has also inspired work in TDA itself - with the nudged elas-

tic band method being used to create filtration functions by altering the elastic band

hyperparameters [102].



Chapter 3

Topological Data Analysis of

Chemical Space

3.1 Introduction

3.1.1 What is Chemical Space?

Chemical space is a particularly broad concept. A general definition, found in [103],

is ‘the ensemble of all possible molecules’. Even this broad definition can still lead to

useful notions. For example, the process of lead optimisation within drug discovery

can be considered to be the creation of a path in chemical space. An understanding of

chemical space could therefore prove a powerful tool for chemists.

To make progress with understanding chemical space, two further problems can be

defined:

1. What molecules are possible?

2. How are these molecules described?

Estimates for the number of drug like (i.e. obeying Lipinski’s rule of five [104]) have

been as high as 1060 [105]. This number is clearly far too high to be of practical use

with modern computing technology. In practice, chemical space is restricted, depending

on the nature of the problem that is being studied - chemical space is rarely studied in

its entirety. This is something that was earlier explored in Chapter 1, when discussing

databases. Furthermore, the same set of molecules can lead to an entirely different

space depending on how they are described. For example, a chemical space of molecules

described by their element counts will contain different information to a space of the

same molecules defined by their molecular shape. Different descriptions may also yield

35
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spaces with different mathematical properties - it could be a vector space, a metric space,

or even just a topological space. Again, the description of the space will depend on the

exact nature of the problem. This work will use the phrase ‘chemical space’, regardless

of these factors.

This chapter will explore two fundamentally different problems with chemical space. The

first problem is the use of pictures of chemical space to improve solubility prediction.

This task will utilise a description of chemical space constructed from molecular graph

descriptors. Topological data analysis will be used to create pictures of the chemical

space, and insight from these pictures will be used to create models for solubility. The

second problem is that of using topological data analysis to create a metric space of

molecules. In particular, topological data analysis is utilised to create a ‘chemical shape

space’, where proximity between molecules implies similar shapes. The shape space will

then be related to other chemical descriptors.

3.2 Description of Data Sets

There are two data sets of small organic molecules that are used in this chapter. The

first data set originates from a study in predicting water solubility, by Wang et al [106].

This data set consists of various subsets of solubility data, that were collated for Wang’s

work.

1. The low molecular weight subset of Delaney’s ESOL data set [107] (n = 1312)

2. The Huuskonen data set [108] (n = 354)

3. Hou data set [109] (n = 25)

4. Personal Correspondence from Wang (n = 9)

5. Jain and Yalkowsky’s data set [110] (n = 545)

6. A subset of the Beilstein data set [111] (n = 1210)

7. The solubility challenge data set [112] (n = 90)

8. A set of molecules with experimentally determined melting point, from literature

(references 20-29 in [106]) (n = 119)

A full description of this data set can be found in [106] and the supporting info of that

publication. Originally, Wang provided a set of molecules labelled by source, with the

Sybyl Line Notation (SLN) [113] used as a chemical identifier. Each molecule also had a

measured solubility value (logS), and the predictions from the various models presented
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in [106]. This data set is used as an example of data that may be used in a project

predicting a molecular property, and will be referred to as the Wang data set.

The second data set is used as an example of a data set that may be used in a molecule

generation task. In 2014, Ruddigkeit et al performed a study on the structure of what

the authors termed ‘fragrance like’ chemical space [114]. Using the SuperScent data

base [115], the authors determined the following properties as classifying a molecule as

‘fragrance like’:

• Fewer than 21 heavy atoms

• Only containing carbon, hydrogen, oxygen and sulphur atoms

• The total number of oxygen and sulphur atoms combined is less than 3

• At least one hydrogen bond donor

the authors then generated a series of subsets of large chemical databases, containing

only the fragrance like molecules. In this work, the subset used is that of the ChEMBL

data base [7] and will be referred to as the ChEMBL-FL data set.

3.2.1 Comparison of Data Sets

A series of summary statistics for each data set can be seen in Table 3.1. The Wang

data set contains fewer molecules, but a wider range of atoms. This discrepancy is

due to their original purposes. The Wang data set was constructed as a data base for

solubility prediction. This would need a diverse data set, to lead to the model with the

widest domain of applicability (ignoring issues regarding the performance of the models

themselves). In contrast, the ChEMBL-FL data set was designed to create a set of

molecules which could be used in a molecule generation task. The main drawback of

this data set for such a task would be that it is unlikely that any molecule generator

trained on this data set would be able to generate a molecule that contains a phosphorus

atom, as there are no phosphorus atoms in the rest of the data set.

Wang Data Set ChEMBL-FL Data Set
Number of Molecules 3664 8144

Atoms in Data Set
H, C, N, O, F,
P, S, Cl, Br, I

H, C, O, S

Mean Molecular Weight /gmol−1 223.94 227.17
Average Number of Atoms 33.43 28.09

Table 3.1: Comparison of Wang and ChEMBL-FL data sets.

The distributions of molecular weight, number of atoms, and number of cycles can be

seen in Figure 3.1. It is clear that the Wang data set is the more diverse, with longer

tailed distributions. In contrast, the ChEMBL-FL data set is less diverse.
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(a) Molecular Weight

(b) Number of Atoms

(c) Number of Cycles

Figure 3.1: Distributions of commonly used descriptors for both the Wang and
ChEMBL-FL data sets. The differences in distributions are largely down to the original

purposes of the data sets.
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3.2.1.1 How is the number of cycles in a molecule calculated?

For most molecules, the question of how many cycles are contained is ‘obvious’ from the

molecular graph. For example, phenol contains one cycle. However, this is not always

the case, particularly with highly symmetric molecules, or molecules with fused rings.

Take the examples of coronene and cubane, seen in Figure 3.2. There are several cycles

in coronene - depending on how a cycle is defined. For example, if a cycle is defined

as a closed path on the molecular graph, there are several cycles with six nodes. There

are also cycles that could be made by walking around larger closed paths, such as those

created by fused rings. Cubane can be seen to have a similar problem, in that the

number of cycles should be unambiguously defined. Historically, algorithms such as the

Smallest Set of Smallest Rings (SSSR) algorithm have been used to find the number (and

location) of rings in a molecule [116]. However, it has been noted that this set of rings

is not unique, and often does not match ‘intuition’. For example, the SSSR of cubane

contains five elements, where it may be expected that there are six. Furthermore, there

are clearly several options for the elements of the SSSR (although this is not a problem

within this work, where only the number of cycles is important as opposed to whether a

given atom is an element of a cycle). It is therefore important to discuss what is meant

(a) Coronene (b) Cubane

Figure 3.2: Chemical graphs of coronene and cubane molecules. Due to differences
in the definition of ’the number of cycles’, a user may get an unexpected result.

in this work by ‘the number of cycles’ in a molecule, when using it as a descriptor. The

following properties are defined:

• SSSR - The number of elements of the smallest set of smallest rings

• SSSRsym - The number of elements of the symmetric smallest set of smallest rings

(from the RDKit 2019.a implementation [117])

• nCIC - The cyclomatic number of the molecular graph. This is equal to its first

Betti number

• nCIR - The number of circuits of the molecular graph. This is equal to the number

of all closed, self avoiding walks on the graph
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For the ChEMBL-FL data set, these descriptors were calculated (SSSR and SSSRsym

in RDKit, nCIC and nCIR from DRAGON [118]). Pairwise comparisons between these

descriptors can be seen in Figure 3.3.

Figure 3.3: Pairwise comparison of descriptors used to calculate the number of cy-
cles in a molecule. The diagonal elements show a rough histogram, with off-diagonal
elements showing scatter plots of pairs of descriptors. Although correlated, it is clear

that different definitions for the number of cycles lead to different results.

The nCIR descriptor shows the most deviation from the other descriptors. This is the

expected behaviour, as it has been seen that fused rings lead to a larger number of

circuits. For the ChEMBL-FL data set, SSSR and SSSRsym are identical - this suggests

that there are no cubane-type molecules in the data set. nCIC is always the lowest

descriptor, with the other descriptors always being equal or higher than nCIC. This is

actually unexpected, as one would expect SSSR to contain the smallest set of rings. It

is unclear if this is an implementation issue.

As nCIC is a topological descriptor of molecular graphs (i.e. it is the first Betti number,

which for connected graphs is equal to nedges − nnodes + 1), it is the descriptor that is

used for this work when referring to ‘the number of cycles’.
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3.3 Mapper Algorithm on Descriptor Space

3.3.1 Solubility Modelling

As a large part of this work was designed to improve the accuracy of solubility modelling,

it is important to discuss the potential trials and pitfalls of the field. Given a molecular

structure, is it possible to accurately predict its solubility in water? This is an important

test in the drug discovery process, as it has previously been estimated that up to 40% of

drug discovery programs fail due to an issue with bioactivity, including solubility [119].

To this end, many different methods have been calculated to predict solubility. Hussko-

nen used linear regression, and early neural networks, to predict solubility [108, 120].

The earlier work used a set of neural networks on a data set of 211 compounds. De-

scriptors were a combination of electronic and topological, and included simple hydrogen

bond donor/acceptor counts. This method was able to achieve an R2 of 0.86, with a

standard deviation of 0.5 log units on the test set. Later, this method was extended to

a larger data set of 1297 compounds, and although the standard deviation increased to

0.6, the predictive R2 improved to 0.92. A standard multilinear regression model using

the same descriptors performed comparably (R2 = 0.88, σ = 0.71). From this, it can

be concluded that more sophisticated solubility models were unable to outperform more

simple ones - a theme that has occured many times within this field.

The general solubility equation (GSE) was developed in 1980 to be a widely applicable,

minimal parameter model [121]. These descriptors were melting point Tm, logPoctanol

(logP ), and ∆fusionS. The original model was moderately successful, however required

the calculation of ∆fusionS, which to this day is difficult to do with high accuracy.

Therefore, an alternative form of the GSE was proposed by Jain and Yalkowsky in 2001

[110]. This was able to obtain an R2 of 0.97, and an absolute average error of 0.45 on

their own set of 580 compounds.

Alternatively to the pure informatics-based approach previously mentioned, Jorgensen

and Duffy attempted to build a solubility model using parameters calculated by simula-

tion [122]. These were derived from Monte Carlo simulations of single solvent molecules

in a cube of 500 TIP4P molecules. This allowed the calculation of parameters such as

interaction energies and solvent accessible areas. Further, hydrogen bonds were able to

be directly measured, through geometric constraints. Their model was able to achieve

an R2 of 0.82 on their data set of 150 compounds. There have been attempts to compare

both the informatics-based GSE and the MC based method from Jorgensen and Duffy.

In 2001, Ran and Yalkowsky used the revised GSE to estimate the solubility of the same

molecules as Jorgensen and Duffy [123]. This led to a smaller average absolute error

(0.43 compared to 0.56).
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In 2004, Delaney published ESOL [107]. This was a 4 parameter model (logP , molecular

weight MW , percentage of aromatic atoms AP and rotatable bond numbers RBN),

resulting in the following functional form:

logS = 0.16− 0.63 logP − 0.0062MW + 0.66RBN − 0.74AP (3.1)

On a set of 3402 molecules, an R2 0f 0.69 was achieved. Although perhaps a less

accurate model than those previously discussed, ESOL was designed to be accurate

over a wider range of molecules, and therefore be more applicable to new molecules.

When the revised GSE was applied to this data set, it was also found to have an R2 of

0.67. Further analysis showed that the GSE outperformed ESOL for smaller molecules,

however for molecules with molecular weights in excess of 300gmol−1, ESOL was the

better model. This emphasises the difficulty in creating a single model that performs

well on a wide range of chemical space.

In their review of the field, Jorgensen and Duffy stated that the average uncertainty

in experimental logS measurements was no better than 0.6 log units. For example,

rotenone has been measured as having logS values of −4.42 [108], and -6.29 [124].

Additionally, when guanine had its solubility measured as -3.58, it had been found

difficult to accurately predict [25], but when this experiment was repeated and logS

measured to be -1.86, this value was found easier to model [125]. This reflects the

inherent difficulty in solubility prediction, as well as the difficulty in obtaining the full

provenance of solubility data. Here, it is simply noted that all of the previously noted

models were within or close to this 0.6 log unit measurement of accuracy, and that work

needs to be carried out to determine whether ‘better quality’ predictions are simply

fitting to noise in measurements.

To determine the state of the field, the ‘Solubility Challenge’ was created [112]. A

data set containing 100 measured solubilities was released, alongside 32 structures with

unknown solubilities. Researchers were invited to construct a model for solubility based

on the 100 known compounds, and to submit predictions for the solubility of the oither

32. The findings were announced the following year [126], with eight major conclusions:

1. Defining a prediction as ‘correct’ if the calculated value of S is within 10% of the

measured value, the entrants were correct between 0− 33% of the time.

2. The R2 value on S for the test set ranged from 0 to 0.642.

3. Defining a prediction as ‘correct’ if the calculated value of logS is within 0.5 logS

of the measured value, the entrants were correct between 15.6−62.5% of the time.

4. The R2 value on logS ranged between 0.018 and 0.650
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5. No entrant discussed the possibility of polymorphism, or predicted solubility for

more than one polymorphs of a compound. This has been shown to be important,

such as in [127].

6. Entrants tended to more accurately predict the solubility for an intermediate range

of compounds (logS between 0.5-3), than they did for compounds of high or low

solubility.

7. The accuracy of prediction was inconsistent between molecules. The easiest molecule

to predict (imiprimane) was predicted correctly by 81% of entrants. In contrast,

napthoic acid had a correct prediction from only 37% of entrants.

8. Within the intermediate range, some molecules were still difficult to predict. Both

probenecid and indomethacin were predicted correctly by < 5% of entrants.

The original creators of the solubility challenge did not release any specifics of individual

entrants. However, entrants were free to submit their models now the results were

known. Hewitt et al submitted 4 entrants to the challenge [128]. These approaches

included linear regression, neural networks, and category formation (alongside some

commercially available techniques). It was found that the linear regression was the best

performing model. The neural network was found to have overfitted to the training data

- which is unsurprising due to the low number of data points in the set. The category

approach also performed poorly, again due to the lack of data, Three categories contained

fewer than ten compounds, and Hewitt et al concede their categories may have been

too broad. The failure of the commercial models was attributed to their training sets -

which were thought to be more likely to contain a wider variety of molecules than the

druglike compounds of the solubility challenge set. However, as these training sets were

not publicly available, it is hard to agree with these conclusions.

Hewitt et al conclude that current methods likely do not fail due to inadequate method-

ology, but instead an insufficient appreciation for the complexibility of the solubility

process. They make a set of recommendations:

1. Simple modelling approaches should be preferred to more complex ones - particu-

larly with small data sets

2. Knowledge of data quality should be more prominent in model design and publi-

cation

3. The applicability domain of a model is information that should be included in all

published models, including those commercial packages

4. Available solubility models, although imperfect, are useful for initial screening.
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• If more accurate results are desired, an ensemble of models may allow the

user to estimate reliability with more confidence

5. Despite current models being of use in screening, high-quality predictions are as

yet unavailable. Alternative non-statistical models could be explored more, such

as those including a mechanistic reasoning

The poor results of the solubility challenge did not deter the creation of new models.

Lusci et al designed a molecular graph-based neural network [129]. It was suggested that

this approach could lead to interpretation of functional groups that improve or hinder

solubility. Although the average absolute error was 0.43, it has to be concluded that

the model was fitting to noise, due to the aforementioned high errors in experimental

measurement. However, this approach could be useful for other prediction tasks.

In 2014, Palmer and Mitchell investigated whether it was indeed this experimental noise

that made solubility challenging to predict, or problems in the approach itself [130].

The solubility challenge data set was used due to its high accuracy (widely accepted to

be 0.05 log units), and compared to noisy data (up to 0.6 log units error), taken from

various literature sources. The authors argued that it is not the data itself that was

flawed, but instead the descriptor sets themselves, and concluded that this was because

the high-accuracy data was still difficult to consistently predict. However, this data set

is considerably smaller, and this effect was not properly considered.

A recent study performed by Boobier et al studied the proficiency of consensus-type pre-

diction for these problems [131]. It was found that a consensus prediction outperformed

all individual predictors on a relatively small (100 molecule) set. However, it was found

that a consensus of human predictors, found by a survey, was able to outperform all

of the machine learning models. This suggests that a consensus type prediction is po-

tentially a useful tool in solubility prediction. Furthermore, there is perhaps a problem

with the descriptors currently being used, as they are not able to describe information

that is known to a consensus of human predictors.

One of the main criticisms of solubility prediction is that the biomolecular environment

is not pure water [132]. Despite attempts to construct modified media to better reflect

the cellular environment (such as in [133]) in silico approaches are almost entirely based

on the solubility of neutral compounds in pure water. This is likely due to the difficulty

of modelling the influence of additives, such as phospholipids, on solubility. This work

does not consider these more complex properties.

To commemorate ten years since the original solubility challenge [112], a new solubility

challenge has been developed [134]. Participants in the new challenge were invited to

use their own training sets to predict logS on two new test sets, one with solubility

values measured with high accuracy, and the second data set with an average standard
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deviation of 0.6 log units. At the time of writing of this work, this second challenge is

still underway.

3.3.1.1 Solubility as a Thermodynamic Cycle

The solvation of a molecule can be considered as a thermodynamic cycle, such as in

Figure 3.4.

Figure 3.4: The thermodynamic cycle of the solvation of a molecule in water. The
various steps are illustrated by number: total solvation, molecular dissociation, cavity

formation and cavity hydration.

1. Total solvation

2. Dissociation of the molecule from the crystal

3. Formation of a cavity in the solvent

4. Hydration of the molecule in the cavity

Steps (3) and (4) are often considered to occur together, and are collectively known as

‘hydration’. Methods have been designed to calculate each step in this cycle individually,

such as the work performed by Palmer et al in 2007 [135]. The free energy was related

to the solubility by the following:

∆solG
	 = ∆subG

	 + ∆hydG
	 = −RT ln(S0Vm) (3.2)
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Where Vm is the molar volume of the crystal, and S0 is the intrinsic solubility, in molL1.

By selecting single polymorphs from the Cambridge Structural Database, the various

∆G	 were estimated, and solubility calculated for a set of 60 molecules (34 training). An

R2 of 0.83 was achieved (RMSE = 0.63), reflecting the potential for such methods in the

field. In particular, if better estimates for the various ∆G were obtained, such a model

would have a strong predictive and explanatory power. Luder et al released a series of

papers in 2007, aiming to better calculate these free energies [136, 137, 138], in particular

aiming to quantify the difference between solvation of crystals and amorphous structures.

It was concluded that the electrostatic interactions are much larger in the crystalline

materials, whereas it was the Lennard-Jones type interactions that were important for

the amorphous structures.

3.3.2 Networks

For all of the presented networks in this section, the colour gradient is such that: blue

→ red =⇒ low → high. All networks were made with the Ayasdi implementation of

mapper. It is important to emphasise that mapper networks are topological in nature,

conclusions should be made only about properties of connectivity, rather than distance.

In essence, networks should be considered to be infinitely flexible.

A series of mapper networks, created with various combinations of filter functions and

metrics, can be seen in Figure 3.5. The choices of lens and metric are as follows:

(a) 2D MDS lens, correlation metric

(b) 2D Neighbourhood lens, Euclidean metric

(c) 2D PCA lens, variance normalised Euclidean metric

Each of the networks looks markedly different - as expected with mapper. As mentioned

in the Theory of Mapper section (Chapter 2), it is important to focus on the analysis

of the observations which are consistent between networks. Henceforth, all conclusions

in this work can be assumed to be independent of choice of input parameters, but the

network studied will be the MDS lens, Figure 3.5(a).

The important observations can be summarised as being links between network location

and chemical descriptors, and what can then be inferred about solubility. The two most

obvious descriptors, are molecular weight and number of cycles. The MDS lens, coloured

by these features, can be seen in Figure 3.6.

There is a clear gradient for these colourings. The molecular weight varies smoothly

across the network, whereas the number of cycles creates clear groupings of nodes. In

particular, nodes can be classified as follows:
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(a) (b)

(c)

Figure 3.5: A series of mapper output networks. Full details as to the parameters
used for each network can be found in the main text. Networks are coloured by the
number of observations (molecules) in each node. Boxes are used to make clear which
outliers belong to each network. The hyperparameters for the mapper algorithm lead
to markedly different networks. The gradient is such that blue to red is equivalent to

low to high.

• 0 cycles (blue)

• 1 cycle (green)

• 2 cycles (yellow)

• 3 or more cycles (red)

It is perhaps expected that the mapper algorithm would create a network with these

colour gradients, as these two variables are expected to be well correlated with a wide

range of other descriptors. Interestingly, the outliers in the mapper network all seem

to have intermediate molecular weights, but vary in the number of cycles. In general,

statistical tests such as the Kolmogorov-Smirnov (KS) test can be used to determine

what features separate different subgroups of nodes. This has been done with other

studies of the mapper algorithm [62, 139, 140] but this is not the focus of this work.

Instead, the goal of this project is to improve solubility prediction, using insights gained

from mapper networks. In this way, topological data analysis can be considered to be

describing how to look at the data, rather than directly answering questions. The MDS
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(a) Coloured by molecular weight

(b) Coloured by number of cycles

Figure 3.6: The MDS mapper network, coloured by molecular weight and number
of cycles. There are clear trends with respect to these variables, illustrating that the
mapper networks contain chemically useful information. The gradient is such that blue

to red is equivalent to low to high.

network, coloured by logS, can be seen in Figure 3.7. Although the logS variable was not

used in the network’s construction, there is a clear trend, with similar solubilities tending

to be grouped together. This is again expected, as there is a reasonable correlation

between molecular weight and solubility. It is also noted that there appears to be

no relationship between the outlier nodes and their solubilities, suggesting that the

properties that separate them from the main network are independent of this.

The trend in solubility is not consistent throughout the mapper network, it does not

have an unbroken colour gradient. Perhaps the most prominent breaking of this trend

is in the group of molecules with two cycles, which have a much lower solubility than

their neighbours. Analysis of this subgroup via KS testing did not yield descriptors

that were thought to be chemically relevant (in particular, they tended to be the more

esoteric descriptors calculated by DRAGON). However, the breaking of the gradient

in solubility is not too dissimilar to one found in the network coloured by molecular

weight. Therefore, it was decided to study the effect of halogen substitution, as this

leads to larger molecular weights for molecules with similar graphs.

The MDS network, now coloured by the number of chlorine atoms, can be seen in Figure

3.8. The anomalous trend in logS previously mentioned is almost entirely matched by
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Figure 3.7: The MDS mapper network, coloured by logS. The gradient is such that
blue to red is equivalent to low to high.

nodes with high chlorine numbers. This effect is only seen for systems with two rings - for

systems with fewer than two cycles the presence of chlorine atoms does not particularly

impact solubility. Each outlier node also contains no chlorine atoms - but as mentioned

it is difficult to say if this is what truly separates the outliers, as the same property is

seen for the number of bromine descriptor, amongst others.

Figure 3.8: The MDS mapper network, coloured by the number of chlorine atoms.
The anomolous region of low solubility for cycles with two molecules clearly corre-
lates with a region of several chlorine atoms. The gradient is such that blue to red is

equivalent to low to high.

The network allows inference of information regarding solubility. For small to medium

sized molecules, the gradient in solubility is largely matched by that of molecular

weight. This implies that solubility and molecular weight are highly correlated for these

molecules. However, as molecular size increases, other features become important. For

systems with two cycles, the presence of chlorine appears to impact solubility more than
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with any other number of cycles. The effect of chlorine substitution on solubility has

been well studied (see, for example, [141]), and it is surprising that the effect is only

seen here for systems with two cycles. For example, an analysis of the solubility data

sets of benzene and chlorobenzene found in [142] shows that no data source predicts

chlorobenzene to be more soluble, with chlorobenzene being at least 0.67 log units less

soluble. It is therefore unclear why the effect is more prominent here for those molecules

with two cycles. To see if this is due to a sampling effect, it is important to understand

the distribution of chlorine numbers, as a function of cycles. This can be seen in Figure

3.9.

Figure 3.9: The distributions of chlorine numbers as a function of the number of
cycles. As this distribution is consistent between the number of cycles, it can be said
that the effect seen on solubility is not simply due to differences in chlorine distributions.

The vast majority of molecules do not contain any chlorine atoms. Furthermore, the

distributions are relatively consistent, independent of the number of cycles. This implies

that the different behaviour observed from the mapper network regarding the relation-

ship between chlorine and solubility is likely a real effect.

It is worth noting that although the mapper network was constructed independent of

solubility, conclusions can be made about the behaviour of this property. In principle,

this could therefore be achieved for any useful chemical property.
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3.3.3 Creation of Models

A standard model for solubility prediction is Delaney’s ESOL model [107]. ESOL pre-

dicts solubility to within the limits of the previously discussed experimental measure-

ments - see Chapter 3.3.1 for an introduction. As a reminder, for the molecule with

index i, ESOL calculates logS through a standard linear model:

logSi = β0 +
∑
j

βjXij (3.3)

where the set of descriptors is CLogP, Molecular Weight, Rotatable Bond Number,

Aromatic Ratio. The original β parameters for ESOL can be found in Equation 3.1

The mapper network can provide useful insight when constructing machine learning

models for chemical properties, in this case solubility. Firstly, the strongest gradients

in the network are that of molecular weight, and the number of cycles. This matches

‘chemical intuition’, and there is no model that would not take these two descriptors

into account in some fashion. Within ESOL, molecular weight is directly taken into

account, whereas information about cycles is held within the rotatable bond number

and aromatic ratio.

The mapper network suggests that there is a relationship between the number of chlo-

rines and solubility, which varies as a function of the number of cycles. Therefore, it was

chosen to create models which were able to take this relationship into account. Using

ESOL as a base model, a linear model was developed of the form found in Equation

3.3, where X ∈ {MLogP, Molecular Weight, Rotatable Bond Number, Aromatic Ratio,

Number of Chlorines}. MLogP was used rather than CLogP due to its availability in

DRAGON.

This linear model yielded an RMSE of 0.56 on the Wang data set. This appears to be

reasonable, and considering it is around the experimental uncertainty of solubility mea-

surement, it might be unclear as to why this model may require improvement. However,

a problem with this model becomes clear when looking at the residuals of this model:

residual = logSexperiment − logSmodel (3.4)

As a function of logS, the residuals for this model can be seen in Figure 3.10. For larger

values of logS, the model seems to over- and under-estimate the true value with equal

probability. However, as logS is reduced, the distribution of residuals becomes skewed,

with over-estimates for logS becoming more likely. Mapper networks imply that it may

be sensible to group the molecules by the number of cycles. Here, the classes used are

the ones defined in the previous section:
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Figure 3.10: Residuals vs logS for the linear model. Points are coloured by the
number of cycles in the molecule. Using the results of the previous mapper analyses, it
is possible to target specific regions of the residuals to improve - such as those molecules

with two cycles.

Number of Cycles Number of Molecules
0 820
1 1157
2 988

> 2 698

Table 3.2: The classes used regarding numbers of cycles, as well as the number of
molecules in each class.

Firstly, studies were performed understanding the behaviour of logS for the different

classes. Figure 3.11 contains a series of box plots, used to study the distribution of the

logS variable.

The distributions of logS are different, for different classes. This suggests that, rather

than a linear model, a linear mixed model should be used. Whereas a linear model

optimises the set of parameters βi over all observations, a linear mixed model allows

for a subset of β to be optimised for a set of classes individually. Such a model could

be useful for hierarchical data, for example when assessing the performance of students

over time. In this case, a linear mixed model would allow for each student to have a

separate baseline performance β0.

Firstly, as the mean values of logS vary for each class, a linear mixed model was created

where the intercept was allowed to vary. This led to a slightly improved RMSE (0.550),
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Figure 3.11: Box plots showing the distribution of logS when classified by the number
of cycles in a molecule. As expected, the mean logS decreases as a function of the
number of cycles. This suggests using a linear mixed model with varying intercepts.

where the intercept reduced as the number of cycles increased - matching the intuition

that larger molecules tend to be less soluble. However, the residuals were not significantly

improved (Figure 3.12).

However, the mapper network did imply that the dependence of solubility on the number

of chlorine atoms varied with the number of cycles. Therefore, a mixed model was

created where both the intercept β0 and the coefficient on the number of chlorines βCl

were allowed to vary between classes. This led to an RMSE of 0.544, and the residual

behaviour of Figure 3.13. The residuals of the two cycle class in particular are improved,

with the distribution being less skewed

βCl as a function of the number of cycles can be seen in Table 3.3.3. Regarding an error

for βCl, within the linear mixed model framework errors on random effects such as this

are ill defined, and instead it is advised to use the overall error as an estimate, which in

this case is approximately equal to 0.05

In some cases, the value of βCl reflects what is seen in the mapper network. The presence

of chlorine seems to have little or no effect on the solubility of molecules with one or
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Figure 3.12: Residuals vs logS for the linear mixed model with random intercepts.
Points are coloured by the number of cycles in the molecule. The residual distribution

is largely unchanged when compared to the standard linear model.

Number of Cycles βCl
0 0.00
1 -0.07
2 -0.22

> 2 -0.21

Table 3.3: The values of the coefficient for the number of chlorine descriptor βCl for
the random intercept/chlorine coefficient model, as a function of the number of cycles.

fewer cycles. However, there is a negative correlation between the number of chlorines

and solubility for larger molecules, implying the presence of chlorine hinders solubility,

as expected for these molecules. This effect does appear to be equal in magnitude for

systems with two rings as it is for systems with three or more rings. It is not thought

that this effect would continue if the data set contained a larger quantity of systems with

three or more rings. In particular, if it were possible to use a set with an appreciable

number of molecules with this size, the correlation could disappear, as the size of these

molecules becomes the dominant factor in their solubility.

Model comparison can be performed between the two linear mixed models created for

this study. Using ANOVA it is possible to understand if differences in the residual sum

of squares between these models are significant. This was performed using a χ2 test,

and was found to be significant (p < 0.001).
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Figure 3.13: Residuals vs logS for the linear mixed model with random intercepts
and chlorine coefficients. Points are coloured by the number of cycles in the molecule.
The distribution of residuals for molecules with 2 cycles has now improved, and is less

skewed to be negative when compared to the previous models.

As the final point of discussion regarding mapper and its use in creating more efficient

models, it is noted that there are various descriptors that correlate well with the number

of chlorines, and would therefore have a similar effect on these systems. An example of

this is the mean atomic volume, which leads to a similar mapper output to Figure 3.8,

and a similar behaviour of the correlation coefficient with linear mixed models. However,

the purpose of this work was to study the information that could be gathered from a

mapper analysis, and investigate its potential application to the design of QSPR-type

models. It was found that there was an anomalous region of solubility in systems with

two cycles, and that there was a strong correlation with that region with the number

of chlorine atoms. When taken into account, this correlation was able to improve the

residuals of these molecules specifically. Mapper can therefore be used as a reasonable

feature selection tool, enabling the creation of better models.

3.4 An Atlas of Chemical Shape Space

3.4.1 Molecule Shape Similarity

The notion of molecular shape similarity is particularly important in drug design and

discovery [143]. For example, the relative orientation between a ligand and target protein
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greatly influences the binding affinity [144, 145]. Large databases can be screened to

find molecules with similar shapes to an active compound, yielding potential candidate

molecules [146]. Alternatively, scaffold hopping can use a shape similarity as a metric

for similar purposes [147].

However, there are many potential candidates for ‘shape similarity’. In general, these

can be separated into those that require molecular alignment, and those that do not.

Alignment based methods calculate the optimal superposition between two molecules,

and use a metric based on this, such as the RMSD (defined in Chapter 4). These methods

include ROCS, based on finding the maximum volume overlap between two molecules

[148].

Non-alignment based methods do not need to calculate this superposition, instead using

differences between intra-molecular descriptors (such as atomic distance distributions).

Non-alignment methods include Ultrafast Shape Recognition [149], which utilises atom

distances from four reference positions. The persistent homology methods that will be

used in this work fall into the non-alignment based category.

There are various potential applications of persistent homology to the study of chemical

shape spaces. This work explores the use of persistent homology as a descriptor for the

shape of molecules, to define a metric space of chemical shape. In particular, it studies

what chemical properties are apparent from a persistent homology space. Alternatively,

although not explored in this work, is the use of persistent homology to find holes in

chemical space. It is reasonable to think that a hole in chemical space describes a

molecule with a set of associated parameters that is missing from the data (such as an

unobtainable combination of logP and molecular weight). These studies would certainly

be performed in future.

3.4.2 Methodology

The procedure for the analysis performed in this section can be found in Figure 3.14.

Given a data set containing a set of molecules (for example represented as a SMILES

string), a ‘chemical shape space’ can be defined. Firstly, the single conformer case is

discussed. For each molecule, an ensemble of conformations is created, before they un-

dergo independent minimisation of their (MMFF94 [150]) energy. The lowest energy

conformation is then chosen as the single conformer. Persistent homology is calculated,

leading to a single persistence diagram for each molecule. A metric space is then cre-

ated by calculating the bottleneck metric between all pairs of persistence diagrams, for

each degree of homology. These metric spaces are inherently high-dimensional and non-

Euclidean, so optimal low-dimensional Euclidean representations are found via multidi-

mensional scaling (MDS). Alternatively, the metric spaces for each degree of homology
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Figure 3.14: The general procedure used for the analysis of chemical shape space via
persistent homology.

can be combined via similarity network fusion (SNF), leading to a space which ought to

contain information about all degrees of homology.

If a single conformer is used, there is a potential issue when defining a chemical shape

space. In particular, there could be several energy minima, with wildly differing shapes.

Therefore, an alternative methodology is defined. Rather than finding a single minimum

energy conformer, an ensemble of conformers are minimised, before they are subject to

an RMSD pruning. This pruning seeks to ensure that only a single conformer is found

for each minimum, which would potentially bias the ‘average shape’ of the molecule.

Persistence is calculated for each minimum, leading to a series of persistence diagrams for

each molecule (note that there is no reason that any two molecules have the same number

of resulting persistence diagrams). Instead of defining a metric based on persistence

diagrams themselves, the persistence diagrams are converted into landscapes, and a
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mean landscape for each molecule is found. A metric space is then defined using the l1

metric on persistence landscapes, before MDS and SNF can be performed in a similar

manner to the single conformer case.

3.4.3 Persistence through Kernels

Thus far, the discussion for this section has avoided the topic of the point cloud on

which the persistent homology is calculated. In the water networks chapter (Chapter

5), persistent homology is only calculated on the coordinates of the oxygen atoms in

Euclidean space, and it would not be unreasonable to do similar here. However, work

carried out by Guo-Wei Wei, Kelin Xia et al has suggested the use of kernel-based

persistent homology. A simple example of this can be found in their 2014 work on

predicting fullerene stability [70]. It is well-known that various physical properties of

fullerenes can be linked to their shape [151], and the authors calculated Rips (and other

geometrically focused) simplicial complex persistence on kernel-transformed distances:

Cij = wjΦ(rij , ηij) (3.5)

The terms w and η allow the definition of different length scales for different interac-

tions, and the filtration is performed over the output C. The two kernels used are the

exponential and Lorentz kernels:

Φ(r, η) = e−(r/η)κ (3.6)

Φ(r, η) =
1

1 + (r/η)ν
(3.7)

Where the κ and ν parameters allow the definition of a whole family of kernels. Persis-

tence was then performed on a ‘correlation matrix’:

Mij = 1− Cij (3.8)

From the persistent homology, the authors were able to create a model for predicting

heats of formation and curvature energies. However, it is unsurprising that persistence

is useful in this application. The authors themselves acknowledge that the descriptor

is essentially capturing the number of hexagons per carbon atom - and even decide to

remove features corresponding to the central fullerene hole.

For the data sets used here, it is worth investigating whether the use of kernel-based

persistence alters the shape space. For simplicity, in this work the following forms of

Mij were used:

Mexp(rij) = 1− e−r
2
ij (3.9)

Mlor(rij) = 1− 1

1 + r2
ij

(3.10)
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Figure 3.15: The exponential and Lorentz kernels used for kernel-based persistent
homology in the creation of a chemical shape space. Although they have the same

limiting behaviour, the kernels clearly have different shapes.

i.e. η is considered to be equal to 1 distance unit (Å). The correlation function can

also be seen in Figure 3.15. From the concavity and monotonic increasing nature of the

correlation function, it can be shown that M(rij) is a valid metric and can therefore be

used for Rips complex persistence on point clouds. The use of the kernels as defined in

this work will alter the persistence diagrams in a fairly predictable way. In particular,

as the kernels are concave and monotonic increasing, as well as being defined using all

points in the point cloud (unlike the element specific persistent homology found in [152]),

the total number of features, and the order where they appear will remain unchanged.

Instead, features that are born later are pushed closer to the diagonal, and are born

closer towards the end of the persistence process. The kernels therefore give a stronger

weighting to features that are born early in the persistence process.

3.4.4 Chemical Shape Space: Single Conformer Studies

3.4.4.1 Coordinate-Based Shape Space

The first chemical shape space explored in this work will be the bottleneck metric space

calculated on the Wang data set. The simplest example of the shape spaces calculated

were the single conformer spaces, which can use either the bottleneck or landscape

metrics for each kernel. Of these parameters, the most obvious place to begin would be

the bottleneck metric on the persistence diagrams for the distance functions themselves.

The zeroth degree shape space, projected onto two dimensions by MDS, can be seen in

Figure 3.16. The first thing to note is that the space appears to be disconnected. This
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Figure 3.16: The two dimensional projection of the zeroth degree chemical shape
space for the Wang data set. Coloured by the number of atoms in the molecule. There

is a clear correlation between location and the number of atoms.

can be explained by considering the behaviour of zeroth degree Rips complex persistence

diagrams. There are natom points in the diagram, all born at δ = 0. They merge at

various times, approximately corresponding to the nearest neighbour distance. Lastly,

one point will persist to infinity. The bottleneck metric depends on the optimal matching

between pairs of persistence diagrams, and therefore it is not largely surprising that there

are gaps in this chemical shape space. Also, it is clear that this leads to location being

highly correlated with the number of atoms in the molecule, which is also seen in the

projection.

The first degree shape space, again projected onto two dimensions, can be seen in Figure

3.17. Again, the behaviour of the first degree shape space can be explained by considering

the persistence diagrams themselves. The first degree persistent homology counts the

number of loops in a space. The number of first degree features should therefore match

the number of cycles, and therefore a strong correlation between location and the number

of cycles is seen in this space. It might be expected that all molecules with 0 cycles should

therefore coincide in this space. However, this is not what is observed in the shape space.

This is likely a result of the persistent homology being calculated on all atoms, including

hydrogen. This could lead to artefacts in the persistence diagram, cycles in the filtration

of the simplicial complex that are not ‘true’ cycles in the molecule (such as a benzene

ring). Furthermore, cycles of three atoms (such as cyclopropane or epoxide rings) would

not be seen, as three point cycles do not appear in the Rips filtration by definition.

These two effects lead to a correlation between position and the number of cycles, that

is strong yet imperfect.



Chapter 3 Topological Data Analysis of Chemical Space 61

Figure 3.17: The two dimensional projection of the first degree chemical shape space
for the Wang data set. Coloured by the number of cycles in the molecule. In first

degree homology, there is a clear correlation between location and number of cycles

The second degree shape space projected onto two dimensions is found in Figure 3.18.

This space contains what appears to be three clusters. These clusters can be seen to

clearly correlate with the number of second degree features in the persistence diagram for

each molecule, in Figure 3.19. Cluster is therefore determined by the number of second

degree features, with location within the cluster corresponding to the differences in birth

and death values. Furthermore, the clusters do not distinguish between molecules with

≥ 2 second degree features. This suggests that a large number of these features are close

to the diagonal, leading to small bottleneck distances.

It has been seen that the clusters themselves depend on the number of second degree

features. Therefore, it is important to determine what molecular property the features

correspond to. Within the persistence diagram for a molecule, there are three types of

second degree features:

1. Second degree features caused by an enclosed space, such as those found in a

fullerene. These are ‘real’ holes within the molecule.

(a) As a result of the persistence construction, this type of feature could also

be found in a molecule which is not entirely closed, such as a hemispherical

molecule.

2. Second degree features caused by conformation. This could be a result of two

distinct regions of the molecule being close together, where the Rips construction

used in this work does not distinguish between regions that are not directly bonded.
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Figure 3.18: The two dimensional projection of the second degree chemical shape
space for the Wang data set. Coloured by the number of cycles in the molecule. The

relationship between location and the number of cycles has now disappeared.

(a) Coloured by Actual Value (b) Coloured by class {0,1,2+}

Figure 3.19: Two dimensional projection of second degree shape space, coloured by
the number of second degree features in a molecule’s persistence diagram. Clearly, the
space is separated by the number of second degree features, which is harder to relate

to chemical properties.

Simplices could appear between these distinct regions, which then could lead to

second degree persistent features.

3. Second degree features caused by the death of first degree features, such as the

artefact found in the hexagon Rips complex filtration (see Figure 2.7). These fea-

tures are ‘artefact’ features, that only exist due to the Rips construction themselves

- however this does not mean that they do not contain useful information.



Chapter 3 Topological Data Analysis of Chemical Space 63

Figure 3.20: The number of second degree features as a function of the number of
cycles in a molecule. There is a wide scatter in this relationship, illustrating that cycles

and second degree features are difficult to relate.

Features of all kinds may appear in the persistence diagram. This can be further under-

stood through Figure 3.20, showing the number of second degree features in a persistence

diagram as a function of the number of cycles in a molecule. Points below the diagonal

imply the number of cycles is more than the number of features. This could correspond

to cycles of length three or four, which do not lead to second degree (artefact) features

in the Rips construction. In contrast, points above the diagonal are molecules where the

number of second degree features is greater than the number of cycles. Some of these

features must be the result of ‘real’ holes, or conformation, as there are not enough

cycles to account for the ‘artefact’ features.

The bottleneck metrics for various degrees of homology can be combined via SNF. This

results in a distance matrix, which can then also be analysed by MDS. This should

give the most complete description of the chemical shape space defined by persistent

homology. The two dimensional projection of the SNF space can be seen in Figure 3.21.

The space has correlations with both the number of cycles and the number of atoms, as

expected.

3.4.4.2 Effect of Kernel

The two dimensional projection of the zeroth degree persistent homology shape space

created with the exponential and Lorentz kernels can be seen in Figure 3.22. They are

both qualitatively similar in shape, as well as to the original coordinate-based shape
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(a) Coloured by Number of Atoms (b) Coloured by Number of Cycles

Figure 3.21: Two dimensional projection of SNF of the bottleneck shape space. Both
the number of cycles and number of atoms are relevant to location in this combined

SNF plot.

space Figure 3.16. This is expected, considering that the effect of the kernels is to

impact features more heavily as their birth time increases. For zeroth degree homology,

all features are born at the same time (δ = 0). The small differences between kernels

are as a result of the variation in death times. However, the space still clearly correlates

with the number of atoms.

The same projection of the first degree bottleneck shape space is found in Figure 3.23.

Again, the kernel-based shape spaces are qualitatively similar, as well as similar to the

coordinate-based shape space. However, the distributions of points has narrowed, with

the exponential kernel being the most narrow. This can be explained when considering

the functional form of the kernels, as seen in Figure 3.15. The exponential kernel decays

quickly, leading to persistence diagrams that are more similar, and therefore closer in

the resulting shape spaces. Again, there is a clear correlation with the number of cycles,

as previously seen.

Similar conclusions can be made regarding the second degree kernel-based bottleneck

shape space 3.24. The second degree spaces again form three clusters (which correspond

to the number of second degree features). However, the clusters are tighter than previ-

ously, with the exponential kernel leading to clusters which appear to collapse to almost

a single point. This is still a result of the functional form of the kernels themselves.

The effect of the two kernels chosen in this work appears to be to tighten the resulting

shape spaces. This is a result of the kernels treating all interactions with the same weight-

ing. In particular, if different values for w and η were chosen for different interactions

(for example, treating C-C distances differently to C=C, or non-bonded interactions

differently altogether), the kernels would have an impact reflecting this. The resulting

shape space would then look fundamentally different to those studied in this work.
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(a) Exponential Kernel

(b) Lorentz Kernel

Figure 3.22: Two dimensional projection of zeroth degree shape space. Coloured by
the number of atoms. The use of kernel does not largely affect the resulting chemical

shape space.

3.4.4.3 Comparison to ChEMBL-FL Data Set

The ChEMBL-FL data set contains a different distribution of molecules to those found in

the Wang data set, in particular containing molecules that are more similar, as discussed

previously in this chapter. It is therefore interesting to study the differences in the

resulting shape spaces between these data sets. The zeroth degree bottleneck space

can be seen in Figure 3.25. There are similarities between this space and the shape

space of the Wang data set, in Figure 3.16. Firstly, the correlation between the number

of atoms and location is present, in this case arguably stronger. It is thought that
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(a) Exponential Kernel

(b) Lorentz Kernel

Figure 3.23: Two dimensional projection of first degree shape space. Coloured by
the number of cycles. Again, the choice of kernel does not largely affect the qualitative

features of the chemical shape space.

this is due to the differences in distributions of the number of atoms between data

sets (Figure 3.1(b)). The Wang data set appears to have an outlier molecule, and a

much more skewed distribution, whereas the ChEMBL-FL data set has a far less skewed

distribution. This lack of outliers leads to a shape space that is much more regular, with

a far more pronounced correlation between the number of atoms and location.

With first degree homology (seen in Figure 3.26), similar conclusions can be made.

Although the shape space looks markedly different to that found for the Wang data set,

similar correlations with the number of cycles can be seen. However, it is worth seeing
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(a) Exponential Kernel

(b) Lorentz Kernel

Figure 3.24: Two dimensional projection of second degree shape space. Coloured
by the number of cycles. The short decay-scale of the exponential kernel leads to a

point-like distribution of the chemical shape space.

if this number of cycles correlation is actually a correlation with the number of first

degree features. This can be seen in Figure 3.27. Molecules tend to group depending

on the number of first degree features, with resolution being lost when nfeatures ≥ 2.

However, for this low resolution subset, molecules appear to cluster based on the actual

number of cycles in the molecule. This behaviour can be explained by considering the

underlying persistence diagrams. The true cycles in the molecule would be expected to

cause features that are far from the diagonal, whereas other first degree features would

likely be noise. This would lead to bottleneck distances correlating with the number of

cycles in a molecule, for these larger molecular systems.
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Figure 3.25: The two dimensional projection of the zeroth degree chemical shape
space for the ChEMBL data set. Coloured by the number of atoms in the molecule.
Although the shape space looks different for the new data set, the relationship between
the number of atoms and location in zeroth degree homology shape space is retained.

Figure 3.26: The two dimensional projection of the first degree chemical shape space
for the ChEMBL data set. Coloured by the number of atoms in the molecule. Although
the shape space looks different for the new data set, the relationship between the number

of cycles and location in first degree homology shape space is retained.
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(a) Coloured by Actual Value (b) Coloured by class {0,1,2,3+}

Figure 3.27: Two dimensional projection of first degree shape space, coloured by
the number of first degree features in a molecule’s persistence diagram. A relationship

between number of first degree features and location is now observed.

Figure 3.28: The two dimensional projection of the second degree chemical shape
space for the ChEMBL data set. Coloured by the number of cycles in the molecule.
As before, it is difficult to determine the relationship between location and number of

cycles in second degree homology.

Finally, the second degree shape spaces can be compared (Figure 3.28). The familiar

three clusters are seen, corresponding to the number of second degree features. Unlike

the first degree space, the correlation with the number of cycles is no longer seen. This is

a result of the second degree features tending to be closer to the diagonal, with the cycle

‘artefact’ features mentioned previously in particular having similar birth and death

values.

Although all of the ChEMBL-FL spaces look different to those found for the Wang data
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set, the broad conclusions regarding location and molecular descriptors are the same. In

particular, the zeroth degree space is intimately connected to the number of atoms, and

the first degree space is connected to the number of cycles. The second degree space

relates strongly to the number of second degree features, which in turn is again linked

to the number of cycles. However, as most second degree features are actually artefacts,

rather than true voids found within molecular conformations, it is difficult to determine

which ‘real’ chemical property determines the second degree space.

3.4.5 Chemical Shape Space: Effect of Multiple Conformations

As an example for how the persistence landscape is able to capture conformational flexi-

bility, some conformers and their individual first degree landscapes for 11-aminoundecanoic

acid can be found in Figure 3.29. The mean landscape for the 31 low energy conforma-

tions found in the conformer generation procedure is seen in Figure 3.30. Although it is

difficult to determine what features of the molecule lead to features of the persistence

landscape, it is clear that the landscapes from different conformations can markedly

differ, and the mean landscape contains information about all of the conformations.

Although there are no loops within the molecule, the first degree landscapes contain

features caused by non-bonded groups of atoms.

The shape space induced by the l1 metric on persistence landscapes (Equation 2.11),

and in particular how this can be used to develop shape spaces for multiple conformers

is investigated. For the Wang data set, a set of low-energy conformations (with RMSD

pruning) were created for each molecule. Persistence landscapes were calculated, and the

l1 metric between mean persistence landscapes were found for each degree of homology

separately. MDS can then be calculated on the distance matrices, and projected into

two dimensions. For zeroth degree homology, this can be seen in Figure 3.31.

The space again correlates with the number of atoms. The space is now connected

- with disconnections caused by gaps in the distribution of the number of atoms. To

understand if this is a feature of the multiple conformations, or instead a property of the

landscape metric, the same procedure was performed on the minimum energy conformer

landscape, as opposed to the mean landscape. This can be seen in Figure 3.32.

The two projections are similar, and they are indeed both connected. The connectedness

is therefore not a result of the multiple conformations and mean landscape in some sense

‘smoothing’ the distance metric. In fact, this similarity is not unsurprising. The zeroth

degree homology is essentially measuring nearest neighbour information. Bond lengths

would not particularly be expected to vary between minimum energy conformations.

This would therefore lead to the different conformations having similar zeroth degree

homology and persistence landscapes, and the mean landscape to reflect this similarity.
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Figure 3.29: Some low energy conformations of 11-aminoundecanoic acid and their
first degree persistence landscapes. The different conformations can lead to different
persistence landscapes, which can be combined to create a single persistence landscape

reflecting molecular flexibility.

Figure 3.30: The mean first degree persistence landscape for the 31 low energy con-
formations of 11-aminoundecanoic acid. This landscape can be used to create a shape

space reflecting the inherent flexibility of molecules.
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Figure 3.31: The two dimensional projection of the zeroth degree chemical shape
space for the Wang data set, multiple conformations. Coloured by the number of
atoms in the molecule. There is a relationship between number of atoms and location,

as before.

Figure 3.32: The two dimensional projection of the zeroth degree chemical shape
space for the Wang data set, minimum energy conformation. Coloured by the number
of atoms in the molecule. The space is unchanged when compared to the landscape

space utilising multiple conformations. Reasons for this are discussed in the text.
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The first degree homology shape space projections can be seen in Figure 3.33, for both

the mean persistence landscape and the minimum energy conformation landscape. The

two spaces are again similar, but not as similar as the two zeroth degree projections.

This is due to two effects:

(a) Multiple conformations, mean landscape

(b) Lowest energy conformation, single landscape

Figure 3.33: Two dimensional projection of first degree shape space with the land-
scape metric, for both mean landscapes and minimum energy landscapes. Coloured by
the number of cycles in a molecule. The relationship between number of cycles and
location is again observed, and there is a difference in the shape spaces when multiple

conformations are considered.

• Changes in the ring conformation themselves, leading to changes in position of

pre-existing first degree features

• Changes in overall conformation that lead to new (short lived) first degree features

The large-scale differences are likely due to the former. This is because these features

are likely to be more long lived, and therefore lead to larger differences in the persistence
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landscapes themselves. In contrast, the new features are topological noise, caused by

simplices between distinct regions of the molecule. These would be short lived, and

therefore lead to small changes in the landscape and the overall shape space.

The same projections, for the second degree landscape space are found in Figure 3.34.

The conclusions to be made regarding second degree homology are largely similar to

(a) Multiple conformations, mean landscape

(b) Lowest energy conformation, single landscape

Figure 3.34: Two dimensional projection of second degree shape space with the land-
scape metric, for both mean landscapes and minimum energy landscapes. Coloured by
the number of cycles in a molecule. The relationship between location and number of

cycles is again harder to find in second degree homology.

those made previously, including the similarity to second degree homology. Again, this

is due to second degree features caused by the death of first degree features. Furthermore,

the space does not seem dependant on whether a single conformer, or multiple conformers

are used when defining the shape space.



Chapter 3 Topological Data Analysis of Chemical Space 75

3.5 Conclusions and Future Directions

Topological data analysis has been applied to two tasks in the analysis of chemical

space. The mapper algorithm has been used to understand a descriptor space of a set

of molecules, and the conclusions from the resulting networks used to better understand

solubility prediction. It was found that there is a correlation between the solubility

and the number of chlorines in a molecule, but only for molecules with two rings. This

correlation was then taken advantage of with the creation of linear mixed models, that

were able to improve the consistency of solubility prediction.

Topological data analysis was then used to create a molecular shape space. Persistent

homology was used to understand the topology of molecules from their atomic distances,

before the bottleneck metric was used to create a notion of similarity. Different degrees

of homology then created different molecular shape spaces. The zeroth degree homology

space was found to be closely related to the number of atoms in a molecule, and the

first degree space was found to correlate with the number of rings. Through similarity

network fusion, these spaces were combined to create a single molecular shape space for

a data set. As well as atomic distances, persistent homology was then calculated on

functions of the distances themselves through kernels. However, as the kernel did not

take into account atom or bond types, it was found that there was little effect of the

kernel. This persistence methodology was then extended to persistence landscapes, to

account for the effect of multiple low energy conformations, which may alter the shape

space. The same correlations were found between different degrees of homology and

molecular properties, and it was found that the effect of conformation was negligible.

In future, the mapper algorithm could be applied to other, difficult to predict molecular

properties, such as drug activity. This enables the creation of simpler models, which

are more interpretable than deep learning methodologies. With regard to solubility pre-

diction, the Box Cox transformation on the Wang data set has recently suggested that

the log transformation may not lead to normally distributed data (although there are

physical reasons why the log transformation is used). The impact of this effect on the

residuals studied should be investigated. Regarding chemical shape space, in future the

effect of kernels could be investigated further, through the use of different character-

istic length scales for different interactions. Also, a comparison of this description of

chemical space, and others such as the ‘Molecular Quantum Number’ description would

be interesting [153]. In particular, the use of two dimensional persistence, such as that

suggested by Keller [92], would enable charge information to be included in a persistent

homology description of chemical space.





Chapter 4

Topological Data Analysis of

Conformational Space

4.1 Introduction

4.1.1 Configurational Spaces

The notion of a conformational space is related to that of a configuration space in physics.

The configuration space of a system can be thought of as the space defined by all of its

possible positions, subject to its constraints. This is distinct from the phase space of the

same system, which also describes momenta. The phase space therefore also describes

the dynamics of the system, as opposed to the statics described by the conformational

space.

Consider a single particle, moving with the influence of no external forces in Euclidean

3-space. Its position at any moment t can be written as:

r(t) =

x(t)

y(t)

z(t)


with the associated configuration space of the system being R3. In principle, this de-

scription can actually be reduced further. The system is under no external forces, and

therefore every location r ∈ R3 is identical. This is an underlying symmetry of the

system, and if this symmetry could somehow be taken into account, the configuration

space could be in some sense ‘simplified’. For this example this is trivial - all points in

R3 are identical, leading to a ‘simplified’ conformational space of the singleton {∗}.

77
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Now consider a system of two identical particles joined by a rigid rod. Clearly, the

positions of the particles can be written as:

q(t) =



x1(t)

y1(t)

z1(t)

x2(t)

y2(t)

z2(t)


therefore the configurational space is at most R6. However, in the same sense as previ-

ously, symmetries can be removed from the system. Firstly, the position of one particle

can be fixed as the origin. This leads to a configurational space of R3. Further, the

two particles are a fixed distance apart, due to the rigid rod. This implies that the only

coordinate needed to describe the location of the second particle (relative to the first) is

some angle θ - the configurational space of this system can therefore be reduced to the

circle S1.

Turning to an example which is perhaps more familiar to chemists, consider the system

above with a flexible rod. It is clear that such a system is analogous to a classical

approximation to a diatomic molecule. Now, the system can be described by the length

of the rod, and the angle. This leads to a configurational space of R+ × S1, a cylinder

of infinite extent. Provided the bond has a maximum length, the configurational space

can be considered to have the topology of I × S1

This chapter focuses on the classification and analysis of configurational spaces of molecules,

via topological data analysis. However, it is already apparent the need to define the no-

tion of a molecule exactly, as well as which symmetries may be considered. A full,

mathematically rigorous treatment can be found in [30]. This work presents a definition

lacking in the complete rigour, but designed to match notions familiar to chemists.

4.2 Mathematical Definitions

4.2.1 Molecules and Conformers

Molecules are inherently quantum objects. However, the use of classical approximations

to molecules is ubiquitous in chemistry, for example in classical molecular dynamics

simulations. This classical treatment of molecules is utilised in this work, although

it would be an interesting region of future study to extend the methods of analysis

described here to a quantum treatment.
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Firstly, a classical description of a molecule must be defined. This definition should be

as general as possible, in particular the definition should not make reference to a set

of coordinates describing the molecule in R3 - as this is now moving into defining a

conformer. The notion of a molecular graph is useful here, and familiar to chemists. A

molecular graph is a tuple G = (V,E, cv, L,Θ) with the following data:

1. Γ = (V,E) is a finite, undirected graph. V is a finite set of vertices, and E is a set

of unordered pairs (v, w) ∈ V detailing edges between vertices. Chemically, these

correspond to atoms and bonds respectively.

2. cv : V → N is a vertex colouring, where for every vertex in V , cV describes the

element of any given atom

3. L : E → (0,∞) is a set of length constraints, describing bond lengths

4. Θ : E2 → (0, π] is a set of angle constraints, where:

E2 = {(v, w1, w2) ∈ V × V × V |(v, w1), (v, w2) ∈ E,w1 6= w2}

is the set of adjacent bonds, i.e. Θ(v, w1, w2) is the angle between bonds (v, w1)

and (v, w2) ∈ E.

A single conformer C can be considered to be a geometric realisation of G into R3, such

that for two bonded atoms (v, w) their Euclidean distance is equal to L(v, w), and for

each pair of adjacent bonds (v, w1) and (v, w2) their angle (as defined by the dot product)

is equal to Θ(v, w1, w2). The classical energy of a conformer can be calculated via the

use of molecular mechanics forcefields, of the general form:

E(C) =
∑

(v,w)∈E

kv,w
(
d(v, w)− d̄v,w

)2
+

∑
(v,w1,w2)∈E2

Kv,w1,w2

(
Θ(v, w1, w2)− Θ̄v,w1,w2

)2
+

∑
t∈torsions

Et(τ)

(4.1)

Where d̃ and Θ̃ can be considered to be equilibrium values of a given bond length and

angle respectively. The first term treats bond stretching in a harmonic manner, the

second treats angle stretching similarly. The third term describes how the energy of a

given torsion angle (i.e. between 4 adjacent atoms) varies:

Et(τ) =
∑
n

1

2
Vn(1 + cos(nτ + δn)) (4.2)

Neither the definition of the molecule, or definition of the conformer, make reference

to torsion angles τ . This torsional flexibility leads to the definition of a conformational

space.
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4.2.2 Conformational Spaces

The most general definition of a conformational spaceM is as the set of all permissible

embeddings of G. However, there are various symmetries that could now be taken into

account. The first symmetry is translational - there is nothing in the previous definition

prohibiting the same conformer embedding in different regions of R3. This symmetry

can be taken into account via a centre of mass alignment.

The second symmetry that could be taken into account is rotational. After a centre of

mass alignment, two conformers may be identical except for a transformation in SO(3).

This can be dealt with by aligning principal axes of inertia for the conformer set - or in

this work via an RMSD alignment (see Chapter 4.4.1 for more details).

The final symmetry that can be taken into account is the symmetry inherent to the

molecule itself. Specifically, a subset of vertices in G may be equivalent. This can be

analysed by studying the permutation group of the molecular graph - which vertices

can be swapped without changing the graph. This symmetry is more general than the

point group symmetry often studied in chemistry, which details the symmetry of an

embedding of the molecular graph (i.e. a conformer). Furthermore, this symmetry is

less general than the complete permutation inversion group studied by Longuet-Higgins

[154], which details the symmetry of a quantum molecule (i.e. all nuclei of the same

element are equivalent, all electrons are equivalent etc.). Symmetries of a molecule, and

how the RMSD can take them into account, are covered in detail in [155].

Regardless of the symmetries taken into account, this work will use the term ‘conforma-

tional space’. It is clear from context which symmetries in particular have been used for

each example.

4.2.2.1 Properties of Conformational Spaces

There are some properties that a conformational space must require to ensure they

match ‘chemical intutition’. They are detailed below:

• Path-connected: A conformational space must be path connected. This ensures

that any conformer in the space can be transformed into any other. This allows

physical changes (bond stretching etc.) but not chemical changes to the molecule

(i.e. stereoisomerism)

• Metric space: There is some notion of similarity d between conformers. This allows

conformers to be compared - in particular to ensure that symmetries have been

removed

• Bounded: The limits of the conformational space exist
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These properties are not automatically fulfilled by the definition of a molecule above.

The definition of a molecular graph does not describe chirality, for example, and it will

be discussed later how this can be a potential issue. On the other hand, the bounded

property is satisfied by ensuring that there is a maximum/minimum bond length or

angle. This is not implied by the definition of C, but is necessary to ensure that bonds

cannot become infinitely long (dissociate), which is unphysical within this classical ap-

proximation.

4.3 Characterisation of Conformational Spaces

Conformational spaces of molecules have been studied previously, often in the context

of the creation of efficient methods for their enumeration. For example, RDKit uses

a distance geometry approach to conformer generation [117, 156]. Such a method is

particularly useful when generating small sets of low-energy conformers, such as those

described in Chapter 3. However, enumeration methods are often necessary, such as

for ring molecules. Work has been carried out by Porta et al, developing methods for

enumeration of molecular loop conformational spaces [157], which again can be reduced

to a distance geometry approach. Some comparisons of conformational space generation

methods can be found in [158, 159].

The body of work on the characterisation of conformational spaces is often focused on

a select few molecules, rather than general methods such as those outlined in this work.

Often this is because characterisation is difficult, whereas the calculation of low-energy

conformers is much simpler, and often all that is needed. However, the goal of char-

acterisation is still important. For example, features of the energy landscape can be

immediately learned, without calculation, from the conformational space itself. An ele-

mentary use of this is through the Borsuk-Ulam theorem, which states that if the map

f : Sn → Rn is continuous, there are two antipodal points on Sn which map to the same

point in Rn. If the energy map is assumed to be continuous (which is not an extreme

assumption), this implies that there should be two antipodal points on the conforma-

tional space of butane that have the same energy (given caveats on the assumption of

butane’s conformational space). The notion of treating the potential energy surface as

a map from the conformational space itself is not new, and has been seen previously

for alanine dipeptide [160]. Furthermore, the notion of studying trajectories through

dimensionality reduction [161, 162], has an intrinsic dependence on the properties of the

underlying conformational space.

As mentioned, characterisation methods have previously been restricted to the analysis

of the conformational space of single molecules, or molecules of a particular class. For

example, Crippen studied the conformational space of cyclo-alkanes through distance

geometry [163]. However, this method is heavily restricted, as the conformers within
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the set are strongly restricted by the bounds on their constraint matrix. This leads to

cyclohexane having a disconnected conformational space in his analysis, as only torsion

pseudorotations were allowed. As explained later in the text, an n-site loop has n − 6

torsion degrees of freedom - leaving cyclohexane with none. Transitions between chair

and boat conformations require bonds to bend and stretch - as can be seen with a basic

model kit.

For the conformational spaces of small flexible molecular loops, Porta et al used ideas

from robotics known as higher-dimensional continuation [164]. This method creates lo-

cal charts to efficiently sample the conformational space. Their work could certainly be

used in conjunction with the topological methods of this thesis to characterise the con-

formational spaces of complicated molecules. This work is strongly related to the work

carried on by Martin et al [165, 166], which was able to characterise the conformational

space of cyclooctane - this work is discussed in more detail in this thesis.

4.4 Analysis Methodology

The general procedure for the generation and analysis of conformational spaces can

be seen in Figure 4.1. The initial set of conformers is generated via RDKit’s distance

geometry methods. This leads to a set of randomly generated conformations, which it

is hoped covers all of the degrees of freedom of the space (including bond length and

angle variation). Furthermore, by allowing all degrees of freedom to vary, it is possible

to study the effect of this on the resulting conformational space.

However, there is a chance that the degrees of freedom are not entirely covered, or

covered in an unphysical way. For example, amide bonds may become too flexible, or

torsional degrees of freedom become too narrowly distributed. Therefore these degrees of

freedom are always checked, and if necessary manually altered in a stochastic manner, to

ensure that the conformer sets match chemical intuition. As a further check, conformers

are filtered by their energies. This is designed to remove conformers with unphysical

atom overlaps.

Once the conformer sets are generated, they are transformed into two conformational

space representations. These are described in more detail in Chapter 4.4.2, but they

lead to two different metrics between conformations. One of the aims of this work is to

determine if these two metrics are equivalent, and in general to contrast between these

representations. For each representation, different analyses can be performed, using

persistent homology. The persistent homology analyses are described in more detail

later in the chapter.

The specifics of the procedures for each molecule studied in this work are presented in

more detail later, but all follow the general methodology defined above.
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1. Generate initial
pool of conformers

2. Check dis-
tributions of

degrees of freedom

3. Remove
unphysical

conformations

4. Create confor-
mational space
representations

Euclidean metric RMSD Metric

5. Persistence
of metric space

6. Persistence of
energy function

7. Dimension-
ality Reduction

Figure 4.1: The general procedure used for the analysis of conformational spaces via
persistent homology.

4.4.1 Conformational Space Representations

Given a set of conformers, various representations can be defined on their conforma-

tional spaces. These representations could in principle lead to different topologies of the

conformational space. This work investigates two representations, the first using the

Euclidean metric and the second the RMSD metric. This section details how these two

metrics are generated, how they influence their corresponding representations, and how

persistence can be done on them in principle.
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A single conformer C, consisting of n atoms, can be written as the following matrix or

equivalent vector in R3n:

C =


x1 y1 z1

x2 y2 z2

...

xn yn zn

 '
(
x1 y1 z1 x2 y2 z2 . . . xn yn zn

)

A conformational space M set of m conformers can therefore be written as a matrix in

R3n×m:

M =


C1

C2

...

Cm

 =


x1,1 y1,1 z1,1 x2,1 y2,1 z2,1 . . . xn,1 yn,1 zn,1

x1,2 y1,2 z1,2 x2,2 y2,2 z2,2 . . . xn,2 yn,2 zn,2
...

...
. . .

...

x1,m y1,m z1,m x2,m y2,m z2,m . . . xn,m yn,m zn,m



The Euclidean metric is then defined as:

dE(C1, C2) =

√√√√√√
n∑
i=1

 ∑
α∈{x,y,z}

|αi,1 − αi,2|2

 (4.3)

The RMSD metric can be defined similarly:

RMSD(C1, C2) =

√√√√√√ 1

N

n∑
i=1

 ∑
α∈{x,y,z}

|αi,1 − αi,2|2

 (4.4)

The metrics are clearly similar, and if both representations used the same alignment of

conformers, they would lead to equivalent conformational spaces. However, the repre-

sentations differ in how the conformers are aligned. For the RMSD representation, each

pair of conformers are pairwise aligned:

d̄R(C1, C2) = min
g∈SO(3)

dR(C1, g(C2)) (4.5)

In contrast, the Euclidean representation is defined as follows:

d̄E(C1, C2) = dE(g1(C1), g2(C2)) (4.6)

Where:

gn = arg min
g∈SO(3)

dR(Cref , g(Cn)) (4.7)
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i.e. the alignment takes place before the metric is calculated, and is to some reference

conformer. In this work, the reference conformer is found via a quantum mechanical op-

timisation using Gaussian 09 [167], with the B3LYP functional [168] using a 6-311g(d,p)

basis set and dispersion correction, unless otherwise stated.

The question now becomes: why would two representations be necessary? The Eu-

clidean metric requires a total of m alignments, and only requires storage of a 3n ×m
matrix. This is computationally efficient. In contrast, the RMSD metric would require

m(m− 1)/2 alignments, and this many values must be stored. In particular, there is no

equivalent coordinate matrix for the RMSD representation. To ensure good coverage of

the conformational space n � m and therefore the RMSD representation requires the

storage of large amounts of data in memory.

In essence, the Euclidean representation is desired for ease of computation and use,

whereas the RMSD representation is required to ensure the most accurate description of

the conformational space. One of the goals of this work is to assess the situations where

each representation is required in practice.

4.4.2 Persistent Homology Details

In contrast to the rest of this work, this chapter explores more than just Rips persistent

homology. This section details the specifics regarding the various flavours of persistence

in this chapter. Please refer to Chapter 2 for more details regarding the mathematics

behind persistent homology.

4.4.2.1 Persistence of Conformational Spaces

This persistent homology method is the most similar to those studied in the rest of the

work. The Euclidean and RMSD representations define a conformational metric space.

Rips persistent homology approaches enable understanding of holes in the conforma-

tional space. These holes take two forms:

1. Holes due to a lack of sampled conformers

2. Holes due to the topology of the conformational space

Provided that the conformer generation procedure defined above is correct, the holes

of the first type should be small, and therefore close to the persistence diagram. In

contrast, the second type of holes should all be long lived. This work investigates the

use of persistent homology in determining the conformational space of a molecule.
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4.4.2.2 Persistence of Energy Functions

Previously, the Rips procedure has been used to define a sequence of filtered simplicial

complexes from a set of vertices (in this case, conformers). However, given a well-behaved

function defined on the vertices v, there exists a natural extension to any p-simplex σ:

f(σ) = max
v∈σ

f(v) (4.8)

The sublevel sets of f are defined as:

Lc(f) = {σ|f(σ) ≤ c} (4.9)

From the definition of f it is clear that, for a < b, La ⊆ Lb. This implies that the

inclusion maps of Equation 2.4 are well-defined and lead to induced maps in homology.

Persistent homology can therefore be calculated of the function f(σ) defined on the

simplicial complex.

In general, persistent homology of functions defined on simplicial complexes contains

information regarding critical values of the function itself. It is strongly related to the

mathematical field of Morse theory [91]. Here, persistence is explained via a series of

examples.

To understand what the persistence of f implies, consider the example one-dimensional

simplicial complex found in Figure 4.2, with its associated height function. It is clear

that there would be no interesting first degree homology or higher, therefore only zeroth

degree homology (i.e. connected components) is discussed for this complex.

In this example, the notion of height level persistence can be thought of as sweeping up

a line parallel to the x-axis, and seeing what is underneath. As the complex is discrete,

the only values of y that need to be discussed are the height values of the simplices,

denoted yα, yβ, yγ , yδ, yε, and yζ in ascending order.

At y = yα, there is one connected component, so a zeroth degree feature is born. At

y = yβ, another zeroth degree feature is born. y = yγ does not change the number of

connected components, and therefore the persistent homology does not contain infor-

mation regarding v2. At y = yδ, the connected components born at yα and yβ merge.

Using the elder rule, the one that persists is the component at yα. Also at yδ, a new

component is formed by v4. yε does not change the number of connected components,

and finally yζ sees the merging of the two alive components by v6, which then lives

to infinity. The zeroth degree persistent homology can therefore be summarised as the

following three features:

1. A feature born at yα, that lives to infinity

2. A feature born at yβ, that dies at yδ
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v0

v1

v2

v3

v4

v5

v6

x

y

yα

yβ

yγ
yδ

yε

yζ

Figure 4.2: A one-dimensional simplicial complex, with geometric realisation match-
ing its associated height function. The colour of the simplex is determined by the value
of its height function. By observing how the homology of sub- and super-level sets
of the simplicial complex change as a function of height, critical points of the height

function can be found.

3. A feature born at yδ, that dies at yζ

Upon further inspection, it is apparent that this filtration contains information regarding

the maxima of the height function. In particular, the non-trivial features detail the value

of the maximum, as well as its closest minimum. Information about minima can also be

gained by inverting the height function.

f̃(v) = max
ν

f(ν)− f(v) (4.10)

where to avoid confusion, ν is used to represent the vertices when finding the maximum.

f̃ can be extended to higher order simplices in a similar manner to previously, and

persistence can therefore be taken of f̃(σ).

This discussion can be extended to higher order simplicial complexes, such as those

equivalent to surfaces. An example can be seen in Figure 4.3, which uses the two

dimensional function:

f(x, y) = | sin(x) + sin(y)|+ |x|
10

chosen due to its different height minima and maxima.

By L0.6(f), there is a single zeroth degree component, and several first degree compo-

nents. Each first degree component encloses a maximum of f . These components have

disappeared by L2.4(f), implying that the enclosed maximum is within the sublevel set.

Notice that this is different to the one-dimensional case, where criticality was found using
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(a) Original Surface f(x,y) (b) L0.0(f)

(c) L0.6(f) (d) L1.2(f)

(e) L1.8(f) (f) L2.4(f)

Figure 4.3: A function defined over a surface, and a series of its sublevel sets. Within
the sublevel sets, black regions should be considered as ’real’, whereas the white regions
are those not within the set. Again, differences in homology allow critical points to be

determined.

zeroth degree homology. A reasonable rule of thumb is that for an m-dimensional region

of a simplicial complex, critical values are contained in (m−1)-dimensional information.

Returning to conformational spaces, the general function of importance is the single

point energy of a conformer. The underlying simplicial complex, and the energy function

chosen, are discussed in more detail for each analysis individually.
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4.5 Molecule Sets

This section will detail the molecules studies in this chapter. In particular, it will explain

the rationale of choosing each molecule, as well as detail which features of conformational

spaces will be studied with each molecule. This section will also explain the nuances in

generating each conformer set.

4.5.1 Alanine Dipeptide

Alanine dipeptide (Figure 4.4) is a commonly studied molecule, in particular within

enhanced sampling [169, 170, 171, 172, 173, 174, 175]. This is due to its ‘well understood’

conformational space, and asymmetric free energy landscape. The conformational space

(a) With atoms, torsion angles and chiral cen-
tre labelled

(b) With alignment core
highlighted

Figure 4.4: The alanine dipeptide molecule, with chiral centre and alignment core
highlighted.

of alanine dipeptide is widely stated to be that of a torus [176, 162]. This can be

understood from Figure 4.4(a). The bond between atoms 5 and 7 is a free torsion,

likewise with the bond between atoms 5 and 3. These bonds can rotate around a full

circle. In contrast, the C-N bonds (between atoms {7,8} and atoms {2,3}) have a

restricted rotation, due to the amide bond resonance. These bonds are fixed to a planar

geometry. As there are two free torsions, the conformational space is considered to be

their product: S1 × S1 = T 2, the torus. However, this assumes that other degrees of

freedom, such as bond bending and stretching, do not contribute to the conformational

space - the rigid geometry hypothesis [157].

When generating the conformational space for alanine dipeptide, care has to be taken

to ensure the conformational space is both physically correct and matches chemical

intuition. Firstly, the chiral centre on atom 5 has to be dealt with. Proposition 3.6 of

[30], found by Ingrid Membrillo-Solis, is that different each chiral centre leads to a pair

of path connected components of the space. This corresponds to the chemical notion of

a lack of interchange between enantiomers. Within this work, a conformational space

has to be path connected, and therefore the chirality of the molecule must be fixed. This

work fixes the chiral centre to have the S chirality.
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Another issue with generating the conformational space is due to the presence of the

amide bond. As mentioned, the amide bond is found in a planar geometry. The trans-

isomer is more favoured, however both isomers are found [177]. If a hypothetical con-

former set contained both isomers, there would not automatically be a path between

them. This could be rectified if a path was manually added in some manner, with the

conformational space changing accordingly. For example, a path could be added by

manually adding conformers with the amide torsion angles being distributed on [0, 2π),

and this would add another pair of circles to the conformational space product. Rather

than deal with this added complication, this work simply fixes the amide bonds to the

trans-isomer.

The conformer set for alanine dipeptide is generated using the procedure described in

Figure 4.1. Specifically:

• Step 1: Limit initial pool to include only the S -enantiomer.

• Step 2: Ensure free torsions are distributed on [0, π). Also ensure that amide

bond is fixed to trans isomer

• Step 4: For the Euclidean representation, align only core of the conformers (as

shown in Figure 4.4(b)). This is not the case for the RMSD representation.

The resulting conformer set has 9112 conformations of alanine dipeptide. The alanine

dipeptide molecule is used to test the following:

• Do the presence of hydrogens significantly alter the topology of the conformational

space?

• Does the difference in alignment procedure between the Euclidean and RMSD

representation lead to differences in the conformational space topology?

4.5.2 Pentane

The pentane molecule (Figure 4.5) is used in this work due to its structural simplicity.

Under the rigid geometry hypothesis, there are again two free torsions. This leads to

the same toroidal topology as previously. Unlike alanine dipeptide, there is a plane of

symmetry within pentane, leading to the two free torsions to be identical. The effect of

Figure 4.5: Skeletal formula of pentane

this symmetry can be understood pictorially. The image below shows a torus. Labelled

on the torus are a single point p, and a basis for the two first degree homological features
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that intersect p, labelled a and b. The torus can be ‘flattened’ by cutting along a and b.

This is the process of creating a CW-complex for the torus, and leads to the square on

the right.

p

a

b

a

a

b b

p p

p p

The next step is to recognise that the symmetry being added identifies the two loops a

and b as identical. This is analogous to folding the square along the diagonal, leading

to the triangle. Finally, the shape is stretched, resulting in the final space. By glu-

ing the edges back together, such that they match orientations, the resulting space is

topologically the Möbius band, seen in Figure 4.6.

a

a

p

p

pa

The conformer generation procedure for pentane is again as described in Figure 4.1.

However, the specifics vary when compared to the alanine dipeptide procedure.

Figure 4.6: The Möbius band

• Step 2: Ensure free torsions are distributed on [0, π).
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• Step 4: Perform two alignments, to the entire carbon chain:

– Align conformers such that their indices match

– Align conformers such that the reverse of the indices match

• Step 4 cont: Create two of each representation:

– Index Align: The representation with the matching index alignment

– Min Align: The representation where the minimum of the two alignments is

used

The above procedure led to a set of 9108 pentane conformations. The pentane molecule

is used to test the following:

• Is persistent homology able to detect the presence of symmetry?

• How does this vary between the two representations?

4.5.3 Cyclooctane

The skeletal formula for cyclooctane can be seen in Figure 4.7, and it may seem a strange

molecule of which to study the conformational space when compared to the other two

described in this work. However, the conformational space of cyclooctane has previously

been studied by Shawn Martin et al [166, 165], and therefore provides a useful molecule

with which to test persistent homology techniques.

Figure 4.7: Skeletal formula of cyclooctane

Under the rigid geometry hypothesis, it is well established that a loop of n nodes has

(n − 6) degrees of freedom [178]. This can be explained when it is considered that

the first 3 nodes define a plane, resulting in (n − 3) free torsion angles. However, the

process of joining the ends of the loop restricts 3 degrees of freedom (2 angles and the

length), resulting in (n − 6) total degrees of freedom. For cyclooctane, it is therefore

expected that there are two degrees of freedom. The most common set of topological

objects with this property are closed surfaces, and the classification of such objects is

well-established. Although a proof is not discussed here, the classification theorem of

closed surfaces states that any closed surface is homeomorphic to one of the following:
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1. The sphere S2

2. The connected sum of g tori T 2

3. The connected sum of k real projective planes RP 2

These surfaces have well-known Betti numbers, found in Table 4.1. Thus it would be

Surface β0 β1 β2

S2 1 0 1
Connected sum of g tori 1 2g 1
Connected sum of k real projective planes∗ 1 k − 1 0

Table 4.1: The Betti numbers βn for the classification of closed surfaces. ∗Technically
this depends on the field, see Appendix D.

hoped that the conformational space of cyclooctane could be classified with persistent

homology.

Before the discussion on how this work aims to study cyclooctane, it is worth describing

the two articles [166, 165] in more detail. For these works, the authors use other tech-

niques to determine the conformational space of cyclooctane (persistent homology was a

fairly recent development at the time of writing of these articles, and it is unclear if the

authors were aware of its existence). The authors firstly generate a conformer set using

a loop closure algorithm [179], before using the Euclidean representation (as named in

this thesis) to create a point cloud in R72. The authors then analyse this representation

using a combination of Isomap [180], and the generation of a single triangulation of

the conformational space - this is a particular area where persistence would have been

of assistance. The authors argue that the resulting low dimensional representation is

actually not one of the surfaces defined above. In particular, they find that the con-

formational space of cyclooctane is in fact the union of S2 and the connected sum of

two copies RP 2, topologically the Klein bottle KB. The authors found that the two

different closed surface intersect in two copies of S1, the circle. The Isomap embedding

found in [165] can be seen in Figure 4.8. It was Hendrickson who found in his 1967 work

Figure 4.8: The Isomap embedding of the conformational space of cyclooctane. Re-
produced from Figure 1 of [165]. The hypothesised spherical component can be seen,
with the Klein bottle component twisted in such a way as to make it look like an

hourglass.

on molecular conformation the existence of ten particular cyclooctane conformations

[181]. Martin et al were able to use the geometry of the cyclooctane to understand the



94 Chapter 4 Topological Data Analysis of Conformational Space

rates of relevant transitions between these states, and in particular why the boat-chair

conformation is significantly more common than the crown conformation, even though

there is a difference of approximately 1kcal/mol.

However, this work, and in particular the conclusions regarding the nature of the con-

formational space, require further study. Firstly, it is worth checking that the results

obtained are not due to the representation chosen. Secondly, the authors fixed a trian-

gulation of the space, which may impact their results. Previously, it had been thought

that the conformational space of cyclooctane could be respresented as the union of a

sphere and a torus [182] - Martin et al argued this was due to a limited sample of confor-

mations (supplementary information of [165]), and also the the choice of Cremer-Pople

ring puckering coordinates for the representation [183].

The cyclooctane set used in this work is a subset of the original data set used in [165].

In particular, 6040 conformations, where no two conformations have an RMSD < 0.05

were obtained from Shawn Martin directly. For cyclooctane, the following is tested:

• Is the conformational space that of a Klein bottle intersecting a sphere?

• Is this representation dependent?

The study of this cyclooctane data set has been of recent interest to other researchers in

the field of topological data analysis. For example, Stolz et al have developed topological

methods for geometric anomalies (such as those supposedly found in the circular inter-

sections of the conformational space), and tested it on this data set [184]. However, the

authors do not draw any chemical conclusions from their studies, instead just describing

their methodology.

4.6 Results

4.6.1 Alanine Dipeptide

The persistence diagrams for the different representations of conformers can be seen

in Figure 4.9. For this molecule, both representations are similar. This is due to the

alignment procedure in the Euclidean representation - by aligning to the defined core, as

opposed to the entire molecule, the motion of the free torsions are emphasised. Within

both representations, there are multiple discussion points from the persistence diagram.

The first set of features to note are the longer lived features, which have multiplicity

(1, 2, 1). These are the Betti numbers of a torus - as suggested by the rigid geometry

hypothesis. This is perhaps unsurprising, as by focusing on the heavy atoms only, a

large number of the degrees of freedom are missing, which may have contributed a large
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amount of noise. The two first degree long-lived features do not have matching birth

and death values. This reflects the asymmetry of the two flexible torsions in the alanine

dipeptide molecule - which leads to circles of two different radii. This can lead to issues

in molecular simulations, such as in creating data-driven collective variables [175].

(a) Euclidean Representation (b) RMSD Representation

Figure 4.9: Persistence diagrams for the two different representations of the all-atom
conformational space of alanine dipeptide. Black, red and blue correspond to zeroth,

first and second degree homology respectively.

There are two large clusters of second degree features. The cluster born earlier corre-

sponds to simplices between adjacent conformations. However, the second cluster is due

to the ‘filling in’ of the basis circles of the torus. This can be seen from the fact that the

birth values of this second cluster match the death values of the long-lived first degree

features.

It is worth seeing if these results are reflected with the heavy-atom conformational space.

The corresponding persistence diagrams can be found in Figure 4.10. The RMSD rep-

(a) Euclidean Representation (b) RMSD Representation

Figure 4.10: Persistence diagrams for the two different representations of the heavy-
atom conformational space of alanine dipeptide. Black, red and blue correspond to

zeroth, first and second degree homology respectively.

resentation is largely unchanged, as the relative contribution to the RMSD of hydrogen
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atoms is small. However, this is not the case for the Euclidean representation the asym-

metry of the two free torsions is much more pronounced. This is due to two factors,

firstly, hydrogen number 12 of Figure 4.4(a) sweeps a far larger circle than the corre-

sponding hydrogen number 19. The second difference is due to computational difficulties.

In particular, the heavy-atom Euclidean representation had to be subsampled, as the

persistence procedure was found to be too memory intensive to be performed on the

supercomputers available. These two factors lead to the pronounced difference in the

all-atom and heavy-atom persistence diagrams for the Euclidean representation.

However, it is also noted that the persistent Betti numbers appear to be unchanged for

the all-atom system. This suggests that the presence of hydrogen atoms do not seem to

add too much noise to the metric spaces of the RMSD and Euclidean representations

- i.e. the conformational space of molecules is not influenced by the extra degrees of

freedom caused by including hydrogen atoms.

4.6.1.1 Persistence of the Free Energy Surface

Using molecular simulation, it is possible to create the free energy surface for the two tor-

sional degrees of freedom of alanine dipeptide. In particular, metadynamics [185] over the

two torsion degrees of freedom allows recovery of the free energy. Using the GROMACS

[186] and PLUMED [187] software packages, the free energy surface was calculated with

assistance from Khaled Abdel-Maksoud (Figure 4.11), using the methodology defined

in [188]. This matches the free energy surface found in sources such as [172, 189, 162].

Such a surface can have its critical points analysed via persistent homology.

Figure 4.11: The free energy surface of the two free torsions in alanine dipeptide, as
calculated with metadynamics.
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Firstly, the simplicial complex must be defined. Beginning with the vertices, a (50× 50)

grid of (φ, ψ) coordinates was generated, before the free energy calculated on these

vertices. Next, 1- and 2-simplices must be determined in a way that recreates the toroidal

topology of the (φ, ψ) space. The method for 1-simplices can be seen in Figure 4.12.

Each vertex is connected to its four neighbours, as well as to its north-eastern neighbour.

The boundary of the grid is also connected such that rather than a plane, the topology

is that of the torus. 2-simplices are then defined by filling in all of the smallest triangles,

and the energy of higher order simplices is found using the relationship in Equation 4.8.

Figure 4.12: The basic method for creating a simplicial complex with toroidal topol-
ogy. Nodes of the same colour (excluding black) are identified. The basic unit is within
the shaded area. Provided the basic unit has at least 3 vertices connected in this way,

this is a valid simplicial complex.

Persistence diagrams of the free energy surface and its related inverted form (Equation

4.10) can be seen in Figure 4.13. Both persistence diagrams have the persistent Betti

numbers (1,2,1). Here, this is a result of the construction of the simplicial complex itself,

rather than an emergent property of the data set as previously, such as in Figure 4.9(b).

The first degree persistent features do not have matching birth times, which is due to

two effects. The first is the use of the maximum in Equation 4.10, which essentially sets

the ‘zero’ of energy. This choice is essentially arbitrary, but is used to ensure f̃ is strictly

positive. Altering this would shift all values birth and death times.

The second effect can be understood by considering the nature of these first degree

features. In particular, these features correspond to the basis for the cycles on the

torus, and are born when a complete path can be made around its periodic boundary.

Specifically, with the persistence of the free energy surface itself, the birth value of the

first of these features that are born describes the minimum energy path that crosses a

periodic boundary of the torus. In contrast, the same feature of the inverted surface

describes the maximum energy path - however care must be taken when extracting this

information that f̃ is transformed back into the free energy surface itself. In summary,

whereas the short-lived first degree features contain information about extrema, the

persistent feature describes a complete loop on the free energy surface, in particular

over the periodic boundary.
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(a) Free Energy Surface

(b) Inverted Free Energy Surface

Figure 4.13: Persistence diagrams of the free energy surface and its inverted form.
The persistence of the free energy surface contains information about maxima, whereas
the inverted form describes minima. Black, red and blue correspond to zeroth, first and

second degree homology respectively.

Looking at the other first degree features in more detail, a few things can be noted.

Firstly, rather than use the distance from the diagonal as a metric for significance,

instead the persistence p = δd − δb is used. Basic geometry shows that these quantities

are proportional, however the persistence directly measures a useful quantity regarding

the extrema. For example, in the case of the surface itself, the persistence describes

how much higher a maximum is from its lowest energy minimum. Also, notice that the

matching between maxima and minima is not trivial. This is much simpler in the one

dimensional complex case, the matching can often be done by eye.

However, it is sometimes possible to match topological features to features of the energy

landscape, by seeing which vertices (and higher order simplices) are inserted into the

complex at any given time. Take, for example, the feature in Figure 4.13(a), at coor-

dinate (26, 60). From the free energy surface in Figure 4.11, it can be seen that this

is likely to be the feature at φ ≈ 0, ψ ≈ 2.7. The two maxima at φ ≈ −2.3, although

they are the highest free energy, are not particularly persistent, with the persistence
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diagram feature at (57, 70) corresponding to the maximum at (−2.3,−1.4). This is due

to the presence of the saddle point at (−2.3, 0) - which leads to complications for morse

persistence. Furthermore, the global extrema are often not found in this procedure, as

rather than closing an (n− 1)th degree hole, they close the surface itself, corresponding

to a nth degree feature.

Similarly, the feature in Figure 4.13(b) at (47, 68) can be seen to correspond to the

minimum at (−1,−0.4) through the same procedure. The maxima and minima found

are highlighted in Figure 4.14, where it can be seen that the persistence of these features

is not simply dependent on the extremum value, but the relative difference between

extrema values.

Figure 4.14: The free energy surface of the two free torsions in alanine dipeptide,
with extrema found by persistence highlighted. Points are coloured by their persistence
values, with larger values corresponding to minima which are much deeper than their

respective maxima and vice-versa.

4.6.2 Pentane

The persistence diagrams for the different representations, index align can be seen in

Figure 4.15. The RMSD representation has qualitatively the correct persistent Betti

numbers, of (1,2,1). However, the persistent Betti numbers are not the same for the

Euclidean representation. β2 is harder to discern, with β0 and β1 appearing to be 1

and 4 respectively. The conformational space of pentane, without symmetry taken into

account, should be toroidal. This is what is seen in the RMSD representation, which was

previously stated to be the most accurate. Clearly, the methodology of the Euclidean

representation has led to an incorrect conformational space. One potential cause is that

the Euclidean representation has led to each rotatable bond contributing a circle to



100 Chapter 4 Topological Data Analysis of Conformational Space

(a) Euclidean Representation (b) RMSD Representation

Figure 4.15: Persistence diagrams for the two different representations of the heavy-
atom conformational space of pentane, without molecular symmetry taken into account.
Black, red and blue correspond to zeroth, first and second degree homology respectively.
The Euclidean representation does not correctly identify the expected toroidal confor-

mational space.

the conformational space, as opposed to the two truly free torsions. This could lead

to a space with β1 = 4. However, it is emphasised that this conformational space is

fundamentally incorrect, and therefore any interpretation of it should be viewed with

scepticism.

The persistence diagrams for the different representations, min align, can be seen in

Figure 4.16. Here, the Euclidean representation has broken down entirely. The persistent

β0 is now equal to two, i.e. there are two connected components in the space. These

components are clearly showing which alignment to the reference has been found - with

matching or opposite indices. If the opposite index matching is used, it is not surprising

(a) Euclidean Representation (b) RMSD Representation

Figure 4.16: Persistence diagrams for the two different representations of the heavy-
atom conformational space of pentane, with molecular symmetry taken into account.
Black, red and blue correspond to zeroth, first and second degree homology respectively.
The Euclidean representation again fails to capture the correct topology of the space.
The RMSD representation now has different persistent Betti numbers, illustrating that

the presence of symmetry changes the underlying topology.
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that this leads to a much greater Euclidean distance in this representation, as can be

seen from the previous discussion on conformational space representations. This is an

artefact resulting from the fact that the Euclidean representation fundamentally requires

the indices of atoms to match in its coordinate definition.

In contrast, the RMSD representation has persistent Betti numbers that appear to be

(1, 1, 0). Although this matches the Möbius band, as was the expected topology, the

Betti numbers also match a circle S1. However, the conformational space can be veri-

fied using MDS, in three dimensions (as both of these manifolds can be embedded in this

dimension). This can be seen in Figure 4.17, where there is a clear twist in the embed-

ding. This suggests the RMSD representation can correctly identify the conformational

space, even when taking molecular symmetry into account.

Figure 4.17: MDS projection of pentane’s RMSD metric with symmetry taken into
account. A twist is visible, suggesting a Möbius band topology.

In summary, from the analysis of the conformational space of pentane, it can be seen that

when possible, the RMSD representation should be used to ensure the correct topology

of the conformational space. The studies on alanine dipeptide did however show that the

Euclidean representation can capture the same topology, but it should never be assumed.

Therefore, considering that the previous work on cyclooctane [165] utilised the Euclidean

representation, it is important to validate their work, and see if their conclusions on the

non-manifold nature of the conformational space is correct. Furthermore, it is also now

possible to investigate the effect of symmetry on the conformational space of cyclooctane.

4.6.3 Cyclooctane

The persistence diagram for the RMSD representation of the conformational space of cy-

clooctane can be seen in Figure 4.18. The persistent Betti numbers are seen to be (1, 1, 2).

Immediately, this shows that the conformational space for cyclooctane is non-manifold.

This is a consequence of Poincaré duality, which states that for an n-dimensional mani-

fold M , the homology groups Hp(M) and Hn−p(M) are isomorphic, and therefore have
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matching Betti numbers. In this case, one would expect β0 to be equal to β2 (as has

been found for all of the previously studied conformational spaces). As this is not the

case, the conformational space of cyclooctane does not appear to be a manifold.

Figure 4.18: Persistence diagram for the RMSD representation of the conformational
space of cyclooctane. Black, red and blue correspond to zeroth, first and second degree
homology respectively. The persistent Betti numbers of (1,1,2) suggest a non-manifold

topological structure.

4.6.3.1 Separation of Manifold Components

Given that the conformational space is non-manifold (as expected from previous work),

the next logical step is to separate it into manifold components. Local PCA is a potential

route to achieving this, with an example seen in Figure 4.19. For each point, define a

neighbourhood according to some metric. Then, PCA is calculated for this subset, and

in particular information can be extracted from the number of non-zero singular values

of the correlation matrix to understand the local dimension around that point. If the

local dimension is different from what is expected, the point is removed from the original

set. This may separate the space, but each component can then be analysed.

Figure 4.19: Cartoon illustrating how non-manifold points can be removed to leave
a (disconnected) set of manifold structures. The yellow circle is used to demonstrate a
neighbourhood which is non-manifold, which when removed from the left image leads

to three manifold components on the right.

In the case of cyclooctane, the local dimension is expected to be two, as previously dis-

cussed. However, the local dimension analysis found points with local dimensions of two

and three. These singular points were extracted from the set, and PCA was performed

on this set. Clustering was also performed on the high dimensional representation, with

the projection coloured by cluster seen in Figure 4.20. It is clear that there are two
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circular paths. This compares favourably to the conclusions of [165], that the sphere

and Klein bottle components (which are yet to be demonstrated in this work) intersect

in two circles.

Figure 4.20: Three-dimensional PCA of the Euclidean representation of cyclooctane
conformers with local dimension three. Points are coloured based on the result of a
clustering analysis, performed in the high-dimensional space. These match the hypoth-

esised intersection circles from Martin et al ’s original cyclooctane work.

Having removed the singular points from the set, the next step is to separate the re-

mainder of points into their individual components. First, it is hypothesised that the

removal of the singular points leads to regions of low point density. This suggests that

a density-based clustering method (such as DBSCAN [190]) could be used to separate

the space. However, DBSCAN requires an estimate for the density a priori, which is

a major drawback. In particular, it assumes that all clusters are of the same density,

and that all regions of the cyclooctane conformational space are sampled with the same

efficiency. Instead a hierarchical DBSCAN (HDBSCAN [191]) was used. In essence,

HDBSCAN allows clusters of different density to be found, by finding regions of rela-

tively high density, and allowing the definition of ‘relative’ to change locally. HDBSCAN

was performed on the set of non-singular points, before PCA was used for visualisation.

This can be seen in Figure 4.21, where the hypothesis of using relative drops in density

to find clusters can be seen to be validated.

Perhaps remarkably, the system seems to separate into four neat clusters (clusters 1-4),

as well as a group of points that is less organised (cluster 5). The number of conformers

for each cluster can be found in Table 4.2. Having found these clusters, the next step

Cluster Number nconfs
1 426
2 3381
3 432
4 810
5 176

Table 4.2: The number of points found for each cyclooctane conformational space
cluster. The remainder of points are found in the singular clusters.
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Figure 4.21: Clusters of the non-singular points of the cyclooctane conformational
space, as found by HDBSCAN. Visualised by performing a 3-dimensional PCA on the
set of non-singular points, before viewing each cluster separately. These clusters can

then be matched to separate the original space into manifold components.

would be to ‘glue them back together’. The process of removing the singular points

would have not only separated the underlying manifold components, but it may have

split them further than necessary. In this case, rather than through a process of trial

and error, it is fairly straightforward to understand by eye which clusters slot into each

other. Clusters 1, 3 and 4 appear to fit together, and cluster 2 appears to stand alone.

Therefore, these were chosen to be glued back together. Further, the singular points

discovered previously were also included in each group.

To understand what structures are expected after the gluing procedure, rather than

perform PCA on the entire set, PCA was performed on each cluster separately. This is

found in Figure 4.22. Firstly, it is apparent that cluster 5 matches the pattern found for

the singular points in Figure 4.20. Given that the paths have already been established

and clustered, cluster 5 is removed from the set and is not further analysed. On the other

hand, clusters 1 and 3 seem to be spherical caps and cluster 4 could be the band between

the singular points. It is harder to determine the topology of cluster 2. Fortunately,

persistent homology provides a route for analysis.

4.6.3.2 Analysis of Clusters

The persistence diagram for the RMSD representation on the group of molecules formed

by clusters 1, 3 and 4 can be found in Figure 4.23(a). The persistent Betti numbers are

(1,0,1), suggesting that the sphere suggested in [165] has been found. Similarly cluster

2 (persistence in Figure 4.23(b)) was speculated to be a Klein bottle. The persistent
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Figure 4.22: Clusters of the non-singular points of the cyclooctane conformational
space, as found by DBSCAN. Visualised by performing a 3-dimensional PCA on each

cluster separately.

Betti numbers, (1,2,1) suggest either a torus or Klein bottle. By using a different field

of coefficients, in this case Z3, persistent homology can now distinguish between these

two manifolds (see Appendix D for details). The persistent Betti numbers, now (1,1,0),

support the Klein bottle hypothesis. Therefore, the original results found in [165] have

(a) Clusters 1, 3 and 4

(b) Cluster 2, coefficients in Z2 (c) Cluster 2, coefficients in Z3

Figure 4.23: Persistence diagrams of the RMSD representations of different groups of
clusters in the cyclooctane conformational space. The results suggest the hypothesised

sphere and Klein bottle components of the cyclooctane conformational space.

been validated using the stronger toolbox of persistent homology, allowing for fewer
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assumptions. Furthermore, there is no reason why the methods outlined in this chapter

could not be used for other molecules with more complicated conformational spaces.

The effect of symmetry on the different regions of conformational space can now be

studied. The symmetries allowed in cyclooctane can be deduced from the molecular

graph. Numbering the carbons around the chain {1, 2, 3, 4, 5, 6, 7, 8} is identical to the

numbering {2, 3, 4, 5, 6, 7, 8, 1} and so on. Furthermore, the order can also be entirely

reversed, equivalent to ‘flipping’ the molecule. This group can be identified as the

dihedral group D8, which has 16 elements. There are therefore 16 alignments for each

pair of conformers, with the minimum pairwise RMSD metric used as the representation.

(a) Clusters 1, 3 and 4 (The Sphere) (b) Cluster 2 (The Klein Bottle)

Figure 4.24: Persistence diagrams of the RMSD representations of different groups of
clusters in the cyclooctane conformational space, with the molecular symmetry taken
into account. For completeness, the coefficients are taken in Z2, but the overall features
are unchanged in Z3. The inclusion of symmetry effects leads to conformational spaces

with trivial homology groups.

Both the Klein bottle and spherical components no longer appear to have any interesting

topological features. The ‘flip’ symmetry of the molecule is identifying antipodal points

on the sphere as identical. The resulting space is homeomorphic to the real projective

plane RP 2, which has Betti numbers (1, 1, 1) with coefficients in Z2. Therefore, the extra

symmetries of the cyclooctane molecule have changed the topology of the conformational

space even further than the simple antipodal map.

4.6.3.3 Persistence of the Energy Landscape

Rather than using a new conformer set, such as the sampled points of a free energy

surface seen previously, this section details a general method that could work on any

system. Here, the conformational space is restricted to purely the spherical component,

however there is no reason why this logic could not be extended to other components,

or even the conformational space as a whole.
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Firstly, a method of defining a simplicial complex with the correct topology, using the

conformers of the spherical component as vertices, must be created. This can be ac-

complished using the persistence diagrams previously seen. Figure 4.25 demonstrates

that at δ = 0.6, the Rips complex has the topology of the Klein bottle. Therefore, if

all the simplices with birth time less than 0.6 are used in its construction, the simplicial

complex has the correct topology.

Figure 4.25: The two persistence diagrams of the spherical component. Highlighted
are the regions of the persistence diagram demonstrating features that are still alive at
δ = 0.6. This suggests the single Rips complex at this value of δ will have a spherical
topology. The energy function of points on this sphere can be defined, and critical

points calculated.

The next step is to define a function on each of the simplices. As opposed to the free

energy seen earlier, instead the single point potential energy (as calculated using the

MMFF94 forcefield [150]) is used. This energy function may be poorly behaved, as two

conformers with a small RMSD may have different energies - this will result in a noisy

persistence diagram as a final result. However, the potential function can be extended

to simplices in the same way as Equation 2.4, and persistence calculated. The two

persistence diagrams, for the potential energy landscape and its inverted form, can be

seen in Figure 4.26. As the sphere is a two-dimensional manifold, again it is the first

degree components that correspond to extrema.

The persistence of the energy landscape itself (Figure 4.26(a)) details topological features

corresponding to maxima. The minima are found from the first degree components of

Figure 4.26(b). The simplex which closes the topological feature can be related to a single

conformer. By projecting the spherical component of the conformational space into three

dimensions, the location of these extrema in the conformational space can be illustrated,

as seen in Figure 4.27. The found minima tend to be around the non-singular intersection

loops. These correspond to the ‘saddle’ conformations described in [165]. Their relative

‘peak’ conformations are however not found. Reasons for this may include differences

in potential energy function used (the original work utilised the MM3 forcefield [192]

implemented in Tinker), or perhaps that these peak conformations are peaks relative to

features in the Klein bottle space - this would merit further investigation.
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(a) Potential Energy Landscape (b) Inverted Potential Energy Landscape

Figure 4.26: Persistence diagrams of the potential energy landscape and its inverted
form. Each point corresponds to a different critical value of the energy function. Black

and red correspond to zeroth and first degree homology respectively.

Figure 4.27: Three dimensional PCA projection of the spherical component of the
conformational space. Highlighted points are the extrema found by persistent homology,
which are coloured by their persistence values. Critical points are found in the correct

region of the conformational space, as hypothesised by Martin et al.

The maxima that are found tend to be located near the poles (but are not the poles

themselves). These correspond to the twisted-chair-chair conformations of cyclooctane,

which are relative maxima to the chair-chair conformations. These tend to have a low

persistence, implying that the energy gaps between these conformations are small. The

more persistent maxima are found near the equator, and these correspond to the boat-

boat conformations. The most persistent maximum - i.e. the conformer found to have

the largest gap to its closest minimum, is illustrated in Figure 4.28.

4.7 Conclusions and Future Directions

This chapter shows the efficacy of persistent homology methods in the analysis of con-

formational spaces and energy landscapes. Applied to alanine dipeptide, persistent

homology was indeed able to verify the existence of the underlying toroidal conforma-

tional space. When compared to pentane, it was shown that different representations of
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(a) Position 1 (b) Position 2

Figure 4.28: Two views of the most persistent maximum found from the persistent
homology of the energy landscape of cyclooctane. This is a boat-boat conformation of

the molecule, as suggest by Martinet al.

the conformational space could indeed lead to different results, and therefore the RMSD

matrix should be used to ensure that the correct conformational space is found. Fur-

thermore, the analysis of pentane showed that the persistent homology method was able

to take molecular symmetry into account, in particular those of the molecular graph.

For the more complicated cyclooctane molecule, persistent homology, alongside local

dimension estimation, was able to verify the existence of spherical and Klein bottle

components to the underlying conformational space.

Persistent homology of real-valued functions on simplicial complexes allowed the analysis

of energy landscapes. With alanine dipeptide, a free energy surface on the two torsional

degrees of freedom was calculated. The free energy function was extended from points in

torsion space onto a simplicial complex with a toroidal topology, before having critical

points found using persistence. For cyclooctane, a Rips complex with spherical topology

was found, and a single-point energy function calculated. Again, critical points were

found, and were shown to match those found with other methods.

The persistent homology methods used in this work could be extended to other molecules.

In particular, the conformational spaces and energy landscapes of more complicated

molecules could be found, such as fused rings, or other interesting geometries. It is

also of interest to gain understanding of the conformational spaces of combinations of

molecules, such as butylcyclooctane, and how they can be related to the conformational

spaces of the separate molecules.





Chapter 5

Persistent Homology of Water

Networks

5.1 Introduction

This work began as an investigation into water solubility. In particular, it was believed

that studying the perturbation of water networks due to the influence of a solute would

enable better understanding of the solubility process, and lead to improved informatics

models. However, this work only uses persistence to understand the behaviour of bulk

water systems, as this became a difficult undertaking. This chapter therefore focuses on

understanding the intermolecular structure of pure water using persistent homology.

Firstly, the problem at hand is described, including a brief literature review. Then,

the use of molecular simulation is explained, including description of the various water

models used. The general use of persistence to understand materials is then introduced,

explaining what type of persistent homology is calculated on what object. Some intro-

ductory results, focusing on single snapshots of simulation are presented, and persistence

is shown to be a converged descriptor. Following that new methods, regarding differ-

ent normalisations of persistence images are tested. It is shown that l1 normalisation

leads to the most size-agnostic descriptor, which can therefore be used to understand

the equilibrium properties of bulk water. This method is then tested on a range of sys-

tems, investigating the effect of temperature and choice of atomistic model. As a more

difficult task, comparisons are drawn between atomistic water models, and the more

general coarse-grained Stillinger-Weber model for water. Finally, the use of persistence

landscapes as an analysis tool for water networks is briefly presented, before conclusions

are drawn about the use of persistence in general for this task.
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5.1.1 The Water Network Problem

As mentioned, the study of water networks, and in particular their perturbation with the

presence of a solute, is fundamental to the solubility prediction task. Furthermore, water

is famous for its anomalous properties, such as the increased density on melting, and high

surface tension - attributed to water’s ability to form 4 hydrogen bonds [193]. Simulation

has regularly been used to understand this behaviour through the structural properties

of water. Mark and Nilsson studied the radial distribution function (RDF) [194] of

different 3-site atomistic water models. It was shown that the slight differences in these

models, namely in Lennard-Jones and Coulombic terms, led to pronounced differences

in the heights of peaks in the O-O radial distribution function gOO (Figure 5.1). In

Figure 5.1: O-O radial distribution functions for studied water models at 300K.

their 2002 review, comparing water structures obtained from scattering experiments

and simulation, Head-Gordon and Hura discuss the ‘tetrahedrality’ of water networks

[195]. Using the following relationship for coordination number [196]:

Nc = 4πρ

∫ rmin

0
r2gOO(r)dr

(where rmin is the value of r at the minimum of gOO), it was shown that for water

Nc < 5. This, combined with the characteristic second peak found in gOO, implied that

water had a tetrahedral structure, matching the crystal structure of ice (I). The main

difference being that the tetrahedral lattice would have slightly distorted hydrogen bonds

[197, 198, 199]. Furthermore, approximately 15% of the hydrogen bonds present in ice

would be expected to break during the melting process, which would lead to interstitial

sites [200].
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As well as the RDF approach to water, methods such as the spatial distribution func-

tion (SDF) are used. In this case, the spatial degrees of freedom are not integrated

out, giving a 3-dimensional picture of the coordination of molecules [201]. This allowed

the observations of what was termed as two different motifs in SPC/E water. Firstly,

a purely tetrahedral water, found at all temperatures. Secondly, a temperature depen-

dent non-tetrahedral water. It is therefore unsurprising that there have been discussions

about whether water networks are truly tetrahedral, or if this is a misinterpretation of

the data. In fact, based on x-ray absorption results from 2004 [202], it was suggested

that the tetrahedral structure be replaced by a chain of water molecules, with each

having only 2 hydrogen bonds on average. This ‘tetrahedral vs chains’ discussion is

partially thought to be a matter of instanteous vs average properties, with instanta-

neous measurements ([202]) leading to a chain picture, and average measurements (such

as quantities derived from simulation) corresponding to tetrahedral conclusions [203].

Furthermore, the Stillinger-Weber potential contains a parameter tuning the strength

of these tetrahedral parameters (discussed in more detail later). Recent work has found

that the tetrahedral parameter does indeed have a strong influence on the phase diagram

of the system, and a particularly strong tetrahedral parameter leads to the removal of

water’s well known density anomaly [204].

Alternatively to both radial and spatial descriptions of water networks, graph-theoretical

approaches have been used. In particular, Clark et al have constructed graphs to rep-

resent correlation between water molecules [205, 206]. The main strength of such ap-

proaches is the ease of comparison between different environments, for example proximity

to a solute molecule. Furthermore, the abundance of graph-theoretical techniques such

as Google’s PageRank algorithm [207] have led to a wide range of derived descriptors

for both local and global structural properties. However, their approach necessitates the

use of a heuristic as to where two water molecules are defined to be correlated, such as

distance and orientation requirements. This does lead to the idea of creating a filtration

of molecular networks using persistent homology, as studied in this work.

5.2 Simulation Details

5.2.1 Atomistic Water Models

There are a wide range of water models that have been designed to be used in molecular

dynamics simulations, and no such model is able to accurately recreate all of water’s

famous anomalies. A wide range of these models are investigated in this work, as seen in

Table 5.1. These models were chosen as they are commonly used within simulation, and

previous studies have been performed comparing their structure and dynamics [194].

The Transferable Intermolecular Potential with 3 Points (TIP3P) [208] and Extended

Single Point Charge (SPC/E) [209] models are both 3-site, designed to match the 3 atoms
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of water. 4-site models, such as TIP4P [208], were created to better replicate physical

properties of water, such as its dipole moment. This was achieved by the addition of a

massless point charge in the molecular plane - thus altering its dipole. In this work, the

TIP4P/Ew model is used, where the original TIP4P model has been slightly adjusted

to improve the accuracy of its bulk properties [210]. The Optimal Point Charge (OPC)

model [211] is the most recent of the tested models, and was constructed to best match

the electrostatics of the water molecule (as opposed to its geometry, or derived physical

properties. OPC, like TIP4P/Ew, is a 4-site model, and has a larger computational cost,

with more interactions needing to be calculated.

The models chosen in this work are by no means an exhaustive list. For example, the

TIPnP series of models has been extended to TIP5P [212] and TIP6P [213], designed to

better represent the density of water over a range of temperatures, and the behaviour at

the water/ice transition respectively. Also, the previously discussed models have fixed

geometries, and are non-polarisable. This makes them unsuitable for use in spectroscopic

property prediction, or heterogeneous environments.

Model q/e l/Å z/Å θ/◦ σLJ/Å εLJ/kJmol−1

TIP3P 0.4170 0.9572 N/A 104.52 3.15061 0.636
TIP4P/Ew 0.5242 0.9572 0.1250 104.52 3.16435 0.681
SPC/E 0.4238 1.0000 N/A 109.47 3.16600 0.890
OPC 0.6791 0.8724 0.1594 103.60 3.16655 0.89036

Table 5.1: The parameters of the various water models used in this study, and their
physical meaning. σLJ and εLJ are Lennard-Jones parameters for non-bonded interac-

tions.

5.2.1.1 Simulation Methodology

A series of simulations were performed on a range of systems of different water models,

at different temperatures. The AMBER molecular mechanics program [214], along with
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a PME electrostatic approximation were employed for the calculation, and the SHAKE

[215] algorithm used to fix the water molecules in a rigid geometry.

The systems were first initialised using the LEAP program in the AMBER suite [216]. A

water box of dimension 25× 25× 25 Å
3

was created using the solvatebox utility. Each

simulation cell was then prepared by heating a periodic cubic system to its appropriate

temperature, over a period of 0.1ns. Pressure was then allowed to equilibrate for 0.5ns

to achieve atmospheric conditions. After preparation, the simulation underwent its

production run in the NVT ensemble. In general, this phase would last for 4ns, and

snapshots taken every 2ps for a total of 2000 snapshots, and this work specifies when

this is not the case.

The solvatebox utility results in slightly different numbers of water molecules depending

on model choices. The number of molecules for each model can be seen in Table 5.2. The

slight differences in water numbers, and the effect in the resulting persistent homology,

is investigated and characterised in Chapter 5.6. Simulations were created by designing

master input files for AMBER and its utilities, and using bash shell scripting to generate

specific instances. These master files can be seen in Appendix B.

Model Nwater

TIP3P 4287
TIP4P/Ew 4254
SPC/E 4287
OPC 4302

Table 5.2: The number of water molecules for each atomistic model studied in this
work.

5.2.2 The Stillinger-Weber Potential

The Stillinger-Weber (SW) potential, in contrast to those previously discussed, is a

coarse-grained potential, Originally parameterised for Silicon in 1983 [217], the SW

potential has been shown to be incredibly versatile. Its most general functional form is:

U =
∑
i,j

U2(rij) + λ
∑
i,j,k

U3(rij, rjk) (5.1)

Where the λ parameter allows the tuning of the relative strength of the 3-body interac-

tion. The 2-body interaction U2 models a steep repulsion at short distances, as well as

a potential well:

U2(r) = Aε
[
B
(σ
r

)p
−
(σ
r

)q]
exp

(
σ

r − aσ

)
(5.2)
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The 3-body interaction can be considered to contain intermolecular angle bending as

well as a distance factor term:

U3(rij , rkj) = ε[cos θijk − cos θ0]2 × exp

(
γσ

rij − aσ

)
exp

(
γσ

rkj − aσ

)
(5.3)

The hyperparameters used for the studies with the SW potential in this work are: A =

0.7049556277, B = 0.6011145584, p = 4, q = 0, cos θ0 = 1
3 , γ = 1.2, and a = 1.8 (all

unitless). ε and σ determine energy and length scales respectively. λ itself was originally

set to 21.0, for silicon, with germanium and carbon described by values of 20.0 and 26.2

respectively. The value of λ for water is 23.15, described as such for matching its

density profile over a range of temperatures [204]. The (λ, P, T ) phase diagram of the

Stillinger-Weber potential can be seen in Figure 5.2. In this work, simulations were

performed at various λ at the melting transition (300K and associated pressure) , and

were performed by John Russo at the University of Bristol using specifically designed

software. Simulations contained 512 water molecules with up to 500 configurations.

(a) λ, P, T phase diagram (b) P, T phase diagram at λ = 22.75

Figure 5.2: Phase diagrams of the Stillinger-Weber potential. Reproduced from the
supporting information of [204]. The λ parameter clearly affects the phase of the model.

5.3 Persistence Methodology

The method used for calculating the persistent homology of a pure water simulation is

found in Figure 5.3. Persistence is calculated for each frame of simulation individually,

and a persistence diagram at time t will be denoted PD(t) The local orientation of wa-

ter is considered to be determined by hydrogen bond configurations. This implies that

the relative location of neighbouring oxygen atoms contains all of the relevant hydro-

gen bonding information. All of the hydrogen atoms from the simulation are therefore
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Take single frame of
simulation at time t

Take oxygen atoms only

Calculating
scaled

persistence?

Calculate O-O radial
distribution function

Calculate Euclidean dis-
tance matrix between all

pairs of oxygen atoms
Normalise distances by rmax

Calculate persistent homology
of Rips complex with Eu-

clidean distance as the filtration
parameter, up to degree 2

Analysis of
persistence diagrams etc.

No

Yes

Figure 5.3: The general procedure used for calculating the persistent homology of a
simulation of pure water. rmax denotes the value of r at the maximum of the radial

distribution function.

removed, which greatly increases the speed of the persistent homology algorithm. This

restricts the number of 1-simplices between any two oxygen atoms to 1, rather than the

9 that would be permitted if persistence was calculated in an all-atom system. The total

size (and memory requirement) of the resulting simplicial complex is therefore reduced.

Within this chapter, this Rips persistent homology constructed on oxygen atoms will

be referred to as the persistent homology, as other complexes are not considered here.

The main parameter of the procedure determines if the simulation will be scaled. If

the system is scaled, the program enters a subroutine to calculate the maximum of the

O-O radial distribution function, before normalising all distances by this number. In

principle, this allows models for entirely different systems to be compared, by placing

their persistent homology on the same scale. For example, this would allow comparison

of different materials, such as liquid crystals.
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The last set of parameters are for the persistent homology calculation itself. In particu-

lar, for the persistent homology of the Rips complex, a maximum length and dimension

must be defined. As water exists in Euclidean 3-space, it is reasonable to calculate up to

second degree homology. For the maximum length parameter, it is necessary to ensure

that any features of note have died. It was found this seemed to occur after approxi-

mately 3 nearest neighbour distances. Therefore, for scaled calculations lmax = 3. The

scaled calculations are not discussed further in this work, and are presented purely to

show the difference in methodology. For the unscaled calculations, this parameter was

set to 8Å. This value was chosen as it is approximately three nearest neighbour dis-

tances (as seen in the RDFs in Figure 5.1). In general, the value of 3 nearest neighbour

distances was chosen as the Rips complex would have trivial topology, in a uniformly

sampled three dimensional grid.

5.4 Persistence Diagrams of Single Frames

The persistence diagram for the Rips complex constructed on the oxygen atoms of a

single snapshot of the simulations of pure water boxes at 300K can be seen in Figure

5.4.

It is difficult to determine features that are able to distinguish between models from

these persistence diagrams. However, there are several patterns in common between

models. For example, first degree features do not begin to appear until 0.28nm, and

second degree features do not begin to appear until 0.35nm. This reflects distances

between next- and next-next- nearest neighbours respectively.

Each persistence diagram also contains some long-lived features of each degree. Further

analysis of these features yields multiplicities of 1, 3, 3 for degrees 0, 1, 2 respectively.

Rather than reflecting the water network connectivity, these features are actually induced

by the periodic boundary conditions (PBCs) of the system. The topology induced by

PBCs is easiest understood when considering the 1 and 2 dimensional analogues. In 1-D,

PBCs can be seen as identifying the two endpoints of a line as equivalent. therefore a

map I → S1, where I is homeomorphic to the unit interval, and S1 being the topological

circle. In 2-D, the PBCs can be considered to be identifying opposite edges of a square

as equivalent (and matching orientation). This is therefore a map I×I → S1×S1 ≡ T 2.

Extending this argument to 3 dimensions, it is recognised that opposite faces of a cube

are now identified (again, preserving orientation). This leads to a map I × I × I →
S1 × S1 × S1 ≡ T 3. The homology groups of this space can be calculated (for example

with the Künneth theorem), and lead to the Betti numbers (1, 3, 3, 1), matching the

multiplicities of the long-lived features in our persistence diagrams (although β3 is not

calculated in this work). The implications of these features are actually quite simple. In

particular, the features imply that the water molecules densely sample the space defined
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(a) TIP3P

(b) TIP4P
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(c) SPC

(d) OPC

Figure 5.4: Persistence diagrams for single frames of simulations of pure water boxes
at 300K. Black, red and blue points correspond to zeroth, first and second degree
homology features respectively. Dashed lines indicate a feature persists to infinity.
Black, red and blue correspond to zeroth, first and second degree homology respectively.
The persistence diagrams are difficult to distinguish between models for single frames

- a more statistical method must be used.
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by the box dimensions, and there are no large holes in this system. If the system were

to have a vacuum bubble present, due to poor equilibration, a greater number of long

lived second degree features would be seen.

One potential use of these features is in the study of surface systems using molecular

dynamics. Persistent homology of a sequence of Rips complexes constructed on surface

atoms with periodic boundary conditions should have the topology of two disconnected

2-tori. Any long-lived features should therefore have multiplicity (2, 4, 2). Instead, if the

surfaces are not far enough apart (either from each other, or from the cell boundaries),

different persistent Betti numbers would be found. Depending on the object of interest

being studied, kernel based Rips complexes, such as those described in [86] could find

value here in particular.

5.5 Persistence as a Descriptor

Before persistence can be used to understand the average properties of water networks,

it should first be shown that persistence is a converged descriptor. In particular, it ought

to be shown that the persistent homology of a system does not show large fluctuations.

Within molecular simulation, the convergence of properties is often described using time

autocorrelation functions:

Cf (t) = lim
τ→∞

1

τ

∫ τ

0
f(t0)f(t0 + t)dt0 = 〈f(t0)f(t0 + t)〉 (5.4)

Where f(t) is the value of property f at time t, and Cf is its autocorrelation. The

autocorrelation at t describes how similar a time signal is with a t delayed version of

itself. The no-delay limit Cf (0) can be seen to be equal to 〈f2〉. For a converged

property, a time signal should become uncorrelated to itself, i.e. limt→∞C(t) = 〈f〉2.

Using a standard identity:

〈X2〉 − 〈X〉2 = σ2
X

(where σ is the standard deviation) it is clear that the autocorrelation function decreases

for a converged property, and eventually reaches a limiting value.

It is less obvious as to how to describe the convergence of persistence. The persistent

homology could be treated as a time signal, and an appropriate product analogous to

f(t0)f(t0 + t) defined. For example, persistence landscapes could be created, with a

possible integral such as the following used for autocorrelation surrogate:

CΛ(t) =

∫ ∞
0

Λ(t0)Λ(t0 + t))dt0
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where

Λ(t0)Λ(t0 + t) =

∞∑
k=1

λk(t0)λk(t0 + t)

Provided persistent features are removed, this quantity is bounded. Further, a single

landscape contains the same information as a single persistence diagram, and as ex-

plained in Chapter 2, the inverse transformation is well-defined. However, the product

as defined above is an unusual mathematical object. In general, the reason this work has

avoided this potential route is that it is felt better to work with persistence diagrams as

the fundamental object whenever possible - any statement we can make with diagrams

ought to apply to objects derived from them. The opposite is potentially untrue. How-

ever, the difficulty of defining an autocorrelation-like property for persistence diagrams

lies in determining the appropriate quantity of which to find the average time delay.

Usefully, persistent homology is endowed with various metrics between persistence dia-

grams, which quantify dissimilarity (Chapter 2.1.9). For a set of persistence diagrams,

the following quantity is defined:

CPD(t) =
〈
dB (PD(t0), PD(t0 + t))

〉
(5.5)

Where dB(PD1, PD2) is the bottleneck distance (Equation 2.7). Clearly, CPD(0) = 0,

as the bottleneck distance is a metric. The long-time behaviour of CPD(t) can be

understood by considering periodic and non-periodic systems. For a periodic system,

one would expect to see oscillations in CPD(t), with a frequency matching the system’s

recurrent behaviour. In contrast, a non-periodic system would lead to CPD(t) reaching

a fixed value, which would remain unchanged, similarly to traditional autocorrelation

functions. This definition also does not require the same treatment of persistent features

as the method defined for landscapes above - it would only be infinite if there are

different numbers of persistent features, which could be considered useful information.

One final strength of the use of the bottleneck distance for measuring auto-correlation

of persistence is that the it has an associated stability theorem, implying that small

changes in point clouds (as expected in short timescales of simulation) do not lead to

large changes in persistence.

The bottleneck distance approach to understanding the convergence of persistence was

applied to simulated TIP3P water at 300K, and can be seen in Figures 5.5, 5.6, and 5.7

for simulations lasting for 4ps, 40ps and 4ns respectively. For all degrees of homology,

it is clear that the bottleneck distance between frames has equilibrated after 2fs. In

fact, for zeroth degree homology, the bottleneck correlation has reached a plateau after

< 0.1ps. In contrast, second degree homology does not plateau until after approximately

1ps. These times are shorter than the orientational correlation time of approximately

5ps found in [218], suggesting that persistence does not undergo large fluctuations over

long timescales.



Chapter 5 Persistent Homology of Water Networks 123

Furthermore, the bottleneck distance correlation does not display any extrema before

converging. From this, it can be inferred that persistent homology of these systems does

not contain any recurrent behaviour. This reflects the chaotic nature of the bulk water

dynamics.

From these analyses, it is seen that persistence can be used as a descriptor for under-

standing the behaviour of these water systems. It has been shown that it converges after

under 5ps for all degrees of homology of interest. Persistence has also been shown to not

contain any spurious recurrent behaviour. It is now possible to move on to discuss av-

erage properties of persistence and begin to analyse water networks in a more thorough

fashion.
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5.6 Is Persistence Intensive or Extensive?

Properties of materials are often labelled as either intensive or extensive, depending on

how the property changes as a function of system size. Intensive properties, such as

density or temperature, are independent of the size of the system. In contrast, extensive

properties, such as mass or volume are additive for subsystems.

Persistent homology is clearly more complicated than this. Taking the total number

of (non-trivial) features of a given degree (nfeatures) as a basic property, it is obvious

that it is not an intensive variable for any degree. This can be seen when considering

the limit as the number of oxygen atoms (NO) tends to zero - the number of features

for any degree must also be zero. However, if NO > (d + 1), some features of degree d

might form - but the exact value of nfeatures depends on the exact distance relationships

between oxygen atoms.

For zeroth degree persistent homology, the behaviour of the number of features is easily

understood. By definition, at δ = 0 there are NO features. No other features can be

born at any time. There are therefore NO total features in the zeroth degree persistent

homology - it is an extensive property. Generally, analysis of zeroth degree homology is

avoided in this work, as it reduces to a hierarchical clustering on the oxygen atoms. The

systems being studied here are of uniform density, and therefore zeroth degree homology

is largely restricted to containing information about the distribution of nearest neighbour

distances.

For first and second degree homology, the behaviour of nfeatures as a function of NO is

studied in more detail. From Table 5.2 it can be seen that there are different numbers

of water used for different models. For completeness, a simulation was performed at a

higher temperature. For first and second degree homology, graphs of nfeatures vs NO

can be seen in Figure 5.8.

For both degrees of homology, it is clear that the temperature difference leads to a more

significant change in nfeatures than changing NO. This is encouraging for two reasons.

Firstly, it was earlier assumed that the difference in NO between models does not vastly

alter persistence when studying the single frames. Secondly, all of the models being

discussed purport to model the behaviour of water. If the differences between them

were more significant than altering the temperature, it would suggest that these models

are not remotely alike.

Over the range of NO studied, there appears to be a linear relationship between NO and

nfeatures. Linear models were therefore constructed, of the form:

nfeatures = αNO + β

with the resulting parameters, associated errors and p-values found in Table 5.3. It is
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(a) First degree homology

(b) Second degree homology

Figure 5.8: The number of first degree features as a function of the number of water
molecules (oxygen atoms) for a range of models and temperatures, and their associ-
ated error bars. Lines are used to indicate crossings, and are not directly measured.

Persistent homology is clearly not size-independent.
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Model T/K Degree α σα pα β σβ pβ
TIP3P 300 1 1.15 0.02 0.00 -66 77 0.42
TIP4P/Ew 300 1 1.10 0.02 0.00 154 69 0.07
SPC/E 300 1 1.14 0.02 0.00 -50 73 0.52
TIP3P 400 1 1.02 0.01 0.00 27 55 0.62

TIP3P 300 2 0.40 0.08 0.00 140 120 0.29
TIP4P/Ew 300 2 0.36 0.09 0.00 -265 127 0.08
SPC/E 300 2 0.39 0.08 0.00 63 109 0.58
TIP3P 400 2 0.33 0.07 0.00 -26 86 0.77

Table 5.3: Gradient and intercept of linear models constructed for the relationship
nfeatures = αNO + β. p-values correspond to testing the null-hypothesis that the

variable is equal to 0.

noted that the p-values for testing whether β = 0 is not rejected for any model tested.

As previously discussed, this is precisely what is expected, if NO = 0, nfeatures = 0.

Therefore, a set of models are constructed for the following form:

nfeatures = α′NO

with Table 5.4 containing the obtained parameters. From these results, we can see

Model T/K Degree α′ σα′ pα′

TIP3P 300 1 1.13 0.00 0.00
TIP4P/Ew 300 1 1.14 0.00 0.00
SPC/E 300 1 1.13 0.00 0.00
TIP3P 400 1 1.03 0.00 0.00

TIP3P 300 2 0.38 0.00 0.00
TIP4P/Ew 300 2 0.39 0.00 0.00
SPC/E 300 2 0.39 0.00 0.00
TIP3P 400 2 0.34 0.00 0.00

Table 5.4: Gradient and intercept of linear models constructed for the relationship
nfeatures = α′NO. p-values correspond to testing the null-hypothesis that the variable
is equal to 0. Values are reported to two decimal places, but are in general not equal

to 0.

that first and second degree homology are neither extensive nor intensive variables. In

particular, they are not additive - doubling NO does not double nfeatures. However,

a useful descriptor should be easily transferable between systems of different sizes. A

different approach is therefore needed.

5.7 Development of a size-agnostic descriptor

As persistence diagrams are unwieldy mathematical objects, it is only natural to consider

one of the other persistence representations with which to build a descriptor. Persistence
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landscapes might appear fruitful, as discussed in Chapter 2. A quantity such as

Y [λ] = ||Λ1||

appears reasonable at first glance. However, this would not be size-independent - the

number of non-zero landscape functions is equal to nfeatures for zeroth degree homology,

and Y would be dependent on this number. It might therefore make sense to define

Y ′[Λ] = ||λ||1
nfeatures

. However, if nfeatures includes only non-trivial features, this functional

is non-linear. How could Y ′[Λa + Λb] = Y ′[Λa] + Y ′[Λb]?

This linear functional restriction is not present in the case of persistence images, which

are more common mathematical objects. Provided the images are constructed in the

same way (for example, the kernel or weight function), the SVM procedure defined in

Appendix A even provides a reasonable analysis route. Therefore, this seems a sensible

path to follow in descriptor creation.

Focussing on the set of TIP3P model, 300K simulations of different system sizes, a

persistence image was created for each frame of simulation. Each set of 2000 frames was

then randomly allocated into training and test sets, of 1500 and 500 frames respectively.

The SVM classifier was then trained on the training set, before its performance on the

test set determined using confusion matrices, seen in Figure 5.9.

When studying the confusion matrices, it is seen that the classifier can in general distin-

guish between systems with a large difference in NO, and performs worse at intermediate

values. This is moderately promising - the descriptor being designed is supposed to be

size-agnostic, and therefore not be able to distinguish between systems of different sizes.

In this case, systems of similar sizes are indistinguishable, but the descriptor is able to

distinguish between systems with a reasonable (∼ 10%) difference in NO.

The most obvious next step to take is to consider different ways of normalising persistence

images. The two methods chosen were as follows:

• l∞ normalisation: The magnitude of the maximum pixel is equal to 1

• l1 normalisation: The overall integral of a persistence image is equal to 1

The two methods will be referred to as l∞ and l1 normalisation respectively. When nec-

essary, an image which has had no normalisation applied will be referred to as nonorm.

The classification accuracy for the three different methods, applied to the TIP3P water

simulations at 300K are found in Table 5.5. Results are similar for different models and

temperatures. It is clear that the nonorm method leads to the strongest classifier, which

as discussed previously is able to classify between systems of appreciable size difference.

In contrast, the l∞ and l1 methods lead to a test set accuracy approximately as efficient
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(a) First degree homology

(b) Second degree homology

Figure 5.9: Confusion matrices for the support vector machine classifiers of persis-
tence images for TIP3P systems at 300K, with classes defined by the number of water
molecules removed from the system. The classifiers are able to distinguish systems with

different numbers of water molecules.
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Method Degree Training Accuracy Test Accuracy

nonorm 1 0.530 0.366
2 0.515 0.335

l∞ 1 0.304 0.234
2 0.403 0.231

l1 1 0.204 0.202
2 0.175 0.172

Table 5.5: Classification accuracy for the different normalisation procedures for the
set of simulations with different particle numbers. TIP3P model, 300K.

as randomly guessing. For the l∞ method, the SVM is able to distinguish between

systems in the training set, which it is unable to in the test set. This indicates overfitting

to the training set, suggesting there are differences that can be detected using the l∞

procedure. In contrast, the l1 method performs equally badly on the training and test

sets, and as badly as random guessing. This behaviour can again be investigated with

confusion matrices (Figure 5.10) . For first and second degree homology, the classifier

nearly always predicts one of the two intermediate classes. Interestingly, they seem to

predict the system with 150 water molecules removed with a high accuracy, and also

seem to be biased towards class 150 when nrem < 150, and class 200 otherwise. PCA

can be used to help understand this (Figure 5.11). The mean position of l1-normalised

persistence images for the 150 class is clearly an outlier, in both first and second degree

homology. This biases the classifier, as it is the easiest to distinguish. The next largest

outlier is the class of 200 water molecules removed. The other classes are in general

too close to be easily distinguished by the classifier. This leads to the behaviour seen

with the confusion matrix. These results are actually a strength of the l1 method of

normalisation. If the method was being strongly influenced by the size of the system,

one would expect the 150 and 200 classes to be near each other. This is not the case

for the l1 classifier. It has therefore been shown that, of the methods testing, the l1

normalised persistence images leads to the most size-agnostic descriptor. This will be

the descriptor used going forward, and will be referred to as a L1NPI, for brevity.
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(a) First degree homology

(b) Second degree homology

Figure 5.10: Confusion matrices for the support vector machine classifiers of l1 nor-
malised persistence images for TIP3P systems at 300K. Classes are defined analogously
to Figure 5.9. Now, the classifiers are largely unable to distinguish systems of different

sizes, suggesting a size-independent descriptor.
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(a) First degree homology

(b) Second degree homology

Figure 5.11: 2-dimensional principal component space for l1 normalised persistence
images of TIP3P water at 300K. Points are coloured by the number of water molecules
removed from the system. Points within the white circle are used to illustrate the mean
position for a given class. It is unsurprising that the classifiers defined above are unable

to distinguish between these systems.
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5.8 L1NPI Analysis

In this work, L1NPIs have been used to study water networks. Tests have been carried

out analysing the effect of temperature, using TIP3P water at a range of tempera-

tures between 300 and 400K. Following that, the effect of atomistic model (TIP3P,

TIP4P/Ew, SPC/E, OPC) was studied. Lastly a series of simulations of the SW model

was used, investigating the differences between these atomistic and coarse-grained mod-

els. As the L1NPI is constructed from persistence, which is in turn constructed from

distance matrices between oxygen atoms, various comparisons will be made between the

L1NPI and the O-O RDF. Analysis will also be performed by looking at the L1NPI

themselves, dimensionality reduction of L1NPI space, and the behaviour of linear SVM

classifiers.

5.8.1 Effect of Temperature

The effect of temperature on the RDF is well known, and can be seen in Figure 5.12.

The height of peaks are reduced, and the value of r at which those peaks occur increases

as a function of temperature. This is due to the reduced entropy and increased density

respectively. Investigating L1NPIs, it is important to first understand their general

Figure 5.12: O-O radial distribution functions for TIP3P at various temperatures
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behaviour. For TIP3P water at 300K, mean L1NPIs can be found in Figure 5.13. In

first degree homology, features do not begin to appear until r ≈ 0.275. This reflects the

hard-sphere radius, and the sharp rise in the RDF. However, there is more information

than this held within the birth time. In particular, the birth time of a first degree feature

corresponds to the longest distance between two oxygen atoms within the cycle. These

(a) First degree homology

(b) Second degree homology

Figure 5.13: Mean L1NPIs for TIP3P water at 300K. Different regions of the L1NPI
can be related to features of the radial distribution function.
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properties can be investigated further by comparing them to critical points in the RDF.

The following quantities are defined:

Quantity Definition
arg max(b(r)) The argument of the maximum for the distribution of birth times
arg min(b(r)) The value of r where the distribution of birth times first increases
arg max(g(r)) The argument of the maximum for the RDF
arg min(g(r)) The value of r where the RDF first increases

Considering water as tetrahedral, the natural cycle that forms are those of adjacent

tetrahedral sites, with cycles of 6 oxygen atoms. arg max(b(r)) can therefore be iden-

tified as the longest length found within a cycle, and arg min(b(r)) identified as the

minimum of the longest cycle lengths. This is clearly different to arg max and arg min

for the RDF, which contain information as to the average nearest neighbour distance,

and the hard-sphere limit respectively. In general, persistent homology (and therefore

L1NPIs) contain information about groups of oxygens. First degree homology details

the behaviour of nearest neighbours within tetrahedral clusters. This can be contrasted

to second degree homology, which for a system such as this details the behaviour of

next-nearest neighbours within the same clusters.

Returning to L1NPIs, the projection of L1NPI space onto its first two principal compo-

nents can be seen in Figure 5.14. From these, it can be seen that temperature causes a

more pronounced change in first degree homology than second. This can be explained us-

ing the density found in persistence images. In second degree homology, a large amount

of the density is located near the birth-axis. This is the topological noise. It would be

expected that these noisy points would appear regardless of temperature. First degree

homology has a density maximum within its topological features, i.e. the hexagonal

cycles discussed previously. Small changes to density, as caused by changes in tempera-

ture, would alter these cycles, leading to more pronounced shifts in persistence images,

and therefore greater separation in the principal components.

From the projection, it can be seen that it is worth investigating the first principal

component, as this is where the different simulations are most separable. This principal

component can be considered as a vector in L1NPI space, and can be seen in Figure

5.15. This supports the hypothesis that the first principal component corresponds to

topological features in first degree homology, but utilises topological noise within second.
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(a) First degree homology

(b) Second degree homology

Figure 5.14: 2-dimensional principal component space for l1 normalised persistence
images of various temperatures. Points are coloured by temperature. There is a clear

trend in temperature and location, as would be hoped for a chemical descriptor.
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(a) First degree homology

(b) Second degree homology

Figure 5.15: First principal component of L1NPI space for systems at different tem-
peratures. The principal components illustrate how L1NPIs change as an effect of

temperature.
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5.8.2 Effect of Atomistic Model

The L1NPI formalism has here been used to compare the differences between atomistic

models. PCA on L1NPI space and linear SVM classifier confusion matrices can be found

in Figures 5.16 and 5.17 respectively. Also, the PCA space, coloured by predicted class,

can be seen in Figure 5.18. First degree homology clearly separates atomistic models.

This is reflected in the confusion matrix, which is able to classify all models with a high

accuracy. In contrast, the second degree homology is able to distinguish between OPC

and other models, but not between TIP3P, TIP4P/Ew and SPC/E.

Looking in first degree homology in more detail, a few results are of interest. TIP4P/Ew

and SPC/E are closer to each other than they are to the other models. This similarity is

also reflected in the radial distribution functions for the atomistic models studied (Figure

5.1). However, it is not possible to state directly that first degree L1NPI similarity

equates to similarity in the RDF, as the RDFs for TIP3P and OPC are not similar.

This is discussed in more detail later in the text.

By observation of the principal component space, it might be expected that TIP3P

should be identified with 100% accuracy, when this is not the case. This is due to

two effects. Firstly, a linear kernel has been used for the SVM classifier. In this low

dimensional representation, it is clear that it is not possible to draw a straight line

separating TIP3P from all other models. Furthermore, the one-versus-rest multiclass

strategy used here compounds this effect. This leads to a classifier being built for every

class as a simple ‘in/out’ problem, and the predicted class chosen based on whichever

class it is least likely to be an outlier of. This leads to the predictive behaviour seen in

Figure 5.18(a).
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(a) First degree homology

(b) Second degree homology

Figure 5.16: 2-dimensional principal component space for l1 normalised persistence
images of various atomistic water models. Points are coloured by atomistic model.
All models are distinguishable in first degree homology, whereas only OPC can be

distinguished in second degree homology.
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(a) First degree homology

(b) Second degree homology

Figure 5.17: Confusion matrices for linear SVM classifiers for l1 normalised persis-
tence images of various atomistic water models, test set data. The behaviour of these

classifiers is as expected from the principal component analysis of L1NPI space.
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(a) First degree homology

(b) Second degree homology

Figure 5.18: 2-dimensional principal component space for l1 normalised persistence
images of various atomistic water models. Points are coloured by predicted model. The
use of the linear kernel as a classifier can lead to unexpected behaviour, such as various

models being mistaken as OPC when they are clearly distinguishable by eye.
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The coefficients of the linear SVM define a hyperplane in L1NPI space, and an associated

tangent vector. These vectors can be viewed as differences between L1NPIs, although

they are not quite L1NPIs themselves, as the vector can have a negative pixel. This

allows the determination of features that separate particular models. As an example,

the mean L1NPI and separating hyperplane for TIP3P water in first degree homology

can be seen in Figure 5.19.

From the separating hyperplane, it can be seen that the SVM classifier believes that

TIP3P is distinguished from the other models by features that are born reasonably

early, with a range of death values. These features approximately correspond to the

nearest neighbour behaviour of the system. To investigate this further, the mean of the

first principal component (i.e the one corresponding to the highest variance within the

dataset) was compared to the value of r leading to the highest value of the RDF (Table

5.6) The correlation of these two variables is not good, and certainly not strong enough

Model 〈PC1〉/10−3 σ(PC1)/10−3 rmax/nm
TIP3P -13.1 2.4 0.2773
TIP4P/Ew 8.3 2.6 0.2762
SPC/E 2.4 2.5 0.2746
OPC -1.8 2.5 0.2815

Table 5.6: Properties of the first principal component and argument of maximum
value of radial distribution function for the models studied.

to say for certain that the L1NPI behaviour for first degree homology matches the RDF

maximum. However, it is useful to know that the L1NPI contains more information

than just the RDF maximum! For example, Figure 5.19(b) suggests that it is a range

of features separating TIP3P from other models. In contrast, the same information for

OPC (Figure 5.20) shows that OPC is partially separated by a feature at the peak of the

persistence image. This feature must correspond to the nearest neighbour behaviour,

and from the RDF it can be seen that OPC has a longer hard-sphere limit than the

other studied points. Therefore, some features can be related directly to the behaviour

of the RDF.
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(a) Coefficients of separating hyperplane

(b) Mean Image

Figure 5.19: Separating hyperplane and mean image for TIP3P first degree L1NPI
space. It can be learned that it is a difference in points with high persistence that lead

to differences between TIP3P and other models in first degree homology.
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(a) Coefficients of separating hyperplane

(b) Mean Image

Figure 5.20: Separating hyperplane and mean image for OPC first degree L1NPI
space. The presence of the single separate point in first degree homology is related to

differences at the hard sphere limit of OPC and other models.
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Second degree homology can also be studied in more detail. Most obviously, Figure

5.16(b) shows that TIP3P, TIP4P/Ew and SPC/E are largely the same with respect to

their second degree homology, and it is not surprising that they cannot be separated.

However, OPC can indeed be separated, and the SVM classifier performs reasonably

well on both Type I and Type II errors.

Again, by looking at the coefficients it is possible to understand the features that dis-

tinguish OPC from other models (Figure 5.21). There are two main regions in this

plot. Firstly, the topological noise region, in which it is difficult to make any conclu-

sions. However, there is a clear region which is unlikely to be topological noise, and in

particular these are the second degree points that are born late within the persistence

cycle. The coefficients determine that OPC has far fewer of these points than the other

models. OPC was parameterised differently to the other studied models in this work.

In particular, rather than match derived physical quantities, the quantity fitted to was

the electrostatic potential. That this has led to such a pronounced difference in second

degree homology is certainly worth investigating more in future.
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(a) Coefficients of separating hyperplane

(b) Mean Image

Figure 5.21: Separating hyperplane and mean image for OPC second degree L1NPI
space. OPC contains fewer points born late within persistent homology than the other

models, which could be due to differences in the parameterisation methods.
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5.8.3 Comparison to Stillinger-Weber Model

As a final discussion with L1NPIs, the SW model is discussed. As mentioned, the λ

parameter provides a useful measurement of ‘tetrahedrality’, tuning the strength of the

3-body interaction.

Firstly, the projection of first and second degree L1NPI space is found in Figure 5.22.

The most obvious feature is the clear tracking with λ - there is a smooth variation in λ

in the PC space, in both first and second degree homology. Also, the density of points

for the SW model is much less than for the atomistic model. This suggests that there

are larger variations in persistent homology for the SW model. However, rather than

being a feature of the model itself, this is actually caused by the fact that there are only

500 water molecules in the simulations of the SW model, rather than in excess of 4000

for the atomistic models studied. The small number of points leads to larger variation

in persistence, as there are fewer features. This can be compared to the results in Figure

5.23, showing the principal components of the unnormalised persistence images. It is

clear that there is a large separation between the SW and atomistic models, which is due

to the large discrepancy in the number of water molecules. In contrast, this does not

occur within the L1NPI formalism, with the size-effect being the difference in density.

Therefore, the persistence image representation is termed size-agnostic, as opposed to

totally size-independent.

Returning to Figure 5.22, it is now possible look at each degree of homology in turn.

For first degree homology, it is noted that all of the atomistic models are close to the

set of L1NPIs for λ = 23.15, matching the value of λ for water. TIP3P and OPC are

the models closest to the SW models, suggesting that they are the most similar.

With second degree homology, the atomistic models are no longer closest to λ = 23.15.

Instead, the second degree homology is most similar to λ = 23.95. This separation of

different degrees of homology is one of the strengths of the L1NPI analysis, where now

it is possible to state that although the atomistic structures share similar loops to those

created by the SW potential, they do not match the second degree holes. As mentioned

earlier, OPC was parameterised differently to the atomistic models, and it is noted that

this appears to make it more similar to the SW water model within the L1NPI analysis.
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(a) First degree homology

(b) Second degree homology

Figure 5.22: 2-dimensional principal component space for l1 normalised persistence
images of a selection of Stillinger-Weber and atomistic models. Points are coloured
by model, with numerical values referring to the value of λ. In first degree homology
the atomistic and coarse-grained models approximately coincide. However, in second
degree homology the L1NPIs at the value of λ for water does not match the L1NPIs of

the atomistic model.
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(a) First degree homology

(b) Second degree homology

Figure 5.23: 2-dimensional principal component space for unnormalised persistence
images of a selection of Stillinger-Weber and atomistic models. Points are coloured by
model, with numerical values referring to the value of λ. Using the persistence image

alone is clearly weighted by the size of the system.
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5.9 Conclusions and Future Directions

This chapter showcases the development of a topological descriptor for the analysis

of simulated water networks. Firstly, persistent homology has been used to analyse

single frames of simulation, and it was shown that this contained information regarding

periodic boundary conditions. Following this, the time-autocorrelation of persistent

homology was analysed using the bottleneck metric, enabling the discussion of the use

of an ‘average’ persistence, and demonstrating that it was a valid descriptor in this

context.

Having shown this, a persistence image based descriptor was developed, in particular

aiming to demonstrate size-independence, as it was felt that this is an important prop-

erty of any descriptor hoping to analyse bulk behaviour. The derived descriptor, the

l1-normalised persistence image (L1NPI) was shown to be the most size-independent of

those studied. L1NPIs were then used to analyse a range of simulated water networks,

varying in model and temperature. It was shown that the L1NPIs were able to dis-

tinguish well between different models in various degrees of homology, and were also

able to provide interpretations as to how the studied systems varied. Lastly, L1NPIs

were used to compare atomistic and coarse-grained water models, with a large varia-

tion in the number of water molecules. This enabled a more full discussion as to the

size-independent nature of the L1NPI, as well as demonstrating their utility in the com-

parison of simulated systems of different materials. It was shown that the L1NPI is not

fully size-independent, but instead the effect of size can be easily accounted for in this

formalism.

In future, this method could be extended to understand other water models. Polarisable

forcefields, such as AMOEBA [219, 220] could be a future area of study. However,

as these models are flexible, it might be important to understand the behaviour of

the hydrogen atoms of the water molecules. This work only calculates the persistent

homology of the oxygen atoms, and therefore a new persistent homology based procedure

should be designed if necessary.

Considering the original goal of this work was to aid in solubility prediction, this has

to be considered as one of the main future directions of this work. Understanding how

the presence of a solute alters the surrounding water network will likely lead to insight

in solvation entropy prediction, for example. However, there are several problems that

would need to be tackled before progress could be made. In particular, the solute itself

would cause a hole in the water network, and this would be detected with persistent

homology. Care would need to be taken to ensure that methods are not simply measuring

the size of this hole, as more efficient methods exist for this purpose [221]. One potential

route in tackling this problem would be the use of Alexander duality - which relates the

homology groups of an object to that of its complement. However, at the time of writing,
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the only persistent homology extension of this property is through extended persistence

[222], and there is no efficient algorithm for its computation.





Chapter 6

Conclusions

The explosion of data within the physical sciences requires a plethora of new tools for

its analysis. Although there will always be a place for standard statistical techniques,

the development of topological data analysis tools can lead to the answering of new

questions, and new methods with which to study all chemical topics. This investigation

has attempted to demonstrate three different areas of study for topological data analysis

tools within chemistry, and show that topological techniques could be a useful weapon

in the arsenal of any chemist.

6.1 Chemical Space

The mapper algorithm has been used to analyse the underlying descriptor space for a

data set used in water solubility prediction. Correlations in the mapper network were

analysed, and it was shown that there were global correlations for the number of rings

and the number of atoms in a molecule. Furthermore, previously unseen correlations

led to the conclusion that molecular solubility has a strong dependence on the number

of chlorines, but only for those molecules with two cycles. This led to the creation of

data-driven models, which were shown to improve the consistency of prediction when

compared to ESOL, another widely used solubility model.

Persistent homology has also been used as a descriptor for chemical shape. Using metrics

on persistent homology, various maps of chemical shape space have been created, each

highlighting different features. It has been shown that the chemical shape space created

via persistent homology is strongly linked to the number of atoms in a molecule, and

the number of rings - topological features of the molecule as opposed to true chemical

features. The effect of different persistent kernels was analysed, and for the simple case

studied was shown to have little or no effect. Reasons for this were discussed, as well

as possible changes that could be made and what they would likely affect. Finally, the

155
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effect of conformational flexibility on the underlying chemical shape space was studied.

It was found that when multiple low-energy conformations were used to create the

shape space, it was largely unchanged when compared to the original space created

from the minimum energy conformation. The methods used in this chapter are therefore

insensitive to this flexibility, although further study can be performed to create shape

spaces from persistent homology, that are affected by the existence of multiple low-energy

conformations.

6.2 Conformational Space

Persistent homology has been used to characterise the underlying conformational space

and energy landscapes of three molecules. Firstly, two commonly used representations

of conformational space were defined - a coordinate based representation utilising the

Euclidean metric, and a distance matrix using the RMSD metric. It was shown for

alanine dipeptide, the difference between these representations was negligible, however

for pentane the coordinate representation incorrectly identified the conformational space.

This discrepancy was speculated to be due to the difference in alignment procedures used

in the creation of the coordinate representation, and it was concluded that the RMSD

distance matrix representation should be used in future. With both alanine dipeptide

and pentane, the conformational space was found to be a torus, and the energy landscape

of alanine dipeptide was analysed and critical points located.

For cyclooctane, the RMSD representation was used to verify the results of Martin et

al ’s landmark paper. Persistent homology showed that the conformational space was

indeed non-manifold. The conformational space was then analysed using local PCA,

to remove the non-manifold points. A hierarchical clustering algorithm was used to

separate the space, before clusters were re-glued back into their manifold components.

Persistence was then able to verify the presence of spherical and klein bottle components.

The single point energy landscape of the spherical component was then analysed, with

critical points located and shown to match those found by other procedures.

6.3 Water Networks

Persistent homology was used to develop a new descriptor for water network structure.

Firstly, persistence was shown to be a well-behaved descriptor, with non-recurrent be-

haviour. Persistence was then shown to be strongly dependant on system size. Using

persistence images, a range of descriptors were produced for water network structure, of

which one (the L1NPI) was found to be the most size-independent. The L1NPI was then

shown to be sensitive to the temperature of simulations. Furthermore, it was found that

they could be used for the comparison of different atomistic potentials. Through the use
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of support vector machines, differences between water models were analysed through

features in their first and second degree homology. Lastly, the L1NPI was used to com-

pare atomistic and coarse-grained water potentials. Through dimensionality reduction

techniques, it was possible to demonstrate which of the coarse-grained potentials best

matched the atomistic potentials.





Appendix A

Data Science Techniques

This appendix provides a brief introduction to the data science techniques used in the

text. These techniques are split into dimensionality reduction, and classification. The

dimensionality reduction techniques used in this work are principal component analysis

(PCA) and multidimensional scaling (MDS), with the classification technique being

a support vector machine (SVM). All of these techniques are fairly common within

the world of data science, and indeed more recently chemistry. However, it is worth

describing these techniques in more detail.

A.1 Dimensionality Reduction

A data set X of n observations of m variables can be written as a matrix in Rn×m:

X =


x1,1 x1,2 . . . x1,m

x2,1 x2,2 . . . x2,m

...
...

. . .
...

xn,1 xn,2 . . . xn,m

 (A.1)

At its simplest, dimensionality reduction can be understood as a result of the need to

visualise this data set in two or three dimensions. This visualisation could allow hidden

relationships within the data to be found. However, as dimensionality reduction reduces

the degrees of freedom of a data set, their is a strong possibility of some information

being lost. Different dimensionality reduction techniques essentially seek to preserve

different features of the data set, with their own perspective of what information is

thought to be important.

159
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A.1.1 Principal Component Analysis

Principal component analysis (PCA) was originally described by Pearson in 1901 as an

analogue to finding the principal axes of rotation of a rigid body [223]. PCA defines the

transformation from the original descriptor space onto the set of mutually orthogonal

axes with the highest variances.

Firstly, the covariance matrix K of X is calculated, XTX. This matrix is then diag-

onalised through eigendecomposition. The eigenvector matrix W defines the principal

components, with the eigenvalues {αj} corresponding to the relative variance described

by the jth eigenvector. The full-dimensional principal component decomposition of X

is then calculated as:

T = XW (A.2)

Which can be projected onto k dimensions by taking the first k columns of T . As a

linear transformation, the principal components can be easily computed. Furthermore,

if X exists on a k-dimensional subspace of the original m variables, k-dimensional PCA

will find that subspace exactly, with no loss of information - similarly if all columns of

T are used in the projection there is also no information loss.

Before PCA, the original matrix X is often scaled such that all of the individual descrip-

tors have a mean of zero and a variance of 1. This transformation ensures that the data

set is centred on the origin, and also that the principal components are not dominated

by descriptors with a larger numerical range.

A.1.2 Multidimensional Scaling

Multidimensional scaling (MDS) seeks to find the low-dimensional representation of a

data set which preserves the high-dimensional distances. Therefore, rather than operat-

ing on the original data set X, MDS utilises a distance matrix D:

D =


d(x1, x1) d(x1, x2) . . . d(x1, xn)

d(x2, x1) d(x2, x2) . . . d(x2, xn)
...

...
. . .

...

d(xn, x1) d(xn, x2) . . . d(xn, xn)

 (A.3)

Where xi refers to the ith observation of X, i.e. its ith row. The matrix D is therefore

an n× n matrix, which is normally much larger than X, because n� m.

The function d(xi, xj) must satisfy the properties of a metric:

1. d(xi, xi) = 0

2. d(xi, xj) = d(xj , xi)
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3. d(xi, xk) ≤ d(xi, xj) + d(xj , xk)

but in principle can be any function that satisfies these properties. Therefore, a user is

able to use any notion of [dis]similarity to create their own metric for MDS.

MDS seeks to find the matrix D′ that minimises the following:

s =

(∑
i,j(dij − d′ij)2∑

i,j d
2
ij

) 1
2

(A.4)

Where dij is a Euclidean distance matrix. The quantity s is often referred to as the stress

of the dimensionality reduction. Note that, whereas PCA will not lose information if

projected into the same number of dimensions as the original space, MDS does not have

the same guarantee. In particular, MDS requires (n − 1) dimensions to ensure s = 0.

This is because the original distance metric D does not have to be Euclidean, but in

general a metric of n points can be shown to be equivalent to a Euclidean metric in

(n− 1) dimensions.

A.2 Support Vector Machines

Consider the data set X along with a function f : X 7→ {−1, 1}. f assigns a class to

all of the points in X. A support vector machine seeks to find the (m− 1) dimensional

hyperplane that separates the data into their classes. As there are potentially many

hyperplanes that can achieve this goal, the support vector machine specifically seeks to

find the classifier that minimises the distances between the points and the hyperplane

(Figure A.1).

Figure A.1: Cartoon illustrating the classification boundary found by a linear SVM

In general, the data classes may not be linearly separable. In this case, the SVM will

act to keep errors to a minimum, with a parameter to tune the relative strength of this

penalisation.

Within this work, a linear SVM is employed as a classifier. Furthermore, the classifier

is used on a multiple class problem. The SVM handles multiple classes by creating a
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separate classifier between a class and all other classes (i.e. nclass classifiers), and when

predicting a new observation choosing the class with the strongest confidence. The dis-

tance function used is the l1 metric, which results in hyperplanes with sparse coefficients.

The normal coefficients to the hyperplane are visualised, and used to understand the

behaviour of the classifier. However it should be noted that this can be unwise in certain

cases (see reference [224] for more information on this topic).
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Master Input Files for AMBER

Temperature Equilibration

TIP3P: 100ps MD with equilibration T 0-->!TEMPK, cutoff = 10

&cntrl

imin = 0,

irest = 0,

ntx = 1,

ntb = 1,

cut = 10.0,

ntc = 2,

ntf = 2,

tempi = 0.0,

temp0 = !TEMP,

ntt = 3,

gamma_ln = 10.0,

nstlim = 50000, dt = 0.002,

ntpr = 1000, ntwx = 1000, ntwr = 10000,

ioutfm = 1, iwrap = 1, ig = -1,

nmropt = 1,

/

&ewald

vdwmeth = 0

/

&wt TYPE=TEMP0, ISTEP1=1, ISTEP2=40000, VALUE1=0, VALUE2=!TEMP

/

&wt TYPE=TEMP0, ISTEP1=40001, ISTEP2=50000, VALUE1=!TEMP, VALUE2=!TEMP

/

&wt TYPE=END

/

/
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Pressure Equilibration

TIP3P: 500ps MD, cutoff = 10

&cntrl

imin = 0,

irest = 1,

ntx = 5,

ntb = 2,

ntp = 1,

pres0 = 1,

cut = 10.0,

ntc = 2,

ntf = 2,

tempi = !TEMP,

temp0 = !TEMP,

ntt = 3,

gamma_ln = 10.0, taup = 2,

nstlim = 250000, dt = 0.002,

ntpr = 1000, ntwx = 1000, ntwr = 10000,

ioutfm = 1, iwrap = 1, ig = -1,

/

&ewald

vdwmeth = 0

/
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Production Run

TIP3P: 4ns MD cube, cutoff = 10

&cntrl

imin = 0,

irest = 1,

ntx = 5,

ntb = 1,

cut = 10.0,

ntc = 2,

ntf = 2,

tempi = !TEMP,

temp0 = !TEMP,

ntt = 3,

ene_avg_sampling = 1,

gamma_ln = 10.0,

nstlim = 2000000, dt = 0.002,

ntpr = 1000, ntwx = 1000, ntwr = 10000,

ioutfm = 1, iwrap = 1, ig = -1,

/

&ewald

vdwmeth = 1

/





Appendix C

On Rings and Fields

Within abstract algebra, rings and fields are basic structures, similar to the notion of

a set. However, whereas a set has no inherent operations, rings and fields are given

mathematical operations that lead to enhanced richness. This appendix will detail these

operations, illustrating the differences between rings and fields, which should lead the

reader to understand why fields are chosen to be used in this work, rather than the more

flexible rings.

A ring R is an algebraic structure of a set {a, b, c, . . .} with two binary operations (de-

noted + and ×, in the sense that they generalise familiar addition and multiplication).

These operations obey the ring axioms:

1. R is an abelian group under +:

(a) (a+ b) + c = a+ (b+ c): + is associative

(b) a+ b = b+ a: + is commutative

(c) There is an element 0 ∈ R such that a + 0 = a for all elements in R: + has

an identity

(d) For each a ∈ R there exists an a′ ∈ R such that a+ a′ = 0: + has an inverse

2. The properties of × are as follows:

(a) (a× b)× c = a× (b× c): × is associative

(b) There is an element 1 ∈ R such that a× 1 = 1× a = a for all a in R: × has

an identity

3. × is distributive with respect to +

(a) a× (b+ c) = (a× b) + (a× c)

(b) (b+ c)× a = (b× a) + (c× a)
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Examples of rings include the integers Z, and the set of 2×2 real matrices (both equipped

with addition and multiplication as usually defined).

Fields F can be considered to be rings with further axioms - they are more restrictive.

These axioms are:

1. a× b = b× a: × is commutative

2. For each a 6= 0 ∈ R there exists an a′′ ∈ R such that a× a′′ = 1: × has an inverse

Common examples of fields are the rational numbers Q, the real numbers R, and the set

of 2× 2 orthogonal matrices (again all equipped with their usual definitions of addition

and multiplication).

An interesting set of algebraic structures are the set of integers modulo a natural number,

Zn = {0, 1, 2, . . . , n}. It can be shown that the multiplicative inverse only exists if n is

a prime number. For example, take Z3. The inverse of 1 is obviously also 1. To find the

inverse of 2, the equation to be solved is 2× x = 1. It can be seen that 2× 2 = 4, and

4%3 = 1, so the inverse of 2 is 2 in mod 3 arithmetic.

In contrast take the set Z4 = {0, 1, 2, 3}. 2 × 1 = 2, 2 × 2 = 0, 2 × 3 = 2 in mod 4

arithmetic. Therefore, 2 does not have a multiplicative inverse in this set. Summarising,

all of the sets Zn are rings, with the sets Zp (p is prime) are fields, when equipped with

traditional multiplication and addition.



Appendix D

The Homology Groups of the

Klein Bottle and Real Projective

Plane

In the following, F denotes an arbitrary field.

D.1 Klein Bottle

To calculate the homology groups of the Klein bottle, first a combinatorial representation

is needed. Rather than use a simplicial complex, here the CW-complex is used. This

simplifies the calculation - and as both representations are homeomorphic to the Klein

bottle the same result is obtained. The CW-complex can be seen in Figure D.1. The

complex consists of a single vertex v, two directed lines a and b, as well as the face F .

For those unfamilar, this construction is completed by ‘gluing’ together simplices with

the same label, such that orientation is preserved. For example, the CW-complex for

the torus differs from that for the Klein bottle with the lines b pointing in the same

direction.

The sequence of chain complexes for this space is written as follows:

0
∂3 // C2

∂2 // C1
∂1 // C0

∂0 // 0 (D.1)

Where Cn is the free abelian group generated by the n-simplices, for example C0 is the

free abelian group generated by v, which is isomorphic to F. For the homology groups,

it is necessary to calculate the operation of ∂p on the p-chains ∈ Cp, in particular their

basis elements:

∂2F = b+ a+ b− a = 2b (D.2)
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v v

v v

a a

b

b

F

Figure D.1: The CW-complex of the Klein Bottle

∂1a = v − v = 0 = ∂1b (D.3)

∂0v = 0 (D.4)

Therefore, the following is true for any field:

∂2 : F→ F

1 7→ 2
(D.5)

∂1 : F⊕ F→ F

(1, 1) 7→ 0
(D.6)

∂0 : F→ F

1 7→ 0
(D.7)

Thus enabling the determination of the kernels and images of ∂n. For ∂2:

ker ∂2 =

F if F ' Z2

0 otherwise

im ∂2 =

0 if F ' Z2

F otherwise

(D.8)

This is because for any α ∈ Z2, 2α = 0, whereas 2F ' F if F 6' Z2. For ∂1:

ker ∂1 = F⊕ F

im ∂1 = 0
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and for ∂0, trivially:

ker ∂0 = F

im ∂0 = 0

The homology groups Hp ≡ ker ∂p
im ∂p+1

are therefore:

H0 = F

H1 =

F⊕ F if F ' Z2

F otherwise

H2 =

F if F ' Z2

0 otherwise

And the Betti numbers βp = dimFHp:

β0 = 1

β1 =

2 if F ' Z2

1 otherwise

β2 =

1 if F ' Z2

0 otherwise

It is noted that the results obtained here are different than those found in standard

texts. This is because traditionally coefficients are taken in the ring of integers Z rather

than an arbitrary field F. For completeness, if Z was used for coefficients, the Betti

numbers would match those of F 6' Z2, although the homology group H1 = Z⊕ Z2.

D.2 Real Projective Plane

A CW-complex for the real projective plane RP 2 can be found in Figure D.2. The

sequence of chain complexes is the same as above, as the simplices are of the same

dimension as for the Klein bottle.

0
∂3 // C2

∂2 // C1
∂1 // C0

∂0 // 0 (D.9)

The operation of ∂p on the elements of Cp is written in terms of the basis elements:

∂2F = 2a (D.10)



172 Appendix D The Homology Groups of the Klein Bottle and Real Projective Plane

aF

v

v

a

Figure D.2: The CW-complex of the Real Projective Plane

∂1a = v − v = 0 (D.11)

∂0v = 0 (D.12)

Therefore, for any field:

∂2 : F→ F

1 7→ 2
(D.13)

∂1 : F→ F

1 7→ 0
(D.14)

∂0 : F→ F

1 7→ 0
(D.15)

The kernels and images of ∂p are as follows:

ker ∂2 =

F if F ' Z2

0 otherwise

im ∂2 =

0 if F ' Z2

F otherwise

(D.16)

ker ∂1 = F

im ∂1 = 0

ker ∂0 = F

im ∂0 = 0
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The homology groups Hp ≡ ker ∂p
im ∂p+1

are therefore:

H0 = F

H1 =

F if F ' Z2

0 otherwise

H2 =

F if F ' Z2

0 otherwise

And the Betti numbers βp = dimFHp:

β0 = 1

β1 =

1 if F ' Z2

0 otherwise

β2 =

1 if F ' Z2

0 otherwise
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Proof that repeated application of

boundary map is zero

Here, coefficients are taken in Z2. The proof for coefficients in the integers is found in

Hatcher [32]. The definition of the boundary map on a p-simplex σ is:

∂p(σ) =

p∑
i=0

[v0, . . . , v̂i, . . . , vp] (E.1)

Where v̂j is used to denote the removal of the jth vertex. This appendix demonstrates

the standard result that im ∂p ⊆ ker ∂p−1, or equivalently ∂p−1 ◦∂p = 0. Making vertices

explicit, σ can be written as:

[v0, . . . , vn]

It follows that a face σ′ ⊂ σ can be written as:

σ′i = [v0, . . . , v̂i, . . . , vp]

Or that Equation E.1 can be written as:

∂p(σ) =

p∑
i=0

σ′i (E.2)

i.e. the vertex which has been removed from σ becomes explicit. Applying Equation

E.1, the operation of ∂p−1 on σ′ can be written as:

∂p−1 (∂p(σ)) = ∂p−1

(
p∑
i=0

σ′i

)
=

p∑
i=0

∂p−1

(
σ′i
)

(E.3)
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as the boundary operator is linear. The term inside the sum can be found:

∂p−1

(
σ′i
)

=
i−1∑
j=0

[v0, . . . , v̂j , . . . , v̂i, . . . , vp] +

p∑
j=i+1

[v0, . . . , v̂i, . . . , v̂j , . . . , vp]

The first sum denotes the removal of vertices up to vi, the second denotes the removal

of vertices following vi:

∂p−1σ
′ =

∑
j<i

[v0, . . . , v̂j , . . . , v̂i, . . . , vp] +
∑
j>i

[v0, . . . , v̂i, . . . , v̂j , . . . , vp]

Defining [v0, . . . , v̂i, . . . , v̂j , . . . , vp] as σ′′ij , the above can be rewritten as:

∂p−1σ
′ =

∑
j<i

σ′′ij +
∑
j>i

σ′′ji

Which can be put back into the sum:

∂p−1

(
σ′i
)

=

p∑
i=0

∑
j<i

σ′′ij +
∑
j>i

σ′′ji


The outer sum can be factored in, as it is independent from the inner sums:

∂p−1 (∂p(σ)) =
∑
j<i

p∑
i=0

σ′′ij +
∑
j>i

p∑
i=0

σ′′ji

The two terms are equal, as the indices i and j may be swapped as they are arbitrary.

∂p−1 (∂p(σ)) = 2
∑
j<i

p∑
i=0

σ′′ij

Which can be seen to be 0 due to the fact that 2 = 0 for Z2.
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[135] David S Palmer, Antonio Llinàs, Iñaki Morao, Graeme M Day, Jonathan M Good-

man, Robert C Glen, and John B O Mitchell. Predicting Intrinsic Aqueous Solu-

bility by a Thermodynamic Cycle. Molecular Pharmaceutics, 5(2):266–279, 2007.

[136] Kai Luder, Lennart Lindfors, Jan Westergren, Sture Nordholm, and Roland Kjel-

lander. In Silico Prediction of Drug Solubility. 3. Free Energy of Solvation in Pure

Amorphous Matter. J. Phys. Chem. B, 111:7303–7311, 2007.



188 BIBLIOGRAPHY

[137] Kai Luder, Lennart Lindfors, Jan Westergren, Sture Nordholm, and Roland Kjel-

lander. In Silico Prediction of Drug Solubility: 2. Free Energy of Solvation in Pure

Melts. J. Phys. Chem. B, 111:1883–1892, 2007.

[138] Jan Westergren, Lennart Lindfors, Tobias Ho, Kai Luder, Sture Nordholm, and

Roland Kjellander. In Silico Prediction of Drug Solubility: 1. Free Energy of

Hydration. J. Phys. Chem. B, 111:1872–1882, 2007.

[139] Wei Guo and Ashis G. Banerjee. Identification of key features using topological

data analysis for accurate prediction of manufacturing system outputs. Journal of

Manufacturing Systems, 43:225–234, apr 2017.

[140] Leo Carlsson, Gunnar Carlsson, and Mikael Vejdemo-Johansson. Fibres of Failure:

Classifying errors in predictive processes. arXiv:1803.00384, 2018.

[141] David J. W. Grant and Takeru Higuchi. Solubility Behavior of Organic Com-

pounds. Wiley, 1990.

[142] Samuel H. Yalkowsky, Yan He, and Parijat Jain. Handbook of aqueous solubility

data. CRC Press, 2010.

[143] Ashutosh Kumar and Kam Y. J. Zhang. Advances in the Development of Shape

Similarity Methods and Their Application in Drug Discovery. Frontiers in Chem-

istry, 6:315, jul 2018.

[144] Randy J Zauhar, Guillermo Moyna, Lifeng Tian, Zhijian Li, and William J Welsh.

Shape Signatures: A New Approach to Computer-Aided Ligand-and Receptor-

Based Drug Design. J. Med. Chem., 46:5674–5690, 2003.

[145] Sandhya Kortagere, Matthew D Krasowski, and Sean Ekins. The importance of

discerning shape in molecular pharmacology. Trends in pharmacological sciences,

30(3):138–47, mar 2009.

[146] James A Haigh, Barry T Pickup, J Andrew Grant, and Anthony Nicholls. Small

Molecule Shape-Fingerprints. J. Chem. Inf. Model., 45:673–684, 2005.

[147] Jeremy L Jenkins, Meir Glick, and John W Davies. A 3D Similarity Method for

Scaffold Hopping from Known Drugs or Natural Ligands to New Chemotypes. J.

Med. Chem., 47:6144–6159, 2004.

[148] Thomas S Rush III, J Andrew Grant, Lidia Mosyak, and Anthony Nicholls. A

Shape-Based 3-D Scaffold Hopping Method and Its Application to a Bacterial

Protein-Protein Interaction. J. Med. Chem., 48:1489–1495, 2005.

[149] Pedro J Ballester and W. Graham Richards. Ultrafast shape recognition for simi-

larity search in molecular databases. Proceedings of the Royal Society A: Mathe-

matical, Physical and Engineering Sciences, 463(2081):1307–1321, may 2007.



BIBLIOGRAPHY 189

[150] Thomas A. Halgren. Merck molecular force field. I. Basis, form, scope, parame-

terization, and performance of MMFF94. Journal of Computational Chemistry,

17(5-6):490–519, apr 1996.

[151] P. W. Fowler and D. E. Manolopoulos. An atlas of fullerenes. Dover Publications,

2006.

[152] David Bramer and Guo-Wei Wei. Atom-specific persistent homology and its ap-

plication to protein flexibility analysis. arXiv:1903.11037, 2019.

[153] Jean-Louis Reymond and Mahendra Awale. Exploring Chemical Space for Drug

Discovery Using the Chemical Universe Database. ACS Chem. Neurosci, 3:649–

657, 2012.

[154] H C Longuet-Higgins. The symmetry groups of non-rigid molecules. Molecular

Physics, 6(5):445–460, 1963.

[155] Evangelos A. Coutsias and Michael J. Wester. RMSD and Symmetry. Journal of

Computational Chemistry, 40(15):1496–1508, jun 2019.

[156] Timothy F Havel. Distance Geometry: Theory, Algorithms, and Chemical Appli-

cations. Encyclopedia of Computational Chemistry, 1998.
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[189] Vojtěch Spiwok and Blanka Králová. Metadynamics in the conformational space

nonlinearly dimensionally reduced by Isomap. The Journal of Chemical Physics,

135(22):224504, dec 2011.

[190] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based

algorithm for discovering clusters in large spatial databases with noise. In Proceed-

ings of 2nd International Conference on Knowledge Discovery and Data Mining,

pages 226—-231, 1996.

[191] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. Density-Based

Clustering Based on Hierarchical Density Estimates. In Lecture Notes in Computer

Science, pages 160–172. Springer, Berlin, Heidelberg, 2013.

[192] Norman L. Allinger, Young H. Yuh, and Jenn Huei Lii. Molecular Mechanics. The

MM3 Force Field for Hydrocarbons. 1. Journal of the American Chemical Society,

111(23):8551–8566, 1989.

[193] Anders Nilsson and Lars G. M. Pettersson. The structural origin of anomalous

properties of liquid water. Nature Communications, 6(1):8998, dec 2015.

[194] Pekka Mark and Lennart Nilsson. Structure and Dynamics of the TIP3P, SPC,

and SPC/E Water Models at 298 K. J. Phys. Chem. A, 105(43):9954–9960, 2001.

[195] Teresa Head-Gordon and Greg Hura. Water Structure from Scattering Experi-

ments and Simulation. Chem. Rev., 102(8):2651–2670, 2002.

[196] G Kresse and J Hafner. Ab. initio molecular dynamics for liquid metals. Phys.

Rev. B, 47(1):558–560, 1993.

[197] D. M. Dennison. The Crystal Structure of Ice. Physical Review, 17(1):20–22, jan

1921.

[198] Aneesur Rahman and Frank H. Stillinger. Molecular Dynamics Study of Liquid

Water. The Journal of Chemical Physics, 55(7):3336–3359, oct 1971.

[199] Aneesur Rahman and Frank H Stillinger. Hydrogen-Bond Patterns in Liquid Wa-

ter. Journal of the American Chemical Society, 95(24):7943–7948, 1973.



BIBLIOGRAPHY 193

[200] P E Mason and J W Brady. Tetrahedrality and the Relationship between Collective

Structure and Radial Distribution Functions in Liquid Water. J. Phys. Chem. B,

111(20):5669–5679, 2007.

[201] I M Svishchev and P G Kusalik. Structure in liquid water: A study of spatial

distribution functions. The Journal of Chemical Physics, 99(10):24516–515, 1993.

[202] P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H Ogasawara,
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