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Summary Despite increasing efforts during data collection, nonresponse remains sizeable
in many household surveys. Statistical adjustment is hence unavoidable. By reweighting
the design weights of the respondents are adjusted to compensate for nonresponse. How-
ever, there is no consensus on how it should be carried out in general. Theoretical com-
parisons are inconclusive in the literature, and the associated simulation studies involve
hypothetical situations not all equally relevant to reality. In this paper we evaluate the
three most common reweighting approaches in practice, based on real data in Norway from
the two largest household surveys in the European Statistical System. We demonstrate
how cross-examination of various reweighting estimators can help inform the effectiveness

of the available auxiliary variables and the choice of the weight adjustment method.
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1 Introduction

Response rates in household surveys have declined steadily in many western countries
(de Leeuw and de Heer, 2002; Stoop et al., 2010; Meyer et al., 2015). Post data collec-
tion, statistical adjustment is needed due to a sizeable amount of nonresponse. A stan-
dard process to compensate for unit nonresponse is reweightings (Little, 1986; Kalton and
Flores-Cervantes, 2003; Sdrndal and Lundstrom, 2005; Brick, 2013). Generally speaking,
this requires making two interrelated decisions on auxiliary variable selection and weight
adjustment method. However, there is no consensus on a general approach.

We distinguish between the three most common reweighting approaches in practice.
Firstly, the two-step approach combines response propensity weighting (from respondents to
sample) and calibration (from sample to population); see e.g. Kalton and Kasprzyk (1986).

In general two different sets of auxiliary variables are used at the two steps. The first step

'School of Mathematics and Statistics, University College Dublin, Dublin, Ireland. Email:
duong.nguyen@ucdconnect.com

2S83RI/Dept. Social Statistics and Demography, Univ. of Southampton, Southampton, UK
& Statistisk sentralbyra, Oslo, Norway & University of Oslo, Norway. Email: L.Zhang@soton.ac.uk



weight may either be directly given by the inverse of the estimated response propensities
(Cassel et al., 1983; Little and Rubin, 1987), or indirectly based on adjustment cells formed
using these propensities (Little, 1986; Eltinge and Yansaneh, 1997). Secondly, applying
calibration of the sampling weights (from respondents to population) directly yields the
one-step approach (Lundstrom and Sarndal, 1999), for which a set of auxiliary variables
should ideally have high association with both the response indicator and the target outcome
variable. Adopting the linear calibration function yields the modified generalized regression
(MGR) estimator (Bethlehem, 1988). Thirdly, using the same covariates for both response
propensity modelling and calibration, the two-step approach could yield the so-called doubly
robust (DR) estimators; see e.g. Robins et al. (1994); Robins and Wang (2000); Bang and
Robins (2005); Carpenter et al. (2006); Kang and Schafer (2007).

Despite their long tradition, the choice between the two- and one-step approaches is still
not conclusive in the literature. For instance, one may easily find motivations for the one-
step approach (Little and Vartivarian, 2005; Sérndal and Lundstréom, 2008, 2010), but there
exist also several warnings against its potential pitfalls (Brick, 2013; Kott and Liao, 2015;
Haziza and Lesage, 2016). Although the DR estimators have caught much attention outside
the field of survey sampling, we did not come across any reports on their performance in
real household (or business) surveys.

We believe theoretical comparisons are unable to reach a clear-cut choice because the
‘true’ nonresponse mechanism cannot be identified based on the observed data alone. More-
over, while simulation studies are useful for illustrating certain properties of one approach
or another, not all the hypothetical set-ups are relevant to the reality. It is therefore es-
sential to examine situations in actual household surveys, which are limited in number.
For instance, in the context of European Statistical System (ESS), there are currently only
about 10 major household surveys. Moreover, relevant auxiliary variables consist mostly
(or entirely) of categorical variables, unlike what is common in simulation studies.

In this paper we assess empirically the three reweighting approaches outlined above,
based on the Norwegian Labour Force Survey (LFS) and Survey of Income and Living
Conditions (SILC), which are the two largest household surveys in the ESS. The protocol
of the appraisal is generally applicable to other surveys or countries.

We begin with a description of the sampling designs of the Norwegian LFS and the SIC
in Section 2. In Section 3, we describe a set of reweighting estimators to be investigated and
some common variations. Then we introduce simple ANOVA-type measures to understand
the potential effects of an auxiliary variable based on its association with the outcome
variable and the response indicator in Section 4, and use real data to illustrate how these
may be related to the resulting change in the point estimate and the associated variance.

Our discussion brings forward greater nuances of the reweighting effects than those that have



been delineated previously by Thomsen (1973, 1978), Oh and Scheuren (1983) and Little
and Vartivarian (2005). In Section 5 we present an empirical study of the Norwegian LFS
and SILC data. As will be demonstrated, cross-examination of the different point estimates
and their variances can inform the effectiveness of the available auxiliary variables and the
choice of the weight adjustment method. Some general conclusions that emerge from the
empirical appraisal will be summarised in Section 6.

In summary, regarding auxiliary variable selection, we find that it is always useful
to increase the association with the outcome variable, but seeking the highest possible
association with nonresponse is not necessarily helpful. Moreover, we find that the choice
of weight adjustment method matters, especially when there exist strong auxiliary variables
for the outcome available; whereas provided only weak auxiliary variables for the outcome
variable, limiting the loss of efficiency and avoiding spurious adjustment may be a relevant
priority. Overall, we found no evidence in the situations examined to support an uncritical
adoption of the two-step approach. Since the ‘true’ nonresponse model envisaged for a
two-step approach cannot be identified based on the observed data, regardless of whether
the available auxiliary variables have low or high association with nonresponse, it makes

sense to choose based on cross-examination of the alternatives in a given situation.

2 Sampling designs

In this paper we use or relate the discussions to the LFS data in Section 4.2, 4.3 and 5.1,
and the SILC data in Section 5.2. We now briefly describe the sampling designs of these

two surveys and a relevant variable called Panel Response Status.

2.1 The LFS

The Norwegian LFS has a stratified cluster sampling design, where the 19 counties make up
the strata and family units form the clusters. The population register provides the sampling
frame. The target population consists of residents aged 15-74 years old in Norway. Every
in-scope person stays in the LFS for eight quarters, and there is approximately an 7/8
overlap between two consecutive quarters. The quarterly sample contains approximately
24,000 individuals, and the current response rate is around 80 percent. All interviews are
conducted by telephone.

The overlap between two consecutive quarters means that approximately one in eight
persons is new in each quarterly sample. It is possible to create a variable called Panel Re-
sponse Status that identifies every person as new in sample, or previous quarter respondent,

or previous quarter nonrespondent. This variable has very high association with the current



quarter response indicator, in that previous quarter respondents (or nonrespondents) are
more likely to respond (or not respond) again. Later on we will use this Panel Response
Status to demonstrate the effects of a variable that has high association with the response

indicator on the point estimate and the variance of an estimator.

2.2 The SILC

The annual SILC collects data on housing, finance, health, and work, etc. The target
population is residents who are aged 16 years and over and not living in institutions. It has
a four-year rotating panel design. Individuals are selected from the population register by
the SRS design. The interviews are largely conducted over telephone, although face-to-face
interviews can take place as exceptions. Just like with the LFS, the panel design of the
SILC allows one to create the Panel Response Status variable, distinguishing new persons

in the sample, previous year respondents and previous year nonrespondents.

3 Reweighting estimators to be investigated

Consider a finite population U of size N. Let Y be an outcome variable of interest which
takes the value y; for unit ¢ € U. Assume that a sample s of size n is selected from U
by probability sampling, where 7; is the inclusion probability and d; = 1/m; is the design
weight of unit ¢ € s. Let R be the response indicator defined as r; = 1 if unit ¢ responds and
r; = 0 otherwise, for 7 € s. Let r denote the respondent sample of n, units such that r C s
and n, < n. We describe the various methods to be included in a schematic investigation,
in terms of the estimator of the population total t =, y;.

As a baseline for comparison, consider the design weighted estimator
~ n
d n ; Y (1)

This estimator takes the sampling design into account, and is approximately unbiased for ¢
provided nonresponse missing completely at random (MCAR, Little and Rubin, 1987). An

alternative baseline estimator is the sample respondent expansion estimator
~ N
t=— Z Yi - (2)
" er

It is unbiased for ¢ provided MCAR and equal probability selection method (epsem), and
allows one to gauge both the effects of sampling design and nonresponse on reweighting. In

many household surveys, epsem holds either exactly or approximately, such that the differ-

4



ence between t; and ¢ may be small, when compared to the various reweighting estimators
described below, which aim to adjust for the potential bias caused by nonresponse.

To begin with, when it comes to auxiliary variable selection, it is often recommended
to select variables that have high association with both the survey variable (V) and the
response indicator (R); see e.g. Little and Vartivarian (2005); Schouten (2007); Sérndal
and Lundstrom (2008); Bethlehem et al. (2011). In practice, instead of building a bivariate
model of (Y, R), it is common to model R and Y separately. Denote by Z the selected
predictors of the R-model and by X those of the Y-model. The two generally do not
coincide. Not all the variables in Z (or X) are equally important to R (or Y). In a sense
one may consider the variables in the joint subset, denoted by A = ZA X, to be explanatory
of both R and Y, but we are unaware of any recommended reweighting approach that only
makes use of A. There exist also other variable selection approaches which are not based
on explicit R- and Y-modelling; see e.g. Schouten (2007); Sérndal and Lundstrém (2010).
However, we shall focus on the modelling approach to auxiliary variable selection in this
paper, because it is more generally applicable and has a more direct connection to the
weight adjustment methods, as will be explained shortly. Notice that in this paper we
consider the y-values in the population to be fixed, when calculating the expectation and
variance of an estimator, even when Y-modelling is used to ‘assist’ its construction.

Denote the response propensity of unit ¢, for ¢ € s, by
pi = p(zi; ) = Pr(r; = 1]2)
e.g. defined via a logistic regression model. Let
pi = E(Yi|z;) = m(zi; 3)

be the conditional expectation of Y; given z;. For illustration, we shall assume the most
common linear regression, i.e. u; = x! 3; but other types of regression models of y; are
equally feasible. The two-step weight adjustment that uses Z and X separately can now
be given as
. A d; 5
ieU ier p<zi’ a)

where B =D ier dizixl Jp(zi; &) Y ier diTiyi /P(2i; &), and & is the estimator of o, which
is typically obtained from fitting an appropriate logistic regression model to the sample by

solving for > ._ zj[r; — p(z;; )] = 0. The estimator (3) is approximately unbiased for ¢

1€S
provided nonresponse is missing-at-random (MAR, Little and Rubin, 1987) given Z, and
the model of p; is correctly specified.



By itself the first step of (3) yields the Inverse Propensity Weighting (IPW) estimator

R d;
tipw = Z Yi - (4)

— p(zi;4)

It is approximately unbiased under the same condition as (3), but may be less efficient if X
can help reduce the variance. Extreme weights can arise by IPW, when large weights are
assigned to relatively few respondents with similar characteristics to nonrespondents. Some
authors propose to stratify the sample into several groups (or adjustment cells) based on
similar p(z;; &), i.e. Response Propensity Stratification (RPS), and use the inverse within-
group response rate as the 1st-step weight. RPS is reported to be more efficient than IPW
in some studies (Little, 1986; Kang and Schafer, 2007), although Lunceford and Davidian
(2004) warn against their routine use based on their theoretical and empirical results. In

general, while potential modification of the IPW-weight p(z;; &)~}

is always a relevant
practical issue, the IPW weight is more easily interpretable when comparisons are made to
other weight adjustment methods. We recommend ¢;py to be computed and included in a
schematic investigation of reweighting methods.

Next, applying the second weight adjustment of (3) directly to the respondents yields

the one-step MGR estimator

tnar = Zm(%, B) + Zdz{yz —m(z; B)} (5)

€U 1Er

where B = [Y,., dizizl]7' Y, ., dizyy;. As mentioned before, other one-step calibration
estimators are possible by other calibration functions. But the linear calibration (5) is
the most routine choice, and we shall focus on it to compare the one-step approach to
other adjustment methods. The MGR estimator is approximately unbiased, if nonresponse
is MAR given X, and if the linear model of p; is correctly specified or if the response
propensity p; is the inverse of a linear combination of z; (Lundstréom and Sarndal, 1999).
An extra feature sometimes included in the discussion of the one-step approach is when
some variables in X are observed in the whole sample but have unknown population totals
(Sdrndal and Lundstrém, 2005; Andersson and Sérndal, 2016). However, this is not an
essential difference to the two-step approach, because the same possibility can as well be
accommodated by the two-step approach.

Now, the variables Z selected by R-modelling generally differ from X by Y-modelling.
Moreover, none of the associated MAR assumptions can be entirely true. Under the DR
approach, one uses the same variables to build an R-model and a Y-model; see e.g. Kim

and Haziza (2014). The resulting estimator is approximately unbiased if either one of the



two models is correctly specified. In practice, without actually building a bivariate (R, Y)-
model, taking the auxiliary variables V' = ZV X as the union of Z and X following separate
R- and Y-modelling, appears a likely course of variable selection. The DR estimator for ¢
that we adopt for this study is thus given by applying the two-step approach (3) to (V, V)
instead of (Z, X), i.e.

fon =S m(os &) + 3 =y — m(o &)} (6)
ieU icr p<vi’ 77)

where £ = > e divvl Jp(vi; 1) 71 Y ,c, diviys /p(vi; 7)) under the linear Y-model p; = vf¢,
and 7 is the estimator of the R-model parameter 1 in p; = p(v;;n). Notice that this requires
known population total of z;, unlike the IPW estimator for which one only needs the z;’s
in the sample. Provided nonresponse is MAR given V', the estimator (6) is approximately
unbiased when either the R- or Y-model is correctly specified. Notice that unless separate
modelling happens to result in Z = X, adopting V = Z V X would imply over-fitting
for p; or p;. However, in the situation of v; = z;, Lunceford and Davidian (2004) uses
to demonstrate the potential gains by the DR approach, i.e. to “over-model” p(z; «) by
p(vi;n). So it is of interest to investigate the performance of ¢pr, despite the heuristic

construction of V.

Table 1: A minimal set of reweighting estimators

Weight adjustment method
Selection and use of auxiliary variable | One-step IPW | One-step MGR | Two-step
Separate R- and Y-modelling trew (Z,—) tvuar(—, X) | toss(Z, X)
Refitting after R- and Y-modelling trpw (V, =) tuar(— V) | tpor(V,V)

We arrive thus at a minimal set of estimators for a schematic investigation in any given
situation (Table 1). Also specified are the respective auxiliary variables to be used for
each reweighting estimator. For the estimators using V = Z V X, refitting of p;(v;;n) and
1i(vi; &) is needed in practice. Cross-examination of the different point estimates and their

associated variances in a given survey will be illustrated in Section 5.

4 Effects of auxiliary variable

4.1 Subclass reweighting and association measures

Not all the selected variables in Z or X are equally effective. To gauge the potential effects of

a categorical auxiliary variable, ¢ = 1,2, ..., C, let the population be partitioned accordingly



into C' subclasses with known population sizes Ny, -+, Ng, and N = ZCC=1 N.. Let each
subclass consist of a respondent stratum and a nonrespondent stratum (Cochran, 1953),
respectively, of the population sizes N, and N, and means Y, and Y, . Let Y’ =" N/Y//N’
be the population respondent mean, where N’ = Y>> N/ and Y" = > _N.V, /N" the
population nonrespondent mean, where N' = > N.". Let Y = Y'N’/N +Y"N"/N be the

population mean. Consider the unweighted sample respondent mean

gj:Zyi/nT:ﬁN,

ier

as an estimator of Y = t/N, against the reweighted respondent mean
c
yw = Z Wc Ye
c=1

where W, = N./N and g. is the respondent mean in sample subclass c.

The set-up is convenient for several reasons. Previously, Thomsen (1973, 1978), Oh
and Scheuren (1983) and Little and Vartivarian (2005) all use it to study the effects of
reweighting, which is natural for household surveys where the auxiliary variables are ei-
ther categorical or can be categorised, and the subclasses may arise from cross-classifying
several variables. Based on subclasses 1,...,C, all the reweighting estimators described
in Section 3 reduce to gy, provided simple random sampling (SRS), which allows us to
isolate away the choice of adjustment method. Moreover, one can estimate the randomi-
sation variances of § and gy based on the observed sample (Thomsen, 1978), where the
population y- and r-values are treated as fixed. As pointed out by Little and Vartivarian
(2005), the SRS-assumption allows one to gain an appreciation of the relative efficiency, i.e.
RE = Var(yw)/Var(y), without complicating the technical details due to complex designs.
Notice that, even when the sampling design is complex, or if one prefers the model-based
or quasi-randomisation-based inference in the end, it is still possible to make use of the
randomisation-based results below, obtained under the SRS assumption, in order to easily
gauge the potential effects of an auxiliary variable.

Now, to examine the change of the point estimate due to subclass reweighting, let

1< .

C
B=B(y—gw) =2 S WV (e~ D)= 2 YWV, -V —R), (D

c=1

where h, = N;/Nc, for h. > 0, is the population subclass respondent proportion, and
h = > . Wehe is the population respondent proportion. The second last expression in (7) is



given by Thomsen (1973), and the last one follows since >, W.(h. — h) = 0. Considering
{W1, ..., W} as a probability mass function, one may interpret B as the covariance between
Y, and h. as c varies, denoted by Covy (Y, h.). Since h is fixed at the estimation stage,
different subclass formations can only affect Covy (Y., k). Thus, B would be large if either
Y! or h, varies much across the subclasses, i.e. if the subclasses are heterogeneous either
with respect to the outcome variable or the response indicator, or both.

Next, regarding the RE of subclass reweighting, Thomsen (1978) shows that

Var(j) = nhz{ZWh52 ZWhY Y)} n%z(nwg),

Var(gw) E:I/Vbﬂ/hc7

where 2 = S (V,;,—Y,)?/(N.—1) is the population subclass respondent variance. Notice
that Var(y) can be decomposed into two terms of within- and between-subclass respondent
variances, denoted by 71 and 7, respectively, with fixed sum 71 + 7. A corresponding

ANOVA-type measure of the association between ¢ and Y can be given by
Ay = To/ (11 +T2) .

The association measure .y provides an easy appreciation of the potential effects of the
auxiliary variable (or variables) underlying the subclasses ¢ = 1,...,C. In the extreme case
of Ay = 1 and 71 = 0, we would have B = Bias(y) = E(y) — Y and Var(yw) = 0 < Var(y).
At the other end, where A,y = 0, 75 = 0 and S? = S?, we would have B = 0 and

Var(y) =

~ Var(yw) ,

MQ

52 & 52
<2 Y < 2
- n Hhc )

c=1 c=1

;~I| =

by applying twice the inequality of weighted arithmetic and geometric means, or directly
the Titu’s lemma as a special case of Cauchy-Schwarz inequality. Between the two extreme
cases, increasing \.y makes the subclasses more heterogeneous with respect to Y, which
tends to decrease the within-subclass variances S? and Var(yy ), as well as increasing the
change of point estimate, i.e. provided fixed hq, ..., hc.

Similarly, an ANOVA-type measure of the association between ¢ and R is given as

)\cR = ZWc(hc — B)Q/{ ZWchc(l - hc) + ZWc(hc - B)Z} = UQ/(Vl + Z/Z)



where v; and 1, are the within- and between-subclass variances of R, respectively, with fixed
sum vq + 5. In the extreme case of A\.g = 1 and v; = 0, h, would be either 0 or 1, such
that the subclasses are nested in the respondent and nonrespondent strata. We would have
B = 0, despite perfect association between ¢ and R, so that subclass reweighting affects
only the variance depending on A.y. At the other end, where A\.g = 0, v, = 0 and h, = h,
we would again have B = 0, where subclass reweighting affects only the variance. Between
the two extreme cases, both B and Covy (Y, , h.) are likely to increase with v, = Vary (h,)

and A\.g. To appreciate what might happen to the variance at the same time, rewrite
1. & c c
) ~ = S2/h = Y WeS2(he = B)/R% + > WeSE(he — B)?/R°}
Var(jw) n{;wsc/ D WeS(he = B)/R + 3 WSt (he = R/

based on Taylor expansion of h, around h. As v, increases, the term involving (h.— h)? may
increase accordingly, while that involving (h. — h) remains small since >, We.(h. — h) = 0.
In particular, even if A,y is high and S$%’s are relatively small, it is possible for the term
involving (h. — h)? to increase to such an extent that we would have Var(gy) > Var(y).
Thus, as A\.g increases, subclass reweighting is likely to achieve greater change of the point

estimate while increasing the variance at the same time.

Remark Sirndal and Lundstrém (2010) consider three indicators, H; - Hs, for the use-
fulness of auxiliary information. They consider Hs to be ad hoc, which is only included for
exploration. According to their conclusion, they prefer H; for a given y-variable, and they
argue for H3 as a tentative choice for the “many y-variables situation”, but call for more
research to develop other indicators (than Hj).

The indicator H; is given by Hy = |Hy| and Hy = A4/S,. Combining egs. (2.1), (5.2),
(5.7), (5.8) and (5.11) in Sarndal and Lundstrom (2010), we have

Hy = _Cov(y,m) Sm P
Sy

3.5, X g —S—yC’ov(y,m)

=—R,n X cuy, =

where P is the weighted response rate, i.e. an estimate of h in our set-up, and A, = (}7}3 xXpP—
Y/CAL) /N , with the “expansion” estimator Y/EXP and the “calibration” estimator Y/CAL.
Thus, A, is similar to the B-term by eq. (7) in this paper, defined as the expectation of
7 — gw under SRS, where § = t4/N = ?EXP/N and gy = ?CAL/N by subclass reweighting.
Notice that by eq. (7) in this paper, B is a function of h and Covy (Y!, h.). The key
difference between A4 and B is that the latter is based on the response propensity p;’s,
whereas the former is based on m;’s which are on the scale of 1/p;.

Next, H3 = cv,,, which is based on the auxiliary variables and the response indicator
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but not the y-values. In this sense it is similar to A.g in our paper, which measures the
association between the auxiliary variables and the response indicator. While Hj is related
to the variance of m;, A.r is related to the variance of p;; while H3 depends in addition on
h, Aer depends in addition on the decomposition of the variance of p;.

Thus, by introducing Ay and A.g, we move into areas not covered by Sarndal and
Lundstréom (2010). In particular, we find that as A.y increases, reweighting tends to increase
both bias adjustment (B or A,4) and efficiency gains; whereas as A\ increases, reweighting

is likely to increase bias adjustment but inflate the variance at the same time.

4.2 A simulation study

In Section 4.1, we presented the formula for B, the change in point estimate due to subclass
reweighting, as well as the fomulas for the variance of the unweighted respondent mean g
and weighted mean gp,. These formulas hold exactly under SRS. In practice, strict SRS
is not the most common design, despite the household survey inclusion probabilities tend
not to vary greatly across the population. They can still provide useful indications for the
relative importance and potential effects of the different auxiliary variables in reweighting,
as we will discuss in more details in Section 5, even though they do not suffice as the final
uncertainty measures to be reported together with the survey estimates. We feel that such
uses are warranted based on our past experience of in-house empirical evaluations. Below
we carry out a simple simulation study to illustrate this point.

First we generate a Norwegian Labour Force population that resembles the LFS in the

first quarter of 2015, including the response indicator. This proceeds as follows.

e The population of approximately 3.8 million Norwegians aged 15-74 are distributed in
the 19 counties according to the situation in the first quarter of 2015. The county popu-
lation size varies from approximately 58,000 to 506, 000. We refer to more details of the
population at https://www.ssb.no/en/befolkning/statistikker/folkemengde.

e Within each county, assign each person a binary register employment status, such that

the total number of register employed people is as given in the first quarter of 2015.

e Within each county, simulate independently the LFS classification (employed, unem-
ployed, inactive) for each person, by the multinomial distribution with the correspond-

ing proportions observed among the LFS respondents in that county.

e Within each county h, simulate independently the response indicator (yes, no) for each
person, using the Bernoulli distribution with a probability 0.81 4 dy; if the person is
register employed and 0.76 + dgy, if the person is not register employed. The figures 0.81

11



and 0.76 are respectively the average response rates for the registered employed and
not registered employed in the first quarter of 2015. Within each stratum, the response
rates for these two groups vary slightly, about 2% above or below the averages. Hence,
don, and dy;, are simulated to have a normal distribution with mean 0 and standard
deviation 0.01 to the reflect the range of the corresponding stratum response rates

observed in the LF'S sample.

We then draw repeatedly samples (of the same size as the LFS) from this population using
SRS or Stratified SRS (StrSRS), where the strata are the 19 counties and the stratum
sample sizes are as in the Norwegian LFS. The county sample size varies from 610 to 2, 745.
Based on m simulated samples, with sufficiently large m, we may compare the true values of
B, Var(y) and Var(gy) under each sampling design, with the expected sample estimates
of them using the formulas in Section 4.1 under the assumption of SRS. The results for
the proportions of unemployed and employed are given in Table 2. It can be seen that the
formulas under the SRS assumption (“Estimated”) hold as well approximately under the

Stratified SRS sampling design.

Table 2: Simulation results (x1073), m = 1000.

Unemployment Employment
Estimated SRS  StrSRS Estimated SRS  StrSRS
B —1.00 —1.00 —1.00 B 12.48 12.44  12.62
s.e(y) 1.14 1.14 1.20 s.e(y) 3.34 3.33 3.45
s.e(gw) 1.16 1.16 1.22 | s.e(yw) 1.90 2.01 1.93

4.3 Examples from the Norwegian LFS data

In practice, A\.y and A\.g are neither 0 nor 1, and they vary simultaneously with the auxiliary
variables. In the literature such as those cited in Section 3, it is often suggested that one
should select variables that have high associations with both Y and R. Little and Vartivarian
(2005) summarise in their “Table 1”7 the effects of reweighting, depending on the association
of the auxiliary variables to Y and R, which is reproduced here as Table 3. However, our
own experiences (Zhang et al., 2013) suggest that there exist greater nuances in reality,
which we demonstrate below using four examples based on the Norwegian LFS data. The
examples illustrate also how (A.y, Acg) may be related to the changes of the point estimate
and the associated variance.

We use the Norwegian LFS in the first quarter of 2015. The sample size is n = 24,353
and the response rate is h = 0.79. We consider two binary Y-variables: employment and

unemployment status. All the terms B, Var(y), Var(yw ), etc. are estimated based on the

12



Table 3: Effects of nonresponse reweighting, from Little and Vartivarian (2005).

Association with Outcome Variable
Association with Nonresponse Low High
Low Effect on Bias: — Effect on Bias: —
Effect on Variance: — Effect on Variance: |
High Effect on Bias: — Effect on Bias: |
Effect on Variance: T Effect on Variance: |

observed sample. However, for simplicity we do not introduce extra notations to emphasise

that the values presented are estimates instead of population quantities.

Example 1 Let Y be the LFS Unemployment Status. Let two subclasses be formed
based on the Registered Employment Status, where ¢ = 1 for not registered employed
and ¢ = 2 for registered employed. We have W, = (0.35, 0.65) and h. = (0.74, 0.81),
for ¢ = (1, 2), with the corresponding subclass respondent means . = (0.07, 0.00) and
respondent variances 52 = (0.06, 0.00). We obtain

Ay = 0.04, \eg = 0.01, B=—1.41 x 1073, s.e(y) = 1.13 x 1073, RE = 1.07 .

Both A,y and A\.g are close to zero. This provides an example of the top-left scenario in
Table 3, according to which reweighting has little effect. However, the point estimate is
actually changed by about 120% of the standard error (s.e) of y, while it increases the
variance only slightly. Previous studies of the Norwegian data (Zhang, 1999; Thomsen and
Zhang, 2001; Zhang, 2005) all conclude that employment is overestimated and unemploy-
ment underestimated, based on the unadjusted respondent sample. The adjustment B is
therefore in the direction one would expect, and it is by no means ‘negligible’ in size, despite

the low association of the auxiliary variable with both Y and R.

Example 2 Let Y be the LFS Employment Status, and keep the same subclasses as in
Example 1. We have g, = (0.14, 0.96) and S? = (0.12, 0.04), and

Aoy = 0.69, A\ep = 0.01, B =1.68 x 1072, s.e(y) = 3.31 x 1073, RE = 0.34 .

It can be seen that A\.r stays the same but M.y is greatly increased, compared to when
the outcome variable is Unemployment Status. This provides an example of the top-right
scenario in Table 3, according to which reweighting leads to little bias adjustment, although
it may reduce the variance. However, it can be seen that in addition to the huge variance

reduction, the change in the point estimate is also several times the standard error.
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Example 3 Let Y be the LFS Employment Status. Let the subclasses be formed using the
Panel Response Status, where ¢ = 1 if previous nonrespondent, ¢ = 2 if previous respondent,
and ¢ = 3 if new sample unit. For ¢ = (1, 2, 3), we obtain W, = (0.20, 0.67, 0.13),
h. = (0.29, 0.94, 0.77), y. = (0.66, 0.71, 0.66), and S? = (0.22, 0.21, 0.22), so that

Aoy = 0.00, Aer = 0.39, B =5.50 x 1073, s.e(y) = 3.31 x 1073, RE = 1.28 .

Compared to Example 1, A\ g is considerably increased but \.y remains almost zero. This
provides an example of the low-left scenario in Table 3, according to which reweighting
leads to little bias adjustment, although it may increase the variance. Actually, however, in
addition to the increasing variance, the change in the point estimate is again by no means

‘negligible’ in size, despite the low association between the auxiliary variable and Y.

Example 4 Let Y be the LFS Employment Status. Crossing the Panel Response Status
and the Registered Employment Status yields the subclasses, where ¢ = 1 if previous
nonrespondent and not registered employed, ¢ = 2 if previous nonrespondent and registered
employed, ¢ = 3 if previous respondent and not registered employed, ¢ = 4 if previous
respondent and registered employed, ¢ = 5 if new sample unit and not registered employed,
and ¢ = 6 if new sample unit and registered employed. Then, for ¢ = (1, 2, 3, 4, 5, 6),
we obtain W, = (0.08, 0.12, 0.21, 0.47, 0.05, 0.08), h. = (0.25, 0.31, 0.93, 0.94, 0.72, 0.79),
7. = (0.14, 0.95, 0.14, 0.96, 0.10, 0.95), S% = (0.12, 0.05, 0.12, 0.04, 0.09, 0.05), and

Aey = 0.69, Aep = 0.39, B = 1.78 x 1072, s.e(y) = 3.31 x 1073, RE = 0.43 .

Compared to Example 2, A\.r is considerably increased in addition to high A.y. This
provides an example of the low-right scenario in Table 3, which is ‘ideal” according to the
prevailing recommendation in the literature. However, while the adjustment B is increased
by about 6% compared to the reweighting in Example 2, there is also a loss of efficiency
by about 26%. In other words, it is not unreservedly beneficial to increase the association
with R, while the association with Y remains the same. In fact, we now demonstrate the

caveat of doing so with the following thought experiment.

Example 4* The first two h.’s in Example 4 are the response rates of the previous
nonrespondents, the next two of the previous respondents, and the last two of the new
sample members. To vary the response rates more extremely, suppose we have full response
among the previous respondents, so that hy = hy = 1; suppose the response rates among
the new sample units stay the same, so that hs = 0.72 and hg = 0.79; suppose the response
rates among the previous nonrespondents are reduced to hy = 0.05 and hy = 0.10. This
yields h. = (0.05, 0.10, 1.00, 1.00, 0.72, 0.80), with the same overall response rate h = 0.79.

Keeping everything else the same as in Example 4, we obtain
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Ay = 0.69, \eg = 0.78, B=1.99 x 1072, s.e(y) = 3.31 x 1073, RE = 1.13 .

As remarked earlier in Section 4.1, without increasing A.y at the same time, increasing A.g

on its own can result in Var(gy ) > Var(y), despite high association A.y.

5 Empirical study of reweighting

For this study of reweighting, a number of auxiliary variables are extracted from the statis-
tical register system at Statistics Norway and linked to the samples at the individual level.
For the LFS, these include age (11), sex (2), county (19), education level (4), marital sta-
tus (3), family type (3), immigration (3), birth country (2), income (5), household income
(5), registered employment (2), where the numbers in parentheses indicate the number of
categories each variable has. The same variables are used for the SILC, except for regis-
tered employment due to data protection regulations. In addition, some of the variables are
adjusted to have fewer categories due to the smaller SILC sample size, e.g. 4 age groups
instead of 11, 7 regions instead 19 counties, etc.

For both R- and Y-modelling, variable selection is carried out stepwise according to the
Akaike Information Criterion. While this is somewhat simplistic, it suffices for the purpose
of this study and reflects well the existing process at national statistical offices. All the 6
estimators listed in Table 1 are applied to each of the outcome variable to be presented,
in terms of the corresponding population mean estimators, denoted by Umethoa = Eomethod /N
where the subscript method identifies the weight adjustment method. The baseline esti-
mator to be presented is j = t/N for  given by (2). The difference to #4/N is negligible
compared to their differences to the various reweighting estimates. To save space, other
estimators that have been calculated may be mentioned in comments but not presented
in details. This include e.g. using RPS instead IPW under the two-step approach. All
the estimated variances are calculated in R using 500 bootstrap samples with the same
sampling design as the LFS/SILC, except for one case to be specified later. The bootstrap
follows the procedure of Canty and Davison (1999), where to mimic the effect of sampling
without replacement, the bootstrap population is made by concatenating copies of the ob-
served sample, from which the bootstrap replicate samples are taken without replacement
according to the given sampling design. For each sample, we calculate the estimates for
each of the estimators discussed in Section 3, and the standard deviation of these estimates

is used to estimate the standard error of each estimator.
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5.1 The LFS

We have carried out the same analysis for five quarterly samples. The results are very
similar, so only those based on the first quarter in 2015 are presented here, where we focus
on two binary outcome Y-variables, employment and unemloyment, denoted by Y,,, and

Y.un, respectively.

Table 4: Association with (R, Yo, Yun), selected’, B in 10_2

Auxiliary variable AR Aeven, Aeven,  Bem (RE) un (RE)
Registered employment  0.017  0.69" 0.047  1.68 (0.33) -0. 14 (1.07)
Age 0.02" 0.28" 0.017 -1.04 (0.71) -0.10 (1.08)
Sex 0.00" 0.00" 0.00" 0.01 (1.00) 0.00 (1.00)
County 0.00f  0.017 0.00  0.07 (0.99) 0.00 (1.00)
Family type 0.021 0.02 0.00 0.19 (0.99) -0.02 (1.02)
Birth country 0.02 0.00 0.01 -0.25(1.01) -0.15 (1.11)
Immigration status 0.02" 0.00 0.017 -0.20 (1.02) -0.16 (1.12)
Education 0.017 0.117 0.01T  0.59 (0.91) -0.06 (1.04)
Marital status 0.02F 0.01  0.00 0.30 (1.00) -0.06 (1.05)
Income 0.02" 0.26" 0.02f  1.47 (0.80) -0.13 (1.08)
Household income 0.04" 0.09" 001  1.39 (0.96) -0.14 (1.13)

The association measures of each covariate with R, Y,,, and Y,, are given in Table 4,
together with B and RE by the respective subclass reweighting, as described in Section
4.1. Tt can be seen that the available covariates have very different associations with the
two outcome variables. Whilst registered employment, age, income and education all have
a high association with Y,,,, the association with Y,, is much lower across the board,
although registered employment and income remain the two with the highest associations
there. The covariates selected for the R-model and the two Y-models are marked (by T)
for the corresponding A.gr, Asv,,, and A.y,, (Table 4). No interaction terms are selected for
any of the models based on these data. Largely the same variables are selected for both
Y-models, denoted by X.,, and X,,, respectively. Each model includes the covariates that
have the highest association with either Y,,, or Y,,. The R-model includes all the available
covariates (Z), except for birth country that is similar to immigration status. In particular,
both X,,, and X, are nested in Z, such that V = Z for both Y,,, and Y,,,.

The different estimates and their associated s.e’s (in parentheses) are given in Table 5.
Compared to the baseline estimate, all the reweighting estimates adjust the employment
rate downwards and the unemployment rate upwards, i.e. in the direction expected. In the
case of employment, all the one-step MGR and two-step estimators reduce the variance,
while the one-step IPW estimator increase the variance. In the case of unemployment, all

the reweighting estimators increase the variance, but have similar RE to each other. For
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Table 5: LFS estimates (s.e) in 1072, the first quarter 2015

Auxiliary for Mean employment, y = 69.84 (0.35)
(IPW, MGR) | One-step yrpw One-step yygr Two-step estimator
(Z, Xom) 6747 (0.44)  67.10 (0.19)  aus = 67.08 (0.19)
(Z,7) ” 67.10 (0.19) ypr = 67.09 (0.19)
Auxiliary for Mean unemployment, y = 2.45 (0.12)
(IPW, MGR) | One-step yrpw One-step yygr  Two-step estimator
(Z, Xun) 2.99 (0.14) 3.06 (0.14)  gaws = 3.18 (0.15)
(2, 7) . 3.05 (0.14)  Fpr = 3.19 (0.15)

both Y,,, and Y,,, the point-estimate changes are very large compared to the s.e’s. Bias
exploration by the method described in Zhang (1999) suggests that, provided informative
nonresponse, the reweighted employment estimators may still have a positive bias, so that
the risk is low that the reweighted estimators are more biased than the baseline estimator.
Likewise for the reweighted unemployment estimators, since the upward adjustments of
unemployment resulted from reweighting appear plausible in magnitude compared to the
downward adjustments of employment.

To a large extent these results have confirmed the potential adjustment effects, which
are suggested by simple subclass reweighting and association measures in Section 4.3. As
indicated in Example 2 there, it is possible to achieve large adjustment of the point estimate
and variance reduction for Y,,,, without high association with R but provided high asso-
ciation with the outcome variable. Moreover, as indicated in Example 1, the reweighting
estimators can yield appreciable adjustment of the point estimate of Y, but also slightly
increase the variance, despite the association is low with both Y,,, and R.

Cross-examination of the estimators gives rise to additional noteworthy observations.
Firstly, a striking result in Table 5 is the large variances of the IPW estimators, e.g. y7pw
is even less efficient than the baseline estimator 3 for Y,,,. We notice that using RPS with
5 groups is unable to reduce the variance compared to the IPW estimator for these LFS
data. Recall that in the case of V = ZVv X = X, Lunceford and Davidian (2004) show that
“over-modelling” p(z;; &) by p(v;; 1) can reduce the variance of the IPW estimator. However,
since X, is a subset of Z here, the predictive covariates are already included in Z and the
strategy of “over-modelling” does not work. This shows that having predictive variables
for Y in the R-model does not guarantee efficiency by itself, without an appropriate weight
adjustment method. For instance, the MGR estimator based on “over-modelling” p(v; &)
with v = z is basically as efficient as yy,gr that only uses X,.,,. Moreover, the two-step
estimator 7o is able to recover almost all the lost efficiency of y;py by calibration of the
IPW-adjusted weights d;/p(z;; &) with respect to X,,.
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Secondly, the two-step approach 7,4 does not offer any noticeable advantage over the
one-step MGR for the Norwegian LFS. In theory, correct modelling of the unit nonresponse
could yield approximately unbiased estimation for any outcome variable. In reality, however,
the true nonresponse model is unobtainable. This is certainly the case with the LFS data
here, given the low association between the available covariates and R. Empirically, o
does not yield any notable improvement over y;gr here, but is more complicated due to
an extra step of model-fitting and reweighting.

Thirdly, the DR approach does not offer any noticeable advantage compared to the
traditional one and two-step approaches for the Norwegian LFS. In the case of Y,,,, where
there is a good Y-model, the results here agree with the literature (Bang and Robins, 2005;
Kang and Schafer, 2007) that the DR estimator does not perform better than the regression
estimator, but could improve the performance of y;py obtained from the R-model alone.
Compared to the two-step estimator gass(Z, X ), the DR estimator gogs(Z, Z) has the same
[PW-weights, but differ with respect to the extra calibration variables in Z \ X, for Y.,
and Z \ X,, for Y,,. However, this makes little difference since the extra variables do not
have any appreciable association with the respective outcome variable.

The one-step MGR estimator ,;qr seems therefore reasonable for the Norwegian LF'S,
among the options considered here. The auxiliary variables may be selected with respect
to several key Y-variables. It is the simplest in production, and it has the lowest vari-
ance, although the difference to the two-step alternatives are small in this case. It may
be noticed that the existing production method in the LFS is essentially the same as sub-
class reweighting based on post-stratification by sex, age, and registered employment. It
performs similarly to yy;qr for both Y., and Y,,, with somewhat smaller adjustment of
the point estimates but also smaller variance for Y,,,. Therefore, the key to improve the
existing method must be to find other auxiliary variables in the statistical register system,
as more administrative data are being made available, which are more predictive of the
unemployment status Y,,. The MGR can be used instead of the post-stratification if the

number of auxiliary variables increases for this reason.

5.2 The SILC

For the SILC, we use data from the 2015 sample, where the response rate is 57 percent and
the net sample size is about 9,200. We focus on two binary Y-variables: whether people
find it difficult to make ends meet and whether they have poor health conditions, denoted
by Y., and Y}, respectively.

The association measures of each available covariate with R, Y., and Y}, are given in

Table 6, together with B and RE by the respective subclass reweighting. It can be seen
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Table 6: Association with (R, Ye,, Yse), selected, B in 1072

Auxiliary variable  Acp Aev.,  Aevi. B, (RE) By (RE)
Age 0.007 0.02" 0.017 0.01 (0.98) 0.12 (0.96)
Sex 0.007 0.00 0.00 0.08 (0.98) 0.03 (0.99)
Region 0.007 0.00 0.00 0.15 (0.98) 0.05 (0.99)
Family type 0.00 0.02" 0.00 -0.13 (1.00) 0.00 (1.00)
Birth country 0.017 0.02" 0.00 -0.43 (1.05) -0.04 (1.02)
Education 0.04" 0.01 0.01" -0.39 (1.08) -0.37 (1.13)
Marital status 0.017 0.03" 0.017 -0.31 (1.02) 0.07 (0.97)
Income 0.03" 0.03" 0.02" -0.67 (1.08) -0.42 (1.12)
Household income 0.027  0.06" 0.02" -0.93 (1.08) -0.34 (1.10)

that here we are in a situation of only low association with both the outcome variables
and nonresponse across the board. The covariates selected for the R-model and the two
Y-models are marked (by T) in Table 6. No interaction terms are selected for any of the
models based on these data. As in the case of LFS, largely the same variables are selected
for both Y-models, denoted by X., and Xj., respectively, and each of them includes the
covariates that have the highest association with either Y,, or Y;,.. The R-model includes
all the available covariates (Z), except for family type that resembles marital status. While

Xpe is entirely nested in Z, X, is almost so except for family type.

Table 7: SILC estimates (s.e) in 1072, year 2015, V = Z V X,

Auxiliary for Mean of Y,, y = 11.20 (0.39)
(IPW, MGR) | One-step yrpw One-step yygr Two-step Estimator
(Z, Xon) 13.05 (0.44)  14.16 (0.46)  Jasrs — 14.68 (0.48)
(V,V) 13.05 (0.44)  14.22 (0.46)  §pp = 14.65 (0.43)
Auxiliary for Mean of Yy, y = 6.07 (0.30)
(IPW, MGR) | One-step yrpw One-step yygr Two-step Estimator
(Z, Xne) 6.83 (0.35) 6.99 (0.35)  Gasts = 7.00 (0.36)
(Z,7) . 6.98 (0.37)  §pr = 6.94 (0.38)

The different estimators and their associated s.e’s (in parentheses) are given in Table 7.
Compared to the baseline estimates, reweighting leads to upwards adjustments for both Y,,
and Y}, and increases the variance in all the cases. Again, as exemplified in Section 4.3, the
adjustment of the point estimate can be large, several times the s.e’s here, despite the low
association with both Y and R; whereas low association with Y does increase the variance.
For both Y-variables, it can be seen that the one-step MGR and the two-step estimators are
closer to each other than the one-step IPW estimators. In particular, the IPW estimators
do not have larger variances, compared to any of the alternatives that includes calibration

towards the selected population auxiliary totals. Notice that using RPS with 5 groups

19



reduces the variance of grpy slightly, and it may somewhat change the point estimate, e.g.
we would have g, = 12.75 (0.43) and g = 6.85 (0.34) instead.

Regarding the three reweighting approaches the results suggest similar conclusions for
the SILC as the LFS. The DR estimator using (V, V), for V' = Z vV X, does not offer any
noticeable advantage compared to the traditional two-step approach using (Z, X) for the
SILC. Neither does the two-step approach g using (Z, X)) offer any trustworthy advantage
over the one-step MGR using X. The variance of ¥4 is slightly larger than that of yygr
for both Y-variables. The adjustment of the point estimate is similar in the case of Y.,
and about one s.e larger by 4, for Y,,,. However, given the low association of the available
covariates with nonresponse, the R-model is hardly the true nonresponse model. Indeed,
given the low association with the Y-variables, it seems possible that the difference in the
adjusted point estimates can be spurious.

The situation here, where one can only achieve low association with Y, can very well
happen in many countries that have fewer auxiliary variables available than in Norway.
It is often possible to find additional sample covariates that have higher association with
nonresponse. For instance, given the rotating panel design of the SILC, one may introduce
the Panel Response Status (PRS) as in Example 3 and 4 in Section 4.3, which has a
higher association with R (A.g = 0.20) but almost no association with the two Y -variables
(Aev,, = 0.00, and Ay, = 0.00). The variable PRS has three categories indicating whether
an individual is a previous respondent, previous nonrespondent, or is a new sample unit.
Adding PRS as an extra covariate to Z given in Tabel 6 yields Z* for the R-model.

Table 8: SILC estimates (s.e) in 1072, with Z* for R-model

One-step yrpw | Two-step Yoss | Two-step ypr
Mean of Y,,,: y = 11.20 (0.39) | 14.39 (0.65) 15.57 (0.66) 15.43 (0.63)
Mean of Y;e: § = 6.07 (0.29) | 7.09 (0.43) 7.14 (0.43) | 7.04 (0.44)

The new one-step IPW and two-step estimators using Z* for the R-model are given in
Table 8. The 500 bootstrap resamples are generated with the same design as the SILC but
further stratified by whether an individual is a new sample unit or not. The most notable
feature in Table 8 is that all the reweighting estimators produce greater point-estimate ad-
justments but also considerably larger variances, compared to the corresponding estimators
without PRS in Table 7. A simple explanation is that PRS enhances the association with R
without increasing the association with the two Y-variables. On the one hand, it is highly
likely that the baseline y underestimates both proportions, since all the reweighting meth-
ods produce upwards adjustments. On the other hand, it is unclear whether the bias of any
adjusted estimator may have gone from negative to positive, and the increased variances

certainly suggest a heightened risk of introducing spurious adjustments.
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The existing production method of the SILC is reweighting by about 200 subclasses,
which are formed by cross-classifying several of the auxiliary variables considered here.
Stablising the variance of estimation is therefore an important aspect for improvement.
This speaks against including variables like PRS, because the affected estimators would
have considerably larger variances. Recall that X, and X, are essentially nested in Z
(Table 6). A possible resolution is to settle for a common set of variables, denoted by
(@, and choose between the IPW and MGR estimators based on an overall assessment of
their efficiency for different Y-variables. Two initial choices for @) are (i) the intersection
Qo = Z N Xen N Xpe, and (ii) the union Q1 = Z V X, V Xpe. In addition, one can explore
any of the 32 possible () between (g and ()1, and obtain the corresponding IPW and MGR

estimates that are given in Table 9.

Table 9: SILC estimates (s.e) in 1072, with different auxiliary variables

Mean of Yy, Mean of Yy,
Variables IPW (s.e) MGR (s.e) IPW (s.e) MGR (s.e)
0o 12.68 (0.43) 13.27 (0.43) 6.61 (0.33) 6.81 (0 34)
Qo, region 12.65 (0.43) 13.24 (0.43) 6.62 (0.33) 6.81 (0.34)
Qo, sex 12.68 (0.43) 13.27 (0.43) 6.61 (0.33) 6.80 (0.34)
Qo, birth country 12.79 (0.43) 14.06 (0.46) 6.59 (0.33) 6.80 (0.35)
Qo, education 12.91 (0.44) 13.37 (0.43) 6.83 (0.34) 6.99 (0.35)
Qo, family type 12.70 (0.43) 13.37 (0.43) 6.61 (0.33) 6.81 (0.34)
Qo, region, sex 12.65 (0.43) 13.24 (0.43) 6.62 (0.33) 6.81 (0.34)
Qo, region, birth country 12.76 (0.43) 14.02 (0.46) 6.59 (0.33) 6.78 (0.35)
Qo, region, education 12.89 (0.44) 13.36 (0.43) 6.84 (0.34) 7.00 (0.35)
Qo, region, family type 12.67 (0.43) 13.35 (0.43) 6.63 (0.33) 6.81 (0.34)
Qo, sex, birth country 12.79 (0.43)  14.06 (0.46) 6.59 (0.33) 6.80 (0.35)
Qo, sex, education 12.90 (0.44) 13.37 (0.43) 6.84 (0.34) 6.99 (0.35)
Qo, sex, family type 12.70 (0.43) 13.37 (0.43) 6.61 (0.33) 6.80 (0.34)
Qo, birth country, education 13.07 (0.44) 14.18 (0.46) 6.81 (0.34) 7.00 (0.37)
Qo, birth country, family type 12.82 (0.43) 14.16 (0.46) 6.59 (0.33) 6.80 (0.35)
Qo, education, family type 12.91 (0.44) 13.45 (0.43) 6.82 (0.34) 6.99 (0.35)
Qo, region, sex, birth country 12.76 (0.43) 14.02 (0.46) 6.59 (0.33) 6.78 (0.35)
Qo, region, sex, education 12.88 (0.44) 13.36 (0.43) 6.85 (0.35) 7.00 (0.35)
Qo, region, sex, family type 12.67 (0.43) 13.35 (0.43) 6.63 (0.33) 6.81 (0.34)
Qo, region, birth country, education 13.06 (0.44) 14.14 (0.46) 6.81 (0.34) 6.97 (0.36)
Qo, region, birth country, family type 12.78 (0.43)  14.12 (0.47) 6.59 (0.33) 6.78 (0.35)
Qo, region, education, family type 12.89 (0.44) 13.44 (0.43) 6.84 (0.34) 7.00 (0.35)
Qo, sex, birth country, education 13.07 (0.44) 14.18 (0.46) 6.82 (0.35) 7.00 (0.37)
Qo, sex, birth country, family type 12.82 (0.43) 14.16 (0.46) 6.59 (0.33) 6.80 (0.35)
Qo, sex, education, family type 12.90 (0.44) 13.45 (0.43) 6.84 (0.34) 6.99 (0.35)
Qo, birth country, education, family type 13.07 (0.44) 14.26 (0.46) 6.81 (0.34) 6.99 (0.37)
Qo, region, sex, birth country, education 13.05 (0.44) 14.15 (0.46) 6.83 (0.35) 6.98 (0.37)
Qo, region, sex, birth country, family type 12.78 (0.43) 14.12 (0.47) 6.59 (0.33) 6.78 (0.35)
Qo, region, sex, education, family type 12.88 (0.44) 13.44 (0.43) 6.85 (0.35) 7.00 (0.35)
Qo, region, birth country, education, family type 13.06 (0.44) 14.22 (0.46) 6.81 (0.34) 6.97 (0.36)
Qo, sex, birth country, education, family type 13.07 (0.44) 14.26 (0.46) 6.82 (0.35) 7.00 (0.37)
O 13.05 (0.44) 14.22 (0.46) 6.82 (0.35) 6.98 (0.37)
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We observe the same pattern in Table 9 as previously, given low association with Y: the
auxiliary variables () that yield greater adjustment of the point estimates also lead to larger
variances. The simplest choice here appears to be )y, which achieves the minimum s.e’s
for both the IPW and MGR estimators for both the Y-variables. Adding extra auxiliary
variables does not improve the efficiency, but it may be accepted in practice, if benchmarking
towards the extra variable is considered necessary and the induced adjustment and variance
are judged reasonable. For example, region may be added to )y to produce consistent

regional estimates without losing efficiency or affecting much the point estimates.

6 Conclusions

Two interdependent decisions are required when reweighting for unit nonresponse: auxiliary
variable selection and weight adjustment method. The following conclusions emerge from
the review and empirical appraisal above.

When selecting the auxiliary variables, it is always useful to increase the association with
the outcome variable, but seeking higher association with nonresponse is not necessarily
helpful. In particular, one can achieve large useful adjustment of the point estimate and
reduce the variance at the same time, provided high association with the outcome variable
but only low association with nonresponse. While it is often possible to find variables
that are primarily associated with nonresponse but not the outcome variables, such as the
variable PRS in the LFS and SILC, caution would be necessary regarding such variables,
because they tend to inflate the variance and heighten the risk of spurious adjustment, as
it has been demonstrated empirically in Section 4.3 and 5.2.

Regarding weight adjustment, the choice of method does matter, e.g. between the one-
step IPW and MGR estimators, especially when there exist strong auxiliary variables for
the outcome available, as for the employment variable in the LFS. In particular, it would be
unwise only to consider the IPW (or RPS) estimator based on a nonresponse model, when
high association with the outcome variable is available. Provided weak auxiliary variables
for the outcome variable, bigger adjustment of the point estimate is often accompanied
by an increasing variance, by either the IPW or MGR estimator. Limiting the loss of
efficiency and avoiding spurious adjustment may be the priority in such situations. Thus,
it is important to pay attention not only to the size of adjustment of the point estimate
by the weight adjustment method, but also the effects of reweighting on the variance of
estimation, whether the given auxiliary variables are strong or weak.

Finally, regarding the three main reweighting approaches identified in Section 1, we
found no evidence in the situations examined, which supports an uncritical general adoption

of either the two-step approach. Neither the traditional nor the DR two-step approach yields
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empirically any gains for the Norwegian LFS and SILC. Since the ‘true’ nonresponse model
envisaged for a two-step approach cannot be identified based on the observed data, whether
the available auxiliary variables have low or high association with nonresponse, it makes

sense to choose based on cross-examination of the alternatives in a given situation.
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