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ABSTRACT

In this thesis we explore the compelling BSM model of Walking Techni-
color, where new strong dynamics with a modified slowly running (walking)
coupling dynamically break electroweak symmetry. We detail the Next-to-
Minimal Walking Technicolor (NMWT) model, connecting an effective chiral
Lagrangian to the underlying dynamics via the Weinberg Sum Rules. We dis-
cuss the theoretical upper limit on the NMWT scale, MA, set by the require-
ment of walking dynamics, and experimental limits from reducing tension
with Electroweak Precision Data.

We investigate the potential of the Large Hadron Collider (LHC) to probe
the NMWT model at LHC@13TeV, 36fb−1, using dilepton signatures from
heavy neutral Z ′ and Z ′′ resonances predicted by the model. We establish
a new limit in the (MA, g̃) plane, demonstrating the complementarity of the
two resonances. We find the most conservative limit as MA > 3TeV for
low g̃. We set the first complementary limits from searches in the Drell-
Yan produced V V/V h channels, demonstrating new potential to probe the
intermediate-high g̃ regime.

We use a holographic model to explore WTC from a top-down approach
with varying number of techniquark colours and flavours (Nc,Nf ), tuning
the gauge running dynamics to produce a light Higgs and low S parameter.
The resulting models predict technimeson masses and couplings above the
current LHC limits, where the top-down equivalent model to NMWT lies at
MA ' 4TeV, g̃ ' 8. This estimate provides a benchmark for the challenge of
exclusion/discovery of new strong dynamics at future collider experiments.

We begin the task of determining the future of Walking Technicolor, devel-
oping a procedure for setting expected 95% CL limits on neutral resonances
in the DY dilepton channel. We use this to predict the exclusions on the
NMWT parameter space for the LHC era up to HLLHC@14TeV, 3ab−1, and
for future 27TeV and 100TeV colliders. The DY dilepton channel is limited
by the systematics, but can begin to probe the most extreme (large number
of techni-doublets) top-down models from holography. We draw prospects on
predicting limits from V V/V h searches from Drell-Yan and Vector Boson Fu-
sion production, and to ultimately determine the fate of Walking Technicolor
in the LHC era and beyond.
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Chapter 1

Introduction

The Standard Model (SM) of Particle Physics has prevailed throughout the
last century as the most robust description of fundamental particles and their
interactions, and with the famed discovery of the Higgs boson by the CMS [7]
and ATLAS [8] collaborations in 2012 the SM puzzle is seemingly complete.
However, there remain many important issues that the SM fails to address,
such as a quantum description of gravity, the origin of neutrino masses, and
the nature of Dark Matter1. Perhaps the most imperative unresolved issue
is the nature of Electro-Weak Symmetry Breaking (EWSB) and the origin
of mass for fundamental particles. The current SM understanding of mass
generation through spontaneous EWSB, i.e. the Higgs mechanism, fails to
adequately explain the observed mass of the Higgs boson without introducing
huge fine tuning. This is the hierarchy problem, where radiative corrections
push the Higgs mass up to the Planck scale (ΛPl), 16 orders of magnitude
greater than the physical Higgs mass at the weak scale.

To answer these questions we must look Beyond the Standard Model (BSM),
models for which can be categorised into several common classes (e.g. Su-
persymmetry, Extra Dimensions, Grand Unified Theories). One of the more
exciting paradigms is Technicolor, based on the introduction of new strong
dynamics [9, 10], under which a chiral condensate forms and dynamically
breaks electroweak symmetry. This provides a natural scale for mass gen-
eration and removes the fine tuning required for the SM Higgs mechanism.
In the age of high energy and high luminosity colliders it is now possible to
search for new physics at &TeV energy scales, and Technicolor provides a
wealth of phenomenology to explore at this scale.

1These topics are not discussed within this thesis
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The original inception of Technicolor was a replacement of the Higgs mech-
anism, in fact having no Higgs boson at all2. Of course, observation at the
LHC tells us such a particle does exist, so where does this leave Technicolor?
Electroweak precision data (EWPD) also disfavours the QCD-like dymanics
of the original Technicolor theory[11]. Thankfully for us, Technicolor the-
ories with modified strong dynamics can address both of these experimen-
tal constraints, whilst retaining the richness of TeV scale phenomenology of
the original Technicolor. These well motivated Walking Technicolor (WTC)
models contain a new strong coupling αS, modified to include a very slowly
running (‘walking’) regime between the Technicolor scale ΛTC and some high
energy Extended Technicolor scale ΛETC [12, 13, 14, 15, 16]. The weak scale
phenomenology of WTC includes a composite spin−0 resonance consistent
with the observed Higgs boson, providing a naturally generated Higgs mass
and an interesting potential nature for the Higgs boson. The phenomenology
also includes multiple composite triplets of spin−1 resonances around the
TeV scale, making WTC a prime candidate for experimental searches.

By studying physics at TeV scale colliders, we can probe the WTC paradigm,
the nature of mass generation, and provide insight into the nature of the
Higgs boson itself. Through such searches we hope to provide an answer as
to the current potential of WTC as a solution to the hierarchy problem, as
well as predict the future of Technicolor in the high luminosity LHC era and
beyond.

The structure of this introduction will be as follows; In section 1.1 the SM
gauge sector, the Higgs mechanism for spontaneous electroweak symmetry
breaking (SEWSB), and the hierarchy problem are detailed. The mechanism
of dynamical EWSB (DEWSB) as observed in the QCD sector is discussed
in 1.2, along with the scaled-up QCD model of Technicolor in the pre-Higgs
discovery era. Finally the evolution of the DEWSB models from running to
walking dynamics is introduced and discussed in section 1.3.

The remainder of this thesis is structured as follows; In chapter 2 the Next-
to-Minimal Walking Technicolor model (NMWT) at the level of the low-
energy effective Lagrangian is introduced and its parameter space discussed
in detail. Chapter 3 details the physical spectrum of NMWT and how it is
obtained from explicit diagonalisation of mass matrices in the model. The
phenomenology of neutral resonances (mass spectra, branching ratios, cross
sections etc.) is explored in detail in chapter 4. In chapter 5 we update the

2There does exist a composite scalar in QCD-like Technicolor, equivalent to the QCD
σ meson, however it has mass� Mh and therefore cannot be identified as the observed
Higgs
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Drell-Yan dilepton limits on the NMWT parameter space for LHC@13TeV,
36fb−1, at which we also produce the first limits on NMWT from neutral and
charged resonances in V V/V h channels. In chapter 6 the spectra of Walking
Technicolor models are calculated from a top-down perspective using a Holo-
graphic model, and projected into the NMWT parameter space to explore the
current capacity of the LHC to probe such models. In chapter 7 a method of
predicting dilepton limits at future colliders (HLLHC, 27TeV LHC, 100TeV
FCC) is detailed and validated, and projected limits on NMWT for these
collider searches are presented and discussed in the context of both bottom-
up (effective L) and top-down (holographic model) constructions of Walking
Technicolor. Finally, we conclude with chapter 8, ultimately determining the
future of Walking Technicolor in the LHC era and beyond.

1.1 Standard Model of Particle Physics

Introduction to SM Gauge Interactions

The history of the Standard Model (SM) is an interesting one; being the
most successful and experimentally consistent theory of fundamental parti-
cle interactions to date and yet still lacking the satisfying resolutions to its
problems, such as the hierarchy problem associated with the Higgs boson. To
understand where the hierarchy problem and electroweak symmetry break-
ing (EWSB) enter in to the SM, it is helpful to recount the history of gauge
interactions in the SM.

The Standard Model is a gauge theory describing interactions under the
strong, electromagnetic and weak forces. Overall the theory has the gauge
structure SU(3)C ⊗ SU(2)L⊗U(1)Y , where C,L, Y represent colour charge,
left-handedness, and hypercharge respectively. Interactions are mediated by
spin-one gauge bosons corresponding to the generators of the relevant sym-
metry group. Let us briefly discuss the gauge sector of the strong force before
giving a detailed overview of the electroweak gauge sector.

The strong force is mediated by eight gluon fields, Ga
µ where a = 1, . . . , 8,

corresponding to the 3x3 matrix generators of the fundamental representation
of the SU(3) group,

[t]aij =
λa

2
, (1.1)

where λa are the Gell-Mann matrices [17]. These generators follow the rela-
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tions

Tr[tatb] =
δab
2
, [ta, tb] = ifabctc, (1.2)

where fabc are the antisymmetric structure constants of SU(3)C . As QCD
is a non-abelian gauge theory, the field strength tensor can be constructed
from the following combination of gluon fields;

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gSf
abcGb

µG
c
ν , (1.3)

where gS is the coupling strength of the strong force interactions.

Testing this field strength tensor under SU(3) transformations will provide
the appropriate kinetic term for the Lagrangian. The SU(3)C group contains
set of 3x3 Unitary matrices with determinant 1, U = eit

aθaC , where θaC are
arbitrary parameters. Applying an infinitesimal SU(3)C transformation to
the field strength tensor,

Ga
µν 7→ U †Ga

µνU (1.4)

is invariant if the gluon field transforms as

Ga
µ 7→ Ga

µ −
1

gS
∂µ(δθa)− fabcδθbGc

µ. (1.5)

This allows us to safely construct the gauge invariant kinetic Lagrangian for
QCD,

LkinQCD = −1

2
Tr[GµνGµν ] (1.6)

= −1

4
Gµν
a G

a
µν , (1.7)

which, in addition to the usual 2-point gauge boson interactions, contains
both cubic and quartic gluon self-coupling terms. If we try to add in a mass
term for the gluon, e.g. 1

2
mGG

µ
aG

a
µ, under the transformations given above

this term breaks the gauge symmetry of SU(3)C . Thus, the gluon must be
massless.
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As proposed by Glashow, Weinberg, and Salam, the electromagnetic and
weak sectors can be considered together in a unified electroweak theory [18,
19, 20]. Consider the case of exact SU(2)L ⊗ U(1)Y symmetry; each group
has its own set of fields corresponding to the generators of said group. The
U(1)Y group contains one generator which can be identified as hypercharge,
Y , associated with a field Bµ. The SU(2)L group contains three generators
T a, a = 1, 2, 3, corresponding to three fields W a

µ . These SU(2)L generators
are related simply to the 2x2 Pauli matrices by a factor of 1/2,

T 1 =
1

2

(
0 1
1 0

)
, T 2 =

1

2

(
0 −i
i 0

)
, T 3 =

1

2

(
1 0
0 −1

)
. (1.8)

The generators follow the commutation relations

[T a, T b] = iεabcTc, [Y, Y ] = 0, [T a, Y ] = 0, (1.9)

and the field strength tensors of the associated fields Bµ and W a
µ take the

form

Bµν = ∂µBν − ∂νBµ,

W a
µν = ∂µW

a
ν − ∂νW a

µ − g2ε
abcW b

µW
c
ν ,

(1.10)

where εabc are the antisymmetric Levi-Civita structure constants and g2 is
the dimensionless gauge coupling associated with SU(2)L.

The Bµν field strength transforms as an abelian theory (e.g QED), so the
local gauge transformation of Bµ is simple to write down, whereas W a

µν is non-
abelian so should transform similarly to the QCD field strength under SU(2)L
transformations. Thus we can see that under infinitesimal transformations
the SU(2)L and U(1)Y fields transform locally as

Bµ 7→ Bµ +
1

g1

∂µθY (x)

W a
µ 7→ W a

µ +
1

g2

∂µθ
a
L(x) + εabcW b

µθ
c
L(x),

(1.11)

where g1, g2 are the dimensionless gauge couplings associated with U(1)Y
and SU(2)L respectively.
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A first hint of unification of the electromagnetic and weak forces can be
seen in the relationship between generators of each group and the proper-
ties (quantum numbers) they represent. The QED generator Q and U(1)Y
generator Y represent electric charge and hypercharge respectively, where
the generators of SU(2)L represent isospin. Of particular importance is the
third component of isospin, i.e T 3, which is the conserved quantity in gauge
transformations of a fermion field under SU(2)L. The weak isospin and the
hypercharge are related through the electromagnetic charge as

Q = T 3 +
Y

2
(1.12)

Thus the gauge invariant kinetic Lagrangian for the electroweak sector is

LkinEW = −1

4
W µν
a W a

µν −
1

4
BµνBµν . (1.13)

As in the case of the QCD bosonic lagrangian (equation 1.7), we are forbidden
from writing down mass terms for the Bµ and W µ

a fields if the SU(2)L⊗U(1)Y
gauge symmetry is to remain intact. However, the bosons of the weak force
(W+,W−, Z) have been experimentally observed to be massive, so how does
one reconcile the existence of massive gauge bosons with a fully invariant
Lagrangian? There must be some mechanism to break SU(2)L ⊗ U(1)Y
gauge symmetry whilst preserving the symmetry of the Lagrangian.

1.1.1 Electroweak Symmetry Breaking in the SM

The SM achieves this feat by introducing a complex scalar SU(2) doublet -
the Higgs field - that breaks electroweak symmetry spontaneously, inducing
invariant mass terms for the W+/− and Z bosons whilst maintaining a mass-
less photon and a fully gauge invariant Lagrangian. This Higgs doublet is
Φ,

Φ =

(
φ+

φ0

)
, (1.14)

where φ+, φ0 are the complex scalar fields

φ+ =
1√
2

(φ1 + iφ2), φ0 =
1√
2

(φ3 + iφ4). (1.15)
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This Higgs doublet enters into the SM Lagrangian with a scalar potential
part and a gauge-interacting part,

LHiggs = (DµΦ)†(DµΦ)− V (Φ). (1.16)

The covariant derivative of Φ is

DµΦ = (∂µ + i
g1

2
Y Bµ + ig2T

aW a
µ )Φ, (1.17)

where Bµ and W a
µ are the U(1)Y and SU(2)L gauge fields introduced previ-

ously.

The mechanism for spontaneous symmetry breaking can be understood through
the form of the Higgs potential

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2, (1.18)

where λ > 0 to ensure the Higgs potential is bounded from below, therefore
ensuring a state of minimum energy is possible.

Re[Φ]
Im

[Φ
]

V
(Φ

)

(a)

Re[Φ]
Im

[Φ
]

V
(Φ

)

(b)

Figure 1.1: Form of the Higgs potential V (Φ) in the case of a) µ2 > 0, b)
µ2 < 0.

Two cases now exist for the form of the potential, the case of µ2 > 0 (Figure
1.1a) and that of µ2 < 0 (Figure 1.1b). When we take µ2 > 0, the Higgs
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potential V (Φ) has a unique minimum, the trivial state Φ = 0. Here, elec-
troweak symmetry is preserved, and the Higgs does not generate masses for
the EW gauge bosons.

The case of µ2 < 0 is more interesting, as now the ground state no longer
lies at Φ = 0 but instead exhibits a degenerate ‘ring’ of ground states at
which the vacuum acquires a non-zero expectation value. At the potential
minimum,

Φ†Φ = −µ
2

2λ
=
v2

2
, (1.19)

where v is identified as the vacuum expectation value (vev). Only one of
these φa (a = 1, . . . , 4) will acquire a vev, and consequently the choice of
vacuum state will spontaneously break EWS.

For any choice of vacuum state, the U(1)EM symmetry is preserved, so the
symmetry breaking pattern is then

SU(2)L ⊗ U(1)Y → U(1)EM . (1.20)

In light of this, let us make the choice of vacuum state as where 〈φ〉1,2,4 = 0
and φ3 = v,

〈Φ〉 =
1√
2

(
0
v

)
. (1.21)

We can also introduce a real scalar field h whose vev is 〈h〉 = 0, which enters
in to the scalar doublet as

Φ =
1√
2

(
0

v + h

)
. (1.22)

From the Higgs potential we have found the mechanism for spontaneous
breaking of the SU(2)L⊗U(1)Y symmetry, but what of the W and Z masses?
According to Goldstone’s theorem, as there are three broken global symme-
tries there will also appear three massless Goldstone bosons [21, 22, 23],
however as these are unphysical degrees of freedom, we will consider the
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mass generation mechanism in the Unitary gauge, so we can neglect them3.
Let us now consider the kinetic part of the Higgs Lagrangian 1.16,

(DµΦ)†(DµΦ) =
1√
2

(
0 v

)(
i
g1

2
Y Bµ+ig2T

aW a
µ

)(
−ig1

2
Y Bµ−ig2T

aW a,µ

)
1√
2

(
0
v

)
(1.23)

Substituting the generators of theW a
µ fields from equation 1.8 and performing

the matrix multiplication, this becomes

(DµΦ)†(DµΦ) =
v2

8
[g2

2(W 2
1 +W 2

2 ) + (g1Y Bµ − g2W3)2]. (1.24)

We can recast this in terms of physical gauge bosons, identifying that the
W1,W2 components can be re-written as

W± =
1√
2

(W1 ∓ iW2), (1.25)

we can then replace

g2
2(W 2

1 +W 2
2 ) = 2g2

2W
+W−. (1.26)

The remaining fields can be rewritten as

(g1Y Bµ − g2W
3)2 =

(
W 3 Bµ

)( g2
2 −g1g2Y

−g1g2Y g2
1

)(
W 3

Bµ

)
, (1.27)

and setting the hypercharge Y = 1 we can identify the physical photon field,
Aµ, and physical Z boson field, Zµ, as solutions to the eigenvalue equation
formed from equation 1.27,

Aµ =
(g1W3 + g2Bµ)√

g2
1 + g2

2

(1.28)

Zµ =
(g2W3 − g1Bµ)√

g2
1 + g2

2

. (1.29)

3In t’Hooft-Feynman gauge the Goldstone bosons are ‘eaten’ by the physical gauge
bosons, becoming the longitudinal components of the W ’s and Z
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h

f

f̄

h

Figure 1.2: 1-loop fermion correction to the Higgs propagator.

Thus equation 1.23 can be written in terms of the physical gauge boson fields
as

(DµΦ)†(DµΦ) =
v2

8
[2g2

2W
+W− + (g2

1 + g2
2)Z2

µ + 0A2
µ], (1.30)

where each term’s coefficient corresponds to the mass-squared of the physical
W± and Z, with of course the massless photon γ.

1.1.2 Hierarchy Problem

The mechanism of EWSB providing the correct EW gauge boson masses and
the discovery of a 125GeV Higgs boson at the LHC provide a compelling
argument for the Higgs mechanism as the mechanism of mass generation
in Nature. Let us assume then that this is the complete picture of strong,
EM, and weak interactions, and the SM is an effective field theory of some
high-scale physics, specifically that it is valid up to the Planck scale ΛPl.
This implies that there exist two fundamental scales ΛEW ∼ O(102)GeV
and ΛPl ∼ O(1018)GeV, why then is their separation so large? This is the
hierarchy problem, and we discuss here its implications for the naturalness of
the SM through the lens of radiative corrections to the Higgs mass[24, 25, 26].

Let us examine the 1-loop fermionic corrections to the Higgs propagator
(Figure 1.2). Recalling that the neutral Higgs field in the doublet of equation
1.22 takes the form φ = (h+v)/

√
2, the generic Lagrangian for Higgs-fermion-
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fermion interactions with a Yukawa coupling λf is

Lφff̄ = − λf√
2

(hf̄f + vf̄f). (1.31)

The tree-level mass of the fermion is then mf = λfv/
√

2. We can compute
the two-point function of the Higgs diagram in Figure 1.2,

iΠf
hh(0) = (−)

∫
d4k

(2π)4
Tr

[(
− i λf√

2

)
i

/k −mf

(
− i λf√

2

)
i

/k −mf

]
(1.32)

= −2λ2
f

∫
d4k

(2π)4

[
1

k2 −m2
f

+
2m2

f

(k2 −m2
f )

2

]
. (1.33)

The first term in this correlator is divergent, which is not an issue as one can
remove the divergences using regularisation techniques such as dimensional
regularisation or introducing some cut-off scale Λ, at which new physics ap-
pears. Even if one does not put the cut-off Λ in the integration by hand, Λ
still arises upon integration as in the UV, one runs in to a Landau pole in the
QED coupling, at which charged particles would form new bound states - i.e
introducing new physics at the scale Λ. Once the divergences are dealt with,
there still remains a finite correction to the squared Higgs mass proportional
to Λ2,

∆M2
h(f) = −

λ2
fΛ

2

8π2
. (1.34)

In the scenario in which there is no new physics between the EW scale and
the Planck scale, the cut-off is ΛPl, so the 1-loop fermion contribution to
the Higgs propagator results in a mass correction of ∆M2

h ∼ O(Λ2
Pl). There

are equivalent diagrams to Figure 1.2 for bosonic loops which exhibit this
Λ dependence with the opposite sign to the fermion correction, so there is
some cancellation between the fermionic and bosonic loops. However, these
diagrams enter with different vertex coupling strengths, and there remains
a finite correction to the squared Higgs mass proportional to Λ2. This is a
disastrous result for the naturalness of the SM, the Higgs has been observed
at Mphys

h ∼ ΛEW so one must fine-tune the model to one part in 1028 to
cancel out the O(Λ2

Pl) mass-squared correction at 1-loop level.
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This huge level of fine-tuning is already a hint that the SM is an incomplete
description of fundamental physics. Additionally, the sensitivity of the Higgs
to physics at the cut-off scale suggests that the appearance of new physics
at ΛNP ∼ O(TeV) would naturally solve the hierarchy problem[27, 28].

1.2 Technicolor

When discussing models of dynamical electroweak symmetry breaking (DEWSB),
one should briefly introduce the pre-Higgs era motivation and formulation of
the original Technicolor paradigm. Although this is roundly excluded by a
number of experimental factors, not least of which is the discovery of a Higgs
boson at Mh = 125GeV, it is worthwhile to understand the groundwork laid
by this pioneering approach to solving the hierarchy problem. [29, 30] The
origin of Technicolor stems from the motivation to explain EWSB and the
origin of fundamental particle mass without invoking the Higgs mechanism,
taking inspiration from observations already made in the QCD sector[31]. In
fact, in the absence of a Higgs mechanism the EW symmetry is still broken,
instead breaking due to chiral symmetry breaking in QCD. Here we will detail
this mechanism in the low-scale QCD theory, and discuss the origin of Tech-
nicolor as a QCD-like theory, before discussing the modern interpretations
of new strong dynamics.

1.2.1 Dynamical Symmetry Breaking in QCD

Consider the low energy behaviour of a massless QCD theory, where only
quarks with mass mq � ΛQCD contribute. This discussion follows closely
that of section 19.3 of Peskin and Schroeder[32]. Although ms < ΛQCD, it is
significantly heavier than the u, d quarks and as such we do not include it in
this discussion. In the massless u, d limit the QCD Lagrangian is

LQCD = −1

4
Gµν
a G

a
µν + iq̄ /Dq, (1.35)

where

Dµ = ∂µ + igSt
aAaµ, q =

(
u
d

)
. (1.36)

This Lagrangian contains no mixing of left and right handed terms, and is
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invariant separately under left and right unitary transformations of the form

(
u
d

)
L

→ UL

(
u
d

)
L

,

(
u
d

)
R

→ UR

(
u
d

)
R

. (1.37)

Thus in the limit of low energy massless QCD the Lagrangian exhibits a chiral
symmetry under the symmetry group SU(2)L ⊗ SU(2)R ⊗ U(1)V ⊗ U(1)A

4.
By definition we are in the regime in which the coupling between quarks is
strong, as such the energy expenditure for creating bound states is actually
less than that of maintaining free, unbound quarks, and so the ground state
of QCD forms a condensate of quark-antiquark pairs each with zero total
and angular momentum. Naturally then the vacuum state is described by
the non-zero vacuum expectation value

〈q̄q〉 = 〈0|q̄LqR + q̄RqL|0〉 6= 0, qL/R =
1∓ γ5

2

(
u
d

)
. (1.38)

As this describes the ground state of QCD and explicitly contains interac-
tions between left-handed and right-handed fields, this means that the chiral
symmetry must be broken by the formation of this quark condensate[33],
with a chiral symmetry breaking pattern of

SU(2)L ⊗ SU(2)R → SU(2)V . (1.39)

In this theory the vector symmetries are preserved and transform with UL =
UR for vector currents, however the axial vector currents break the symme-
try and as a result generate massless Goldstone bosons (akin to the Higgs
mechanism described in section 1.1.1)[22]. These are identified as the pions,
which are massless in the mu = md = 0 limit but do gain non-zero mass from
adding explicit symmetry breaking mass terms to the QCD Lagrangian of
equation 1.35. These pions form an isospin triplet πa, which are defined by
the pion decay constant fπ through the important relation

〈0|j5a
µ |πb〉 = fπqµδ

ab, (1.40)

where j5a
µ are the axial isospin currents with a, b as the isospin indices, and

fπ = 93MeV as measured experimentally.

4This is generalised to SU(Nf )L ⊗ SU(Nf )R ⊗ U(1)V ⊗ U(1)A
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The main result of this chiral symmetry breaking is that as the vacuum state
is a condensate of quark bound-states, any massless quark moving through
the vacuum will gain an effective mass proportional to 〈Q̄Q〉 13 . In the two
flavour approximation we have discussed here, the quark condensate takes the
value 〈ūu + d̄d〉 ' (250MeV)3[31]. This gives a neat explanation of why the
proton/neutron masses are much larger than the sum of constituent valence
quarks, even in the case of massless u, d quarks.

Additionally, if one were to remove the Higgs mechanism entirely, then this
QCD chiral condensate 〈ūu+ d̄d〉 does still break electroweak symmetry[31].
In this mechanism, the chiral condensate induced EW symmetry breaking
generates Goldstone bosons that become the longitudinal modes of the W,Z
bosons. The dynamically generated mass for the W is then

MW =
g2fπ

2
∼ 29MeV. (1.41)

Although this is significantly smaller than the measured W mass (MW '
80.4MeV), it does provide an enticing example of how EW symmetry could
be broken by the dynamics of a theory with strongly interacting fundamental
fermions.

1.2.2 Technicolor as scaled-up QCD

With the inspiration from dynamical symmetry breaking and mass genera-
tion already observed in the QCD sector, the explanation for EWSB as a
consequence of new strong dynamics at the TeV scale emerged in the form of
Technicolor[29, 30]. In direct analogy to the low-energy limit of QCD with
two flavours, the simplest Technicolor model is an SU(NTC) = SU(3) gauge
theory with two techniquarks in the fundamental of SU(NTC),

(
U
D

)
L

, UR, DR, (1.42)

which in the massless limit exhibit a chiral SU(2)L ⊗ SU(2)R symmetry.

These techniquarks interact strongly around the scale of the theory, ΛTC , as
such the vacuum state of the theory is filled with a condensate of techni-quark
bound states

〈ŪLUR〉 = 〈D̄LDR〉 ∼ Λ3
TC , (1.43)
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which spontaneously breaks the chiral symmetry in the familiar pattern of

SU(2)L ⊗ SU(2)R ⊗ U(1)V → SU(2)V ⊗ U(1)V . (1.44)

As in the QCD model, the spontaneously broken chiral symmetry produces
three pions π+, π−, π0 with a new pion decay constant Fπ, which become the
longitudinal modes of the W±, Z bosons. The W bosons acquire a mass of

MW =
g2Fπ

2
, (1.45)

where setting Fπ = v = 246GeV recovers the correct EW mass spectrum.

Additionally to inducing EWSB from a dynamical origin and providing a
natural scale for generation of gauge boson masses, the Technicolor model
also contains a spectrum of techni-mesons at the TeV scale in analogy to
the ρ, a1 mesons in QCD. This provides a rich phenomenology that could
be accessed by high-energy collider experiments, and which (at the time of
Technicolor’s origin in the 70’s) would not yet have been observed5.

Despite its initial appeal as a solution to the hierarchy problem via DEWSB,
the scaled-up QCD version of Technicolor is roundly excluded for a number of
reasons. The most obvious failing of new QCD-like strong dynamics is that it
completely replaces the Higgs mechanism, and there is no particle resembling
the Higgs - the composite scalar mode that is generated (the techni-σ) is sig-
nificantly heavier than the Higgs that has famously been discovered at the
LHC[8, 7]. The model is also strongly disfavoured by electroweak precision
data (EWPD)[11], and attempts to provide mass to the SM fermions with
Extended Technicolor (ETC) sectors result in flavour changing neutral cur-
rents (FCNC) which are highly constrained[34, 35]. In light of this plethora
of experimental evidence against scaled-up QCD dynamics, it may seem that
DEWSB by formation of a techniquark condensate is not the correct mech-
anism for mass generation. However, there is a surprisingly elegant solution
to all of these aforementioned issues in the form of new strong dynamics with
a modified running coupling, i.e Walking Technicolor.

5The purpose of this statement is to provide further motivation for new strong dynamics
over models of Supersymmetry, which predicts the existence of new particles with equal
mass to those SM particles already observed at experiment
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1.3 Walking Technicolor

The general idea of Walking Technicolor (WTC) paradigms is that there
are two new fundamental scales of physics, ΛTC (∼TeV scale) and ΛETC

(some high scale), between which the running αTC of the new strong force is
modified to be ‘walking’ (very slowly running). WTC [36, 37, 38, 39, 40, 41]
and its recent developments [42, 13, 16, 14, 15, 43] provide a very compelling
candidate for the underlying theory of Nature.

To demonstrate the need for a modified running behaviour of the new strong
coupling αTC , one should inspect the implications for SM fermion mass gen-
eration for running and walking Technicolor models. In both scenarios,
the SM fermion masses originate from the ETC interactions, where tech-
nifermions and SM fermions couple and interact via some ETC gauge boson
of mass METC of order O(ΛETC)[44]. When the chiral techni-quark conden-
sate 〈Q̄Q〉(= 〈ŪU〉 = 〈D̄D〉) is formed, these fermion/technifermion interac-
tions generate a fermion mass of the form

mf ≈
g2
ETC

M2
ETC

〈Q̄Q〉ETC , (1.46)

where gETC is the coupling strength of the interaction, 〈Q̄Q〉ETC is the value
of the chiral condensate evaluated at the scale ΛETC .

The condensate evaluated at the ETC can be related to the TC scale con-
densate via

〈Q̄Q〉ETC = 〈Q̄Q〉TC exp

(∫ ΛETC

ΛTC

dµ

µ
γ(αTC(µ))

)
, (1.47)

where γ is the anomalous dimension of the technifermion mass operator.
Herein lies the difference between models with a QCD-like αTC and those
with a regime of walking αTC

6.

In Technicolor models resembling a scaled-up QCD, between the scales ΛTC

and ΛETC the coupling αTC runs with scale µ as

αTC(µ) ∝ 1

lnµ
, (1.48)

6Note here that the subscript αTC does not refer to the specific value of α at the TC
scale, rather a label identifying this as the coupling of a new strong force in a general
Technicolor model
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which enhances the chiral condensate by a factor of

〈Q̄Q〉ETC ∼ 〈Q̄Q〉TC ln

(
ΛETC

ΛTC

)γ

, (1.49)

and leads to the anomalous dimension γ ∝ αTC(µ). The logarithmic en-
hancement along with the running of the anomalous dimension infers that
the enhancement to the chiral condensate from the ETC scale physics is neg-
ligible in comparison to the condensate at the TC scale. We can therefore
directly substitute the TC scale condensate 〈Q̄Q〉TC ∼ Λ3

TC [45, 46, 47, 48]
into the fermion mass relation (equation 1.46) to find

mf ≈
g2
ETC

M2
ETC

Λ3
TC . (1.50)

This approximation must be considered in the context of FCNCs, which are
severely experimentally constrained, most strongly by potential |∆S| = 2
interactions and their contributions to the KL−KS mass difference (see [49,
44] for details). The main point here is that the mass/coupling ratio of the
ETC gauge boson must be pushed up to at least the level of & O(600TeV),
greatly suppressing the SM fermion mass generated by the ETC interaction.
With this approximation for the fermion masses, one cannot hope to generate
the correct fermion mass of even the strange quark, and certainly not the top
quark!

One can solve the problem of avoiding problematic FCNCs while generating
sufficient masses for the SM fermions if the contribution to the techniquark
condensate from the ETC sector is enhanced. This is the motivation for
modifying the αTC coupling such that it walks (i.e very slowly runs) in the
regime of ΛTC < µ < ΛETC , where the walking behaviour approaches a
conformal fixed point α∗TC = (g∗TC)2/4π near the scale ΛTC . The chiral
condensate then receives an enhancement from the ETC sector of

〈Q̄Q〉ETC ∼ 〈Q̄Q〉TC
(

ΛETC

ΛTC

)γ(α∗TC)

, (1.51)

where the anomalous dimension is evaluated at α∗TC and is approximately
constant across this energy range. This constant O(1) anomalous dimension,
along with the now linear enhancement of the chiral condensate, significantly
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Figure 1.3: Visual representation of running (blue) and walking (red) dy-
namics of αS = αTC as a function of momentum µ.

enhances 〈Q̄Q〉ETC above the ETC contribution with QCD-like running cou-
pling dynamics. This relieves tension with FCNCs as the interaction between
SM fermions and technifermions is enhanced while interactions between only
SM fermions is unaffected.

The concept of modified Technicolor with a walking coupling regime up to
an ETC scale was originated and explored initially from 1987[50, 51, 52, 53,
54, 55, 56, 57, 53, 58, 59, 60], with a revival in interest from 2005 with the
demonstration that certain Walking Technicolor theories can be physically
viable within limits from FCNCs and EWPD[61, 13].

In Figure 1.3 the general picture for the coupling αTC(µ) in QCD-like Tech-
nicolor and Walking Technicolor models. For WTC, the new strong force is
QCD-like up to ΛTC , where the walking behaviour begins up to some high
scale ΛETC , after which the theory runs again and is asymptotically free. The
exact physics of the ETC sector is not known, and to account for the gen-
erations of SM fermions there should be some staggered set of scales which
provide mass to each generation. For the purpose of exploring BSM physics
from a phenomenological perspective, we do not need to know the exact ETC
theory, we can simply take the analysis of the modified running coupling and
assume that the correct ETC theory does provide a dynamical origin of the
SM fermion masses.

We will discuss in detail the simplest model of WTC in chapter 2, first let
us make some final statements on the advantages of Walking dynamics. The
technimeson spectrum of WTC models contain not only ρ and A mesons
(analogous to the QCD ρ and a1), but also a composite scalar meson anal-
ogous to the QCD σ. Identifying the scale of WTC as ΛTC ∼ 1TeV and
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the technipion decay constant Fπ as the SM Higgs vev v = 246GeV, the
dynamical mass of the σ meson can be lighter than Mρ ' ΛTC . Accounting
for negative corrections from top loops, the σ mass naturally is found to be
Mσ = Mh = 125GeV[62]. Thus WTC models naturally generate a composite
scalar consistent with the observed Higgs, removing the hierarchy problem
and providing a dynamical origin of mass.
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Chapter 2

Next-to-Minimal Walking
Technicolor Model

With the concepts behind Walking Technicolor (WTC) firmly in place (1.3),
the models underpinning this mechanism of DEWSB can be constructed. As
with all Beyond the Standard Model (BSM) theories, one should always be-
gin with the most minimal model possible. In the case of WTC, there are two
possibilities available as ideal candidate models, each with their own unique
chiral symmetry breaking pattern. The first is Minimal Walking Technicolor
(MWTC)[42], built on an SU(4) global symmetry with the symmetry break-
ing pattern SU(4) → SO(4). Despite its name, MWTC is actually not the
most minimal model of WTC in terms of additional particle content. Both
MWT and NMWT have Nf = 2 flavours of Dirac techni-fermions in the
two index symmetric representation of SU(Nc), with Nc = 2 and Nc = 3
respectively. The two-colour model suffers from a Witten anomaly as there
are an odd number of EW doublets, so the model must introduce a new lep-
tonic EW doublet to remedy this[63, 42]. Additionally, the global symmetry
breaking to SO(4) generates nine Goldstone bosons, three of which become
the longitudinal modes of W,Z, and the remainder are expected to obtain
mass from the dynamics of the ETC sector[64, 34, 35, 65].

Therefore, the simplest model with respect to additional composite parti-
cles is Next to Minimal Walking Technicolor (NMWT). The model has an
SU(2)L⊗SU(2)R global symmetry, whose chiral symmetry breaking pattern
is

SU(2)L ⊗ SU(2)R ⊗ U(1)V → SU(2)V ⊗ U(1)V . (2.1)
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NMWT has the advantage of exhibiting near-conformal behaviour in the
new strong force coupling with just two Dirac flavours[66]. The breaking to
SU(2)V generates only the Goldstone bosons required for the SM EW gauge
bosons, and as Nc = 3 there are an even number of EW doublets, so there is
no Witten anomaly and no need for additional leptonic doublets. In fact the
NMWT chiral symmetry breaking pattern is the minimal pattern required to
generate three Goldstone bosons which become the longitudinal modes of the
W,Z, the correct tree-level value for sin θW , and a Higgs sector resembling the
SM. This means that the NMWT model can be used as a template/guideline
for the greater class of Walking Technicolor theories, hence our focus on this
model.

An interesting feature of the NMWT model is the presence of two triplets of
techni-mesons, corresponding to new heavy spin-one resonances similar to the
SM weak force triplet of W±,Z. It is these new resonances that particularly
strike our interest in this model, as will be discussed later in chapter 4.

2.1 NMWT Effective Low Energy Model

At the scale of DEWSB, ΛTC , the Technicolor interactions with the elec-
troweak sector can be investigated within an Effective Field Theory (EFT),
i.e an approximate description of the model’s interactions at a low energy
(relative to ΛETC). Following the prescription of [67, 66], we can encode the
underlying composite dynamics within a generic chiral EFT which exhibits
a global SU(2)L ⊗ SU(2)R symmetry. The new heavy spin-1 triplets are
represented at the level of the gauge eigenbasis as AµL/R gauge fields under

SU(2)L/R respectively. Identifying that the SU(2)L group here is gauged as
the equivalent SU(2)L in SM weak interactions, we can see that AµL trans-
forms as a triplet under SU(2)L

1, where the AµR fields transform as singlets
under SU(2)L.

The electroweak SM fields in the gauge eigenbasis, W̃ µ and B̃µ, can then be
combined with the effective L/R technicolor fields to define the chiral fields

CLµ ≡ ALµ −
g2

g̃
W̃µ, CRµ ≡ ARµ −

g1

g̃
W̃µ, (2.2)

where g1, g2 are the standard coupling constants of the SM EW sector2, and

1Analogous to the gauge triplet W a
µ in the SM (see section 1.1)

2These are commonly referred to in the literature as g, g′, I identify g = g2 and g′ = g2
to avoid confusion between SM and TC nomenclature with regards to the superscript
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g̃ is the effective coupling of the chiral TC interactions.

The lightest composite scalar resonance, identified as the Higgs H, appears
alongside a triplet of pions πa, where a = 1, 2, 3, as a bi-doublet field under
the SU(2)L/R symmetries. These can be represented by the 2× 2 matrix M ,

M =
1√
2

[v +H + 2iπaT a], (2.3)

where v = µ/
√
λ is the vev associated with the chiral symmetry breaking

at the EW scale3, and T a are the generators of SU(2) defined in equation
1.8. This Higgs mixes with the EW fields in the gauge eigenbasis through
the covariant derivative of M

DµM = ∂µM + ig1MB̃µT
3 − ig2W̃

a
µT

aM. (2.4)

With the gauge fields defined, we can now write the gauge kinetic and gauge
interaction contributions (up to dim-4 operators) to the low-energy effective
Lagrangian as

Lboson =− 1

2
Tr
[
W̃µνW̃

µν
]
− 1

4
B̃µνB̃

µν − 1

2
Tr[FLµνF

µν
L +FRµνF

µν
R ]

+m2Tr[C2
Lµ+C2

Rµ] +
1

2
Tr[DµMDµM †]− g̃2r2Tr[CLµMCµ

RM
†]

− ig̃r3

4
Tr[CLµ(MDµM † −DµMM †) + CRµ(M †DµM −DµM †M)]

+
g̃2s

4
Tr[C2

Lµ + C2
Rµ]Tr[MM †] +

µ2

2
Tr[MM †]− λ

4
Tr[MM †]2,

(2.5)

where W̃ µν and B̃µν are the SM field strength tensors of the EW sector,
and F µν

L/R are the field strength tensors corresponding to the AL/R vector
meson fields. The AL/R fields can be interpreted as gauge fields of a ‘Hidden
Local Symmetry’ [68, 69], with the same gauge structure as the original
SU(2)L⊗SU(2)R global symmetry as described by [70, 66]. This means that
the Lagrangian Lboson is written in a ‘mixed’ gauge, where the AµL/R fields
have already absorbed the associated Goldstone bosons and the remaining

‘prime’
3See section 1.1.1 for detailed discussion on how the vev appears from the Higgs field.
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pions of the Higgs matrix M are the Goldstone’s associated with the usual
EW fields W̃µ and B̃µ.

The chiral theory introduces techni-doublets under SU(2)L/R in the unbroken
phase, where the symmetry breaking pattern described above results in the
doublets producing

2L ⊗ 2R → 3V + 1V . (2.6)

The vector singlets of the theory are considered to be decoupled, and as
we discuss further in chapter 6 do little to alter the model if an arbitrary
number of singlets are added by hand. This leaves a vector meson triplet
V under SU(2)V , as well as an axial-vector partner triplet A, which are
analagous to the QCD vector mesons ρ and a1. Thus, the physical spectrum
of this chiral gauge theory consists of the usual EW gauge boson triplet of
W± and Z, a light scalar meson identified as the Higgs, plus two additional
triplets which throughout this thesis are referred to as (W ′,+,W ′,−, Z ′) and
(W ′′,+,W ′′,−, Z ′′) (see our work in ref [4]).

2.2 Weinberg Sum Rules: Chiral EFT→NMWT

Thus far the Lagrangian in equation 2.5 is generalised to any chiral SU(2)L⊗
SU(2)R gauge theory with ND = Nf/2 doublets. We now wish to apply this
generalised theory to our NMWT model, first we specify that there exists
a single doublet containing two Dirac flavours. Additionally, we can make
use of the Weinberg Sum Rules (WSR) [71] to connect the effective field
theory to the dynamics and DEWSB of the underlying model. The WSRs
describe the 2-point correlation functions of vector and axial currents and
thus sensitive to chiral symmetry breaking, providing potential constraints
on the parameter space of a given chiral field theory.

The generic 2-point correlation function of the time-ordered product of left-
handed (LH) and right-handed (RH) currents as a function of 4-momentum
q is

iΠµν
LR(q) = 2i

∫
d4x expiq·x〈0|T (Lµ(x)Rν(0)†)|0〉. (2.7)

The L/Rµ are currents of the quark spinor Q(x) arising from the new strong
dynamics, so can be written as
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Lµ(x) = Q̄(x)
γµ

2
(1− γ5)Q(x), (2.8)

Rµ(x) = Q̄(x)
γµ

2
(1 + γ5)Q(x). (2.9)

It is useful here to translate the correlation functions from a L/R basis to a
V/A (vector/axial) basis, where the vector and axial currents are defined as

JaµV = Q̄T aγµQ, JaµA = Q̄T aγµγ5Q. (2.10)

The correlation function in the V/A basis is then defined as the difference
between vector-vector and axial-axial currents;

iΠa,b
µν,LR(q) =

∫
d4x expiq·x[〈Jaµ,V (x)J bν,V (0)〉 − 〈Jaµ,A(x)J bν,A(0)〉]. (2.11)

In the chiral limit, i.e. light quarks taken as massless, the correlator in
momentum space can be written as

Πa,b
µν,LR(q) = (qµqν − gµνq2)δabΠLR(q2), (2.12)

where the SU(Nf )L/R generators have been normalised such that Tr[T aT b] =
δab/2, and a, b = 1, . . . , N2

f−1 are the flavour currents of the chiral groups[72].
The chiral momentum squared function ΠLR(q2) obeys the unsubtracted dis-
persion relation

ΠLR(q2) =

∫ ∞
0

ds
ρ(s)

s− q2 − iε , (2.13)

where ρ(s) is the spectral function. The form of the spectral function can be
found by utilising the identity 1/(s − q2 + iε) ' 1/(s − q2) + iπδ(s − q2) to
separate the real and imaginary parts of ΠLR(q2);

ρ(s) ≡ 1

π
ImΠLR(s). (2.14)
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To compute ΠLR(q2) in a regime where the intermediate states do not dom-
inate, we consider the intermediate states as far off-shell, i.e. the correlator
is in a spacelike momentum regime, Q2 = −q2 ≥ 0. Hence the momentum-
squared correlator becomes

ΠLR(Q2) =
1

π

∫ ∞
0

ds
ImΠLR(s)

s+Q2
, (2.15)

note that Q2 is momentum in this particular regime, not the techni-quark
spinor previously defined.

As discussed in section 1.3, we expect NMWT to be asymptotically free be-
yond the ETC energy scale, ΛETC , and as such can assume that the dispersion
relation in equation 2.15 scales as in QCD (Q−6). We can safely perform a
Taylor expansion of 2.15 in this regime,

ΠLR(Q2) =
1

π

∫ ∞
0

ds
ImΠLR(s)

Q2
− 1

π

∫ ∞
0

dss
ImΠLR(s)

Q4
+ . . . , (2.16)

so using the QCD-like properties of NMWT at asymptotically high momenta,
the 1st and 2nd WSRs respectively are

∫ ∞
0

dsImΠLR(s) = 0,

∫ ∞
0

dssImΠLR(s) = 0. (2.17)

Assuming that only the lowest vector and axial resonances saturate the
WSRs, we can directly connect the WSRs with the NMWT model, by recast-
ing ΠLR in terms of the vector and axial states and defining the vector/axial
spectral functions

ΠLR(s) = ΠV (s)− ΠA(s)

ImΠV (s) = πF 2
V δ(s−M2

V )

ImΠA(s) = πF 2
πδ(s) + πF 2

Aδ(s−M2
A),

where MV/A, FV/A are the masses and decay constants of the vector and axial
mesons respectively, and Fπ is the TC pion decay constant.

Applying this to the 1st WSR we find,

F 2
V − F 2

A = F 2
π . (2.18)
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The additional factor of s in the 2nd WSR implies that this integral is less
sensitive dynamics in the IR, instead receiving important contributions from
the near conformal region. Thus we follow the procedure in Ref. [72] and al-
low for a modification of the 2nd WSR encoded by a dimensionless parameter
a,

a
8π2

d(R)
F 4
π = F 2

VM
2
V − F 2

AM
2
A, (2.19)

where we expect a > 0 and O(1), and d(R) is the dimension of the gauge
group representation of the underlying techni-fermions.

We can further parameterise the NMWT model using the WSR at order
O(Q4), as one can identify the 0th WSR as the definition of the Peskin-
Takeuchi S parameter[11],

S = 4

∫ ∞
0

ds

s
ImΠ̄LR(s) = 4π

[
F 2
V

M2
V

− F 2
A

M2
A

]
. (2.20)

Note that ImΠ̄LR is the usual spectral function for ΠLR with the Goldstone
contribution subtracted.

2.3 Parameter Space of NMWT

With the gauge sector of a generic global SU(2)L ⊗ SU(2)R gauge theory
set up, and theoretical constraints from WSRs defined, we can now fully
connect the EFT to NMWT. Initially the parameter space of NMWT is
defined by the Lagrangian parameters of equation 2.5, m, r2, g̃, r3, s. Aside
from the g̃ parameter which we have seen previously is the effective coupling
for chiral technicolor interactions, these parameters do little to enlighten us
on the physical interpretation of the NMWT model. We wish to express the
parameter space of the model in the most minimal and physically sensible
set of independent parameters.

To this end, in the limit of zero electroweak couplings these can be combined
to parameterise the masses and decay constants of the vector and axial res-
onances,
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M2
V = m2 +

g̃2(s− r2)v2

4
, FV =

√
2MV

g̃
, (2.21)

M2
A = m2 +

g̃2(s+ r2)v2

4
, FA =

√
2MA

g̃
χ, (2.22)

where

χ ≡ 1− v2g̃2r3

4M2
A

. (2.23)

The vector/axial masses in particular have a similar structure in all but the
sign of the r2 contribution, so it is sensible to make the replacement of m, r2

to MA, MV as independent parameters of the model. Our 5-dimensional
parameter space is now (MA,MV , g̃, r3, s).

Now considering the decay constants, we can make use of the WSRs to
connect the decay constants of the model, FA, FV and Fπ. In TC models
with ND doublets of technifermions and no scalar doublets, the pion decay
constant is Fπ = 246

√
NDGeV, so as ND = 1 in our NMWT model this decay

constant is simply fixed at Fπ = 246GeV. Perhaps one may wish to express
the pion decay constant in terms of constants of nature, for these readers we
express Fπ as

Fπ =

√
1√
2GF

, (2.24)

where GF is the Fermi coupling constant. Combining the definitions in 2.22
the decay constants are related by the equation

F 2
π = (1 + 2ω)F 2

V − F 2
A, (2.25)

where we define this new ω parameter as the combination

ω ≡ v2g̃2

4M2
V

(1− r3 + r2). (2.26)

Equation 2.25 looks very similar to the 1st WSR in equation 2.18, with a
modification from the ω parameter. If NMWT is constrained such that there
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is no deviation from the 1st WSR, then we recover equation 2.18 and enforce
the constraint ω = 0, leading to the relation

r2 = r3 − 1. (2.27)

We want the S parameter to replace one of the Lagrangian variables, r3, as an
independent parameter, which can be achieved by inspecting the dependence
of χ on S. Using the result for the 0th WSR (equation 2.20) combined with
the above definitions for FV/A, we can write the S parameter as

S =
8π

g̃2
(1− χ2), (2.28)

thus χ can be written as

χ =

√
1− g̃2S

8π
. (2.29)

Combining this definition of χ with equation 2.23, r3 as a function of inde-
pendent parameters is then

r3 =
4M2

A

v2g̃2

(
1−

√
1− Sg̃2

8π

)
. (2.30)

Thus making the replacement of r2 → MA −MV and r3 → S, the NMWT
parameter space is now defined in terms of (MA, MV , S, g̃, s)4.

It is expected that the vector and axial masses cannot be independently
defined, making this connection the NMWT parameter space is reduced by
one degree of freedom. Let us choose MA to be the independent parameter.
Substituting the expressions for FV/A in terms of MV/A into the 1st WSR
(equations 2.22 and 2.18 respectively),

M2
V = M2

Aχ
2 +

g̃2

2
F 2
π . (2.31)

4For the curious reader, I present the full derivation of all dependent parameters in the
full 5-D parameter space in Appendix A

28



With the definition of χ in equation 2.29 we can write the vector mass as a
function of independent parameters,

M2
V = M2

A

(
1− g̃2S

8π

)
+
g̃2

2
F 2
π . (2.32)

The 4-D independent parameter space of NMWT is now defined as

MA, g̃, S, s. (2.33)

2.3.1 Constraints on S from Electroweak Precision Data

The S parameter is of particular importance in this model. In terms of
physical parameters, S represents the mass splitting between the vector and
axial masses (equation 2.20), thus defining the level of degeneracy between
the Z ′ and Z ′′ vector mesons. Further to this, identifying S as the oblique
electroweak parameter, S, established by Peskin and Takeuchi[11], places
significant experimentally motivated restrictions on NMWT.

The S, T , and U parameters classify vacuum polarisations in the electroweak
sector, effectively providing quantifiable corrections to weak sector parame-
ters such as the W and Z masses. Collider experiments measure the prop-
erties of the weak bosons ever more precisely, providing constraints on these
Peskin-Takeuchi parameters and therefore being sensitive to additional con-
tributions to the EW sector from new physics. Any new gauge sector that
couples to the EW bosons will contribute in the form of radiative corrections
at one-loop level to the W and Z self-energies. In the case of technicolor
models (and assorted BSM models), the U parameter receives negligible con-
tributions from new physics at the ΛTC energy scale, so the usual assumption
of U = 0 is universally applied in NMWT.

The T parameter provides a measure of weak-isospin breaking effects, whereas
S is a measure of chiral symmetry breaking effects so is more sensitive to
additional neutral currents from new physics in the EW sector. Precision
experiments such as LEP provide the best measurements of EW parameters,
from which global fits can be performed to provide the simultaneous con-
straints on the S and T parameters[2]. The recent constraints provided by
the GFITTER group are shown in Figure 2.1

Interpreting the experimental constraints on T and S in the context of
NMWT, let us first apply the assumption that the contribution from the
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Figure 2.1: Global fits of S and T oblique electroweak parameters from
electroweak precision data (EWPD)[1], with U = 0. Figure from GFITTER
group[2].

TC sector to weak isospin breaking is minimal, so T = 0. Then from Figure
2.1 the limits on S can be easily determined, as such the level of degeneracy
between the neutral TC gauge mesons must be highly constrained in accor-
dance with equation 2.20. A unique feature of Technicolor models is that the
S parameter can in fact be negative, as the relative size of the vector and
axial pion correlators can be ordered in such a way as to re-order the low-
est neutral mesons. For the NMWT parameter space, S is an independent
parameter which we restrict to take any value within the constraints from
electroweak precision data (EWPD).

2.3.2 Theoretical Constraint on MA from the 2nd WSR

This parameter space discussion thus far has consisted of parameters and
relationships directly from the gauge sector Lagrangian, however we must
note that an additional parameter arises indirectly as a result of the 2nd
WSR. This is the dimensionless a parameter (equation 2.19), which defines
the level of deviation from the 2nd WSR coming from the near-conformal
region.

The a parameter depends on the group representation dimension d(R) of the
techni-fermions in the model, and in NMWT there is a single techni-quark
doublet of two Dirac fermions in the two-index symmetric representation,
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where d(R) = 6.

Combining the 1st and 2nd WSRs, the a parameter in NMWT is then

a =
3

2π2F 4
π g̃

2
(M4

V −M4
Aχ

2), (2.34)

so the a parameter contributes to the mass splitting of vector and axial states,
thus it contributes to the already constrained S parameter.

Initially we stated that a is expected to be positive, but in principle the sign
of a could be negative. However if we consider that the S parameter must
be small due to EWPD then it stands to reason that a should contribute
negatively to S, which occurs in the case where a > 0.

Furthermore, in a QCD-like theory one would expect the 2nd WSR to hold
exactly such that a = 0, while the modified dynamics of a walking coupling
introduces a near-conformal region which contributes positively to the 2nd
WSR, so we expect a > 0[72]. The implications of a positive a on the near-
degeneracy of the vector and axial mesons appears to be conform to the
results of various Schwinger-Dyson analyses of walking dynamics [73, 74].
Throughout this work, a > 0 is taken to be a strict condition necessary for
the walking dynamics of NMWT. We can then set a limit on the model such
that a < 0 corresponds to non-walking dynamics and is therefore excluded.
Setting s = 0 and choosing discrete values of S, we can project a in the 2-
dimensional MA, g̃ parameter space (Figure 2.2). Here we see that there is an
S dependent upper limit on the mass scale of Technicolor, so if one considers
the restriction a > 0 to be concrete then NMWT can be bounded from above
in MA. This offers exciting implications for the eventual exploration of the
entire NMWT parameter space at experiments, as will be discussed in later
chapters.

2.3.3 Further Theoretical Constraints on NMWT

As stated in section 2.1, the NMWT gauge sector Lagrangian Lboson (equation
2.5) is written in a ‘mixed’ gauge, where the AL/R fields have absorbed their
corresponding pions and are already massive gauge fields. While we do not
derive this Lagrangian explicitly in this work (see [70]), it is useful to note
that the vev for the TC sector, f ,

f =
2m

g̃
, (2.35)
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Figure 2.2: Contour levels for a parameter in (MA,g̃) NMWT plane for
various values of S and fixed s = 0. The red-shaded region corresponds to
excluded a < 0 space.

defined in terms of the ratio between the mass and coupling Lagrangian
parameters in the TC sector. This is no surprise, however if we redefine this
in terms of the independent NMWT parameters then a useful feature of the
model parameter space from can be easily derived;

f =

√
4M2

A − g̃2(r2 + s)v2

g̃
. (2.36)

In order for the theory to remain physical, this TC vev then enforces a
model-dependent upper bound on the Higgs to EW/TC coupling parameter

32



s,

s <
4M2

A

g̃2v2
− r2. (2.37)

In part this forbids the theory to have a mass scale that is too low to gen-
erate the TC scale symmetry breaking, and restores the hierarchy of masses
between the Higgs and EW scale gauge bosons with the TC gauge mesons.

Furthermore there is an upper bound on the TC effective coupling g̃ enforced
by the definition of FA. Combining the FA definition of equation 2.22 with
χ as defined in equation 2.29, the limit is

g̃ <

√
8π

S
. (2.38)

This is a theoretical hard limit on the decoupling of the TC sector from the
EW sector, ensuring that all decay constants (in particular the axial-vector
decay constant) are strictly real. The tightest constraint comes from the
case in which the degeneracy of the vector and axial modes is minimised
with respect to the EWPD parameter S. Although EWPD already rules out
values as high as S = 0.3, historically this has been the benchmark value
for early WTC studies, so for direct comparison with [66] the upper limit in
this case is g̃ ≤ 9.15. Despite the updated benchmark of S = 0.1, where the
upper limit is g̃ ≤ 15.85, we present the parameter space up to g̃ = 9 (as in
Figure 2.2) in order to avoid presenting an unphysical parameter space as we
explore the phenomenology of S 6= 0.1.
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Chapter 3

Physical Spectrum of NMWT

3.1 Mass Matrices in NMWT

The physical spectrum of NMWT at the symmetry breaking scale consists of
the EW gauge bosons γ, Z,W±, the composite Higgs, and the gauge meson
triplets Z ′,W ′± and Z ′′,W ′′±, which arise from the basis transformation from
the gauge eigenbasis to the mass eigenbasis. The interaction terms of the
Lagrangian Lboson (equation 2.5) contain 2-point interactions between the
AL/R, W̃µ, and B̃µ fields. As such we can construct a mass-term Lagrangian
for the gauge fields in the gauge eigenbasis as

Lmass =
(
W̃−
µ A−Lµ A−Rµ

)
M2

C

W̃+µ

A+µ
L

A+µ
R

+
1

2

(
B̃µ W̃ 0

µ A0
Lµ A0

Rµ

)
M2

N


B̃µ

W̃ 0µ

A0µ
L

A0µ
R

 ,

(3.1)

where M2
C and M2

N are the charged and neutral sector mixing matrices
which diagonalise to the mass eigenbasis.

In the broken phase of the chiral theory, this low-energy NMWT is broken
to a vector/axial gauge group, so it is useful to translate the L/R fields in
the bosonic Lagrangian to V/A fields. The L/R fields are then simple linear
combinations of vector and axial fields Vµ and Aµ,

AaLµ =
V a
µ + Aaµ√

2
, AaRµ =

V a
µ − Aaµ√

2
, (3.2)
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where a = +,−, 0 correspond to the electric charge assignments of the com-
ponents of the vector (axial) triplet.

Let us now redefine the mass-mixing Lagrangian in terms of the vector/axial
fields

Lmass =
(
W̃−
µ A−µ V −µ

)
M2

C

W̃+µ

A+µ

V +µ

+
1

2

(
B̃µ W̃ 0

µ A0
µ V 0

µ

)
M2

N


B̃µ

W̃ 0µ

A0µ

V 0µ

 ,

(3.3)

where now the charged/neutral mixing matrices are formed of the two-point
functions of the bosonic Lagrangian after the substitution in equation 3.2 is
made.

If one makes the usual parameterisation of Lagrangian coefficients in terms of
vector and axial masses MV/A, these mixing matrices in the gauge eigenbasis
are then

M2
C =


g22
g̃2
M2

V − g2√
2g̃
M2

Aχ − g2√
2g̃
M2

V

− g2√
2g̃
M2

Aχ M2
A 0

− g2√
2g̃
M2

V 0 M2
V

 , (3.4)

M2
N =


g21
g̃2
M2

V 0 g1√
2g̃
M2

Aχ − g1√
2g̃
M2

V

0
g22
g̃2
M2

V − g2√
2g̃
M2

Aχ − g2√
2g̃
M2

V
g1√
2g̃
M2

Aχ − g2√
2g̃
M2

Aχ M2
A 0

− g1√
2g̃
M2

V − g2√
2g̃
M2

V 0 M2
V

 , (3.5)

where the constraint ω = 0 has been applied to achieve the 4-D parame-
terisation of NMWT as described in section 2.3. A fully independent and
generalised form of these matrices is given in Appendix A.

A few notes should be discussed regarding these matrices, firstly one can
easily identify that the charged mixing matrixM2

C is exactly the lower 3× 3
block of the neutralM2

N . This reflects the lack of hypercharge mixing in the
charged sector as well as the indistinguishable mixing of the purely SU(2)
components in the gauge eigenbasis. There is also the interesting feature of
zero mixing between the neutral component of W̃µ with the B̃µ field in this
basis, contrary to the equivalent mixing in the SM. There is also the feature
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of a strictly diagonal gauge mixing sector for purely TC gauge interactions.
This ensures that before diagonalisation, the TC sector is formed of purely
axial and purely vector fields.

An important note is that we assert that the mass ordering of the resonances
Z ′ and Z ′′ must be such that MZ′ < MZ′′ . In the regime in which the axial-
vector resonance has the heavier mass, the 3rd and 4th columns/rows of the
matrices 3.5 should be switched (as well the Vµ and Aµ fields in the vectors of
3.3). The process of diagonalisation in such a regime will of course produce
an entirely different phenomenology with respect to the physical resonances
and their interactions. The analytic results in the regime MA > MV are
discussed in Appendix B.

The gauge sector in the gauge and mass eigenbases are related through the
elements of the matrices N /C that diagonalise the M2

N/C mixing matrices
respectively. In the regime MA < MV , the linear combinations of physical
gauge mediators γ, Z, Z ′, Z ′′ in the neutral sector are

B̃ = N11γ +N12Z +N13Z
′ +N14Z

′′

W̃ 0 = N21γ +N22Z +N23Z
′ +N24Z

′′

A0 = N31γ +N32Z +N33Z
′ +N34Z

′′

V 0 = N41γ +N42Z +N43Z
′ +N44Z

′′,

(3.6)

in the charge sector the gauge fields as linear combinations of W±, W ′± and
W ′′± are

W̃± = C11W
± + C12W

′± + C13W
′′±

A± = C21W
± + C22W

′± + C23W
′′±

V ± = C31W
± + C32W

′± + C33W
′′±.

(3.7)

The picture in the MA > MV regime also swaps the order of the vector and
axial fields such that for A±(0), C2j → C3j (N3j → N4j) and vice versa for
V ±(0).
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3.2 Analytic Diagonalisation of Mixing Ma-

trices

The elements Nij(Cij) provide important insight into the mixing between the
neutral(charged) fields, including the structure and contributions to coupling
strengths and the composition of the neutral resonances. The N (C) matrices
are calculated by diagonalising the bosonic mixing matrices 3.5, however the
explicit diagonalisation ofM2

N/C yields complicated analytic forms for the N
and C matrices. As such we calculate Nij(Cij) by performing a perturbative
analysis in orders of 1/g̃, calculating the eigenvalues and eigenvectors ofN (C)
order by order up to O(1/g̃2).

Let us first perform the perturbative diagonalisation of the neutral sector.
Rephrasing the χ and M2

V parameters in terms of the independent parameter
space (equations 2.29 and 2.32 respectively), we can rewrite the gauge mixing
matrices in a fully independent way. The matrix M2

N is then

M2
N =



g21M
2
A

g̃2
(1− g̃2S

8π +F 2
π g̃

2

2M2
A

) 0
g1M2

A√
2g̃

√
1− g̃2S

8π −g1M2
A√

2g̃
(1− g̃2S

8π +F 2
π g̃

2

2M2
A

)

0
g22M

2
A

g̃2
(1− g̃2S

8π +F 2
π g̃

2

2M2
A

) −g2M2
A√

2g̃

√
1− g̃2S

8π −g2M2
A√

2g̃
(1− g̃2S

8π +F 2
π g̃

2

2M2
A

)

g1M2
A√

2g̃

√
1− g̃2S

8π −g2M2
A√

2g̃

√
1− g̃2S

8π M2
A 0

−g1M2
A√

2g̃
(1− g̃2S

8π +F 2
π g̃

2

2M2
A

) −g2M2
A√

2g̃
(1− g̃2S

8π +F 2
π g̃

2

2M2
A

) 0 M2
A(1− g̃2S

8π + F 2
π g̃

2

2M2
A

)


.

(3.8)

At 0th order in 1/g̃, the mass squared terms for the neutral bosons are

M2
γ = 0, M2

Z = 0, M2
Z′ = M2

A, M2
Z′′ = M2

A(1− g̃2S

8π
) +

1

2
g̃2F 2

π . (3.9)

At this order, the eigenvalues for the γ, Z are degenerate and m2
γ,m

2
Z = 0,

so the eigenvectors cannot be uniquely defined at this stage. To resolve this
degeneracy we introduce a generic parameter x will be fixed at higher order
in the expansion. The 0th order eigenvectors are then

v̄0 =


x√

1+x2
1√

1+x2
0 0

1√
1+x2

− x√
1+x2

0 0

0 0 1 0
0 0 0 1

 . (3.10)
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We can now construct the higher order corrections order by order. To calcu-
late the 1st order corrections, we consider the eigenvalue equation

Mv̄ = λv̄ (3.11)

where M = M0 +M1 +M2 + . . . is the mixing matrixM2
N(C) in orders of 1/g̃,

v̄ = v̄0 + v̄1 + v̄2 + . . . are the eigenvectors of M , and λ = λ0 + λ1 + λ2 + . . .
are the eigenvalues of M . At first order we have

(M0 +M1)(v̄0 + v̄1) = (λ0 + λ1)(v̄0 + v̄1)

M0v̄1 +M1v̄0 +M1v̄1 = λ0v̄1 + λ1v̄0 + λ1v̄1

λ1 = v̄T0 (M0 − λ0)v̄ + v̄T0 M1v̄0

λ1 = v̄T0 M1v̄0,

where we have used the 0th order eigenvalue equation M0v̄0 = λ0v̄0 to remove
0th order terms, and have discarded terms of order > 1.

We can immediately see that the 1st order eigenvalues are λi1 = 0 for all
i = 1, . . . , 4, as M2

N does not have any diagonal components at order 1/g̃.
Further to this, there should not be corrections to the squared masses of
the vector bosons at odd order in 1/g̃ as this would result in mass terms
dependent on fractional powers in the coupling.

The first order eigenvectors and in terms of model parameters and the un-
known x are

v̄1 =


0 0 g2−g1x√

2g̃
√

1+x2

√
1− g̃2S

8π
g2+g1x√
2g̃
√

1+x2

0 0 − g1+g2x√
2g̃
√

1+x2

√
1− g̃2S

8π
g1−g2x√
2g̃
√

1+x2

g1√
2g̃

√
1− g̃2S

8π
− g2√

2g̃

√
1− g̃2S

8π
0 0

− g1√
2g̃

− g2√
2g̃

0 0

 .

(3.12)

To find the 2nd order eigenvalues, we follow the same procedure as above,
and keeping only 2nd order terms we find

λ2 = v̄T0 M1v̄1 + v̄T0 M2v̄0 − v̄T0 λ1v̄1, (3.13)
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where we use the fact that λ1 = 0 to reduce this to

λ2 = v̄T0 M1v̄1 + v̄T0 M2v̄0. (3.14)

At this order we can now fix x, which turns out to be x = g2/g1, and we
arrive at the 2nd order corrections to the neutral vector boson masses;

M2
γ = 0, M2

Z =
1

4
(g2

1 + g2
2)F 2

π , M2
Z′ =

g2
1 + g2

2

2g̃2
M2

A(1− g̃2S

8π
), (3.15)

M2
Z′′ =

g2
1 + g2

2 + 2g̃2

2g̃2
M2

A(1− g̃2S

8π
+
F 2
π g̃

2

2M2
A

). (3.16)

Finally, the rotation matrix N can be constructed from the transpose of the
sum of 0th, 1st and 2nd order eigenvectors;

N =



g2√
g21+g22

g1√
g21+g22

g1χ√
2g̃

− g1√
2g̃

g1√
g21+g22

− g2√
g21+g22

− g2χ√
2g̃

− g2√
2g̃

0 −
√
g21+g22χ√

2g̃
1 − (g21−g22)(2M2

Aχ
2+g̃2F 2

π)χ

g̃2M2
A(4χ2−1)+2g̃4F 2

π√
2g1g2√
g21+g22 g̃

(g21−g22)
√

2g̃
√
g21+g22

4(g21−g22)M2
Aχ

2g̃2M2
A(χ2−4)+g̃4F 2

π
1

 ,

(3.17)

where we have replaced the function χ for a more concise expression.

Repeating this process in the charged sector we find C to second order,

C =


1 − g2χ√

2g̃
− g2√

2g̃
g2χ√

2g̃
1 g2χ√

2g̃
(1 +

2M2
A

2M2
A(3χ2−1)+3g̃2F 2

π
)

g2√
2g̃
− 3g22M

2
Aχ

2g̃2M2
A(χ2−3)+g̃4F 2

π
1

 , (3.18)

and the charged resonance masses up to O(g̃−2) are

M2
W =

F 2
πg

2
2

4
, M2

W ′ = M2
A

(
1+

g2
2

2g̃2
χ2

)
, M2

W ′′ = M2
A

(
1+

g2
2

2g̃2

)(
χ2+

F 2
π g̃

2

2M2
A

)
.

(3.19)
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The diagonalising matrices N and C will change significantly in the region
of parameter space where MA > MV , so the calculation is repeated with the
columns/rows of M2

N and M2
C switched as described in section 3.1. As N

and C are simply constructed of eigenvectors of the mixing matrices, they are
again related to equations 3.17 and 3.18 by switching the order of the final
two columns/rows.

3.3 Solving for EW couplings

The gauge couplings for the EW sector, g1 and g2, are no longer independent
parameters as in the SM, as such there exist analytic formulae for g1 and g2

in terms of the independent parameters of NMWT. These couplings can be
derived as roots of the characteristic equation for the Z boson eigenvalue, i.e
we can solve the equation det[M2

N − 1M2
Z ] = 0. Taking the absolute values

of the roots, we find two solutions to this equation which correspond to the
couplings g2 and g1 respectively,

g2 = g̃

√
(g̃2 − 2e2)abM2

Z +
√
abM2

Z(2e2M2
Z + g̃2b)(a(g̃2M2

Z − 2e2b) + 2e2M4
Aχ

2)

M2
V a(4e2 + g̃2(b−M2

Z))−M4
Aχ

2(2e2M2
Z + g̃2b))

(3.20)

g1 = g̃

√
(g̃2 − 2e2)abM2

Z −
√
abM2

Z(2e2M2
Z + g̃2b)(a(g̃2M2

Z − 2e2b) + 2e2M4
Aχ

2)

M2
V a(4e2 + g̃2(b−M2

Z))−M4
Aχ

2(2e2M2
Z + g̃2b))

(3.21)

where a = (M2
A −M2

Z), b = (M2
V −M2

Z), e is the electromagnetic coupling
which is fixed to its SM value. Again we have not replaced MV and χ with
their explicit functions of independent parameters, as this does not provide
much useful insight for these gauge couplings.

3.4 CalcHEP Implementation of Diagonalisa-

tion

The NMWT model has already been implemented in the CalcHEP frame-
work by Frandsen et al [70, 66], with the reduced set of independent param-
eters (MA, g̃, S). This model requires external functions interfaced with the
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CalcHEP model that perform the diagonalisation of mass matrices and nu-
merical evaluation of g2 respectively. We have since updated the model to
encapsulate the full 5D (MA, g̃, S, s, ω) parameter space, as well as scripting
inbuilt mass-matrix diagonalisation and analytic form of g2 such that the
model is self-contained. The details of these extensions are briefly detailed
here.

The extension of the model to a fully 5D parameter space was trivial to
implement at the level of the LanHEP formulation of the Lagrangian param-
eters, the addition of the s parameter was already in place so we simply set s
to be a variable parameter rather than hard-coded to s = 0 as in the original
model. The ω parameter was implemented in the context of the r2 and r3

parameters. Using the relationship found in equation 2.26 we redefine the
model parameters such that

r2 = r3 − 1− ω̃, (3.22)

where ω̃ is a placeholder parameter that defines the actual ω parameter

ω =
v2g̃2ω̃

4M2
V

. (3.23)

This has now fully parameterised the NMWT model in 5 dimensions, as the
remaining variables are written in terms of r2 and r3 which implicitly contain
the independent parameter ω.

Where the previous model relied on an external C/FORTRAN script to cal-
culate g2 in a model-dependent way, this was purely a numerical approxima-
tion. As we have analytically evaluated the g1 and g2 parameters in terms of
the NMWT parameter space in the previous section 3.3, we simply write in
these analytic functions (equations 3.20 and 3.20) directly into the LanHEP
model.

Finally, we replace the external mass matrix diagonalisation script with in-
built SLHA functions written at the level of the LanHEP model. The SLHA+
library [75] provides routines for diagonalisation that are inbuilt into the
CalcHEP and LanHEP programmes. A sample of the code is shown in Fig-
ure 3.1, where the full code for the neutral sector is included. These built in
functions allow the CalcHEP model outputted from the LanHEP implemen-
tation to be fully self-contained.
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Figure 3.1: SLHA+ procedure for diagonalising the neutral gauge sector of
the NMWT model in LanHEP
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Chapter 4

Phenomenology of Z ′s in
NMWT

The physical spectrum of NMWT is rich with new resonances to discover in
the LHC accessible energy range, with the unique and interesting signature
of a pair of distinct neutral TeV-scale resonances. The potential for discovery
of two new neutral gauge particles depends on their properties, which can
be fully explored and categorised with Matrix Element Generator tools. The
phenomenology of the NMWT model is explored using the CalcHEP pack-
age [76] which allows us to perform a simple and robust analysis of tree-level
2 → n, n = 1, . . . 6, cross sections and simulation of such events at collid-
ers. The Lagrangian for NMWT was implemented using LanHEP [77], from
which all interaction vertices are generated for use in CalcHEP. The model
implementation is similar to the original implementation from Frandsen et
al [70], with the addition of the features described in section 3.4.

We focus on the phenomenology of the neutral heavy spin-1 resonances in the
NMWT parameter space presented in 2.33, with the additional restriction of
s = 0. Where Higgs interactions are involved, we will loosen this constraint,
however outside of this it is sufficient to consider the 3-dimensional MA, g̃,
S parameter space. The results are presented in the MA, g̃ parameter space
for discrete values of S in the range S = −0.1, 0.0, . . . , 0.3, where S = 0.3
provides direct comparison to the previous work [66]. The remaining limits
of the scan over S ensure that the tension with EWPD is minimised (for
the zero T -paramter). The results in the benchmark case of S = 0.1 are
presented here, and results for S 6= 0.1 are presented in Appendix C.

The purpose of this phenomenological study is to explore the potential for
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Z ′(′′)

l+

l−

q

q̄(′)

V ′(′′) V ′(′′)

h

V

V ′(′′)

V +

V −

Table 4.1: Drell Yan production of heavy resonance (left) Dilepton, V V and
V h decay modes (right), where V ′ = Z ′,W ′+,W ′− (V ′′ = Z ′′,W ′′+,W ′′−)

probing NMWT with heavy resonance searches at the LHC and future col-
liders. To this end, the set of diagrams we are interested in are those of
Drell-Yan produced heavy resonances that subsequently decay via dilepton,
vector-vector, and vector-Higgs channels. The full set of Feynman diagrams
we are interested in are given in Figure 4.1.

The mass spectra of the Z ′/Z ′′ are presented in section 4.1, the coupling
strength of Z ′/Z ′′ vertices in section 4.2, followed by a discussion of the total
widths and dilepton branching ratios in section 4.3, production and total
cross sections for DY processes of Z ′/Z ′′ are given in section 4.4, section 4.5
explores the interference between the neutral resonances and discusses the
validity of reinterpreting LHC constraints for the NMWT model.

4.1 Mass Spectrum

Following from the analytic diagonalisation performed in section 3.2, analytic
mass terms for the neutral resonances can be constructed. Note that we first
discuss here the regime with mass ordering MA < MV . The 0th and 2nd
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order corrections to the Z ′ and Z ′′ derived in section 3.2 (equation 3.16)
combine to give the masses

M2
Z′ = M2

A

(
1 +

g2
1 + g2

2

2g̃2
χ2

)
, (4.1)

M2
Z′′ = M2

A

(
1 +

g2
1 + g2

2

2g̃2

)(
χ2 +

g̃2F 2
π

2M2
A

)
, (4.2)

up to O(g̃−2). It is clear from equation 4.1 that at 0th order in g̃−1, MZ′

is exactly equivalent to MA, so the mass scale of NMWT is defined by the
mass of the lighter of the new neutral resonances.

As discussed in section 3.3, the U(1)Y and SU(2)L couplings g1, g2 (see
equations 3.21, 3.20) are functions of the NMWT parameters MA, g̃, S.
Both g1 and g2 have a very mild dependence on the model parameters, with
variation in the couplings at less than 1% level across the viable parameter
space. For the purpose of discussion and insight into the analytic behaviour
of Z ′/Z ′′ properties, we will consider g1, g2 fixed to their SM values, which in
the M̄S scheme are g1 = 0.357 and g2 = 0.652[49]. Note that the properties
calculated with CalcHEP use the full analytic form of these gauge couplings.
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Figure 4.1: (a)MZ′(GeV) (b) ∆M/MZ′ as a function ofMA, g̃, at benchmark
values of S = 0.1 and s = 0

The mass spectrum of the Z ′ is shown in Figure 4.1a for the mass range
500GeV≤ MA ≤ 4000GeV. Again for the majority of the parameter space
where g̃ & 2, MZ′ ' M2

A as expected from equation 4.1. In Figure 4.1b
we present the spectrum for the relative mass difference, ∆M/MZ′ , where
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∆M = MZ′′ −MZ′ . The behaviour of the mass splitting is due to the non-
trivial dependence of MZ′′ on g̃2, which arises from the χ and F 2

π/M
2
A terms

of equation 4.2. The effects of the g̃2 dependence are in ‘competition’ with
the S and M−2

A coefficients, leading to an enhanced quadratic dependence -
and as such enhanced mass splitting - in the low MA, high g̃ regime.

For large MA one can observe that Z ′ starts to mildly depend on g̃. This
change in behaviour is due to a change of state of the Z ′(Z ′′) from mostly
axial(vector) to mostly vector(axial)[66]. Figure 4.1b clearly reflects this
mass inversion for g̃ ≥ 2 at a fixed Minv = MA which to 2nd order in g̃−1

takes the form

M2
inv =

(
1 +

g2
1 + g2

2

g̃2

)
4π

S
F 2
π . (4.3)

Using the benchmark S = 0.1 the mass inversion occurs at MA = 2760GeV,
we clearly observe this behaviour in Figure 4.1b.

The mass splitting is large at low MA, high g̃, opening new decay channels
such as Z ′′ → W+′W−′, as is discussed further in section 4.3.

We also numerically presented the Z ′ and Z ′′ masses in Table 4.2 for a range
of points in the 3D parameter space of MA, g̃, S, restricting the results to the
MA < Minv regime. Qualitatively, one can see that varying S affects the Z ′′

mass spectrum, reducing MZ′′ as S increases, but increasing the mass when
S becomes negative. This is due to the contribution to the χ2 factor in MZ′′ ,
which is proportional to 1− g̃2S. The effect of S is most prominent at large
MA, where the F 2

π g̃
2/2M2

A is suppressed and the enhancement/suppression
due to S becomes the dominant effect. The MZ′ is only affected by S at 2nd
order in g̃−1, so away from the mass inversion where Z ′ is a more pure axial
mode, the deviation from vector/axial degeneracy is reflected in the vector
(Z ′′) mass behaviour.

4.2 Coupling Strengths

The couplings of the neutral resonances in fermion and gauge sector interac-
tions are constructed from the elements Nij of the diagonalisation matrix N .
Each element of Nij (and Cij in the charged sector) represent the mixing of
the vector boson/meson states, e.g N24 represents a mixed Z−Z ′′ state, and
components with i = j represent mixing of a gauge field with itself. By in-
specting the analytic behaviour of the interaction vertex couplings, features
of the phenomenology of widths/branching ratios etc can be explained from
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MA(GeV)
S g̃ 1000 1500 2000 2500

-0.1

1 1080(1339) 1614(1984) 2148(2639) 2683(3296)
3 1016(1163) 1523(1640) 2030(2138) 2536(2643)
5 1006(1370) 1509(1808) 2012(2283) 2515(2778)
7 1003(1642) 1505(2049) 2007(2510) 2508(3001)
9 1002(1947) 1503(2334) 2005(2788) 2506(3280)

0.1

1 1078(1325) 1610(1976) 2144(2629) 2678(3283)
3 1015(1130) 1520(1590) 2023(2071) 2522(2565)
5 1005(1295) 1507(1678) 2010(2100) 2511(2543)
7 1002(1518) 1503(1821) 2004(2175) 2505(2560)
9 1001(1773) 1502(1998) 2002(2277) 2503(2591)

0.3

1 1075(1320) 1607(1968) 2139(2618) 2672(3270)
3 1013(1097) 1514(1541) 1985(2034) 2452(2540)
5 1004(1215) 1505(1537) 1898(2008) 2280(2510)
7 1001(1382) 1502(1560) 1779(2002) 2025(2503)
9 1000(1580) 1500(1593) 1611(2000) 1634(2500)

Table 4.2: Masses of the neutral resonances at reference points in the
MA, g̃, S parameter space, displayed in the format MZ′(MZ′′) in GeV for
each parameter space value
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a fundamental perspective. Here we discuss the analytic forms of the cou-
pling strengths at interesting vertices, and in section 4.3 their effect on the
branching ratios and widths are further explored. Ultimately, the strength of
the neutral vector meson couplings will define how best to probe the param-
eter space of NMWT with collider observables, and inform the experimental
searches on the relevant production and decay channels for the Z ′ and Z ′′.

4.2.1 Z ′/Z ′′ Fermionic Coupling

Couplings of the heavy neutral resonances to fermions are important to un-
derstand for interpretation in collider searches, such as Z ′(Z ′′)qq̄ for analysis
of Drell-Yan production and the charged lepton coupling for dilepton final
state searches. The Z ′(Z ′′)e+e− coupling is composed of left and right handed
pieces, which can be individually numerically explored in the NMWT param-
eter space. The Z ′e+e− LH and RH couplings as a ratio to their SM Ze+e−

counterparts are presented in Figure 4.2a and 4.2b respectively. Both L and
R components of the Z ′ dilepton coupling increase as g̃ → 1, however as
the coupling is diluted through the mixing effects between the gauge fields,
gZ′l+l− ≥ gZl+l− is never realised.

Figures 4.3a and 4.3b show the LH and RH Z ′′ dielectron coupling in the
MA, g̃ parameter space, again presented as a ratio to the SM Ze+e− cou-
pling.Similarly, the L component of the Z ′′ dilepton coupling grows as g̃ → 1,
however this is not the case for the R component. The R component is sup-
pressed in comparison to the Z ′ as the mixing with the photon is smaller for
γ − Z ′′ than γ − Z ′.
Figures 4.2 and 4.3 clearly confirm the switch from axial(vector) to vec-
tor(axial) Z ′(Z ′′) at the mass inversion, Minv. The composition of the neu-
tral resonances affect both LH and RH coupling strengths, suppressing the
coupling as the Z ′(Z ′′) becomes mostly vector(axial).

In order to understand the relative suppression one should inspect the an-
alytic forms for the dilepton couplings in the regimes of MA < Minv and
MA > Minv. The LH/RH dilepton couplings are constructed as

gLZ′e+e− =
1

4
(N13g1 +N23g2), gRZ′e+e− =

1

2
N13g1, (4.4)

where for the Z ′′ the mixing elements switch to Ni3 → Ni4.

From this equation 4.4, we see that the Z ′−dilepton couplings are built from
the mixing of the U(1)Y gauge boson with the Z ′ and the mixing of Z − Z ′.
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In fact, all fermionic couplings follow a similar structure, containing only
off-diagonal terms of the mixing matrix N . This mixing is the origin of the
hypercharge and isospin components of the fermionic couplings, hence we can
generalise the fermionic couplings of Z ′ and Z ′′ in a mass regime dependent
way.
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Figure 4.2: Coupling of Z ′ to charged lepton pairs as a ratio to its SM equiv-
alent separated into left and right handed components, (a) | gLZ′l+l−/gZl+l− |,
(b) | gRZ′l+l−/gZl+l− |, as a function of MA and g̃ parameters at the benchmark
values of S = 0.1 and s = 0

MA < Minv regime

In the mass regime MA < Minv, the generalised Z ′/Z ′′ fermionic couplings
gZ′ff̄ and gZ′′ff̄ take the form

gLZ′ff̄ =
χ

2
√

2g̃

(
−I3g

2
2 + Y g2

1

)
, gRZ′ff̄ =

χ

2
√

2g̃
qfg

2
1, (4.5)

gLZ′′ff̄ =
1

2
√

2g̃

(
I3g

2
2 + Y g2

1

)
, gRZ′′ff̄ =

1

2
√

2g̃
qfg

2
1, (4.6)

where I3 = ±1/2 is usual 3rd component of the weak Isospin for up and
down-fermions respectively, Y = qf − I3 is their hypercharge, and qf is the
charge of the fermions.

Compounding the results of the numeric analysis, in the low g̃ region the Z ′′

dilepton coupling is stronger than that of the Z ′, due to the χ suppression
in the Z ′ couplings. For positive S, then χ < 1 across the full parameter
space, so represents a small suppression where it appears in the coupling.
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Figure 4.3: Coupling of Z ′′ to charged lepton pairs as a ratio to its SM equiv-
alent separated into left and right handed components, (a) | gLZ′′l+l−/gZl+l− |,
(b) | gRZ′′l+l−/gZl+l− |, as a function of MA and g̃ parameters at the benchmark
values of S = 0.1 and s = 0

Thus when interpreting experimental limits in the NMWT parameter space,
we would expect constraints at low g̃ region to be strongest from the Z ′′.

MA > Minv regime

The couplings gZ′ff̄ and gZ′′ff̄ in the MA > Minv regime to order O(g̃−1) are

gLZ′ff̄ =
1

2
√

2g̃

(
−I3g

2
2 + Y g2

1

)
, gRZ′ff̄ =

1

2
√

2g̃
qfg

2
1, (4.7)

gLZ′′ff̄ =
χ

2
√

2g̃

(
I3g

2
2 + Y g2

1

)
, gRZ′′ff̄ =

χ

2
√

2g̃
qfg

2
1. (4.8)

The only major change in comparison to the MA < Minv regime is that
the factor χ is now applied to the Z ′′ fermion couplings. This leads to
a relative suppression of the Z ′′ff̄ interactions in comparison to the Z ′,
with the greatest suppression occuring at high g̃ due to the structure of
χ(g̃, S). This suppression of the Z ′′ dilepton couplings is present in Figure
4.3, especially notable for the LH coupling due to the contribution from γ−Z ′′
and Z − Z ′′ mixing.
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4.2.2 Z ′/Z ′′ V V/V h Coupling

Additionally to the fermionic couplings, gauge sector interactions could play
an important role in probing the NMWT parameter space at colliders. Al-
ternatively to the Drell-Yan channel, the Z ′/Z ′′ may be produced by Vector
Boson Fusion (VBF), so one should investigate coupling to V V pairs. Inter-
actions involving the Higgs may also provide interesting collider signatures,
so we also study the Z ′/Z ′′ coupling to V h.

Z ′WW

The Z ′W+W− vertex coupling has the structure

gZ′WW = −g2C
2
11N23 −

g̃√
2

(C2
21N43 + C2

31N43 + 2C21C31N33). (4.9)

Note that the Z ′WW vertex coupling has a linear momentum dependence,
however here we present the dimensionless coupling coefficient to the mo-
mentum in this vertex.

In the MA > Minv regime, substituting the elements of N and C from equa-
tions B.2 and B.3, the coupling becomes

gZ′WW =
g2

2(1− χ)√
2g̃

− g2
2(g2

1 − g2
2)M2

V (χ+ χ3)√
2g̃3(M2

A − 4M2
V )

, (4.10)

which up to 2nd order in g̃−1 simplifies to

gZ′WW =
g2

2(1− χ)√
2g̃

+O(g̃−3). (4.11)

As established previously, the SM-like gauge couplings g1 and g2 are mini-
mally dependent on the WTC parameters MA, g̃, and S, such that they can
safely be considered constant for this discussion. With this approximation
the coupling gZ′WW is independent of the mass scale MA and fixed for a given
g̃ and S.

The behaviour of gZ′WW as a function of g̃ is not obvious from equation
4.11, due to the non-trivial dependence of χ on the parameters S and g̃ (see
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equation 2.29). In the regime where both of the following conditions are met,

g̃ � 1, and
Sg̃2

8π
� 1, (4.12)

we can perform a Taylor expansion of χ around g̃−1 = 0,

χ(gt, S) =

√
1− Sg̃2

8π

' 1− Sg̃2

16π
− S2g̃4

512π
+ . . . .

Taking only the leading terms and substituting into equation 4.11 we find
the leading order (LO) behaviour of gZ′WW is

gLOZ′WW =
g2

2Sg̃

16
√

2π
, (4.13)

which in this regime (equation 4.12) describes the coupling behaviour to
1% level. Thus the Z ′ → WW interaction grows linearly with g̃ once g̃ is
sufficiently large as to satisfy the expansion conditions.

In the MA < Minv regime the Z ′ is the mostly axial-vector resonance, nat-
urally one would expect this to result in the Z ′WW coupling being highly
suppressed. Substituting the elements of N and C from equations 3.17, 3.18
into gZ′WW (equation 4.9), we find

gZ′WW =
g2

2(g2
1 − g2

2)M2
Aχ(1 + χ2)√

2g̃3(4M2
A −M2

V )
. (4.14)

Immediately one can see that the coupling gZ′WW only contains O(g̃−3) con-
tributions, i.e the contributions in which all particles are in a mixed state.
Interestingly, the contribution from self-mixing W states (C2

11N23 in equa-
tion 4.9) cancels exactly with the contribution from the self-mixing Z ′ state
(C21C31N33 in equation 4.9), leading to an overall zero contribution from the
on-diagonal elements of N and C.
The implication of this analysis is that the Z ′WW interaction becomes im-
portant in the high MA, high g̃ regime. As the suppression of Z ′ fermionic
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couplings is g̃−1 dependent, regions of the NMWT parameter space that can-
not be effectively probed by fermionic couplings may be accessed through
this triple vector particle coupling. The complementarity of fermionic and
bosonic channels motivate the search for these new resonances at high energy
colliders in both Drell-Yan (DY) and Vector-Boson Fusion (VBF) production
channels.

Z ′Zh

When the Z ′ is a mostly vector resonance, the dominant 3-point gauge in-
teraction should be that of Z ′Zh. In terms of mixing elements, the Z ′Zh
coupling is constructed from elements of N in the following way;

gZ′Zh =
v

4

(
2g2

2N22N23(1 + s) + 2g2
1N12N13(s− r2)) +

g̃2v

2
(N32N33(r2 + s)

−N22N23(1 + r2) +N42N43(s− r2)

)

+
g̃v

4

(
√

2g1(N13N42(r2 − s) +N13N32(s− 1) +N12N43(r2 − s) +N12N33(s− 1))

+
√

2g2(N23N32(1− s) +N23N42(r2 − s) +N22N33(1− s) +N22N43(r2 − s))
)
,

(4.15)

where we note that gZ′Zh has a mass dimension arising from the vev, as such
it does not contain a momentum dependence as is the case for the Z ′WW
vertex.

The form of equation 4.15 contains many terms as the coupling takes contri-
butions from several operators in the Lagrangian 2.5, however if we apply the
usual restriction of s = 0 this can be reduced. In the MA < Minv regime, we
can find an approximate asymptotic for gZ′Zh in terms of the 3-dimensional
parameter space (MA, g̃, S),

gZ′Zh =
g̃M2

A

64v

√
(g2

1 + g2
2)S

π
. (4.16)

The key here is that the Z ′Zh coupling is enhanced by g̃ when the Z ′ is the
mostly axial resonance, which could offer an exciting opportunity to probe
the difficult to access high g̃ regime, where equivalent fermionic channels are
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suppressed by 1/g̃. This suggests that the dominant process for the Z ′ at
low-intermediate MA is the decay to Zh, motivating the search for NMWT
in a variety of neutral resonance searches.

4.3 Widths and Branchings

The validity of the low-energy effective Lagrangian 2.5 as a description of
the NMWT parameter space is dependent on perturbativity of the model.
A natural insight into whether interactions can be calculated perturbatively
is the width of the neutral resonances - if the width is sufficiently small
compared to the particle mass then perturbation theory holds and Lboson
accurately describes the low energy behaviour of said particle. The width-
to-mass ratio Γ/M for Z ′ and Z ′′ is shown in Figure 4.4.
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Figure 4.4: (a) ΓZ′/MZ′ , (b) ΓZ′′/MZ′′ as a function of MA and g̃ parameters
at benchmark values of S = 0.1 and s = 0

One can see from Figure 4.4a that the Z ′ is narrow across the whole parameter
space, and ΓZ′/MZ′ is always below 10%.

For MA > Minv, where the Z ′ is the mostly-vector resonance, its width
is enhanced by the opening of the Z ′ → W+W− decay channel. ΓZ′ is
maximised for the high g̃ region of this mass regime, as we see from equation
4.13 gZ′WW is proportional to g̃. The Z ′ width is most narrow in the MA <
Minv and low g̃ regime, due to the suppression of the WW and Zh channels
relative to the fermionic channels. In this regime, the dominant process of
Drell-Yan to difermions forces the intermediate resonance to be narrow. This
effect appears in the relative branching ratios of the Z ′, shown in Figure
4.5(a,b) for low g̃ = 3 and high g̃ = 8 respectively. This also occurs in
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MA(GeV)
S g̃ 1000 1500 2000 2500

-0.1

1 2.91(35.28) 4.54(52.92) 6.68(72.28) 9.76(94.34)
3 1.29(10.79) 2.92(7.73) 7.20(12.28) 17.39(24.99)
5 1.37(180.97) 5.10(117.65) 16.44(110.57) 44.28(143.36)
7 2.89(932.69) 11.15(691.70) 35.46(648.36) 93.58(742.68)
9 6.75(3028.96) 23.56(2435.70) 69.88(2375.84) 176.01(2685.93)

0.1

1 2.72(33.70) 4.02(48.98) 5.50(64.11) 7.50(79.44)
3 0.88(4.13) 1.80(2.69) 4.74(6.40) 12.93(15.07)
5 0.79(76.29) 3.60(19.00) 12.85(14.75) 36.46(36.86)
7 1.99(350.34) 8.64(109.07) 28.30(46.82) 75.39(76.16)
9 5.66(899.79) 19.44(328.60) 55.33(124.77) 134.68(135.22)

0.3

1 2.70(32.48) 4.62(47.28) 8.91(64.77) 19.03(90.61)
3 1.87(2.75) 9.37(10.55) 34.98(37.18) 99.34(107.84)
5 5.53(30.22) 27.87(27.69) 79.15(97.60) 197.15(288.29)
7 18.16(108.87) 64.34(59.34) 113.87(195.62) 217.11(580.30)
9 72.97(125.19) 160.17(109.98) 116.31(318.94) 124.76(617.72)

Table 4.3: Widths of the neutral resonances in the MA, g̃, S parameter space,
displayed in the format ΓZ′(ΓZ′′) in GeV for each parameter space value

the near-degenerate theory of S ' 0 as one can see from Figures C.9 and
C.10 in Appendix C, where we present additional phenomenological results
for S = −0.1, 0, 0.2 and 0.3. One should also note that for large g̃ and
MA < Minv the dominant contribution to the width is from the Z ′ → Zh
decay channel, as shown in Figure 4.5b. The implication of the above is
that the Z ′ decays via three important channels, dilepton, WW , Zh, which
can probe complementary regions of the parameter space. As such, a fully
comprehensive experimental search of the NMWT parameter space must
consider these main signatures at collider experiments.

The behaviour of the Z ′′ width-to-mass ratio (Figure 4.4b) is qualitatively
different from the Z ′. For g̃ . 5, the width also below 10% of MZ′′ , however
as g̃ grows beyond this range ΓZ′′/MZ′′ becomes very large. This is most
extreme for the low MA regime where ΓZ′′ > MZ′′ , due to the opening of
the purely technicolor decay channel Z ′′ → W ′+W ′− which scales with g̃ (as
the interaction vertex involves only technicolor gauge particles). The effect
is confirmed in Figures 4.5(c,d), where for g̃ = 8 and MA < 1TeV all other
channels are suppressed with respect to Br(Z ′′ → W ′W ′).

For the MA > Minv regime, the high g̃ regime is dominated by the Z ′′ → Zh
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Figure 4.5: Br(Z ′)(a,b) and Br(Z ′′)(c,d) for all decay channels as a function
of MA at the fixed values of (a)g̃ = 3, (b)g̃ = 8, at benchmark values of
S = 0.1 and s = 0

channel due to the g̃ enhancement in this coupling vertex and the axial-
vector composition of the Z ′′ (Figure 4.5d). From Figure C.12 we see similar
behaviour for S ≥ 0, where the suppression of all other channels relative to
Zh is greater for increased S, i.e as the mass separation of the Z ′ and Z ′′ is
maximised. Interesting behaviour occurs for negative S (Figure C.12), where
for MA > Minv the dominant decay channel is Z ′′ → WW . This is due to
the definition that MZ′′ > MZ′ which means that to achieve a negative S,
the mass ordering of MA and MV is switched - so at MA > Minv the Z ′′ is
the mostly-vector resonance.

The ultimate goal of this phenomenology analysis is to probe and assess
the viability of the NMWT parameter space at collider experiments. The
cleanest channel to explore is the charged dilepton signature, as it has a low
SM background and narrow resonant peak in the invariant mass spectrum.
Let us inspect the dilepton branching ratio for the Z ′ and Z ′′ resonances
across the 2D (MA, g̃) parameter space, presented for S=0.1 in Figure 4.6.
We also present numerical results for Br(Z ′ → e+e−) and Br(Z ′′ → e+e−)
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Figure 4.6: (a)Br(Z ′ → e+e−), (b)Br(Z ′′ → e+e−) as a function of MA and
g̃ parameters at benchmark values of S = 0.1 and s = 0

at reference values across the 3D (MA, g̃, S) parameter space in Table 4.4.

The expected 1/g̃ suppression from equations 4.5 and 4.6 is present in Figure
4.6. For low values of g̃ both Br(Z ′ → l+l−) and Br(Z ′′ → l+l−) are
enhanced above the respective SM branching ratio Br(Z → l+l−) value of
3%. For example, from Table 4.4 we see that for MA = 1500GeV, S = 0.1
and g̃ = 1, Br(Z ′ → e+e−) ' 12.3% which is ∼ 4 times greater than the
respective SM branching ratio. This enhancement is caused by a subtle effect
in the mixing contributions to the vertex coupling, which is not evident from
equation 4.5 as this equation breaks down for values of g̃ ∼ 1. A numerical
analysis of the mixing contributions indicates that for g̃ ' 1 the γ − Z ′

mixing is enhanced, while Z − Z ′ mixing is suppressed. This leads to a
relative suppression of Br(Z ′ → νν̄) and Br(Z ′ → qdq̄d) with respect to
Br(Z ′ → l+l−) and Br(Z ′ → quq̄u).

Let us look beyond the dilepton channels Br(Z ′ → e+e−) and Br(Z ′′ →
e+e−) to the interdependent branching ratios to V V and V h. Along with
the dominance of WW and Zh channels at high g̃ discussed previously, there
is the presence of unusual dips in the Z ′ and Z ′′ diboson channels (Figure 4.5).
These dips occur for low-intermediate g̃ and MA < Minv, and are the result
of the respective Z ′(′′)WW and Z ′(′′)Zh couplings changing sign such that at
the dips the respective branching ratios go to zero. The source of the sign
change in the couplings can be investigated through the mixing contributions
to the coupling vertex, i.e the contributions from Nij and Cij elements in the
coupling. From equations 4.9 and 4.15 we see that the WW and Zh couplings
contain contributions from gauge kinetic terms as well as from r2 and r3 terms
from the Lagrangian of equation 2.5. These terms combine in such a way as
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MA(GeV)
S g̃ 1000 1500 2000 2500

-0.1

1 10.941(3.963) 10.759(3.873) 9.854(3.749) 8.467(3.576)
3 2.226(0.782) 1.377(1.572) 0.704(1.313) 0.350(0.807)
5 0.827(0.019) 0.327(0.038) 0.134(0.052) 0.061(0.049)
7 0.217(0.002) 0.083(0.004) 0.035(0.005) 0.016(0.005)
9 0.062(0.000) 0.026(0.001) 0.012(0.001) 0.006(0.001)

0.1

1 11.788(4.080) 12.280(4.112) 12.084(4.154) 11.119(4.174)
3 2.986(1.991) 1.930(4.455) 0.903(2.487) 0.502(1.229)
5 1.171(0.042) 0.373(0.220) 0.133(0.360) 0.050(0.183)
7 0.211(0.005) 0.072(0.021) 0.029(0.058) 0.013(0.043)
9 0.038(0.001) 0.016(0.005) 0.008(0.014) 0.004(0.015)

0.3

1 11.988(4.162) 10.784(4.186) 7.532(4.040) 4.429(3.595)
3 1.255(2.910) 0.356(1.077) 0.301(0.233) 0.147(0.085)
5 0.129(0.099) 0.033(0.142) 0.058(0.016) 0.028(0.006)
7 0.012(0.016) 0.005(0.033) 0.019(0.002) 0.012(0.001)
9 0.000(0.009) 0.000(0.011) 0.010(0.000) 0.010(0.000)

Table 4.4: Di-electron branching fraction of Z ′, Z ′′ in the MA, g̃, S parameter
space, displayed in the format Br(Z ′ → e+e−)(Br(Z ′′ → e+e−)) in %.

to partially cancel the contributions, with the sign of the coupling indicating
which Lagrangian terms are the greatest contribution, as such there is some
value in the parameter space at which these contributions cancel exactly -
hence the dips in the branchings.

4.4 Cross Sections

The Z ′ and Z ′′ resonances can be produced via the Drell-Yan production
mechanism[78], where they can subsequently decay to dileptons. This DY
dilepton signature is a promising probe of NMWT at proton-proton colliders
such as the LHC, as such we study the theoretical DY dilepton cross sections
for the Z ′ and Z ′′ in detail here. The cross sections are directly related to
the fermionic couplings and dilepton branching ratios presented in sections
4.2.1 and 4.3 respectively. The total leading order (LO) cross sections for
the pp → Z ′/Z ′′ → e+e− processes at 13TeV are presented in Figure 4.7,
across the 2D (MA, g̃) parameter space with S = 0.1. Analogous results
are presented in Figures C.13 and C.14 for discrete S = −0.1, 0.0, 0.2, 0.3
(Appendix C). We also present numerically the DY production cross sections
pp→ Z ′/Z ′ in Table 4.5 for the 3D grid (MA, g̃, S).
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Figure 4.7: (a)σLO(pp → Z ′ → e+e−) (fb)(b)σLO(pp → Z ′′ → e+e−) (fb)
at
√
s = 13TeV as a function of MA, g̃ at benchmark values of S = 0.1 and

s = 0

MA(GeV)
S g̃ 1000 1500 2000 2500

-0.1

1 6.37×102(3.08×103) 1.03×102(4.29×102) 23.7(83.5) 6.54(19.1)
3 3.37×102(2.39×102) 49.6(52.2) 10.4(14.1) 2.66(4.31)
5 1.43×102(37.1) 22.9(9.83) 5.29(2.84) 1.47(0.89)
7 80.2(7.89) 13.0(2.54) 3.03(0.81) 0.85(0.26)
9 53.9(2.00) 8.78(0.74) 2.05(0.25) 0.58(8.59×10−2)

0.1

1 6.39×102(3.10×103) 1.04×102(4.34×102) 24.0(84.7) 6.64(19.5)
3 3.06×102(2.72×102) 39.8(65.3) 5.79(20.0) 0.96(6.50)
5 1.17×102(47.7) 18.5(14.4) 4.03(4.72) 0.81(1.89)
7 54.0(11.5) 8.75(4.70) 2.01(1.85) 0.52(0.76)
9 27.7(3.22) 4.50(1.73) 1.05(0.85) 0.29(0.41)

0.3

1 6.43×102(3.12×103) 1.05×102(4.40×102) 24.3(85.8) 6.75(19.8)
3 2.70×102(3.15×102) 16.1(93.9) 8.68(19.0) 3.47(4.70)
5 90.4(63.2) 11.8(24.1) 6.98(3.82) 2.64(1.04)
7 27.9(17.6) 4.30(10.2) 5.18(1.09) 2.64(0.31)
9 1.35(5.65) 0.22(5.43) 5.13(5.22×10−2) 4.79(1.47×10−2)

Table 4.5: Cross section σ(pp → Z ′/Z ′′) at LO in the MA, g̃, S parame-
ter space at

√
s = 13TeV, displayed in the format σZ′(σZ′′) in fb for each

parameter space value

We evaluate the theoretical cross sections in the Narrow Width Approxima-
tion (NWA)[79] for consistency with the LHC@13TeV limits from the CMS
experiment[80], which allows us to interpret the CMS limit in the NMWT pa-
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rameter space. This interpretation is discussed further in chapter 5, with the
relevant elements of the CMS procedure presented where appropriate here.
The CMS paper itself follows the prescription of[81] to set appropriate mass
window cuts around a generic resonant Z ′, where Accomando et al calculate
that a cut of MZ′ ± 5%

√
s produces a cross section that is within 10% of

the calculation from the NWA. This discrepancy comes from the difference
between a direct 2→ 2 cross section calculation, which does not necessarily
have a sharp narrow resonance, and the 2 → 1 × Br(1 → 2) method which
forces the resonance to have a narrow width. We provide results for both
procedures, where Figure 4.7 was calculated following the CMS 2→ 2 cross
section procedure, and Table 4.5 is the 2 → 1 resonant production that one
can apply the branching ratios from section 4.3 to create the dilepton cross
section with an enforced narrow width.

Cross sections are calculated using the Matrix Element Generator package
CalcHEP [76], using the platform of the High Energy Physics Model Database
(HEPMDB) [82] which is linked to the Southampton based IRIDIS4 super-
computer. The PDF set used is NNPDF23 LO as_0130_QED[83], and we
set the QCD coupling scale Q to be equal to the dilepton invariant mass,
Q = M(e+e−). To account for NNLO QCD effects we multiply the LO cross
sections by a mass-dependent K-factor. This K-factor is found using the
WZPROD program [84, 85, 86] which we have modified to evaluate Z ′ and
W ′ cross sections, and linked to LHAPDF6 library [87] as described in [88].
These NNLO K-factors are presented in Table 4.6.

As expected, the g̃−1 suppression from the dilepton coupling is observed
for both Z ′ and Z ′′ in Figure 4.7. At high resonance mass there is also
suppression of the cross section coming from the PDFs. It is important to
note that for high MA and low-intermediate values of g̃ the signal from the
Z ′′ is higher than that of the Z ′, whereas the Z ′ dilepton signal is higher
at low MA and high g̃. This highlights the complementarity between the
two resonances, indicating that the Z ′ and Z ′′ DY processes will exclude
different areas of the NMWT parameter space. This motivates our study of
both resonances in conjunction, as we will exclude a greater portion of the
parameter space with combined searches.
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MZ′ (GeV) KNNLO

500 1.35
600 1.36
700 1.36
800 1.37
900 1.38
1000 1.39
1100 1.39
1200 1.40
1300 1.40
1400 1.41

MZ′ (GeV) KNNLO

1500 1.41
1600 1.41
1700 1.42
1800 1.42
1900 1.42
2000 1.41
2100 1.41
2200 1.41
2300 1.41
2400 1.40

MZ′ (GeV) KNNLO

2500 1.40
2600 1.39
2700 1.39
2800 1.38
2900 1.37
3000 1.36
3100 1.35
3200 1.34
3300 1.33
3400 1.32

MZ′ (GeV) KNNLO

3500 1.31
3600 1.30
3700 1.29
3800 1.28
3900 1.26
4000 1.25
4100 1.24
4200 1.22
4300 1.21
4400 1.19

Table 4.6: K-factors for NNLO QCD corrections to Drell-Yan cross sections
at
√
s = 13TeV evaluated with the help of the modified ZWPROD program

as described in the text, using NNPDF23 LO as_0130_QED and NNPDF23
NNLO as_0119_QED[3] PDFs for LO and NNLO cross sections respectively.

4.5 Z ′/Z ′′ Interference

Following the discussion of the DY cross sections in section 4.4, it is vital to
study the interference between the Z ′ and Z ′′ dilepton signatures. We will
eventually interpret the LHC experimental limits on heavy neutral resonances
in the context of the NMWT parameter space, where the experimental search
is based on a single resonance in the dilepton channel. In conjunction with
this, one must explore the separation of the neutral resonance peaks, their
relative contributions to the dilepton signal, and their individual Γ/M ratio.
As such, this section explores the validity of the single peak interpretation
of experimental limits in the NMWT parameter space.
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Figure 4.8: (a) Contour levels for σ(pp → Z ′ → e+e−) at the
√
s = 13TeV

and ratio of Z ′/Z ′′ DY dilepton cross sections in MA, g̃ parameter space at
S=0.1. (b) Interference between Z ′ and Z ′′ contributions to the dilepton
signature arising from the pp → Z ′/Z ′′ → l+l− process in MA, g̃ parameter
space at S=0.1.

In Figure 4.8(a) we present contour levels for σ(pp → Z ′ → e+e−) at
√
s =

13TeV along with the relative ratio of dilepton production via Z ′ vs. Z ′′

production for S=0.1. We calculate the cross sections with a finite width
and a mass window cut around the resonance mass (following the procedure
described in section 4.4), which allows us to correctly estimate the size of the
Z ′/Z ′′ interference. The pattern is qualitatively similar for varying S, so it
is sufficient to explore the consequences of interference at S = 0.1 and apply
it throughout. The result of Figure 4.8a is that the Z ′′ dilepton signature
becomes dominant at mass regimes from MA > 1.5TeV and low g̃, which
confirms our results in section 4.4 and reaffirms the motivation to study the
two resonances in parallel.

The interference between the Z ′ and Z ′′ contributions to the dilepton signa-
ture is presented in Figure 4.8b. One can clearly see that the interference is
at most at the level of 1%, and can therefore be safely neglected across the
whole MA, g̃ parameter space at S = 0.1. Again, the results for S 6= 0.1 are
qualitatively similar so the result applies for the full 3D (MA, g̃, S) parameter
space.

Let us now consider the interpretation of the LHC limits in the Z ′ and Z ′′

dominated regions of the parameter space. In the region of low MA < 1TeV
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the dominant contribution to the dilepton signature comes from the Z ′, so
one can interpret the LHC single-resonance limits in this region of parameter
space. Using similar logic, one can see that the region of MA > 1.5 TeV
the Z ′′ gives the dominant contribution to the di-lepton signature, thus one
can interpret the LHC limits in this region of NMWT parameter space from
the Z ′′ signal. Finally, in the intermediate region of 1TeV≤ MA ≤ 1.5TeV
the contributions from the Z ′ and Z ′′ dilepton signatures are comparable,
however this does not invalidate the single peak interpretation. Recalling the
relative mass ratio (Figure 4.1b), we see that the Z ′ and Z ′′ peaks are well
separated in mass (MZ′′ > 10%MZ′), and the width-to-mass ratios (Figure
4.4) are both at the percent level, as such the LHC limits in this region of
parameter space can be applied separately to either the Z ′ or Z ′′ signatures.

Therefore we conclude that for the entire (MA, g̃, S) parameter space of inter-
est, we can use signals from Z ′ or Z ′′ to independently probe complementary
regions of the NMWT parameter space. In principle one can study the sta-
tistical combination of both Z ′ and Z ′′ signatures, however this is outside
the scope of this thesis as it would require the experimental procedure to
change. I would encourage the experimentalists to develop a procedure for
a double-peak resonance search, as this may increase sensitivity to models
with more than one heavy neutral resonance such as NMWT.
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Chapter 5

Current LHC Limits

5.1 Set-up for LHC Limits

The potential of the LHC to probe the NMWT parameter space is depen-
dent on the experimental set-up and assumptions used in creation of the
experimental limits on new physics processes. We provide details of cuts,
acceptance and efficiency functions etc. for each LHC@13TeV experimen-
tal search used for limit interpretation into the NMWT parameter space.
Throughout this work the parton distribution functions used are as detailed
in section 4.4. These will later be discussed in the context of probing NMWT
with future colliders in chapter 7.

5.1.1 Dilepton set-up

The interpretation from experimentalists of dilepton limits in the NMWT
parameter space was last provided by ATLAS at the LHC@8TeV [89]. Since
this Run 1 result, experimentalists have not explicitly interpreted their own
limits in the context of NMWT, so the following set-up applies for any generic
Z ′ resonance in the DY dilepton channel, and for this study is specific to
CMS[80].

The CMS limit on Z ′ resonances in the dilepton channel are expressed as
a ratio of the DY di-electron cross section through a Z ′ mediator to the
equivalent SM cross section through a Z mediator, Rσ = σ(pp → Z ′ →
e+e−)/σ(pp → Z → e+e−). Expressing the limit in this way removes the
dependency of the limit on the theoretical prediction of the Z boson cross
section, as well as experimental uncertainties associated with this dilepton
measurement.
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We simulate the limit setting procedure employed by CMS in order to validate
the approach, with the projection to high energy/luminosity future colliders
in mind. The following details our simulation of the CMS limits, which were
found to match the CMS limit to ∼ 1% level.

To reproduce these limits, the CMS mass distribution for the dilepton back-
ground is simulated using the background probability density function:

mκeα+βm+γm2+δm3+εm4

(5.1)

where κ, α, β, γ, δ and ε are function parameters. This PDF describes a back-
ground distribution in the invariant di-electron mass, where the background
is dominated by di-electron events produced via the Drell-Yan production
mechanism. This simulated background is normalised with respect to the Z
boson mass window (60 < mee < 120 GeV) in experimental vs. simulated
data. For this reason, we set limits on the NMWT parameter space using
the di-electron limits set by CMS at 13TeV and 36fb−1.

For a given integrated luminosity L, the total number of events in the data
is NL. In this particular analysis the integrated luminosity is L = 36fb−1,
however this procedure can be generically applied to any luminosity mea-
sured in the CMS detector. Using the PDF in equation 5.1 we generate
many (O(100)) data sets, where each data set has a total number of events
equal to a varying Poisson fluctuation on NL. For each data set, we step
through invariant mass bins and set 95% confidence level (CL) limits on Rσ

in each bin. To set these limits we employ an unbinned extended likelihood
function using a Bayesian approach, where the likelihood function distribu-
tion is calculated as a function of the number of signal events, NS, in a given
mass bin. The signal PDF used in the likelihood analysis is a convolution
of a Breit-Wigner function and a Gaussian function with exponential tails
to either side, to simulate a single finite width Z ′ peak above the smooth
background for a given mass bin. The size of the symmetric mass window is
±6ΓS, where ΓS is the width of the signal resonance, and in high invariant
mass regimes this window is symmetrically enlarged to capture a minimum
of 100 events within it.

We identify N95 as the 95% CL upper limit on the number of signal events
NS, where for a likelihood function f(N ; θ) in a given mass bin, the upper
limit N95 is the number of events at which

1− α = 0.95 =

∫ N95

0

f(N ; θ)dN. (5.2)
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In converting the upper limit N95 to a limit on the cross section ratio Rσ,
one must consider the detector geometry and efficiency. These are modelled
by the mass-bin dependent acceptance (A) and efficiency (ε) functions, more
commonly quoted as a combined A × ε function. The acceptance and ef-
ficiency are geometry dependent, and will have a different functional form
for the barrel-barrel, barrel-endcap, and endcap-endcap regions of the CMS
detector. The CMS detector identifies the regions of the electron calorimeter
(ECAL) by the pseudo-rapidity regions |ηC | < 1.44 (ECAL barrel region)
and 1.57 < |ηC | < 2.50 (ECAL endcap), where the intermediate transition
region 1.44 < |ηC | < 1.57 between the barrel and endcap is excluded due to
the physical set up of the calorimeters. We account for this in our simula-
tions by calculating the SM background using separate CalcHEP batch mode
scans for each of the regions of interest, and combining them in such a way
as to accurately model the number of events NL captured by the CMS detec-
tor in a given invariant mass window. Additionally, the selection criteria for
di-electron events via a massive neutral mediator requires that the electrons
both have a transverse momentum of pT > 35GeV, again accounted for in
the batch scan stage of our background simulation.

The cross section limit is then N95/(L × A × ε). For each of the simulated
data sets, we calculate a 95% CL upper limit on the cross section ratio in
each mass bin. From these sets of limits we can then calculate the median
95% CL limit, as well as 1σ and 2σ standard deviations on the 95% CL limit
at each invariant mass bin.

5.1.2 V V/V h set-up

The Drell-Yan production of V V and V h via Z ′(′′) is simply the product of the
DY production cross sections σ(pp→ Z ′/Z ′′) (Table 4.5) with the branching
ratios Br(Z ′(Z ′′) → W+W−) and Br(Z ′(Z ′′) → Zh) (Figure 4.5). The
batch mode calculation of the 2→ 2 process across a fine grid in (MA, g̃, S)
is computationally expensive, instead one can reduce the calculation time
from the ∼ O(hours) to ∼ O(seconds) by writing explicit C code interfaced
with CalcHEP to produce all phenomenological results in a fine 3D grid. In
this method, the production cross section is not calculated directly, rather it
is reconstructed from the parton-level couplings to the Z ′(Z ′′), for example

σ(pp→ Z ′) = Σqq̄ωqq̄(MZ′)g
2
Z′qq̄, (5.3)

where ωqq̄(MZ′) are the mass-dependent PDF functions for each pair of inter-
acting quarks, and gZ′qq̄ are their coupling strengths to the Z ′. The squared
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coupling implicitly combines left and right handed components as the sum
of squares of LH and RH. The PDFs of parton processes are found by eval-
uating a smooth function of σ(qq̄ → Z ′/Z ′′) with all couplings set to unity.
This method was validated against the 2 → 2 calculation to within ∼ 1%
level.

One should also note that the involvement of the composite Higgs in this
V ′V h vertex necessitates the exploration of the parameter space with non-
zero s. This additional parameter enters due to the Tr[C2

Lµ + C2
Rµ]Tr[MM †]

term in the gauge sector Lagrangian (equation 2.5). For a qualitative view
of how the s parameter affects the reach of LHC probes of NMWT, we will
present the results in section 5.3 for s = −1, 0, 1.

5.2 Dilepton Limits on NMWT for LHC@13TeV

With the theory level NNLO cross sections for DY dilepton production of
Z ′ and Z ′′ in section 4.4 and the CMS experimental set-up described in
section 5.1.1, we can now explore the status of dilepton probes of the NMWT
parameter space at Run 2 of the LHC. The 95% CL observed limit on Rσ =
σ(pp→ Z ′ → e+e−)/σ(pp→ Z → e+e−) at 13TeV and 36fb−1 can be found
in Figure 3 of the CMS paper[80].

The SM NNLO cross section for the DY di-electron process is given as σ(pp→
Z/γ∗ → e+e−) = 1.928nb, which is then used to convert the ratio Rσ to a
limit on σ(pp→ Z ′ → e+e−). This limit is then projected in the 2D (MA, g̃)
NMWT parameter space, interpolating the limit with di-electron invariant
mass and mapping this to MZ′ at each point in the parameter space. The
95% CL limit in the NMWT parameter space is then compared to the NNLO
theoretical cross section for Z ′ and Z ′′ signals, and all regions in which the
theoretical cross section is greater than the experimental limit are excluded.

The resulting exclusions on the NMWT (MA, g̃) parameter space with S =
0.1 are presented in Figure 5.1. The power of the LHC to probe NMWT
through dilepton searches is already powerful at low g̃, in fact for g̃ = 1 the
lower limit on the TC scale is MA ≥ 3.5TeV. This is also approaching the
upper limit set by the a parameter, implying that the LHC could potentially
completely close the parameter space for certain values of g̃, an exciting
prospect that is explored further in the final chapter of this thesis (chapter
7). These exclusions also highlight the complementarity of the Z ′ and Z ′′, an
important feature that is key to effectively probing the NMWT parameter
space. As expected from the results of section 4.4, the Z ′ is more powerful for
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Figure 5.1: Exclusion of the (MA, g̃) parameter space from Z ′ and Z ′′ DY
processes in the dilepton channel at

√
s = 13TeV and luminosity of 36fb−1

probing lowMA regimes up to high g̃, whereas the Z ′′ probes low-intermediate
g̃ up to high MA. This can also be observed for varying S, presented in Figure
C.15 of Appendix C. When S 6= 0, the reach of the exclusions is similar in
MA but suppressed in g̃ to compensate for the deviation from degeneracy of
the Z ′ and Z ′, whereas S = 0 significantly extends the exclusion region in
both g̃ and MA as the signal is boosted thanks to increased mixing between
the near-degenerate neutral states. The a parameter limit probes lower in
MA for increasing S, so for large S the low g̃ regions of the parameter space
can be fully excluded already, however one should keep in mind that EWPD
disfavours S & 0.1.

5.3 V V/V h Limits on NMWT for LHC@13TeV

Analogously to the dilepton limits, we set the first limits on the NMWT
parameter space from complementary signatures at the LHC. The analytic
couplings presented in section 4.2.2 in conjunction with the relative branching
ratios for Z ′/Z ′′ decays (section 4.3) motivate the search for vector-vector
(VV) and vector-Higgs (Vh) signatures. The potential for these searches to
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access the high g̃ regions of the (MA, g̃) parameter space could provide a
comprehensive study of the whole spectrum of possible Walking Technicolor
models.

5.3.1 Drell-Yan produced V h signatures

The Z ′ and Z ′′ can both decay to a Zh pair in complementary regions of
the parameter space, with the coupling controlled by the vector/axial com-
position of the neutral resonance. When the Z ′ is the mostly axial resonance
(i.e in the MA < Minv regime) the Zh decay channel dominates for large
g̃, and vice-versa for the Z ′′ in the MA > Minv regime. DY production of
Z ′/Z ′′ remains the cleanest production mechanism, however there are a num-
ber of potential final states in which the pp → Z ′/Z ′′ → Zh signature can
be explored at colliders. The signatures characteristic of Zh production in
colliders include semi-leptonic final states, where the Higgs decays to pairs
of b-jets or c-jets and the Z decays to dileptons, and the fully hadronic final
states, where the Z decays to a pair of quark jets.

Here we consider the current limits on DY produced Z ′ in the Zh chan-
nel from the semi-leptonic ATLAS V h → ll̄bb̄ search at

√
s = 13TeV and

36fb−1[90]. This was chosen over the fully hadronic search and the equiva-
lent CMS limits as at the time of writing, these are the strongest limits set
on this channel, and the limit covers a large invariant mass range of 500 ≤
MZh ≤ 5000GeV. The ATLAS limits are expressed as a limit on the cross
section σ(pp→ Z ′ → Zh)×Br(h→ bb̄, cc̄), where the Higgs branching ratio
is a sum over bb̄ and cc̄ decay modes and is fixed to Br(h→ bb̄, cc̄) = 60.6%.
Using this fixed branching fraction to convert the data to a limit on purely
σ(pp→ Z ′ → Zh), we can then project the limit into the NMWT parameter
space and compare to the theoretical pp → Z ′/Z ′′ → Zh cross section to
produce exclusions on the model. The excluded regions from this search are
given in Figure 5.2 for s = −1, 0, 1 and S = 0.1.

The first interesting observation is that the s parameter changes very little
regarding the excluded regions, with the only observable effect appearing at
very low MA < 1TeV. In this region, the s parameter contributes negatively
to the pp→ Z ′ → Zh cross section, boosting (suppressing) the cross section
very slightly at MA ∼ 500GeV and s = −1(1). This region of the parameter
space is already excluded by the dilepton channel, so we can conclude that
the s = 0 assumption can be safely applied for the purpose of this thesis.

Another interesting feature is the visible band of parameter space between the
excluded regions that is allowed. This is due to the cancellation effect within
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Figure 5.2: Exclusions on the MA, g̃ parameter space from Z ′ and Z ′′ in
the Zh channel at

√
s = 13TeV and 36fb−1 with benchmark values of (a)

s = −1, (b) s = 0, (c) s = 1, and S = 0.1, ω = 0

the Z ′Zh coupling discussed in section 4.2.2, and is a 2D representation of
the resulting ‘dips’ in the branching ratio (Figure 4.5).

Once can observe that the Z ′ → Zh in the mass regime MA < Minv has
the power to probe the high g̃ regime significantly better than the dilepton
channel, again highlighting the complementarity of dilepton and V h searches.
As the Z ′′ is the mostly-vector resonance in the MA < Minv parameter space,
the Zh coupling is suppressed relative to the Z ′Zh. However there is some
small mixing between vector and axial states, so the Z ′′ does have some
limited regions in which it can decay to Zh.

The semi-leptonic ATLAS search also sets limits on charged V ′ → V h signa-
tures in the DY production channel. Following a similar procedure to the one
we employ for the Z ′(′′), we interpret these limits in the NMWT parameter
space for the W ′ and W ′′, presented in Figure 5.3. Similarly to the neutral

70



resonance, the s parameter has only a small visible effect on the excluding
power of the W ′ → Wh channel in the MA ' 500GeV regime. We can
superficially note that this regime is saturated by the exclusions from DY
dileptons, so the s parameter is of little import. The charged resonances in-
crease the exclusions for the mass region MA ' 2TeV in comparison to their
neutral counterparts. Although this complementarity is not as significant as
that of the mass-ordered resonances V ′ and V ′′, this observation motivates
the extension of our triple-vector searches to the charged resonances.
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Figure 5.3: Exclusions on the MA, g̃ parameter space from W ′ and W ′′ in
the Wh channel at

√
s = 13TeV and 36fb−1 with benchmark values of (a)

s = −1, (b) s = 0, (c) s = 1, and S = 0.1, ω = 0

5.3.2 Drell-Yan produced V V signatures

Analogously to the V h channel, one can set limits on NMWT from LHC
searches for heavy resonances in the DY V V channel. In the MA < Minv

regime the Z ′ coupling to W+W− is heavily suppressed (see section 4.2.2),
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so we expect that the Z ′ will not provide any limits in this mass regime.
Although there is potential for this coupling to grow with g̃ when in the
MA > Minv regime, the cross section σ(pp → Z ′ → WW ) is inherently lim-
ited by the DY production mechanism, due to the suppression of the Z ′qq̄
coupling. One can expect that the Z ′′ will be able to probe the MA < Minv

parameter space due to its mostly-vector composition. As evident from Fig-
ure4.5c,d in section 4.3, the branching ratio to the WW channel is dominant
for intermediate MA, so we expect that this channel will be able to probe the
parameter space of 1TeV≤MA ≤Minv.

For the LHC@13TeV and 36fb−1, the ATLAS Collaboration provide the
best current limits on W ′ and Z ′ resonances in the V V channel, again in
the semi-leptonic final state lνqq [91]. This search is sensitive to invariant
mass ranges of 0.5-5TeV, so can be interpreted for the whole MA range of
interest in the NMWT parameter space. The experimental 95% CL limit
is given explicitly as a limit on σ(pp → V ′ → V V ) for Z ′ → W+W− and
W ′ → WZ respectively, to which we simply apply conversion from fb→ pb.
We interpret this limit in the MA, g̃ parameter space for neutral resonances
in Figure 5.4, and charged resonances in Figure 5.5.

As expected, the Z ′ does not produce any limit on NMWT in the WW
channel, however the W ′ does provide a limit in a small region of parameter
space around g̃ ∼ 2.5 and MA ∼ 1.2TeV. Although the phenomenology is
qualitatively similar between the neutral and charged technicolor resonances,
in this region of parameter space Br(W ′ → WZ) ∼ 10−2 − 10−1 as opposed
to Br(Z ′ → WW ) ∼ 10−3 − 10−2. The Z ′ is more suppressed due to its
axial-vector composition which leads to a highly suppressed WW coupling,
whereas the W ′ is not limited by such composition as it is necessarily a
vector meson. The Z ′′ and W ′′ exclude almost entirely identical regions of
the parameter space, probing the 2 ≤ g̃ ' 5 for as high as MA = 2.5TeV.
The reach in the low MA regime is poor as the V V channel is suppressed
relative to decays of V ′′ to V ′V (′), whose couplings grow with g̃. Once these
Technicolor decay channels close, the V V channel becomes the dominant
one for both neutral and charged resonances. At this point the limitation is
set by the DY production channel, hence the unprecedented reach in the g̃
regime.

5.3.3 Combined reach of V V/V h limits on NMWT

In this section we have discussed the potential to probe the NMWT param-
eter space from the individual V V and V h searches, as well as the effect of
the non-zero s parameter on these exclusions. The conclusion we can draw is
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Figure 5.4: Exclusions on the MA, g̃ parameter space from Z ′ and Z ′′ in
the W+W− channel at

√
s = 13TeV and 36fb−1 with benchmark values of

s = 0, S = 0.1, ω = 0

that s 6= 0 either has no effect on the overall excluded regions, or contributes
to the very low MA ' 500GeV regime. This regime is already covered by the
dilepton limits presented in section 5.2, so any effect on V h exclusions from
the s parameter is saturated by complementary channels. As such, one can
examine the combined reach of all DY produced V V and V h probes at s = 0
without loss of generality.

The combined exclusion on the NMWT (MA, g̃) parameter space is presented
in Figure 5.6 for S = 0.1 and s = 0. Here the results from neutral resonances
and charged resonances for a given channel are coded with the same colour,
where the darkened regions for that channel represent the parameter space
that is excluded by both resonances in that channel. For example, the V ′ →
V h exclusion region in purple has a large region of MA < 2TeV parameter
space that is excluded by both Z ′ → Zh and W ′ → Wh, with additional
complementary exclusions from the individual channels.

The full picture of the new limits we have set on the NMWT parameter space
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Figure 5.5: Exclusions on the MA, g̃ parameter space from W ′ and W ′′ in
the WZ channel at

√
s = 13TeV and 36fb−1 with benchmark values of s = 0,

S = 0.1, ω = 0

from all DY produced channels is given in Figure 5.7. The V V +V h combined
channels probe the high g̃ region of the parameter space very effectively,
with V h limits covering all g̃ > 4 at MA ≤ 1.5TeV, and V V limits can
exclude up to g̃ ' 5 as high as MA ∼ Minv ∼ 2.7TeV. In combination
with the dilepton limits which are sensitive to the low MA regime and low-
intermediate g̃, this means that already with LHC@13TeV at 36fb−1 we
can exclude almost the entire MA < Minv parameter space1. Additionally,
experimental limits on σ(pp → V ′/V ′′ → V V ) and σ(pp → V ′/V ′′ → V h)
have never been interpreted into the NMWT parameter space previously, so
we have conclusively demonstrated that the combination of complementary
channels is essential in the endeavour to discover (or completely exclude) the
Walking Technicolor paradigm.

1Note that this is for the benchmark value of S = 0.1. As discussed in the main text,
the s parameter does not extend/affect the total exclusions from all channels, so we set
s = 0.
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Figure 5.6: Combined exclusions on the MA, g̃ parameter space from Drell-
Yan V ′(V ′′)→ V h and V ′(V ′′)→ V V channels at

√
s = 13TeV and 36fb−1

at benchmark values S = 0.1, s = 0, ω = 0

5.4 Always Allowed/Always Excluded NMWT

Limit Analysis

To explore the sensitivity of the LHC@13TeV searches for heavy resonances
to the whole NMWT parameter space we perform scans over the full 5D
(MA, g̃, S, s, ω) parameter space, generating O(107) random points for each
of the dilepton, V V , and V h theoretical cross sections. The random scan
covers the parameter space of S ranged from (−0.1, 0.3), s ranged (−1, 1),
and ω between (0, 0.01). We then project these theoretical cross sections into
the usual MA, g̃ plane, apply the appropriate LHC limits, and evaluate the
most conservative and most optimistic limits from each individual search.
For the most conservative limits, we layer the points that are allowed after
applying the experimental 95% CL limits on top of those that are excluded
from the Z ′ or Z ′′, such that the excluded points that remain are excluded
for all possible combinations of S, s, ω. We also present the reverse of this,
where the excluded points are layered on top of the allowed points, so the
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Figure 5.7: Combined exclusions on the MA, g̃ parameter space from Drell-
Yan Z ′/Z ′′ → l+l−, V ′(V ′′) → V h, and V ′(V ′′) → V V channels at

√
s =

13TeV and 36fb−1 at benchmark values S = 0.1, s = 0, ω = 0

remaining allowed points are ‘always’ allowed for all S, s, ω and cannot be
excluded for a given LHC observed limit.

In Figure 5.8a we present the current status of LHC sensitivity in the dilepton
channel, where the excluded points by the Z ′′ (dark grey) are layered on top
of those excluded by the Z ′ (light grey). For this particular channel, there is
minimal mixing due to the presence of no additional gauge particles and as
such the ω parameter even at its largest does not affect the reach of the LHC
dilepton limit. One can see that even this maximally conservative limit has
the power to exclude up to MA ' 3.1TeV for low values of g̃. This limit on
MA is significantly (around 1TeV) higher than any previously limit, with the
prior strongest limits set by the ATLAS collaboration[92, 89]. One should
note that the previous limits from ATLAS which are set with S = 0.3, s = 0,
ω = 0 are actually the most optimistic limits for NMWT, as S as large as
0.3 is disfavoured by EWPD.

Figure 5.8b shows the most optimistic limits on NMWT from LHC@13TeV,
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Figure 5.8: Projections on MA, g̃ parameter space of theoretical DY Z ′/Z ′′

dilepton cross section showing the excluded for all S and s region (a), allowed
for all S and s region (b) for the current CMS exclusion for LHC@13TeV
and 36 fb−1 integrated luminosity. Blue points are allowed, light grey points
are excluded by the Z ′, and dark grey points are excluded by the Z ′′.

36fb−1 dilepton searches. One can see that the most optimistic limits from
DY dileptons follow the shape of the benchmark exclusion with S = 0, see
Figure C.15b.

We repeat this process interpreting the limits on V V and V h Drell-Yan res-
onances into the MA, g̃ plane for both neutral and charged heavy resonances.
Figure 5.9 shows the reach of the Z ′(Z ′′)Zh (a,b) and W ′(W ′′)Wh (c,d) lim-
its. Neither the neutral or charged resonances in the V h channel have the
power to conclusively exclude regions of the MA, g̃ plane for all S, s, ω, with
only a very small region of low MA and low g̃ excluded. For the neutral
resonance, this is due to the S dependence of the axial/vector composition of
the Z ′/Z ′′, as when S < 0 the composition switches to a vector Z ′ and axial
Z ′′ in the MA < Minv regime. For the charged sector a similar switching oc-
curs, but instead of axial and vector composition the switching is due to the
mixing of the heavy resonances aligning to a mass ordering of MW ′ < MW ′′ .

The optimistic reach of V h limits (Figure 5.9(b,d)) is more promising, the
neutral (charged) resonances can exclude all g̃ for MA ' 2TeV(2.5TeV) for
certain combinations of S, s and ω, again the main parameter controlling this
is S. If EWPD can rule out negative S then the V h processes can provide a
powerful probe for the NMWT parameter space, so this result highlights the
importance of EWPD in interpreting limits on Walking Technicolor.

Finally, Figure 5.10 shows the conservative and optimistic interpretations
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of LHC@13TeV V V limits on the NMWT parameter space for the MA, g̃
projections. As with the V h channel, the neutral and charged V V searches
do not conclusively exclude any region of the MA, g̃ regime. This is caused
by the behaviour of the V ′/V ′′ composition controlled by the S parameter
analogously to the behaviour of the V h 5D exclusion regions. The optimistic
limits on NMWT for neutral and charged resonances, Figure 5.10(b,d) re-
spectively, demonstrate the complementarity of the double resonance feature
of NMWT as well as that of the charged and neutral searches in tandem.
For certain combinations of S, s, ω, one can exclude a vast range of MA, g̃
space, with the W ′ even providing a reach into the MA > Minv regime which
is untouched by the optimistic limits from other channels and resonances we
have explored. Although the configuration for such complete covering of the
MA, g̃ plane relies heavily on the choice of S, s, ω, the regions that are ‘always
allowed’ motivate us to combine LHC searches to fully explore the potential
for discovery or total exclusion of Walking Technicolor theories.
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Figure 5.9: Projections on MA, g̃ parameter space of theoretical σ(pp →
Z ′/Z ′′ → Zh) showing the excluded for all S, s, ω region (a), allowed for
all S, s, ω region (b) and theoretical σ(pp → W ′/W ′′ → Wh) showing the
excluded for all S, s, ω region (c), allowed for all S, s, ω region (d) for the
current ATLAS exclusion for LHC@13TeV and 36 fb−1 integrated luminosity.
Blue points are allowed, light grey points are excluded by the Z ′(W ′), and
dark grey points are excluded by the Z ′′(W ′′).
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Figure 5.10: Projections on MA, g̃ parameter space of theoretical σ(pp →
Z ′/Z ′′ → W+W−) showing the excluded for all S, s, ω region (a), allowed for
all S, s, ω region (b) and theoretical σ(pp → W ′/W ′′ → WZ) showing the
excluded for all S, s, ω region (c), allowed for all S, s, ω region (d) for the
current ATLAS exclusion for LHC@13TeV and 36 fb−1 integrated luminosity.
Blue points are allowed, light grey points are excluded by the Z ′(W ′), and
dark grey points are excluded by the Z ′′(W ′′).
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Chapter 6

NMWT Spectrum from
Holography

6.1 Brief Introduction to Holography

Thus far we have studied Walking Technicolor from the perspective of its EW
scale phenomenology, using a ‘bottom-up’ approach in which the Lagrangian
describes the low energy behaviour of the model but does not know about
the non-perturbative dynamics of the explicit Technicolour gauge dynam-
ics. This is useful for exploring the model in the context of studies we can
perform within the scope of modern particle colliders, however the method
of scanning the parameter space of the low-energy theory does not provide
insight from the underlying physics as to where one would naturally expect
the realistic models to lie in the parameter space. Such predictions would
require implementation of a ‘top-down’ approach, one in which the funda-
mental physics of the model would predict the low-energy physics, i.e where
in the parameter space the models would be predicted to exist.

The difficulty that arises with top-down evaluations of Technicolor models
is that the underlying dynamics are strongly coupled. The low-energy be-
haviour of weakly coupled NMWT interactions at ΛTC is well defined, the
phenomenological properties of the particles and their interactions can be
safely calculated with perturbation theory. Strongly coupled theories such
as QCD in which perturbation theory breaks down are considerably more
complicated; one must look to tools in which properties of the strong dy-
namics can be approximated or simplified in some way. One such framework
is that of Lattice Field Theory, in which space-time is discretised and calcu-
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lations of QCD properties are performed on a grid (or lattice) of spacing a,
such that in the limit of a → 0 one recovers the continuous field theory[93].
This lattice spacing provides a UV cut-off at the scale ΛUV ∼ O(1/a),
regularising the theory thus ensuring that the quantum field theory is fi-
nite. In principle, the Lattice Field Theory approach can be applied to any
model exhibiting a non-perturbative strong dynamics, and in fact work has
already begun from the lattice side on calculations within Walking Tech-
nicolor paradigms[94, 95, 96, 97, 98, 99, 100]. A major issue with lattice
techniques is that they are computationally expensive even for QCD where
properties such as Nc (number of colours) are well understood, so the sit-
uation quickly becomes a huge computational challenge. Lattice methods
also struggle where there is a large separation in energy scales over which
the coupling is strong, such as the characteristic running behaviour of Walk-
ing Technicolor theories. To explore such theories would require calculations
across both long and short distance scales, which quickly becomes computa-
tionally challenging with separation of ΛTC and ΛETC required for modern
WTC models. A full exploration of possible WTC theories across the entire
spectrum of possible Nc, Nf will take on the order of tens of years on the
lattice, and even then a much larger portion of the lattice community would
be required to provide the man-power and computing power needed for such
an exploratory search.

The alternative for calculations within strong-coupling regimes is to exploit
the AdS/CFT (Anti de Sitter/Conformal Field Theory) correspondence[101],
where one can model the strongly interacting theory as living on the bound-
ary of a weakly-interacting theory in one additional dimension. The extensive
work of string theorists to provide an alternative description of Renormalisa-
tion Group (RG) flow has allowed us to glean insight on the properties of field
theories with RG scale. Comprehensive literature on this construction can
be found in [102, 103, 104, 105, 106], we focus here on the resulting demon-
stration of AdS/CFT correspondence and the idea behind the Holographic
method[107].

The string theory construction of RG flow promotes a (3+1)-dimensional
field theory to slices in a 5-dimensional bulk[108, 109], analogous to the
description of information at the event horizon of a black hole. A pictorial
view of this principle is given in Figure 6.1, where the field theory lives on
planes in RG space.
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r
ds2

Figure 6.1: Visual analogy of RG space in which the (3+1)-dimensional
field theory exists on planes in the bulk (4+1)-dimensional space, where RG
scale r provides the additional length dimension.

The metric for the RG scale dependent field theory is

ds2 = r2dx2
3+1 +

dr2

r2
, (6.1)

where r is the RG scale, i.e the radial direction in the 5-dimensional space
(Figure 6.1). The metric must necessarily be invariant under scale transfor-
mations; for a scale transformation by a factor N the RG scale transforms
as r → r/N , i.e r scales as a mass (m → m/N). One can clearly see then
that this metric is invariant under scale transformations.

Let us inspect a scalar field φ in RG space, the Klein-Gordon equation for
this scalar is simple to derive and is embedded in RG space via the action

S =

∫
d4x
√−g(∂µφ∂νφg

µν +m2φ2), (6.2)

where g is the determinant of the metric tensor

gµν =


−r2 0 0 0 0

0 r2 0 0 0
0 0 r2 0 0
0 0 0 r2 0
0 0 0 0 r−2

 . (6.3)
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Using this the Klein-Gordon equation for φ can now be recast in terms of r,

r3(r2(∂rφ(r))2 +m2φ2), (6.4)

where the factor of r3 arises directly from the r dimensionality of
√−g =√

−det(gµν). Applying the Euler-Lagrange equation, the equations of motion
for this scalar field are

∂r(r
5∂rφ)− r3m2φ2 = 0, (6.5)

which has the solution

φ =
A

r∆
, (6.6)

where the dimensionful exponent ∆ is related to the bulk mass as

m2 = ∆(∆− 4). (6.7)

Noting that the scalar field has no mass-dimension, the coefficient A must
carry a mass-dimension of ∆, in fact this coefficient can be directly identified
with the expectation value of operators of the (3+1)-dimensional field theory.
This is a clear demonstration of the correspondence between the bulk mass
in 5-dimensions with the (3+1)-dimensional field theory operators, and this
result is the foundation of Holography.

Consider a strongly interacting field theory embedded in the 5D space de-
scribed above, one can study the vacuum of the theory via the quark con-
densate 〈q̄q〉. In the UV, the mass dimension of the quark condensate is
3, so from equation 6.7 the bulk mass-squared m2 = −3. If we wish to
study the properties of the condensate as it runs with RG scale, we can in-
troduce a mass for the scalar particle, ∆m2(r) 6= 0, which runs with RG
scale1. The running mass-squared now allows us insight into the running
of 〈q̄q〉, effectively introducing a running anomalous dimension, γ, for the
quark condensate. Thus, one can perform perturbative calculations in the
5D bulk theory which inform us of the properties of the strongly interacting
(3+1)-dimensional field theory.

1Note here that ∆m2 = 0 recovers the UV solution for the scalar mass
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Holography provides a rigorous method of calculation for strongly interacting
gauge theories that are close to a N = 4 supersymmetric gauge theory[110,
111, 112, 113]. The advantage of using such an approach to glean information
about strongly interacting theories is that it is much less computationally
expensive, in fact one can already employ the holographic method to calculate
top-down predictions for theories with new strong interactions.

Throughout this chapter, I will detail the work carried out in collaboration
with holography experts Prof Nick Evans and Dr Marc Scott[5]. I will de-
scribe their holographic method in section 6.2 as detailed in this paper. The
remainder of this chapter will detail our collaborative efforts to predict the
full spectrum of WTC theories and deduce where these theories lie in the
NMWT parameter space.

6.2 Holographic Model

Using the model of AdS/QCD one can calculate phenomenological properties
of QCD such as masses and couplings of π, ρ, a mesons etc. from a holo-
graphic perspective[114, 115], where the simplest model inputs the dynamics
of the techni-quark condensate < q̄q > by hand. To apply this to generic
strongly coupled gauge theories one must extend the holographic model to
include the dynamics of said gauge theory. The caveat is that one must still
input an assumed form for the running of the anomalous dimension, γ, of
< q̄q >. Details of this Dynamic AdS/QCD model are given in [116, 117],
here we present a summary of the key components of this model. One can
validate the holographic model for the well established QCD spectrum (in
which Nc = Nf = 3), where the resulting predictions are within 10% of
the experimental values. Our philosophy here is to hope that this will hold
true for WTC models, giving sensible predictions for at least some values of
Nc, Nf . For those that, understandably, doubt the reliability of these pre-
dictions, we offer that the predicted spectra calculated using the top-down
holographic method give a rough guide as to where the physical theories exist
in the parameter space.

Let us make some qualitative statements regarding the physical spectrum of
WTC models in the AdS/QCD context. The spectrum of physical particles
looks QCD-like in that there exist heavy mesons akin to the QCD σ, ρ and A,
which we can identify as the composite Higgs, Z ′, and Z ′′ of the phenomeno-
logical NMWT model respectively. Generic scaled up QCD running coupling
will generate a large S and heavy σ, however the holographic model can
produce a sufficiently light σ (Higgs) if one modifies the running to be near-
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conformal at the symmetry breaking scale. The tuning of the holographic
model to small S corresponds to tuning the mass splitting of ρ and A mesons
to near-degeneracy. We predict the heavy meson spectrum for a range of
Nc, Nf , with the hope that at least one of them will produce the correct
walking dynamics to correspond to a physical WTC theory. Although the
exact spectrum will be wrong for many, if not most, of these Nc, Nf choices,
we present all spectra in the parameter space to give Technicolor the best
chance of survival as well as providing a guide for potentially total exclusion
of the Walking Technicolor paradigm.

The action of the Dynamic AdS/QCD model is

S = −
∫
d4xduTru3

[
1

r2
|DX|2 +

∆m2(r)

u2
|X|2 +

1

2κ2
(F 2

V + F 2
A)

]
, (6.8)

where u is the holographic co-ordinate dual to the energy scale, X is a field
dual to the quark condensate q̄q, κ is a tunable parameter that controls the
V − A mass splitting, ∆m2(r) is an RG scale mass term. In the models of
interest here ∆m2 is fixed from the running of the gauge coupling at two-loop
level, which also encapsulates the existence of IR fixed points in the running
for certain Nc, Nf . The vacuum of the theory is described by the solution of
the equations of motion for the quark condensate (see equation 6.5).

We choose the on-mass-shell condition |X|(u = X0) = X0 with |X|′(X0) = 0.
We require |X| = 0 in the UV to ensure that the techniquarks are massless.
Fluctuations of the field dual X correspond to the σ and π fields. The vector
and axial fields are described by the operators q̄γµq and q̄γµγ5q respectively,
where their fluctuations describe the spectrum and couplings of the ρ and A
respectively. Studying these vector and axial operators from a Holographic
perspective is equivalent to studying a gauge field Vµ (Aµ for the axial field)
living in the 5D space depicted in Figure 6.1.

Following from the derivation in section 6.1, the theory exists in the 5-
dimensional metric

ds2 = r2dx2
3+1 +

1

r2
du2, (6.9)

where we now define the radial co-ordinate r as

r2 = u2 + |TrX|2. (6.10)
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The trace term in the radial co-ordinate represents a ‘back-reaction’ on the
metric in the spirit of probe brane models [110, 111, 112, 113], as well as
communicating the mass gap to the meson spectrum.

To calculate the spectrum of the theory, one must look at linearised fluctua-
tions of the fields around the vacuum, where fields generically take the form
f(u) expip.x with p2 = −M2. One can also determine the decay constants
for the scalar, vector, and axial mesons by substituting their respective wave
functions back into the action S and integrating over u. Normalisation of
these fluctuations can be achieved by matching to the expected scalar-scalar,
vector-vector, and axial-axial correlators from the gauge theory in the UV2.

The initial focus of these models is the case of a single EW doublet of techni-
quarks and one technicolor singlet as in the NMWT model, where the singlet
is decoupled from the theory at the TC scale but can change the running
of the coupling in the UV. Models with increased numbers of doublets and
singlets will then be explored and their spectra calculated. For all models,
we tune the running of the anomalous dimension γ in the IR such that the σ
meson is generated at mσ = 125GeV. To achieve this tuning we set a value
of αTC at the scale at which we deviate from the running regime of the UV
theory. Below this scale, we allow Nf to be a free parameter and choose N IR

f

in such a way as to allow the σ meson mass to be tuned to the observed
Higgs mass. One should note here that N IR

f is not the true value of Nf in
the theory, and in fact is N IR

f ' 11.43 for all cases. Physically, this matching
scale appears as a discontinuity in the running of αTC , which is dealt with
by performing the calculations in the two different sections (below and above
the discontinuity) and matching the fields and their derivatives at this point.
The matching point itself is varied between 0.3 ≤ αTC ≤ 0.7, to give some
idea of the error in the predictions of the spectrum.

In Figure 6.2 we show the running of αTC for the various Nf values we
explore in the case of WTC with Nc = 3, along with a QCD-like running for
comparison. One can see that the IR running is essentially the same for all
of these theories due to the tuning to the Higgs mass, which has implications
we will discuss in section 6.4.

Along with the tuning to the Higgs mass, we tune the coupling κ such that
the ρ−A (Z ′−Z ′′ in NMWT) degeneracy is sufficiently small to produce S
consistent with EWPD. As is the generally identified benchmark presented in

2Note that the holographic literature expresses the dim-2 coupling of the vector meson
and its source is written as F 2

V , as opposed to the WSR literature where it is written as
MV FV . We follow the latter here for consistency within this thesis.
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Figure 6.2: The running of αTC against RG scale imposed on the holographic
model with Nc = 3. The curve furthest to the left is for a technicolor model
that is a scaled up version of QCD with the usual two loop result for the
running. The next curve over is that same theory forced to have a IR fixed
point to produce a light higgs (clearly we know for this theory that this
assumption is wrong!). Moving further to the right we see the running as
further singlet techi-quarks are added, again with N IR

f chosen to give a light
higgs. The IR of all such theories is shared and uniquely determined by
needing the observed higgs mass.

the phenomenology of the bottom-up model (chapter 4), we choose S = 0.1.
For most Nc, Nf theories this is almost certainly not the case and the mass
splitting would be greater, however again we are invoking our philosophy of
generosity towards giving WTC theories the best chance of survival. Exclud-
ing even these extremely favourable models would mean conclusive exclusion
of the whole WTC paradigm. One should note that in the case of κ = 0,
the Lagrangian terms for the ρ and A mesons are indistinguishable and their
masses exactly degenerate. However, the first term in the action (equation
6.8) links the A meson and the symmetry breaking field X and is suppressed,
and so in order to maintain the correct Fπ one must raise the overall scale of
the A meson.

Let us now summarise the holographic model and indicate the properties it
predicts. For a theory with Nc, Nf the UV running of the coupling (and
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subsequently the anomalous dimension γ) is fixed at 2-loop order in pertur-
bation theory. The overall scale is set by Fπ = 246GeV (as in the NMWT
phenomenological model, equation 2.24). The IR running is modified by ad-
justing the effective N IR

f such that the σ mass is fixed to the Higgs mass.
This IR modification occurs below the matching scale αTC , which is varied
from 0.3 to 0.7 to approximate an error in the predicted spectrum. With
all this implemented, the holographic model then predicts the spectrum in
terms of Mρ, Fρ,MA, FA, which are functions of the 5D gauge coupling κ.
Tuning κ to fix S = 0.1 removes one degree of freedom, and we can rephrase
the remaining predictions as

MA, g̃ =

√
2MV

FV
, ω =

1

2

(
F 2
π + F 2

A

F 2
V

− 1

)
, (6.11)

in order to interpret them into the NMWT parameter space. One should
note here that for all of the models explored using this method we find
ω < 0.05. This is sufficiently low as to provide no meaningful alteration to
the reach of experimental limits on the NMWT parameter space, so results
presented in section 6.4 suppress this factor and can be essentially considered
ω independent.

6.3 NMWT Set-up for ND > 1

The phenomenological model thus far discussed is the NMWT model with
Nc = 3 and Nf = 2, however one may wish to explore the phenomenol-
ogy of the varying Nf and Nc Walking Technicolor models explored in the
holographic method. The implementation of these models into CalcHEP
is beyond the scope of this thesis, however here we detail the changes to
the effective low-energy WTC model in the case of additional techni-quark
doublets and singlets. We discuss the effect on the physical spectrum from
symmetry breaking in the case of additional doublets and additional singlets,
and the modification to the effective Lagrangian and mixing matrices for the
example case of ND = 2 doublets of techni-quarks.

6.3.1 WTC with Additional Doublets

Generalising the chiral symmetry of the NMWT model presented in sec-
tion 2.1, the chiral symmetry SU(Nf )L⊗ SU(Nf )R is dynamically breaks to
SU(Nf )V . As the additional techniquarks are doublets under the SU(Nf )
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group the number of doublets is ND = 2Nf . The generalised symmetry
breaking pattern is

(2⊕2⊕2⊕. . . )L×(2⊕2⊕2⊕. . . )R → N2
D(3)V +(N2

D−1)(1)V +(1′)V , (6.12)

which reproduces the pattern of equation 2.6 in the ND = 1 case. The conse-
quence of this is that in the broken phase there are now N2

D triplets of vector
and axial mesons, i.e N2

D (Z ′,W ′) and N2
D (Z ′′,W ′′) mesons in the gauge

sector. Note that there are also N2
D − 1 singlets (plus the lone (1′)V singlet)

which arise from symmetry breaking, however these are decoupled from the
theory at the scale ΛTC so they have no effect on the LHC phenomenology.

In terms of the gauge sector Lagrangian, the new gauge fields contribute in
the same way as the AL and AR fields in equation 2.5. For ND techni-quark
doublets the low-energy Lagrangian is then

Lboson =− 1

2
Tr
[
W̃µνW̃

µν
]
− 1

4
B̃µνB̃

µν − 1

2

ND∑
i=1

Tr[F i
LµνF

i,µν
L +F i

RµνF
i,µν
R ]

+m2

ND∑
i=1

Tr[(Ci
Lµ)2+(Ci

Rµ)2] +
1

2
Tr[DµMDµM †]− g̃2r2

ND∑
i=1

Tr[Ci
LµMC i,µ

R M †]

− ig̃r3

4

ND∑
i=1

Tr[Ci
Lµ(MDµM † −DµMM †) + Ci

Rµ(M †DµM −DµM †M)]

+
g̃2s

4

ND∑
i=1

Tr[(Ci
Lµ)2 + (Ci

Rµ)2]Tr[MM †] +
µ2

2
Tr[MM †]− λ

4
Tr[MM †]2,

(6.13)

Let us inspect the gauge mixing sector in the case of ND = 2. There are then
4 copies of the ρ(A) sector which can all mix with the electroweak gauge
bosons. This means that the charged sector will have a 9 × 9 gauge mixing
matrix, and the neutral sector a 10×10 gauge mixing matrix. Before rotation
into the mass basis, we can write mixing matrices for the neutral and charged
bosons in terms of the Lagrangian parameters g1, g2, g̃, f, v, r2 and r3, where
f is the TC vev as defined in equation 2.36. The gauge mixing Lagrangian
is
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Lmass =
(
B̃µ W̃µ A1

Lµ A1
Rµ A2

Lµ A2
Rµ A3

Lµ A3
Rµ A4

Lµ A4
Rµ

)
M2

N



B̃µ

W̃ µ

A1µ
L

A1µ
R

A2µ
L

A2µ
R

A3µ
L

A3µ
R

A4µ
L

A4µ
R



+
(
W̃−
µ A1−

Lµ A1−
Rµ A2−

Lµ A2−
Rµ A3−

Lµ A3−
Rµ A4−

Lµ A4−
Rµ

)
M2

C



W̃+µ

A+1µ
L

A+1µ
R

A+2µ
L

A+2µ
R

A+3µ
L

A+3µ
R

A+4µ
L

A+4µ
R


.

The mixing matrices M2
N and M2

C are
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where a = (1−r3), b = (1+r2−r3), c = (r2−r3) and d = −r2.

One can see that diagonalisation of the gauge sector very quickly becomes
a lengthy and difficult analytic calculation, and practical construction of
phenomenological WTC models with ND > 1 may be undesirable. Neverthe-
less, we can infer some consequences of the additional doublets; firstly the
techni-pion decay constant Fπ will be increased by the contribution of the
additional vector and axial fields, so to counteract this the mass scale of the
model, MA, should decrease. Secondly, we expect that vertices with TC-EW
interactions will be diluted by the presence of the additional gauge mesons,
as the coupling structure of such vertices will be modified by the contribution
from N/C1j elements where 4 < j ≤ Nf . We will discuss the consequences
of additional doublets in the context of the holographic predictions of the
spectra in section 6.4.

6.3.2 WTC with Additional Singlets

The holographic calculation was also performed with a single techni-quark
doublet with an increasing number of singlets, which requires an alternative
approach to building a WTC model. The unbroken phase then consists of a
single doublet of techni-quarks (so fixing ND = 1) and Nf − 2 techni-quarks
singlets. The symmetry breaking pattern of the SU(Nf )L ⊗ SU(Nf )R

(2⊕1⊕1⊕ . . . )L×(2⊕1⊕1⊕ . . . )R → (3)V +2(ND−2)(2)V +(Nf−2)2(1)V ,
(6.16)

along with the axial-vector copy of this physical spectrum.

This is distinctly different to the breaking pattern in equation 6.12 as there
is now only a single ρ(A) sector, with 2(Nf − 2) vector doublets arising
out of the symmetry breaking instead. Again there are gauge singlets (al-
though now there are (Nf − 2)2 of them) which are considered decoupled
from the theory at the scale ΛTC . This could offer an interesting and unique
WTC phenomenology with an extended gauge doublet sector, though the
phenomenology of such models from the bottom-up perspective is yet to be
explored.

As a prelude to the eventual building of such models (should anyone wish
to take up this mantle), one can begin by understanding the structure of
interactions in the unbroken phase of the model. Let us consider the case of
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Nf = 4, before symmetry breaking the WTC gauge sector consists of

(
U
D

)
, n1, n2, (6.17)

where n1 and n2 are techni-quark singlets.

The Lagrangian for techni-quark mixing in the unbroken phase is

Lmixing =
(
U D n1 n2

)
M2


U
D
n1

n2

 , (6.18)

where

M2=

(
σi m1

m2 0

)
. (6.19)

Each of the elements inM is a 2× 2 matrix, split up into 4 sectors defining
the allowed mixing of the doublet and singlets. The σi are the usual Pauli
matrices, m1,m2 are (as yet unspecified) non-zero matrices. This means that
the doublet techni-quarks U and D can interact mix (i.e form bound states)
with any of the other techni-quarks where their interactions are defined by
the σi,m1,m2 quadrants ofM. However, there is no mixing purely between
techni-quark singlets n1 and n2. For this case, under symmetry breaking we
then have 3 states from the upper-left mixing sector which combine to form
one gauge meson triplet, and 8 states from the off-diagonal mixing sectors
which combine to form 4 doublets. The remaining degrees of freedom are
taken up by non-interacting singlets generated by the symmetry breaking.
This matches the expected spectrum in equation 6.16 for Nf = 4.

6.4 NMWT Spectrum from Holography

As detailed in our paper [5], Figure 6.3 presents the holographic predictions
of the WTC spectrum for varying Nc, Nf projected into the usual MA, g̃
parameter space, along with the exclusion region from DY dileptons at the
LHC@13TeV, 36fb−1. The limit setting procedure and results for dileptons
are presented in chapter 5.2. The holographic spectra are presented for WTC
models with a global SU(Nc) symmetry where Nc = 3, 4, 5. For each Nc,
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the models with a single doublet and additional techni-quark singlets are
calculated for Nf = 2, 4, 6, 8, 10, 12 (all), Nf = 14 (for Nc = 4, 5) and Nf = 16
(for Nc = 5). Models with additional doublets of techni-quarks are calculated
for ND = 1, 2, 3, 4, 5, 6 doublets (all Nc), ND = 7 (for Nc = 4, 5), and ND = 8
(for Nc = 5). These ND values are chosen such that ND < 2Nc, as this is
where the theories are assumed to enter the conformal window.

To understand the interpretation of holographic spectra in the WTC pa-
rameter space, let us first discuss the spectrum of a QCD-like Technicolor
model as predicted by holography. The model itself is simply a scaled up
QCD; the model has a running coupling and is built of an SU(3) gauge
group with Nf = 2, and the pion decay constant is scaled from the QCD
fπ = 93MeV to the usual techni-pion decay constant Fπ = 246GeV. Running
such a model through the holographic calculation, the spectrum is predicted
to be Mρ = 2.05TeV, MA = 3.25TeV, S = 0.3 and g̃ = 7. Of course, one
should note that the absence of a light Higgs excludes this model, and in any
case the S = 0.3 is disfavoured by EWPD (outright excluded for T = 0). It
is interesting to note however that due to the large MA and g̃, this model
is not excluded by the Z ′/Z ′′ dilepton limit. With this in mind, let us ex-
plore the position of the Walking models in the WTC theory space and the
implications for the models.

As discussed in section 6.2, one can somewhat choose the value of αTC at
which the coupling begins to slowly run to a conformal fixed point, here the
cases of αTC = 0.3 and αTC = 0.7 as the extremities of the valid range.
The most minimal model of WTC is the one with a QCD-like gauge group,
i.e Nc = 3 and Nf = 2, but with deformed running in the IR (see Figure
6.2). As an example, if the IR running kicks in at αTC = 0.7, the predicted
spectrum for this minimal model lies at MA = 4.11TeV, g̃ = 8.49 (along with
ω = 0.047, although as previously discussed this parameter is negligible),
where we have tuned κ such that S = 0.1. This model appears in Figure 6.3 as
the uppermost red point. The main observation here is that the deformation
of the running coupling of a QCD-like model to produce a light Higgs pushes
the model spectrum higher in both MA and g̃, so moving away from the
dilepton limits. This is due to the modification of the running, as from
Figure 6.2 one can see that these models have a strong coupling α out to
much higher energy scales than the scaled-up QCD running.

For each SU(Nc) gauge group, WTC models with additional EW singlets are
shown as points in Figure 6.3. The effect of the additional singlets is to move
the position of the model spectrum lower in MA, with no meaningful alter-
ation in g̃ (< 1% level). These models all have very similar spectra, owing to
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the additional singlets only affecting the UV running. The IR running of all
additional singlet models is very similar, as such the physical techni-meson
spectrum feels only a very small effect necessitated by the tuning to Mh.

The WTC models with additional techni-quark doublets are represented in
Figure 6.3 by the lined boxes, the width of which represent the error cor-
responding to the lower and upper values of the matching scale αTC . The
lines at the top of the spectrum along which the singlet models lie are those
models where ND = Nf/2 = 1. The effect of additional doublets on the mass
scale MA is somewhat intricate - on the surface the additional doublets in-
creases Fπ by

√
Nf hence reducing MA. However, the S parameter naturally

grows with Nf , so to maintain S = 0.1 one has to tune κ and consequently
increase the mass scale of the theory. These two effects combine to slightly
reduce MA, with an overall difference in MA between minimal to maximal
ND models at ∆MA < 0.5TeV. The effect on the gauge coupling g̃ is much
more pronounced, as the axial decay constant FA also scales as

√
Nf causing

g̃ to decrease as ND increases.

A notable feature amongst the holographic predictions is that all models lie
on or around the line at which the phenomenological parameter a (see equa-
tion 2.34), associated with the 2nd WSR, is a = 0. This is caused by the
relationship between the a parameter and the degeneracy of ρ,A (or Z ′, Z ′′

in the phenomenological model), as similarly to S this a parameter naturally
grows with increasing ρ − A degeneracy. By forcing S to be small one sub-
sequently causes a towards zero, as the tuning of κ physically corresponds
to a complicated tuning of the vector/axial masses and decay constants to
achieve S = 0.1. Although it is unclear whether these tunings are realistic or
even achievable in a UV complete model, we cite our philosophy of allowing
predictions even for unrealistic WTC models.

One can clearly see from Figure 6.3 that the current reach of dilepton searches
at the LHC is insufficient to rule out any of the holographic models. Compar-
ing to the V V/V h limits in Figure 5.6, even the addition of these alternative
channels does not probe the parameter space occupied by the holographic
models. The models closest to the current exclusions are those of maximal
ND for a given Nc, with the SU(5), ND = 8 model offering the most likely
chance of exclusion from future results as comparatively to prior results, the
Z ′/Z ′′ dilepton limits have increased in MA for low g̃.

Along with the dilepton limit, we also present a signal-to-background ratio
characteristic of this channel at which S/B = 1%, at which point the system-
atic uncertainty of the detector would saturate any potential signal. This is
represented by a dashed line in Figure 6.3, above which the dilepton channel
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would no longer be effective for these neutral resonance searches. The S/B is
a useful tool to explore the maximal potential reach of experimental searches,
as the ratio is expected to stay the same for a given channel regardless of
collider energy/luminosity. The limit for dileptons of S/B > 1% arises from
the extent to which one can reduce the statistical uncertainty in measuring
the dilepton background. This statistical uncertainty reaches a minimum
when it reaches the limits of the systematics of (in our case) the CMS detec-
tor [118]. Even in the case of very high statistics for measuring the dilepton
background, there is some irreducible uncertainty around the level of 1%,
hence the choice of S/B ∼ 0.1 as a systematic limit independent of collider
energy. The positive thing to note here is that the signal is saturated only at
large g̃, so one could feasibly use the dilepton channel to probe the parameter
space of multi-doublet holographic models in future collider experiments. Of
course, strictly speaking the experimental limits have been generated only
for a single doublet case, however the interpretation of holographic predic-
tions in the theory space still provides a useful guide to both theorists and
experimentalists wishing to explore/exclude the WTC paradigm.
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Figure 6.3: Excluded regions are 95% CL limit from neutral resonance
dilepton searches at LHC@13TeV, 36fb−1 in the (MA, g̃) parameter space
for Z ′, Z ′′. Limit on potential reach of dilepton searches from systematics
is presented as the point at which Signal/Background¡0.01 (see 7.2). The
predictions of the holographic model (tuned at each Nc, Nf to give S=0.1 and
the correct higgs mass) are overlaid. The predictions are colour coded for the
different Nc models; Nc = 3 is red, Nc = 4 is green, and Nc = 5 is blue. The
top edge of the box in each case is the one electroweak doublet theory result
with the width representing an estimate of the theoretical error (see section
6.2). The points correspond to the motion of the right hand point on that
line as the number of singlets is changed to vary the UV running - the effect is
small because the theories share much the same IR running to generate Mh.
Moving down in the box corresponds to increasing the number of electroweak
techni-doublets from one to 2Nc where the theories are assumed to enter the
conformal window. Parameter a from the phenomenological model (equation
2.34), is related to ρ−A degeneracy and the holographic points lie near the
line a = 0 as a result of tuning to a small S parameter.
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Chapter 7

The Future of NMWT at
Colliders

7.1 Future High Energy Collider Experiments

Thus far we have established the up-to-date experimental limits on the
NMWT parameter space from DY produced dilepton, V V , and V h channels,
as well as calculating from the top-down holographic model the spectrum of
WTC theories of varying Nc, Nf which are projected into the (MA, g̃) param-
eter space. At present, none of the DY produced neutral resonance searches
at the LHC can probe the parameter space occupied by these holographic
models, but will future collider experiments be able to explore this regime?
How will the landscape of Walking Technicolor models change with the ever
increasing capabilities of high energy physics experiments? Might it be pos-
sible to exclude or discover Walking Technicolor within our lifetime?

We begin the task of answering these important questions here, exploring
the predicted reach of dilepton searches in the NMWT parameter space up
to the proposed end point of the LHC[4], and in potential/planned future
high energy collider experiments[5]. Plans for the HLLHC upgrades in beam
energy and luminosity are detailed in [119], along with potential plans for
both 27TeV and 100TeV colliders to be built in the LHC tunnel post-HLLHC.
Section 7.2 describes the method of predicting experimental limits on neutral
resonance dilepton searches, predicted exclusions on the NMWT parameter
space are presented for several benchmark HLLHC points in section 7.3,
and finally predicted exclusions on NMWT for 27TeV and 100TeV collider
experiments are presented in section 7.4.
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7.2 Recreating CMS 13TeV Dilepton Limits

Thus far the observed 95% CL limits have been used to set limits on the viable
parameter space of NMWT, now we wish to emulate the limit setting proce-
dure in order to predict analogous limits on NMWT at future experiments.
We focus on predicting the limits of neutral resonances in dilepton searches
due to its clean and simple to control background, allowing us to model the
signal and background effectively without complications from jets/QCD pro-
cesses as would appear in V V/V h searches. The analysis is being extended
to these channels with their more complicated background structure, which
is the subject of our upcoming work [6].

Building from the CMS procedure for the observed dilepton limit as out-
lined in section 5.1.1, we design a procedure to simulate the expected CMS
limit. One should note that our analysis method employs a binned likelihood
method, as opposed to the CMS unbinned likelihood analysis. Our analy-
sis is divided into two statistical regimes; where the number of background
events is Nbg > 10 we model the signal as a Gaussian fluctuation over the
background, and where Nbg ≤ 10 we instead use Poisson statistics to model
the signal. The background is modelled as smoothly falling with invariant
dilepton mass, where the smooth distribution has been generated from many
distributions in the invariant mass windows of interest. We assume that the
resonance width for a generic Z ′ signal, ΓZ′ , is sufficiently narrow such that
we can model the resonance using the Gaussian-smearing effect of the finite
detector resolution. In the Nb > 10 regime the signal probability distribution
function (PDF) is thus defined by a Gaussian peak of width ΓZ′ = 1.2%MZ′

(i.e equal to detector resolution), and in the Nb ≤ 10 regime is modified
by a signal strength modifier µ. In the Poisson regime we employ the CLs
method to evaluate the expected upper limit, where the background PDF is
evaluated using a toy Monte-Carlo model.

To validate this method we generate the 95% CL limit for the LHC@13TeV
and 36fb−1 and compare it to the expected limit from CMS[80]. Figure 7.1
shows the limits we already have established from the current CMS dilepton
resonance search, along with solid and dashed lines representing the expected
limit from CMS and from our maximal binned likelihood analysis. The CMS
expected limit closely follows that of the observed limit, with some devia-
tion from statistical fluctuations at the experimental level. Our predicted
limit is within % level agreement with the CMS limit setting procedure, so
we conjecture that this method should reliably reproduce the CMS expected
limits at higher energy and luminosity. We must make a few assumptions,
such as that the detector resolution will remain around 1.2%, and that accep-
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tance/efficiency functions (A×ε) will not change significantly at the HLLHC.

One should also note that the signal-to-background ratio S/B is not expected
to change with the increase of the collider energy as the signal will scale the
same way as the irreducible dilepton background for increasing

√
s, hence

the limit on dileptons from the systematics will remain as presented in Fig-
ure 6.3. The scope of this analysis is to give an estimate of the potential of
high energy/luminosity pp colliders to probe the NMWT parameter space,
and to use these predictions as a guideline for theorists and experimental-
ists regarding how best to approach finding/excluding Walking Technicolor
models.
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Figure 7.1: Observed 95% CL exclusion on the MA, g̃ parameter space
from the CMS dilepton resonance searches at the LHC@13TeV with 36fb−1.
Solid and dashed lines along the borders of the shaded area represent the
expected CMS limit and our predicted limit using binned likelihood method
respectively.
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7.3 Prospects for Probing NMWT at HLLHC

With the set up and validation of our limit setting procedure described in
section 7.2, we can now explore the potential for the LHC to probe the
NMWT parameter space up to the expected end point of the High Luminosity
LHC (HLLHC). To effectively explore how the increasing luminosity and
centre-of-mass energy will impact the NMWT parameter space, we simulated
projected limits at

√
s = 13TeV with 100fb−1,

√
s = 14TeV with 300fb−1,

and the end-point of the HLLHC at
√
s = 14TeV with 3ab−1. To generate

14TeV dataset limits, the limit setting procedure (section 7.2) is repeated,
but to convert the 13TeV background distribution into a 14TeV distribution
the background probability density function is multiplied by an NNPDF scale
factor.
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Figure 7.2: Exclusion of the MA-g̃ parameter space from Z ′ and Z ′′ DY pro-
cesses at

√
s = 13TeV and luminosity of 36fb−1(a); Predicted exclusion re-

gions for the NMWT parameter space at (b)
√
s = 13TeV and L = 100fb−1,

(c)
√
s = 14TeV and L = 300fb−1, (d)

√
s = 14TeV and L = 3000fb−1.
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The projected limit interpreted in the NMWT (MA, g̃) parameter space at
S = 0.1 is displayed in Figure 7.2, where we have also restated the current
LHC@13TeV limits presented in section 5.2 for comparison. We also provide
results for the projected 14TeV, 3ab−1 limits on (MA, g̃) with varying S =
−0.1, 0.0, 0.2, 0.3 in Figure C.16 of Appendix C. Already at 100fb−1 (Figure
7.2b) one can see that both the Z ′ and Z ′′ dilepton exclusions probe visibly
further than the 36fb−1 limits. At low g̃ the Z ′′ probes significantly further
in MA, at g̃ = 1 the limit improves in MA from 3.5TeV to around 3.8TeV.

Increasing the centre-of-mass energy to
√
s = 14TeV and luminosity to

300fb−1 (Figure 7.2c), the bounds from dileptons at experiment and the
theoretical upper limit on MA of a < 0 begin to meet. In fact, for the whole
region of g̃ < 2 the NMWT model is excluded for all MA, with the strongest
exclusions coming from the Z ′′ in this regime. This alone is a powerful
conclusion for the potential of the LHC to explore/exclude NMWT models,
however looking to the end point of the HLLHC with an order of magnitude
increase in the integrated luminosity (Figure 7.2d) significantly increases the
exclusions on (MA, g̃). The projected dilepton limit not only completely ex-
cludes NMWT models with g̃ < 3, but also excludes up to g̃ = 9 at low
MA.

It is notable that even at the final energy and luminosity of the HLLHC, the
dilepton limit does not saturate the limit from the systematic uncertainty on
S/B < 1% in this channel. This indicates that the potential of DY dileptons
to probe NMWT can be even more powerful at future high energy colliders,
which we discuss in the following section. The dilepton channel is powerful
for excluding models outside of the high MA, high g̃ regime, which motivates
the projection of limits from complementary channels akin to the V V/V h
exclusions presented in section 5.3. This is the subject of our upcoming work
[6].

7.4 Projected Limits for 27TeV and 100TeV

Colliders

The projected limits at the end-point of the HLLHC show a promising im-
provement on the LHC@13TeV and 36fb−1 observed limits, however they are
still insufficient to probe the important regime of high MA and intermediate-
high g̃. In fact, the LHC@14TeV and 3ab−1 only just begins to probe the
space occupied by the most extreme top-down holographic models. For a
total exclusion of the Walking Technicolor paradigm one would need to ac-
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cess and exclude the space of MA from 3.5-5TeV, motivating the need for
much higher collider energies. Furthermore, the most realistic top-down
holographic model (the SU(3) model with a single techni-quark doublet,
i.e NMWT) lives in the space of g̃ � 1, which given the g̃−1 suppression
of the difermion coupling is unlikely to be accessible by DY dileptons, and
perhaps even inaccessible by any DY produced signature. This necessitates
the projection of limits from both DY V V/V h signatures (as in section 5.3)
and VBF produced signatures.

To demonstrate and explore the limitations of DY dilepton searches, we have
repeated the analysis described in section 7.2 for future colliders with

√
s =

27, 100TeV and integrated luminosity 15, 3ab−1 respectively. The resulting
predicted exclusions in the NMWT parameter space are presented in Figure
7.3, along with the S/B < 1% systematic limit and the holographic spectra
as calculated in chapter 6. The increase in energy and luminosity gives a
significant improvement in sensitivity in the MA ∼ 4TeV, g̃ ' 4 regime as
compared to the HLLHC (Figure 7.2), such that between the Z ′′ dilepton
exclusions and the theoretical limit of a ≥ 0 all models up to this mass-
coupling regime are excluded.

The 27TeV, 15ab−1 (Figure 7.3(top)) and 100TeV, 3ab−1 (Figure 7.3(bot-
tom)) predicted exclusions are qualitatively very similar, with the main im-
provement by the 100TeV collider being the increased sensitivity to interme-
diate values of g̃ in the high MA region. Dilepton searches at both of these
collider energies/luminosities are able to probe top-down WTC models with
a high number of techni-quark doublets, most notably for the gauge group
SU(3) which is inaccessible at the HLLHC. Unfortunately, the limits are still
far from excluding the single doublet models at g̃ ∼ 8.

In the low-intermediate MA regime, the dilepton limit at these higher en-
ergy/luminosity colliders begins to saturate the limit from the systematics,
with complementarity of the Z ′ and Z ′′ signatures further highlighted. The
dilepton limits for both 27TeV and 100TeV colliders are projected to be able
to entirely exclude the regime of MA < 1TeV which is useful in itself, how-
ever the lack of sensitivity and limit from systematics outside of this regime
necessitates complementary experimental signatures.

One should note that VBF production of Z ′/Z ′′ followed by V V or V h decay
are especially promising for the intermediate-high g̃ regime as the coupling
strengths for Z ′(′′)V V /Z ′(′′)V h are not suppressed and can in fact grow with
g̃ (see section 4.2). Already the LHC@13TeV 36fb−1 limits from DY pro-
duced V V/V h searches (section 5.3) exclude more of the high g̃ regime than
the dilepton counterparts, so the extension to VBF production may enhance
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the sensitivity in the vitally important high g̃, high MA regime. This moti-
vates exploration of these additional V V/V H signatures and VBF production
channel, which could potentially cover the whole WTC parameter space[6].
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Figure 7.3: Projected 95% CL exclusion on the MA, g̃ parameter space for
27TeV(15ab−1) (top) and 100 TeV (3ab−1)(bottom) pp colliders from dilepton
DY resonance searches. Notation for the holography predictions are the same
as in Figure 6.3.
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Chapter 8

Conclusions

The Walking Technicolor paradigm is a well motivated and phenomenologi-
cally rich BSM model, providing a dynamical origin for mass and producing
a light composite Higgs consistent with experiment from a natural scale ΛTC .
In this thesis we have detailed the WTC model with the most minimal par-
ticle content, Next-to-Minimal Walking Technicolor (NMWT). We have con-
nected the effective Lagrangian to the Weinberg Sum Rules, and discussed
the theoretical upper limit on the axial mass MA from the requirement of
‘walking’ dynamics in the 2nd WSR. We have performed and presented the
first detailed analytic diagonalisation of the gauge mixing matrices, providing
explicit analytic forms for the masses and couplings for the NMWT gauge
particles and interactions. Constraints on the model from electroweak pre-
cision data (EWPD) are discussed through the lens of the Peskin-Takeuchi
S parameter, which is sensitive to additional gauge particles in 1-loop cor-
rections to EW gauge interactions. EWPD restricts to a small S, as such
we study a range of S = −0.1, 0, 0.1, 0.2, 0.3, the largest of which is already
strongly disfavoured however is included for comparison to previous studies
for which S = 0.3 is the benchmark value.

We then detail a phenomenological study of NMWT, specifically in the con-
text of new neutral resonances arising from the Technicolor dynamics. The
presence of two gauge mesons, Z ′ and Z ′′, provide potential for comple-
mentary searches at colliders. These resonances exhibit a complex inter-
dependence in terms of vector/axial vector composition, consequences of this
are presented in detail. Analytic and numerical analyses of Z ′/Z ′′ properties
are explored, motivating the complementary study of both resonances and
a number of decay channels at colliders. Previous studies on NMWT have
utilised a 3D version of the model, presenting properties in the (MA, g̃) plane
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with fixed S = 0.3. We extend this analysis for the above S values, as well
as exploring the full 5D parameter space with non-zero s and ω parameters.

The
√
s = 13TeV, 36fb−1 LHC data is interpreted for an up-to-date view of

the experimental limits on the viable NMWT parameter space. We establish
new limits on the NMWT (MA, g̃) parameter space from Drell-Yan produced
Z ′ and Z ′′ in the dilepton final state. For this channel we provide the limits for
fixed S in the usual (MA, g̃) parameter space, as well as establishing the first
limits from a full (MA, g̃, S, s) parameter scan from which the most optimistic
and most conservative limits are established. The dilepton limit even in the
most conservative case extends the limit for low g̃ up to MA ' 3.1TeV,
which is more than 1TeV higher than the previously established dilepton
limit. In addition to the dilepton channel we have also established the first
limits on NMWT from V V/V h searches at the LHC, and demonstrate the
new potential of these channels for both neutral and charged resonances to
probe the intermediate-high g̃ regime.

We have also worked with Holography physicists to explore the Walking
Technicolor paradigm from a top-down perspective. For WTC models with
a range of Nc, Nf , the running behaviour of αTC was modified in the IR to
produce a sufficiently light Higgs, with the hope that one of these theories
captures the true viable theory of WTC. The resulting holographic spectra
are projected into the NMWT parameter space to explore the likely position
of WTC models in theory space. The combination of top-down holography
predictions with the bottom-up phenomenological model provides insight on
the potential of the LHC to probe both NMWT and the WTC paradigm as
a whole.

The whole idea of this thesis is to give insight on the viability of Walking
Technicolor in the era of TeV scale collider experiments, and ultimately de-
termine the future of Walking Technicolor. To this end, we develop a method
for simulating expected 95% CL limits on Z ′/Z ′′ in the DY dilepton channel,
modelled after the CMS limit setting procedure. Validating our procedure to
within a few % against CMS for

√
s = 13TeV, 36fb−1, we then simulate ex-

perimental limits for increased luminosity and energy up to the 14TeV, 3ab−1

end point of the High Luminosity LHC (HLLHC). We demonstrate that the
LHC DY dilepton searches will have the power to completely exclude the
NMWT model for low g̃, a promising result for eventual discovery/total ex-
clusion of Walking Technicolor.

We also explore the potential of future high-energy colliders to probe the
NMWT parameter space for the DY dilepton channel. For both a 27TeV,
15ab−1 collider and a 100TeV, 3ab−1 collider, the DY dileptons are projected
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to completely exclude NMWT for all g̃ < 4. The projected limits also begin
to cover some of the parameter space for the top-down Holographic models,
however this also acts to highlight the limitations of DY dileptons. The most
realistic (i.e most minimal Nc, Nf ) top-down models are still far out of reach
of the HLLHC and future high-energy colliders if one considers only the DY
dilepton channel. To truly determine the future of Walking Technicolor, we
must explore all complementary production and decay channels.

At the time of writing I am working with collaborators on developing a pro-
cedure for simulating the LHC limit setting procedure for the complementary
V V/V h channels. Procedures are being developed for both Drell-Yan and
Vector Boson Fusion (VBF) production of neutral and charged V ′/V ′′ reso-
nances. Through this work we hope to access areas of the (MA, g̃) parameter
space complementary to the DY dileptons, as well as hopefully probing the
regime at which the most minimal top-down models lie.

We have significantly improved upon previous exploration of and established
potential of complementary searches to probe the NMWT parameter space,
and the Walking Technicolor paradigm as a whole. It is my view from this
work that with the additional production and decay channels, future collider
experiments will conclusively exclude or discover Walking Technicolor.
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Appendix A

Dependent Parameters of
NMWT

Throughout the majority of this thesis we have set constraints on NMWT
in the 4-D (often 3-D where the Higgs plays no role and s = 0) parameter
space. However, if we allow deviations from the 1st WSR then we can explore
a general treatment of all dependent parameters in terms of the 5 independent
parameters MA, g̃, S, s, ω, where the simple replacement of ω = 0 will bring
these formulae into the 4-D framework that is commonly applied throughout
this thesis. To clearly denote the dependent and independent parameters,
here I will express all dependent parameters as functions, e.g

χ(g̃, S) =

√
1− g̃2S

8π
. (A.1)

We begin with the general equations 2.19 to 2.26 (inclusive). The first note
is that the ω factor now appears in the coefficient of F 2

V in the 1st WSR, so
when constructing the functional form of MV there is an additional factor of
(1 + 2ω) multiplying M2

V . Accounting for this factor and substituting for χ
(equation 2.29) we have

M2
V (MA, g̃, S, ω) =

1

1 + 2ω

[
M2

A

(
1− g̃2S

8π

)
+
g̃2

2
F 2
π

]
, (A.2)

which of course recovers the original equation when the exact 1st WSR is
strictly enforced. From this we can conclude a non-zero ω parameter acts to
reduce MV , in turn increasing the splitting of vector and axial masses. As
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the S parameter is tightly constrained by EWPD, this ω parameter cannot
be too large in a viable theory. Varying ω above the per-mill level alters the
W boson mass and sin θW from their observed SM values, so the assumption
of ω = 0 throughout the main body of this thesis is valid. The remaining
analysis is included for completeness.

An important note is that the vev associated with the EWSB, v, is not itself
an independent and fixed parameter in NMWT but a function of independent
parameters. This function can be derived simultaneously with the r2 and r3

functions. Taking the difference between the axial and vector mass-squared
equations in 2.22, we can find an expression for r2v

2,

r2v
2 =

2

g̃2
(M2

A −M2
V (MA, g̃, S, ω)), (A.3)

where the function M2
V (MA, g̃, S, ω) will be kept temporarily in this form for

brevity.

An equation for r3v
2 is simply a rearrangement of equation 2.23,

r3v
2 =

4

g̃2
M2

A(1− χ(g̃, S)). (A.4)

Rearranging the definition of ω a linear equation in terms of coefficients of
v2 can be written as

v2 − r3v
2 + r2v

2 =
4

g̃2
ωM2

V (MA, g̃, S, ω), (A.5)

which combined with the previous equations A.3 and A.4 then gives the vev
function

v2(MA, g̃, S, ω) =
2

g̃2
[M2

V (MA, g̃, S, ω)(1 + 2ω) +M2
A(1− 2χ(g̃, S)). (A.6)

This can now be directly substituted into equations A.3 and A.4 to find the
functional forms of r2 and r3,
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r2(MA, g̃, S, ω) =
(M2

A −M2
V (MA, g̃, S, ω))

M2
V (MA, g̃, S, ω)(1 + 2ω) +M2

A(1− 2χ(g̃, S))
(A.7)

r3(MA, g̃, S, ω) =
2M2

A(1− χ(g̃, S))

M2
V (MA, g̃, S, ω)(1 + 2ω) +M2

A(1− 2χ(g̃, S))
. (A.8)

The Lagrangian mass parameter m is found from the addition of the axial
and vector mass-squared equations in 2.22;

2m2 +
g̃2v2s

2
= M2

V +M2
A, (A.9)

so the functional form of m is

m(MA, g̃, S, s, ω) =
1√
2

√
M2

V (MA, g̃, S, ω) +M2
A −

g̃2v2(MA, g̃, S, ω)s

2
.

(A.10)

Note that m(MA, g̃, S, ω, s) is the only Lagrangian parameter that has an
explicit dependence on the s parameter, this can be understood by identifying
m as the mass term for the AL/R fields in Lboson 2.5. The s parameter controls
the coupling strength of the composite Higgs to the TC sector, so it is only
natural that this ‘mass’ parameter m should depend on the strength of these
interactions as to display the hallmarks of EWSB in the NMWT framework.

For completeness, a set of fully parameterised functions of the above is pre-
sented here.

M2
V (MA, g̃, S, ω) =

1

(1 + 2ω)

[
g̃2F 2

π

2
+M2

A

(
1− g̃2S

8π

)]
, (A.11)

v(MA, g̃, S, ω) =

√√√√F 2
π +

2M2
A

g̃2

(
1−

√
1− g̃2S

8π

)2

, (A.12)

r2(MA, g̃, S, ω) =
M2

A(2ω + g̃2S
8π

)− g̃2F 2
π

2

(1 + 2ω)( g̃
2F 2
π

2
+M2

A(1−
√

1− g̃2S
8π

)2)
, (A.13)
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r3(MA, g̃, S, ω) =
2M2

A(1−
√

1− g̃2S
8π

)

g̃2F 2
π

2
+M2

A(1−
√

1− g̃2S
8π

)2

, (A.14)

m(MA, g̃, S, s, ω) =
1√

2 + 2ω

√√√√M2
A

(
1 +

(
1− g̃2S

8π

)
(1− s− 2sω)

)
− g̃2F 2

πω.

(A.15)

Finally, let us express the a parameter of the 2nd WSR as a function of the
NMWT parameter space,

a(MA, g̃, S, ω) =
3

2π2(1 + 2ω)2

[
g̃2

4
+
M2

A

F 2
π

(
1− g̃

2S

8π

)
+

4M4
A

F 4
π g̃

2
(ω+ω2)

]
. (A.16)

A.0.1 Independent formulation of mass matrices

The mass matrices described in 3.1 can also be written in terms of indepen-
dent parameters of the fully 5-dimensional description of NMWT,

M2
N =



g21M
2
A(1+ω)

g̃2
(1− g̃2S

8π +F 2
π g̃

2

2M2
A

) −g1g2M2
Aω

g̃2
(1− g̃2S

8π +F 2
π g̃

2

2M2
A

)
g1M2

A√
2g̃

√
1− g̃2S

8π −g1M2
A√

2g̃
(1− g̃2S

8π +F 2
π g̃

2

2M2
A

)

−g1g2M2
Aω

g̃2
(1− g̃2S

8π +F 2
π g̃

2

2M2
A

)
g22M

2
A(1+ω)

g̃2
(1− g̃2S

8π +F 2
π g̃

2

2M2
A

) −g2M2
A√

2g̃

√
1− g̃2S

8π −g2M2
A√

2g̃
(1− g̃2S

8π +F 2
π g̃

2

2M2
A

)

g1M2
A√

2g̃

√
1− g̃2S

8π −g2M2
A√

2g̃

√
1− g̃2S

8π M2
A 0

−g1M2
A√

2g̃
(1− g̃2S

8π +F 2
π g̃

2

2M2
A

) −g2M2
A√

2g̃
(1− g̃2S

8π +F 2
π g̃

2

2M2
A

) 0 M2
A(1− g̃2S

8π + F 2
π g̃

2

2M2
A

)


.

(A.17)
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Appendix B

Analytic Diagonalisation in the
MA > MV Regime

The details of the analytic diagonalisation of M2
N and M2

C are laid out
in section 3.2, and only encapsulates the parameter space below the mass
inversion (MA < Minv). Outside of this regime, the Z ′ switches from being
the mostly-axial to the mostly-vector resonance (and the converse for Z ′′).
This corresponds to the gauge mixing matrix switching mass ordering of the
technicolor gauge fields, switching columns/rows 3 and 4 to give the following
mixing matrix;

M2
N =


g21
g̃2
M2

V (1 + ω) −g1g2
g̃2
M2

V ω − g1√
2g̃
M2

V
g1√
2g̃
M2

Aχ

−g1g2
g̃2
M2

V ω
g22
g̃2
M2

V (1 + ω) − g2√
2g̃
M2

V − g2√
2g̃
M2

Aχ
g1√
2g̃
M2

Aχ − g2√
2g̃
M2

Aχ M2
V 0

− g1√
2g̃
M2

V − g2√
2g̃
M2

V 0 M2
A

 , (B.1)

where M2
C the lower-right 3x3 submatrix of M2

N . Following the procedure
of [4], we perturbatively diagonalise M2

N in orders of g̃−1 up to 2nd order.
Here however expand without inserting the fully independent form for MV ,
but note that M2

V scales as g̃2. We then find that the diagonalising matrices
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for M2
N and M2

C are

N =



g2√
g21+g22

g1√
g21+g22

√
2g1g2

g̃
√
g21+g22

0

g1√
g21+g22

− g2√
g21+g22

(g21−g22√
g21+g22

−
√
g21+g22χ√

2g̃

− g1√
2g̃

− g2√
2g̃

1
2(g21−g22)M2

V χ

g̃2(M2
A−4M2

V )

g1χ√
2g̃

− g2χ√
2g̃

2(g22−g21)M2
Aχ

g̃2(4M2
A−M

2
V )

1

 , (B.2)

C =


1 g2√

2g̃

g2χ√
2g̃

g2√
2g̃

3g22M
2
Aχ

2g̃2(3M2
A−M

2
V )

1

− g2√
2g̃

1 − 3g22M
2
V χ

2g̃2(M2
A−3M2

V )

 . (B.3)
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Appendix C

Phenomenology of Z ′/Z ′′ with
S 6= 0.1

Here we provide the additional figures and information relevant to the phe-
nomenological study presented in chapter 4. Throughout this chapter the
results were presented at benchmark values of S = 0.1, s = 0, and ω = 0.
The effect of varying S is discussed here. As s is the Lagrangian parameter
that quantifies Higgs interactions with the WTC gauge bosons, we continue
to assume s = 0 throughout.

Mass Spectra

Figures C.1 and C.2 present MZ′ and ∆M/MZ′ respectively for different
values of S. The main feature to note is the mass inversion Minv defined
by Eq.(4.3) such that M2

inv ∝ 1/S. The inversion point with ∆M ' 0 can
be seen in Fig C.2 where the Z ′ is axial-vector below the inversion point
and vector above it. One can observe the inversion only for large values of
S = 0.2 and 0.3 for the MA around 2 and 1.6 TeV respectively according to
the Eq.(4.3).
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Figure C.1: MZ′(GeV) as a function of MA and g̃ parameters for the fixed
values of S = −0.1 (a), S = 0.0 (b), S = 0.2 (c), S = 0.3 (d) respectively,
and s = 0 throughout
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Figure C.2: ∆M/MZ′ as a function of MA and g̃ parameters for the fixed
values of S = −0.1 (a), S = 0.0 (b), S = 0.2 (c), S = 0.3 (d) respectively,
and s = 0 throughout

119



Couplings

In Figures C.3-C.4 and Figures C.5-C.6 we present the L-R components of
the dilepton couplings for the Z ′ and Z ′′, respectively, for different values of
S. These are analogous to the couplings presented in section 4.2.1, where
the analytic form for the coupling components are also presented. The S
dependence of these couplings is implicit in χ, g1, and g2, and the effect on
the parameter space dependence for varying S is presented here.
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Figure C.3: Left handed component of the coupling of Z ′ to charged lepton
pairs as a ratio to its SM equivalent, | gZ′l+l−/gZl+l− |, as a function of MA

and g̃ parameters for the fixed values of S = −0.1 (a), S = 0.0 (b), S = 0.2
(c), S = 0.3 (d) respectively
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Figure C.4: Right handed component of the coupling of Z ′ to charged lepton
pairs as a ratio to its SM equivalent, | gZ′l+l−/gZl+l− |, as a function of MA

and g̃ parameters for the fixed values of S = −0.1 (a), S = 0.0 (b), S = 0.2
(c), S = 0.3 (d) respectively
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Figure C.5: Left handed component of the coupling of Z ′′ to charged lepton
pairs as a ratio to its SM equivalent, | gZ′′l+l−/gZl+l− |, as a function of MA

and g̃ parameters for the fixed values of S = −0.1 (a), S = 0.0 (b), S = 0.2
(c), S = 0.3 (d) respectively
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Figure C.6: Right handed component of the coupling of Z ′′ to charged
lepton pairs as a ratio to its SM equivalent, | gZ′′l+l−/gZl+l− |, as a function
of MA and g̃ parameters for the fixed values of S = −0.1 (a), S = 0.0 (b),
S = 0.2 (c), S = 0.3 (d) respectively
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Widths and branching ratios

The width to mass ratio for Z ′ and Z ′′for different S are shown in Figures
C.7 and C.8. The widths largely show similar behaviour to those at the
benchmark value of S = 0.1 (Figure 4.4), with the exception of S = 0. At
S = 0, the Z ′ width to mass ratio is very small (less than 1% level), so the
Z ′ resonance is always narrow at this S. The Z ′′ also has a narrower width
for much of the parameter space at S = 0, however the region of ΓZ′′ ≥MZ′′

nevertheless appears in the region with low MA and high g̃.
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Figure C.7: ΓZ′/MZ′ as a function of MA and g̃ parameters for the fixed
values of S = −0.1 (a), S = 0.0 (b), S = 0.2 (c), S = 0.3 (d) respectively

The branching ratio spectra for the Z ′ with g̃ = 3, 8 is presented in Figures
C.9,C.10), and for the Z ′′ with g̃ = 3, 8 — in Figures C.11, C.12 for various
values S. The features of the branching ratio spectra such as the dips in
the V V/V h channels are discussed in section 4.3, and again we note that
the Z ′′ → W ′+W ′− channel is opened at low MA, high g̃ at all values of
S. Also note that for the Z ′, at S = 0 where the resonance is very narrow,
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Figure C.8: ΓZ′′/MZ′′ as a function of MA and g̃ parameters for the fixed
values of S = −0.1 (a), S = 0.0 (b), S = 0.2 (c), S = 0.3 (d) respectively

the dilepton and diquark branching ratios are boosted and are the dominant
decay channels across the whole (MA, g̃) parameter space.

Again, the mass inversion point can also be identified as the point at which
the W+W− and Zh branching ratios have a crossing point, hence the lack of
crossing point at S = −0.1, 0.
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Figure C.9: Br(Z ′) for all decay channels as a function of MA at fixed value
of g̃ = 3 for S = −0.1 (a), S = 0.0 (b), S = 0.2 (c), S = 0.3 (d) respectively
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Figure C.10: Br(Z ′) for all decay channels as a function of MA at fixed
value of g̃ = 8 for S = −0.1 (a), S = 0.0 (b), S = 0.2 (c), S = 0.3 (d)
respectively
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Figure C.11: Br(Z ′′) for all decay channels as a function of MA at fixed
value of g̃ = 3 for S = −0.1 (a), S = 0.0 (b), S = 0.2 (c), S = 0.3 (d)
respectively
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Figure C.12: Br(Z ′′) for all decay channels as a function of MA at fixed
value of g̃ = 8 for S = −0.1 (a), S = 0.0 (b), S = 0.2 (c), S = 0.3 (d)
respectively
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Cross sections

The DY production cross sections at LO for pp → Z ′ → e+e− and pp →
Z ′′ → e+e− processes are presented in Fig. C.13 and Fig. C.14 respectively
as contour levels of the cross section in (MA, g̃) space for different S.
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Figure C.13: DY production cross sections at LO for pp → Z ′ → e+e− for
S = −0.1 (a), S = 0.0 (b), S = 0.2 (c), S = 0.3 (d) respectively
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Figure C.14: DY production cross sections at LO for pp→ Z ′′ → e+e− for
S = −0.1 (a), S = 0.0 (b), S = 0.2 (c), S = 0.3 (d) respectively
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C.0.1 Effect of S on Drell-Yan NMWT Exclusions

As noted in section 5.2, the S parameter could be of great importance in de-
termining the excluded region of WTC parameter space. As such, we present
a set of figures for each discrete S in which we show the LHC@13TeV, 36fb−1

Drell-Yan dilepton limits on the WTC parameter space for fixed S. This is for
direct comparison to the exclusions quoted and discussed in section 5.2. Fig-
ure C.15(a,b,c,d) show the excluded regions of MA, g̃ for S = −0.1, 0, 0.2, 0.3
respectively.

The projected limits depend strongly on the S parameter, and for large S,
the limit from dilepton searches at the LHC covers less of the parameter
space, while the theoretical limit requiring a > 0 excludes a large portion of
the MA parameter space from above.
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Figure C.15: Exclusion of the MA,g̃ parameter space from Z ′ and Z ′′ DY
processes at

√
s = 13TeV and luminosity of 36fb−1 for S = −0.1 (a), S = 0.0

(b), S = 0.2 (c), S = 0.3 (d) respectively
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Figure C.16: Exclusion of the MA,g̃ parameter space from Z ′ and Z ′′ DY
processes at

√
s = 14TeV and luminosity of 3000fb−1 for S = −0.1 (a),

S = 0.0 (b), S = 0.2 (c), S = 0.3 (d) respectively
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