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Active control of the sound power scattered by a sphere is theoretically investigated us-
ing spherical harmonic expansions of the primary and secondary fields. The sphere has a
surface impedance that is uniform, real and locally-reacting, while being subjected to an
incident monochromatic plane wave. The scattered power is controlled with a number of
monopole sources, initially on the surface of the sphere, and is expressed as the sum of
squared amplitudes of the spherical harmonics, due to both the scattered and control fields.
This quadratic function is minimized to identify the optimal strengths for different num-
bers of control sources. At low frequencies, the scattered field is dominated by the first few
spherical harmonic terms, and its power can be significantly reduced with a single controlling
monopole, for a soft or absorbent sphere, and with two monopoles for a hard sphere. The
number of secondary sources required to significantly attenuate the scattered field at higher
frequencies is found to be proportional to the square of the frequency and the attenuation
also falls off rapidly if the secondary sources are moved away from the surface of the sphere,
no matter what its surface impedance.
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I. INTRODUCTION

When an incident travelling disturbance impinges on
an obstacle, it can create reflection, absorption, refrac-
tion and diffraction. The resulting artefacts generated
in the medium exterior to the obstacle are referred to
as scattering. The understanding and control of acous-
tic scattering is important in a number of practical ap-
plications. One example is binaural sound reproduction,
where the physical presence of the head plays a major role
on the perceived sound1,2. Another example is acoustic
cloaking of objects3–6, which is important in scenarios
involving detection.

Sound scattering can be controlled through both pas-
sive and active methods. As with other acoustic and vi-
bration control problems, using traditional passive ab-
sorbing elements imposes limitations on performance,
particularly at low frequencies. As a result, alternatives
such as active control have been investigated. The earli-
est published work on controlling scattered sound is that
of Malyuzhinets, Jessel and Mangiante from the 1960s
and 1970s, as summarised in3. This theoretical result
relies on surrounding the scatterer with four Huygens
surfaces that are themselves acoustically transparent. A
continuous array of pressure and velocity sensors placed
on two inner surfaces extract the scattered field from the
total field based on the Helmholtz-Huygens integral. A
continuous array of monopole and dipole sources placed
on two outer surfaces then radiate a counter-phase ver-
sion of the scattered field in the exterior region, such
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that perfect suppression is achieved3. However, the tac-
tic is limited in practice by the need for acoustic trans-
parency of the four surfaces and by the need to use a
finite number of transducers4. The ideal suppression ap-
proach described above was used in the work of Vasquez
et al5 and Norris et al6 to develop theoretical results
and numerical simulations for active acoustic cloaks of
2D obstacles. Their strategy relies on obtaining similar
cancellation of the scattered field to that of the continu-
ous layers of monopoles and dipoles, with a small number
of surrounding multipole sources.

A different active control method from that of Ma-
lyuzhinets, Jessel and Mangiante is to attenuate the scat-
tered field by using a finite number of sources to mini-
mize the scattered power. This is a better representation
of what can be achieved in practice and has been tra-
ditionally realised by minimizing the sum of the mean
square acoustic pressures, measured at sensor locations
around the obstacle. Such an approach is covered in
the textbooks3 and7, and it is the basis of a number of
subsequent publications:4,8–11. Of particular note to the
present paper is the approach of Liu et al10, where a
spherical harmonic representation of the scattered field
for an acoustically hard obstacle was used in conjunc-
tion with the control strategy of minimizing the sum of
squared pressures.

Spherical harmonics are orthogonal functions defined
on a spherical surface and appear as components of the
solutions to the Helmholtz equation when using spheri-
cal polar coordinates. The use of spherical harmonic se-
ries expansions has gained particular attention in recent
decades as a result of developments in 3D surround sound
and audio reproduction applications, such as12. A spher-

J. Acoust. Soc. Am. / 4 March 2020 Active Control of Scattered Sound Power 1

http://dx.doi.org(DOI number)
mailto:s.j.elliott@soton.ac.uk


ical shape is convenient because of the inherent theoreti-
cal and practical advantages resulting from its symmetry
and relatively smooth curvature. Furthermore, orthogo-
nality is a desirable property since it allows the analysis
and manipulation of a field to be carried out using in-
dividual, uncoupled components. This is useful for the
purpose of active control because it creates the possibility
of cancelling one or more unwanted components without
unduly affecting the others, as long as the secondary field
can be designed to match that unwanted set of compo-
nents.

This paper considers the active control of sound scat-
tered from objects whose acoustic behaviour is defined
by a locally reacting impedance on their surface, subject
to an incident tonal plane wave. In particular we will
consider a spherical harmonic formulation for the active
control of the sound power scattered by a sphere with
a real, uniform surface impedance. The minimisation
problem is formulated in terms of the sum of the squared
amplitudes of a finite orthogonal series for the scattered
power, which are the spherical harmonic components in
this case. This formulation allows physical insight into
the mechanisms of active control of the acoustic scatter-
ing from a 3D body, in terms of performance limits and
secondary source positioning. Apart from the formula-
tion of active control in terms of an orthogonal series,
the main contributions of this paper are the insight into
the form of scattering behaviour with different surface
impedances and the analytic results for the attenuation
achieved at low frequencies with one or two secondary
sources. In addition a simple result is derived for the
number of sources required for effective active control at
higher frequencies, whether the sources are on or away
from the surface of the sphere. A preliminary version of
this work was presented in13.

The formulation of the scattering problem for a lo-
cally reacting sphere is first reviewed in Section II. Sec-
tion III discusses the spherical harmonic decomposition
of the sound field generated by secondary monopole
sources on the surface of such a sphere, and also the
limiting behaviour in the low-frequency, Rayleigh limit,
where active control is most effective. Section IV then
describes the results of active control simulations using
various arrangements of surface monopoles as secondary
sources and discusses the required number of secondary
sources to achieve a given level of active control. Finally,
Section V considers the performance when the secondary
sources are moved away from the surface of the scatterer
and Section VI provides some discussion and conclusions,
particularly the generalisation of the spherical harmonic
formulation using radiation modes for other shapes of
scatterer.

II. SPHERICAL HARMONIC FORMULATION OF SCAT-

TERING FROM A LOCALLY REACTING SPHERE

Rayleigh14,15 first described how the scattered sound
field from a rigid sphere could be obtained by satisfying
the boundary conditions on the surface of the sphere us-

ing a spherical harmonic decomposition of the incident
and scattered fields. The formulation has been extended,
for example by Godin16 and Mao17, for the case of scat-
tering from a locally reacting sphere when subject to an
incident field due to a monopole source a finite distance
away. If the monopole is far from the sphere, this ap-
proach can be used to calculate the scattered field due
to an incident plane wave, and if the monopole is on
the surface of the sphere, it can be used to calculate the
sound field generated by a surface secondary source. This
general theoretical formulation is briefly reviewed in ap-
pendix A, for completeness and also since we assume an
ejωt convention for the time variation of the harmonic
sound field in this paper, where ω is the angular fre-
quency, to be consistent with the active control and sig-
nal processing literature, rather than the e−iωt conven-
tion adopted by Godin16, Williams18, and much of the
cloaking literature, so that the details of the formula-
tion are slightly different. The frequency dependence of
the complex variables is suppressed for notational conve-
nience.

The complex scattered acoustic field, ps, at position
(r, θ, ϕ) due to a harmonic plane wave of complex am-
plitude pi, arriving from direction (θi, ϕi), incident on a
sphere of radius a can be written as

ps(r, θ, ϕ) =

∞∑
n=0

n∑
m=−n

asnmhn(kr)Y mn (θ, ϕ) (1)

where k is the wavenumber, ω/c, hn(kr), is the com-
plex spherical Hankel function of the second kind and
Y mn (θ, ϕ) is a complex spherical harmonic, whose shapes
in 3D space are illustrated in18 and19 for example, and
the complex amplitude of each term is equal to

asnm = −4πpij
nȲ mn (θi, ϕi)A

s
n(ka), (2)

in which the overbar denotes complex conjugation.
Asn(ka) is a non-dimensional function of ka given by

Asn(ka) =
jn(ka) + jζj′n(ka)

hn(ka) + jζh′n(ka)
, (3)

where ζ is the normalized surface impedance, which is
equal to z/(ρc) where z is the locally reacting impedance
of the sphere and ρ and c are the density and speed of
sound in the surrounding fluid, jn is a spherical Bessel
function and the dashes represent the spatial derivatives
of the functions with respect to ka. The acoustic power
scattered by the sphere is then18

Ws =
1

2ρck2

∞∑
n=0

n∑
m=−n

|asnm|2. (4)

So,

Ws =
2π|pi|2

ρck2

∞∑
n=0

(2n+ 1)|Asn(ka)|2, (5)

where the closure relationship for spherical harmonics,∑n
m=−n |Ȳ mn (θi, ϕi)|2 = (2n+1)

4π has been used to obtain
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equation (5). If the acoustic power associated with the
incident plane wave is defined as the product of the inci-
dent intensity and the cross-sectional area of the sphere,

Wi =
πa2

2ρc
|pi|2, (6)

then the normalized scattered power can be written as

Πs =
Ws

Wi
=

1

π(ka)2|pi|2
∞∑
n=0

n∑
m=−n

|asnm|2, (7)

so,

Πs =
4

(ka)2

∞∑
n=0

(2n+ 1)|Asn(ka)|2. (8)

The normalized scattered power is equal to the scattering
cross section, as used for example in20,21, divided by πa2.
It should be noted that although the scattered power, as
defined equation (8), is a useful measure of the space-
averaged mean square pressure that is scattered into the
far field, it does not represent the actual power radiated
by the sphere, which depends on the interaction between
the incident and scattered fields.

Figure 1 shows the variation in the normalized scat-
tered power, Πs, with normalized frequency, ka, calcu-
lated using this formulation for three different values of
locally reacting surface impedance. These were com-
puted using a finite summation in equation (8), up to
n = 100, which was found to accurately represent the
scattered power up to ka = 100, since doubling the num-
ber of terms resulted in differences of less than 0.06 dB in
the scattered power at any frequency. When the surface
impedance is the same as the characteristic impedance
of the fluid surrounding the sphere, so that ζ = 1 which
is described as the “ρc” case, the normalized scattered
power initially increases in proportion to (ka)2 and has a
limiting value of unity at high frequency. This is because
a sound power equal to the incident sound power is ab-
sorbed by the sphere, but the sphere casts a shadow at
higher frequencies. If the normalized surface impedance
of the sphere is 10−2, the variation in the scattered sound
power with ka cannot be distinguished from that of a
sphere whose surface impedance is zero over the fre-
quency range and on the resolution of Figure 1. This
finite surface impedance is used here as an example of
a soft sphere, however, since a monopole placed on its
surface will generate a finite external pressure field, un-
like when the surface impedance is zero, as described be-
low. In the case of the soft sphere, the scattered power is
four times the incident sound power, as defined by equa-
tion (6) for small ka20. The soft sphere scatters sound
strongly at low frequencies since, to realise the pressure-
release boundary condition at the surface, the incident
pressure, which is uniform over the surface of the sphere
at low frequencies, can be thought of as being balanced
by that due to a monopole source at the centre of the
sphere, of strength 4πapi/(jkρc). The power radiated by
such a monopole is πa2|pi|2/(ρc), so that when divided
by the incident sound power in equation (6), the normal-
ized scattered power is equal to 4. At high frequencies,

the scattered power is twice the incident power, since
not only is a shadow generated by the sphere, but the
incident sound field is reflected off the almost-pressure-
release boundary condition at the front of the sphere.
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FIG. 1. The normalized scattered sound power from spheres

with normalized surface impedances that are soft, ζ = 0.01,

ρc, ζ = 1, and hard, ζ = 100, as a function of normalized

frequency ka. (Color online)

When the normalized surface impedance is 100 times
the characteristic impedance of the surrounding fluid, the
results are indistinguishable from the case when the nor-
malized surface impedance is infinite, within the resolu-
tion used in Figure 2, and this is used here as a practical
example of a hard sphere. In this case, the scattering is
very small at low frequencies, with the normalized scat-
tered sound power being proportional to (ka)4, but at
high frequencies the scattered sound power is again twice
the incident sound power, since the sphere both generates
a shadow and reflects the incident wave off the almost-
zero-velocity surface.

Figure 2 shows the spatial distribution of the instan-
taneous total pressure field around these three spheres,
when subject to a unit amplitude plane wave from the
left, for three different values of ka. In this case, terms
up to n = 438 were required in the summations for the
incident and scattered pressures to ensure that the mean-
square error was always below 0.8%22. The hard sphere
barely affects the field at low frequencies, but at higher
frequencies there is clearly a reflection from the front of
the sphere and a shadow is produced behind the sphere.
This reflection and shadow at higher frequencies are also
seen in the case of the soft sphere, although in this case
the incident field is also significantly perturbed at low fre-
quencies. In the case of the ρc sphere, the incident field
is slightly perturbed at low frequencies, and at higher
frequencies it produces a shadow behind the sphere, but
does not generate a reflection of the incident wave from
the front of the sphere.

Further insight into the scattered field can be gained
by studying the individual behaviour of the spherical har-
monic components in its expansion. Figure 3 shows the
variation with ka of the modulus of the non-dimensional
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FIG. 2. The instantaneous distribution of the total pressure field, incident plus scattered, due to the interaction between a

sphere having a soft, ζ = 0.01, ρc, ζ = 1, or hard, ζ = 100, surface impedance subject to a plane wave of unit magnitude

incident from below and frequency corresponding to a value of ka of 0.5, 5 or 50. (Color online) (Animations available online)

function for the scattered wave, Asn(ka) in equation (3).
The contributions of the various spherical harmonics to
the overall scattered power in Figure 1 can be deduced
from these parameters, whose squared quantities can be
substituted into equation (8) to give the total normal-
ized scattered power. The low frequency limits of Asn for
the spherical harmonic components of the scattered fields
due to an incident plane wave, can be obtained from the
small-argument expansions of the spherical Bessel and
Hankel functions16, and are given, for n = 0, by

lim
ka�1

As0 =
(ka)2(1− jζka/3)

ζ + jka

[
1 +O(k2a2)

]
, (9)

and for n ≥ 1 by

lim
ka�1

Asn =[
2nn!

(2n)!

]2
(ka)2n+1

2n+ 1

ka+ jζn

ζ(n+ 1) + jka

[
1 +O(k2a2)

]
. (10)

It is clear from equation (9) that at low frequencies the
n = 0 component of the pressure scattered by a locally-
reacting sphere, which is proportional to As0, can be set
to zero if ζ = 3/jka. The overall acoustic impedance of
the sphere is thus equal to 1/jωC where C = 4

3πa
3/ρc2

i.e. the compliance of a sphere of air equal to the size of
the scattering object.

The low frequency limits of these coefficients for
n = 0, n = 1 and n = 2 are given in Table I for the
soft, i.e. ζ � ka, ρc, i.e. ζ = 1, and hard, i.e. ζ � ka,
spheres, where it is also assumed that ka � 3/ζ for the
hard sphere in the case of equation (9). By examining the
numerator of equation (10), it can be seen that the lower
limiting frequency below which the n-th spherical har-
monic of the sphere with a normalized surface impedance
of 1/100 no longer behaves like a perfectly soft sphere
corresponds to a value of ka equal to about (n+ 1)/100,
which is well outside the range plotted in Figure 3. Sim-
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FIG. 3. The variation of the magnitude of the non-

dimensional spherical harmonic amplitudes, As
n(ka) in equa-

tion (3), with ka for the scattered sound field due to a plane

incident wave of unit magnitude for the soft, ρc and hard

spheres. (Color online)

ilarly the frequency limit above which the sphere with
a normalized impedance of 100 no longer behaves like a
perfectly hard sphere is determined by the denominator
of this equation and corresponds to a value of ka of about
100n.

TABLE I. The low-frequency limits for the first three non-

dimensional spherical harmonic coupling coefficients of the

scattered sound field due to the incident plane wave, As
n(ka),

and those due to a single monopole secondary source on the

surface of the sphere, Ac
n(ka), for a locally reacting sphere

which is either soft, i.e. ζ � ka, ρc, i.e. ζ = 1, or hard, i.e.

ζ � ka.

ζ � ka ζ = 1 ζ � ka

n = 0 −j(ka) (ka)2 −j(ka)3/3

As
n(ka) n = 1 −j(ka)3/3 j(ka)3/6 j(ka)3/6

n = 2 −j(ka)5/45 2j(ka)5/135 2j(ka)5/135

n = 0 −jζ(ka) (ka)2 (ka)2

Ac
n(ka) n = 1 −jζ(ka)2 (ka)3/2 (ka)3/2

n = 2 −jζ(ka)3/3 (ka)4/9 (ka)4/9

III. SOUND FIELD DUE TO A MONOPOLE ON THE SUR-

FACE OF THE SPHERE

In this section, we assume that the secondary sources
used for active control are monopoles on the surface of
the sphere. The pressure due to such a source acting as a
control source, of strength qc at an angle of θc, ϕc, on the
surface of a locally reacting sphere having a normalized
surface impedance ζ can also be expressed in terms of
spherical harmonics, as

pc(r, θ, ϕ) = qc

∞∑
n=0

n∑
m=−n

Bnmhn(kr)Y mn (θ, ϕ) (11)

where
Bnm =

ρc

a2
Ȳ mn (θcϕc)A

c
n(ka), (12)

and

Acn(ka) =
ζ

hn(ka) + jζh′n(ka)
, (13)

where Acn is another dimensionless function of ka. It is
clear from equation (13) that the pressure generated by
a monopole placed on a perfectly soft sphere, with ζ = 0,
would be zero, which motivates the choice of ζ = 0.01 for
this study.

Figure 4 shows the variation of Acn(ka), in equation
(13), with ka. If the monopole is on the same or the oppo-
site side of the sphere to the incident wave, this placement
ensures that only the m = 0 term is non-zero, so that the
primary and secondary fields have matching contribut-
ing components. The variation of the Ac0 coefficients at
higher values of ka for the soft and the hard sphere are
relatively smooth when compared with the scattered co-
efficients for the incident field in Figure 3. For values of
ka much less than unity, the Acn coefficients can again
be obtained from the small-argument expansions of the
Hankel functions to give, for n = 0

lim
ka�1

Ac0 = (ka)2
jζ

jζ − ka
[
1 +O(k2a2)

]
, (14)
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and for n ≥ 1

lim
ka�1

Acn =
(ka)(n+1)

(2n− 1)!!

ζka

ζ(n+ 1) + jka

[
1 +O(k2a2)

]
.

(15)
The low-frequency coefficients for n = 0, n = 1 and n = 2
are also given in Table I for the soft, ρc, and the hard
sphere. For values of ka smaller than unity there is a
clear hierarchy in the amplitudes of both the scattered
field, Figure 3, and the field due to a secondary source
on the surface of the sphere, Figure 4.

IV. ACTIVE CONTROL OF SCATTERED SOUND POWER

USING SECONDARY SOURCES ON THE SURFACE OF

THE SPHERE

If L monopole sources on the surface of the sphere
are used as secondary sources, the complex amplitude
of the n, m-th spherical harmonic of the sound field in
equation (1), is now due to both the scattered field and
the secondary sources and is given by

anm = asnm +

L∑
l=1

Blnmq
l
c, (16)

where asnm is the amplitude of the spherical harmonic due
to the incident wave, as in equation (2), qlc is the complex
secondary source strength of the l-th secondary source
and Blnm is the coupling of the l-th secondary source
into the n, m-th spherical harmonic, as in equation (12).

Assuming that the sum over n in equation (8) only
runs overN terms, there are, in general, (N+1)2 complex
anm coefficients, and these can be arranged as a vector

a = [a00, a1−1, a10, a11, · · · , aN−N , · · · , aN0, · · · , aNN ]
T
.

(17)
The vector of spherical harmonic coefficients due to both
the scattered and the control sources can thus be written
as

a = as + Bqc (18)

where as is the (N + 1)2 × 1 vector of complex spherical
harmonics due to the scattered wave, B is the (N+1)2×L
matrix of the complex Blnm coefficients for each sec-
ondary source and qc is the L × 1 vector of complex
secondary source strengths.

The normalized scattered power in equation (7) can
be written, for the truncated series, using this vector no-
tation as

Πc =
1

π(ka)2|pi|2
aHa (19)

where the superscript H denotes the Hermitian, complex
conjugate, transpose. Substituting the equation for the
vector of spherical harmonic coefficients into that for the
normalized scattered power, this can be written as a stan-
dard Hermitian quadratic function of qc

3, which has a
unique global minimum if the vector of secondary source
strengths is given by

qopt = −
[
BHB

]−1
BHas, (20)
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FIG. 4. The variation of the magnitude of the non-

dimensional spherical harmonic amplitudes due to a sec-

ondary source on the surface of the sphere, Ac
n(ka) in equation

(13), with ka for the soft, ρc, and hard spheres. (Color online)

assuming that (N + 1)2 > L and that BHB is positive
definite. Figure 5 shows the magnitude of the secondary
source strength, normalized as described below, as a func-
tion of ka, calculated using this formulation when a single
secondary source, positioned on the opposite side of the
sphere to the incident plane wave, is used to optimally
control the scattered power. Figure 6 shows the results
of such active control in terms of the normalized scat-
tered power for the soft, ρc, and hard spheres without
control, as in Figure 1, and after control with a single
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secondary source on the opposite side of the sphere to
the incident wave, and also after control with two sec-
ondary sources on either side of the sphere along the axis
of propagation for the incident wave, as shown in Figure
7. If the incident plane wave and the secondary sources
are aligned along the z axis in this way, only the m = 0
terms contribute to the pressure field, which simplifies
the formulation.
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FIG. 5. Magnitude of the normalized volume velocity for

the optimised single secondary source used to minimize the

scattered sound power from the soft, ρc, and hard sphere.

(Color online)

The n = 0 term in the spherical harmonic expansion
of the scattered field is dominant at low frequencies for
the soft and the ρc sphere, as shown in Figure 3(a) and
3(b), and a single secondary source also dominantly cou-
ples into the n = 0 term, as shown in Figure 4(a) and
4(b). The action of the secondary source in minimising
equation (19) will thus be almost the same as cancelling
the total n = 0 field. The total field for n = 0 with a
single secondary source can be written as a specific case
of equation (16), as

a00 = as00 +B00qc, (21)

which can be set to zero if qc is equal to

qc0 = −as00/B00. (22)

Using equations (2) and (12), and since Ȳ 0
0 (θi, ϕi) is equal

to Ȳ 0
0 (θc, ϕc) in this case, this can be written as

qc0 = −4πa2pi
ρc

As0(ka)

Ac0(ka)
. (23)

The normalized secondary source strength plotted in Fig-
ure 5 is given by qc divided by 4πa2pi/ρc, and using this
normalisation,

qc0
ρc

4πa2pi
=
As0(ka)

Ac0(ka)
. (24)

Using the results for Ai0(ka) and Ac0(ka) in Table I, the
low frequency normalized secondary source strength can
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FIG. 6. The normalized scattered sound power as a function

of ka for the soft (a), ρc (b) and hard (c) spheres, with no

active control and with active control using 1 or 2 secondary

sources, as shown in Figure 7. (Color online)

be shown to be unity for the ρc sphere and 100 for the
soft sphere with ζ = 0.01, as seen in Figure 5.

The situation is slightly more complicated for the
hard sphere since both the n = 0 and the n = 1 terms in
the scattered field are of similar magnitude, as shown in
Figure 3(c). Using equation (8) and the corresponding
terms in Table I, the normalized scattered power is found
to be 7

9 (ka)4 at low frequencies, with a 4
9 (ka)4 contribu-

tion from the n = 0 terms and a 3
9 (ka)4 contribution

from the n = 1 terms, in agreement with the analysis of
Lamb23. At low frequencies, however, a single secondary
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FIG. 7. The positions of the 1 or 2 secondary sources on the

sphere relative to the incident plane wave. (Color online)

source will couple much more efficiently into the n = 0
term in the spherical harmonic expansion rather than the
n = 1 term, as shown in Figure 4(c). Thus, the action of
the secondary source in minimising equation (19) is again
found to be almost the same as cancelling the n = 0 total
field, as above, so that the normalized secondary source
strength is again given by equation (24), which in this
case is equal to 1

3 (ka)4, as seen in Figure 5. The normal-

ized sound power after control is thus equal to 3
9 (ka)4,

which is due to the n = 1 term, and so only 3.7 dB of at-
tenuation can be achieved with a single secondary source
on the surface of the hard sphere, as shown in Figure
6(c).

So, in all the cases with a single secondary source,
the sound field after control is dominated by the n = 1
spherical harmonic term, which can be written as

a10 = as10 +B10qc, (25)

but if qc is given by equation (22), then this becomes

a10 = as10 −
B10

B00
as00, (26)

so that the non-dimensional spherical harmonic ampli-
tudes for the total n = 1 field can be written for the sec-
ondary source on the opposite side to the incident wave
as

A1(ka) = As1(ka)− j
Ac1(ka)

Ac0(ka)
As0(ka), (27)

where the factor of j comes from the jn term in the
definition of asnm in equation (2). Using the low fre-
quency expansion for these quantities in Table I for the
soft sphere, A1(ka) is found to be dominated by the
Ac1(ka)As0(ka)/Ac0(ka) term in equation (27), which is
equal to (ka)2, rather than the As1(ka) term, which is
equal to −j(ka)3/3. Using equation (8) again, the nor-
malized power after control at low frequencies is thus pre-
dicted to be 12(ka)2 for the soft sphere, as shown in Fig-
ure 6(a). For the ρc sphere, however, As1(ka) is equal to
j(ka)3/6 and Ac1(ka)As0(ka)/Ac0(ka) is equal to (ka)3/2,
so both of these terms contribute significantly to A1(ka)
and the normalized power after control is predicted to be
4(ka)4/3 at low frequencies, as shown in Figure 6(b).

When two secondary sources are used, one is posi-
tioned on the same side of the sphere as the incident wave
and one is on the opposite side, as shown in Figure 7. At
low frequencies, each of these sources will predominantly
couple into the n = 0 and n = 1 spherical harmonics, re-
gardless of ζ, as shown by the results in Figure 4. Since
at low frequencies the n = 0 and the n = 1 terms in the
original scattered field also dominate the n = 2 term for
all values of ζ, as shown in Figure 3, the action of the
two secondary sources in minimizing equation (19) at low
frequencies will be similar to cancelling the total field due
to both the n = 0 and the n = 1 spherical harmonics.

A similar analysis to that above can be performed
for the residual sound field after control with two sec-
ondary sources, in this case in terms of the sum of the two
source strengths that dominate both the n = 0 spherical
harmonic, which is cancelled, and the n = 2 harmonic,
which is the residual. The normalized n = 2 spherical
harmonic, after cancellation of the n = 0 and n = 1
terms, can then be written as

A2(ka) = As2(ka) +
Ac2(ka)

Ac0(ka)
As0(ka). (28)

Using the low frequency approximations in Table I for
the individual terms on the right-hand side of equation
(28), for the various cases, the normalized power after
control is predicted to be 20(ka)4/9 for the soft sphere,
20(ka)6/81 for the ρc sphere and 4(ka)8/405 for the hard
sphere, which are in good agreement with the low fre-
quency results in Figure 6.

Figure 8 shows the low-frequency directivity of the
scattered field, before and after active control with the
1 or 2 secondary sources above. The scattering directiv-
ity before control is almost omni-directional for the soft
and ρc spheres, since the n = 0, monopole, term is dom-
inant in the scattering, whereas for the hard sphere it
has a more directional form, since both the n = 0 and
n = 1, monopole and dipole, terms are significant. Af-
ter control with a single secondary source, the n = 0
term is suppressed and the residual n = 1 term gives
an almost dipole directivity in all cases. The backscat-
tered pressure, at θ = π, is more significantly reduced
for the ρc sphere than for either the soft or hard spheres,
which partially reflects the greater level of reduction in
the scattered power for the ρc sphere at this frequency,
corresponding to ka = 0.1, as seen in Figure 6. When
two secondary sources are used for control the scattered
field is significantly reduced for all angles in every case,
and is dominated by the quadrapole-like directivity of the
residual n = 2 term.

It is difficult to physically interpret the results if dis-
tributions of secondary sources that are not aligned along
the z axis are used, partially because the complex spher-
ical harmonics for n = 1 and different values of m do not
correspond to dipoles aligned along the three Cartesian
axes. Nevertheless, it is still interesting to use the theory
described above to calculate the attenuation that can be
obtained with a larger number of secondary sources. Fig-
ure 9, for example, shows the percentage reduction in the
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FIG. 8. The directivity of the scattered field for the soft, ρc and hard sphere at a normalized frequency of ka = 0.1 with no

control (blue solid) and after active control using 1 (green dashed) or 2 (orange dot-dash) secondary sources. The backscattered

pressure before control has been taken as the 0 dB reference in each case. (Color online).

scattered sound power for the ρc sphere as a function of
ka and the number of secondary sources, which were ar-
ranged in a sunflower pattern, as used in9. In these com-
putations, the matrix BHB was regularized by a small
factor if its condition number exceeded 106. The number
of secondary sources required for a 90% attenuation, cor-
responding to a 10 dB reduction in scattered power, is
approximately given by (ka+ 1)2, which is known to be
the number of sources required to accurately reproduce
a given sound field up to a normalized frequency of ka24.
It is found that with a large number of sources, very sim-
ilar results are obtained for the hard and soft spheres, so
that in this case the attenuation in the scattered power
is relatively independent of the surface impedance of the
scattering sphere.

V. ACTIVE CONTROL WITH SECONDARY SOURCES

AWAY FROM THE SURFACE OF THE SPHERE

The active control of acoustic scattering with sec-
ondary sources that are not on the surface of the sphere
has been considered by a number of authors , such as
Vasquez et al5, Norris et al6, Eggler et al11 and Liu et
al10, although Cheer9 found that, for a hard sphere, this
was less effective than when they were positioned on the
surface of the sphere.

The same formulation for active control as in equa-
tions (16) to (20) can also be used in the case where the
secondary sources are not on the surface of the sphere,
except that the non-dimensional term in the coupling be-

FIG. 9. The percentage reduction in the scattered sound

power for the ρc sphere, as a function of the number of sec-

ondary sources, which were arranged in a sunflower pattern,

and ka. The number of secondary sources required for an 90%

attenuation, corresponding to a 10 dB reduction, is approxi-

mately given by (ka+ 1)2. (Color online)

tween the secondary sources and the spherical harmonics,
Acn(ka), is given in this case by the formula

Acn(kr′) = [jn(kr′)−Asnm(ka)hn(kr′)] (ka)2, (29)

Where r′ is the distance from the secondary source to
the centre of the sphere, so that equation (29) reduces to
equation (13) in the case when r′ is equal to a. The first
term in equation (29) can be interpreted as the direct
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field, due to the secondary source in the absence of the
scattering sphere, while the second term is due to the
scattering of the sound field from the secondary source
by the sphere. Figure 10 shows the normalized scattered
sound power after control with 200 secondary monopole
sources uniformly distributed over a spherical surface of
radius r′ centred on a scattering ρc sphere of radius a,
for different values of r′. As the secondary sources are
moved away from the surface of the scattering sphere,
the active control performance, at ka = 10 for example,
is very significantly reduced. Similar results to those in
Figure 10 are also obtained for the hard sphere, as noted
by Cheer9, and also for the soft sphere, again indicating
that as the number of sources increases, the performance
becomes less dependent on the surface impedance.
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FIG. 10. The normalized scattered power for the ρc sphere

as a function of ka before control and after control with 200

secondary sources placed at different distances, r′, away from

the surface of the sphere. (Color online)

The way that the secondary source couples into the
n = 0 spherical harmonic at low frequencies is found to
be relatively independent of its distance from the surface
of the sphere. In contrast, the secondary source couples
much more efficiently into the higher-order spherical har-
monics as it is moved away from the surface of the sphere.
This behaviour can be understood by taking the low fre-
quency approximation to each of the terms in equation
(29) to give, for the ρc sphere with n ≥ 1,

lim
ka�1

Acn(kr′) = (30)

(ka)2(kr′)n
2nn!

(2n)!(n+ 1)

[
1− (2n+ 1)!!

(n+ 1)

( a
r′

)2n+1
]
.

By examining the second term in the square brackets of
equation (29), it is clear that if r′ > a then this term will
be small for a sufficiently large value of n, so that the
first, direct field term will dominate. At low frequencies,
and for a sufficiently large value of n, the ratio of the
coupling term for a source at a distance of r′ from the
surface of the sphere to that with a source on the surface
is thus

lim
ka�1

Acn(kr′)

Acn(ka)
=

(
r′

a

)n
. (31)

As the secondary source is moved away from the sur-
face of the sphere, it thus couples more efficiently into
the spherical harmonics with a higher value of n. The
scattered field to be controlled, however, remains dom-
inated by the lower order terms, as shown in Figure 3.
So, in controlling these lower order modes the secondary
sources will increasingly excite the higher order spher-
ical harmonics as they are moved away from the sur-
face of the sphere, which will degrade the control perfor-
mance. This is similar to the control spillover effect seen
in the active control of modal systems, such as vibra-
tion in structures25,26, where the secondary sources can
excite higher order, and previously poorly excited, struc-
tural modes when they are used to attenuate the effects
of lower order structural modes.

To a first approximation, however, the guideline used
above for the number of sources needed for effective ac-
tive control being L = (ka + 1)2 can be generalized for
sources away from the surface so that the required num-
ber of sources is L = (kr′ + 1)2. Control will thus be
effective, for larger vales of ka, up to a normalized fre-
quency of

ka =
a

r′

√
L, (32)

where L is the number of secondary sources, which gives
a reasonable prediction of the results in Figure 10.

VI. CONCLUSIONS

The spherical harmonic analysis is reviewed for the
sound field scattered by a sphere with a uniform locally
reacting surface impedance, when subject to an incident
plane wave. A similar analysis is then presented for the
sound field generated by a monopole on the surface of
such a sphere, which can be used as a secondary source
for active control. The acoustic power scattered by the
sphere with a number of such monopoles used as sec-
ondary sources is proportional to the sum of squared
amplitudes of the spherical harmonics due to both the
incident plane wave and the secondary sources. The scat-
tered sound power is thus a quadratic function of the
complex secondary source strengths and so has a unique
global minimum for a set of secondary source strengths
that can be calculated analytically. The results of such
calculations are presented in terms of the normalized
scattered power, defined as that relative to the sound
power associated with the incident wave, the normalized
surface impedance and the normalized frequency. The
problem of sensing the scattered field in a practical active
control system is not considered here, since following the
hierarchical design approach for active control systems
suggested by Hansen et al7 and Elliott27, the physical
capabilities of the source, as considered here, is the first
issue to be addressed in the analysis of any active control
problem, followed by the sensing strategy and then the
control system design.

The resulting reductions in the scattered sound
power are more pronounced for low frequencies than for
high frequencies, as expected, and depend on the num-
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ber of secondary sources. It is found that for a soft
sphere, with surface acoustic impedance much less than
the characteristic impedance in the surrounding fluid, the
scattered sound power is dominated by the zeroth order
spherical harmonic and can be very significantly reduced
at low frequencies by a single monopole. Additional at-
tenuations can be achieved with two secondary sources
aligned along the axis of the incident wave. Similar at-
tenuations in the scattered sound power are observed for
a sphere whose impedance is equal to the characteristic
impedance of the surrounding fluid, although the mag-
nitude of the scattered power before control is rather
smaller in this case.

When the sphere has a surface impedance that is
large compared to the fluid characteristic impedance,
even less sound power is scattered before control. In this
case, at least two secondary sources are required to sig-
nificantly attenuate the scattered sound power at low fre-
quencies, since both the zero and the first order spherical
harmonics contribute significantly to the scattered sound
power before control.

Reductions in the scattered sound power can be
achieved at higher frequencies only by using a larger num-
ber of secondary sources. The number of sources required
on the surface of the sphere to achieve a given level of
control at a normalized frequency of ka is approximately
given by (ka+1)2, and hence the square of the frequency,
when ka is much greater than 1, so that the secondary
sources are spaced about half a wavelength apart on the
surface of the sphere.

It is also found that the active control performance
degrades as the secondary sources are moved away from
the surface of the sphere. This had previously been ob-
served for the hard sphere, but is generalized here to
include spheres with other surface impedances, and is
shown to be associated with increased control spillover
into higher order spherical harmonics

Though the scattered sound power has been formu-
lated in terms of the spherical harmonics for the scat-
tering body considered here, similar formulations can be
used for scattering objects of other shapes. Morse and
Feschbach20 for example list the 11 coordinates systems
in which the acoustic wave equation has separable solu-
tions, and an expansion analogous to that using spherical
harmonics can be defined for several of these cases. More
generally, the sound radiation from a body of any shape
in any acoustic environment can be expressed in terms
of the amplitudes of a set of velocity distributions that
radiate sound independently from each other, which are
known as the radiation modes28–30. In fact, the radia-
tion modes for the sphere are the spherical harmonics, as
noted by Cunefare et al31. The analysis presented here
is simplified by the fact that the shapes of the radiation
modes are independent of frequency in the case of the
sphere, whereas in the general case the shapes of the ra-
diation modes become weakly dependent on frequency
as the wavelength becomes comparable to the size of the
object. The sound power scattered by any obstacle can
thus be expressed in terms of the sum of the squares of

the complex amplitudes of these radiation modes, which
are linearly dependent on the secondary source strengths.
For scattering bodies of other shapes, a similar formula-
tion to that described above can thus be used to calculate
the effect of active control on the scattered sound.

APPENDIX A:

The spherical wave generated by a monopole source
of strength q in free space, can be expressed with the
current time-frequency convention as

p(r) = jkρcq
e−jk|r−r

′|

4π|r− r′|
, r 6= r′, (A1)

where r is the position vector of the evaluation point
in space, (r, θ, ϕ) and r′ is the position vector for
the location of the source, (r′, θs, ϕs). After some
manipulation18, this can be formulated in terms of spher-
ical harmonics as

p(r) = (A2)

k2ρcq

∞∑
n=0

n∑
m=−n

jn(kr<)hn(kr>)Y mn (θ, ϕ)Ȳ mn (θs, ϕs).

where r< = min(|r|, |r′|) and r> = max(|r|, |r′|).
Y mn (θ, ϕ) are complex spherical harmonics and hn(kr>)
is the complex spherical Hankel function of the second
kind, due to the complex frequency convention used here.
It should be noted that the Condon-Shortley convention
has been used for the phase of spherical harmonics.

Let a monopole primary source with acoustic
strength qi, generating the incident field, be situated a
distance r′ away from a locally reacting sphere of radius
a, centred at the origin of the coordinate system. So that
r′ ≥ a and r ≥ a. This situation represents a scattering
problem, where the incident field is given by equation
(A2). For example, the plan incident wave for a remote
source, kr′ � 1, becomes

pi(r) = 4πpi

∞∑
n=0

n∑
m=−n

(j)njn(ka)Y mn (θ, ϕ)Ȳ mn (θi, ϕi).

(A3)
The scattered pressure field, ps(r), can be represented by
the exterior solution to the Helmholtz equation18 as

ps(r) =

∞∑
n=0

n∑
m=−n

Cnmhn(kr)Y mn (θs, ϕs), (A4)

where Cnm are coefficients to be evaluated. The radial
pressure gradients of the incident and scattered fields are
given, respectively, by

∂pi
∂r

(r) = k3ρcqi

∞∑
n=0

n∑
m=−n

j′n(kr)hn(kr′)Y mn (θ, ϕ)Ȳ mn (θs, ϕs)

(A5)
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where the prime denotes differentiation with respect to
the argument and

∂ps
∂r

(r) = k

∞∑
n=0

n∑
m=−n

Cnmh
′
n(kr)Y mn (θs, ϕs). (A6)

For a sphere with a locally reacting normalized
impedance ζ, the boundary condition is(

jkpt(r)− ζ ∂pt(r)

∂r

)
|r=a = 0, (A7)

where pt(r) = pi(r)+ps(r) is the total pressure. Combin-
ing equations (A1) to (A6) with this boundary condition,
and evaluating for r = a using the orthogonality of the
spherical harmonics, it is found that

Cnm = −k2ρcqihn(kr′)
jn(ka) + jζj′n(ka)

hn(ka) + jζh′n(ka)
Ȳ mn (θs, ϕs)

= −k2ρcqihn(kr′)Ain(ka)Ȳ mn (θs, ϕs), (A8)

with Asn(ka) defined as in equation (3). The scattered
pressure field in (A4) is thus given by

ps(r) = −k2ρcqi
∞∑
n=0

n∑
m=−n

Ain(ka)hn(kr)hn(kr′) · · ·

Y mn (θ, ϕ)Ȳ mn (θs, ϕs). (A9)

If r′ � a, then the incident field becomes a plane
wave, with an incident pressure given by equation (A1),
and taking the large argument limit for hn(kr′), equation
(A9) then reduces to equations (1) and (2) in the main
text.

If, on the other hand, a monopole on the surface of
the sphere, of source strength qc, is used as a secondary
source, then the total pressure field, for r > r′ is given
by the sum of the direct field in equation (A2) and the
scattered field in equation (A9) as

pt(r) =k2ρcqc

∞∑
n=0

n∑
m=−n

[
jn(ka)−Ain(ka)hn(ka)

]
· · ·

hn(kr)Y mn (θ, ϕ)Ȳ mn (θc, ϕc), (A10)

and equation (A10) then reduces to equations (11) and
(12) for the resulting pressure in the main text.
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