HJNIVERSITY OF

Southampton

University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are
retained by the author and/or other copyright owners. A copy can be downloaded for personal
non-commercial research or study, without prior permission or charge. This thesis and the
accompanying data cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the copyright holder/s. The content of the thesis and accompanying
research data (where applicable) must not be changed in any way or sold commercially in any

format or medium without the formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given,

e.g.

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the

University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]






University of Southampton

FACULTY OF SOCIAL, HUMAN AND MATHEMATICAL SCIENCES

School of Psychology

Children’s Mental Representation of Number, Their Number Line Estimations
and Maths Achievement: Exploring the Role of 3D Mental Rotation Skills.

by

Lesley Anne Honour
Thesis for the degree of Doctor of Educational Psychology

July 2019

Word count; 19168






University of Southampton

Abstract

FACULTY OF SOCIAL, HUMAN AND MATHEMATIC SCIENCES
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Thesis for the degree of Doctor of Educational Psychology

Children’s Mental Representation of Number, Their Number Line Estimations
and Maths Achievement: Exploring the Role of 3D Mental Rotation Skills.

Lesley Anne Honour

As children’s early grasp of number is a reliable indicator of their future
mathematical competence, any internal representations they develop to encode conceptual
understanding, or as a framework for problem solving, are of particular interest to
researchers. Although the exact nature and form of these mental models are difficult to
establish, prior research has identified a directional left to right number line as the most
probable internal representational schema for number magnitude. However, the extent to
which these types of mental representations influence maths achievement is not clear, as
there has yet to be a systematic review of the literature evidencing such links. This review
set out to systematically gather, and critically examine, findings in one small area of a
potentially large field of research; specifically the relationship between children’s mental
representation of number magnitude and early maths achievement. Ten studies met the
criterion for inclusion, each exploring the influence of mental representations through
correlational data, or through training designed to enhance any such internal symbolic
framework. Results indicate that internal representations of number are important for
mathematical competence particularly in the early years, as notation and calculation with
integers becomes increasingly symbolic. Implications for EPs were discussed including
best approaches that model and encourage precision of the mental number line, such as
linear board games, and awareness of specific groups that are most likely to benefit from
any such intervention.

Number magnitude knowledge is a foundational concept within mathematics,
observable early in life through behavioural phenomena and linked with spatial-numerical

associations. The internal representation of symbolic number magnitude is thought to be a



directional left to right mental number line, acting as a framework to encode conceptual
understanding and to support problem solving. Accurate performance on the associated
metric, the number line estimation task (NLE), has been interpreted as improved
understanding of number magnitude and is reliably related to maths achievement.
However, the exact role spatial skills play in the relationship between number magnitude
understanding and NLE tasks is still unclear, particularly as these skills are themselves
independently related to maths achievement, whilst also being influential in the
proportional judgement strategies used to complete the NLE task. To investigate these
relationships, 98 primary children were recruited for a RCT training 3D mental rotation
skills using a computer-based tool, over ten sessions. Spatial skill and NLE performance
strongly correlated with maths achievement, and although spatial training improved spatial
ability, this was not significant. Unexpectedly, spatial training did not influence NLE
performance. Implications for EPs include effective use of number line tasks to target weak
number magnitude understanding, and benefits of providing spatial tasks to support

positive maths outcomes.
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Chapter 1

Chapter 1  The Relationship Between Children’s
Mental Representation of Number and
Maths Achievement: A Systematic Review

of the Literature.

1.1 Introduction

The idea that children’s early grasp of number is a reliable indicator of their future
competence within mathematics has been explored by a variety of researchers (Booth &
Siegler, 2008; Geary, Hoard, Nugent, & Bailey, 2013). Within this research particular
interest has been given to how children assimilate concepts of number magnitude, and the
nature and influence of any internal models they develop (Schneider, Grabner, & Paetsch,
2009; Thompson & Siegler, 2010). These mental representations are important as
magnitude is an influential feature of number affecting estimates and calculation. They are
posited to have a dual role, as a mechanism for encoding conceptual understanding but also
acting as a framework for manipulating number during problem solving (Park, Bermudez,
Roberts, & Brannon, 2016; Skemp, 1978). Consolidating the internal representation of
number magnitude, through training skills in the associated external representation, is
reported to support children’s mental calculation abilities, increase their accuracy during
arithmetical problem solving and improve their magnitude comparisons of fractions
(Hamdan & Gunderson, 2017; Kucian et al, 2011; Sella, Tressoldi, Lucangeli, & Zorzi,
2016). Mental representations of number have also been investigated as the basic building
blocks necessary for more advanced abstract mathematics (Case & Okamoto, 1996). These
suggested benefits indicate a need for a systematic review of the literature to explore
evidence of any connection between children’s mental representation of number and early
maths achievement. Through evaluating any links, this review may also offer insight into
the strength of any association, notice the form representations may take, how they are

acquired, and discuss implications for how improved maths outcomes are best supported.

1.11 Representations

Representations in the broad sense can be thought of as symbolic; the way that one

thing stands for another. Representations can be external, such as gestures, written text,
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graphs, paintings or maps. They can also be internal, when they might take the form of a
visual image that can replicate or give an impression, propositional representation (where
language cues are used), or mental models which are structural analogues of ideas
(Johnson-Laird, 1983). However, mental representations should not be considered solely as
discrete pictures or words in the mind. Kosslyn and Pomerantz (1977) discuss how other
senses can be involved in the encoding process suggesting representations do not occur in
isolation but rather belong to highly structured systems similar to a computer based
structure, where hierarchical links join different concepts, reflecting reality in a

personalized web of representations.

Goldin and Kaput (1996) considered the difficulties in trying to describe how
representations ‘look’ inside the mind and suggested that observable behaviours are the
chief clues that allow us to infer what might be encoded in the brain and nervous system.
With this in mind, researchers have been interested in how external models can influence
the acquisition and structure of internal representations, and how the process works in
reverse as internal representations are retrieved and reproduced in some external form (e.g.
Rapp & Uttal, 2006). Although there may not be an exact reflection between mind and
action, knowing more about any ‘match’ between the internal and external (whether
intentionally created or more automatically produced) would help teachers provide better
models to aid learning, and would also support the development of tasks that more

accurately measure internal understanding.

1.1.2 Ontology and Epistemology

In trying to describe how information is represented internally, both ontological and
epistemological questions begin to surface, as the enquiry centres on the fundamental
question of memory, both form and function. What is the nature of representations? Are
they related to thoughts and ideas? To what extent can we accurately represent a shared
conceptual understanding of an idea, even if there is such a thing? These questions are
beyond the scope of what can be covered here but they provide a backdrop within which
the review question has been considered. In terms of epistemology, the approach taken is
to focus on the way knowledge of internal representations has been gained, and how that
method of acquiring knowledge may support conclusions about the validity of those
representations. The genetic epistemology described by Piaget fits well here as it considers
developmental change and suggests knowledge consists of structures which come into

being through adaptation of these structures with the environment.
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1.1.3 Representations within Mathematics

Symbolic representations are a key part of communicating ideas and concepts within
mathematics. Think for a moment of the operations denoted by four simple marks that
refer to different ways quantities can be grouped and manipulated, or the relative position
of numerals that indicates value above that which the numeral carries (place value). The
many and varied external representations within mathematics form a language that aims to
convey a shared understanding of concepts and procedures that a child can assimilate into
an internal schema. Bruner’s (1966) framework of learning suggested children create
representational understanding as they move through a stepped sequence of three stages:
enactive, iconic and symbolic. First, an idea is defined through participation and doing,
where actions are the encoding of an experience (e.g. a baby shakes a rattle, hears a noise
and subsequently shakes her hand even without the rattle as the representation of the noise
is the action, not the object). In the iconic stage repeated manipulation of concrete
materials generates a pattern of understanding that is represented as an image (e.g. the way
a pizzais divided to represent fractions). At around age 6 or 7, symbolic notation can be

used to represent ideas, allowing a level of abstraction to develop.

Bruner’s (1966) model has been built on by other researchers as they have explored
the importance of representations in developing mathematical competence. Skemp (1978)
identified two types of mathematical understanding: instrumental and relational.
Instrumental was described as procedural memories - the ‘how’ or rules of completing a
task. In contrast, relational understanding involved the building up of a cognitive structure
of ideas (including iconic and symbolic representations) to form a framework schema
which can be adapted as new understanding is assimilated. Similarly, Hiebert and
Carpenter (1992) explored the purpose of external and internal representations, suggesting
communicating ideas in mathematics relies on external representations which are then
transformed into an internal representation which can be drawn upon for subsequent
reference and problem solving. They suggested that any errors in this transference can lead
to misconceptions which may persist, as they are part of an internal model of
understanding upon which new ideas are built. The idea that notation and symbols can
constrain or support our understanding in this way was also put forward by Kaput (1991).
He maintained that making connections between external and internal representations is
vital for maths competence, as it helps extend understanding from concrete to more

abstract systems.
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1.1.4 Representations of Number

As this review is focused specifically on how children internally represent number
magnitude within mathematics, it will be helpful to outline theories of how this concept
develops. Following on from early research into subitizing (perceiving the number of
objects without counting each item; Kaufmann, Lord, Reese, and VVolkmann, 1949),
numerous infant studies suggest an early visual appreciation of differing quantities (Strauss
& Curtis, 1981; van Loosbroek & Smitsman, 1990; Xu & Spelke, 2000). This appears to
be underpinned by two innate cognitive systems, the Parallel Individuation System which
is triggered to track individual items when there are fewer than 4, and the Approximate
Number System (ANS) that perceptually estimates difference, for example in a dot array
(Piazza, 2011; Gallistel & Gelman, 2000). There is general agreement that the ANS
improves in precision throughout childhood and adolescence (Halberda & Feigenson,
2008; Libertus & Brannon, 2010; Xu & Spelke, 2000) although Webber’s law appears to
hold across all stages, (it is easier to detect differences of equal absolute value in lower
numbers than higher numbers). Both systems indicate an initial, innate, non-symbolic

awareness (or representation) of relative magnitude.

As children experience the symbolic language of the Arabic numeral system through
practising the number sequence with words and numerals, such as counting ‘how many’
and using numerals to compare group quantities, researchers such as Dehaene (2004) and
Li and Baroody (2014) suggest a mapping occurs between the non-symbolic and symbolic
representations, with each enhancing the other. The ANS is thought to become more
accurate as symbolic digits support discrimination of near quantity difference (Mussolin,
Nys, Leybaert, & Content, 2015), while numerical knowledge (including multi digit base
10 understanding) improves through awareness of relational magnitude that the ANS offers
(Feigenson, Dehaene, & Spelke, 2004). However this developmental trajectory has been
challenged by Gunderson, Spaepen, and Levine (2015) who suggest that exact symbolic
and approximate non-symbolic number knowledge may develop in parallel without such
causal interaction. They base this claim on work exploring whether knowledge of the
cardinal principle (the last number counted gives the quantity of the whole set) was a
prerequisite for approximate number word knowledge, or vice versa. They found no such
relationship (either way) and so concluded that the cognitive systems underlying these two

aspects of numerical development were likely to be quite distinct.
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1.15 Spatial-Numerical Associations (SNAS)

Woven into the literature exploring internal representations in any general domain
there are references to the role of spatial awareness, including positional relations between
linked ideas (Reed, 1974), the role of embodiment and movement in encoding a
representation (Moeller, Martignon, Wessolowski, Engel, & Nuerk, 2011) and possible
brain areas where domain specific representations may be stored (Piazza, 2011). This
spatial component involved in creating and retrieving mental representations has additional
relevance within mathematics, as links between the spatial and mathematical domains have
long been suggested. Spatial connections seem naturally associated with geometry but are
also pertinent to number magnitude, as demonstrated by the Cartesian coordinate system
developed by René Descartes. Within this system, a uniform distance along the horizontal
or vertical plane represents a unit increase in magnitude, from left to right and from bottom
to top. A simplified model is used with children from an early age where the positive x-
axis becomes a number line with integers placed in ascending order from left to right.
These type of external spatial representations of number seem intuitively helpful, but is this
because they align well with internal representations for which humans are already

primed?

Research into spatial-numerical associations (SNASs) through observing behavioural
phenomena, offers some evidence that particular types of SNAs are present in infants and
children, and that some persist throughout development. This suggests a possible innate
integration of number and space. One example is the Spatial-Numerical Association of
Response Codes (SNARC; Dehaene, Bossini, & Giraux, 1993). This behavioural
phenomenon demonstrates that given a parity judgment task, left to right readers associate
small numbers more with the left hand side and larger numbers with the right. This has
been observed in a variety of populations including Chinese children from age 4 (Dehaene,
Bossini, & Giraux, 1993; Yang et al., 2014; van Galen & Reitsma, 2008). Other SNAs
have also been evidenced from observations including the distance effect, where the
greater the distance between the two numbers compared, the better the performance
(Moyer & Landauer, 1967), and the ratio effect where the numerical ratio between two
numbers to be compared predicts performance (e.g. in college students; Buckley &
Gillman, 1974).
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1.1.6 The Mental Number Line and the Number Line Estimation Task.

SNAs are used as supportive evidence for an innate number-space mapping system
in the form of a mental number line where numerical magnitude is represented as
increasing from left to right along a horizontal plane. Two key models have been put
forward, the logarithmic model (where magnitudes are internally represented with a
constant variability following a logarithmic pattern; Dehaene, 1997) and the accumulator
model (where magnitudes are represented linearly but accuracy decreases for larger

magnitudes and has scalar variability; Gibbon & Church, 1981).

As both posited models are internal representations, they are, by their nature, difficult
to measure. However, a task called the number line estimation task (NLE) has been put
forward as an external measure thought to reflect the internal representation of the mental
number line (Booth & Siegler, 2006; Opfer & Siegler, 2007; Siegler & Booth, 2004;
Siegler & Opfer, 2003; Siegler & Ramani, 2009). The NLE task involves placing numbers
on a line where the only stimuli are the initial and final numbers within a set scale along a
left to right plane (the bounded NLE task). Researchers have consistently found that
younger children place numbers in a logarithmic arrangement (large numbers compressed)
while older children (approximately over 8 years) tend to place numbers in an increasingly
linear arrangement, with distances between numbers more equal along the line (Booth &
Siegler, 2006; Opfer & DeVries, 2008). Siegler, Thompson, and Opfer (2009), suggested
this ‘log-linear shift’ occurs more than once, with estimates becoming more linear as each
scale becomes familiar (e.g. 1 to 100 will produce linear estimates before 1 t01000). This
shift has been interpreted as a marker for improved conceptual understanding of number
magnitude, especially as improved accuracy of estimates (percentage absolute error; PAE)
and linear performance (relationship between estimated position and actual position; R?
Los /R? Lin) has been shown to positively correlate with maths achievement (Booth &
Siegler, 2006; Fazio, Bailey, Thompson, & Siegler, 2014; Geary, 2011).

The premise of an internal representation of number in the form of a mental number
line, and the accompanying bounded NLE task, is prevalent throughout number magnitude
research. However, there is ongoing discussion about how each should be interpreted, with
two areas of debate concerning maths achievement. Firstly, if the mental number line is not
a matured culmination of innate number sense skills (i.e. not innate itself) but gleaned from
repeated exposure to cultural and educational conventions, then acquiring skills necessary
for maths achievement, such as arithmetical competency, might be built on domain general
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cognitive factors rather than domain specific number sense (Nufiez, 2011). This debate is
not suggesting that the mental number line (whether innate or acquired) is an unhelpful
framework for conceptualising number or to support problem solving, but rather the mental
number line (and its refinement towards linearity) may not be the only basis upon which
number understanding is built. For example, Schneider, Grabner, and Paetsch (2009),
identified domain general factors (such as memorized algorithms) had more influence on
school maths achievement of 110 children aged 11, than domain specific skills (e.g.
SNARC effect; Dehaene, Bossini, & Giraux, 1993) which are posited to underpin the
mental number line. The second area of debate is whether the bounded NLE task is a valid
measure of mental representation of number magnitude. Some researchers suggest gains in
accurate placement of numbers along the line (log-linear shift), are not due to improved
perception of difference between integers (fundamental to numerical cognition theories),
but result from development of domain general cognitive skills, proportion-judgment
strategies, or mastery of place value within the base 10 Arabic number system (Barth &
Paladino, 2011; Slusser, Santiago, & Barth, 2013; LeFevre et al, 2013). This is of interest
because if number magnitude representation and understanding is key for early maths
achievement, any measurement tool needs to have validity, i.e. measure what is intended,
not some other construct or skill. Cohen and Blanc-Goldhammer (2011) addressed this
question, creating an unbounded version of the NLE task that prevents the ‘whole’ being
seen and a proportion judgement being made. After extensive analysis, they suggested that
this task provided a purer measure of integer estimation (e.g. 50 is 50 units to the right
rather than 50 is halfway between 0 and 100). This position has been supported by research
into eye tracking (e.g. Reinert, Huber, Nuerk, & Moeller, 2015).

It seems then that the use of the bounded NLE task as a measure of children's internal
representation of number magnitude is controversial. However, the bounded NLE task
persists within research into number magnitude and appears to be regarded as a useful
metric to assess children's understanding of the symbolic number system. Even if it does
not directly mirror a mental number line, it is a task that evaluates understanding of the
relationship of integers with each other (especially in the unbounded form), and as such
may still provide a window into the quality of a child’s internal representation of number.
It has been important to recognise and discuss any limitations of the bounded NLE task, as

it features as a measure in many of the studies included within this review.
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1.1.7 The Aim of This Review

If learning is the acquisition of knowledge and the subsequent use of that knowledge
during problem solving, then the storage and retrieval of information from memory is an
important area of research. While external expressions of this learning can be observed
through verbal and written assessments, much less is known about how knowledge is
encoded, what information and conceptual understanding looks like in the brain and how it
is arranged. As more is found out about these representations, mental models, mappings,
networks or schemas, we become more able to appreciate how they support retrieval and
manipulation of information, how they accommodate new conceptual ideas within prior
learning, the influence they may exert on educational achievement, and the types of

teaching approaches that best support them.

Within this broad context, this review considers one specific area of learning,
number magnitude. The author has a keen interest in how children become fluent within
numeracy, and number magnitude has been identified as a basic building block of
mathematics. Number magnitude refers to comparison of quantity, both in symbolic
(numerals) and non-symbolic form (e.g. dot arrays), and is not synonymous with counting
or performing calculations. In addition the choice of number magnitude is a helpful lens
through which to consider mental representations as it lends itself to exploring a
developmental mapping relationship; from an innate non-symbolic representation (such as

ANS) to a more symbolic representation using Arabic numerals.

There has been much interest in the relationship between how children represent
number magnitude and any connections with maths outcomes. Measures of these
representations have most often been operationalised through dot array discrimination for
non-symbolic representations (e.g. exploring the relationship between pre-schoolers’
precision of the approximate number system and maths performance; Mazzocco,
Feigenson and Halberda, 2011), and the bounded NLE task for symbolic representations
(e.g. targeting numerical performance through training number magnitude skills; Sella,
Tressoldi, Lucangeli, & Zorzi, 2016). These type of studies have produced disparate
results. Although Fazio et al. (2014) attempted a to gauge the size of the relation between
non-symbolic numerical magnitude understanding and general mathematics achievement
with a meta-analysis of 19 studies, there has been less synthesis around findings describing
symbolic representation of number and achievement in maths, especially in the early years.
Additionally many studies rely on the premise of the bounded NLE task being a valid
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measure of internal representation of number magnitude despite recent findings which
suggest otherwise. This premise will be taken into consideration as this review included
studies that use both types of NLE task (bounded and unbounded), as well as other

measures that appropriately operationalised internal representation of number magnitude.

1.2 Method

1.2.1 Search Strategy

Searches were conducted within three electronic databases: PsycINFO (via EBSCO:
1990-2019), Scorpus (1990-2019) and ERIC (via ProQuest: 1990-2019). The databases
were searched within the domains of abstract, title and keyword. The earliest date chosen
for the search was 1990, as the seminal paper from Dehaene, Bossini, and Giraux (1993)
detailing the SNARC effect (Spatial-Numerical Association of Response Codes) initiated
an increased level of research in spatial-numerical representations that is pertinent to the
review question. The search was based on key terms generated by the review question,
with each term exploded as guided by scoping searches prior to the review question being
finalised. The search terms were: (child* OR pupil* OR "school student*" OR "grade
student*") AND (hum*) AND (mental OR internal*) AND (represent*) AND ("math*
outcome” OR "math* achieve*" OR "math* skills" OR "math* competen*" OR "math*
proficien*" OR "math* performance™ OR "arithmetic* competen*" OR "arithmetic*
proficien*" OR "arithmetic* outcome" OR "arithmetic* achieve*" OR "arithmetic* skill*"
OR "arithmetic* performance*"). Papers obtained were then screened according to the
inclusion criteria and relevant papers had their reference lists searched to identify any
additional papers that also met the inclusion criteria. See Figure 1 for the PRISMA flow

diagram.
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Figure 1. PRISMA Flow Diagram

1.2.2 Included Studies

Table 1 details the inclusion and exclusion criteria that were applied to ensure the

final articles were relevant to the review question. Using these criteria the initial 72 studies

yielded 10 to be included in the review.
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Table 1

Inclusion and Exclusion Criteria for Studies

Chapter 1

Population

Study Design

Intervention

Outcome
Measures

Language

Inclusion Criteria

Children aged between birth
and 12 years

Quantitative designs
including

e observed correlations
e comparison of groups

Any study which primarily
explores the relationship
between mental
representation of number and
maths achievement. Number
magnitude should be the
focus (in the form of
integers).

Mental representation of

number operationalised as

e bounded or unbounded
number line task

e other spatial-numerical
association tasks

e approximate number
discrimination tasks

Maths progress / achievement

data from any tests which

include an arithmetic element.

English

Exclusion Criteria

Students over 12 years

Qualitative studies

Meta-analyses

Studies that explore links between

e maths achievement and
domain general cognitive
factors, such as working
memory

e maths achievement and
external representations only.

e mental representation of
number and language based
skills.

Studies that focus on common or
decimal fractions.

Any other outcome measure (e.g.
differences in brain activity as
measured by EEG)

Published in any language other
than English
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1.2.3 Data Extraction

The data extracted from eligible papers included: descriptive information about the
participants (including age, study location and any other significant group identifiers);
study design; information about the intervention (type, duration, frequency, delivery) and
control condition; outcome measures used; and findings in the form of intervention

effectiveness and / or correlations. See Appendix A for findings from data extraction.

1.2.4 Quality Assessment: Criteria and Ratings

The studies that met the inclusion criteria were screened for quality and although this
did not allow for direct comparison across studies, it did indicate the relative
methodological strengths of each. This screening considered three strands of evidence (A,
B and C), with the weight of the strands combined in an overall judgement (D) reflecting
the study’s quality and contribution towards answering the review question (Gough, 2007).
As all studies were quantitative, the first strand of evidence used a rating framework
developed by Woods for his own research (Tyrell & Woods, 2018; Flitcroft & Woods,
2018) and based on quantitative research guidelines (Choi, 1998; Cohen, Manion, &
Morrison, 2007; Genaidy et al., 2007; Wallace & Wray, 2011). This framework supports
the scrutiny of the study design; specifically the gathering, analysis and interpretation of
data. The framework was adapted in the current study as one criterion (appropriate
measurement instrumentation) was explicitly addressed by an inclusion / exclusion
statement. The original and adapted frameworks are included in Appendix B and C

respectively.

Ratings of 0, % or 1 were given for each of 13 criteria, with the quality recorded as
high (9.5 -13), medium (4.5 -9) or low (0-4) for each study. The other two strands of
evidence considered how appropriate the study’s methodology suited the review question
(in its aims, selection of participants and method of data collection) and also how relevant
the focus of evidence was in answering the review question (specifically with regard to
how mental representation of number had been operationalised, and how findings map
onto developmental trajectories). Both these strands were rated high, medium or low
quality, and were given equal weight towards the overall judgement of the quality of each
study. As only the author of this review rated the studies, the outcomes of the quality
assessment may be subject to researcher bias. Overall ratings are shown in Table 2, with

12
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full quality assessment details for strand A included in Appendix C, and weight of

evidence strands B and C found in Appendix D.

Table 2
Weight of Evidence of Included Studies
Weight of Weight of Weight of Weight of
Evidence A Evidence B Evidence C Evidence D
Gathering, Review specific  Review specific  Overall extent to
analysisand  appropriateness of  focus of study which the study
interpretation of method High contributes
data. High Medium evidence to
9.5-13 = High Medium Low answering_ review
4.5-9 = Medium Low question.
0-4 = Low Combining
strands
A, Band C.
Siegler &
Booth 10.5 High High High
(2004) High
Booth & 9 _ _ _
Siegler Medi High High High
(2008) edium
Siegler &
Rar%ani 9.5 High Medium High
(2009) High
Kucian
et al. lli Medium Medium Medium
(2011) Hig
Mazzocco
ot al 1_2h High High High
(2011) Hig
Gunderson 105
et al. : Medium Medium Medium
High
(2012)
Obersteiner
etal. 10.5 High High High
(2013) High
Link, Nuerk 9 ) _ _
& Moeller Medi High High High
(2014) edium
Sella
et al. Hl'lh Medium Medium Medium
(2016) '9
Aulet & 12 _ _ _
Lourenco Hioh High High High
(2018) '9
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1.3 Results

The 10 studies under review span a time period from 2004 until 2018. Four focused
on correlations and predictive factors while six looked at aspects of group difference
alongside correlations. Five delivered some kind of training to promote better internal
representation of number, with each using a design that allowed for a control group. These
representations were primarily measured by the bounded number line task, with only one
additionally using the unbounded version. Magnitude comparison tasks using various
SNAs were employed in three of the studies and all 10 used various mathematical
measures that had an arithmetic element, some more standardised than others. Participants
ranged from 4 %2 to 10 years old. Although these factors offer alternate ways to group and
review the studies, it was felt a chronological approach was best suited, as the studies build
upon each other’s findings, with any questions raised being addressed by subsequent work.
Overall the studies were of a good quality, with seven achieving a weighting of high and
three of medium (WoE D). Nine were judged to have high methodological quality (WoE
A), seven to have a method highly appropriate to the review question (WoE B), and six
found to have high relevance to the focus of the review question (WoE C).Those that did
not achieve an overall rating of ‘high’ generally explored the review question indirectly,
but subsidiary findings were found to be helpful and methodically sound. As each study
was evaluated the overall weight of evidence was kept in mind so that any WoE strand not

achieving ‘high’ could be addressed and impact assessed.

Three of the studies included within this review were collaborations between Robert
Siegler and his colleagues, whose interest in mental number representations has generated
a large body of research on magnitude knowledge. His research suggests the mental
number line should be viewed as a common core of numerical development, and this idea
is formalized in Siegler’s Integrated Theory of Numerical Development, which details
developmental progress of the mental number line (Siegler, 2016). Developing from the
innate ‘kernel’ of representations such as the ANS, Siegler suggests more formal symbolic
coding of magnitude maps onto this discriminatory system through increasingly accurate
left to right placement of small whole numbers, larger numbers, fractions, decimals and,
from right to left, negative numbers. He suggests automated access to this structure forms
the basis of competency in most aspects of mathematics, including arithmetic, and
therefore has an important role in maths achievement. Although these ideas have been
discussed during the introduction to this review, it is helpful to revisit them here, as they
form the emerging strands of a theoretical framework within which his studies are
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positioned. This is particularly relevant in terms of Siegler’s view of the bounded NLE task
as a valid, robust measure of the mental number line construct, with the unbounded version

not developed by Cohen and Blanc-Goldhammer until 2011.

The earliest study from Siegler and Booth (2004) combined two experiments, only
the first of which is relevant here. The researchers looked at associations between
estimations on the bounded number task (accuracy and linearity) and a standardised maths
achievement test score, analysing the results of correlations for three different year groups
of children (kindergarten, first and second grade). As hypothesized, year on year accuracy
error (PAE) reduced whilst linearity (R?_;n) improved. Additionally within each year
group, PAE predicted maths achievement levels and the higher the test scores, the more
linear an individual child’s estimates were found to be (refer to Table 3 for effect sizes of
mental number line training on maths achievement across all studies). The researchers
suggest these improvements indicate a specific developmental change in understanding and
representing number magnitude, i.e. a log — linear shift. They do not conclude that this
change occurs regardless of mathematical experience, rather they point to the types of
mathematical models that support the change and begin to hint at a casual element for
maths achievement in developing a secure linear representation of number. The researchers
do not go on to consider the influence of any domain general skills may have contributed
to performance on the bounded NLE task. This is understandable as questions around the

bounded number line as a valid measure post-date this study.

Following up this hint at causality, Booth and Siegler (2008) structured a RCT where
computer generated, supportive external models of the internal number line were available
to children as they tried to ‘learn’ the answers to simple arithmetic problems (in the form
of coloured bars and circled numbers that visually illustrated calculations along a left to
right line). The support ranged from a complete visual model with verbal support, through
a less supportive process, down to the control condition where children received least
stimuli. The hypothesis focused on the use of visual external representations acting as a
mirror of the mental number line, with explicit taught strategies rehearsing how to access
the framework during problem solving expected to lead to greater calculation proficiency.
Again, using the bounded number line estimation task, PAE and R?_y were measures of
accuracy and linearity, confirming that children’s estimates were positively correlated with
existing addition knowledge and predictive of how well they could tackle novel
calculations. Looking at between group differences, the researchers found accurate, full

visual representations enhanced children’s ability to solve novel problems beyond the level
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of the group who did not receive supportive visual modelling. With the researchers relying
on the bounded number line task as an accurate measure of an internal representation, they
concluded that mental representation of number magnitude is casually related to arithmetic
learning. This conclusion may be questionable, as the nature of a ‘novel’ arithmetic
problem within this study described an addition calculation that was inaccurate at pre-test

but correct after it had been specifically trained during the intervention.

Table 3
Correlations and Group Effect Sizes of Mental Number Line Skill on Maths Achievement.

Correlation / regression between mental number Effect size of training
line task performance (bounded)and maths mental number line
achievement (where multiple achievement performance on group
measures, the addition component has been maths achievement

reported)

Seigler and Booth (2004) Kindergarten pr=-45 p<.05
Firstgrade pr= -66 p<.01
Second grade pr=-.37 p<.05

Mazzocco (2011) r’=.28 p=.030
Gunderson et al. (2012) pr=.66 p<.001
Link, Nuerk & Moeller pr=-.36 p<.05

(2014)
Aulet & Lourenco (2018)

pr=-29 p=0.041

Booth and Siegler (2008) d=1.51 p<0.01
Seigler and Ramani d=0.75 p<0.01
(2009)

Kucian et al. (2011) d=0.65 p<.01
Obersteiner et al. (2013) d=0.11 p=.533
Sella et al. (2016) d=162 p=0.002

With Siegler’s (2016) suggestion that the mental number line is a core operating
system for managing number, it is unsurprising that he continued to explore how children
acquire such a linear representations of number magnitude, and any accompanying
influence on maths outcomes. As the mental number line is made up of symbolic numerals
acquired from conventions of the mathematical environment (via mapping onto more
innate competencies), Siegler and Ramani (2009) considered experiential opportunities that
could benefit children’s mathematical progress. The researchers looked specifically at
board games, and planned an experiment with 88 pre-schoolers (M = 4y 8m) from
disadvantaged backgrounds who were reported to have had less opportunity to play these
types of games than some of their more affluent peers. They hypothesized that exposure

and familiarization with linear board games (but not circular ones) would numerical
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knowledge and facilitate the acquisition of new numerical knowledge through referencing
an improved internal number magnitude representation. This was similar to the ‘mirror’
idea from the previous study; that exposure to a replica template would encourage
mathematical gains. Specifically in this study the ‘counting on’ strategy was modelled,
with a linear format offering left to right space-number mapping practise that was not
available in a circular format. The games involved counting on in a straight line after a
throw of the die. So if a counter was at square 6 and the player rolled a 3, they would be
encouraged to say “7, 8, 9” as the counter was moved forward. Random assignment to play
board games on a linear or circular board was controlled with a third group of children who
only counted number and objects, and identified numerals. Researchers found children
who played the linear games showed significantly greater improvement than the children in
the other groups, for linearity of estimates, for number magnitude comparisons, and also
for children’s performance on the arithmetic tasks in the study. As well as looking at
results for the main hypotheses the researchers also explored the errors made by each
group, finding that more of the inaccurate answers from the linear group became ‘near
misses’ after playing with a linear board. They interpreted these results as an indication
that the retrieval structure for numerical information had been enhanced, with encoding of
magnitude becoming more precise and retrieval more fluent. They conclude by reiterating
their findings that the mental number line is a valuable framework that supports

achievement in mathematics.

Following on from Siegler and Ramani (2009), Kucian et al. (2011) identified that
children experiencing difficulties with calculation were a helpful group within which to
explore how the mental number line can support mathematics achievement. Number line
estimates of children with dyscalculia are less accurate and less linear (numerals not evenly
spaced along a scale, but compacted at the higher end) than their more typical counterparts
(Piazza et al., 2011). The researchers suggested this reflects poor mental representations of
symbolic number which in turn exerts a negative effect on arithmetic competence.
Although the study focused on measures of brain activity within specific regions, and
possible plasticity in response to training, other measures more relevant to this review are
also included such as mathematical performance and number line estimations. The 36 boys
and girls (M = 9.6; 22 diagnosed with dyscalculia) all received the same training (15 mins
a day for 25 days), at home via a computer game ‘Rescue Calcularis’ where the player
needs to steer a rocket to the exact point in a number line that matches with a symbolic or

non-symbolic stimulus. The game provided an external model of the internal left to right
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number line, with rehearsal of number points alongside corrective feedback, and was
hypothesised to improve accuracy and linearity on number line tasks (reduce PAE,
increase R%_;v), and promote mathematical gains. Some of these improvements were
found, with a notable result showing children with dyscalculia ‘catching up’ with the
control group in the linearity of their estimations. Although training significantly improved
both groups percentage of correctly solved arithmetic problems, the researchers
acknowledged that they could not assume that this was through the mechanism of an
improved mental representation of number, as practise and rehearsal may also have been
influential factors. Additionally, practise was carried out at home which raises parental

involvement as a possible influential factor on any findings.

Mazzocco, Feigenson, and Halberda’s (2011) research focused on the approximate
number system and considered whether pre-schoolers’ skills in approximating non-
symbolic number could predict future maths performance. They carried out a 2 year
longitudinal study beginning when the children were 3 to 4 years old which offers insight
into the bridge between non-symbolic representations and any that develop later, with
symbolic numerals and structures acquired from the environment overlaying the innate
systems. The researchers found ANS precision at preschool age significantly accounted for
28% of the variance in maths achievement scores at age 6, which rose to 35% when four
children, whose scores were not greater than chance on the ANS, were removed from the
analysis. This seems to suggest that even very early non-symbolic representations of

number magnitude play a role in later maths achievement.

Gunderson, Ramirez, Beilock and Levine’s (2012) were interested in identifying the
proximal link between mental representation of number and maths achievement and
focused their research around the role of spatial skill. Their research question focused on
how differences in spatial ability influences how quickly children develop a linear mental
representation of numerals, which in turn supports performance on symbolic numerical
tasks that are not explicitly spatial. This route to maths achievement was tested
longitudinally, with two specific hypotheses. Firstly, that children’s spatial skill would
predict future performance on number line knowledge (in the form of the bounded task),
and secondly that these same skills would also predict achievement within a maths task
that was not obviously spatial (but mediated by spatial ability in the form of an improved
mental number line). The researchers chose a mental rotation task as indicative of general
spatial skill, as it had been shown to be related to a variety of spatial tasks. Analysis of the

data from 42 children aged 7 showed those with better mental rotation skills displayed
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greater gains in number line estimation over time than children whose skills were poor.
Also those same skills were a significant predictor of later number line performance after
controlling for previous estimation scores and prior achievement within mathematics.
During a second study Gunderson et al. (2012) followed children between the ages of 5
and 8 years, tracking their performance on visuo-spatial skills in the form of a task that
required them to match a shape with its two components (essentially a task requiring
mental rotation and transformation). Here the results showed accuracy in approximate
symbolic calculations at age 8 could be predicted from spatial skills at age 5, and that this
was mediated by number line knowledge at age 6. This indicates mental rotation might
have a unique role in the development of the mental number line as a spatial-numerical
mapping that supports calculation. In addition, Gunderson et al., found no comparable
association when approximate non-symbolic task results were analysed. The researchers
suggest this discrepancy confirmed that the mental number line is a representation of
numerals rather than non-symbolic magnitudes, and as such is important to numerical
development and achievement. They also reflected on the approximate nature of the
calculation task (i.e. naming who had the most, rather than giving an exact total),
suggesting exploration with exact calculations could be the next step for further study. It is
important to note that this study used only 6 estimation items to secure the bounded NLE
task data at age 8 years, which is the fewest amongst the six studies that used NLE task
measures (most others using 20-25 items). This number seems particularly low to support

the validity of any findings.

Obersteiner, Reiss and Ufer (2013) base their research on the two very early number
magnitude systems (observed even in infants) which respectively allow for discrimination
of very small exact quantities and larger approximate ones. The focus on these two systems
IS unique within this review, as the other studies discuss differences in terms of symbolic
and non-symbolic factors. The researchers suggest both the exact and approximate systems
may have internal representations that are separate, and thus should be trained at an
individual level, rather than to improve a combined representation, such as the mental
number line. The study used a random controlled design with combinations of exact and
approximate training delivered via an adapted version of a computer game, ‘The Number
Race’. The 147 children aged 6 and 7 (M = 6.91 years), were shown a screen where two
quantities of diamonds were shown (verbally, pictorially or numerically) and then had to
compare the represented magnitudes, either through an approximate comparison, or

through an exact calculation. They used this number to track through a number line to the
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finish. The researchers were able to show that participant’s exact or approximate numerical
processing skills improved only in the area in which they had been trained. There was no
crossover effect which the researchers interpreted as an indication that both types of
instructional approach are necessary for optimum and flexible numerical understanding.
They also found that the effect of number magnitude training on arithmetical performance

was quite small (n? =0.003).

The research from Link, Nuerk and Moeller (2014) explored whether an accurate
linear mental number line is the basis for numerical development by studying the tools that
measure the internal construct. In response to Cohen and Blanc-Goldhammer’s (2011)
suggestion that accurate bounded number line estimations rely on proportional judgement
and place value skill rather than pure integer knowledge, they directly compared it with an
alternative; the unbounded NLE task. With no initial or final anchor points, the ‘whole’ is
not easily seen, which limits a visual chunking of the line, requiring understanding of
magnitude to be used instead (e.g., 500 is 50 units to the right of zero rather than 50 is
halfway between 0 and 100). Their findings, with regard to associations between maths
competencies and the bounded and unbounded NLE tasks, confirmed previous findings
suggesting a high correlation between bounded estimation accuracy and arithmetic skill
(Booth & Siegler, 2006; Geary, 2011; Fazio, Bailey, Thompson, & Siegler, 2014). It
surprised the researchers that this association was not evident for the unbounded task, as
this was supposed to be a purer measure of integer magnitude understanding. Additionally
the results confirmed that proportional strategies were used in the bounded, but not the
unbounded task (i.e. error variability decreased around reference points such as start,
midpoint and end for the bounded task). The researchers drew two important conclusions
from these findings. First, it is unlikely that the unbounded and bounded number line
estimation tasks assess the same underlying construct (representation of number
magnitude) as the reliability of both tasks was good. Second, as the unbounded task was
not confounded by proportional techniques, it is a more accurate measure of the internal
spatial-numerical representation. Therefore, the researchers frame a final conclusion, that if
arithmetic competency is driven by a superior mental number line, it should be the purer
measure of the mental number line (unbounded task) that more positively correlates with
maths achievement. As it does not, it cannot be inferred that the mental number line is

requisite for positive maths outcomes.

Like the Obersteiner, Reiss and Ufer (2013) study, Sella, Tressold, Lacangeli and
Zorzi’s (2016) research utilizes ‘The Number Race’, a game which allows pre-schoolers to
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engage in interactive number comparisons in non-symbolic and symbolic form. Using a
randomized controlled trial the researchers hypothesized that the basic numerical skills of
children in the training group would be enhanced, specifically that improvements in
number comparison and arithmetic would exceed any improvements in the control group.
They suggested any gains would be as a result of the reinforcement to the mental number
line that the rehearsal of number magnitude positioning within the game allowed, and used
the bounded number line estimation task as an appropriate measure of this effect. The
findings were in line with the hypotheses, as the training group demonstrated significant
large reductions in the percentage absolute error made on the number line tasks when
compared to the control group. There was also a significant large enhancement of basic
mental calculation skills for the intervention group over the control. During the discussion,
the researchers reflected on the positive effect of computer game play that models the
mental number line as a problem solving framework and how this practise may have driven
the gains. Unfortunately they did not address any implications of using the bounded NLE
task in preference to the unbounded task, such as the possibility that video game play may
have enhanced visuo-spatial skills that support proportional judgements, which in turn

benefitted number line estimations.

Aulet and Lourenco’s (2018) study conjectured that the directionality of the number
line could underpin ‘operational momentum” which is the spatial-directional biases
associated with moving towards the right and left for addition and subtraction respectively.
Using two SNA tasks to explore this idea (one symbolic using numerals, and one non-
symbolic comparing dot-arrays); they hypothesised that if both tasks relied on a directional
mental number line, then they should correlate with each other. Additionally, they explored
any correlation with maths achievement, assessing the 5 to 7 year olds skills in addition
and subtraction using three tasks; a symbolic exact task (numeric calculations), a symbolic
approximate task (verbal presentation of addition / subtraction problems requiring a
comparison to identify ‘more’) and a non-symbolic approximate task delivered across two
modalities (sight and sound). The researchers noted a significant correlation between
performances on the two SNA tasks which they took as evidence for a robust left to right
mental number line upon which children drew during the tasks. The other main finding
was a significant negative correlation between the magnitude comparison task (the non-
symbolic SNA) and the approximate cross-modal arithmetic task (ACA task), which is a
task using visual dots and audible tones to represent individual units within simple addition

and subtraction problems. It also uses concealed images to encourage the children to
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reference their own representation of number before their answers are visually revealed.
This task allowed the researchers to support calculation across modalities, increasing the
children’s access to each test item. The researchers concluded that in light of the body of
evidence that positively links the mental number line to maths achievement, it was unlikely
that their finding of a negative correlation (i.e. those with stronger magnitude comparison
skills performed worse on the ACA maths task, after controlling for age and general
cognitive factors) implied the mental number line impeded maths performance. Looking
for another explanation, they surmised that the ACA task engaged the children to such an
extent that they found it difficult to inhibit a response until the full item was revealed, thus
leading to inaccurate responses and a negative correlation. Although this study added
evidence supporting links between spatial-numerical associations (SNAs) and a left to right
directional mental number line, it did not demonstrate any positive relationship between

this same line and early maths proficiency.

1.4 Discussion

1.4.1 Summary of Findings and Conclusion

The ten studies included within this review explored the relationship between
children’s mental representation of number and maths achievement. At the heart of the
research is a key question about how children learn to encode number in a symbolic
framework within which they can successfully operate mathematically. The studies build
on the premise that innate non-symbolic SNAs intuitively support the development of a
symbolic mental representation of number that is spatial i.e. a schematic representation
where position in space is an essential element of how number magnitude is
conceptualized. Each study then explores how these developing symbolic mental
frameworks may be acquired from the environment, either through interpretation of
significant correlations between associated factors, or through specific training that may
enhance the development of mental representations. All consider the relevance of their

findings with respect to wider mathematical outcomes for the individual.

The quality of any internal frameworks that develop are difficult to evaluate and this
review has highlighted the continuing reliance on, and preference for, the bounded NLE
task as the most relevant measure, despite some early indications that the unbounded NLE
task may be more precise. The unbounded task has only been referenced once amongst the

six studies that post-date it (Link, Nuerk and Moeller, 2014) and this may be problematic
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for any conclusions this review draws, as any evidence base may be confounded by the use
of a measure that has suspected reduced validity. Three of the studies avoid this difficulty
by using measurement tasks that purport to assess the ANS and exact number systems (e.g.
non-symbolic magnitude comparisons and subitizing). However, this too might be
considered problematic in light of research that suggests these early innate non-symbolic
systems are subsumed by later symbolic ones, with correlation coefficients between
performance on these types of tasks and maths outcomes decreasing with age (presumably
as they have limited application for calculations involving large numbers; Cipora & Nuerk,
2013). Despite these concerns, the majority of studies refer to the large body of evidence
detailing the bounded number line as robust and therefore the reviewer remained mindful

of this confidence when making quality assurance decisions.

Overall the findings of this review reveal that the relationship between a child’s
mental representation of number and their maths achievement is an important one,
particularly in the early years as they begin to transfer their understanding of number
magnitude from non-symbolic to symbolic representations. Specifically three key findings
will be discussed; the mental number line as a linear framework for early understanding of
number; approaches that successfully support the acquisition of a linear representation of
number; and aspects of mathematics influenced by mental representation of number

including the size of any effect.

The studies’ participants were aged from 4.5 to 10 years old with children across this
age range demonstrating improved performance on the mental number line (PAE, R?_y or
both) in all of the five studies that offered training to promote mathematical achievement
via gains in mental representation of number. These improvements in accurate
representation of integer magnitude (e.g. 10 is 10 units to the right), including the gradual
developmental move from a logarithmic pattern to a linear one, were demonstrated across
age and maths abilities. Collectively these findings suggest a left to right number line is a
common internal framework within which children represent number magnitude. Results
from Kucian et al. (2011) and Siegler and Ramani (2009) support this conclusion,
recruiting groups that had less established mental number representations and deficits in
number knowledge so they could directly explore effects of exposure to external models
that were linear. Using trainings that rehearsed a left to right linear representation of
number, the researchers were able to show how children’s mental models improved
alongside mathematical gains. The researchers also suggested that the rapidity with which

improved representations were acquired suggested linear symbolic representations were a
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natural mapping from innate spatial-numerical left to right associations, and more helpful
than, for example, circular representations. Gunderson et al. (2012) specifically states that
as only symbolic maths task performance at age 8 could be predicted by number line
estimates at age 6 (with no such association with non-symbolic task performance) the
mental number line is likely to be a representation of numerals. This ideas is supported by
Siegler and Booth (2004), Booth and Siegler (2008) and Siegler and Ramani (2009), who
suggest placement of integers comes first, followed by fractions, decimals and then
negative numbers when the child is developmentally ready to represent them along the

same line.

All five studies that delivered training used approaches that were direct models of
mental representation of number in the form of a left to right number line. Gains in
performance on the number line estimation task were noted in every group that received an
intervention, with four of the five producing small to medium significant effect sizes over
the control groups. Four trainings were computer based, while the approach that generated
the largest effect on estimation accuracy and / or linearity was the linear board games
devised by Siegler and Ramani (2009). Training was particularly helpful for groups who
may have experienced difficulties acquiring a mental representation of number, as
demonstrated by the children with dyscalculia whose linearity performance on the bounded
NLE task caught up with the control group without dyscalculia (Kucian et al., 2011).
Increased rates of progress were not seen in their maths achievement tests but the
researchers point to the short study time which if lengthened, may have had a larger effect.

The final key finding focuses on aspects of mathematics influenced by mental
representation of number and the size of any effect. Although the inclusion criteria for this
review did not limit mathematical achievement to only one measure, arithmetic was
identified as a necessary element for mathematical competency, as calculation skills have
been shown to significantly contribute to maths achievement outcomes (Cowan et al.,
2011). This is not to suggest that representations of number magnitude cannot be
supportive of other competencies and indeed some of the studies included in this review

focused on skills such as counting and numeral identification, alongside arithmetic.

Looking first at associations, the majority of the studies found medium to strong
correlations between arithmetic tasks and PAE or R? . However not all studies found
these associations, with Link et al. (2016) finding no correlation between the unbounded
NLE task and arithmetical competencies and Gunderson et al. finding bounded NLE tasks

only correlated with symbolic arithmetic tasks and not non-symbolic ones. Both of these
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results are interesting as they seem to counter the overall trend in the findings showing
accurate number line estimates positively correlate with performance on arithmetic. The
lack of a positive correlation between the unbounded NLE task estimates and arithmetic
scores is interpreted by Link et al. (2014) as evidence that the mental number line is not
necessary for arithmetic competency. This is based on the premise that the unbounded task
Is a purer measure and should therefore show a stronger correlation. However, this
interpretation seems a little “all or nothing” and is not followed up by any nuanced
discussion around limitations (e.g. the sole use of PAE as a measure of accurate estimates,
without the inclusion of R?_y analysis). The discrepancy Gunderson found (symbolic
arithmetic tasks positively correlating with estimation accuracy whilst non-symbolic did
not) is easier to explain. The finding supports rather than challenges the notion of an
association between the mental number line and maths achievement if it is accepted that
the mental number line itself is a symbolic representation where numerals and space
combine to reflect magnitude relationships. Two studies looked at the predictive power of
mental representations of number, with Mazzocco et al. (2011) finding preschool precision
on the approximate number system significantly predicted maths performance (r*=.278)
and Gunderson et al. (2012) finding children’s number line knowledge at 6 predicted their

performance on an approximate symbolic calculation at age 8.

Looking at group differences in response to training (over the control group) only
two studies out of the six found a significant effect on maths tasks with an arithmetic
element. The effect sizes were large (Hedges g.=1.58 and Cohens d= 1.51) and were
accompanied by significant medium effects on number line estimation performance.
Looking at these two effects in detail, the first was obtained from 45 pre-schoolers’
performance on six single digit addition and subtraction problems pre and post training via
the intervention of the computer game ‘The Number Race’ (Sella et al., 2016). The second
was from 105 seven year olds who received direct training on the four of 13 single and
double digit addition problems that had been answered least well at pre-test. Their training
was also computer based and used visual coloured bars to rehearse the use of the mental
number line as a supportive tool for calculation (Booth & Siegler, 2008). Although these
effect sizes are discussed in the context of being larger than produced by the other studies,
it may be helpful here to keep in mind Simpson’s (2017) observation that any comparison
of effect sizes should be made with due caution, as they are open to researcher
manipulation at the time the study was designed, carried out or during interpretation of

findings.
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Even though there is evidence of positive correlations between mental representation
of number and maths achievement across age, and support for training approaches that
promote the acquisition of an accurate mental number line, the findings within this review
do not add conclusive evidence to the idea that mental representation of number is a
cornerstone of more advanced mathematical operations. However, taken together these
findings do appear to show that the influence of mental representation of number on maths
achievement is evidenced at an early stage of single digit integer operation, and mainly
through addition, with a few researchers also including evidence for links with subtraction
and multiplication (e.g. Kucian et al., 2011). The findings also show that groups who were
less likely to develop an early secure linear representation of symbolic magnitude, and who
appear to experience associated difficulties in making expected progress within arithmetic,
can benefit from a rehearsal type training model that closely replicates a linear

representation of number in the form of a mental number line.

1.4.2 Strengths and Limitations

It has been a strength of this systematic literature review that the search yielded
studies of a reasonable quality. All were found to have a medium to high overall rating,
with none being judged as low. This, in part, was due to the robust process of identifying
and quality assuring the articles. This review was not limited to work published in journals,
and a variety of dissertations and other grey literature were screened for suitability. In
addition, the selected articles were international and representative of research taking place
in a variety of cultural environments. Finally, the review brings together studies from
different fields of research, including contributions from cognitive psychology, education,

and researchers with an interest in neuroscience.

To operationalise the review question it was necessary to limit factors which may, on
reflection, have yielded helpful information. The key limiting factor has been the focus on
integers, with the exclusion of fractions and negative numbers possibly skewing the
findings on the impact of mental representation of number on maths achievement. This
also prevented a more longitudinal overview of the development of mental representation,
where new numerical information is assimilated within a current framework over time.
Additionally the choice of search terms may have created a bias towards the mental
number line as the main type of representation, as it has been noticed during the course of
the review that some types of internal representation of number were not identified in the

initial search (e.g.in the form of an abacus; Frank & Barner, 2012).
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Aside from the limitations of the review process itself, consideration must also be
given to the limitations arising from an attempted synthesis of a group of studies that
operationalise their research through diverse methodology. The question around the
validity of the bounded NLE task has already been discussed, with the reviewer concluding
that there is enough evidence to accept the view that the task does (to some extent)
measure what it sets out to measure; the precision of the mental number line. However, this
judgement may be open to question as further research explores the claim that the

unbounded task might be a purer measure.

Similarly, operationalising the construct of mathematical achievement might be
considered a limitation, as different researchers have used contrasting measures. Six of the
studies used a standardised test, or sub-test, to determine maths competency, none of which
were the same due to the different ages of participants and varying locations. These types
of test were mostly used for correlation purposes and considered less sensitive for
measuring any mathematical gains after a short training period. Instead, the training studies
focused mostly on any benefits to calculation skills, with measures created by the
researchers. For example Booth and Siegler’s (2008) study found a significant effect size
over the control group for maths improvement after mental number line training, yet the
post intervention maths assessment consisted of single digit addition items that had been
used during training. This type of measure can be contrasted with Obersteiner, Reiss and
Ufer (2013) who used 16 novel addition and subtraction items to establish any gain. These
discrepancies may have limited the reviewer’s attempt to compare effects and also made it
difficult to establish a consensus regarding the type of new learning that illustrates

mathematical progress.

15 Recommendations

151 Implications for Educational Psychologists

This systematic review has identified helpful areas of focus for Educational
Psychologists who are working to support school staff help children overcome barriers to
acquiring skills for numeracy. Sharing understanding about early, more innate number
magnitude skills might be a useful starting point for discussion, as a hypothesis woven
through the findings from this review suggests difficulties arise when symbolic
information around number is not carefully mapped onto this early framework. Discussions

that identify a child’s skill with non-symbolic number may give insight into
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misconceptions that have developed around symbolic number, which, if left unresolved,

may be problematic for more advanced arithmetic.

Additionally this review has confirmed that the left to right mental number line, as an
accepted way of representing number magnitude in the mind, is a useful model that helps
children encode, manipulate and recall information. Even if the mental number line is only
borrowed from an external model acquired from the environment (i.e. not innate or
mapped onto early intuitive spatial-numerical associations) the current findings have
shown it to be a helpful tool within which to perform arithmetic, with children making
some progress when they use it. It is also a model which provides a schema that can
expand to encompass further mathematical number magnitude concepts, such as fractions
and negative numbers. Educational Psychologists can promote this model as a useful tool,
where rehearsal of placing numbers in a linear format aids understanding of the
relationship between numbers (linearity) and place value.

The findings will also allow Educational Psychologists to draw on an evidence base
to recommend the types of interventions that support children acquire an accurate mental
representation of number that can contribute to achievement in mathematics. Computer
games appeared to be effective in modelling the number line, but a stand out intervention is
the use of a linear board game which promoted an improved mental number line and
significant gains within addition. Recommending time playing with games such as Snakes
and Ladders, and other homemade games in a linear format, is a cost effective intervention.
As a multisensory experience it also links to Kosslyn and Pomerantz’s (1977) emphasis on
multiple senses facilitating an enriched encoding process as it involves kinaesthetic
(moving the counter along the line from left to right), auditory (counting on) and visual

elements.

In summary this systematic review points to six clear implications for Educational

Psychologists.

e  When exploring children’s difficulties with maths it is important to backtrack
to assess early non-symbolic number magnitude skills as these influence later
symbolic performance.

e As misconceptions about number are likely to stem from a confused
representation of number magnitude, it will be helpful to use concrete

materials to allow pupils to demonstrate any internal frameworks they have
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created. Having the opportunity to externalise internal understanding will
give insight into aspects of number magnitude that may need to be revisited.
It is important for Educational Psychologists to work from the premise that
the left to right mental number line is a helpful way of representing number
magnitude in the mind, and should be promoted as a useful model that helps
children encode, manipulate and recall information.
The left to right mental number line is a representation that can be acquired
by direct modelling and is particularly helpful for children between 5 and 8
years who have not had experiences that would help develop such a model
e.g. by playing linear board games.
Interventions that are particularly effective in supporting the development of
a mental number line that can contribute to achievement in mathematics
include games that explicitly model and rehearse number magnitude
placement. Both computer representations and board games are effective in
achieving these gains, with linear board games such as Snakes and Ladders
proving most cost effective. It is important to encourage children to count on
when taking a turn, e.g. if a 2 is rolled and the counter is on 16, the child
should verbalise “17, 18
Educational Psychologists should keep in mind that evidence in this review
suggests the mental number line as a schema that may expand to encompass
further mathematical number magnitude concepts, such as fractions and
negative numbers. This may prove useful when supporting older pupils

experiencing difficulty with more advanced number concepts.

Despite the positive findings within this review, Educational Psychologists should

also be mindful of the limitations, which point to these interventions being more suitable

for younger children, or children in primary school who are struggling with number

concepts. Although this review has not included participants who are over ten years old,

the information here can help inform understanding of the developmental basis of number

magnitude, and this should prove useful to Educational Psychologists when involvement is

requested to address difficulties in numeracy.

Future Research

It is surprising that although six of the studies post-date the Cohen and Blanc-

Goldhammer (2011) research suggesting the unbounded NLE task as a possible purer
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assessment of number magnitude, only one of the studies uses it as a measure. It seems
important then that claims about this task are explored further, with future research into
mental representations of number at least including both types of task so comparisons can

be made.

Additionally, at the root of the discussion around the bounded and unbounded NLE
tasks as measures of number magnitude representation is the idea that the bounded task
uses visual proportional skills to determine accurate placement of estimates. This is
Interesting as there is a large body of research that shows visuo-spatial skills themselves
are positively correlated with maths achievement (Alloway & Passolunghi, 2011; Meyer,
Salimpoor, Wu, Geary, & Menon, 2010; Delgado, & Prieto, 2004; Rasmussen & Bisanz,
2005; Carlson, Rowe, & Curby, 2013; Mix & Cheng, 2012). Included within this review is
an article exploring whether these spatial skills may be an influential link between mental
representation of number and maths competence. Gunderson et al. (2012) explored the
hypothesis that children’s spatial skill would predict future performance on number line
knowledge which in turn would predict calculation competence, and found that spatial skill
likely benefits numerical knowledge by supporting the acquisition of a linear spatial
representation of numbers. Therefore, it may be helpful to further explore these links to
establish the extent to which spatial skill influences performance on the number line task.
For example, a design exploring group differences, where spatial training is an intervention
used to establish any gains in precision of participant’s estimates might add insight into
exactly what the bounded NLE task measures. The type of spatial training would have to
be carefully considered, particularly as it has not been described as a unitary construct
(Uttal et al., 2013). This type of research may also be a stepping stone that informs the
wider picture, for the accuracy of Gunderson et al. (2012) assertion that spatial skills act on
maths achievement via enhancing the mental number line may be questionable, particularly
as she only used the bounded NLE task, which itself is suspected of being confounded by
spatial skill. A spatial training intervention employing both NLE tasks might generate
findings that further unpick the role of spatial skills so that researchers can more fully
understand the relationship between children’s number line estimations, mental
representation of number magnitude, and maths achievement. In chapter 2 this idea is

explored through a randomised controlled design using just such an intervention.
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Chapter 2

Chapter 2 The Relationship Between Children’s
Number Line Estimations and Maths Achievement:

The Contribution of 3D Mental Rotation Skills.

2.1 Introduction

Research on how children develop competency within mathematics has focused
on early number skills, with ongoing investigation into what these skills look like, the
extent to which they build on innate or acquired models of understanding, and how
best they can be fostered during teaching and learning (e.g. Shanley, Clarke, Doabler,
Kurtz-Nelson, & Fien, 2017). Awareness that maths achievement contributes to life
chances of the individual is a key driver for research (Williams, Clemens, Oleinikova
& Tarvin, 2003). In addition early maths competence is also set within a wider context
where young people’s mathematical performance is nationally graded (Ofsted, 2015),
internationally ranked (OECD, 2014), and where employers voice concerns over
mathematical abilities of school leavers (Education and Training Foundation, 2016).

Spatial skills predict mental representation of number magnitude and math
achievement, and mental representation of number magnitude predicts math
achievement. Chapter 1 considered the association between mental representation of
number magnitude and math achievement. Chapter 2 considered the association
between spatial skills and mental representation of number magnitude. In addition
Chapter 2 considered all three of the concepts in the conceptual model and the

relationships between them.

2.1.1 Domain Specific Number Magnitude Skills

Research suggests the earliest number skills are innate (Strauss & Curtis, 1981; van
Loosbroek & Smitsman, 1990; Xu & Spelke, 2000). Butterworth (2005) used the term
‘number sense’ to identify this intuitive capacity for processing number. Very young
infants have shown recognition of non-symbolic number magnitude, and an ability to
visually discern between groups of objects of varying quantities (Strauss & Curtis, 1981,
van Loosbroek & Smitsman, 1990; Xu & Spelke, 2000). It is thought that two cognitive
systems underpin these skills, the parallel individuation system which is triggered to track
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individual items when there are fewer than 4, and the Approximate Number System (ANS)
that perceptually estimates difference between larger quantities (Piazza, 2011; Gallistel &
Gelman, 2000). These abilities seem to be domain specific to mathematics. Number
magnitude then, appears to be a construct for which humans are primed and has a central
place in symbolic maths schema, supporting understanding of counting, number relations,

number operations and basic arithmetic.

2.1.2 Maths Competence and Domain General Factors

An alternative explanation for number competence highlights the role of domain
general abilities, including individual differences in working memory, long term memory,
processing speed, metacognitive capacity, phonological skills, and visuospatial processing
(Krajewski & Schneider, 2009). Amongst these skills, visuospatial expertise has received
much attention, being consistently linked with high achievement in maths (Alloway &
Passolunghi, 2011; Meyer, Salimpoor, Wu, Geary, & Menon, 2010; Delgado, & Prieto,
2004; Rasmussen & Bisanz, 2005; Carlson, Rowe, & Curby, 2013; Mix & Cheng, 2012).
These types of research evidence that spatial skills support not only visual tasks such as
geometry, measurement and symmetry, but also benefit other areas of mathematics,

including number tasks.

2.1.3 Number and Space

Domain specific early number magnitude skills have been shown to link with domain
general visuo-spatial abilities as they are both involved in spatial-numerical associations
(SNAs; Siegler & Opfer, 2003). SNAs are evidenced through behavioural phenomena
present in infancy, childhood, and also in adults. One example is the Spatial-Numerical
Association of Response Codes, or SNARC effect, where small numbers are more
associated with the left hand side and larger numbers with the right (Dehaene, Bossini, &
Giraux, 1993). As with ANS abilities, the SNAs are thought to be intuitive, and their
presence has given rise to a widely held view that number magnitude is symbolized
internally as a left to right mental number line (Dehaene, et al., 2004; de Hevia, & Spelke,
2009). In Siegler’s (2016) Integrated Theory of Numerical Development, he surmises that
the development of the mental number line occurs as symbolic information is mapped onto
the ‘innate kernel’ of early intuitive capacities such as the ANS. This internal

representation becomes increasingly accurate, with the placement of small whole numbers
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(as symbols for number magnitude) followed by larger numbers, fractions, and then
negative numbers as the child becomes developmentally ready for each scale. This theory
is in line with Case and Okamoto’s (1996) view, that the mental number line is referenced
as a spatial framework for problem solving and that automated access to this structure
forms the basis of proficiency in most aspects of mathematics. However, not all
researchers conclude that maths competency relies so heavily on such a hardwired internal
representation, particularly when calculation involves numbers other than small integers
(Schneider, Grabner, & Paetsch, 2009; Nafez, 2011). Instead they consider the influence
of external spatial models often used within the classroom, such as left to right number
lines supporting counting and ordering, and the Cartesian plane to symbolise direction and
magnitude. NUfiez (2011) suggests these types of models impact maths achievement not by
enhancing a matching innate model that is already present, but through facilitating
understanding through domain general mechanisms, such as building up conceptual
mappings of taught information, activating imagination and providing memory hooks that

facilitate information retrieval.

214 Number Line Estimations

By their nature, the form and quality of internal representations are difficult to
describe and assess. The accepted measure that reflects the precision of the mental number
line is an external representation called the number line estimation task (NLE task; Siegler
& Opfer, 2003). The NLE task involves placing numbers on a line where the only stimuli
are the initial and final numbers within a set scale along a left to right plane (the bounded
NLE task). Researchers have consistently found that younger children place numbers in a
logarithmic arrangement (large numbers compressed) while older children tend to produce
a more linear placement with distances between numbers more equal along the line (Booth
& Siegler, 2006; Opfer & DeVries, 2008). Siegler, Thompson, and Opfer (2009) suggested
this ‘log-linear shift’ occurs more than once, with estimates becoming more linear as each
scale becomes familiar (e.g. 1 to 100 will produce linear estimates before 1t01000). This
shift has been interpreted as a marker for improved conceptual understanding of number
magnitude, especially as improved accuracy of estimates (percentage absolute error; PAE)
and linear performance (relationship between estimated position and actual position; R
Loc /R? Lin) has been shown to positively correlate with maths achievement (Booth &
Siegler, 2006; Fazio, Bailey, Thompson, & Siegler, 2014; Geary, 2011; Booth & Siegler,
2008; Muldoon et al., 2013; van den Bos et al, 2015).
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2.15 The Influence of Spatial Skills

With early links between space and number evidenced by SNAs and a proposed
mental number line that combines spatial direction with magnitude, it seems reasonable to
suggest that spatial skills are likely to impact on maths achievement. Research has
consistently found that visuo-spatial skills correlate with and predict general maths
performance (Alloway & Passolunghi, 2011; Meyer, Salimpoor, Wu, Geary, & Menon,
2010; Delgado, & Prieto, 2004; Rasmussen & Bisanz, 2005; Carlson, Rowe, & Curby,
2013; Mix & Cheng, 2012). However, visuo spatial skills are not described in the literature
as a unitary construct. Linn and Peterson (1985) identified spatial visualization, spatial
perception and mental rotation as three distinct elements of spatial skills, while Carroll
(1993) distinguished only two; visualization and orientation. Through a largescale meta-
analysis Uttal et al. (2013) suggested a more nuanced third model, a 2 x 2 framework,
differentiating between intrinsic and extrinsic skills employed in either a dynamic or static
context. 3D mental rotation skills, which involve both intrinsic (within one object,) and
dynamic (moving) factors, have been identified as highly influential to maths achievement.
Examples of this finding include research from Verdine et al. (2014) who reported
intrinsic-dynamic spatial ability in 3 year olds predicted performance on the problem
solving subtest of the Wechsler Individual Achievement Test (WIAT) at age 4. Similarly,
Gilligan, Flouri and Farran’s (2017) findings, based on data from over 12000 participants,
reported intrinsic-dynamic spatial skills accounted for a significant proportion of the

variance in children’s mathematics achievement.

In trying to find out more about these associations, an initial focus of research was to
establish the malleability of spatial skill, to find if training a specific spatial skill would
improve it, with any gains sustained over time. Uttal et al. (2013) conducted a
comprehensive review of 217 studies that had used spatial interventions to train children,
adolescents or adults; concluding that spatial skills do benefit from direct and indirect
training (e.g. direct practice with tasks that are spatial, or playing video games). Those that
received the most benefit were those with poorer skills at the start, with the effect being
moderately large and relatively persistent over time. These effects were not limited by age,
gender or type of training, as demonstrated by de Lisi and Wolford (2002) who studied
effects of video game training on children under 13; and Edd (2001) who assessed the
impact on adults spatial skills when they were given increased opportunities to rotate and
handle 3D models. In addition, improvements in certain spatial skills transferred to other

non-trained spatial skills (e.g. the use of Logo, a small programmable floor robot that can
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follow directional instructions, improved children’s performance on a mental rotation test;
Eikenberry, 1988). This raises the question whether training a spatial skill can benefit a

maths competence that is not overtly spatial, e.g. a calculation task.

Research exploring the impact spatial training exerts on a non-spatial tasks is limited,
with initial studies focusing on adult participants. Hsi, Linn, and Bell (1997) found
improvements in undergraduates’ performance on tasks in their engineering course after
participating in spatial training. Attendance at the intervention was voluntary, and this
suggests those students benefitting may already have had a greater motivation to achieve
than the ‘control’ group. Other similar studies using undergraduate participants have found
similar effects (e.g. Sorby, 2009; Sorby, Casey, Veurink, & Dulaney, 2013). The findings
from research with children began with Cheng and Mix (2014) reporting a significant,
though small (d = 0.20), effect of spatial training on the basic arithmetical ability of 58
children aged 6 to 8 years. The intervention involved a single 40 minute session of
rehearing mental rotation and translation tasks, and was found to have most effect on
‘missing term’ calculations. Despite this positive start, subsequent studies have found no
such effect with Hawes, Moss, Caswell, and Poliszczuk (2015) finding mental rotation
training did not impact on arithmetical ability of a group of primary school children.
Similarly, Xu and LeFevre (2016) compared the effects of numerical sequential training
with spatial training on 84 children aged 3 to 5 years old. After a single session of training
identifying constituent parts of different shapes, it was reported that spatial training did not
enhance performance on number ordering or accuracy of estimates on a bounded number
line task, even though spatial skills were correlated with performance on these tasks. It
may be that these are examples demonstrating that very brief spatial training is not
adequate to promote transfer to a more general maths competence, or that the type of
training used did not employ the spatial element that would be most effective in improving

mathematical performance.

With limited evidence that improving spatial competence can improve performance
on calculation, but with robust evidence that the two are correlated (Alloway &
Passolunghi, 2011; Meyer, Salimpoor, Wu, Geary, & Menon, 2010; Delgado, & Prieto,
2004; Rasmussen & Bisanz, 2005; Carlson, Rowe, & Curby, 2013; Mix & Cheng, 2012),
it is interesting to reflect further on the links between number and space, particularly with
reference to the mental number line that is reported to integrate domain general and
domain specific factors. SNAs suggest visuo-spatial skills are integral to the development

of a left right linear representation of number magnitude, a domain specific cognitive
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construct, yet spatial skill has been identified as a domain general cognitive skill. With
these two factors coming together in the mental number line, it is surprising that there is
such limited evidence of their impact on each other. This also raises a question about the
tool that measures the mental number line. If accuracy on the bounded NLE task employs
general cognitive skills, including spatial ones, then the measure may not be assessing pure
number magnitude understanding, a domain specific skill. Researchers exploring strategies
used to complete the bounded NLE task have identified possible confounding factors,
specifically the use of proportional reasoning skills, where the estimate is made by visually
dividing up the line using the start, middle and end of the line as anchor points (e.g. Barth
& Paladino, 2011; Rouder & Geary, 2014). The use of a strategy based on visuo-spatial
skills questions the validity of the bounded NLE task as a measure of pure integer
estimation and this is why the introduction of the unbounded NLE task may be helpful, as
it removes the final anchor point in an attempt to prevent the ‘whole’ being seen and visual
proportional judgements being made. However, with or without the anchor points, the full
extent to which visuo-spatial skills exert an influence on performance is not yet clear,
firstly because spatial factors are closely linked with the formation of the mental linear

framework, and secondly because spatial skill is not thought to be a unitary construct.

2.1.6 The Role of Mental Rotation Skills

It seems then that spatial skills (particularly 3D rotation skills) may support maths
competency across domain specific and domain general processes, although exploration
into exactly how spatial skill acts on maths outcomes is ongoing. Hubbard, Piazza, Pinel
and Delaene (2005) identified that neural networks for spatial and numerical processing
partly overlap and this lends support to the idea that spatial-numerical links are important
for maths competence. Gunderson, Spaepen, and Levine (2015) explored this relationship
finding that children’s spatial skill (2D mental rotation and transformation ability)
predicted future performance on number line knowledge which in turn predicted
calculation competence, suggesting that spatial skills act on maths achievement via
enhancing the mental number line. Similarly, Thompson, Nuerk, Moeller and Cohen
Kadosh (2013) found the 3D mental rotation skills of adult participants significantly
influenced performance on a bounded NLE task. LeFevre et al. (2013) undertook a
longitudinal study with over 500 children from 5 to 9 years to explore how visuo-spatial
skills, number line estimation and mathematical achievement interact. Moderate,
significant correlations were found between spatial ability and number line task
performance, arithmetic, and number system knowledge. In addition spatial ability
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predicted growth in number line knowledge. However, it would have been interesting to
see if these correlations remained if the unbounded NLE task had been used, yet only the
bounded task was employed to assess performance. In addition there was no evidence to
support Gunderson, Spaepen, and Levine’s (2015) finding that performance on the NLE
task predicted growth in arithmetic knowledge. As the spatial measure was composed of
different elements including visuo-spatial working memory, mental rotation, and
analogical reasoning, LeFevre et al. (2013) suggests further research would benefit from

more focus on individual components, to help identify the relevant relationships.

2.1.7 Rationale for this Research

There is much evidence that both the bounded NLE task and spatial skills correlate
with achievement in mathematics. Currently much of the research studying links between
spatial skills, performance on the bounded NLE task and maths achievement has focused
on predictive relationships, with less exploration into any casual factors. In addition, there
Is some speculation, although with limited evidence, that spatial skills influence maths
achievement via enhancing precision of the mental number line, as measured by improved
performance on the bounded NLE task. Any influence on the mental number line is
important, as it is a framework purported to support understanding of number magnitude, a
foundational concept within mathematics. However, the extent to which spatial skill
influences the mental number line is not clear, particularly as spatial skill is not a unitary
construct. Evidence points to 3D rotation skills being the component of spatial skill most
associated with maths achievement and therefore this skill is of interest in relation to any
effect it may have on the mental number line and its associated metric, the bounded NLE
task.

Building on findings in Chapter 1, where the association between mental
representation of number magnitude and math achievement was evaluated, this chapter
aims to further consider how spatial skills predict mental representation of number
magnitude and math achievement, and mental representation of number magnitude predicts
math achievement. Therefore Chapter 2 will focus on the association between spatial skills
and mental representation of number magnitude and the relationship between all three of

the concepts in the conceptual model.

This research will offer an opportunity to replicate some of the correlations
previously found in this field of study. In addition, using a randomised controlled trial, this
study will follow recent research that has investigated how the mental number line
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responds to training of 3D spatial skills, helping to contribute to the body of research
exploring links between spatial ability, representation of number magnitude, and
achievement in mathematics (Cheng & Mix, 2014; Hawes, Moss, Caswell, & Poliszczuk,
2015; Xu & LeFevre, 2016).

As this research is focused on any effect spatial training might have on the mental
number line, it is important to respond to concerns that the bounded NLE task may not be
the best measure of pure integer estimation. If, as suspected by some researchers, it relies
on proportional reasoning underpinned by visuo-spatial skills, there is a possibility that
findings may be confounded. To address this issue the unbounded NLE task will be used as
an additional metric, alongside the bounded NLE task. This task is similar to the bounded
task but has no anchor numerals that support the ‘whole’ being seen and proportional

judgements being made.

2.1.8 Research Questions

This study addresses the following research questions:

e Are 3D spatial skills and performance on bounded and unbounded NLE
tasks reliably correlated with maths achievement?

e Does training 3D spatial skills improve 3D spatial ability and are changes
sustained over time?

e Does training 3D spatial skills improve precision of the mental number line,
as measured by bounded and unbounded NLE tasks?

2.2 Method

2.2.1 Design

Using a mixed design with random assignment, quantitative data from the
intervention and control groups was gathered over three time intervals. The intervention
was 3 weeks long, with 10 school days of intervention followed by a rest week to establish
any persistent effect. This duration was chosen for practical reasons to fit with school
timetables, but also to reflect the typical parameters noted for interventions in Chapter
1(e.g Obersteiner, Reiss and Ufer, 2013) where the average was approximately twelve 15-
20 minute sessions, most often delivered daily. The between participants variable was a
computer based spatial intervention delivered across training sessions, each of 15 minutes
duration. The two dependent variables were 3D spatial scores, and precision of estimations

across the bounded and unbounded NLE, with measures taken pre, post and one week after
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training had finished. Additionally, maths achievement scores were collected for
correlation purposes, with the intention of replicating associations found by previous

researchers.

2.2.2 Participants

To establish the optimum number of participants for this study a power analysis
(where 1- Beta = 0.95, alpha level = 0.05 and n 2 = 0 .14) was conducted using G*Power
(Faul et al. 2007). This analysis suggested a sample size of 82 participants. The effect size
(m?=0.14, p = 0.005) for this calculation was taken from Cheng and Mix’s (2014)
research as it was assessed to be the most relevant to the proposed study. It used a mixed
design with two randomly assigned groups of junior school aged children participating in
spatial training or control activities, to establish any effect on maths performance. Cheng
and Mix (2014) collected data across three time points using an analysis of variance

(ANOVA) for analysis whilst controlling for prior maths achievement.

Children over 8 years have been shown to achieve reasonable accuracy and linearity
when making estimations on a bounded 0 t0100 number line (Siegler & Booth, 2004) but
find the unbounded task more difficult (Kim & Opfer, 2017). As both were to be used in
this study, Year 6 pupils were targeted as appropriate participants as they are over 8 years
and because they also take externally moderated mathematics achievement tests which are

standardised across the national cohort.

In line with the power analysis described, and after obtaining all necessary ethical
approval via Southampton University, an initial 98 participants aged 10 and 11 years were
recruited from 6 state primary schools within Hampshire. Recruitment was via an email
approach to 18 schools, followed by personal phone calls to each head teacher. As one of
the schools (21 children) were unable to schedule full training sessions they agreed to be a
pilot, with initial data and procedures being evaluated before commencing the full study.
The remaining 77 participants (M = 10.5 years) consisted of 34 boys and 43 girls of mixed
ability, with 37 in the intervention group and 40 in the control condition. Data from all 77
participants gathered during the initial visit was used for correlation analysis. However, six
participants were excluded from group analyses due to missing data (six or more test items
on one of the NLE tasks not completed) or absence (three or more training sessions
missed). In addition, the data from one participant repeatedly appeared as an extreme
outlier during analyses. Further investigation found this participant to have severe special
educational needs and so this data was only included for correlation purposes.
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223 Materials
2231 Measure of 3D Mental Rotation Skill

Skill in 3D mental rotation was measured using a computer based assessment tool
adapted by Bokhove and Redhead (2017) which Ganis and Kievit’s (2015) had redesigned
from a mental rotation skill task originally created and standardised by Shepard and
Metzler (1971). Two static 2D representations of 3D cube formations were viewed on
screen which prompted mental rotation strategies to establish if the two were the ‘same’ or
‘different’ (see Figure 2). In total 24 pairs were offered sequentially, and in different orders
for the pre, post and subsequent testing. Bokhove and Redhead’s (2017) validation of this
tool was found to be largely in line with Ganis and Kievit’s (2015) results, with a similar
linear relationship of response time and error rate. They also found that judgements on
‘different’ pairs were made slower (M =13.47) than ‘same’ pairs, and with a much higher

error rate (21.2% versus 7.56%).

2.2.3.2 3D Mental Rotation Skill Training Tool

In addition to providing a metric for 3D mental rotation skills, the computer based
tool was also used for the intervention training. The training mode required a cube
formation to be built on an empty 5 x 5 base, by adding individual cubes with a single click
in the chosen square (or on a side of a chosen cube). This formation had to match the
target, shown only through a front, side and plan view, with checking allowed through full
rotation of the base plane in any desired direction (see Figure 3). In total there were 20
practise items with each having two levels (matching, and matching with the least number

of cubes required). The items could be revisited and completed in any order.

front right

Figure 2. Example 3D mental rotation skill Figure 3. Example 3D mental rotation skill

assessment item training item
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2.2.33 Measure of Mental Number Line Precision

Precision of the mental number line was measured using the bounded and unbounded
number line task, with both metrics providing data that was used to assess accuracy (PAE).
It was important the unbounded NLE task was included in this research as a conclusion
drawn from the review in chapter one identified that as a possible purer measure of integer
representation, it had been somewhat neglected by researchers, limiting comparisons being
drawn between the two NLE tasks. In addition the decision was made not to measure
linearity (R?_n) of the estimates, as it is PAE that appears to be less confounded with
visuo-spatial skills and visuo-motor integration. R%_y values have been shown to
specifically correlated with global visuo-motor integration ability, an important skill when
attempting to use proportional judgement to achieve an even spread of numbers across a
number line (Wai, Lubinski, & Benbow, 2009).

The number line tasks were presented in an A4 booklet consisting of 20 bounded and
15 unbounded items (see Figure 4 for an example of both). This number of estimation trials
was chosen to support the validity of any finding, as the reviewer had noted in chapter one
that using only six items for this metric may be viewed as a limitation (e.g. Gunderson et
al., 2012). In addition, the scale used in both NLE tasks needed to be matched to the age of
the participants to allow adequate variation in performance. The choice of scale was
considered in light of previous research suggesting some disparity in performance between
the two NLE tasks. Children over 8 years have generally been shown to achieve reasonable
accuracy and linearity when making estimations on a bounded 0 t0100 number line
(Siegler & Booth, 2004). However, using the unbounded task, good performance (in terms
of both PAE and R?_x) has been shown to be more difficult to achieve at the same age
(Kim & Opfer, 2017). As the pilot study with 29 children (M = 10.8 years) yielded a good
range of responses on both tasks using the 0-100 number line, the decision was made to

proceed with this scale (see Appendix E for pilot study information).

Bounded NLE Task Item

o

ST

Unbounded NLE Task Item
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Figure 4. Example Bounded and Unbounded NLE Task Items

2.2.3.4 Control Group Activity

The control group were given a word based activity booklet that avoided any overtly
spatial components. The answers were available at the end of each session (see Figure 5 for

an example).

Brain Teasers

1. 2, 3.

SIC?I%@ PAWakRK| = |MILLION
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Figure 5. Example Filler Item for Control Group

2.2.35 Maths Achievement

Maths achievement scores were obtained for correlation purposes using Standardised
End of Key Stage Tests and Assessments in mathematics (SATS). Scores for 47
participants had been externally moderated, while data for the remaining 30 participants
came from teacher assessment scores, gathered through ‘mock’ tests taken up to 1 month

prior to the actual test, and using previous SAT question books and mark schemes.

2.2.4 Procedure

After sharing study information with all parties and obtaining all permissions from
the Psychology Ethics Committee, University Research Governance Office, and senior
leaders at 6 schools within Hampshire, parent consent via an opt-in protocol secured 98

participates, 21 of whom only completed the first session data gathering as a pilot
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(receiving no intervention or follow up as requested by school staff). The remaining 77
participants received three visits from the researcher on days 1, 10 and 15 of the study.
Prior to the first day, the researcher met with a member of school staff to check all
consents were in order, allocate code names which would also act as the program log-ins,
randomly allocate code names to intervention and control conditions, and demonstrate the

computer program to ensure full familiarity and functionality within school systems.

On Day 1, the participants met with the researcher to review the information sheet
and sign assent forms (see Appendix F for all child / parent written communications from
the researcher). They then proceeded to complete the NLE task booklet (including bounded
and unbounded items). This included 3 practice items which the research demonstrated to
ensure all participants were clear how to complete the task, and followed the procedure
outlined by Siegler and Opfer, 2003 for the bounded task and the protocol described by
Link, Nuerk and Moeller (2014) for the unbounded task (see Appendix G). After a short
break the children were then shown how to log on to the computer program via an on-line
system capturing scores which could only be accessed by the researcher as administrator

(https://app.dwo.nl/en/student/). Here they received instructions on how to access the task,

watched a demonstration of one item, and then completed 24 trials before logging off. At
this point the participants divided into their respective conditions for a 15 minute training
session; the control group working on the literacy based filler, and the spatial training

group practising with the spatial training program after receiving initial instructions.

Separate training for the control and intervention groups continued over days 2 to 10,
overseen by member of staff trained by the researcher. After training on day 10, the
researcher returned to be present during data collection for the NLE task and spatial skill,
using the same protocol as day 1 but with different target numbers in the NLE task booklet,
and different comparison items within the computer program. There was no training on
days 11-15. However the researcher returned on day 15 for the final data point, again
providing novel items for each measure. The participants were thanked, and received a
debriefing sheet for themselves, and one to take to parents (see Appendix F for all child /

parent written communications from the researcher).
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2.3 Results

231 Preparing Data for Analysis

The NLE tasks needed to be assessed for accuracy, measured through percentage
absolute error (PAE), calculated for each item. If a mark was placed at 83 on a 0 to100
number line, when the correct placement should have been at 56 then the absolute error
would be (83-56) / 100 = 27 %. After PAE was calculated for all items, an average was

taken as the participant’s score.

A first look at the data from the 77 participants in the main study revealed one
child’s scores were markedly lower than any other participant (e.g. PAE 67.5%, when next
nearest was16.6%). On closer scrutiny, and discussion with school staff, it was found this
participant’s additional needs were likely to have been unique amongst the group (his work
had to be extensively differentiated). As his data appeared as an outlier in every analysis
and skewed normality across groups, the decision was taken to remove his data from all

analyses.

In addition, six participants had extensive missing data due to absence on data
collection days 10 or 15. The data from these participants was included for correlation
purposes but removed when group differences were being analysed.

2.3.2 Correlations

A visual inspection of box plots confirmed data was normally distributed with no
outliers. In addition, the preliminary analysis also confirmed linear relationships
between SAT scores, spatial scores, and PAE scores for the bounded and unbounded
NLE task taken at time point 1 (see Appendix H for SPSS output).

Using Pearson's correlation coefficient analysis to explore the relationships
between the variables revealed a statistically significant, strong positive correlation
between SAT scores and spatial scores, r (76) = .544, p <.0001, 95% CI [0.363,
0.685]. This relationship is in line with previous research which has found better spatial
skill amongst those whose mathematical achievement is high. Similarly the analysis
revealed a statistically significant, large negative correlation between SAT scores and
PAE for both the bounded task r (76) =-.562, p <.0001, 95% CI [-0.699, 0.385] and
unbounded task r (76) = -.479, p <.0001, 95% CI [-0.636, 0.284]. This confirms

previous findings that suggest the internal representation of number magnitude (via the
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mental number line) is more accurate amongst those who do well in mathematics.
These results build on the findings in Chapter 1 as they suggest the positive
relationship found between maths achievement and accurate mental representation of

number is one that persists from the early years into upper juniors.

Turning to the association between spatial skill and internal representation of
number magnitude, the analysis revealed a statistically significant, small negative
correlation between spatial scores and PAE on the bounded NLE task, r (76) = -0.282,
p <.016, 95% CI [-0.477, -0.060] while there was a statistically significant, medium
negative correlation between spatial scores and PAE on the unbounded NLE task, r
(76) = -0.428, p <.0001, 95% CI [-0.596, -0.224]. This shows that good spatial skills
are linked with accurate mental representations of number magnitude, especially when

using the unbounded NLE task as a measure of the mental number line.

The final correlational analysis revealed a statistically significant, small positive
correlation between the two types of NLE task r (76) = .286, p <.014, 95% CI [0.065,
0.48]. This points to both metrics assessing a similar construct, but the lack of a strong

correlation does raise questions about which is the more accurate measure.

2.3.3 Group Differences

Before analysing any differences resulting arising from group training, it was
important to establish the extent to which prior maths attainment might influence the
results. After a visual inspection of boxplots showed SAT scores in both groups had a
normal distribution with no outliers, and with homogeneity of variances confirmed by
Levene’s test (p = .716), it was found that SAT scores were slightly higher in the control
group (103.5 * 5.43) than in the intervention group (101.7 + 5.53). However, using an
independent t test, there was no statistically significant difference between these means, t
(68) =1.368, p =.176 95% CI [-4.412, 0.824].

Next, preliminary analyses, as assessed by inspection of boxplots and histograms,
showed some evidence of a negative skew within the spatial scores across groups. As this
appeared to be due to a ceiling effect of the measurement tool, it was felt necessary to
analyse studentized residuals and their Q-Q plots to establish acceptable normality of the

data. All descriptive statistics can be viewed in Table 3.
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Table 3. Mean (SD) Spatial and PAE Scores By Training Condition

Condition Spatial Training Control
Timel Time2 Time3 Timel Time2 Time3
Spatial Score 17.88 19.26 19.44 18.44 18.58 18.58
(3.08) (3.89) (4.06) (3.56) (4.77)  (4.76)
PAE Bounded 8.27 10.21 12.67 8.5 8.98 10.52
(3.32) (5.48) (442 (3.2) (4.39) (4.91)
PAE Unbounded 14.17 14.01 14.34 13.58 12.71 14.06
(10.26) (8.97) (10.19) (9.24) (8.43) (10.09)

2.3.3.1 The Effect of Spatial Training on Spatial Scores

Does spatial training change spatial scores, and if any spatial scores do change, is

this sustained over time?

There were no outliers, as assessed by examination of studentized residuals for
values greater than +3. Spatial scores, across the three time points were normally
distributed for the intervention and control groups, as assessed by Normal Q-Q Plots.
There was homogeneity of variances (p > .05) and covariances (p > .05), as assessed by
Levene's test of homogeneity of variances and Box's M test, respectively. However
Mauchly's test of sphericity indicated that the assumption of sphericity was violated for the
two-way interaction, y? (2) = 6.755, p = .034, therefore the Greenhouse-Geisser correction

was subsequently used to interpret results.

An analysis of variance, with spatial training as the between-subject factor and

spatial scores over three time points as the within-subjects factor revealed:

e There was no statistically significant interaction between the intervention and time
on spatial scores, F(1.825, 124.099) = 1.527, p =.222, partial n2 =.022

e The main effect of time did not show a statistically significant difference in spatial
scores at the three different time points, F(1.825, 124.099) = 2.222, p =.117, partial
n?=.032
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e The main effect of group showed that there was not a statistically significant
difference in spatial scores between the group that received spatial training and
those who did not F(1, 68) = 0.154, p = .696, partial n° = 0.002

2.3.3.2 The Effect of Spatial Training on Bounded NLE Task Accuracy

Does spatial training change the percentage absolute error (PAE) rate of estimations

on a bounded number line and are any changes sustained over time?

There were no outliers, as assessed by examination of studentized residuals for
values greater than £3. The PAE of the bounded NLE task, across the three time points,
was normally distributed for the intervention and control groups, as assessed by Normal Q-
Q Plots. There was homogeneity of variances (p > .05) and covariances (p >.001), as
assessed by Levene's test of homogeneity of variances and Box's M test, respectively.
However Mauchly's test of sphericity indicated that the assumption of sphericity was
violated for the two-way interaction, ¥ (2) = 75.942, p < .001, therefore the Greenhouse-

Geisser correction was subsequently used to interpret results.

An analysis of variance, with spatial training as the between-subject factor and PAE
scores from the bounded NLE task over three time points as the within-subjects factor

revealed:

e There was no statistically significant interaction between the intervention and time
on the PAE of estimations on the bounded number line, F(1.192, 81.045) = .587, p
=.474, partial n = .009

e The main effect of time showed a statistically significant difference in mean PAE
of estimations on the bounded number line at the different time points, F(1.192,
81.045) = 4.34, p =.034, partial n° = .06. Inspection of pairwise comparisons
showed that regardless of intervention group, PAE increased most significantly
between time 1 and time 2.

e The main effect of group showed that there was not a statistically significant
difference in PAE of estimations on the bounded number line between the group
that received spatial training and those who did not F(1, 68) = 0.913, p =.343,
partial n° = 0.13
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2.3.3.3 The Effect of Spatial Training on Unbounded NLE Task Accuracy

Does spatial training change the percentage absolute error (PAE) rate of estimations

on an unbounded number line and are any changes sustained over time?

There were no outliers, as assessed by examination of studentized residuals for
values greater than +3. The PAE scores from the unbounded NLE task, across the three
time points, were normally distributed for the intervention and control groups, as assessed
by Normal Q-Q Plots. There was homogeneity of variances (p > .05) as assessed by
Levene's test of homogeneity of variances. Box's M test of homogeneity of covariances
was violated (p < .001). However, this was noted but not relevant as there were no

interactions to be interpreted.

Mauchly's test of sphericity indicated that the assumption of sphericity was violated
for the two-way interaction, 5 (2) = 8.426, p = .015, therefore the Greenhouse-Geisser

correction was subsequently used to interpret results.

An analysis of variance, with spatial training as the between-subject factor and PAE
scores on the unbounded NLE task over three time points as the within-subjects factor

revealed:

. There was no statistically significant interaction between the intervention and time
on the PAE of estimations on the unbounded number line, F(1.789, 121.626) = 0.151, p
=837, partial n’ = .002

. The main effect of time did not show a statistically significant difference in PAE of
estimations on the unbounded number line at the different time points, F(1.789, 121.626) =
391, p =.654, partial n° = .006

. The main effect of group showed that there was not a statistically significant
difference in PAE of estimations on the unbounded number line between the group that

received spatial training and those who did not, F(1, 68) =.131, p =.719, partial n2 =.002

2.4 Discussion

There is a wide field of ongoing interest in how cognitive individual differences
relate to achievement in mathematics. Within this field, spatial skills are of particular
interest as they are robustly associated with positive maths outcomes (Alloway &

Passolunghi, 2011; Meyer, Salimpoor, Wu, Geary, & Menon, 2010; Delgado, & Prieto,

50



Chapter 2

2004; Rasmussen & Bisanz, 2005; Carlson, Rowe, & Curby, 2013; Mix & Cheng, 2012).
This study has considered the relationship between spatial skills and number magnitude
understanding, which itself is thought to be an important building block of later
mathematical competence, underpinning skills such as calculation (Cowan et al., 2011).
Specifically, this research has focused on how 3D rotation skills might influence the
precision of the developing internal representation of number magnitude, the mental
number line, as measured by the NLE task.

The results confirm a strong positive correlation between SAT results and spatial
scores, adding to the body of evidence that 3D rotation skill, involving intrinsic-dynamic
ability, is highly influential to maths achievement (Verdine et al., 2014; Gilligan, Flouri &
Farran, 2017). Previous research has used a variety of maths achievement measures to
explore this association, and it is helpful to have it confirmed here using a metric
standardised across the whole population of 11 year-olds in England and Wales.

The correlational results also confirmed the association between maths achievement
and precision of an internal representation of number magnitude, the mental number line.
Those participants whose estimates on the NLE tasks were more accurate, achieved higher
SAT scores, using both the bounded and unbounded task. This finding is interesting in
light of a recent analysis of the demands of the 2018 SAT papers, which suggested ‘true’
numerical fluency was being tested, i.e. that pupils can use and apply number facts and
make connections between numbers (DfE, 2018). Researchers have suggested the mental
number line as a schematic representation that not only encodes conceptual understanding,
but also facilitates problem solving, including identifying numerical relationships (Case &
Okamoto, 1996). This, then, may be why mental representations of number magnitude

correlated so strongly with SATS scores.

Additionally, the findings describing the association between spatial scores and
accuracy on the NLE tasks contributes to the debate exploring which NLE task is the purer
measure of number magnitude representation. Higher spatial scores were achieved by
participants who made less errors on the NLE task, and this correlation was strongest for
the unbounded task. This is a surprising result as it is the unbounded task that was expected
to be least influenced by spatial skill. i.e. accuracy of unbounded estimates are not reliant
on proportional visuo-spatial judgements. This raises the difficulty of how to disentangle
the role of spatial ability in enhancing the mental number line from any confounding
influence it exerts over the metric that measures that same construct. Although this has not
been resolved in this study, it does highlight the dichotomy that researchers face in this
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area. Also, importantly for the debate between the two types of NLE task, this study
showed participants found the unbounded task more difficult than the bounded task. This
was true of both the intervention and control group, across all three time points, for
example the PAE for all children at the first time point was M=8.39 for the bounded task,
and M=13.88 for the unbounded task. This is important to notice as it follows previous
research, and when put alongside the small positive correlation between the two types of
NLE task, points to evidence that the bounded NLE task is a valid metric for the mental
number line. It does this by reason of the ‘proportional judgement’ argument which says
the unbounded task should be easier as it requires only visual addition measures, rather
than subtraction and division strategies the bounded task is thought to demand (Cohen &
Sarnecka, 2014). As the current study found the unbounded task harder, the ‘proportional
judgement’ theory is not supported and therefore the bounded task has not been shown to

be confounded (any more than the unbounded task).

When considering group differences, the results showed that the spatial performance
of those who received spatial training improved between time 1 and 2, and this
improvement was maintained until time 3. In contrast the control group did not make any
such gains. However, these differences did not reach statistical significance, and although
the trend was in the right direction, the results did not replicate those from Uttal et al.,
(2013) meta-analysis of 217 research studies which produced an average medium effect
size (g = 0.47). However, the trend of improved spatial skill found in the current study had
also been found when the 3D training tool had been used previously with undergraduates
(Bokhove, & Redhead, 2017). Again a level of significance was not reached and it may be
possible that the tool itself, with a focus on problem solving through viewing the plane
rotate and being able to visually check various configurations, limited the opportunity to
practise mental visualization. Another possible explanation is the retesting effect which is
suspected to be very strong in this domain (Uttal et al., 2013). The control group engaged
with 72 spatial test items in total over the 15 day period, and repeated testing may have

reduced the differential between any group differences.

The main hypothesis, that accuracy of estimates on the NLE tasks would improve
with spatial training was not supported by the results within this study. This was the case
for both the bounded and unbounded NLE task, with the most unexpected finding showing
PAE on the bounded NLE task increased across time points 1, 2 and 3, regardless of
whether spatial training had been received or not. Although it is unclear exactly how to

interpret these findings, there are possibilities which can be considered in light of research
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previously discussed. Returning to the 2 x 2 classification of visuo-spatial skills, 3D mental
rotation was identified as combining intrinsic (within one object,) and dynamic (moving)
dimensions. It may be that developing precision in the mental number line relies more on
extrinsic and / or static components, particularly as extrinsic information refers to the
relation among objects in a group, relative to one another or within a framework (Uttal et
al., 2013). The mental number line fits this description and so 3D rotation skills, although
closely linked with maths achievement, may not be the optimum visuo-spatial skill that can
transfer benefits to an internal representation of number magnitude (via improved number
estimation performance). Secondly, the increase in errors over time on the bounded NLE
task occurred regardless of training, which leads to the possibility that there may be other
factors at work that are not directly related to spatial skill. It was noticeable that during the
assessment sessions the children were more interested and excited by the computer
measure for spatial skill than they were about the paper and pen NLE task. This may have
resulted in task boredom for the NLE activities, with less careful and accurate estimates
being made. Another factor to consider is a possible ceiling effect within the NLE task
measure. Looking at the bounded PAE scores across the groups shows they are relatively
small at time 1 (approx. 8%) and only go up by a small percentage by time 3 (up to approx.
12%). This may reflect a ceiling effect where gains were difficult to measure. The pilot
study produced higher initial bounded PAE scores (approx. 21% compared to 8%), which
led to the choice of metric (1t0100 scale). In hindsight a wider scale may have been more

appropriate to effectively demonstrate gains within the NLE tasks.

2.4.1 Strengths and Limitations

A main strength of this research is that it studied the relationships between number
magnitude representations and spatial abilities through a randomised controlled design,
attempting to explore causation within a body of research that previously primarily focused

on relationships of association.

This research included a large pool of mixed ability participants recruited from
different settings. This variety ensured the sample were more likely to reflect results based
on a broad spectrum of skill and experience. Additionally, the use of nationally
administered mathematics SAT scores, in the main externally moderated, allowed an
analysis of maths achievement associations to be robust, helpfully supporting the evidence

base for links between spatial ability, NLE task performance and positive maths outcomes.
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The key limiting factor within this work is the ceiling effect generated by the choice
of scale for the NLE task. Although the metric was chosen based on results from the pilot
study, gains were difficult to evidence and this may have prevented useful findings coming
to light.

Although the choice of 3D mental rotation, as the visuo-spatial component identified
by the researcher as the most relevant to the focus of this study, proved not to be
significant in generating expected improvement in number line estimations, this should not
be viewed as a limitation. Rather, the findings point to further research examining the role
of other visuo-spatial components may play in supporting number magnitude

representations.

2.5 Recommendations

25.1 Future Research

It would be helpful to revisit the design of this study using a wider scale bounded
NLE task. The ceiling effect may be masking further findings and until this is clear it
would not be helpful to dismiss any role 3D mental rotation skills may have in developing
the precision of the mental number line. Future research could also consider other
components of visuo-spatial skills, employing the Uttal et al.,(2013) categorisations to
establish areas of influence. These investigations would benefit from having a casual focus,
trying to pinpoint why spatial skill has such relevance for positive maths outcomes.

In terms of number magnitude representations it would be helpful if research could
establish any ongoing role as number skills develop. Although some researchers have
surmised the mental number line has far reaching implications across age and
mathematical complexity, the evidence so far mainly points to an influence on small
integer calculations. There are some investigations pursuing the relevance of a mental
number line to fractions and this line of inquiry could be replicated across other areas of

mathematics involving number.

It is important to reflect on the inclusion of mainstream participants within this study

and whether future research needs to explore children who may have additional needs.

Certainly the exploration of this work has been within the context of how to support
children who may not have followed a developmental path of number magnitude

representations that is helpful to maths achievement, but there are other SEND needs that
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may also interact with these difficulties. The intervention used here posits an external
visual model as supportive of pupils acquiring useful internal frameworks, but future
research might consider those with visual impairments who cannot access such a visual
model. Concrete materials and resources might be helpful here, as size, shape and distance

might be represented as useful metrics that can be felt as well as seen.

2.5.2 Conclusions and Implications for Educational Psychologists

This research into the contribution of 3D mental rotation skills within the
relationship between children’s number line estimations and maths achievement has not
found a clear role for this particular component of visuo-spatial skills. As this may be due
to the limitation of the 1t0100 scale number line task as a metric used in the study, there
may still be connections yet to be brought to light. With this in mind, alongside the robust,
strong associations between maths achievement and spatial skill confirmed in this study,
three areas of focus have been identified for Educational Psychologists who are working to
support school staff help children overcome barriers to acquiring skills for numeracy.
Firstly, sharing information with teachers and support staff on the importance of number
magnitude understanding as a building block for approximate estimations and exact
calculations; secondly, how to effectively use number line tasks to target weak
conceptualisations of number magnitude; and finally, ensuring those whose maths progress

IS poor can access opportunities for spatial tasks within the curriculum.

The findings presented here have made a case for the bounded number line as an
acceptable metric for capturing the precision of the mental number line. Correlations
between accuracy and maths achievement were strong and together this supports research
which suggests number magnitude is an important concept which begins as an innate more
approximate non-symbolic skill and then transfers to a more exact symbolic form. It may
be helpful if Educational Psychologists help staff to appreciate this transfer process and to
more fully understand that number magnitude is not only about being able to count in
order, or one-to-one correspondence leading to the cardinal principle, but concerned with

relative size in relation to zero.

Number line tasks used within the classroom are often employed as a visual
framework for stepped calculations, where jumps to 10 (or the nearest multiple) are a
promoted strategy for problem solving within addition or subtraction. For children whose
symbolic magnitude representation is poor, they may benefit from number lines where zero

is clearly visible, from making ratio relationships explicit through distance comparisons,
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and considering subtraction not as a right to left move backwards along the number line,
but as the positive left to right distance between two numbers. This is in line with the
findings from chapter one, where evidence points to the benefits of counting on in a
visually linear format, verbalising the position of a number in relation to zero during
simple integer addition. A further recommendation is to ensure visual materials externally
model the desired mental representations and concrete manipulatives have the flexibility to
do the same e.g. Cuisenaire rods. Similarly giving children opportunities to externalise
their internal representation of number, through demonstrating problem solving through
manipulatives may also be helpful, as it gives the teacher a window into possible

misconceptions that would determine next steps for teaching.

The spatial-numerical mapping of the mental number line, where position in space is
an essential element of how number magnitude is conceptualized, led to the initial research
question within this research. Despite the results in this study not clearly linking 3D
rotation skills to performance on NLE tasks, robust correlations confirmed within this
work continue to point to the role spatial skills play in maths achievement. Until this
relationship becomes more plain, it may be helpful to encourage a variety of spatial
mapping activities, especially for those children who experience difficulty with number.

In summary, alongside the six clear recommendations from chapter one, Educational

Psychologists should also adapt their practice to ensure

e They share information that number magnitude skills are not only about being
able to count in order, or one-to-one correspondence leading to the cardinal
principle, but concerned with relative size in relation to zero.

e They promote the use of number lines where zero is clearly visible, and to
encourage children experiencing problems with subtraction to replace backwards
right to left moves along the number line with positive left to right counting on
activities.

e They suggest visual materials and concrete manipulatives externally model the
desired mental representations e.g. Cuisenaire rods.

e Teachers are encouraged to make a variety of spatial mapping activities

available, especially for those children who experience difficulty with number.
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Appendix A Data Extraction Table

Appendix A

Author Participants Design and Analysis Intervention Covariate Relevant measures Relevant findings
Year / group Control (including effect sizes)
Country Activity
Duration
Siegler and Booth 85 girls and boys One way ANOVA with | N/A Age within grade NLE task (bounded, PAE & PAE was significantly different between
2004 the 3 level factor of RZUN) grades.
21 kindergarten year group.
USA M=5.8 years Stanford Achievement Test Accuracy on NLE task significantly correlated
2004 Correlation / score for mathematics (SAT- | with maths achievement in all 3 grades
33 first grade regression 9) Kindergarten pr=-.45 p<.05
M= 6.9 years First grade pr=-.66 p<.01
Second grade pr=-.37 p<.05
31 second grade
M=7.8 years Also linearity of estimates increased as age
increased.
n’=0.35
Booth and Siegler 105 first graders Randomised controlled | Training: Short term memory Pre and Post Effects on maths achievement (novel tasks)
M=7.2 years 2 x 2 x 2 mixed design, | All groups were given 4 addition NLE task (bounded, PAE) The intervention that increased learning

2008
USA

with the two between
participants factors
(computer generate,
child generate) having
yes / no levels and the
within participants
factor as measurement
time points (start and
end).

Multiple dependant
variables.

ANCOVA
Correlations /
regressions

questions to answer (based on le

ast

answered of 13 questions in a pre-

test)
Computer generate group were

shown horizontal 0 to 100 number

line with coloured bars that
represented

addends and total. Child generate
group chose the points on the line

where bars should Control group

had no access to mapping bars on

the line.
Computer and child generate
group’s attempt to do the bars

Maths level (maths
section of the Wide
Range Achievement
test; WRAT)

Arithmetic problems set by
researchers, guided by pre-
test results

most was the computer generate condition
(32% difference between pre and post-test,
p<0.01 Cohen’s d=1.51

Effects on NLE task
Also computer generate condition reduced
PAE the most (p< .05, d=0.66)
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Author
Year
Country

Participants
/ group

Design and Analysis

Intervention
Control
Activity

Duration

Covariate

Relevant measures

Relevant findings
(including effect sizes)

themselves was followed by a
computer correct version.
Duration: three 10-15 minute
sessions during one week.

Siegler and Ramani

2009
USA

88 pre-schoolers
M=4y 8m

Randomised,
controlled mixed
design, with a between
participants factor
(linear game board,
circular game board
and numerical control
group) and a within
participants factor (pre
and post- test).
Multiple dependant
variables.

ANCOVA

Independent variable

Board game with either a linear or
circular track of play. The control
condition participated in numerical
activities such as counting,
identifying numerals and counting
objects.

Duration
Five 15-20 minute sessions

Bounded NLE —PAE and R’

A range of numerical
knowledge tasks (counting,
numerical magnitude
comparison, numeral
identification, arithmetic).

Effects of intervention on NLE task (PAE)
Accuracy improved most for linear group
with PAE decreasing significantly p<0.001
d=1.01

Effects of intervention on NLE task (Rz)
Linearity on the NLE task increased most for
the linear group p<0.001 d=1.03

Effects on maths achievement (numerical
tasks at post-test).

No significant effects of group on counting.
Performance in magnitude comparison
improved more than the other 2 groups
p<0.01, d=0.75

Analysis of performance on the arithmetic
problems revealed a significant difference in
the linear group’s accuracy (number correct)
but not for their rate of absolute error.

Kucian, Grond,
Rotzer, Henzi,
Schonmann,
Plangger, Galli,
Martin and von
Aster

2011
Switzerland

36 boys and girls in
total.

22 diagnosed with
dyscalculia
M=9.6

16 controls
M=9.5

Mixed 2 x 2 design with
dyscalculia as the
between subject factor
and pre/ post training
as within subject
factor.

ANOVA run for each
dependant variable

Training for all participants:
Intervention carried out at home
using “Rescue Calcularis” computer
game (training automated access to
the internal mental number line) for
15 mins, 5 days a week over 5 weeks

Pre and Post:
NLE task (bounded, using PAE
and RZ)

Neuropsychological Test
Battery for Number
Processing and Calculation in
Children (ZAREKI-R)

Effects of training on NLE task (PAE):
Significant training effects, but no effect size
given. The interaction between training and
group was not significant.

Effects of training on NLE task (RZ):
Significant training effects and significant
interaction between training and group (no
effect sizes given). While both groups
improved in linearity, the dyscalculia group
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Author Participants Design and Analysis Intervention Covariate Relevant measures Relevant findings
Year / group Control (including effect sizes)
Country Activity
Duration
‘caught up’ with the control group.
Effects of training on maths achievement:
Significant training effects, effect size not
given. The interaction between training and
group was not significant. Although both
groups improved, the dyscalculia group did
not ‘catch up’.
Mazzocco, 17 boys and girls. Correlation / NA Vocab. ANS precision tasks Preschool ANS precision predicted maths
Feigenson and Data collected regression explored performance r’=.278 p=.030 but was not a
Halberda between ages of longitudinally (2 years) Perceptual organisation | Test of Early Mathematics significant predictor of vocabulary,
5-8 years old Ability (TEMA-3) perceptual organisation, or spatial reasoning.
2011 Spatial reasoning
USA
Gunderson, Experiment 2 Correlation / N/A Spatial Skill NLE task (bounded, RZ) Non-symbolic calculation
Ramirez, Beilock regression explored Children’s performance on the approximate
and Levine 42 boys and girls. longitudinally Vocabulary Approximate symbolic non-symbolic calculation task was not
Data collected calculation significantly correlated with their
2012 between ages of 5 Approximate non-symbolic performance on the other measures.
USA and 8 years calculation
Symbolic calculation
Children’s spatial skill at age 5 predicted
number line knowledge at 6, which in turn
predicted their performance on an
approximate symbolic calculation at age 8
(number line knowledge mediated the
relationship).
Obersteiner, Reiss | 147 Randomised controlled | Training: Pre-test scores as Pre and post: Effects of training on number processing:
and Ufer first graders 2 x 2 between Adapted versions of videogame “The | covariate Exact number processing The exact and approximate training had
M=6.91 years participants design Number Race” to enhance tasks (subitizing and positive effects only on tasks relying on exact

2013

(with ‘approximate’
and ‘exact training as

approximate and exact mental

number representations.

conceptual subitizing)

or approximate mental rep of number
respectively. The effects were mostly small
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Author Participants Design and Analysis Intervention Covariate Relevant measures Relevant findings
Year / group Control (including effect sizes)
Country Activity
Duration
Germany separate factors, with | Control: Approximate number with one medium sized effect of

yes / no level in each).
Multiple dependant
variables.

ANCOVA

Computer based word spelling and
reading activities

Duration: 10 sessions of 30 mins
over 4 weeks

processing tasks (magnitude
comparison, number
comparison, approximate
calculation).

Arithmetic test from
Hamburger Rechentest

approximate training on magnitude
comparison.
1’ =0.091

Effects of training on maths achievement:
Maths achievement improved for exact and
approximate training group only, however
these effects were not significant and effect
size very small for both nz =0.003

Link, Nuerk and

45

Correlation /

General cognitive ability

NLE task (bounded and

Bounded NLE task correlated highly to

Moeller Fourth graders regression unbounded, both PAE) number comparison, addition and
M=9.8 Verbal working memory subtraction tasks.
2014 Arithmetic -addition and
Germany Visual working memory |subtraction problems set by | Correlations were not found between the
the researchers unbounded NLE task and any of the basic
numerical and arithmetical competencies.
Further arithmetical
competencies -
multiplication, completion
and number comparison
(Heidelburger Rechentest
subtests)
Sella, Tressoldi, 45 Randomised, Training: Videogame “The Number | Pre-test score as Pre and post: Effect of training on NLE task:
Langangeli and Zorzi | pre-schoolers controlled single factor | Race” consisting of computerized covariate NLE task (bounded, PAE) Hedges g.=0.73 p=0.012
M=15.1 years between participants | symbolic and non- symbolic number

2016
Italy

design with multiple
dependant variables.

ANCOVA

comparison tasks.

Control: Drawing skills computer
program.

Duration:

16 half-hour sessions.

Mental calculation subtest
from AC-MT battery

Effect of training on mental calculation:
Hedges g.=1.58 p=0.002

Significant medium to large effect sizes of
training on performance on the NLE task and
mental calculation subtest.
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Author
Year
Country

Participants
/ group

Design and Analysis

Intervention
Control
Activity

Duration

Covariate

Relevant measures

Relevant findings
(including effect sizes)

Aulet and Lourenco

2018
USA

66 girls and boys
aged between 5

and 7 years old.

M=6.22 years

Correlation /
regression

NA

Verbal proficiency
Verbal working memory

Spatial short term
memory

Magnitude comparison

Where’s The Number? (WTN)

Multiple measures of maths

competence

Left to right orientation of number
representations (correlation between
performance on both SNA tasks).

No significant correlations between WTN
accuracy and any maths task.

No significant correlations between the
magnitude comparison task and measures of
maths competence except for a significant
negative correlation with the ACA task
(Approximate Cross-Modal Arithmetic)
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Appendix B Quality Assurance Assessment

Framework (Original)

Score | R1 | R2 | Agree coeff. Comment

Criterion

Data gathering

Clear research question or hypothesis | 1 0
e.g. well-defined, measureable

constituent elements

Appropriate participant sampling 1 0
e.g. fit to research question,

represen tativeness.

Appropriate measurement 1 0
instrumentation. e.g. sensitivity;

specificity

Comprehensive data gathering 1 0
e.g. multiple measures used; context
of measurement recorded (e.g. when

at school vs at home)

Appropriate data gathering method 1 0

used e.g. soundness of administration

Reduction of bias within participant 1 0
recruitment/ instrumentation/

administration

e.g. harder-to-reach facilitation;

accessibility of instrumentation

Response rate/ completion 1 0
maximised e.g. response rate

specified; piloting; access options

Population subgroup data collected 1 0

64




Appendix B

e.g. participant gender; age; location

Data analysis

Missing data analysis e.g. Level and

treatment specified

Time trends identified e.g. year on

year changes

Geographic considerations e.g.

regional or subgroup analyses

Appropriate statistical analyses
(descriptive or inferential)
e.g. coherent approach specified;

sample size justification.

Multi-level or inter-group analyses
present e.g. comparison between
participant groups by relevant

location or characteristics

Data interpretation

Clear criteria for rating of findings

e.g. benchmarked/ justified

evaluation of found quantitative facts

Limitations of the research
considered in relation to initial aims
e.g. critique of method;

generalizability estimate

Implications of findings linked to
rationale of research question
e.g. implications for theory, practice

or future research

Total

Max
15

Mean coeff.
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Appendix C  Quality Assurance Assessment
Framework (Adapted)

S 818|=|E|EIE |z |.|8
& 8|S |5 |8 |8 |8 |8 |8 |
£ |5 |8 |[S |5 |= |3 S8 |8
o 8 | | |® |= |8 |® J= | @
Criterion @ |2 |8 |5 |2 |2 |5 [958 |5
s |2 |2 8§ |2 898 |3
e | |® |5 |2 |2 (5§ |z | |
S 'c |5 |8 IR I8 |3 |2 | |2
2|8 | |2 |8 |SE |5 | |o |3
» |a |$ = @ |8 |~ =
Clear research question or
. 1 1 1 1 1 1 1 1 1 1
hypothesis
Appropriate participant sampling 1 1 1 1 1 1 1 1 1 1
Comprehensive data gathering 1 1 1 1 1 A 1 1 1 1
Appropriate data gathering
1 1 ) ) 1 . 1 1 . 1
g method used no| % % %
[<}]
£ | Reduction of bias within
()]
§ participant recruitment/ 1 % 1 1 1 % % 0 1% 1
instrumentation/ administration
Response rate/ completion
_ 1 1 1 1 1 1 1 1 1 1
maximised
Population subgroup data
“Bo| % 1 1 1 1 1 1 1 1
collected
“ Missing data analy5|s 0 0 0 1 0 0 0 1 1 1
(74 . . ..
§~ Appropriate statistical analyses 1 1 1 1 1 1 1 % 1 1
g Multi-level or inter-group
i 0 0 0 0 0 1 0 0 0 0
0O | analyses present
Clear criteria for rating of findings | 4 1 1 1 1 1 1 0 1 1
S |Limitations of the research
®
@ |considered in relation to initial 1 A 0 1 1 1 1 0 1 1
o
2 |aims
=
-'g Implications of findings linked to
e . 1% |11 |1 |11 |%n|1]1
rationale of research question
Total (max 13) 10.5| 9 | 9.5 (11.5| 12 |10.5|10.5| 9 11 | 12

Adapted Review Framework for Quantitative Investigation Research.
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Appendix D  Assessing Weight of Evidence B and C
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Appendix E  Pilot Study Information

One of the schools recruited was very keen to take part in the research study, but
could not commit to the full training schedule. It was agreed that they would participate in
day one of data collection, where measures of spatial skill and number line estimation

accuracy were completed. However, they would not take part in any training.

The results gathered were used to confirm the choice of materials, and to streamline
the procedure, making changes in light of any encountered difficulties. All consents and
permissions were obtained, including an amendment to the proposal via the Psychology
Ethics Committee and University Research Governance Office.

The operational procedure went well, with the only area of change being more time
needed for a clearer demonstration of the computer assessment program and renaming the

modules so they were easier for the children to access.

The results were considered only in respect to the suitability of the measurement
tools used, with spatial scores and PAE producing a good range of results that would allow

for subsequent gains to be identified.

N=21 Mean Standard Deviation
Spatial Scores 14.1 52
PAE Scores 21.9 1.3

Histogram
Histogram

n=141
Mean = 21 87 Dev.=2385
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Appendix F  Participant Information and Consents
UNIVERSITY OF
Southampton
Parent/Guardian Information Sheet (V.1, 31.01.18)

Study Title: The Relationship Between Children’s Number Line Estimations and Maths
Achievement: The Contribution of 3D Mental Rotation Skills.

Researcher: Lesley Honour
Supervisors: Edward Redhead; Sarah Wright
ERGO Study ID number: 31704

Please read this information carefully before deciding to allow your child to take
part in this research. If you are happy for your child to participate you will be asked

to sign a consent form.
Who is running the research?

| am a Trainee Educational Psychologist in my third year of doctoral training at the
University of Southampton and | am conducting this study as part of my course. | am very
interested in how children acquire skills in maths and have focused this research around
their understanding of number. | hope you find the following information helpful but if you

have any further questions please contact me via the details at the end of this sheet.
What is the research about?

The purpose of this study is to explore any links between 3D shape rotation skills and
placement of numbers on the number line. Previous research has shown there may be
links between the two and that some areas of maths achievement can benefit from
understanding these links better. The data gained from this study will further inform the
evidence-base surrounding this topic and may be helpful in planning ways children can be

successfully taught in the classroom.
Why has my child been chosen?

Children in year 6 are at an interesting developmental point in their understanding of
number and how they represent numbers in their minds. Also the maths curriculum they

experience leading up to the SATs is directed nationally which means they are likely to
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have had similar exposure to maths ideas which are often taught in similar ways. This
helps us explore if practising a different type of task (3D rotation) makes a difference to
their understanding. Additionally, your child’s school is close enough to Southampton

University to make it practical for the school to take part in the study.
What will happen to my child if they take part?

Children that take part will be asked to complete two different activities on a school
computer; one matching 3D shapes and one placing numbers on a line. These are
completed three times, once at the beginning of the study, once at a mid-point and again
at the end. There will be another third activity that is completed each day at school for 2
weeks. This will last about 15 minutes and will either be more 3D shape activities or
completing an activity book including word puzzles. Children will not be able to choose
which activity they do as the groups will be randomised so any differences can be
compared. When they log in to the computer it will be with a code so that names are not
used. The researcher and head teacher will be the only ones who can match names to
answers on the computer. Children will be given an assent form so that they can give their
permission to taking part in the study. Also they are informed that they do not have to
participate if they do not want to.

Does my child have to take part?

Your child does not have to take part if you or he/she does not wish to. Participation in the
study is completely voluntary. If you would like your child to take part in the study, please
sign and return the consent form to your child’s teacher by (insert date). The study will be

run soon after this date.
Are there any benefits in taking part?

Your child’s primary school has agreed to participate in the study. This provides an
exciting opportunity to develop a better understanding of how children gain an

understanding of number and what type of activities help to improve this understanding.

Are there any risks involved?

Although the activities are similar to ones children already do within the school curriculum,
some children may find it daunting to respond to questions in a computer program format.
If you feel that your child will feel pressured and anxious it may be that you decide not to

allow them to take part.
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Will my child’s participation be confidential?

Yes, all data and information collected will be held in line with the Data Protection Act
1988. All information will be coded, and stored within the university system for 10 years
before it is destroyed. You and your child’s information will not be identifiable in any part of

the final write up.
What happens if | change my mind or my child changes his/her mind?

If you or your child decide you no longer want to participate in the study you are able to do
so without facing any prejudice and without giving reason for doing so. You are able to
withdraw your and your child’s participation from the study at any time, up to and including
30th April 2019. After this date, your child’s data will be included in the data analysis and

subsequent final write up.
What happens if something goes wrong?

If you have any concerns or questions about this study that you would like to speak to the
researcher about, please contact Lesley Honour using the email address below. If you
wish to formally complain or speak to someone independent of this study, please contact
the Chair of the Ethics Committee:

Chair of the Ethics Committee
School of Psychology
University of Southampton
Southampton

SO17 1BJ

Tel: 02380 594663

Where can | get more information?

If you would like any further information about the study, please contact Lesley Honour

using the email address below.

Researcher contact details: Lesley Honour: |.honour@soton.ac.uk
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Appendix F
UNIVERSITY OF
Southampton
Parent / Guardian Consent Form (V.1, 31.01.18)

Study title: The Relationship Between Children’s Number Line Estimations and Maths

Achievement: The Contribution of 3D Mental Rotation Skills.
Researcher: Lesley Honour

Supervisors: Edward Redhead; Sarah Wright

ERGO Study ID number: 31704

Please tick the box (as) if you agree with the statement(s) and return the form as soon as

possible, no later than (Insert Date):

| have read and understood the information sheet (V.1, 31.01.18)

and have had the opportunity to ask questions about the study (via

email).

| give my permission for my child to take part in this study and

agree for my child’s data to be used for the purpose of this study.

| understand my child’s participation is voluntary and I/they may

withdraw from the study at any time without my/their legal rights

being affected. However, data must be withdrawn by

30™ April 2019.

Name of child (print name)...........coooiiii

Signature of parent/carer/guardian......... ..o
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UNIVERSITY OF

Southampton

The Relationship Between Children's Number Line
Estimations and Maths Achievement: The
Contribution of 3D Mental Rotation Skills.

Who am I? What iz the research about?

T am a Trainee I would like to find out about

Educational Psychologists children’s skills with 30 shapes and if

at the University of they are linked with how they

Southampton. My name is understand how numbers are

Lesley. represented ona number line.

Do I have to take part? What happens if I don't want to

Mo. It is up to youto take part?

decide whether you want You do not have to take part i youdo

to take part. You may not wish to. ¥ou can tell your parents

find it helpful to talk to ar your feacher or me that you do not

your parents/guardians wish to take part. Mo one will mind if

at home about it before you choose not to take part, it is okay

you make a decision. and no one will be cross with you. Tt is
completely your own choice.

What will happen if I do decide to take part? If youagree tofake
part you will be asked o complete twao dif ferent activities ona schoal
computer; ane matching 30 shapes and one placing rumbers on a line. You will
do this three times (once ot the beginning of the study, ance near the middle
and gnce at the end). There will be another third activity that is completed
each day at school for 2 weeks. Thiswill last about 15 mimutesand will either
be more 30 shape activities or completing word searches. You will not be oble
ta choose which actfvity you do as the growps will be chosen by chance - abit
like picking names out of a hat. Whenyou log on to the computer it will be with
a code 5o that your nome is not used. I willbe the only one who can match
name s fo answers on the computer. Your name will not be used in the writing
about thisproject.
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UNIVERSITY OF

Southampton

Participant Assent Form (v.1, 31.01.18)

Study title: The Relationship Between Children’s Number Line Estimations and Maths
Achievement: The Contribution of 3D Mental Rotation Skills.

Researcher: Lesley Honour

Supervisors: Edward Redhead; Sarah Wright
ERGO Study ID number: 31704

Dear Year 6,

| would like you to take part in a project about some of the things you may have learned

about in your school maths lessons -3D shape and the number line.

If you choose to take part you will be asked to complete two different activities on a school
computer; one matching 3D shapes and one placing numbers on a line. You would do this
three times in total. There will be another third activity that you have to complete everyday
while you are at school for 2 weeks. This will last about 15 minutes and will either be more
3D shape activities or completing word searches. You will not be able to choose which

one you do as the names will be randomised, a bit like ‘pulling a name out of the hat’. It is

your decision whether you would like to take part.

Even if you agree to take part but later decide that you don’t want to, this is okay. You can
tell the researcher on the day that you don’t want to take part or afterwards you can say
that you do not wish your answers to be included in the project. The researchers and your

teachers will not mind.

Lastly, you will log on to the computer with a code so that you do not have to use your
name. The researcher will be the only one who can match your name to the answers you

give on the computer. This means your answers are confidential.

If you are happy to be a part of this project, please write your name below.

Participant Name ..............ccooiiiiinnnne. Date ........coeiiiiiiiill.
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UNIVERSITY OF
Southampton
Parent / Guardian Debriefing Statement (V.1, 31.01.18)

Study Title: The Relationship Between Children’s Number Line Estimations and Maths
Achievement: The Contribution of 3D Mental Rotation Skills.

Researcher: Lesley Honour

Supervisors: Edward Redhead; Sarah Wright
ERGO Study ID number: 31704

Dear Parent/Guardian,

Thank you for allowing your child to take part in my research project. The purpose of my
study was to explore any links between 3D shape rotation skills and placement of
numbers on the number line. Previous research has shown there may be links between
the two and that some areas of maths achievement can benefit from understanding these
links better. The data gained from this study will further inform the evidence-base
surrounding this topic and may be helpful in planning ways children can be successfully
taught in the classroom.

Your child’s data will be analysed along with other pupils’ data to explore if those children
who received spatial training (in this case mental rotation of 3D shapes) made more
improvements in how they represent numbers on a number line, than those children who
did not receive this type of training. The findings from this study will be available in a
written document at the University of Southampton. | also plan to publish the results in a
psychology journal and will try to find ways to share the information with parents, school
staff and psychologists. This will include a summary report which | will send to your child’s
school to be distributed to the parents and children who participated in the study.

In the final write up of this project no names will be used as the data will be clustered
together according to group. As stated in the information sheet, your child’s identity and
school will remain confidential, as well as any information shared by the school and the
University of Southampton. If you decide that you do not wish your child’s data to be
included in the study, please contact me by 30™ April 2019.

If you have any further questions about the project, please feel free to contact me on the
following email addresses:

Lesley Honour: |.honour@soton.ac.uk

Thank you for helping me with this research.

If you have questions about your rights or your child’s rights as a participant in this
research, or if you feel that your child may have been placed at risk, you may contact the
Chair of the Ethics Committee, Psychology, University of Southampton, Southampton,
SO17 1BJ. Phone: +44 (0)23 8059 3856, email fshs-rso@soton.ac.uk
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Appendix F
UNIVERSITY OF
Southampton
Participant Debriefing Statement (V.1, 31.01.18)

Study Title: The Relationship Between Children’s Number Line Estimations and Maths
Achievement: The Contribution of 3D Mental Rotation Skills.

Researcher: Lesley Honour

Supervisors: Edward Redhead; Sarah Wright

ERGO Study ID number: 31704

Dear Year 6

Thank you for taking part in my research project. | hope you enjoyed the activities.

| wanted to find out if children’s skills with 3D shapes are linked with how they understand
how numbers are represented on a number line. When | look at the data | will try to work
out if there are any links, and if having 3D training makes a difference for how they
managed on the number task. This is important because if they are linked, then practising
3D activities could be a way to help children do better at their number work.

By taking part, you have contributed to helping me answer my questions about how
children learn to represent number, and | really appreciate your help.

When | finish looking at the data, | will write about what | have found. You will be able to
read about this as | plan to send a summary of the work to your school, and to your
parents.

Thank you once again for all your help. If you have any questions, please contact me
through the email address | have given to your parents.

Lesley Honour
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Appendix G Bounded Number Line Protocol

Analyzing the
Number-line Task

Introduction

The Number-line Task

The mumber-line task iz a robust tool for charactenzing representations of
mumerical valne. Without demanding specific knowledge of measurement nnits
(snch as inches or centimeters), it taps info participants’ mapping of spatial and tE?_L:I;I

mumerical quantities across a wide range of values. The task has proven nseful o 1000

for characterizing subjects’ representations across a wide range of ages (Siegler
- P X . e Eg @) Mumber-to-Position (MP) Task:
& Opfer, 2003). The purpose of this tatorial is to docnment procedures for *Hf this is 0 and this is 1000,
. . whars would you put 2307
analyzing performance on the mmber-line task

0 1000
The munber-line task has two vardants: the Number-to-Position (NP) Task and L I I
the Position-to-Nnmber (PN) task On the NP task (Fig. 1A), participants are {b) Position-to-Nurribsr (PN) Task:
X i . ) “Hi this is 0 and this is 1000,
shown a mumber and asked to estimate its position on the mumber line. On the what is this nurnber?”
PN task (Fig. 1B), participants are shown a position on a number line and
asked to estimate the number that corresponds to it. F;:g—ym 1. Two vamants of the aumbes-line task.
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Recording the Data

Pasticipants’ performance on the number-line task is recogded in two wars, depending on
the vacant of the tak.

On the NP task, partiapants provide 2 hatch mark on the mamber kne to provide an
estmate of knear magnitnde @

? 1oloo
l\\'mnwt'smhmn
Iatimated Anear magniude
To convert estimates of linear magnitude into a real number
1 Measuee the dhstance from the left end pomt to the hatch mark (m linear umts),

2 Drvxde that distance by the total length of the line, and
3 Mnltply that valne by the numbes grven on the other endpomnt.

el
[ 1000
l = i

On the PN task, participants wate out an integer; no conversion i3 needed. However, to
genecate stk on the PN task. one mnst convert mumbers mnto linear magnitides naing
the above procedige.

Obtaining Sufficient Data

By obtaining only a single estimate, it @
is not possible to discriminate among D' 1000
competing models of mmenc || |
il e
Ideally, participants should be given a !
large range of quantities to estimate, 1000
with duplicate quantities. For | ! |
examgle, in Siegler & Booth (2003). -
participants were given 24 different 0 ' 1000
; . | |
Thns, for each participant, there was a ‘IJ ' 1'0|D0

senies of estmates that corresponded
to a seges of actual values.
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Explore

SPSS Output

Case Processing Summary

Appendix H

Cases
Valid Missing Total
N Percent N Percent N Percent
Spatial Score 1 73 96.1% 3 3.9% 76 100.0%
SAT Score 73 96.1% 3 3.9% 76 100.0%
Unbounded NLE 1 73 96.1% 3 3.9% 76 100.0%
Bounded NLE 1 73 96.1% 3 3.9% 76 100.0%
Descriptives
Statistic Std. Error
Spatial Score 1 Mean 18.14 .396
95% Confidence Interval for  Lower Bound 17.35
Mean
Upper Bound 18.93
5% Trimmed Mean 18.23
Median 19.00
Variance 11.453
Std. Deviation 3.384
Minimum 10
Maximum 24
Range 14
Interquartile Range 5
Skewness -.504 .281
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42.0

11.0

1.351 .281

1421 .555

8.542 .3971

7.751

9.334

8.380

7.900

11.513

3.3930

2.8

16.6

13.8

5.3

.738 .281

-.229 .555
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Spatial Score 1

Histogram

10 Mean=18.14
Std. Dev. = 3.384
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SAT Score

Histogram

Mean = 102.32
Stel. Dev. = 5735
MN=73

Frequency
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Unbounded NLE 1
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Bounded NLE 1

Histogram

Mean = 8.54
Stl. Dev. = 3.393
M=73

Frequency

50 100 150

Bounded NLE 1

Bounded NLE 1
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GGraph
Simple Scatter of SAT Score by Unbounded NLE 1
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GGraph
Simple Scatter of Unbounded NLE 1 by Spatial Score 1
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Spatial Score 1
Correlations
Correlations
Unbounded
SAT Score NLE 1 Bounded NLE 1  Spatial Score 1
SAT Score Pearson Correlation 1 -.479"7 -562" 544"
Sig. (2-tailed) .000 .000 .000
N 76 76 73 76
Unbounded NLE1  Pearson Correlation 479" 1 286" -.428"
Sig. (2-tailed) .000 014 .000
N 76 76 73 76
Bounded NLE 1 Pearson Correlation -562" 286" 1 -.282"
Sig. (2-tailed) .000 014 016
N 73 73 73 73
Spatial Score 1 Pearson Correlation 544" -.428" -.282" 1
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Sig. (2-tailed) .000 .000 016
N 76 76 73 76
**_Correlation is significant at the 0.01 level (2-tailed).
*, Correlation is significant at the 0.05 level (2-tailed).
General Linear Model
Within-Subjects Factors
Measure: Spatial_Score
Dependent
Time  Variable
1 Spatial_Score_1
2 Spatial_Score_2
3 Spatial_Score_3
Between-Subjects Factors
Value Label N
Spatial Training 1 Intervention 34
2 Control 36
Descriptive Statistics
Spatial Training Mean Std. Deviation N
Spatial Score 1  Intervention 17.88 3.082 34
Control 18.44 3.557 36
Total 18.17 3.323 70
Spatial Score 2  Intervention 19.26 3.895 34
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Control 18.58 4.771 36
Total 18.91 4.350 70
Spatial Score 3  Intervention 19.44 4.047 34
Control 18.58 4.759 36
Total 19.00 4.417 70
Box's Test of Equality of
Covariance Matrices®
Box'sM  10.243
F 1.625
dfl 6
df2 33194.011
Sig. 136
Multivariate Tests®
Effect Value F Hypothesis df  Error df
Time Pillai's Trace .071 2.572° 2.000 67.000
Wilks' Lambda 929 2.572° 2.000 67.000
Hotelling's Trace .077 2.572° 2.000 67.000
Roy's Largest Root .077 2.572° 2.000 67.000
Time * Spatial_Training Pillai's Trace .050 1.748° 2.000 67.000
Wilks' Lambda 950 1.748°  2.000 67.000
Hotelling's Trace  .052 1.748° 2.000 67.000
Roy's Largest Root  .052 1.748° 2.000 67.000
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Appendix H

Effect Sig. Partial Eta Squared
Time Pillai's Trace .084 .071
Wilks' Lambda .084 .071
Hotelling's Trace .084 .071
Roy's Largest Root .084 .071
Time * Spatial_Training Pillai's Trace .182 .050
Wilks' Lambda .182 .050
Hotelling's Trace .182 .050
Roy's Largest Root .182 .050
Mauchly's Test of Sphericity®
Measure: Spatial_Score
Epsilon®
Approx. Chi- Greenhouse-
Within Subjects Effect Mauchly's W Square df Sig. Geisser
Time .904 6.755 2 .034 912
Mauchly's Test of Sphericity®
Measure: Spatial_Score
Epsilon
Within Subjects Effect Huynh-Feldt Lower-bound
Time .950 .500
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Tests of Within-Subjects Effects

Measure: Spatial_Score

Type Il Sum of
Source Squares df Mean Square F
Time Sphericity Assumed 30.469 2 15.235 2.222
Greenhouse-Geisser  30.469 1.825 16.696 2.222
Huynh-Feldt 30.469 1.900 16.034 2.222
Lower-bound 30.469 1.000 30.469 2.222
Time * Spatial_Training Sphericity Assumed 20.945 2 10.473 1.527
Greenhouse-Geisser  20.945 1.825 11.477 1.527
Huynh-Feldt 20.945 1.900 11.022 1.527
Lower-bound 20.945 1.000 20.945 1.527
Error(Time) Sphericity Assumed ~ 932.655 136 6.858
Greenhouse-Geisser  932.655 124.099 7.515
Huynh-Feldt 932.655 129.217 7.218
Lower-bound 932.655 68.000 13.716
Tests of Within-Subjects Effects
Measure: Spatial_Score
Source Sig. Partial Eta Squared
Time Sphericity Assumed 112 .032
Greenhouse-Geisser 117 .032
Huynh-Feldt .115 .032
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Lower-bound 141 .032
Time * Spatial_Training Sphericity Assumed 221 .022

Greenhouse-Geisser 222 .022

Huynh-Feldt 222 .022

Lower-bound 221 .022
Error(Time) Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Tests of Within-Subjects Contrasts

Measure: Spatial_Score

Type Il Sum of
Source Time Squares df Mean Square F Sig.
Time Linear 25.199 1 25.199 3.091 .083
Quadratic  5.270 1 5.270 .947 334
Time * Spatial_Training Linear 17.627 1 17.627 2.162 .146
Quadratic 3.318 1 3.318 .596 .443
Error(Time) Linear 554.344 68 8.152
Quadratic 378.311 68 5.563
Tests of Within-Subjects Contrasts
Measure: Spatial_Score
Source Time Partial Eta Squared
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Time Linear .043
Quadratic .014
Time * Spatial_Training Linear .031
Quadratic .009
Error(Time) Linear
Quadratic
Levene's Test of Equality of Error Variances®
Levene Statistic dfl df2 Sig.
Spatial Score 1  Based on Mean .382 1 68 .539
Based on Median .256 1 68 .614
Based on Median and with .256 1 64.130 .614
adjusted df
Based on trimmed mean  .365 1 68 .548
Spatial Score 2  Based on Mean 2.818 1 68 .098
Based on Median 2.503 1 68 .118
Based on Median and with 2.503 1 64.598 .118
adjusted df
Based on trimmed mean 2.716 1 68 .104
Spatial Score 3 Based on Mean 2.972 1 68 .089
Based on Median 1.779 1 68 .187
Based on Median and with 1.779 1 67.938 .187
adjusted df
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Based on trimmed mean  2.957 1 68 .090
Tests of Between-Subjects Effects
Measure: Spatial_Score
Transformed Variable: Average
Type Il Sum of Partial Eta
Source Squares df Mean Square F Sig. Squared
Intercept 73374.098 1 73374.098 2032.968 .000 .968
Spatial_Training 5.565 1 5.565 154 .696 .002
Error 2454.264 68 36.092
Estimated Marginal Means
1. Time
Estimates
Measure: Spatial_Score
95% Confidence Interval
Time Mean Std. Error Lower Bound Upper Bound
1 18.163 .399 17.368 18.959
2 18.924 522 17.882 19.966
3 19.012 .529 17.956 20.069
Pairwise Comparisons
Measure: Spatial_Score
Mean 95% Confidence Interval for

() Time (J) Time Difference (I-J) Std. Error Sig.? Difference®
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Lower Bound

Upper Bound

1 2 -.761 .369 .129 -1.666 144

3 -.849 483 .250 -2.034 .336
2 1 .761 .369 129 -.144 1.666

3 -.088 468 1.000 -1.238 1.061
3 1 .849 .483 .250 -.336 2.034

2 .088 468 1.000 -1.061 1.238
Based on estimated marginal means
a. Adjustment for multiple comparisons: Bonferroni.
Multivariate Tests

Partial Eta
Value F Hypothesis df Error df  Sig. Squared

Pillai's trace .071 2.572° 2.000 67.000 .084 .071
Wilks' lambda .929 2.572° 2.000 67.000 .084 .071
Hotelling's trace  .077 2.572° 2.000 67.000 .084 .071
Roy's largest root .077 2.572° 2.000 67.000 .084 .071

Each F tests the multivariate effect of Time. These tests are based on the linearly independent

pairwise comparisons among the estimated marginal means.

a. Exact statistic
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2. Spatial Training * Time

Measure: Spatial_Score

95% Confidence Interval

Spatial Training Time Mean Std. Error Lower Bound Upper Bound
Intervention 1 17.882 .572 16.741 19.024

2 19.265 .749 17.770 20.760

3 19.441 .759 17.926 20.956
Control 1 18.444 .556 17.335 19.554

2 18.583 .728 17.131 20.036

3 18.583 .738 17.111 20.056

General Linear Model

Within-Subjects Factors

Measure: BNLE

Dependent

Time  Variable

1 BNLE_1
2 BNLE_2
3 BNLE_3

Between-Subjects Factors

Value Label N

Spatial Training 1 Intervention 34

2 Control 36
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Descriptive Statistics

Spatial Training Mean Std. Deviation N
Bounded NLE1 Intervention 8.274 3.3242 34
Control 8.497 3.2033 36
Total 8.389 3.2408 70
Bounded NLE 2  Intervention 10.209 5.4825 34
Control 8.978 4.3889 36
Total 9.576 4.9528 70
Bounded NLE 3 Intervention 12.674 14.4205 34
Control 10.528 4.9140 36
Total 11.570 10.6241 70

Box's Test of Equality of

Covariance Matrices®

Box'sM  35.982

F 5.709
df1 6

df2 33194.011
Sig. .000

Tests the null hypothesis that the observed covariance matrices of the dependent

variables are equal across groups.®

Within Subjects Design: Time
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Effect Value F Hypothesis df  Error df
Time Pillai's Trace .143 5.611° 2.000 67.000
Wilks' Lambda .857 5.611° 2.000 67.000
Hotelling's Trace 167 5.611° 2.000 67.000
Roy's Largest Root .167 5.611° 2.000 67.000
Time * Spatial_Training Pillai's Trace .042 1.459° 2.000 67.000
Wilks' Lambda .958 1.459° 2.000 67.000
Hotelling's Trace .044 1.459° 2.000 67.000
Roy's Largest Root .044 1.459° 2.000 67.000
Multivariate Tests®
Effect Sig. Partial Eta Squared
Time Pillai's Trace .006 .143
Wilks' Lambda .006 .143
Hotelling's Trace .006 .143
Roy's Largest Root .006 .143
Time * Spatial_Training Pillai's Trace .240 .042
Wilks' Lambda .240 .042
Hotelling's Trace .240 .042
Roy's Largest Root .240 .042
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a. Design: Intercept + Spatial_Training
Within Subjects Design: Time

b. Exact statistic

Mauchly's Test of Sphericity®

Measure: BNLE

Epsilonb
Approx. Chi- Greenhouse-
Within Subjects Effect Mauchly's W Square df Sig. Geisser
Time 322 75.942 2 .000 .596
Mauchly's Test of Sphericity®
Measure: BNLE
Epsilon

Within Subjects Effect Huynh-Feldt Lower-bound
Time .609 .500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed

dependent variables is proportional to an identity matrix.®
a. Design: Intercept + Spatial_Training
Within Subjects Design: Time

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests

are displayed in the Tests of Within-Subjects Effects table.
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Measure: BNLE
Type Il Sum of
Source Squares df Mean Square F
Time Sphericity Assumed  368.985 2 184.492 4.340
Greenhouse-Geisser  368.985 1.192 309.594 4.340
Huynh-Feldt 368.985 1.219 302.734 4.340
Lower-bound 368.985 1.000 368.985 4.340
Time * Spatial_Training Sphericity Assumed 49.935 2 24.967 .587
Greenhouse-Geisser  49.935 1.192 41.897 .587
Huynh-Feldt 49.935 1.219 40.969 .587
Lower-bound 49.935 1.000 49.935 .587
Error(Time) Sphericity Assumed  5780.873 136 42.506
Greenhouse-Geisser  5780.873 81.045 71.329
Huynh-Feldt 5780.873 82.881 69.749
Lower-bound 5780.873 68.000 85.013
Tests of Within-Subjects Effects
Measure: BNLE
Source Sig. Partial Eta Squared
Time Sphericity Assumed .015 .060
Greenhouse-Geisser .034 .060
Huynh-Feldt .033 .060
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Lower-bound .041 .060
Time * Spatial_Training Sphericity Assumed .557 .009

Greenhouse-Geisser 474 .009

Huynh-Feldt 477 .009

Lower-bound 446 .009
Error(Time) Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Tests of Within-Subjects Contrasts

Measure: BNLE

Type Il Sum of

Source Time Squares df Mean Square F Sig.
Time Linear 361.535 1 361.535 6.122 .016

Quadratic  7.450 1 7.450 .287 .594
Time * Spatial_Training Linear 49.085 1 49.085 .831 .365

Quadratic .850 1 .850 .033 .857
Error(Time) Linear 4015.458 68 59.051

Quadratic 1765.414 68 25.962
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Source Time Partial Eta Squared
Time Linear .083
Quadratic .004
Time * Spatial_Training Linear .012
Quadratic .000
Error(Time) Linear
Quadratic
Levene's Test of Equality of Error Variances®
Levene Statistic dfl df2 Sig.
Bounded NLE1 Based on Mean .040 1 68 .842
Based on Median .002 1 68 .963
Based on Median and with .002 1 67.045 .963
adjusted df
Based on trimmed mean .022 1 68 .882
Bounded NLE2 Based on Mean 1.454 1 68 232
Based on Median .885 1 68 .350
Based on Median and with .885 1 65.666 .350
adjusted df
Based on trimmed mean  1.335 1 68 .252
Bounded NLE 3  Based on Mean 1.178 1 68 .282
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Based on Median 1.030 1 68
Based on Median and with 1.030 1 39.016
adjusted df

Based on trimmed mean .743 1 68

314

316

392

Tests the null hypothesis that the error variance of the dependent variable is equal across

groups.?

a. Design: Intercept + Spatial_Training

Within Subjects Design: Time

Tests of Between-Subjects Effects

Measure: BNLE

Transformed Variable: Average

Type Il Sum of Partial Eta
Source Squares df Mean Square F Sig. Squared
Intercept 20398.526 1 20398.526 321.341 .000 .825
Spatial_Training 57.948 1 57.948 913 .343 .013
Error 4316.591 68 63.479
Estimates
Measure: BNLE

95% Confidence Interval

Time Mean Std. Error Lower Bound Upper Bound
1 8.385 .390 7.607 9.164
2 9.593 .592 8.412 10.774
3 11.601 1.273 9.060 14.141
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Pairwise Comparisons
Measure: BNLE

95% Confidence Interval for

Difference®

Mean

() Time (J) Time Difference (I-J) Std. Error Sig.b Lower Bound  Upper Bound
1 2 -1.208" 464 .034 -2.346 -.070

3 -3.215° 1.299 .048 -6.405 -.026
2 1 1.208° 464 .034 .070 2.346

3 -2.007 1.320 .399 -5.248 1.233
3 1 3.215° 1.299 .048 .026 6.405

2 2.007 1.320 .399 -1.233 5.248

Based on estimated marginal means

*. The mean difference is significant at the .05 level.

b. Adjustment for multiple comparisons: Bonferroni.

Multivariate Tests

Partial Eta
Value F Hypothesis df Error df  Sig. Squared
Pillai's trace .143 5.611° 2.000 67.000 .006 .143
Wilks' lambda .857 5.611° 2.000 67.000 .006 .143
Hotelling's trace  .167 5.611° 2.000 67.000 .006 .143
Roy's largest root .167 5.611° 2.000 67.000 .006 .143
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Each F tests the multivariate effect of Time. These tests are based on the linearly independent

pairwise comparisons among the estimated marginal means.

a. Exact statistic

Profile Plots
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Between-Subjects Factors

Value Label N

Spatial Training 1 Intervention 34

2 Control 36

Descriptive Statistics

Spatial Training Mean Std. Deviation N

Unbounded NLE 1  Intervention 14.171 10.2557 34
Control 13.578 9.2450 36
Total 13.866 9.6823 70
Unbounded NLE 2 Intervention 14.012 8.9669 34
Control 12.711 8.4347 36
Total 13.343 8.6586 70
Unbounded NLE 3 Intervention 14.335 10.1896 34
Control 14.056 10.0890 36
Total 14.191 10.0652 70

Box's Test of Equality of

Covariance Matrices®

Box'sM 7.417

F 1.177
df1 6

df2 33194.011
Sig. 315
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Multivariate Tests®

Effect Value F Hypothesis df  Error df
Time Pillai's Trace .017 586" 2.000 67.000
Wilks' Lambda .983 586" 2.000 67.000
Hotelling's Trace .017 .586° 2.000 67.000
Roy's Largest Root .017 586" 2.000 67.000
Time * Spatial_Training Pillai's Trace .007 224° 2.000 67.000
Wilks' Lambda .993 224° 2.000 67.000
Hotelling's Trace .007 224° 2.000 67.000
Roy's Largest Root .007 224" 2.000 67.000
Multivariate Tests”
Effect Sig. Partial Eta Squared
Time Pillai's Trace .560 .017
Wilks' Lambda .560 .017
Hotelling's Trace .560 .017
Roy's Largest Root .560 .017
Time * Spatial_Training Pillai's Trace .800 .007
Wilks' Lambda .800 .007
Hotelling's Trace .800 .007
Roy's Largest Root .800 .007
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a. Design: Intercept + Spatial_Training
Within Subjects Design: Time

b. Exact statistic

Mauchly's Test of Sphericity®

Measure: UBNLE

Epsilonb
Approx. Chi- Greenhouse-
Within Subjects Effect Mauchly's W Square df Sig. Geisser
Time .882 8.426 2 .015 .894
Mauchly's Test of Sphericity®
Measure: UBNLE
Epsilon

Within Subjects Effect Huynh-Feldt Lower-bound
Time .930 .500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed

dependent variables is proportional to an identity matrix.

a. Design: Intercept + Spatial_Training

Within Subjects Design: Time

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests

are displayed in the Tests of Within-Subjects Effects table.
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Tests of Within-Subjects Effects

Measure: UBNLE

Type Il Sum of
Source Squares df Mean Square F
Time Sphericity Assumed  24.751 2 12.376 391
Greenhouse-Geisser  24.751 1.789 13.838 391
Huynh-Feldt 24.751 1.861 13.302 .391
Lower-bound 24.751 1.000 24.751 391
Time * Spatial_Training Sphericity Assumed 9.567 2 4,783 151
Greenhouse-Geisser  9.567 1.789 5.349 151
Huynh-Feldt 9.567 1.861 5.141 151
Lower-bound 9.567 1.000 9.567 151
Error(Time) Sphericity Assumed  4306.317 136 31.664
Greenhouse-Geisser  4306.317 121.626  35.406
Huynh-Feldt 4306.317 126.532  34.033
Lower-bound 4306.317 68.000 63.328
Tests of Within-Subjects Effects
Measure: UBNLE
Source Sig. Partial Eta Squared
Time Sphericity Assumed .677 .006
Greenhouse-Geisser .654 .006
Huynh-Feldt .662 .006
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Lower-bound .534 .006
Time * Spatial_Training Sphericity Assumed .860 .002
Greenhouse-Geisser .837 .002
Huynh-Feldt .845 .002
Lower-bound .699 .002
Error(Time) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Tests of Within-Subjects Contrasts
Measure: UBNLE
Type Il Sum of
Source Time Squares df Mean Square F Sig.
Time Linear 3.609 1 3.609 .094 .760
Quadratic 21.142 1 21.142 .846 361
Time * Spatial_Training Linear .857 1 .857 .022 .882
Quadratic 8.710 1 8.710 .349 .557
Error(Time) Linear 2607.870 68 38.351
Quadratic 1698.447 68 24.977
Tests of Within-Subjects Contrasts
Measure: UBNLE
Source Time Partial Eta Squared
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Time Linear .001
Quadratic .012
Time * Spatial_Training Linear .000
Quadratic .005
Error(Time) Linear
Quadratic
Levene's Test of Equality of Error Variances®
Levene Statistic dfl df2 Sig.
Unbounded NLE1 Based on Mean .553 1 68 .460
Based on Median 466 1 68 497
Based on Median and with .466 1 67.833 497
adjusted df
Based on trimmed mean .574 1 68 451
Unbounded NLE 2  Based on Mean .034 1 68 .854
Based on Median .049 1 68 .825
Based on Median and with .049 1 67.760 .825
adjusted df
Based on trimmed mean .031 1 68 .861
Unbounded NLE 3  Based on Mean .061 1 68 .806
Based on Median 126 1 68 723
Based on Median and with .126 1 66.363 723
adjusted df
Based on trimmed mean .087 1 68 .769
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Tests of Between-Subjects Effects

Measure: UBNLE

Transformed Variable: Average

Appendix H

Type Il Sum of Partial Eta
Source Squares df Mean Square F Sig. Squared
Intercept 40019.707 1 40019.707 190.459 .000 737
Spatial_Training 27.527 1 27.527 131 719 .002
Error 14288.333 68 210.123
Estimates
Measure: UBNLE
95% Confidence Interval
Time Mean Std. Error Lower Bound Upper Bound
1 13.874 1.166 11.548 16.200
2 13.361 1.040 11.286 15.437
3 14.195 1.212 11.777 16.614
Pairwise Comparisons
Measure: UBNLE
95% Confidence Interval for
Difference®
Mean

() Time (J) Time Difference (I-J) Std. Error Sig.? Lower Bound  Upper Bound
1 2 513 1.011 1.000 -1.969 2.995

3 -.321 1.047 1.000 -2.892 2.249
2 1 -.513 1.011 1.000 -2.995 1.969

3 -.834 773 .853 -2.731 1.063
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3 1 321 1.047 1.000 -2.249 2.892

2 .834 773 .853 -1.063 2.731

Based on estimated marginal means

a. Adjustment for multiple comparisons: Bonferroni.

Multivariate Tests

Partial Eta
Value F Hypothesis df Errordf  Sig. Squared
Pillai's trace .017 .586° 2.000 67.000 .560 .017
Wilks' lambda .983 .586° 2.000 67.000 .560 .017
Hotelling's trace  .017 .586° 2.000 67.000 .560 .017
Roy's largest root .017 .586° 2.000 67.000 .560 .017

Each F tests the multivariate effect of Time. These tests are based on the linearly independent

pairwise comparisons among the estimated marginal means.

a. Exact statistic
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