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COLOURING SIMPLICIAL COMPLEXES VIA THE

LECHUGA-MURILLO’S MODEL

DAVID MÉNDEZ

Abstract. L. Lechuga and A. Murillo showed that a non-oriented, simple,
connected, finite graph G is k-colourable if and only if a certain pure Sullivan
algebra associated to G and k is not elliptic. In this paper, we extend this
result to simplicial complexes by means of several notions of colourings of
these objects.

1. Introduction

Graph Theory and Rational Homotopy Theory were first related by L. Lechuga
and A. Murillo in a celebrated paper [13] (see also [14]) where they show that a
non-oriented, simple, connected, finite graph can be k-coloured, k ≥ 2, if and only if
a certain Sullivan algebra associated to the graph is not elliptic. They also provide
a link between Rational Homotopy Theory and algorithmic complexity by proving
that the problem of graph colourability can be reduced in polynomial time to the
problem of determining the ellipticity of a certain Sullivan algebra. Hence, since
the former is an NP -complete problem, the latter is an NP -hard problem.

This interplay between Graph Theory and Rational Homotopy Theory has been
proven fruitful: recently, C. Costoya and A. Viruel were able to use this interaction
to solve a question of realisability of groups [4, 5], and applications of these results
to further problems were subsequently found, [2, 3].

The aim of this work is to extend the result of Lechuga and Murillo from graphs
to (finite) simplicial complexes by considering eleven notions of colourability for
these objects, many of which can be found in the literature. We refer to these
colourings as Ci-colouring, for i = 1, 2, . . . , 11 (see Definitions 2.1, 2.4, 2.6, and
3.3), and prove the following two results:

Theorem 1.1. For any k ≥ 2, any i = 1, 2, . . . , 11, and any connected simplicial
complex X, which is assumed to be strongly connected and homogeneous for i =
8, 9, 10, 11, there exists a pure Sullivan algebra Mi

k(X) which is not elliptic if and
only if X is Ci-k-colourable.

Theorem 1.2. For i ∈ {1, 7, 8, 9, 10, 11} and k ≥ 3, or for i ∈ {4, 5, 6} and
k ≥ 4, determining if a connected simplicial complex is Ci-k-colourable is an NP-
hard problem.

We point out that closely related problems have been studied in [6, 8, 16].
As for the necessary background, we assume that the reader is familiar with

basics of algorithmic complexity and Rational Homotopy Theory, for which [18]
and [9] are, respectively, excellent references. In particular, concerning algorithmic
complexity we will use that the problems of total-k-colourability, k ≥ 4, edge-k-
colourability, k ≥ 3, and k-colourability, k ≥ 3, are NP -complete, [12, 15, 17].

Regarding Rational Homotopy Theory, we just recall that a (simply connected)
Sullivan algebra, denoted (ΛW,d), is a commutative differential graded algebra,
which is free as an algebra generated by the (simply connected) graded rational
vector space W , and where the differential d is decomposable. A Sullivan algebra

The author was partially supported by Ministerio de Economı́a y Competitividad (Spain)
grants MTM2016-79661-P and MTM2016-78647-P.

1

http://arxiv.org/abs/1610.07174v2


2 DAVID MÉNDEZ

is elliptic if both W and H∗(ΛW,d) are finite dimensional, and pure if dW even = 0
and dW odd ⊂ ΛW even.

We now recall the fundamental construction in [13] associated to any k ≥ 2
and any non-oriented, simple, connected, finite graph G = (V,E), where V and E
respectively denote the sets of vertices and edges of G. Consider the pure Sullivan
algebra Sk(G) = (ΛWG,k, d) where

W even
G,k = 〈xv | v ∈ V 〉, |xv| = 2, d(xv) = 0,

W odd
G,k = 〈y(u,v) | (u, v) ∈ E〉, |y(u,v)| = 2k − 3, d(y(u,v)) = Σk

l=1x
k−l
u xl−1

v .

For this construction, the following holds:

Theorem 1.3. ([13, Theorem 3]) The graph G is k-colourable if and only if the
Sullivan algebra Sk(G) is not elliptic.

To relate this result with algorithmic complexity it is convenient to keep in mind
that a graph G = (V,E) is usually encoded by its adjacency matrix A = (aij)i,j∈V

in which aij = 1 if (i, j) ∈ E and aij = 0 otherwise. In binary, the codification of
this matrix has length log2 n+ n2, where n is the number of vertices of G.

Throughout this paper, every considered simplicial complex X is assumed to be
finite. The dimension of a simplex σ ∈ X , denoted dimσ, is its cardinality minus
one. The dimension of X , denoted dimX , is the dimension of any of its largest
simplices. Given s ≥ 0, we denote the set of simplices of X of dimension s by Xs.
In particular, X0 is the set of vertices of X , which is often denoted by V . The
s-skeleton of X is the subsimplicial complex of X spanned by Xs, and we denote it
by X(s). Note that X(1) is trivially identified to a non-oriented, simple graph, and
we say that X is connected if X(1) is a connected graph.

2. Models for colourings of connected simplicial complexes

In the spirit of Theorem 1.3, we will associate to finite, connected simplicial
complexes precise pure Sullivan algebras whose ellipticity encode different notions
of colouring of simplicial complexes.

2.1. Colourings arising from hypergraphs. Recall that a hypergraph is a pair
H = (V,E) formed by a non-empty set of vertices V and a set of hyperedges E,
each of them being a non-empty subset of V . Two vertices are adjacent if they
belong to a common hyperedge. An hyperedge e is incident to a vertex v if v ∈ e.
Two hyperedges e and e′ are adjacent if e∩ e′ 6= ∅. The hypergraph H is connected
if given any two vertices u, v ∈ V there is a sequence of hyperedges e1, e2, . . . , en
such that u ∈ e1, v ∈ en and ei is adjacent to ei+1, for i = 1, 2, . . . , n− 1.

A vertex k-colouring of a hypergraph H = (V,E), see [1, §3.1], is a map ϕ : V →
{1, 2, . . . , k} such that for any hyperedge e of more than one vertex |ϕ(e)| > 1.
Namely, at least two vertices of e have different colours. Moreover, if for any e ∈ E

and any two different vertices u, v ∈ e we have that ϕ(u) 6= ϕ(v), we say that ϕ is
a strong vertex k-colouring.

On the other hand, [1, §3.2.5] a hyperedge colouring for H is a map ϕ : E →
{1, 2, . . . , k} such that ϕ(e) 6= ϕ(e′) for any pair of different but adjoint hyperedges
e and e′.

Finally, [7], a total colouring of H is a map ϕ : V ∪ E → {1, 2, . . . , k} such that
any pair formed by either two adjacent vertices, two adjacent hyperedges or an
hyperedge and any of its incident vertices have different images through ϕ.

Trivially, a simplicial complex X can be regarded as a hypergraph H = (V,E)
where V = X0 and E = X . Hence, the above notions of colourability automatically
translate to the following definition. Note that a vertex k-colouring of a simplicial
complex is always a strong vertex k-colouring.

Definition 2.1. Let X be a simplicial complex.
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(1) A vertex k-colouring of X (C1-k-colouring) is a map ϕ : V → {1, 2, . . . , k}
such that if σ ∈ X and u, v ∈ σ, u 6= v, then ϕ(u) 6= ϕ(v).

(2) A face k-colouring of X (C2-k-colouring) is a map ϕ : X → {1, 2, . . . , k}
such that ϕ(σ) 6= ϕ(τ) whenever σ 6= τ , σ ∩ τ 6= ∅.

(3) A total k-colouring of X (C3-k-colouring) is a map ϕ : X → {1, 2, . . . , k}
such that ϕ(u) 6= ϕ(v) for any u, v ∈ V with {u, v} ∈ X , and ϕ(σ) 6= ϕ(τ)
for any pair of different simplices σ, τ with non-empty intersection.

Note that a total k-colouring yields both a vertex k-colouring and a face k-
colouring. We prove:

Proposition 2.2. For any simplicial complex X and any i = 1, 2, 3, there is a pure
Sullivan algebra Mi

k(X) which is not elliptic if and only if X is Ci-k-colourable.

Proof. Associated to X consider G1 = X(1) the graph given by its 1-skeleton. On
the other hand, let G2 be the graph whose vertex set is the set of simplices of X
and whose edges are pairs of distinct simplices with a common face. Finally, let G3

be the graph whose vertex set is again the set of simplices of X and whose edges
are also pairs of distinct simplices with non-empty intersection, together with pairs
of vertices giving raise to a 1-simplex. Observe that G1, G2 and G3 are respectively
the 2-section graph, intersection graph and total graph of the hypergraph given by
X (see [1, 7]).

It is then clear from Definition 2.1 that a Ci-k-colouring of X is precisely a k-
colouring of Gi, i = 1, 2, 3. Furthermore, the graphs G1, G2 and G3 are connected
as a consequence of X being connected. To finish, define Mi

k(X) = Sk(Gi) and
apply Theorem 1.3. �

2.2. Colourings of simplicial complexes. The colourings in §2.1 are originally
defined for hypergraphs, thus they do not take consideration of the additional struc-
ture of simplicial complexes. For that reason, we introduce the following:

Definition 2.3. Let X be a simplicial complex.

(1) An ascending k-colouring of X in dim r is a map ϕ : Xr → {1, 2, . . . , k}
such that if σ, τ ∈ Xr, σ ∪ τ ∈ Xr+1, then ϕ(σ) 6= ϕ(τ).

(2) A descending k-colouring of X in dim r is a map ϕ : Xr → {1, 2, . . . , k}
such that if σ, τ ∈ Xr, σ ∩ τ ∈ Xr−1, then ϕ(σ) 6= ϕ(τ).

We denote the respective chromatic numbers by χr(X) and χ′
r(X).

An ascending k-colouring of X in dim r is a colouring of the graph

(1) Gr(X) =
(

Xr, {(σ, τ) | σ ∪ τ ∈ Xr+1}
)

,

whereas a descending k-colouring of X in dim r is a colouring of

(2) G′
r(X) =

(

Xr, {(σ, τ) | σ ∩ τ ∈ Xr−1}
)

,

called the r-th exchange graph of X (see [10]). However, Theorem 1.3 cannot be
used to model the colourings in Definition 2.1 using these graphs, as they may not
be connected. We treat this issue in §3.

Instead, in this section we use the ascending and descending colourings to intro-
duce new colourings which we can model in the spirit of Proposition 2.2.

Definition 2.4. Let X be a simplicial complex.

(1) A complete ascending k-colouring of X (C4-k-colouring) is a map ϕ : X →
{1, 2, . . . , k} such that, for any r, s ∈ {0, 1, . . . , dimX}, if σ, τ ∈ Xr, σ∪τ ∈
Xr+1, or if σ ∈ Xr, τ ∈ Xs, r 6= s, then ϕ(σ) 6= ϕ(τ).

(2) A complete descending k-colouring of X (C5-k-colouring) is a map ϕ : X →
{1, 2, . . . , k} such that, for any r, s ∈ {0, 1, . . . , dimX}, if σ, τ ∈ Xr, σ∩ τ ∈
Xr−1, or if σ ∈ Xr, τ ∈ Xs, r 6= s, then ϕ(σ) 6= ϕ(τ).

(3) A map ϕ : X → {1, 2, . . . , k} is a full k-colouring of X (C6-k-colouring) if for
σ, τ ∈ X such that σ ⊂ τ , or σ, τ ∈ X0, σ ∪ τ ∈ X1, or for 1 ≤ r ≤ dimX ,
σ, τ ∈ Xr, σ ∩ τ ∈ Xr−1, we have that ϕ(σ) 6= ϕ(τ).
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Let G1 = (V1, E1) and G2 = (V2, G2) be two graphs. Recall that the sum of G1

and G2 is a graph G = G1+G2 with vertex set V1⊔V2 and edges E1∪E2∪{(u, v) |
u ∈ V1, v ∈ V2}. The sum of any two graphs is connected. Also recall that the
union of G1 and G2 is the graph G1∪G2 with vertex set V1∪V2 and edges E1∪E2.

Proposition 2.5. For any simplicial complex X and any i = 4, 5, 6, there is a pure
Sullivan algebra Mi

k(X) which is not elliptic if and only if X is Ci-k-colourable.

Proof. First, note that a complete ascending (resp. descending) k-colouring of X is
an ascending (resp. descending) k-colouring of X in dim r when restricted to Xr.
Furthermore, simplices of different dimensions receive different colours. It becomes
clear that if we define

G4 = G0(X) +G1(X) + · · ·+GdimX(X),

G5 = G′
0(X) +G′

1(X) + · · ·+G′
dimX(X),

X admits a complete ascending (resp. descending) k-colouring if and only if the
connected graph G4 (resp. G5) is k-colourable.

Regarding the full k-colouring, let I denote the strict inclusion graph of X , that
is, a graph with vertex set X and where (σ, τ) is an edge if and only if either σ ⊂ τ

or τ ⊂ σ. Define a graph

G6 = I ∪
(

G0(X) ⊔G′
1(X) ⊔ · · · ⊔G′

dimX(X)
)

.

Then G6 is connected since I is so. Furthermore, X is full-k-colourable if and only
if G6 is k-colourable. To finish, define Mi

k(X) = Sk(Gi), i = 4, 5, 6, and apply
Theorem 1.3. �

We model one last colouring in this section. In [8] the authors introduce the
following, more relaxed definition of vertex colouring:

Definition 2.6. Let k, s ≥ 1 and let X be a simplicial complex. A (k, s)-colouring
of X (C7-(k, s)-colouring) is a map f : V → {1, 2, . . . , k} such that, for every σ ∈ X

and for all 1 ≤ t ≤ k, |σ ∩ f−1(t)| ≤ s. Let chrs(X) denote the least integer k such
that X is (k, s)-colourable.

A Sullivan algebra whose ellipticity codifies the (k, s)-colourability of a simplicial
complex had already been obtained in [6]. However, we can use the work in [16] to
provide a different construction of one such algebra:

Proposition 2.7. For any simplicial complex X there exists a pure Sullivan algebra
M7

k,s(X) which is not elliptic if and only if X is C7-(k, s)-colourable.

Proof. In [16, Theorem 2] the authors show that

chrs(X) = min
P∈BCPs(X)

chr1
(

G0(P )
)

,

where BCPs(X) is a set of partitions of the vertex set of X and G0(P ) is a 1-
dimensional simplicial complex associated to one such partition P , see [16, Defini-
tion 3]. It quickly follows that when regarding G0(P ) as a graph, chr1

(

G0(P )
)

=

χ
(

G0(P )
)

. Furthermore, G0(P ) is connected for every P ∈ BCPs(X). Define

M7
k,s(X) =

⊗

P∈BCPs(X)

Sk

(

G0(P )
)

.

Let us show that M7
k,s(X) is the desired algebra.

Recall that the tensor product of Sullivan algebras is not elliptic if and only
if at least one of the factors is not elliptic. Therefore, if M7

k,s(X) is not elliptic,

there exists P ∈ BCPs(X) such that Sk

(

G0(P )
)

is not elliptic. Then by Theorem

1.3 G0(P ) is k-colourable, so χ
(

G0(P )
)

= chr1
(

G0(P )
)

≤ k, thus X is (k, s)-

colourable. Reciprocally, if M7
k,s(X) is elliptic, then Sk

(

G0(P )
)

is elliptic for every

P ∈ BCPs(X). Therefore, G0(P ) is not k-colourable, meaning that χ
(

G0(P )
)

=

chr1
(

G0(P )
)

> k, for every P ∈ BCPs. Therefore, X is not (k, s)-colourable. �
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3. Models for colourings of strongly connected homogeneous

simplicial complexes

As mentioned in §2.2, the colourings in Definition 2.3 cannot be immediately
modelled since the graphs that encode them, Gr(X) (see (1)) and and G′

r(X) (see
(2)), are not necessarily connected. In this section we further restrict the class of
simplicial complexes that we are considering as to be able to model these colourings.

Recall that a simplicial complex X of dimension dimX = n is strongly connected
if for any two n-dimensional simplices σ, τ there exist {σ0 = σ, σ1, . . . , σk = τ} ⊂
Xn such that σi−1 ∩ σi ∈ Xn−1, for i = 1, 2, . . . , k. Equivalently, X is strongly
connected if and only if G′

dim(X) is connected. On the other hand, X is homogeneous

if every vertex is contained in an n-dimensional simplex. Then, if X is homogeneous
and strongly connected, so is X(k), for 0 ≤ k ≤ n. Therefore:

Proposition 3.1. For any n-dimensional strongly connected homogeneous simpli-
cial complex X, Gr(X) and G′

s(X) are connected, for 0 ≤ r < n and 0 < s ≤ n.

Proof. The connectivity of G′
s(X), for 0 < s ≤ n is an immediate consequence of

the strong connectivity of X(s). Let us prove the connectivity of Gr(X), 0 ≤ r < n.
Take σ, τ ∈ Xr. Since X is homogeneous, we can find σ̄, τ̄ ∈ Xr+1 such that
σ ⊂ σ̄ and τ ⊂ τ̄ . Then, since X(r+1) is strongly connected, we can find {σ̄0 =
σ̄, σ̄1, . . . , σ̄k = τ̄} ⊂ Xr+1 such that σi = σ̄i−1 ∩ σ̄i ∈ Xr, i = 1, 2, . . . , k. It is now
immediate to check that σσ1 . . . σkτ is a path in Gr(X) joining σ and τ . �

An immediate application of Theorem 1.3 yields the following result:

Proposition 3.2. For any n-dimensional strongly connected homogeneous simpli-
cial complex X and for 0 ≤ r < n (resp. for 0 < s ≤ n), there exists a Sullivan
algebra Mk(X, r) (resp. M′

k(X, s)) which is not elliptic if and only if X admits an
ascending k-colouring in dim r (resp. a descending k-colouring in dim s).

We now introduce the last collection of colourings.

Definition 3.3. We say that a map ϕ : X → {1, 2, . . . , k} is:

• a maximal ascending k-colouring (C8-k-colouring) if for every 0 ≤ r ≤
dimX the restriction ϕ|Xr is an ascending k-colouring in dim r for X .

• a maximal descending k-colouring (C9-k-colouring) if for every 0 ≤ s ≤
dimX the restriction ϕ|Xs is a descending k-colouring in dim s for X .

• a minimal ascending k-colouring (C10-k-colouring) if there exists 0 ≤ r <

dimX such that ϕ|Xr is an ascending k-colouring in dim r for X .
• a minimal descending k-colouring (C11-k-colouring) if there exists 0 < s ≤

dimX such that ϕ|Xs is a descending k-colouring in dim s for X .

The respective chromatic numbers are denoted χmax(X), χ′
max(X), χmin(X) and

χ′
min(X).

Let G1 = (V1, E1) and G2 = (V2, G2) be two graphs. The cartesian prod-
uct G1�G2 is a graph with vertex set V1 × V2 and edge set {

(

(u1, u2), (v1, v2)
)

|
u1 = v1 and (u2, v2) ∈ E2 or (u1, v1) ∈ E1 and u2 = v2}. Note that χ(G1�G2) =
max

{

χ(G1), χ(G2)
}

(see [11, Theorem 26.1]). Furthermore, the cartesian product
of connected graphs is connected ([11, Corollary 5.3]). Then:

Proposition 3.4. For any simplicial complex X and any i = 8, 9, 10, 11, there is a
pure Sullivan algebra Mi

k(X) which is not elliptic if and only if X is Ci-k-colourable.

Proof. Note that any map Xdim(X) → {1, 2, . . . , k} (resp. X0 → {1, 2, . . . , k}) is an
ascending colouring in dimension dim(X) (resp. a descending colouring in dimension
0). Then, χdim(X)(X) = χ′

0(X) = 1. It follows immediately from Definition 3.3 that
χmax(X) = max0≤r<dimX{χr(X)} and that χ′

max(X) = max0<s≤dimX{χ′
s(X)}.

Consider the graphs

G8 = G0(X)�G1(X)� · · ·�Gn−1(X), G9 = G′
1(X)�G′

2(X)� · · ·�G′
n(X).
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Then, since χ
(

Gr(X)
)

= χr(X) and χ
(

G′
s(X)

)

= χ′
s(X), we deduce that χ(G8) =

χmax(X) and χ(G9) = χ′
max(X), so X admits a maximal ascending (resp. descend-

ing) k-colouring if an only if G8 (resp. G9) is k-colourable. Furthermore, both G8

and G9 are connected as a consequence of Proposition 3.1. Therefore, for i = 8, 9
it suffices to define Mi

k(X) = Sk(Gi) and apply Theorem 1.3.
We now consider the minimal colourings. It follows from Definition 3.3 that

χmin(X) = min0≤r<dimX{χr(X)} and that χ′
min(X) = min0<s≤dimX{χ′

r(X)}. By
a reasoning analogous to that of Proposition 2.7, the desired algebras are

M10
k (X) = Sk

(

G0(X)
)

⊗ Sk

(

G1(X)
)

⊗ · · · ⊗ Sk

(

Gn−1(X)
)

,

M11
k (X) = Sk

(

G′
1(X)

)

⊗ Sk

(

G′
2(X)

)

⊗ · · · ⊗ Sk

(

G′
n(X)

)

.

The result follows. �

Theorem 1.1 now follows immediately from Propositions 2.2, 2.5, 2.7 and 3.4.

4. Algorithmic complexity of simplicial complex colourings

If G is a graph, it can be regarded as a simplicial complex X(G) whose 0-
simplices and 1-simplices are, respectively, the vertices and edges of G. Such a
simplicial complex can be encoded using an adjacency matrix, so its codification
has the same length as that of G.

In this section we show that the (edge, total) colourability of a graph G is
equivalent to the Ci-colourability of X(G) for certain indices i. As a consequence,
we immediately deduce Theorem 1.2.

Remark 4.1. It is immediate that the k-colourability of a graph G is equivalent
both to the C1-k-colourability and the C7-(k, 1)-colourability of X(G). Similarly,
the total k-colourability of G is equivalent to the C6-k-colourability of X(G).

Proposition 4.2. The k-colourability of a graph G is equivalent both to the C4-
(k + 1)-colourability and the Ci-k-colourability, i = 8, 10, of X = X(G).

Proof. We begin with the C4-colourability. Let ψ : V → {1, 2, . . . , k} be a k-
colouring of G. Then, the map ϕ : X → {1, 2, . . . , k + 1} defined by

ϕ(σ) =

{

ψ(σ), if σ ∈ X0,

k + 1, if σ ∈ X1.

is a C4-(k + 1)-colouring of X . Reciprocally, if ϕ : X → {1, 2, . . . , k + 1} is a C4-
(k + 1)-colouring of X , we may assume that at least one 1-simplex receives image
k + 1, so k + 1 6∈ ϕ(X0). The map ψ : X0 = V → {1, 2, . . . , k} taking v to
ψ(v) = ϕ({v}) is a k-colouring of G.

We now consider the Ci-k-colourability, i = 8, 10. First, if ψ : V → {1, 2, . . . , k}
is a k-colouring of G, X admits a Ci-k-colouring defined by

ϕ(σ) =

{

ψ(σ), if σ ∈ X0,

k, if σ ∈ X1.

Reciprocally, if ϕ : X → {1, 2, . . . , k} is a Ci-k-colouring of X , i = 8, 10, the restric-
tion ψ = ϕ|X0 : X0 = V → {1, 2, . . . , k} is a k-colouring of G. �

Proposition 4.3. The edge k-colourability of a graph G is equivalent both to the
C5-(k + 1)-colourability and the Ci-k-colourability, i = 9, 11, of X = X(G).

Proof. We begin with the C5-(k + 1)-colourability. If ψ : E → {1, 2, . . . , k} is an
edge k-colouring of G, the map ϕ : X(G) = X → {1, 2, . . . , k + 1} defined by

ϕ(σ) =

{

ψ(σ), if σ ∈ X1,

k + 1, if σ ∈ X0.

is a C5-(k + 1)-colouring of X . Reciprocally, if ϕ : X → {1, 2, . . . , k + 1} is a C5-
(k + 1)-colouring of X , we may suppose that at least one 0-simplex receives image
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k+1, thus k+1 6∈ ϕ(X1). Then, the map ψ = ϕ|X1 : X1 = E → {1, 2, . . . , k} is an
edge k-colouring of G.

We continue with the Ci-k-colourability, i = 9, 11. If ψ : E → {1, 2, . . . , k} is an
edge k-colouring of G, X admits a Ci-k-colouring ϕ : X → {1, 2, . . . , k} defined by

ϕ(σ) =

{

ψ(σ), if σ ∈ X1,

k, if σ ∈ X0.

Reciprocally, if ϕ : X → {1, 2, . . . , k} is a Ci-k-colouring of X , i = 9, 11, the restric-
tion ψ = ϕ|X1 : X1 = E → {1, 2, . . . , k} is an edge k-colouring of G. �

Finally, Theorem 1.2 follows immediately from Remark 4.1, Proposition 4.2,
Proposition 4.3 and the algorithmic complexity of the problem of (edge, total)
k-colourability of graphs.
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