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COLOURING SIMPLICIAL COMPLEXES: ON THE

LECHUGA-MURILLO’S MODEL

DAVID MÉNDEZ

Abstract. L. Lechuga and A. Murillo showed that a non-oriented, simple and
connected finite graph G is k-colourable if and only if a certain pure Sullivan
algebra, constructed from G and k, is non-elliptic. In this paper, we settle us
in the framework of finite simplicial complexes where no standard definition of
colourability exists. Therefore, we introduce different colourings for simplicial
complexes and we extend Lechuga-Murillo’s result for them. We also prove
that determining whether a simplicial complex admits most of the considered
colourings is a NP-hard problem.

1. Introduction

The first to relate graph theory and rational homotopy theory were L. Lechuga
and A. Murillo in a celebrated paper [13]. They showed that the (vertex) k-
colourability of a non-oriented, simple, connected, finite graph G = (V,E) can
be codified through the ellipticity of a pure Sullivan algebra derived from it. This
interplay between graph theory and rational homotopy theory has been proven
fruitful: recently, C. Costoya and A. Viruel were able to use this interaction to
solve a question of realisability of groups [2, 3].

This relation between graph theory and rational homotopy theory was not the
only interesting connection between widely different theories that the authors were
able to obtain in [13]. They were also able to provide a link between rational
homotopy theory and algorithmic complexity by proving that the problem of graph
colourability can be reduced in polynomial time to the problem of determining
whether a certain Sullivan algebra is elliptic or not. Hence, since the former is a
NP -complete problem, the latter is a NP -hard problem. In [14] they go further by
reducing the problem of colouring a graph to deciding whether a certain cohomology
class of a Sullivan algebra vanishes. As a consequence, they show that determining
whether certain cohomology classes of a Sullivan algebra vanish or not is also a
NP -hard problem.

The aim of this work is to deep into this relation and to extend Lechuga and
Murillo result to the framework of connected simplicial complexes. The difficulty
arises when working with the notion of colourability of a simplicial complex: there is
no definition of colourability that may be considered standard. In fact, in literature
there exist many definitions that could be suitable in different situations. In this
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paper, we will introduce quite a large number of different notions of colourability
for simplicial complexes, which we will divide in three different groups. Namely, in
Section 3.1 we study the vertex, the face, and the total colourings. This family of
colourings is inherited from hypergraph colourings so, although they are very natu-
ral, they have the disadvantage of not taking in consideration the special structure
of simplicial complexes. For that reason, in Section 3.2 we introduce colourings
that are specially thought for simplicial complexes: the complete ascending, the
complete descending, the full and the (P, s)-colourings. Finally, Section 4 deals
with colourings that are also conceived for simplicial complexes but for technical
reasons, they need the simplicial complex to be strongly connected and homoge-
neous: the maximal ascending, the maximal descending, the minimal ascending
and the minimal descending colourings. For ease of notation, we will refer to all
the colourings above as Ci-colouring, for i = 1, . . . , 11 respectively.

In this paper, we prove the following:

Theorem 1.1. Let X be a connected simplicial complex and Ci, i = 1, . . . , 7, be
one of the colourings above mentioned. Then, there exists a pure Sullivan alge-
bra MCi

k (X) such that X is Ci-k-colourable if and only if MCi

k (X) is non-elliptic.
Moreover, if X is strongly connected and homogeneous, for Ci, i = 8, . . . , 11, there
exists a pure Sullivan algebra MCi

k (X) such that X is Ci-k-colourable if and only if

MCi

k (X) is non-elliptic.

We point out here that the same problem has also been tackled in [4] for the C7-
colouring [5]. Nevertheless, thanks to the work developed in [15] where the authors
computed the chromatic number related to these colourings, we are able to provide
a different proof of the aforementioned result.

We are also able to prove the following regarding the algorithmic complexity of
the studied colourings:

Theorem 1.2. Let X be a connected simplicial complex. For i ∈ {1, 7, 8, 9, 10, 11}
and k ≥ 3 or for i ∈ {4, 5, 6} and k ≥ 4, determining whether a simplicial complex
X is Ci-k-colourable is a NP-hard problem.

2. Background

In this section, we introduce some of the concepts and theories which will be
needed later, along with the notation to be used in the sequel. Namely, we give a
brief introduction to algorithmic complexity and rational homotopy theory, to then
recall the construction of Lechuga and Murillo. We also fix our terminology for
graphs and simplicial complexes.

We start with a brief introduction to algorithmic complexity, based on the one
provided by the authors in [13]. A decision problem is a function Π → {0, 1} where
Π = {Iα}α∈Γ is a family of subsets of non-negative integers, each Iα being an
instance of the problem. If I ∈ Π, then f(I) is the solution of I, the 0 codifying No
and the 1 codifying Yes. The language of a decision problem is the set of instances
for which the answer is Yes, that is, the I ∈ Π such that f(I) = 1.

A decision problem f : Π → {0, 1} belongs to the polynomial class P if there is
an algorithm that solves it in polynomial time. This means that for an instance
I ∈ Π of length n, the considered algorithm obtains a solution in a number of steps
bounded by p(n) for a certain polynomial p.
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On the other hand, a problem f : Π → {0, 1} belongs to the non-deterministic
polynomial class NP if there is an algorithm whose input data are pairs (C, I)
formed by the instance I plus a certificate C verifying the following: for each
instance I for which f(I) = 1, there is a certificate C(I) such that when having
(I, C(I)) as input, the considered algorithm is able to obtain that f(I) = 1 in a
number of steps bounded by a certain polynomial on the length of the instance;
whereas for those instances where f(I) = 0, any input pair (I, C) will allow the
algorithm to determine that the answer is 0 in a number of steps bounded by a
certain polynomial on the length of I.

It is obvious that P ⊂ NP , since for a problem in class P one can give an empty
certificate and obtain a solution in a number of steps bounded by a polynomial
on the length of the instance. The class P is usually referred as the class of easy
problems, while the NP class is referred as the class of problems that are not
necessarily easy, but for which it is easy to validate a certain solution.

We now need to recall the concept of reducibility: a map T : Π → Π′ between
two problems is a polynomial or Turing reduction if T (I) belongs to the language
of Π′ if and only if I belongs to the language of Π, thus solving I is equivalent to
solving T (I); and there exists a polynomial p such that if I ∈ Π is an instance of
Π of length n, T (I) is an instance of Π′ of length bounded above by p(n). Two
problems that have such a map between them are said to be polynomially or Turing
equivalent.

This concept allows us to introduce some interesting classes of decision problems,
and among the hardest of the NP -problems are the NP -complete problems: a NP
problem Π is NP -complete if any other NP problem admits a polynomial reduction
to Π. Hence any algorithm that solves a NP -complete problem would solve any
NP problem in the same range of time. In particular, obtaining an algorithm that
can solve a NP -complete problem in polynomial time would immediately lead to
a proof that P=NP, this being the most important open problem in algorithmic
complexity.

Finally we have the class of NP -hard problems. A problem Π is said to be
NP -hard if any NP problem can be reduced to it in polynomial time, but Π does
not need to be in the NP class itself. Hence, any problem such that there is a
NP -complete problem that can be reduced to it is NP -hard.

An extensive list of NP -complete problems can be found in [8]. One of the listed
problems is determining whether a certain graph admits a k-colouring, for k ≥ 3.
In [13], the authors show that said problem is Turing-reducible to the problem of
determining whether a certain Sullivan algebra they model from the graph is non-
elliptic, and hence they show that determining whether certain Sullivan algebras
are elliptic or not is a NP -hard problem. For our purposes, we will also make use
of the fact that the problem of edge k-colourability of a graph is NP -complete for
k ≥ 3, [7, 11], and that the problem of determining whether a certain graph is
total-k-colourable is NP -complete for k ≥ 4, [16]. Our aim is, on the one hand, to
show that the problem of (total, edge or vertex) graph colourability can be reduced
to the problem of determining whether a certain simplicial complex admits one of
the notions of colourability we consider, thus proving that the problem of Ci-k-
colourability is NP -hard; and on the other, to extend Lechuga-Murillo’s model to
all of them, thus obtaining, for each of the considered colourings, a Sullivan algebra
whose ellipticity codifies the corresponding simplicial complex colourability.
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With that objective in mind, we first recall the construction in [13]. But before
we should introduce some fundamental aspects of rational homotopy theory and we
refer to [6] for the basics. By Sullivan algebra (ΛV, d) we mean the free commutative
graded algebra generated by the graded rational vector space V , i.e., ΛV = TV/I,
where TV denotes the tensor algebra over V and I is the ideal generated by v ⊗
w−(−1)|v||w|w⊗v, v, w ∈ V . It is therefore a symmetric algebra on V even tensored
with an exterior algebra on V odd. Recall that a Sullivan algebra is called elliptic
when both V and H∗(ΛV, d) are finite dimensional as graded vector spaces.

Now, for a non-oriented, simple, connected, finite graph G = (V,E), and for
every integer k ≥ 2, the Lechuga-Murillo’s model is defined as the Sullivan algebra
Sk(G) = (ΛVG,k, d), where VG,k is the graduated vector space over the field of
rational numbers given by

V even
G,k = 〈xv | v ∈ V 〉, |xv| = 2, d(xv) = 0,

V odd
G,k = 〈yv1v2 | v1v2 ∈ E〉, |yv1v2 | = 2k − 3, d(yv1v2) = Σk

l=1x
k−l
v1

xl−1
v2

.

They proved the following result.

Theorem 2.1 (Lechuga-Murillo [13]). The graph G is k-colourable if and only if
the Sullivan algebra Sk(G) is non-elliptic.

Throughout this paper, we will consider only abstract simplicial complexes with
a finite number of simplices, which will also be finite themselves. Thus, a simplicial
complex X on a finite vertex set V is a finite and nonempty collection of nonempty
finite subsets of V , X = {σ1, . . . , σr}, such that if σ ∈ X and there exists σ′ 6= ∅
verifying that σ′ ⊂ σ, then σ′ is also in X , and such that V =

⋃r

i=1 σi. We use the
following notation. The elements of X are called faces or simplices of the complex.
The dimension of a face σi ∈ X is dim(σi) = |σi| − 1, i.e. its cardinality minus 1.
A face of dimension s is called a s-face or s-simplex. The set of all the s-faces of X
is denoted Xs, in particular, X0 = V . The subcomplex of X spanned by all the r-
faces of X for r ≤ s is denoted by X(s), and is called the s-skeleton. The dimension
of a complex, dimX , is the largest of the dimensions of all its faces. A complex X
on a vertex set V is called connected if for every pair of vertices v, w ∈ V there exists
a collection of faces {σi0 , . . . , σim} such that v ∈ σi0 , w ∈ σim and σij ∩ σij+1

6= ∅
for j = 0, . . . ,m − 1. Observe that X is connected when its underlying graph
(V,X1) is so. Recall that a hypergraph H is a pair H =

(

V (H), E(H)
)

formed
by a nonempty set of vertices V (H) = {v1, v2, . . . , vn} and a set of hyperedges
E(H) = {e1, e2, . . . , em}, each of them being a nonempty subset of V (H). Then, it
is immediate to see that a simplicial complex X can be regarded as a hypergraph
H = (V,X).

Finally, to be able to show that the problem of (total, edge or vertex) graph
colourability is polynomially reducible to the problem of whether a simplicial com-
plex admits one of the considered colourings it would be useful to know the length
of an instance of these problems. A graph is usually represented through its ad-
jacency matrix A = (aij): a square matrix of order n where n is the number of
vertices, say {v1, v2, . . . , vn}, of the graph such that aij = 1 if vivj is an edge in the
graph and aij = 0 otherwise. In binary, it would have length log2 n + n2, where
log2 n is the number of binary digits needed to represent the number of vertices n
and n2 is the number of elements in the adjacency matrix. In particular, we can
represent a one dimensional simplicial complex in the same manner.
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3. Models for connected simplicial complexes

Through this section, X will denote a connected simplicial complex with vertex
set V and H = (V,X) its associated hypergraph.

3.1. Models for colourings from hypergraphs. Since we can regard a simpli-
cial complex X over a set V as a hypergraph H = (V,X), one source of simplicial
complex colourings is hypergraph colourings. In this section we take some of the
most common hypergraph colourings and adapt them to simplicial complexes: ver-
tex colouring (Definition 3.1), face colouring (Definition 3.5), and total colouring
(Definition 3.7).

For each of those colourings, Ci, i = 1, 2, 3, we will find a connected graph
Gi, i = 1, 2, 3, such that the k-colourability of the graph Gi is equivalent to the
Ci-k-colourability of the simplicial complex X . Then, it suffices to apply Theorem
2.1 to conclude.

The first idea we may come with when thinking of a colouring for a hypergraph
is to extend the notion of vertex colouring from a graph (recall that a graph is k-
colourable if there exists a map from its set of vertices to a set of k different elements
such that adjacent vertices do not share the same image). There are mainly two
different ways of doing this: one is to ask every pair of adjacent vertices of the
hypergraph to have different colours, which we call a strong vertex colouring. The
other possibility is to ask non-unitary hyperedges to have more than one colour,
which we will call a weak vertex colouring. We are going to see that these ideas
are actually the same when working with hypergraphs that come from simplicial
complexes, thus we may choose any of the two formulations. As a consequence, we
have the following definition.

Definition 3.1. A vertex k-colouring of X (C1-k-colouring), is a map ϕ : V →
{1, 2, . . . , k} such that if σ ∈ X\X(0), then #(ϕ(σ)) > 1, that is, X does not have
a monochromatic face with two or more different vertices.

This definition for X coincides with the definition of weak vertex colouring for
H , and we have:

Proposition 3.2. Every vertex k-colouring of X is a strong vertex k-colouring of
(V,X).

Proof. Consider ϕ : V → {1, 2, . . . , k} a vertex k-colouring of X and take u, v ∈ V
two different vertices such that there exist a simplex σ containing both of them.
Then {u, v} ⊂ σ, and thus, {u, v} must also be a simplex in X . Therefore, since
#(ϕ({u, v})) > 1, ϕ(u) 6= ϕ(v). �

Notice that if we have a graph G and consider it as a one-dimensional simpli-
cial complex X with 0-simplices the vertices of G and 1-simplices the edges of G,
a k-colouring of G is precisely a vertex k-colouring of X . Since a graph and a
one-dimensional simplicial complex have the same length as instances of the corre-
sponding problems, we immediately obtain the following result.

Lemma 3.3. The problem of graph k-colourability is Turing-reducible to the prob-
lem of C1-k-colourability and hence the latter is a NP-hard problem, for k ≥ 3.

We now need to find a graph codifying the strong or weak vertex colourability
of a hypergraph. To that purpose, consider for a hypergraph H the corresponding
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2-section graph H2 [1, p. 25] defined as the graph with vertices V (H2) = V (H)
and edges E(H2) = {uv | ∃e ∈ E(H), u, v ∈ e}. Then, the following result holds.

Theorem 3.4. Let X be a connected simplicial complex. Then there exists a pure
Sullivan algebra MC1

k (X) such that X is vertex k-colourable if and only if MC1

k (X)
is non-elliptic.

Proof. First, we regard X as a hypergraph H = (V,X). Now, as H is connected
we claim that its corresponding 2-section graph, H2, is also connected. Indeed
for H connected, if u, v ∈ V (H) = V (H2), there is a collection of hyperedges
e1, e2, . . . , er ∈ E(H) such that u ∈ e1, v ∈ er and ei∩ei+1 6= ∅, for i ∈ {1, 2, . . . , r−
1}. If we take vi ∈ ei ∩ ei+1 any vertex, then uv1v2 . . . vr−1v is a path in H2

joining u and v. Therefore, H2 is connected. Moreover, an application ϕ : V (H) =
V (H2) → {1, 2, . . . , k} is a strong vertex k-colouring for H if and only if it is a
(vertex) colouring for H2. We only need to realise that two vertices are adjoint in
a hypergraph if and only if they are adjoint on its 2-section graph.

Notice that when regarding X as a hypergraph, two vertices are adjoint if and
only if the set of those two vertices is a simplex in X . Thus, when taking the
2-section graph of a simplicial complex, its edges are precisely the 1-simplices of X .
Therefore, the 2-section graph of X is X2 = G1 = (V,X1), and the desired algebra

is MC1

k (X) = Sk(G1), where Sk(G1) is the Sullivan algebra introduced in Section
2. �

We now move on to a different notion of colouring for a hypergraph: a hyper-
edge colouring. A hyperedge colouring for a hypergraph H is a map ϕ′ : E(H) →
{1, 2, . . . , k} such that adjoint hyperedges have different colours, that is, different
images through ϕ′. This yields the following definition for simplicial complexes.

Definition 3.5. A face k-colouring of X (C2-k-colouring) is a map ϕ′ : X →
{1, 2, . . . , k} such that if σ, τ ∈ X are two different simplices and σ ∩ τ 6= ∅, then
ϕ′(σ) 6= ϕ′(τ).

Notice that this kind of colouring only takes in consideration intersecting faces,
so when restricted to X0 = V it may not be a vertex colouring of X .

We now need to find a graph codifying this colourability. To that purpose we
recall that for a hypergraph H , we can consider its intersection graph (also called
line graph or representation graph) L(H) = (E(H), {de | d ∩ e 6= ∅}), defined
in [1, p. 24]. In this graph, the set of vertices is the set of edges of the hypergraph,
and two of them will be connected by an edge if and only if the edges are adjacent
in H . So it is immediate that an edge colouring of the hypergraph H corresponds
to a colouring of the graph L(H), and vice-versa. Thus, we can prove the following
result.

Theorem 3.6. Let X be a connected simplicial complex. Then there exists a pure
Sullivan algebra MC2

k (X) such that X is face k-colourable if and only if MC2

k (X)
is non-elliptic.

Proof. We only need to show that if the hypergraph H = (V,X) is connected, then
its intersection graph L(H) is also connected so we can apply Lechuga-Murillo’s
result. In order to do that, take d, e ∈ E(H) two vertices on the intersection graph
and take u ∈ d, v ∈ e. Since H is connected, we can find a collection of hyperedges
e1, e2, . . . , er such that u ∈ e1, v ∈ er and ei ∩ ei+1 6= ∅ for i ∈ {1, 2, . . . , r − 1}. In
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that case, d∩ e1 6= ∅ 6= e∩ er, and de1e2 . . . ere is a path connecting d and e. As we
mentioned above, an edge colouring of H corresponds to a colouring of the graph
G2 = L(H). Therefore, by using Theorem 2.1, X is face k-colourable if and only if

MC2

k (X) = Sk(G2) is non-elliptic, where Sk(G2) is the Sullivan algebra introduced
in Section 2. �

To finish with the first family of colourings, we are going to give a model for the
total colouring. A total colouring of a hypergraph is a map ψ : V (H) ∪ E(H) →
{1, 2, . . . , k} such that any pair formed by either two adjacent vertices, two adjacent
faces or an incident vertex and edge, have different images. Thus, this raises the
following definition in the scenario of simplicial complexes.

Definition 3.7. A total k-colouring of X (C3-k-colouring) is a map ψ : V ∪X →
{1, 2, . . . , k} such that

• if u, v ∈ V and {u, v} ∈ X , then ψ(u) 6= ψ(v).
• if σ, τ ∈ X and σ ∩ τ 6= ∅, then ψ(σ) 6= ψ(τ).
• if u ∈ V , σ ∈ X and v ∈ σ, then ψ(u) 6= ψ(σ).

Notice that when restricted to proper sets, a total k-colouring yields a vertex k-
colouring and a face k-colouring.

The graph which is going to codify the total colouring is the total graph, which
is, for a given hypergraph H , a graph T (H) with vertices V (H) ∪E(H) and edges
any pair formed by two adjacent vertices, two adjacent edges or an incident vertex
and edge. Being defined like this, it is clear that a total colouring of a hypergraph
is precisely a colouring of this graph, so we obtain the following result:

Theorem 3.8. Let X be a connected simplicial complex. Then there exists a pure

Sullivan algebra M
C3

k (X) such that X is total k-colourable if and only if M
C3

k (X)
is non-elliptic.

Proof. We associate to X a connected hypergraph H and we have to show that a
connected hypergraph yields a connected total graph T (H). To do so, we need to
consider three different ways of choosing vertices.

First, choose, u, v ∈ V (H). Since H is connected, there exists a collection of
hyperedges e1, e2, . . . , er such that u ∈ e1, v ∈ er and ei∩ei+1 6= ∅, i ∈ {1, 2, . . . , r−
1}. But then, ue1e2 . . . erv is a path from u to v.

Now take u ∈ V (H) and d ∈ E(H). If we take v ∈ d, then we have shown that
there is a path ue1e2 . . . erv joining u and v. Now, since v ∈ d, there is an edge
joining v and d, so ue1e2 . . . ervd is also a path in T (H), which connects u and d.

Finally, if d, e ∈ E(H), we can get a path connecting them by taking u ∈ d, v ∈ e,
finding a path from u to v and adding d and e to each end of the path. Therefore
G3 = T (H) is connected. As we mentioned above, the colouring of G3 defines the

total colouring of H and hence of X so it suffices to consider M
C3

k (X) = Sk(G3),
where Sk(G3) is the Sullivan algebra introduced in Section 2. �

3.2. Proper simplicial complex colourings. All the previous colourings were
obtained from hypergraph colourings. As a matter of fact, they did not take advan-
tage of the special structure of simplicial complexes. For instance, a total colouring
on a simplicial complex colours the vertices twice: once as a vertex and then as a
0-simplex. Similarly, a vertex colouring only uses the information of the 1-skeleton
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of the simplicial complex, and face colourings do not take into account the dimen-
sion of the intersection of the faces. For this reason, we now introduce the following
definitions.

Definition 3.9. An ascending k-colouring of X in dim r is a map ϕ : Xr →
{1, 2, . . . , k} such that if σ, τ ∈ Xr join in a (r+1)-simplex, then ϕ(σ) 6= ϕ(τ). We
will denote by χr(X) the chromatic number associated to this colouring (that is,
the minimum k for which an ascending k-colouring of X in dimension r exists).

Definition 3.10. A descending k-colouring of X in dim r is a map ϕ′ : Xr →
{1, 2, . . . , k} such that if σ, τ ∈ Xr intersect in a (r− 1)-simplex, then ϕ(σ) 6= ϕ(τ).
We will denote by χ′

r(X) the corresponding chromatic number.

Thus, ϕ distinguishes faces of (r + 1)-simplices, while ϕ′ distinguishes r-faces
that intersect in a (r − 1)-face. We will now give some observations corresponding
to these colourings.

• An ascending colouring in dim 0 is a vertex colouring of the 2-section graph.
• A descending colouring in dim 1 is an edge colouring of the same graph.
• Any map XdimX → {1, 2, . . . , k} is an ascending colouring in dimension
dimX .

• Similarly, any map X0 → {1, 2, . . . , k} is a descending colouring in dim 0.
• Any descending colouring is also an ascending colouring in the same dimen-
sion.

It is immediate to observe that an ascending k-colouring on dim r is a colouring
of the r-th exchange graph, [9],

(1) Gr(X) = (Xr, {στ | σ ∪ τ ∈ Xr+1}),

which is a generalisation of the 2-section graph G0(X). Similarly, a descending
k-colouring in dim r is a colouring of the graph

(2) G′
r(X) = (Xr, {στ | σ ∩ τ ∈ Xr−1}).

We remark that, in this case, the connectivity of the simplicial complex does not
imply the connectivity of the above graphs except for the particular cases of G0(X)
and G′

1(X). This issue will be treated in Section 4.
We now introduce some definitions that make use of the previous ones and which

we will be able to model in this section.

Definition 3.11. A complete ascending k-colouring of X (C4-k-colouring) is a map
ϕ : X → {1, 2, . . . , k} such that, for any given r, s ∈ {0, 1, . . . , dimX},

• σ, τ ∈ Xr, σ ∪ τ ∈ Xr+1 ⇒ ϕ(σ) 6= ϕ(τ).
• σ ∈ Xr, τ ∈ Xs, r 6= s⇒ ϕ(σ) 6= ϕ(τ).

Thus, ϕ is, when restricted to Xr, an ascending k-colouring of X in dim r, for every
r. Also, simplices of different dimensions will have different colours. Let χc(X) be
the corresponding chromatic number.

We can easily prove that the problem of graph colourability can be reduced to
the problem of C4-colourability of a certain simplicial complex.

Lemma 3.12. The problem of k-colourability of a graph G is reducible to the
problem of C4-(k + 1)-colourability of the same graph considered as a simplicial
complex X. Hence the problem of C4-k-colourability is NP-hard, for k ≥ 4.
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Proof. Since the graph G and the simplicial complex X have the same length as
instances of the corresponding problems, we only have to show that it is equivalent
to give a k-colouring of G and to give a C4-(k + 1)-colouring of X .

Suppose first that V is the set of vertices of G (and X) and we have ϕ : V →
{1, 2, . . . , k} a k-colouring of G. We can then define a map ψ : X → {1, 2, . . . , k+1}
as

ψ(σ) =

{

ϕ(σ), if σ ∈ X0,

k + 1, if σ ∈ X1.

It is immediate that ψ is a C4-(k + 1)-colouring of X .
Reciprocally, suppose that ψ : X → {1, 2, . . . , k+1} is a C4-(k+1)-colouring ofX .

Then we know that the 1-simplices and 0-simplices of X receive different colours.
We may assume that there is at least a 1-simplex receiving the colour k + 1, so no
0-simplex may receive that colour. We can then define a map ϕ : V → {1, 2, . . . , k}
by ϕ(v) = ψ({v}), for v ∈ V . Since two vertices are adjacent if and only their union
is a simplex in X , adjacent vertices must receive different colours by ϕ, so ϕ is a
k-colouring for X . �

Similarly, we can make the restrictions of ϕ to Xr descending colourings instead
of ascending, which yields the following definition.

Definition 3.13. A complete descending k-colouring of X (C5-k-colouring) is a
map ϕ′ : X → {1, 2, . . . , k} such that, for any given r, s ∈ {0, 1, . . . , dimX},

• σ, τ ∈ Xr, σ ∩ τ ∈ Xr−1 ⇒ ϕ′(σ) 6= ϕ′(τ).
• σ ∈ Xr, τ ∈ Xs, r 6= s⇒ ϕ′(σ) 6= ϕ′(τ).

We will call the corresponding chromatic number χ′
c(X).

We can prove that this problem is NP -hard by using techniques similar to those
in the proof of Lemma 3.12.

Lemma 3.14. The problem of edge k-colourability of a graph G is reducible to
the problem of C5-(k+1)-colourability of the same graph considered as a simplicial
complex X. Hence the problem of C5-k-colourability is NP-hard, for k ≥ 4.

Proof. We have to show that it is equivalent to give an edge k-colouring of G =
(V,E) and to give a C5-(k + 1)-colouring of X .

Suppose fist that ϕ : E → {1, 2, . . . , k} is an edge k-colouring for G and define a
map ϕ′ : X → {1, 2, . . . , k + 1} by

ϕ′(σ) =

{

ϕ(σ), if σ ∈ X1 ≡ E,

k + 1, if σ ∈ X0 ≡ V .

If two 1-simplices intersect in a 0-simplex, that would mean that the edges they
represent have a vertex in common, so they would receive different images through
ϕ and hence through ϕ′. Since the image of the 0-simplices is not restricted other
than it being different from the image of any simplex of a different dimension, it is
clear that ϕ′ is a complete descending (k + 1)-colouring for X .

Reciprocally, if ϕ′ : X → {1, 2, . . . , k + 1} is a complete descending (k + 1)-
colouring for X , we may suppose that at least one 0-simplex receives image k + 1,
so k + 1 does not fall in the image of X1 through ϕ′. Hence we may define ϕ =
ϕ′
|X1 : E ≡ X1 → {1, 2, . . . , k}, and it is clear that this map is an edge k-colouring

for G. �
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Since in both cases, the colours of different dimensions are distinct, and since re-
stricted to each dimension these colourings are ascending or descending respectively,
the next equalities follow:

χc(X) = χ0(X) + χ1(X) + · · ·+ χdimX(X),

χ′
c(X) = χ′

0(X) + χ′
1(X) + · · ·+ χ′

dimX(X).

Now, to model them through graphs, one possible idea would be to get the
graphs modelling each of the ascending or descending colourings and join every
vertex of two different graphs with an edge. Then a colouring of the resulting
graph will be a colouring when restricted to each of the considered graphs, and
also, since every vertex is connected to all the vertices of the rest of the graphs,
no two different graphs will have vertices with the same colour. This is the idea
of the sum of graphs defined inductively from the sum of two graphs G1 and G2,
that is the graph G = G1 + G2 with vertices V (G) = V (G1) ⊔ V (G2) and edges
E(G) = E(G1) ∪ E(G2) ∪ {uv | u ∈ V (G1), v ∈ V (G2)}. It is easily shown that
χ(G) = χ(G1) + χ(G2), which will extend inductively to the sum of any finite
number of graphs.

Hence, we have the following result.

Theorem 3.15. Let X be a simplicial complex. Then there exists a pure Sullivan
algebra MC4

k (X) (respectively MC5

k (X)) such that X admits a complete ascending

(respectively descending) k-colouring if and only if MC4

k (X) (respectively MC5

k (X))
is non-elliptic.

Proof. As we have mentioned above, complete ascending k-colourings and complete
descending k-colourings are respectively modelled by the colourings of the following
graphs:

Gc(X) = G0(X) +G1(X) + · · ·+GdimX(X),

G′
c(X) = G′

0(X) +G′
1(X) + · · ·+G′

dimX(X),

where Gr(X) and G′
s(X) are defined in (1) and (2) respectively. Now, one can

easily see that the sum of two graphs is always connected. Indeed, if we choose one
vertex for each of the graphs, they are by definition connected with an edge, and
if they are in the same graph, we can choose any vertex on the other graph and
we have a path joining the two vertices through this one. As a consequence, for
the graph G4 = Gc(X) we get that MC4

k (X) = Sk(G4) (respectively for the graph

G5 = G′
c(X) we get that MC5

k (X) = Sk(G5)), where Sk(G4) is the Sullivan model
introduced in Section 2. �

The following colouring is also formulated by combining colourings in different
dimensions. It was introduced for dimension two in [12], and it has been recently
studied, also for dimension two, under the name of VEF-colouring in [17].

Definition 3.16. A map ψ : X → {1, 2, . . . , k} is a full k-colouring of X (C6-k-
colouring) if it satisfies:

• σ ⊂ τ ⇒ ψ(σ) 6= ψ(τ).
• σ, τ ∈ X0, σ ∪ τ ∈ X1 ⇒ ψ(σ) 6= ψ(τ).
• 1 ≤ r ≤ dimX, σ, τ ∈ Xr, σ ∩ τ ∈ Xr−1 ⇒ ψ(σ) 6= ψ(τ).
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Thus, ψ distinguishes incident faces, it is an ascending colouring when restricted
to X0, and a descending colouring when restricted to Xr, on all the other dimen-
sions. Particularly, any complete ascending k-colouring is a full k-colouring.

Notice that if we take a graph G and consider it as a one-dimensional complex
X , then a C6-k-colouring of X is precisely a total k-colouring of G. Therefore:

Lemma 3.17. The problem of total graph k-colourability is Turing-reducible to
the problem of C6-k-colourability of a simplicial complex, and hence, the later is a
NP-hard problem, for k ≥ 4.

On the other hand, the full k-colouring is equivalent to a colouring of the full
graph of X ,

(3) Ge(X) = I ∪ (G0(X) ⊔G′
1(X) ⊔ · · · ⊔G′

dimX(X)),

where the union of two graphs is the graph with vertices the union of the vertices
of the two, and edges the union of the edges of the two, and I is the strict inclusion
graph, that is, a graph whose vertices are the simplices of the complex, and they
are joined by an edge if and only if the simplices they represent are one contained
in the other. This graph is connected when X is also connected, so the next result
holds.

Theorem 3.18. Let X be a connected simplicial complex. Then, there exists a pure
Sullivan algebra MC6

k (X) such that X is full k-colourable if and only if MC6

k (X) is
non-elliptic.

Proof. It suffices to consider MC6

k (X) = Sk(G
e(X)), where Sk(G

e(X)) is the Sul-
livan algebra introduced in Section 2. �

We are now going to introduce the last colouring for this section. For a regular
vertex colouring of a simplicial complex X with colours from a palette P , we assign
to each vertex a colour from P such that for every face σ ∈ X , the vertices of σ
have different colours. That is we look at maps f : V → P such that its restriction
f |σ is injective. In [5] a more relaxed definition of vertex colouring is introduced.

Definition 3.19. Let P be a finite set (palette of colours) and s ≥ 1 be a natural
number.

(1) A (P, s)-colouring of X (or a C7-(P, s)-colouring) is a map f : V → P such
that, for all σ ∈ X and all p ∈ P , we have |σ ∩ f−1(p)| ≤ s.

(2) X is (k, s)-colourable if X admits a (P, s)-colouring from a palette P of
|P | = k colours.

(3) The s-chromatic number of X , chrs(X), is the least k so that X is (k, s)-
colourable.

Notice that a (k, 1)-colouring of X is a traditional k-colouring of X with re-

spect to the 1-skeleton, and chr1(X) is the usual chromatic number of X(1). This
means that a k-colouring for a graph G is precisely a (k, 1)-colouring for the one-
dimensional simplicial complex it induces, and hence:

Lemma 3.20. The problem of graph k-colourability can be polynomially reduced
to the problem of C7-(P, s)-colourability of a certain simplicial complex, and hence,
the latter is a NP-hard problem, for k ≥ 3.

Observe also that f : V → P is a (P, s)-colouring if and only if |f(σ)| ≥ 2 for all
s-dimensional faces.
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Definition 3.21. LetB ⊂ V be a set of vertices ofX and denoteD[B] the complete
simplicial complex of all subsets of the finite set B. Then

• B is s-independent if B contains no s-simplex of X ;
• B is connected if X ∩D[B] is a connected simplicial complex.

Definition 3.22. Let P be a partition of V . The graph G0(P ) of P is the simple
graph whose vertices are the blocks of P and where two blocks are joined by an
edge whenever their union is connected.

Following the notation in [15], the set of all block-connected s-independent par-
titions of V will be denoted as BCPs(X). We are then able to prove the following
result.

Theorem 3.23. Let X be a connected simplicial complex. Then, there exists a pure
Sullivan algebra MC7

r,s(X) such that X is C7-(r, s)-colourable if and only if MC7
r,s(X)

is not elliptic.

Proof. In [15, Theorem 2.5] the authors show that the s-chromatic number of X is
the minimum

chrs(X) = min
P∈BCPs(X)

chr1(G0(P ))

of the 1-chromatic numbers of the graphs of all s-independent and block-connected
partitions of V . Moreover, it is easy to show that if X is connected, then G0(P ) is
connected for every P ∈ BCPs(X). Hence, we may consider

MC7

r,s(X) =
⊗

P∈BCPs(X)

Sr(G0(P )),

where Sr(G0(P )) is the Sullivan algebra introduced in Section 2. Since the tensor
product of Sullivan algebras is non-elliptic if and only if at least one of the factors
is non-elliptic, when this algebra is non-elliptic at least one of the graphs G0(P ) is
r-colourable, so the s-chromatic number is, at most, r, and X is (r, s)-colourable,
and reciprocally. �

It is worth noting that the Sullivan algebras obtained in Theorem 3.23 are dif-
ferent from those obtained by the authors in [4] to codify the (P, s)-colourings.

4. Models for strongly connected homogeneous simplicial complexes

A simplicial complex is strongly connected when any two simplices of maximum
dimension can be joined via a finite list of simplices of maximum dimension verifying
that the intersection of one simplex of the list with the next one is a simplex on
the previous dimension.

This notion of connectivity, though apparently stronger than the previous one,
does not necessarily imply connectivity. Indeed, any simplicial complex with only
one simplex in maximum dimension will be strongly connected, but it may not be
connected. However, if we consider homogeneous simplicial complexes, then strong
connectivity implies connectivity. We recall that homogeneous simplicial complexes
satisfy that for every given vertex there is a face of maximum dimension containing
it. It is clear that if X is homogeneous and strongly connected, then X(k) is also
homogeneous and strongly connected for 0 ≤ k ≤ dimX .

We start showing that, under these restrictions, graphs (1) and (2), which model
ascending and descending k-colourings respectively, are connected, and thus we can
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use Lechuga-Murillo’s result. First, notice that X is strongly connected if and only
if G′

dimX(X) is connected. Indeed, since the vertices of this graph are simplices
of X of maximum dimension and they are connected through an edge, when they
intersect in a simplex of the previous dimension, a chain like the one in the definition
of strong connectivity is a path in this graph. For the rest of the dimensions, we
have the following result.

Proposition 4.1. Let X be an n-dimensional strongly connected homogeneous
simplicial complex. Then Gr(X) and G′

s(X) are connected, for 0 ≤ r < n and
0 < s ≤ n.

Proof. We will start by proving the connectivity of Gr(X). Choose σ, τ ∈ Xr. If
0 ≤ r < n, since X is homogeneous, there is a simplex of maximum dimension
containing σ, and if we choose a vertex in this simplex that is not in σ, we may add
it to σ to get a (r+1)-simplex σ̃ of which σ is a face. In a similar way, we can choose
a (r + 1)-simplex τ̃ containing τ . Now σ̃, τ̃ ∈ X(r+1), and X(r+1) is homogeneous
and strongly connected. Then we have a list of (r + 1)-simplices in X(r+1), σ̃ =
σ̃1, σ̃2, . . . , σ̃t = τ̃ such that σi = σ̃i ∩ σ̃i+1 is a r-simplex, i ∈ {1, 2, . . . , t − 1}. It
is easily seen that σi ∪ σi+1 is a (r + 1)-simplex, and also, σ = σ1 or they join in
a (r + 1)-simplex. The same happens with τ and σt−1. In any case, σσ1 . . . σt−1τ
is a path in Gr(X) between σ and τ , so Gr(X) is connected. The connectivity of
G′

s(X), for 0 < s ≤ n is an immediate consequence of the strong connectivity of
X(s). �

We thus have the next result.

Theorem 4.2. Let X be an n-dimensional strongly connected homogeneous sim-
plicial complex. Then, for every 0 ≤ r < n (respectively for every 0 < s ≤ n), there
exists a Sullivan algebra Mk(X, r) (respectively M′

k(X, s)) such that X admits an
ascending k-colouring in dim r (respectively a descending k-colouring in dim s) if
and only if Mk(X, r) (respectively M′

k(X, s)) is non-elliptic.

Proof. By the previous proposition, under these hypothesis the graph Gr(X) is
connected, for 0 ≤ r < n, so X admits an ascending k-colouring in dim r if and
only if the Sullivan algebra Mk(X, r) = Sk(Gr(X)) is non-elliptic. Similarly, for
0 < s ≤ n, X will admit a descending k-colouring in dim s if and only if the Sullivan
algebra M′

k(X, s) = Sk(G
′
s(X)) is non-elliptic. �

We now introduce the last collection of colourings.

Definition 4.3. We say that a map ϕ : X → {1, 2, . . . , k} is:

• a maximal ascending k-colouring (C8-k-colouring) if, for 0 ≤ r ≤ dimX ,
the restriction ϕ|Xr is an ascending k-colouring in dim r for X .

• a maximal descending k-colouring (C9-k-colouring) if, for 0 ≤ s ≤ dimX ,
the restriction ϕ|Xs is a descending k-colouring in dim s for X .

• a minimal ascending k-colouring (C10-k-colouring) if there exists 0 ≤ r <
dimX such that the restriction ϕ|Xr is an ascending k-colouring in dim r
for X .

• a minimal descending k-colouring (C11-k-colouring) if there exists 0 < s ≤
dimX such that the restriction ϕ|Xs is a descending k-colouring in dim s
for X .
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The corresponding chromatic numbers are respectively denoted by χmax(X),
χ′
max(X), χmin(X) and χ′

min(X). We start by proving that both ascending colour-
ings are NP -hard problems.

Lemma 4.4. The k-colourability of a graph G is polynomially reducible to both
the C8-k-colourability and the C10-k-colourability of the one-dimensional simplicial
complex it induces, X, and hence both are NP-hard problems, for k ≥ 3.

Proof. First notice that for a one-dimensional simplicial complex, the concepts of
maximal and minimal descending colourings are actually the same, since any map
ϕ : X1 → {1, 2, . . . , k} will be an ascending colouring in dimension 1. Hence we only
have to prove that having a k-colouring of G is equivalent to having a C8-k-colouring
of X .

Suppose then that V is the set of vertices of G (and X) and that we have a
k-colouring ϕ : V → {1, 2, . . . , k} for G. We define a map ψ : X → {1, 2, . . . , k} by

ψ(σ) =

{

ϕ(σ), if σ ∈ X0 ≡ V ,

k, if σ ∈ X1.

Since X is one-dimensional, we know that any map X1 → {1, 2, . . . , k}, and in
particular ψ|X1 , is an ascending k-colouring in dimension one. In dimension zero,

if σ, τ ∈ X0 are such that {σ, τ} ∈ X1, that would mean that the corresponding
vertices in G are joined by an edge, so they receive different colours through ϕ and
hence through ψ, so ψ is a maximal ascending k-colouring.

Reciprocally, suppose that ψ : X → {1, 2, . . . , k} is a maximal ascending k-
colouring for X . We know in particular that ϕ = ψ|X0 : X0 ≡ V → {1, 2, . . . , k} is
an ascending k-colouring in dimension 0. Hence two vertices that form a 1-simplex,
or equivalently, that are joined through an edge in G, must receive different colours
through ϕ, and ϕ is, indeed, a k-colouring for G. �

We can show in a similar manner that descending k-colourings are both NP -hard
problems.

Lemma 4.5. The edge k-colourability of a graph G is equivalent to both the C9-k-
colourability and the C11-k-colourability of the one-dimensional simplicial complex
it induces, X, and hence both are NP-hard problems, for k ≥ 3.

Proof. In a similar way as what we have shown in Lemma 4.4, maximal and min-
imal descending colourings are the same concept when applied to one dimensional
simplicial complexes, since they both must be descending k-colourings in dimen-
sion one while they do not have any restriction on the image of 0-simplices. Hence
we may only prove that having an edge k-colouring of G is equivalent to having a
C9-k-colouring of X .

Suppose then that G = (V,E) and that ϕ′ : E → {1, 2, . . . , k} is an edge k-
colouring of G, and consider the map ϕ : X → {1, 2, . . . , k} defined by

ϕ(σ) =

{

ϕ′(σ), if σ ∈ X1 ≡ E,

k, if σ ∈ X0 ≡ V .

We know that ϕ|X0 is a descending k-colouring in dimension 0. In dimension one,

if σ, τ ∈ X1 are such that σ ∩ τ ∈ X0, that means that the edges that σ and τ
represent in X have a vertex in common, so they would receive different images
through ϕ′ and hence through ϕ, so ϕ is a maximal descending k-colouring.
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Reciprocally, suppose that ϕ : X → {1, 2, . . . , k} is a maximal descending k-
colouring for X . We know in particular that ϕ′ = ϕ|X1 : X1 ≡ E → {1, 2, . . . , k}
is a descending k-colouring in dimension one. Hence two 1-simplices that intersect
in a 0-simplex receive different images through ϕ′. In terms of the graph G, what
we are saying is that two edges that intersect in a vertex receive different images
through ϕ′, and hence, ϕ′ is an edge colouring for G. �

We continue by showing that maximal colourings can be modelled using the
Lechuga-Murillo’s result.

Theorem 4.6. Let X be a n-dimensional strongly connected homogeneous simpli-
cial complex. Then there exists a pure Sullivan algebra MC8

k (X) such that X has a
maximal ascending k-colouring (that is, χmax(X) ≤ k) if and only if the pure Sulli-

van algebra MC8

k (X) is non-elliptic. Similarly, there exists a pure Sullivan algebra

MC9

k (X) such that X has a maximal descending k-colouring (or χ′
max(X) ≤ k) if

and only if MC9

k (X) is non-elliptic.

Proof. First, since in maximal ascending k-colourings we allow colours to be re-
peated between different dimensions, χmax(X) will be the least integer k such that,
for every r ≤ n, X admits an ascending k-colouring in dim r. Also, since any map
Xn → {1, 2, . . . , k} is an ascending colouring in dimension n, χn(X) = 1. Thus

χmax(X) = max{χ0(X), χ1(X), . . . , χn−1(X)}.

The same reasoning applies to the maximal descending k-colouring. In this case, we
know that any map X0 → {1, 2, . . . , k} is a descending k-colouring, so χ′

0(X) = 1,
and thus,

χ′
max(X) = max{χ′

1(X), χ2(X), . . . , χ′
n(X)}

Consider now the Cartesian product of graphs, G�G′. Since we know that
χ(G�G′) = max{χ(G), χ(G′)} [10, Theorem 26.1], we inductively obtain that

χmax(X) = max{χ0(X), χ1(X), . . . , χn−1(X)}

= max{χ(G0(X)), χ(G1(X)), . . . , χ(Gn−1(X))}

= χ(G0(X)�G1(X)� · · ·�Gn−1(X)),

therefore having a maximal ascending k-colouring of X is equivalent to having a
k-colouring of the graph

G�(X) = G0(X)�G1(X)� · · ·�Gn−1(X).

Also, the Cartesian product of connected graphs is itself connected, [10, Corollary
5.3], and since by Proposition 4.1 we already know that graphsGr(X) are connected
for 0 ≤ r < n, we deduce that G�(X) is connected. Then X admits a maximal

ascending k-colouring if and only if the Sullivan algebra MC8

k (X) = Sk(G�(X)) is
non-elliptic.

Similarly, graphs G′
s(X) are connected for 0 < s ≤ n, so

G′
�
(X) = G′

1(X)�G′
2(X)� · · ·�G′

n(X)

is connected, and X will admit a maximal descending k-colouring if and only if the
pure Sullivan algebra MC9

k (X) = Sk(G
′
�
(X)) is non-elliptic. �
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In the previous theorem we have seen that the chromatic number for the maxi-
mal k-colourings is the maximum of the chromatic numbers for the corresponding
colourings, by using that the Cartesian product of graphs models this colourability.
In a similar way, it is easy to see that the chromatic number for the minimal colour-
ings is the minimum of the chromatic numbers for the corresponding colourings, so
we might be tempted to search for a graph operation such that the chromatic num-
ber of the resulting graph is the minimum of the chromatic number of the factors.
Though a good candidate seems to be the direct product of graphs, this is an open
problem known under the name of Hedetniemi’s conjecture [10, Conjecture 26.25].
Since we do not know any suitable graph operation, we may proceed in a similar
way as we did in Theorem 3.23 to obtain an algebra that codified the C7-colourings.

Theorem 4.7. Let X be a n-dimensional strongly connected homogeneous simpli-
cial complex. Then there exists a pure Sullivan algebra MC10

k (X) such that X has a
minimal ascending k-colouring (that is, χmin(X) ≤ k) if and only if the pure Sulli-

van algebra MC10

k (X) is non-elliptic. Similarly, there exists a pure Sullivan algebra

MC11

k (X) such that X has a minimal descending k-colouring (or χ′
min(X) ≤ k) if

and only if MC11

k (X) is non-elliptic.

Proof. It is easily seen that a simplicial complex X admits a minimal ascending
k-colouring if and only if there exists an integer 0 ≤ r < n such that X admits an
ascending k-colouring in dimension r, which is also equivalent to the non-ellipticity
of the Sullivan algebra Sk(Gr(X)). Since the tensor product of pure Sullivan alge-
bras is elliptic if and only if all factors are elliptic, such r exists if and only if the
pure Sullivan algebra

MC10

k (X) = Sk(G0(X))⊗ Sk(G1(X))⊗ · · · ⊗ Sk(Gn−1(X))

is non-elliptic. Similarly, a minimal descending k-colouring exists if and only if the
pure Sullivan algebra

MC11

k (X) = Sk(G
′
1(X))⊗ Sk(G

′
2(X))⊗ · · · ⊗ Sk(G

′
n(X)).

is non-elliptic. �

To conclude this work, we just need to gather Theorems 3.4 – 4.7 to obtain the
proof of Theorem 1.1 and Lemmas 3.3 – 4.5 to obtain the proof of Theorem 1.2, so
we have proven both of our main results.
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