The group of self-homotopy equivalences of A_{n}^{2}-polyhedra

Cristina Costoya, David Méndez, and Antonio Viruel

Abstract

Let X be a finite type A_{n}^{2}-polyhedron, $n \geq 2$. In this paper we study the quotient group $\mathcal{E}(X) / \mathcal{E}_{*}(X)$, where $\mathcal{E}(X)$ is the group of self-homotopy equivalences of X and $\mathcal{E}_{*}(X)$ the subgroup of self-homotopy equivalences inducing the identity on the homology groups of X. We show that not every group can be realised as $\mathcal{E}(X)$ or $\mathcal{E}(X) / \mathcal{E}_{*}(X)$ for X an A_{n}^{2}-polyhedron, $n \geq 3$, and specific results are obtained for $n=2$.

1. Introduction

Let $\mathcal{E}(X)$ denote the group of homotopy classes of self-homotopy equivalences of a space X and $\mathcal{E}_{*}(X)$ denote the normal subgroup of self-homotopy equivalences inducing the identity on the homology groups of X. Problems related to $\mathcal{E}(X)$ have been extensively studied, deserving a special mention Kahn's realisability problem, which has been placed first to solve in [2] (see also [1, 12, 13, 15). It asks whether an arbitrary group can be realised as $\mathcal{E}(X)$ for some simply connected X, and though the general case remains an open question, it has recently been solved for finite groups, [7]. As a way to approach Kahn's problem, in [10, Problem 19] the question of whether an arbitrary group can appear as the distinguished quotient $\mathcal{E}(X) / \mathcal{E}_{*}(X)$ is raised.

In this paper we work with $(n-1)$-connected $(n+2)$-dimensional $C W$-complexes for $n \geq 2$, the so-called A_{n}^{2}-polyhedra. Homotopy types of these spaces have been classified by Baues in [4. Ch. I, §8] using the long exact sequence of groups associated to simply connected spaces introduced by J. H. C. Whitehead in [16. In [6], the author uses that classification to study the group of self-homotopy equivalences of an A_{2}^{2}-polyhedron X. He associates to X a group $\mathcal{B}^{4}(X)$ that is isomorphic to $\mathcal{E}(X) / \mathcal{E}_{*}(X)$ and asks if any group can be realised as such a quotient in this context, that is, if A_{2}^{2}-polyhedra provide an adequate framework to solve the realisability problem.

Here, in the general setting of an A_{n}^{2}-polyhedra $X, n \geq 2$, we also construct a group $\mathcal{B}^{n+2}(X)$ (see Definition 2.4) that is isomorphic to $\mathcal{E}(X) / \mathcal{E}_{*}(X)$ (see Proposition 2.5). We show that there exist many groups (for example $\mathbb{Z} / p, p$ odd, Corollary (1.2) for which the question above does not admit a positive answer. This fact should illustrate that A_{n}^{2}-polyhedra might not be the right setting to answer [10, Problem 19].

We show, for instance, that under some restrictions on the homology groups of $X, \mathcal{B}^{n+2}(X)$ is infinite, which in particular implies that $\mathcal{E}(X)$ is infinite (see Proposition 3.6 and Proposition 3.9). Or for example, in many situations the existence of odd order elements in the homology groups of X implies the existence of involutions in $\mathcal{B}^{n+2}(X)$ (see Lemma 3.4 and Lemma 3.5).

[^0]In this paper we prove the following result:
Theorem 1.1. Let X be a finite type A_{n}^{2}-polyhedron, $n \geq 3$. Then $\mathcal{B}^{n+2}(X)$ is either the trivial group or it has elements of even order.

As an immediate corollary, we obtain the following:
Corollary 1.2. Let G be a non-trivial group with no elements of even order. Then G is not realisable as $\mathcal{B}^{n+2}(X)$ for X a finite type A_{n}^{2}-polyhedron, $n \geq 3$.

The case $n=2$ is more complicated. A detailed group theoretical analysis shows that a finite type A_{2}^{2}-polyhedra might realise finite groups of odd order only under very restrictive conditions. Recall that for a group $G, \operatorname{rank} G$ is the smallest cardinal of a set of generators for G [14, p. 91]. We have the following result:

Theorem 1.3. Suppose that X is a finite type A_{2}^{2}-polyhedron with a non trivial finite $\mathcal{B}^{4}(X)$ of odd order. Then the following holds:
(1) $\operatorname{rank} H_{4}(X) \leq 1$,
(2) $\pi_{3}(X)$ and $H_{3}(X)$ are 2-groups, and $H_{2}(X)$ is an elementary abelian 2-group,
(3) $\operatorname{rank} H_{3}(X) \leq \frac{1}{2} \operatorname{rank} H_{2}(X)\left(\operatorname{rank} H_{2}(X)+1\right)-\operatorname{rank} H_{4}(X) \leq \operatorname{rank} \pi_{3}(X)$,
(4) the natural action of $\mathcal{B}^{4}(X)$ on $H_{2}(X)$ induces a faithful representation $\mathcal{B}^{4}(X) \leq$ Aut $\left(H_{2}(X)\right)$.
All our attempts to find a space satisfying the hypothesis of Theorem 1.3 were unsuccessful. We therefore raise the following conjecture:

Conjecture 1.4. Let X be an A_{2}^{2}-polyhedron. If $\mathcal{B}^{4}(X)$ is a non trivial finite group, then it necessarily has an element of even order.

This paper is organised as follows. In Section 2 we give a brief introduction to Whitehead and Baues results for the classification of homotopy types of A_{n}^{2}-polyhedra, or equivalently, isomorphism classes of certain long exact sequences of abelian groups (see Theorem 2.3). In Section 3 we study how restrictions on X affect the group $\mathcal{B}^{n+2}(X)$. Finally, Section 4 is devoted to the proof of our main results, Theorem 1.1 and Theorem 1.3

2. The Γ-sequence of an A_{n}^{2}-polyhedron

Let Ab denote the category of abelian groups. In [16, J.H.C. Whitehead constructed a functor $\Gamma: A b \rightarrow A b$, known as the Whitehead's universal quadratic functor, and an exact sequence, which are useful to our purposes and we introduce in this section. The Γ-functor is defined as follows. Let A and B be abelian groups and $\eta: A \rightarrow B$ be a map (of sets) between them. The map η is said to be quadratic if:
(1) $\eta(a)=\eta(-a)$, for all $a \in A$, and
(2) the map $A \times A \rightarrow B$ taking ($\left.a, a^{\prime}\right)$ to $\eta\left(a+a^{\prime}\right)-\eta(a)-\eta\left(a^{\prime}\right)$ is bilinear.

For an abelian group $A, \Gamma(A)$ is the only abelian group such that there exists a quadratic map $\gamma: A \rightarrow \Gamma(A)$ verifying that every other quadratic map $\eta: A \rightarrow B$ factors uniquely through γ. This means that there is a unique group homomorphism $\eta^{\square}: \Gamma(A) \rightarrow B$ such that $\eta=\eta^{\square} \gamma$. The quadratic map $\gamma: A \rightarrow \Gamma(A)$ receives the name of universal quadratic map of A.

The Γ-functor acts on morphisms as follows: let $f: A \rightarrow B$ be a group homomorphism, and $\gamma: A \rightarrow \Gamma(A)$ and $\gamma: B \rightarrow \Gamma(B)$ the universal quadratic maps. Then, $\gamma f: A \rightarrow \Gamma(B)$ is a quadratic map, so there exists a unique group homomorphism $(\gamma f)^{\square}: \Gamma(A) \rightarrow \Gamma(B)$ such that $(\gamma f)^{\square} \gamma=\gamma f$. Define $\Gamma(f)=(\gamma f)^{\square}$.

We now list some of its properties that will be used later in this paper:
Proposition 2.1. ([5, pp. 16-17]) The Γ functor has the following properties:
(1) $\Gamma(\mathbb{Z})=\mathbb{Z}$,
(2) $\Gamma\left(\mathbb{Z}_{n}\right)$ is $\mathbb{Z}_{2 n}$ if n is even or \mathbb{Z}_{n} if n is odd,
(3) Let I be an ordered set and A_{i} be an abelian group, for each $i \in I$. Then,

$$
\Gamma\left(\bigoplus_{I} A_{i}\right)=\left(\bigoplus_{I} \Gamma\left(A_{i}\right)\right) \oplus\left(\bigoplus_{i<j} A_{i} \otimes A_{j}\right) .
$$

Moreover, the groups $\Gamma\left(A_{i}\right)$ and $A_{i} \otimes A_{j}$ are respectively generated by elements $\gamma\left(a_{i}\right)$ and $a_{i} \otimes a_{j}$, with $a_{i} \in A_{i}, a_{j} \in A_{j}, i<j$, and $\gamma\left(a_{i}+a_{j}\right)=\gamma\left(a_{i}\right)+\gamma\left(a_{j}\right)+a_{i} \otimes a_{j}$, for $a_{i} \in A_{i}, a_{j} \in A_{j}, i<j$, 16, §5, §7].

We now introduce Whitehead's exact sequence. Let X be a simply connected $C W$-complex. For $n \geq 1$, the n-th Whitehead Γ-group of X is defined as

$$
\Gamma_{n}(X)=\operatorname{Im}\left(i_{*}: \pi_{n}\left(X^{n-1}\right) \rightarrow \pi_{n}\left(X^{n}\right)\right)
$$

Here, $i: X^{n-1} \rightarrow X^{n}$ is the inclusion of the $(n-1)$-skeleton of X into its n-skeleton. Then, $\Gamma_{n}(X)$ is an abelian group for $n \geq 1$. This group can be embedded into a long exact sequence of abelian groups

$$
\begin{equation*}
\cdots \rightarrow H_{n+1}(X) \xrightarrow{b_{n+1}} \Gamma_{n}(X) \xrightarrow{i_{n-1}} \pi_{n}(X) \xrightarrow{h_{n}} H_{n}(X) \rightarrow \cdots \tag{1}
\end{equation*}
$$

where h_{n} is the Hurewicz homomorphism and b_{n+1} is a boundary representing the attaching maps.

For each $n \geq 2$, a functor $\Gamma_{n}^{1}: \mathrm{Ab} \rightarrow \mathrm{Ab}$ is defined as follows. Let $\Gamma_{2}^{1}=\Gamma$ be the universal quadratic functor, and for $n \geq 3, \Gamma_{n}^{1}=-\otimes \mathbb{Z}_{2}$. It turns out that if X is $(n-1)$-connected, then $\Gamma_{n}^{1}\left(H_{n}(X)\right) \cong \Gamma_{n+1}(X)$, 5] Theorem 2.1.22]. Thus, the final part of the long exact sequence (11) can be written as

$$
\begin{equation*}
H_{n+2}(X) \xrightarrow{b_{n+2}} \Gamma_{n}^{1}\left(H_{n}(X)\right) \xrightarrow{i_{n}} \pi_{n+1}(X) \xrightarrow{h_{n+1}} H_{n+1}(X) \rightarrow 0 . \tag{2}
\end{equation*}
$$

Now, for each $n \geq 2$, we define the category of A_{n}^{2}-polyhedra as the category whose objects are ($n+2$)-dimensional ($n-1$)-connected $C W$-complexes and whose morphisms are continuous maps between objects. Homotopy types of these spaces are classified through isomorphism classes in a category whose objects are sequences like (2), [4, Ch. I, §8]:

Definition 2.2. ([3, Ch. IX, §4]) Let $n \geq 2$ be an integer. We define the category of Γ-sequences ${ }^{n+2}$ as follows. Objects are exact sequences of abelian groups

$$
H_{n+2} \rightarrow \Gamma_{n}^{1}\left(H_{n}\right) \rightarrow \pi_{n+1} \rightarrow H_{n+1} \rightarrow 0
$$

where H_{n+2} is free abelian. Morphisms are triples of group homomorphisms $f=\left(f_{n+2}, f_{n+1}, f_{n}\right)$, $f_{i}: H_{i} \rightarrow H_{i}^{\prime}$, such that there exists a group homomorphism $\Omega: \pi_{n+1} \rightarrow \pi_{n+1}^{\prime}$ making the following diagram

commutative. We say that objects in Γ-sequences ${ }^{n+2}$ are Γ-sequences, and morphisms in the category are called Γ-morphisms.

On the one hand, we can assign to an A_{n}^{2}-polyhedron X, an object in Γ-sequences ${ }^{n+2}$ by considering the associated exact sequence, (2). We call such an object the Γ-sequence of X. On the other hand, to a continuous map $\alpha: X \rightarrow X^{\prime}$ of A_{n}^{2}-polyhedra we can assign a morphism between the corresponding Γ-sequences by considering the induced homomorphisms

Therefore, we have a functor A_{n}^{2}-polyhedra $\rightarrow \Gamma$-sequences ${ }^{n+2}$ which clearly restricts to the homotopy category of A_{n}^{2}-polyhedra, $\mathcal{H o} A_{n}^{2}$-polyhedra. It is obvious that this functor sends homotopy equivalences to isomorphisms between the corresponding Γ-sequences. Thus, we can classify homotopy types of A_{n}^{2}-polyhedra through isomorphism classes of Γ-sequences:

Theorem 2.3 ($\mathbb{4}, \mathrm{Ch} . \mathrm{I}, \S 8])$. The functor $\mathcal{H} o A_{n}^{2}$-polyhedra $\rightarrow \Gamma$-sequences ${ }^{n+2}$ previously defined is full. Moreover, for any object in Γ-sequences ${ }^{n+2}$, there exists an A_{n}^{2}-polyhedron whose Γ-sequence is the given object in Γ-sequences ${ }^{n+2}$. In fact, there exists a 1-1 correspondence between homotopy types of A_{n}^{2}-polyhedra and isomorphism classes of Γ-sequences.

Following the ideas of [6], we introduce the following:
Definition 2.4. Let X be an A_{n}^{2}-polyhedron. We denote by $\mathcal{B}^{n+2}(X)$ the group of Γ isomorphisms of the Γ-sequence of X.

Let $\Psi: \mathcal{E}(X) \rightarrow \mathcal{B}^{n+2}(X)$ be the map that associates to $\alpha \in \mathcal{E}(X)$ the Γ-isomorphism $\Psi(\alpha)=$ $\left(H_{n+2}(\alpha), H_{n+1}(\alpha), H_{n}(\alpha)\right)$. Then Ψ is a group homomorphism: its kernel is the subgroup of self-homotopy equivalences inducing the identity map on the homology groups of X, that is, $\mathcal{E}_{*}(X)$. Also, Ψ is onto as a consequence of Theorem 2.3. Hence, we immediately obtain the following result.

Proposition 2.5. Let X be an A_{n}^{2}-polyhedron, $n \geq 2$. Then $\mathcal{B}^{n+2}(X) \cong \mathcal{E}(X) / \mathcal{E}_{*}(X)$.

3. Self-homotopy equivalences of finite type A_{n}^{2}-polyhedra

Henceforth, an A_{n}^{2}-polyhedron will mean an $(n-1)$-connected, $(n+2)$-dimensional $C W$ complex of finite type. Recall that for simply connected and finite type spaces, the homology and homotopy groups $H_{n}(X)$ and $\pi_{n}(X)$ are finitely generated and abelian for $n \geq 1$.

The Γ-sequence tool introduced in Section 2 will help us to illustrate, from an algebraic point of view, how different restrictions on an A_{n}^{2}-polyhedron X affect the quotient group $\mathcal{E}(X) / \mathcal{E}_{*}(X)$. We devote this section to that matter. We also obtain several results that are needed in the proof of Theorem 1.1 and Theorem [1.3. The following result is a generalisation of [6, Theorem 4.5].

Proposition 3.1. Let X be an A_{n}^{2}-polyhedron and suppose that the Hurewicz homomorphism $h_{n+2}: \pi_{n+2}(X) \rightarrow H_{n+2}(X)$ is onto. Then, every automorphism of $H_{n+2}(X)$ is realised by a selfhomotopy equivalence of X.

Proof. As part of the exact sequence (1) for X we have:

$$
\cdots \rightarrow \pi_{n+2}(X) \xrightarrow{h_{n+2}} H_{n+2}(X) \xrightarrow{b_{n+2}} \Gamma_{n}^{1}\left(H_{n}(X)\right) \rightarrow \pi_{n+1}(X) \rightarrow \cdots
$$

Then, since h_{n+2} is onto by hypothesis, b_{n+2} is the trivial homomorphism. Thus, for every $f_{n+2} \in \operatorname{Aut}\left(H_{n+2}(X)\right), b_{n+2} f_{n+2}=b_{n+2}=0$, so if $\Omega=\mathrm{id},\left(f_{n+2}, \mathrm{id}, \mathrm{id}\right) \in \mathcal{B}^{n+2}(X)$. Then there exists $f \in \mathcal{E}(X)$ with $H_{n+2}(f)=f_{n+2}, H_{n+1}(f)=\mathrm{id}, H_{n}(f)=\mathrm{id}$.

We can easily prove that automorphism groups can be realised, a result that can also be obtained as a consequence of [15. Theorem 2.1]:

Example 3.2. Let G be a group isomorphic to $\operatorname{Aut}(H)$ for some finitely generated abelian group H. Then, for any integer $n \geq 2$, there exists an A_{n}^{2}-polyhedron X such that $G \cong \mathcal{B}^{n+2}(X)$: take the Moore space $X=M(H, n+1)$, which in particular is an A_{n}^{2}-polyhedron. The Γ-sequence of X is

$$
H_{n+2}(X)=0 \rightarrow \Gamma_{n}^{1}\left(H_{n}(X)\right)=0 \rightarrow H \xrightarrow{三} H \rightarrow 0 .
$$

Then, for every $f \in \operatorname{Aut}(H)$, by taking $\Omega=f$ we see that (id, f, id) $\in \mathcal{B}^{n+2}(X)$, and those are the only possible Γ-isomorphisms. Thus $\mathcal{B}^{n+2}(X) \cong \operatorname{Aut}(H) \cong G$.

The use of Moore spaces is not required in the $n=2$ case:
Example 3.3. Let G be a group isomorphic to $\operatorname{Aut}(H)$ for some finitely generated abelian group H. Consider the following object in Γ-sequences ${ }^{4}$

$$
\begin{equation*}
\mathbb{Z} \xrightarrow{b_{4}} \Gamma\left(\mathbb{Z}_{2}\right)=\mathbb{Z}_{4} \rightarrow H \stackrel{=}{\rightarrow} H \rightarrow 0 . \tag{3}
\end{equation*}
$$

By Theorem 2.3, there exists an A_{2}^{2}-polyhedron X realising this object. In particular, $H_{4}(X)=\mathbb{Z}$, $H_{3}(X)=\pi_{3}(X)=H$ and $H_{2}(X)=\mathbb{Z}_{2}$. It is clear from (3) that (id, f, id) is a Γ-isomorphism for every $f \in \operatorname{Aut}(H)$. Now $\operatorname{Aut}\left(\mathbb{Z}_{2}\right)$ is the trivial group while $\operatorname{Aut}(\mathbb{Z})=\{-\mathrm{id}$, id $\}$. It is immediate to check that ($-\mathrm{id}, f, \mathrm{id}$) is not a Γ-isomorphism since id $b_{4} \neq b_{4}(-\mathrm{id})$. Then, we obtain that $\mathcal{B}^{4}(X) \cong \operatorname{Aut}(H)$.

Observe that not every group G is isomorphic to the automorphism group of an abelian group (for example \mathbb{Z}_{p} if p is odd). Hence, examples from above only provide a partial positive answer to the realisability problem for $\mathcal{B}^{n+2}(X)$. Indeed, the automorphism group of an abelian group (other than \mathbb{Z}_{2}) has elements of even order. The following results go in that direction:

Lemma 3.4. Let X be an A_{n}^{2}-polyhedron, $n \geq 2$. If $H_{n}(X)$ is not an elementary abelian 2 -group, then $\mathcal{B}^{n+2}(X)$ has an element of order 2 .

Proof. Since $H_{n}(X)$ is not an elementary abelian 2-group, it admits a non-trivial involution - id: $H_{n}(X) \rightarrow H_{n}(X)$. But $\Gamma_{n}^{1}(-\mathrm{id})=$ id for every $n \geq 2$, so (id, id, -id$) \in \mathcal{B}^{n+2}(X)$ and the result follows.

We point out a key difference between the $n=2$ and the $n \geq 3$ cases: $\Gamma_{2}^{1}(A)=\Gamma(A)$ is never an elementary abelian 2-group when A is finitely generated and abelian, as it can be deduced from Proposition 2.1. However, for $n \geq 3, \Gamma_{n}^{1}(A)=A \otimes \mathbb{Z}_{2}$ is always an elementary abelian 2 -group. Taking advantage of this fact we can prove the following result:

Lemma 3.5. Let X be an A_{n}^{2}-polyhedron, $n \geq 3$. If any of the homology groups of X is not an elementary abelian 2-group (in particular, if $H_{n+2}(X) \neq 0$), then $\mathcal{B}^{n+2}(X)$ contains a non trivial element of order 2 .

Proof. Under our assumptions, $\Gamma_{n}^{1}\left(H_{n}(X)\right)$ is an elementary abelian 2-group. For $\Omega=$ - id, the triple $(-\mathrm{id},-\mathrm{id},-\mathrm{id})$ is a Γ-isomorphism of order 2 unless $H_{n+2}(X), H_{n+1}(X)$ and $H_{n}(X)$ are all elementary abelian 2-groups.

We remark that this result does not hold for A_{2}^{2}-polyhedra. Indeed, if we consider the construction in Example 3.3 for $H=\mathbb{Z}_{2}$, then $\mathcal{B}^{4}(X) \cong \operatorname{Aut}\left(\mathbb{Z}_{2}\right)=\{*\}$ does not contain a non trivial element of order 2 although $H_{4}(X)=\mathbb{Z}$ is not an elementary abelian 2-group.

We now prove some results regarding the finiteness of $\mathcal{B}^{n+2}(X)$:
Proposition 3.6. Let X be an A_{n}^{2}-polyhedron, $n \geq 2$, with $\operatorname{rank} H_{n+2}(X) \geq 2$ and every element of $\Gamma_{n}^{1}\left(H_{n}(X)\right)$ of finite order. Then $\mathcal{B}^{n+2}(X)$ is an infinite group.

Proof. Since rank $H_{n+2}(X) \geq 2$, we may write $H_{n+2}(X)=\mathbb{Z}^{2} \oplus G, G$ a (possibly trivial) free abelian group. Consider the Γ-sequence of X :

$$
\mathbb{Z}^{2} \oplus G \xrightarrow{b_{n+2}} \Gamma_{n}^{1}\left(H_{n}(X)\right) \xrightarrow{i_{n}} \pi_{n+1}(X) \xrightarrow{h_{n+1}} H_{n+1}(X) \longrightarrow 0
$$

Since $b_{n+2}\left(\mathbb{Z}^{2}\right) \leq \Gamma_{n}^{1}\left(H_{n}(X)\right)$ is a finitely generated \mathbb{Z}-module with finite order generators, it is a finite group. Define $k=\exp \left(b_{n+2}\left(\mathbb{Z}^{2}\right)\right)$ and consider the automorphism of \mathbb{Z}^{2} given by the matrix

$$
\left(\begin{array}{cc}
1 & k \\
0 & 1
\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{Z})
$$

which is of infinite order. If we take $f \oplus \operatorname{id}_{G} \in \operatorname{Aut}\left(\mathbb{Z}^{2} \oplus G\right)$, then $b_{n+2}(f \oplus \mathrm{id})=b_{n+2}$, thus $\left(f \oplus \mathrm{id}_{G}, \mathrm{id}, \mathrm{id}\right) \in \mathcal{B}^{n+2}(X)$, which is an element of infinite order.

As we have previously mentioned, $\Gamma_{n}^{1}\left(H_{n}(X)\right)$ is an elementary abelian 2-group, for $n \geq 3$. Hence, from Proposition 3.6 we get:

Corollary 3.7. Let X be an A_{n}^{2}-polyhedron, $n \geq 3$, with $\operatorname{rank} H_{n+2}(X) \geq 2$. Then $\mathcal{B}^{n+2}(X)$ is an infinite group.

This result does not hold, in general, for $n=2$. However, if A is a finite group, Proposition 2.1 implies that $\Gamma(A)$ is finite as well so from Proposition 3.6 we get:

Corollary 3.8. Let X be an A_{2}^{2}-polyhedron with rank $H_{4}(X) \geq 2$ and $H_{2}(X)$ finite. Then $\mathcal{B}^{4}(X)$ is an infinite group.

We end this section with one more result on the infiniteness of $\mathcal{B}^{n+2}(X)$:
Proposition 3.9. Let X be an A_{n}^{2}-polyhedron, $n \geq 3$. If $H_{n}(X)=\mathbb{Z}^{2} \oplus G$ for a certain abelian group G, then $\mathcal{B}^{n+2}(X)$ is an infinite group.

Proof. If $H_{n}(X)=\mathbb{Z}^{2} \oplus G$, then $\Gamma_{n}^{1}\left(H_{n}(X)\right)=H_{n}(X) \otimes \mathbb{Z}_{2}=\mathbb{Z}_{2}^{2} \oplus\left(G \otimes \mathbb{Z}_{2}\right)$. Hence $\mathrm{GL}_{2}(\mathbb{Z}) \leq \operatorname{Aut}\left(H_{n}(X)\right)$ and $\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right) \leq \operatorname{Aut}\left(H_{n}(X) \otimes \mathbb{Z}_{2}\right)$. Moreover, for every $f \in \mathrm{GL}_{2}(\mathbb{Z})$ we have $f \oplus \operatorname{id}_{G} \in$ Aut $\left(H_{n}(X)\right)$ which yields, through Γ_{n}^{1}, an automorphism $\left(f \oplus \operatorname{id}_{G}\right) \otimes \mathbb{Z}_{2}=$ $\left(f \otimes \mathbb{Z}_{2}\right) \oplus \operatorname{id}_{G \otimes \mathbb{Z}_{2}} \in \operatorname{Aut}\left(H_{n}(X) \otimes \mathbb{Z}_{2}\right)$. This means that the functor Γ_{n}^{1} restricts to $\mathrm{GL}_{2}(\mathbb{Z}) \rightarrow$ $\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$. Moreover, $-\otimes \mathbb{Z}_{2}: \mathrm{GL}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$ has an infinite kernel. Hence, there are infinitely many morphisms $f \in \operatorname{Aut}\left(H_{n}(X)\right)$ such that $f \otimes \mathbb{Z}_{2}=$ id. For any such a morphism $f,(\mathrm{id}, \mathrm{id}, f)$ is an element of $\mathcal{B}^{n+2}(X)$. Therefore $\mathcal{B}^{n+2}(X)$ is infinite.

4. Obstructions to the realisability of groups

We have seen in Section 3 that the group $\mathcal{B}^{n+2}(X)$ contains elements of even order unless strong restrictions are imposed on the homology groups of the A_{n}^{2}-polyhedron X. Since we are interested in realising an arbitrary group G as $\mathcal{B}^{n+2}(X)$ for X a finite-type A_{n}^{2}-polyhedron, in this section we focus our attention on the remaining situations and prove Theorems 1.1 and 1.3 We first give some previous results:

Lemma 4.1. For G an elementary abelian 2-group, $\Gamma(-): \operatorname{Aut}(G) \rightarrow \operatorname{Aut}(\Gamma(G))$ is injective.
Proof. Let us show that the kernel of $\Gamma(-)$ is trivial. Assume that G is generated by $\left\{e_{j} \mid j \in J\right\}, J$ an ordered set. If $f \in \operatorname{Aut}(G)$ is in the kernel of $\Gamma(-)$, then for each $j \in J$, there exists a finite subset $I_{j} \subset J$ such that $f\left(e_{j}\right)=\sum_{i \in I_{j}} e_{i}$, and

$$
\gamma\left(e_{j}\right)=\Gamma(f) \gamma\left(e_{j}\right)=\gamma f\left(e_{j}\right)=\gamma\left(\sum_{i \in I_{j}} e_{i}\right)=\sum_{i \in I_{j}} \gamma\left(e_{i}\right)+\sum_{i<k} e_{i} \otimes e_{k}
$$

as a consequence of Proposition 2.1.(3), so $I_{j}=\{j\}$ and $f\left(e_{j}\right)=e_{j}$ for every $j \in J$.
Lemma 4.2. Let $H_{2}=\oplus_{i=1}^{n} \mathbb{Z}_{2}$ and $\chi \in \Gamma\left(H_{2}\right)$ be an element of order 4 . If there exists a non trivial automorphism of odd order $f \in \operatorname{Aut}\left(H_{2}\right)$ such that $\Gamma(f)(\chi)=\chi$, then there exists $g \in \operatorname{Aut}\left(\mathrm{H}_{2}\right)$ of order 2 such that $\Gamma(g)(\chi)=\chi$.

Proof. Notice that according to [16, p. 66], we can write $h \otimes h=2 \gamma(h)$, for any element $h \in H_{2}$. Therefore, given a basis $\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ of H_{2}, and replacing $3 \gamma\left(h_{i}\right)$ by $\gamma\left(h_{i}\right)+h_{i} \otimes h_{i}$ if needed, we can write

$$
\chi=\sum_{i=1}^{n} a(i) \gamma\left(h_{i}\right)+\sum_{i, j=1}^{n} a(i, j) h_{i} \otimes h_{j}
$$

where every coefficient $a(i), a(i, j)$ is either 0 or 1 . We now construct inductively a basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of H_{2} as follows. Without loss of generality, assume $a(1)=1$ and define $e_{1}=\sum_{i=1}^{n} a(i) h_{i}$. Then $\left\{e_{1}, h_{2}, \ldots, h_{n}\right\}$ is again a basis of H_{2} and

$$
\chi=\gamma\left(e_{1}\right)+\alpha_{1} e_{1} \otimes e_{1}+\beta_{1} e_{1} \otimes\left(\sum_{s=2}^{n} b(1, s) h_{s}\right)+\sum_{i, j>1}^{n} a_{1}(i, j) h_{i} \otimes h_{j}
$$

where every coefficient in the equation is either 0 or 1 . Assume a basis $\left\{e_{1}, \ldots, e_{r}, h_{r+1}, \ldots, h_{n}\right\}$ has been constructed such that

$$
\begin{aligned}
\chi= & \gamma\left(e_{1}\right)+\sum_{j=1}^{r} \alpha_{j} e_{j} \otimes e_{j}+\sum_{j=1}^{r-1} \beta_{j} e_{j} \otimes e_{j+1} \\
& +\beta_{r} e_{r} \otimes\left(\sum_{s=r+1}^{n} b(r, s) h_{s}\right)+\sum_{i, j>r}^{n} a_{r}(i, j) h_{i} \otimes h_{j}
\end{aligned}
$$

where every coefficient in the equation is either 0 or 1 . We may assume $b(r, r+1)=1$ and define $e_{r+1}=\sum_{s=r+1}^{n} b(r, s) h_{s}$. Thus $\left\{e_{1}, \ldots, e_{r+1}, h_{r+2}, \ldots, h_{n}\right\}$ is again a basis of H_{2} and

$$
\begin{aligned}
\chi= & \gamma\left(e_{1}\right)+\sum_{j=1}^{r+1} \alpha_{j} e_{j} \otimes e_{j}+\sum_{j=1}^{r} \beta_{j} e_{j} \otimes e_{j+1} \\
& +\beta_{r+1} e_{r+1} \otimes\left(\sum_{s=r+2}^{n} b(r+1, s) h_{s}\right)+\sum_{i, j>r+1}^{n} a_{r+1}(i, j) h_{i} \otimes h_{j} .
\end{aligned}
$$

Finally, we obtain a basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of H_{2} such that

$$
\begin{equation*}
\chi=\gamma\left(e_{1}\right)+\sum_{j=1}^{n} \alpha_{j} e_{j} \otimes e_{j}+\sum_{j=1}^{n-1} \beta_{j} e_{j} \otimes e_{j+1} \tag{4}
\end{equation*}
$$

for some coefficients $\alpha_{j} \in\{0,1\}, j=1,2, \ldots, n$, and $\beta_{j} \in\{0,1\}, j=1,2, \ldots, n-1$.
Now, for $n=1, H_{2}=\mathbb{Z}_{2}$ has a trivial group of automorphisms, so the result holds. For $n=2$, assume that there exists $f \in \operatorname{Aut}\left(H_{2}\right)$ such that $\Gamma(f)(\chi)=\chi$. From Equation (4), $\chi=\Gamma(f)\left(\gamma\left(e_{1}\right)\right)+\Gamma(f)(P)$, where $P \in \Omega_{1}\left(\Gamma\left(H_{2}\right)\right)=\left\{h \in \Gamma\left(H_{2}\right): \operatorname{ord}(h) \mid 2\right\}$. Then $\Gamma(f)\left(\gamma\left(e_{1}\right)\right)$ has a multiple of $\gamma\left(e_{1}\right)$ as its only summand of order 4 , which implies that $f\left(e_{1}\right)=e_{1}$. Then either $f\left(e_{2}\right)=e_{2}$, so f is trivial, or $f\left(e_{2}\right)=e_{1}+e_{2}$, so f has order 2 .

For $n \geq 3$, we define $g \in \operatorname{Aut}\left(H_{2}\right)$ by $g\left(e_{j}\right)=e_{j}$, for $j=1,2, \ldots, n-2$, and $g\left(e_{n-1}\right)$ and $g\left(e_{n}\right)$, depending on α_{n-j} and β_{n-1-j}, for $j=0,1$, in Equation (4), according to the following table:

α_{n}	β_{n-1}	α_{n-1}	β_{n-2}	$g\left(e_{n-1}\right)$	$g\left(e_{n}\right)$
0	0	0 or 1	0 or 1	e_{n-1}	$e_{n-1}+e_{n}$
0	1	0	0	e_{n}	e_{n-1}
0	1	0	1	$e_{n-2}+e_{n}$	$e_{n-2}+e_{n-1}$
0	1	1	0	$e_{n-1}+e_{n}$	e_{n}
0	1	1	1	$e_{n-2}+e_{n-1}+e_{n}$	e_{n}
1	0	0	0	$e_{n-2}+e_{n-1}$	e_{n}
1	0	0	1	$e_{n-2}+e_{n-1}$	$e_{n-2}+e_{n}$
1	0	1	0	e_{n}	e_{n-1}
1	0	1	1	$e_{n-2}+e_{n-1}$	e_{n}
1	1	0 or 1	0 or 1	e_{n-1}	$e_{n-1}+e_{n}$

A simple computation shows that in all cases g has order 2 and $\Gamma(g)(\chi)=\chi$, so the result follows.

Definition 4.3. Let $f: H \rightarrow K$ be a morphism of abelian groups. We say that a non-trivial subgroup $A \leq K$ is f-split if there exist groups $B \leq H$ and $C \leq K$ such that $H \cong A \oplus B$, $K=A \oplus C$ and f can be written as $\operatorname{id}_{A} \oplus g: A \oplus B \rightarrow A \oplus C$ for some $g: B \rightarrow C$.

Henceforward we will make extensive use of this notation applied to $h_{n+1}: \pi_{n+1}(X) \rightarrow$ $H_{n+1}(X)$, the Hurewicz morphism. We prove the following:

Lemma 4.4. Let X be an A_{n}^{2}-polyhedron, $n \geq 2$. Let $A \leq H_{n+1}(X)$ be an h_{n+1}-split subgroup, thus $H_{n+1}(X)=A \oplus C$ for some abelian group C. Then, for every $f_{A} \in \operatorname{Aut}(A)$ there exists $f \in \mathcal{E}(X)$ inducing $\left(\mathrm{id}, f_{A} \oplus \operatorname{id}_{C}, \mathrm{id}\right) \in \mathcal{B}^{n+2}(X)$.

Proof. By hypothesis $H_{n+1}(X)=A \oplus C, \pi_{n+1}(X) \cong A \oplus B$, for some abelian group B, and h_{n+1} can be written as id $A \oplus g$ for some morphism $g: B \rightarrow C$. Thus, for every $f_{A} \in \operatorname{Aut}(A)$ we have a commutative diagram

Hence $\left(\mathrm{id}, f_{A} \oplus \mathrm{id}_{C}, \mathrm{id}\right) \in \mathcal{B}^{n+2}(X)$, and by Theorem 2.3 there exists $f \in \mathcal{E}(X)$ such that $H_{n+1}(f)=f_{A} \oplus \operatorname{id}_{C}, H_{n+2}(f)=\mathrm{id}$ and $H_{n}(f)=\mathrm{id}$.

The following lemma is crucial in the proof of Theorems 1.1 and 1.3
Lemma 4.5. Let X be an A_{n}^{2}-polyhedron, $n \geq 2$. Suppose that there exist h_{n+1}-split subgroups of $H_{n+1}(X)$. Then:
(1) If $n \geq 3, \mathcal{B}^{n+2}(X)$ is either trivial or it has elements of even order.
(2) If $\mathcal{B}^{4}(X)$ is finite and non trivial, then it has elements of even order.

Proof. First of all, observe that we just need to consider when $H_{n}(X)$ is an elementary abelian 2-group. In other case, the result is a consequence of Lemma 3.4.

Let A be an arbitrary h_{n+1}-split subgroup of $H_{n+1}(X)$. If $A \neq \mathbb{Z}_{2}$, there is an involution $\iota \in \operatorname{Aut}(A)$ that induces, by Lemma 4.4, an element (id, $\iota \oplus \mathrm{id}, \mathrm{id}) \in \mathcal{B}^{n+2}(X)$ of order 2 , and the result follows. Hence we can assume that every h_{n+1}-split subgroup of $H_{n+1}(X)$ is \mathbb{Z}_{2}.

Both assumptions, $H_{n}(X)$ being an elementary abelian 2-group and every h_{n+1}-split subgroup of $H_{n+1}(X)$ being \mathbb{Z}_{2}, imply that $H_{n+1}(X)$ is a finite 2-group. Indeed, since $H_{n}(X)$ is finitely generated, $\Gamma_{n}^{1}\left(H_{n}(X)\right)$ is a finite 2 -group and so is coker b_{n+2}. Then, since $H_{n+1}(X)$ is also finitely generated, any direct summand of $H_{n+1}(X)$ which is not a 2-group would be h_{n+1}-split, contradicting our assumption that every h_{n+1}-split subgroup of $H_{n+1}(X)$ is \mathbb{Z}_{2}.

To prove our lemma, we start with the case $A=H_{n+1}(X)$ is h_{n+1}-split.
When $H_{n+2}(X)=0$, the Γ-sequence of X becomes then the short exact sequence

$$
0 \rightarrow \Gamma_{n}^{1}\left(H_{n}(X)\right) \rightarrow \Gamma_{n}^{1}\left(H_{n}(X)\right) \oplus \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2} \rightarrow 0
$$

Notice that any automorphism of order 2 in $H_{n}(X)$ yields an automorphism of order 2 in $\Gamma_{n}^{1}\left(H_{n}(X)\right)$ since Γ_{n}^{1} is injective on morphisms: it is immediate for $n \geq 3$, and for $n=2$ we apply Lemma 4.1. As our sequence is split, any $f \in \operatorname{Aut}\left(H_{n}(X)\right)$ induces the Γ-isomorphism (id, id, f) of the same order. Hence, for $H_{n}(X) \neq \mathbb{Z}_{2}$ it suffices to consider an involution. For $H_{n}(X)=\mathbb{Z}_{2}$, since by hypothesis $H_{n+1}(X)=\mathbb{Z}_{2}$ and $H_{n+2}(X)=0$, the only Γ-isomorphism is (id, id, id) and therefore $\mathcal{B}^{n+2}(X)$ is trivial as claimed.

When $H_{n+2}(X) \neq 0$, for $n \geq 3$ the result follows directly from Lemma 3.5, For $n=2$ we also assume that $\mathcal{B}^{4}(X)$ is finite and non-trivial. Hence, since $H_{2}(X)$ is an elementary abelian 2group, Proposition 3.6 implies that $H_{4}(X)=\mathbb{Z}$. Then, if a Γ-isomorphism of the form $(-\mathrm{id}, f, \mathrm{id})$ exists, it is of even order. In particular, if $\operatorname{Im} b_{4}$ is a subgroup of $\Gamma\left(H_{2}(X)\right)$ of order 2 , (-id , id, id) is a Γ-isomorphism of even order.

Assume otherwise that $\operatorname{Im} b_{4}$ is a group of order 4. If a Γ-isomorphism (id, f, id) of odd order exists, then $\Gamma(f) \circ b_{4}=b_{4}$. In this situation, by Lemma 4.2 for $\chi=b_{4}(1)$, there exists $g \in \operatorname{Aut}\left(H_{2}(X)\right)$ an automorphism of order 2 such that $\Gamma(g) b_{4}(1)=b_{4}(1)$. Moreover, as we are in the case $A=H_{3}(X)$ being h_{3}-split, (id, $\left.g, \mathrm{id}\right) \in \mathcal{B}^{4}(X)$ is a Γ-isomorphism of order 2.

We deal now with the case $A \not H_{n+1}(X)$. Since $A=\mathbb{Z}_{2}$ is a proper h_{n+1}-split subgroup of $H_{n+1}(X)$, there exist non-trivial groups B and C such that

$$
\begin{array}{rll}
\pi_{n+1}(X)=\mathbb{Z}_{2} \oplus B & \xrightarrow{h_{n+1}} & \mathbb{Z}_{2} \oplus C=H_{n+1}(X) \\
(t, b) & \longmapsto & (t, g(b))
\end{array}
$$

for some group morphism $B \xrightarrow{g} C$. Moreover, $H_{n+1}(X)$ is a finite 2-group, thus C is a (nontrivial) finite 2-group and there exists an epimorphism $C \xrightarrow{\tau} \mathbb{Z}_{2}$.

Define $f \in \operatorname{Aut}\left(\mathbb{Z}_{2} \oplus C\right)=\operatorname{Aut}\left(H_{n+1}(X)\right)$, and $\Omega \in \operatorname{Aut}\left(\mathbb{Z}_{2} \oplus B\right)=\operatorname{Aut}\left(\pi_{n+1}(X)\right)$ to be the non-trivial involutions given by $f(t, c)=(t+\tau(c), c)$ and $\Omega(t, b)=(t+\tau(g(b)), b)$. By construction, $h_{n+1} \Omega=f h_{n+1}$, and if $(t, b) \in \operatorname{coker} b_{n+2}=\operatorname{ker} h_{n+1}$ (thus $\left.g(b)=0\right)$, then $\Omega(t, b)=(t, b)$. In other words, (id, $f, \mathrm{id}) \in \mathcal{B}^{n+2}(X)$ and it has order 2 .

We now prove our main results.
Proof of Theorem 1.1. Assume that $H_{n}(X)$ and $H_{n+1}(X)$ are elementary abelian 2groups, and $H_{n+2}(X)=0$. Otherwise, there would already be elements of order 2 in $\mathcal{B}^{n+2}(X)$ as a consequence of Lemma 3.5

Write $H_{n}(X)=\oplus_{I} \mathbb{Z}_{2}, I$ an ordered set. Since $n \geq 3, \Gamma_{n}^{1}=-\otimes \mathbb{Z}_{2}$, so $\Gamma_{n}^{1}\left(H_{n}(X)\right)=H_{n}(X)$. We can also assume that there are no subgroups in $H_{n+1}(X)$ that are h_{n+1}-split. In other case, we would deduce from Lemma 4.5 that there are elements of order 2 in $\mathcal{B}^{n+2}(X)$. Thus $H_{n+1}(X)=\oplus_{J} \mathbb{Z}_{2}$ with $J \subset I$, and the Γ-sequence corresponding to X is

$$
0 \rightarrow \bigoplus_{I} \mathbb{Z}_{2} \xrightarrow{b}\left(\bigoplus_{I-J} \mathbb{Z}_{2}\right) \oplus\left(\bigoplus_{J} \mathbb{Z}_{4}\right) \xrightarrow{h} \bigoplus_{J} \mathbb{Z}_{2} \rightarrow 0
$$

We may rewrite the sequence as

$$
0 \rightarrow\left(\bigoplus_{I-J} \mathbb{Z}_{2}\right) \oplus\left(\bigoplus_{J} \mathbb{Z}_{2}\right) \xrightarrow{b}\left(\bigoplus_{I-J} \mathbb{Z}_{2}\right) \oplus\left(\bigoplus_{J} \mathbb{Z}_{4}\right) \xrightarrow{h} \bigoplus_{J} \mathbb{Z}_{2} \rightarrow 0
$$

and assume that $b(x, y)=(x, 2 y)$ and $h(x, y)=y \bmod 2$. It is clear that any $f \in \operatorname{Aut}\left(\bigoplus_{I-J} \mathbb{Z}_{2}\right)$ induces a Γ-isomorphism $(0, \mathrm{id}, f \oplus \mathrm{id})$ of the same order.

On the one hand, for $|I-J| \geq 2, \bigoplus_{I-J} \mathbb{Z}_{2}$ has an involution and therefore $\mathcal{B}^{n+2}(X)$ has elements of even order. On the other hand, for $|I-J|<2$, we consider the remaining possibilities.

Suppose that $|I-J|=1$. Then, $\pi_{n+1}(X)=\mathbb{Z}_{2} \oplus\left(\oplus_{J} \mathbb{Z}_{4}\right)$. If J is trivial, $\mathcal{B}^{n+2}(X)$ is clearly trivial as well. Otherwise, suppose that $I-J=\{i\}$ and choose $j \in J$. Define $f \in$ Aut $\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus\left(\oplus_{I-\{i, j\}} \mathbb{Z}_{2}\right)\right)$ by $f(x, y, z)=(x, x+y, z)$ and $g \in \operatorname{Aut}\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \oplus\left(\oplus_{I-\{i, j\}} \mathbb{Z}_{4}\right)\right)$ by $g(x, y, z)=(x, 2 x+y, z)$. Then (id, id, f) is a Γ-isomorphism of order 2 since we have a commutative diagram

Suppose that $I=J$. If $H_{n}(X)=H_{n+1}(X)=\mathbb{Z}_{2}, \mathcal{B}^{n+2}(X)$ is trivial. If not, choose $i, j \in I$ and define maps $f \in \operatorname{Aut}\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus\left(\oplus_{I-\{i, j\}} \mathbb{Z}_{2}\right)\right)$ by $f(x, y, z)=(y, x, z)$, and $g \in$ Aut $\left(\mathbb{Z}_{4} \oplus \mathbb{Z}_{4} \oplus\left(\oplus_{I-\{i, j\}} \mathbb{Z}_{4}\right)\right)$ by $g(x, y, z)=(y, x, z)$. We have the following commutative diagram

Then, $(0, f, f)$ is a Γ-isomorphism of order 2 .
As a consequence, we obtain a negative answer to the problem of realising groups as selfhomotopy equivalences of A_{n}^{2}-polyhedra:

Corollary 4.6. Let G be a non nilpotent finite group of odd order. Then, for any $n \geq 3$ and for any A_{n}^{2}-polyhedron $X, G \not \neq \mathcal{E}(X)$.

Proof. Assume that there exists an A_{n}^{2}-polyhedron X such that $\mathcal{E}(X) \cong G$. Then, if $\mathcal{E}(X) \neq \mathcal{E}_{*}(X)$, the quotient $\mathcal{E}(X) / \mathcal{E}_{*}(X)$ is a finite group of odd order, which contradicts Theorem 1.1. Thus $G \cong \mathcal{E}(X)=\mathcal{E}_{*}(X)$. However, since X is a 1 -connected and finite-dimensional $C W$-complex, $\mathcal{E}_{*}(X)$ is a nilpotent group, [8, Theorem D$]$, which contradicts the fact that G is non nilpotent.

We end this paper by proving our second main result:
Proof of Theorem 1.3. By hypothesis $\mathcal{B}^{4}(X)$ is a finite group of odd order. From Lemma 3.4 we deduce that $H_{2}(X)$ is an elementary abelian 2-group and from Proposition 2.1 that $\Gamma\left(H_{2}(X)\right)$ is a 2-group. In particular, every element of $\Gamma\left(H_{2}(X)\right)$ is of finite order, and therefore, by Proposition 3.6, $\operatorname{rank} H_{4}(X) \leq 1$ so we have Theorem 1.3(1). Now, any element in $\mathcal{B}^{4}(X)$ is of the form $\left(0, f_{2}, f_{3}\right)$ if $H_{4}(X)=0$ or (id, $\left.f_{2}, f_{3}\right)$ if $H_{4}(X)=\mathbb{Z}$. Notice that a Γ-morphism of the form ($-\mathrm{id}, f_{2}, f_{3}$) has even order thus it cannot be a Γ-isomorphism under our hypothesis. Therefore, if $H_{4}(X)=\mathbb{Z}$, then $b_{4}(1)$ generates a \mathbb{Z}_{4} factor in $\Gamma\left(H_{2}(X)\right)$, and under our hypothesis the equation

$$
\operatorname{rank} \Gamma\left(H_{2}(X)\right)=\operatorname{rank} H_{4}(X)+\operatorname{rank}\left(\operatorname{coker} b_{4}\right)
$$

holds for $\operatorname{rank} H_{4}(X) \leq 1$.
Observe that any Γ-isomorphism of X induces a chain morphism of the short exact sequence

$$
0 \rightarrow \text { coker } b_{4} \rightarrow \pi_{3}(X) \xrightarrow{h_{3}} H_{3}(X) \rightarrow 0 .
$$

We will draw our conclusions from this induced morphism, which can be seen as an automorphism of $\pi_{3}(X)$ that maps the subgroup $i_{2}\left(\operatorname{coker} b_{4}\right)$ to itself, thus inducing an isomorphism on the quotient, $H_{3}(X)$.

As we mentioned above, $\Gamma\left(H_{2}(X)\right)$ is a 2 -group. Then coker b_{4} is a quotient of a 2 -group so a 2-group itself. We claim that $H_{3}(X)$ is also a 2-group: otherwise, $H_{3}(X)$ has a summand whose order is either infinite or odd and therefore this summand would be h_{3}-split, which from Lemma 4.5 implies that $\mathcal{B}^{4}(X)$ has elements of even order, leading to a contradiction. Since coker b_{4} and $H_{3}(X)$ are 2-groups, so is $\pi_{3}(X)$, proving thus Theorem 1.3(2).

Moreover, no subgroup of $H_{3}(X)$ can be h_{3}-split as a consequence of Lemma 4.5 and thus, $\operatorname{rank} H_{3}(X) \leq \operatorname{rank}\left(\operatorname{coker} b_{4}\right)=\operatorname{rank} \Gamma\left(H_{2}(X)\right)-\operatorname{rank} H_{4}(X)$. We can compute $\operatorname{rank} \Gamma\left(H_{2}(X)\right)$ using Proposition 2.1 and immediately obtain Theorem 1.3 (3).

Now for a 2-group G, define the subgroup $\Omega_{1}(G)=\{g \in G: \operatorname{ord}(g) \mid 2\}$. One can easily check that $\Omega_{1}\left(\pi_{3}(X)\right) \leq i_{2}\left(\operatorname{coker} b_{4}\right)$ and, from [11, Ch. 5, Theorem 2.4], we obtain that any automorphism of odd order of $\pi_{3}(X)$ acting as the identity on i_{2} (coker b_{4}) must be the identity.

Then, if (id, $\left.f_{3}, f_{2}\right) \in \mathcal{B}^{4}(X)$ is a Γ-morphism with f_{3} non-trivial, f_{3} has odd order, so we may assume that $\Omega: \pi_{3}(X) \rightarrow \pi_{3}(X)$ (see Definition (2.2) has odd order too. By the argument above, it must induce a non-trivial homomorphism on $i_{2}\left(\operatorname{coker} b_{4}\right)$ and therefore f_{2} is non-trivial as well. Thus, the natural action of $\mathcal{B}^{4}(X)$ on $H_{2}(X)$ must be faithful, since any Γ-automorphism (id, $\left.f_{3}, f_{2}\right) \in \mathcal{B}^{4}(X)$ induces a non-trivial $f_{2} \in \operatorname{Aut}\left(H_{2}(X)\right)$. Then, Theorem 1.3)(4) follows.

References

[1] Martin Arkowitz, The group of self-homotopy equivalences - a survey, Groups of self-equivalences and related topics (Montreal, PQ, 1988), Lecture Notes in Math., vol. 1425, Springer, Berlin, 1990, pp. 170-203.
[2] , Problems on self-homotopy equivalences, Groups of homotopy self-equivalences and related topics (Gargnano, 1999), Contemp. Math., vol. 274, Amer. Math. Soc., Providence, RI, 2001, pp. 309-315.
[3] Hans-Joachim Baues, Algebraic homotopy, Cambridge Studies in Advanced Mathematics, vol. 15, Cambridge University Press, Cambridge, 1989.
[4] , Combinatorial homotopy and 4-dimensional complexes, De Gruyter Expositions in Mathematics, vol. 2, Walter de Gruyter \& Co., Berlin, 1991, With a preface by Ronald Brown.
[5] , Homotopy type and homology, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1996, Oxford Science Publications.
[6] Mahmoud Benkhalifa, The group of self-homotopy equivalences of a simply connected and 4-dimensional $C W$-complex, Int. Electron. J. Algebra 19 (2016), 19-34.
[7] Cristina Costoya and Antonio Viruel, Every finite group is the group of self-homotopy equivalences of an elliptic space, Acta Math. 213 (2014), no. 1, 49-62.
[8] Emmanuel Dror and Alexander Zabrodsky, Unipotency and nilpotency in homotopy equivalences, Topology 18 (1979), no. 3, 187-197.
[9] Julien Federinov and Yves Felix, Realization of 2-solvable nilpotent groups as groups of classes of homotopy self-equivalences, Topology Appl. 154 (2007), no. 12, 2425-2433.
[10] Yves Félix, Problems on mapping spaces and related subjects, Homotopy theory of function spaces and related topics, Contemp. Math., vol. 519, Amer. Math. Soc., Providence, RI, 2010, pp. 217-230.
[11] Daniel Gorenstein, Finite groups, Harper \& Row, Publishers, New York-London, 1968.
[12] Donald W. Kahn, Realization problems for the group of homotopy classes of self-equivalences, Math. Ann. 220 (1976), no. 1, 37-46.
[13] , Some research problems on homotopy-self-equivalences, Groups of self-equivalences and related topics (Montreal, PQ, 1988), Lecture Notes in Math., vol. 1425, Springer, Berlin, 1990, pp. 204-207.
[14] Roger C. Lyndon, and Paul E. Schupp, Combinatorial group theory. Reprint of the 1977 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. xiv+339 pp. ISBN: 3-540-41158-5.
[15] John W. Rutter, Spaces of homotopy self-equivalences, Lecture Notes in Mathematics, vol. 1662, SpringerVerlag, Berlin, 1997, A survey.
[16] John H. C. Whitehead, A certain exact sequence, Ann. of Math. (2) 52 (1950), 51-110.
Citic, Departamento de Computación, Universidade da Coruña, 15071-A Coruña, Spain.
E-mail address: cristina.costoya@udc.es
Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071-Málaga, Spain E-mail address: david.mendez@uma.es

Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071-Málaga, Spain E-mail address: viruel@uma.es

[^0]: 1991 Mathematics Subject Classification. 20K30, 55P10, 55P15.
 Key words and phrases. A_{n}^{2}-polyhedra, self-homotopy equivalences.
 The first author was partially supported by Ministerio de Economía y Competitividad (Spain), grant MTM2016-79661-P.

 The second author was partially supported by Ministerio de Educación, Cultura y Deporte grant FPU14/05137, and by Ministerio de Economía y Competitividad (Spain) grants MTM2016-79661-P and MTM2016-78647-P.

 The third author was partially supported by by Ministerio de Economía y Competitividad (Spain) grant MTM2016-78647-P.

