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ABSTRACT
The problem of multi-agent resource allocation is important and
well-studied within AI and economics. The general assumption
is that the amount of each resource is known beforehand. How-
ever, many real-world problems, the exact amount of each resource
may not be known at the time of decision making, e,g. in the case
of weather dependent renewable energy production. This work
considers a homogeneous divisible resource where the available
amount is given by a probability distribution. In general, a model for
efficient usage under fairness and the possibilities of manipulation
is studied. Firstly, the notion of ex-ante envy-freeness, where, in
expectation, agents weakly prefer their allocation over every other
agent’s allocation is introduced. For this case the tension between
fairness and social welfare is considered. The price of envy-freeness
is at least Ω(n), where n is the number of agents and the problem of
optimising ex-ante social welfare subject to ex-ante envy-freeness
is strongly NP-hard. Additionally, the possibility for an integer
program to calculate the optimal ex-ante envy-free allocation for
linear satiable valuation functions is presented.
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1 INTRODUCTION
Multi-agent resource allocation has been studied under a wide
variety of characteristics and aims [2]. In these allocation problems
there is a resource which has to be divided among a number of
interested parties or agents. Among the principle aims are efficiency,
fairness and preventing manipulation [1, 4]. The main objective
from a societal perspective is efficiency, often represented by social
welfare. The principal idea of social welfare is that the resource
is distributed to give it to the agents who can get the most value
out of them. Conversely, most agents are self interested and might
try to manipulate the allocation process to benefit or expect the
process to be fair. Manipulation is possible since in many problems
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only the agents know how valuable the resource is to them and
how good they can use it. For fairness a wide number of measures
has been proposed; one prevailing notion is envy-freeness [4]. This
natural measure requires that any agents is at least as content with
the own allocation as with any other agent’s allocation.

Considerable attention has been given to heterogeneous divisible
resources and indivisible items [4]. Conversely, despite its wide ap-
plicability, including electricity, estate, storage space, bandwidth or
time [2, 5], less attention has been given to homogeneous divisible
resources [5]. One reason is that for a fixed amount of resource ef-
ficient solutions can be found easily and envy-freeness admits only
the solution that gives every agent the same amount (equal share).
However, the amount of resource might not be known since many
real-world problems exhibited uncertainty in some form [11]. For
example, a group of households sharing a photovoltaic installation
on their roofs have to decide who will get the energy at different
times of the day. The available electricity from the photovoltaic
installation is weather dependent which means the amount that
will be available is not known. Simultaneously, the agents may need
to plan how much electricity they have available and if they require
to acquire electricity from a different source. Nevertheless, even in
an uncertain setting considering fairness ex-post does not change
the possibilities of finding envy-free and efficient allocations.

This work studies the possibility of efficient algorithms and the
trade-offs between efficiency and fairness in the presence of uncer-
tainty. Specifically, a measure of fairness is introduced to consider
fairness ex-ante. In the context of fairness and no manipulation,
the possibilities of efficiency in settings of an uncertain amount
of resource is considered. This is extended by the intractability of
finding optimal efficient and fair allocations[3].

2 RESOURCE ALLOCATION PROBLEM
n ∈ N agents are interested in a resource. The amount of the
resource is uncertain which is represented by a random variable
X ∈ [0, 1] (X : Ω → [0, 1]) with a finite number of eventsm := |Ω |

with Ω ⊊ [0, 1] and probability mass function f . For simplicity the
notation for events is overloaded by letting ω := X (ω) for ω ∈ Ω.
The resource allocation to the agents is indicated by the allocation
functions ai : Ω → [0, 1] for every agent i ∈ [n]. All allocation
functions together form an allocation A = (a1,a2, . . . ,an ). The
validity of an allocation A is indicated by positivity (ai (ω) ≥ 0
∀i ∈ [n], ∀ω ∈ Ω), and that the allocation functions respect the
maximal amount (

∑
i ∈[n] ai (ω) ≤ ω ∀ω ∈ Ω).

An agent i ∈ [n] values the amount of received resource ac-
cording to a privately known valuation function vi : [0, 1] → R.
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(a) The equal share allocation.
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(b) An ex-ante envy-free allo-
cation.

Figure 1: The example’s allocations. The bars are the events
ω1 and ω2 with their respective available amount of 0.2 and
0.4. The allocations to the agents are patterned as diagonal
stripes for the first agents and dots for the second agent.

All valuation functions are monotonically increasing from zero
(v(0) = 0) and satisfy non-negativity (v(x) ≥ 0 ∀x ∈ [0, 1]). More-
over, the expected valuation, denoted byVi : [0, 1]Ω → R for i ∈ [n],
is the agent’s utility for a given allocation function, i.e. Vi (aj ) :=∑
ω ∈Ω vi (aj (ω))f (ω) for any j ∈ [n]. Finally, the social welfare of

an allocation A is the sum of utilities, i.e.W (A) :=
∑
i ∈[n]Vi (ai ).

3 FAIR ALLOCATION OF RESOURCES
Firstly, ex-ante envy-freeness is considered since ex-post envy-
freeness does not allow allocations different from equal share. An
allocation is ex-ante envy-free if an agent’s utility from the own
allocation is weakly greater than the utility from any other agent’s
allocation, Vi (ai ) ≥ Vi (aj ) for all i, j ∈ [n]. Moreover, the overall
aim is to find an ex-ante envy-free efficient allocation.

3.1 Example Allocations
This setting allows allocations other than equal share as the fol-
lowing example illustrates. Assume there are two events ω1 and ω2
with probability 2/3 and 1/3, and production amount of 0.2 and 0.4, re-
spectively. The two agents’ valuation functions are v1(x) = 5

0.3 · x

for 0 ≤ x < 0.3, v1(x) = 5 for x ≥ 0.3, and v2(x) =
1
0.2 · x for

0 ≤ x < 0.2 and v2(x) = 1 for x ≥ 0.2. The equal share allocation
achieves a social welfare of 2 89 in this case (see Figure 1a). However,
there is an allocation that is envy-free and allows a social welfare
of 3 1

12 . In this allocation the first agent gets 0.075kWh and 0.3kWh
in the first and second event, respectively, and the second agent’s
allocation is the remaining amount (see Figure 1b). This shows that
ex-ante fairness allows different solutions.

3.2 Efficiency, Effects and Complexity of
Envy-Freeness

While the example shows that other solutions than equal share are
possible, generally, the worst case of equal share remains. Hence,
the social welfare can depend mostly on one agent. In other words,
the price of envy-freeness [2] which is the ratio of the best efficient
allocation over the ex-ante envy-free allocation can have a lower
bound of Ω(n).

Moreover, while the difficulty of calculating the overall efficient
allocation is not more difficult than without uncertainty, calculating
the ex-ante envy-free efficient allocation is strongly NP-hard by
reduction from 3-partition. This holds already for continuous and
concave valuation functions and a uniform probability distribution.

3.3 Calculating an Optimal Solution
The intractability hinders the calculation of optimal allocations.
However, in the specific case of linear but satiable functions, finding
ex-ante envy-free efficient allocations can be formulated as an
integer program allowing calculation for reasonably sized instances.

More explicitly, for valuation functions vi (x) = ui/qi · x for
x < qi and vi (x) = ui otherwise, with i ∈ [n], saturation amount
qi ∈ [0, 1] and maximal value ui ∈ R+ the utility can be expressed
as Vi (a) = ui

qi ·
∑

ω ∈Ω
min{a(ωj ),qi } f (ω), and the envy-freeness

constraint can be expressed as EF (i, j) :=
∑

ω ∈Ω
(min{ai (ω),qi }

−min{aj (ω),qi }
)
f (ω) ≥ 0 for agents i, j ∈ [n].

With these valuation functions is it straightforward to represent
the problem as the following optimisation program with decision
variables xi j for i ∈ [n] and j ∈ [m].

max
∑
i ∈[n]

Vi
(
(xi j )j ∈[m]

)
(1)

s.t.
∑
i ∈[n]

xi j ≤ ωj ∀j ∈ [m] (2)

EF (i,k) ≥ 0 ∀i,k ∈ [n] (3)
xi j ≥ 0 ∀i ∈ [n], j ∈ [m] (4)

The optimisation function and the envy-freeness constraint are
not linear in this formulation. Nevertheless, it is possible through a
number of standard transformations to convert the program into
an integer program.

4 CONCLUSION
In general, the results of this work affect the wide array of related
problems and areas, including cake cutting [8, 9], estate/land divi-
sion [7], divisible auctions, divisible task scheduling [6] and packing
problems [10]. For example, similar to this work, inherent uncer-
tainty might enrich the solution space in fair division of indivisible
items.

In particular, the complexity and the non-polynomial mathemat-
ical program for the optimal allocation for a very specific case form
a foundation that invites further research. A logical next step is
finding a polynomial time approximation algorithm for the general
case or in a first instance for the specific case of valuations as in
Section 3.3. Moreover, from the broader scope of the presented
problem the manipulation has not been addressed yet. Hence, the
following step is to consider the effects and possibilities for the case
of strategic agents.
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