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dimensional controlled region is considered: the magnitude of 
the magnetic field H is sampled on a grid of 250×250 points, 
evenly spaced in a square region with a side length L equal 
to 60 mm. The geometric model of the winding is shown in 
Fig. 1(a). 

The problem, i.e. finding the magnetic field H given the 
current density J and the radii R distribution, was defined as 
an axisymmetric system. The magnetic analysis was then 
executed using time-harmonic conditions in Finite Element 
(FE) codes Flux [8] and MagNet [9]. 

A typical mesh is composed of nearly 18,000 second order 
triangular elements. Given that the penetration depth in copper 
at 100 kHz is about a fifth of a millimeter, most of the conduc-
tor is not being used and the mesh density has to be appropri-
ately set. In particular, in the copper turn, the maximum ele-
ment size of the mesh is equal to an half of the penetration 
depth, given the frequency, i.e. 0.2 mm at 100 kHz. 

A detail of the mesh is shown in Fig. 1b. In particular, the 
field problem was solved in terms of the complex magnetic 
vector potential, A, as 

 JAA   12 j  (1) 

where J is the complex vector of the imposed current density, 
µ the magnetic permeability equal to µ0 in the whole domain, 
ρ the electrical resistivity and ω the angular frequency of the 
magnetic field [10], [11]. The resistivity is equal to 1.7 10-8 
Ωm, which is the approximate value of copper resistivity at a 
working temperature of 50 °C i.e. the temperature of the wa-
ter-cooled inductor. 

III. THE INVERSE PROBLEM 
The problem of identifying the optimal distribution of the 

turn radii, assuming the two-dimensional controlled region 
for the prescribed magnetic field, has been solved. To this 
end, the design variable vector x was composed of ten 
unknown radii Ri, free to vary in the range [65, 150] mm, and 
by the unknown distance d between the turns, free to vary in 
the range [2, 12] mm; altogether an eleven-dimensional search 
space. 

The optimization problem reads as follows: given a set of 
frequencies fk, k=1,N within a prescribed range (fL , fH), for 
each frequency find the family of inductor geometries that 
minimize the discrepancy between the highest value of the 
magnetic field Hmax and the lowest value of the magnetic field 
Hmin in the controlled region  

 f1(x) =Hmax(x)–Hmin(x)  (2) 

and, simultaneously, minimize the specific powerloss, Pi(x),in 
the winding, i.e. the power in the most lossy turn 

 f2(x) =max௜൫ ௜ܲ(ݔ)൯with ݅ = 1, . . ,10 (3) 

subject to field equation (1). 
It has to be noted that the power Pi in (3) incorporates both 

additional and proximity losses. 

Consequently, a set of N frequency-linked Pareto-optimal 
fronts is to be identified. 

IV. THE OPTIMIZATION ALGORITHMS 
In order to solve (2) and (3), a comparison of stochastic 

optimization algorithms is considered. In particular, NSGA-II, 
WDO, µBiMO, MNSGA-III are used. NSGA-II is a well 
known genetic algorithm developed by Deb [4]. 

Specifically, WDO is inspired by the atmospheric motion of 
air parcels. In fact, wind blows in a way to equalise 
imbalances in the air pressure; likewise, in optimisation, the 
design points are moved from high-gradient to low-gradient 
positions. Accordingly, a swarm of p> 1 artificial air parcels is 
considered. The WDO algorithm is governed by the following 
equation: 

   
  uxxigxtutu ioptikik 21)()1()( 1

1   (4) 

where the left-hand side gives the velocity of the ith out of p 
air parcels at time tk+1. The right-hand side is characterised by 
the following four terms: 

 the inertia term, depending on velocity at time tk and 
frictional coefficient α (conservative operator); 

 the gravitational-like term gx, which biases the 
current position xi towards the gravity centre of the 
design space (’pull-in’ operator); 

 the pressure-gradient term (the main operator), where 
the index i ≥ 1 is proportional to the pressure value at 
position xi while xopt is the position of the lowest 
pressure found in the previous k − 1 iterations; 

 the Coriolis-like acceleration term, due to which the 
velocity of the ith parcel is influenced by the 
orthogonal velocity of another, randomly selected 
parcel (’information-exchange’ operator). 

The positive-valued constants (α, β, g) are algorithm-
dependent parameters. The position of the ith air parcel at 
iteration k + 1 is then updated as 

 )()()( 11   kikiki tutxtx  

and the boundaries are checked to prevent any air parcel from 
exiting the design space. The procedure continues until the 
maximum number of iterations is reached.  

A generalization of the algorithm, making it possible to 
solve a multi-objective optimisation problem with m> 1 
objective functions in conflict (M-WDO), was proposed in [5]. 

In turn, the µ-BiMO algorithm [6] is a modification of the 
BiMO algorithm, which is an extension of the BBO. The BBO 
algorithm is based on the process of natural immigration and 
emigration of species between small islands in the search for 
more friendly habitats, as observed in nature [12]. Each 
solution considered is treated as a habitat or an island (design 
vector or individual in genetic algorithms) composed of 
suitability index variables (SIV, design variables), and each 
habitat exhibits a quality given by the habitat suitability index 
(HSI, objective function). The ecosystem, which is the whole 
set of islands or habitats, is progressively modified by means 



of two stochastic operators, i.e. migration and mutation, where 
migration improves the HSI of poor habitats by sharing 
features from good habitats (exploitation step), while mutation 
modifies some randomly selected SIV of a few habitats in 
view of a better search in the design space (exploration step). 

The BBO algorithm has been widely used over the last 
decade as a single-objective algorithm for different 
applications; moreover, in the last two years, it has been 
extended to multi-objective optimisation problems (BiMO 
algorithm) [13]–[17], thanks to the concept of generalized 
fitness. 

In µBiMO, the role of small rocks in the migration of 
individuals is considered. As in reality, the small rocks help 
immigrants to colonize islands that otherwise would not be 
reached, with the concomitant loss of the individuals who 
would never reach the ground; in the proposed method the 
rocks have the function of not wasting habitats that otherwise 
would never characterize an ecosystem. 

In particular, during the migration procedure, it could 
happen that good habitats are replaced. To recover this, the 
discarded habitats are stored in a vector (rock vector) that 
tracks the habitats. 

In BiMO, when the number of islands is very small, during 
the processes of immigration and emigration, the generation of 
duplicates is a frequent event. Instead of generating new 
habitats randomly, they are taken from the best habitats 
belonging to the rock vector. 

Eventually, the new Migration NSGA (MNSGA-III) 
algorithm, is based on the classical NSGA-II multi-objective 
algorithm [4] and SA-MNSGA [18], but it includes the 
periodical migration of a new small population (maximum 
Np/2 individuals where Np is the size of the initial population) 
that modifies the genetic heritage of the current population. It 
evolves like the classical NSGA-II algorithm and includes 
migration like SA-MNSGA [18], but the migrated population 
occurs before the generation step instead of after, as in SA-
MNSGA. This way the new individuals increase the current 
population and the new chromosome characteristics act in the 
generation of the new population. The selection step reports 
the population size to Np. 

V. OPTIMIZATION RESULTS 
The NSGA-II method was run with 20 individuals and 100 

iterations, WDO with 20 parcels and 100 iterations, µ-BiMO 
with 8 islands and 100 iterations, MNSGA-III with 20 
individuals and 50 runs. NSGA-II and WDO used 2,000 
objective functions calls, µ-BiMO about 800, MNSGA-III 
about 1,400 calls. 

Due to the large number of design variables, it is quite 
difficult to solve this optimization problem; therefore, a 
further run with MNSGA-III has been performed for 100 
iterations and 20 individuals (about 2,900 objective function 
calls). 

The optimization results obtained at frequencies of 1 kHz, 
10 kHz and 100 kHz are shown in Figs. 2, 3 and 4, 
respectively. In general, the best Pareto front approximation is 
obtained by MNSGA-III when run for 100 iterations. 

In the case of f = 1 kHz, MNSGA-III outperforms the other 
methods even with 50 iterations. On the other hand, the µ-
BiMO method is able to find some solutions, which 
approximate the Pareto front, with a low computational cost. 
This is a typical behavior of µ-BiMO, because few islands are 
used. Eventually, NSGA-II is able to minimize the function f2, 
finding a good approximation of the right part of the Pareto 
front for f = 1 kHz. 

 
Fig. 2. Optimization results obtained for f = 1 kHz. 

 
Fig. 3. Optimization results obtained for f = 10 kHz.. 

 
Fig. 4. Optimization results obtained for f = 100 kHz. 

 
The geometries of the solutions A and B, C and D, E and F 

obtained for f = 1 kHz, f = 10 kHz and f = 100 kHz are shown 
in Figs. 5, 6 and 7, respectively. Referring to the optimal 
geometries A, C and E in Figs. 5 to 7, the mean value of the 
magnetic field is 3694 A/m for f=1 kHz, 3717 A/m for f=10 
kHz and 3979 A/m for f=100 kHz, under the same value of the 
supply current equal to I0=100 Aturns. 

Considering the linearity of the magnetic region (air-cored 
winding), the value of the magnetic field can be rescaled based 
on the actual current value I, leaving the field uniformity level 
unaltered. The latter remark is particularly important because 
the objective function f1 attempts to reduce the highest field 
discrepancy in the controlled region as much as possible, 
regardless of the mean value of the field. The updated value of 
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