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A topology optimization (TO) design is inherently a bi-objective problem since the design goals are, at least, to minimize the material consumption and to maximize a performance parameter. To eliminate the extremely high computational burden and the checkboard pattern problem of existing optimal methodologies, this paper proposes a novel methodology based on Pareto optimal min-cut (POMC) to solve multi-objective TO problems with minimizing the volume as one objective. The good ability to handle an equality constraint based on POMC enables the proposed algorithm to achieve optimality of the single objective under any equality volume constraint. According to the comparison of numerical results with other methodologies, the proposed methodology is capable of obtaining higher quality Pareto frontiers by using much reduced computational burdens. 

Index Terms— Min cut, multi-objective optimization, Pareto optimal, topology optimization. 

I. Introduction

O
ne  goal of topology optimization (TO) is to design a lightweight device under some performance parameters. Since improving the performances of the device and reducing the material consumption are often conflicting, a TO problem is inherently a bi-objective optimization problem (BOOP). In this point of view, it is essential to develop vector TO optimizers in computational electromagnetics. 
   A number of methods have been proposed for vector TO problems. Vectorization techniques are highly capable of global search. However, a bottleneck of a vector optimizer is its high computational cost of finite element analysis embedded in the solution procedure for fitness computation. For the linear weighted sum methods, the challenges of adopting reasonable mechanisms for varying the weights on each objective and the lack of physical meaning of the aggregated objective function limit its application to TO problems. Bounded objective methods, such as the normal boundary intersection and the normal constraint methods, are to transform the BOOP into a series of single-objective optimization problems and solve each one in a sequence of the reduced feasible space. However, the reduction of the design space requires a normalization of the objectives and could result some regions of the Pareto frontier from being explored [1]-[2]. Moreover, the checkboard pattern is generally accompanying the optimized topology of existing methods. 
To address the aforementioned issues, a novel method based on Pareto optimal minimum cut (POMC) is firstly proposed in this paper. More specially, the proposal is a TO oriented optimizer for bi-objective TO problems with minimizing volume as one objective. The minimum cut model is a good facilitator for TO problem to enhance the performance parameter without introducing checkerboard pattern [3]. The proposed approach is similar to a bounded objective method. However, the characteristics that distinguishes the proposal from a general bounded objective method is that the good ability to handle equality constraint based on POMC enables the proposed algorithm to achieve optimality of the performance parameter under any equality volume constraint.
II. Min Cut and its Extension to a TO Problem
A. The Transformation of Mesh-grid of TO into a Network

For a weighted network, G(V, E), with two distinguished vertices ‘s’ and ‘t’ called the terminals,  a cut is a set of edges whose removal disconnects the graph into two disjoint parts, and an s-t cut C ⊂ E (Fig. 1) is a set of edges that requires the terminals ‘s’ and ‘t’ to be in different parts in the partitioned graph G(C)=(V, E-C). 
To extend the min cut to a TO problem, the design domain of meshed elements will be transformed into a weighted network. For a two-phase TO problem, as shown in Fig. 2, each element x∈X is linked with four-connected elements in its neighborhood that touch one of its edge by e{x, y} called e-link. Additionally, each element is connected with terminals ‘α’ and ‘β’ , which denote two materials to be assigned to each element, by 
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called t-links, respectively. An s-t cut in the network for a TO problem is a set of edges such that each element is connected with either ‘α’ or ‘β’.
The goal of a TO problem is to find a material distribution f that assigns each element x∈X a label fx ∈L (finite set).  Any material distribution f can be uniquely represented by an s-t cut C={Cl | l ∈ L} where Cl ={x ∈ X | fx = l}. A material distribution f is thus corresponding to a specific s-t cut C. The correspondence between cut C and the assignment of materials in the topology is then [4]
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Fig.3 gives a min cut and its corresponding material assignment.
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Fig. 1. An example of s-t cut
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Fig. 2. 1D network for TO
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Fig. 3 (a)  Weighted network; (b) The minimum cut
B. Assignment of Edge Weights in Network for TO
Accuracy and piecewise smoothness are two critical indicators to evaluate the quality of the optimized result of a TO problem. Accuracy implies whether the elements carrying the same level sensitivity value are assigned to the same material, and the piecewise smoothness is an evaluation of the checkerboard pattern. In this paper, the two indicators are measured simultaneously by using the energy function of
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where, N is the set of the interacting pairs of elements, SEfx(x) is the calibrated sensitivity of the original one using

[image: image9.wmf]||,0||,0

,

||,0||,0

rkrkrkrk

rk

rkrkrkrk

sesesese

SESE

sesesese

----

----

<>

ìì

==

íí

->-<

îî

     (3)

where, ser-k is the sensitivity changing from material r to k, SEr is the probability that the element is assigned to material r. Since the energy function is minimized, the element that should be turned from r to k has positive SEr and negative SEk.

Moreover, the edge weights on the network for TO are specified in Table Ⅰ. It has been demonstrated in [5] that, in a weighted network, the cost of any cut |C|– the sum of the edge weights of it – equals to energy function  E(f C) in (1) plus a constant. Since any material distribution fC is related to one specific s-t cut C, finding the minimum s-t cut in the network for a TO problem is equivalent to minimizing the energy function E, i.e, finding the best way of assigning materials.

TABLE Ⅰ
Edge Weights of t-Links and e-Links for the Network in TO 

	Edge
	Weight
	For
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III. The Combination of Min Cut With Volume Constrained TO Problem

A. Unbalanced Minimum Cut Problem

For an undirected graph G = (V, E), if A(B=V and A(B=∅, a cut (A, B) is a set of edges having one endpoint in A and the other endpoint in B. A cut is called unbalanced if its smaller side is size bounded. For notation conveniences, for an unbalanced cut (A, B), it is assumed that A is the smaller sized side (|A| ≤ |B| ) in this paper. An Ek-size s-t cut is an s-t cut (A, B) whose size of its smaller side is exactly k [6]-[7]. 
A volume equality constrained TO problem is to find the optimal topology in terms of a performance parameter and a volume equality constraint, V=V0, of materials. From the analogy of the cut and the material distribution, TO problem with equality volume constraints can actually be transformed into an Ek-size s-t cut problem.
It has been proven that, for a general graph G(V,E) with non-uniform weights on the edges, an Ek-size s-t cut problem is strongly NP hard [7]. If the number of the nodes is N, the current best approximation ratio of this problem is O(logN), which is obviously unendurable in engineering TO problems. To solve this issue, POMC is proposed.

B. Pareto Optimal Min Cut

It is readily to solve an Ek-size s-t cut problem by using any constrained metaheuristic algorithm. To handle a constraint, the solution methodology generally involves a penalty mechanism. The main challenge is thus to find an effective and efficient penalty function. Alternatively, the volume equality constraint is treated as an objective and a multi-objective Ek-size s-t cut problem is proposed [8]. The volume equality constrained TO problem is formulated as to minimize both the cost of a cut |C| and the violation of the size constraint in this paper. As illustrated in Fig.4, points a and b on the ideal Pareto frontier represent the Pareto optimal min cuts. 
Under a soft equality constraint, there might exist several 'Pareto optimal points' in the results. The one that within the acceptable range of violations will then be selected by using a user’s preference in an acceptable range of violations.

The non-dominated sorting genetic algorithm (NSGA2) is used to solve this bi-objective optimization problem. The chromosome is represented as a binary string of n bits, X = x1 x2 · · · xn, where n is the number of elements in the weighted network and xi is defined as

     
[image: image13.wmf]1 , element  is linked with 

0 , element  is linked with 

i

i

x

i

a

b

ì

=

í

î

                     (4)

The e-link ek,l  belongs to the cut set if xk ≠xl. Moreover, the following rules are proposed: element i disconnects with β terminal (the air) if xi = 0 while it disconnects with α terminal (the material) if xi = 1. If the volume constraint is V=V0, and a cut (A, B) is represented by individuals X, the violation rate for X is defined as
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           Fig. 4. The Pareto frontier         Fig. 5. The points generated in the 

                 searched by POMC                        first three generations 
C. Mechanism of Applying POMC in TO
Due to the convenience in  using POMC to solve a TO problem with equality volume constraints, it is feasible to apply POMC to find evenly distributed Pareto solutions. If V and f are, respectively, the volume of the material and the performance parameter to be optimized, and the global volume constraint is Vmin<V<Vmax, the proposed procedures to apply the POMC to a multi-objective optimization problems with minimizing the material volume as one objective are given as

Step 1. Initialization: Use POMC to optimize f under the volume constraint of V=Vmax, V=Vmin, and V=(Vmax+ Vmin)/2, respectively, and obtain the optimal values of f accordingly;
 Step 2. Number the points by V in ascending order, and get a series of points (Vi, fi);
Step 3. Calculate the density, Dens, of each domain [Vi,Vi+1], and find the domain [Vs,Vs+1] with the smallest Dens. Densi is the reciprocal of the Euclidean distance between points (Vi, fi) and (Vi+1, fi+1);
Step 4. Use POMC to optimize f under the volume constraint of V=(Vs+ Vs+1)/2;
Step 5. Repeat 2-4 until the smallest distance of Vi+1- Vi is smaller than the given value d0;
Fig. 5 gives the points generated in the first three generations of the proposed algorithm. Therefore, the overall pseudo code of the proposed algorithm is given as

While !(Stop bi-objective optimization)

       Set proper constraint V=Vm;

       While !(Stop single-objective optimization)

            Calculate sensitivity of each element in the design domain, and establish the network;

            Apply POMC to update the state of every element to generate new candidate topologies;
        End

End
IV. Numerical Results

To validate the proposed methodology, a magnetic actuator (Fig.6) is topologically optimized to maximize the magnetic force [9]. In the finite element analysis, the design domain is discretized into 30×9 quadrilateral elements, and the input current of 1.0 A is applied to the 400 turns coils. 

To comprehensively explore the advantages of the proposed methodology, it is firstly compared with a standard multi-objective optimizer: NSGA2. In the numerical implementations, the population size is 20, and the maximum number of generations is 200, for NSGA2; the average number of iterations required for a specified constraint is 9 for the proposed method. Under such conditions, the final solutions searched by the two algorithms are compared in Fig. 7, the Pareto frontier searched by the proposed method in the material volumes ranging from 110 to 215 is zoomed in Fig. 8 to exploit the details of the Pareto frontier, and the topologies of the Pareto optimals obtained by using the two methods under the same material volume are compared in Fig. 9.  Obviously, compared with NSGA2, the proposed algorithm:

 (1) has the ability to eliminate the checkerboard pattern as commonly accompanied the final topology obtained by existing algorithms including NSGA2;

(2) uses about 162 (9(18) FEM computations to obtain 18 Pareto optimal solutions while NSGA2 consumes 4000 (20(200) FEM computations to find the same amount of Pareto optimal solutions, as evidenced in Fig.7;

(3) provides more freedom to the user on his preference of the range of the volume, facilitating the reduction of the search domain  for a volume oriented BOOP. However, NSGA cannot take the advantage of this free-rider.

(4) although the proposed method is only able to seek for  weak Pareto points, however, as showed in Fig. 7 , the quality of the weak Pareto points is higher than that of the strong Pareto points obtained by NSGA. Among 18 Pareto points obtained by the proposed method, four of them are dominated by the points generated by NSGA2, while 12 Pareto points of NSGA2 are dominated by those of the proposed method.

Clearly, the proposed method is powerful in optimizing the performance parameter: the magnetic force. 
Moreover, as compared to a weighted sum method (WSM), from the mechanisms of the proposed and the existing  WSMs, it is easy to conclude:
(1) the aggregated function in existing WSMs is lack of physical meaning while the proposed method has explicit characteristics, transforming the volume constrained TO problem to a size constrained min cut problem, a typical combinatorial optimization problem.

(2) The proposed algorithm is free from parameter tuning, which is a challenging issue in existing WSM.

To evaluate the effect of the constraint validation size on the performance of the proposed algorithm of employing multi-objective method to solve a POMC problem, the network based on the sensitivity value of the 1st iteration is established for Ek-size s-t cut problem. The largest and smallest violations of the Pareto points under a series equality size constraints are recorded in Table Ⅱ, and the Pareto optimal min cuts under the constraint: K=165 is presented in Fig. 10, showing clearly that a POMC problem can be solved with a small violation of the equality size constraint.
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Fig. 6 Initial topology
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Fig. 7 The Pareto frontier obtained using different methods 
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Fig. 8 Zoomed Pareto frontier obtained by using the proposed method
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Fig. 9 The optimized topologies using the proposed method and NSGA2

V. Conclusions

This paper proposes a novel methodology based on Pareto optimal min-cut (POMC) to solve multi-objective TO problems with minimizing volume as one objective. The good ability to handle an equality constraint based on POMC enables the proposed algorithm to achieve the optimality of the single objective under any equality volume constraint. The proposed methodology outperforms the existing bounded objective methods in terms of its strong ability to handle any equality volume constraint and the capability to produce density-controlled Pareto frontier. Also, the numerical results demonstrate that the proposed method can use extremely low computational cost to find higher quality checkboard free topologies as compared to the exiting vectorization approaches. Therefore, it is reasonable to conclude that the proposed methodology is competitive and worth further studying. 

TABLE  Ⅱ 

The Largest and Smallest Violations under Different Size Constraints K

	K
	30
	45
	60
	75
	90
	105
	120
	135

	Violation_max
	0.1
	0.18
	0.18
	0.05
	0.08
	0.03
	0.017
	0.04

	Violation_min
	0
	0
	0
	0
	0
	0
	0
	0

	K
	150
	165
	180
	195
	210
	225
	240
	

	Violation_max
	0.03
	0.03
	0
	0.01
	0
	0.03
	0
	

	Violation_min
	0
	0
	0
	0
	0
	0
	0
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Fig. 10 The points of Pareto optimal min Cut for K=165
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