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ABSTRACT 

OF BMGimaBlING AMD SCDBIOE 

DKRK&MBm OF jaROmUn'IGS AMD j^RROWKK^CS 

Doctor of philosophy 

A PERTURBATION THEORY OF UNSTEADY HYPERSONIC AND SUPERSONIC FLOWS 

by Wal How Hui. 

A general pei4;urbation theory for hypersonic and supersonic flows past 

a wedge-like body is developed, which can be applied to both unsteady and 

steady flows for which the bow shock is attached to the body. It may be 

used to describe Inviscid and viscous flows over both slender and thick, 

rigid or flexible bodies performing either periodic or aperiodic motions. 

The exact (linearized) perturbation equations and boundary conditions 

are first derived, and the problem of finding the flow field reduced to that 

of solving a wave equation containing only one unknown function. 

Approximate formulae for the aerodynamic derivatives of a pitching 

wedge in inviscld flow are obtained in two forms of power series in the 

frequency parameter and in the reflection coefficient Wiich include Mc]hto8h* s 

theory and Appleton's theory as special cases. Two sets of waves are shown 

to exist, the first is due to the disturbance at the body surface, the 

second is Cue to the motion of the bow shock and is found to be a factor 

strongly destablizing the motion of thick bodies* 

Exact formulae in closed form are obtained for the stability derivatives 

of a pitching wedge of any thickness in inviscid hypersonic and supersonic 

flows« Also obtained is an exact general cirterion for stability. It 

Includes the approximate theory and the theory of Carrier <& Van Dyke as special 

cases. 



The effect of viscosity is included and closed form formulae for the 

stability derivatives of a wedge obtained which include the effects of 

wave reflection and thickness, and wliich appears to include Orllk-Ruchemann's 

theory as a special case. 

Finally, by extending the perturbation method previously mentioned, 

exact formulae for the stability derivatives of a pitching Nonweiler (caret) 

wing in hypersonic flow are obtained and shown to be independent of its 

aspect ratio. The three-dimensional effect of the flow is shown to be 

dominant for the damping derivative. 
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NOMENCLATURE 

A,B,C = constants defined in (I.17) and (I.19) 

A,B,C,D,E,F,G,J constants defined in (ill.4) 

a,b,c,d = constants defined in (ll«45) 

a = speed of sound 

constants defined in (V.43) 

A(Pr), B(Pr) = constants tabulated in Section IV, 3 

= coefficients of power series of (II.52) 

C = constant of proportionality in the linear 
viscosity-temperature law, (lV«2l) 

C 
0 = arbitrary constant 

= constant defined in (III.15) 

c = pitching moment coefficient 

= stiffness derivative 

^c = damping derivative 

C = pressure coefficient 
P 

d = parameter defined in (lV*23) 

E = parameter, C/3. 

E = parameter, C /% 
0 o' o 

= constant defined in (V.19) 

e = constant defineo. in (V,19) 

P(x,y,t) » function defined by (I.8) 

" unknown functions 

fj^,f^,f^,fj^ = arbitrary functions 

f (x,t) = function describing the shape of the bow shock, (l.9) 

f^(x,y,z,t) = function describing the caret wing surface, (V.2l) 

* * 
fĵ  ,fĝ  a arbitrary functions 
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G(**y;Z*t) function dkiacribing the bow shock 

G = parameter defined in (ill.23) 

Gg = parameter definded in (IV.2l) 

= parameter defined in (ll.HD) 

Gg,G^,G^ = parameter defined in (V.45) 

g = constant defined in (V.40) 

S = parameter, (M^-l)^tan cp 

= parameter, M tan cp 

= (Mj^^-l)^tan^(p 

= M^tancp^ 

h =- non-dimensionalized pivot position measured from 

the wedge apex; specific enthalpy 

I = parameter defined in (ill.2?) 

I — parameter defined in (II.70) 

i = (-1)* 

j =' constant defined in (V.40) 

= unit vectors in the x,y directions, respectively 

K « hypersonic similarity parameter, 

K = constant defined in (V.3l) 

k = frequency parameter, wf!/u 

— constants defined in (IV.46) and (lV.58), respectively 

% = chord length of the body 

L = function defined by (l.22) 

L̂ ,]jg = constants defined in (ll,42) 

M r. Mach number; also pitching moment 

= parameter, (l-H)/(l+H) m 

m parameter, (l-S )/(l+H ) 
a \ a " \ a' 

-mg — in-phase component of pitching moment 

-mg = out-of—phase component of pitching moment 
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N = function defined by (1,22) 

= constant defined in (IV.16) 

" oonotants defined in (11*42) 

P = time-independent perturbation pressure 

P = perturbation pressure 

p = gas pressure 

— gas pressure in the free stream 

Pr = Prandtl number 

Q = time-independent function describing the shape of 

the bow shook 

Q(K,Y) = function defined in (II.8$) 

= constents defined by (IV.46) and (IV .$8) , respectively 

B = time-independent perturbation density 

Bb = Reynolds number 

^w^^s = constants defined by (IV.46) and (IV.$8), respectively 

8 = plan area of the caret wing 

s = semi-span 

8 = 3/% 

8q,Sr = constants defined by (IV.58) 

= Coefficients defined by (11.62) 

T = gas temperature 

= coefficients defined by (II.$6) 

= constants defined by (IV.46) and IV.$8), respectively 

^ = time variable 

t = non-dlmengionol form of t 

^ = vectors tangential to the shock wave surface 

= velocity components of gas in x,y,z direction, 
respectively 

u,v,w = perturbation velocity componentsof gas defined in 
(1.2) and (V.7) 
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u',v' = velocity components of invigcid gas behind the 

bow shock in the x' directions, respectivo]^ 

U,V,W s time-independent perturbation velocity components 

fpco - velocity, pressure and density,respectively, 
of gas in the free stream 

" velocity, pressure and density, respectively, 
of gas in the reference steady flow past the 
original wedge 

= velocity^pressure and density, respectively, 
of gas in the reference steady flow past the 
effective wedge 

W = constant defined in (1,23) 

W Wy = constants defined in (IV.46) 

X = nca-dimensionalized matching point position 
m 

y «i 

= oarteslan ooordinatea 

x,y, z = non-dimensionalized form of respectively 

x' ,y' = non-dimenionalized form cartesian coordinates 
along and perpendicualr to the original wedge 
surface in its average position, respectively 

X ,y = non-dimensionalized coordinates determining 
the pivot axis of the caret wing 

Y;;,Yg = parBmetors defined in (IV.31) and (17.52), 
respectively 

= parameters defined in (IV.33) and (IV.56), 
respectively 

6 = flow deflection angle in the reference steady 
flow, also angle of attack of the lower ridge 
of the caret wing at its design condition 

e = samll parameter, maximum amplitude of oscillation 

^ = semivertex angle of the wedge 

# = angle of attack of a wedge 

p = shock wave angle in the reference steady flow; 
also incidence of the plane of leading edges 
of a caret wing at its design condition 

(p = P - 8 

r = angle between the plane of symmetiy of a caret 
wing and the wing surface 
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y = ratio of specific heats of gas 

w = circular frequency of oscillation 

0 = index in the power lav of viscosity-temperature law 

iP = gas density 

p = perturbation gas density 

6(x,t) = disturbance function at the body surface 

* 
5 (x',t) = displacement thickness 

6^ (1) = 8i-8o; approximately the average inclination of the 
displacement boundary layer 

&(:%) = "amplitude function" of the disturbance at the body 
surface 

ikx 
A^(x) = 6(x)e 

* 

A = discriminant defined in (11.74) 

& = reflection coefficient, (O - %A)/(G +xA) 

= approximate reflection coefficient, -b/a 

= parameters defined in (11.47) 

Pof^o = parameters defined in (IV.18) 

p, = viscosity 

% = My(M^^-l)^ 

T = characteristic volume defined in (V.38) 

= vector in the tangential direction of the bow shock 

cr = constant tabulated in Section 17.4 

§ f - q - variables defined in (V.IO) and (1.5) 

X = hypersonic interaction parameter 

sPBsoanrs 

= free stream 

= reference steady flow past the orignal wedge or 
past a caret wing at design condition 
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1 = reference steady flow past the effective wedge 

u = upper surface 

4 = lower surface 

b = body surface 

cr = critical value 

eff = effective wedge in inviscid flow 

inv = time-independent quantities in the unsteady inviscid 
flow past the original wedge 

orig = quantities behind the bow shock in the unsteady 
inviscid flow past the original wedge 

V = quantities arising from the deformation of the 
effective wedge due to the change in the displacement 
thickness only 

w = weak interaction 

8 = strong interaction 

m = cases of mixing of a weak interaction and a strong 
Interaction 

SUPERSCRIPTS 

(o); (a) = the zeroth, the first and the nth order solution, for 
the time-independent perturbation quantities, 
respectively 
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CHAPTER I 

PERMHBATIQW METHOD 



1 INTRODUCTION 

Steady supersonic flow lias been extensively studied using 

potential theory, whereas steady hypersonic flow has also been 

1 2 
studied in great detail ' . 

The purpose of studying unsteady hypersonic and supersonic 

flows is mainly to predict the aerodynamic forces that act on 

vehicles as a result of unsteady motions relative to uniform 

hypersonic or supersonic flight. This study Is of special importance 

for aerodynamic stability and control of vehicles. 

Unsteady supersonic flow has been systematically studied using 

potential theory^, which is a linearized ijieory. For hypersonic flow 

the assumptions used in̂  linearization of the flow equations are no 

longer valid even for slender bodies, and the problems are essentially 

non-linear. Also the entropy gradients produced by curved shock waves 

make the classical isentropic irrotational approach inapplicable. 

Many experimental results for unsteady supersonic flow have been 

reported^'^. In contrast to this,for hypersonic flow, those which 

can be uaed to compare with theoretical prediction appear to be quite 

limited, this is due to the difficulties involved in experiments. 

Bast^ hasL obtained experimental results on oscillating wedge-shaped 

airfoils with and without nose blunting, and has compared these with 

various predictions. He also gives a study of available theories. 

Unsteady hypersonic flow has been studied using Newtonian impact 

theory^ which assumes that there are no interactions between the fluid 

particles, and that when such particles collide with the surface of 

the body, their component of momentum normal to the surface is altered, 

2 -



with the result that a pressure force is exerted on the body. This 

simple theory is valid only in the double limit that the flight 

Macii number M — a n d the ratio of specific heats V—^1, but 
00 i. # 7 

otherwise gives poor results. It is usually ujsed for the estimation 

of pressures and overall forces on bodies in both steady and unsteady 

.. 6 
flows . 

Lightbill'8 piston theory appears to be the first theory which 

can be used to predict aerodynamic forces acting on a supersonic or 

hypersonic oscillating airfoil. It gives a simple, explicit 

relationship between the pressure on a surface and the downwash. 

However, it is based on the hypersonic small—disturbance theory ^nd 

ignores the existence of the bow shock, tmd therefore can only be 

2 
applied for Mg) » 1 and < 1, where @ is a measure of the 

maximum ewrface slope. This limits its range of applicability, 

g 

Thus for MmQ > 1, Miles' strong-shock piston theory may be used 

instead, in which the simple wave relationship in the piston theory 

is replaced by the shock wave relationship for compression surfaces. 

Although this is on a semi-empirical basis it gives better results 

for 1^8 > 1 and is shown by East^ to be coincident with Newtonian 

impact theory in the double limit m and "Y—^ 1. 

9 10 

In the unsteady shock-expansion theory ' whic$| is analogous 

to the strong-shock piston theory, an unsteady flow problem is, by 

suitably ijiterpreting the results of the hypersonic small-disturbance 

theory, rednced to a steady problem with the body shape slightly 

distorted to account for the unsteady motion, find this steady problem 

is then solved by the shock-expansion method. 
Piston theory, strong-shock piston theory and unsteady 



shock-expansion theory are all closly related to the hypersonic 

small-disturbance theory and subject to the same approximations. 

these theories can therefore be applied only for hypersonic flow 

pa&t slender bodies. Besides, in these theories the bow shock is 

either ignored or assumed to be able to completely attenuate waves 

coming from the body surface and hence the effects of the secondary 

waves coming from the body and reflected from the bow shock are 

neglected. 

For an oscillating wed{/e in supersonic flow, exact potential 

11 12 

theory has been developed ' , On the other hand for an oscillating 

wedge in hypersonic flow, theoretical studies have been made by 

Appleton (see also Ref. 22 for some correction to Ref. 13) and by 

Uclntoeh^^ with the aim to include the effect of the reflected waves 

from the bow shock. These two investigators both assume that the 

perturbation from a pure wedge flow is small and thus linearize the 

equations of motion of the fluid behind the bow sho-jc. Besides they 

both made the piston theory approximation, or the hypersonic small-

disturbance approximation without discussion of its validity. (see 

also next paragraph) It is shown independently that the strong-ahock 

piston theory is a special case in their theories when the reflected 

waves are neglected. Mcrntosh also points out that an important 

effect of the waves reflected from the bow shock is a phase shift 

in the unsteady pressure distribution. In fact, Appleton'a theory, 

being accurate up to the first order in the frequency parameter, ia 

also a special case in Mcintosh's theory which was therefore, before 

the present theory, the most up—to—date theory for hypersonic flov. 

past an oscillating slender wedge. 

However, Mcintosh's theory is based on the hypersonic small-



disturbance approximation without discussion of the validity of 

approximations, and the effect of thickness of a wedge is not known. 

Although hypersonic small—disturbance theory has been shown to give 

1 2. 

good results for steady hypersonic flow past slender bodies ' , as 

cocrared with experiments and with some exact theories. Miles has 

remarked, 'that the success of the linearized perfect fluid aelution 

for a specific configuration in steady flow, as determined by a 

comparison with experiment, offers no guarantee of the practical 
3 

validity of the corresponding unsteady flow solution' . 

As for Mach wave interaction with and reflection from a shock 

wave, the problem has been solved by Lighthill ^, Chu , and 

Chernyi^ for wedge-like bodies of any thickness in steady supersonic 

and hypersonic flows providing the bow shock is attached. In 

contrast to this, in unsteady flow the problem has only been 

studied^^'using hypersonic small-disturbance approximations. 

In this thesis it is proposed to find a solution of an unsteady 

inviscid or viscous flow over rigid or flexible wedge-like bodies 

of any thickness performing either periodic or aperiodic motions, 

providing the bow shock is attached. From this solution one is 

then in a position to find out what was neglected and to give 

comments on the existing theories. 

The same asaumption is made that the perturbation from a pnre 

wedge flow is small, bnt the perturbation method is applied to the 

original equations which describe the motion of the inviscid gas 

rather than to the hypersonic small-disturbance equations. An exact 

aystem of linearized perturbation equations is thus obtained in 

Chapter I, and the problem of finding the flow field reduced to that 

of solving a wave equation containing only one unknown funotloiu 

These perturbation equations include those obtained by Chu and by 



Chernyi^ as a special case when the flow is steady. It will be 

shown that Mclatosh's theory and Appleton's theory are special cases 

in the approximate theory (when the flow is hypersonic and the wedge 

is slender) developed in Chapter II of tiixs thesis which^ in is 

a special case of the exact theory developed in Chapter III of the 
11 ,12 

thesis. The exact theory also includes the theory of Carrier and Van Dyke 

as a special case when the flow is supersonic, and gives a general 

criterion for stability of a pitching wedge. 

It will be shown that in addition to the set of waves due to 

the disturbance at the body surface which has been discussed 

previously, another set of waves is discovered which is due to the 

motion of the bow shock and which exists for relatively thick wedges 

only. This new set of waves is found to be a factor which tends to 

strongly destablize the motion of the body. 

The extention of the inviscid perturbation theory in Chapters H 

and III to viscous flow is made by suitably modifying the body shape 

to account for the displacement boundary layer. This produces 

formulae in closed form for the stability derivatives of sharp, 

oscillating wedges in viscous hypersonic flow. This viscous 
17 

perturbation theory appears to include Orlik-Ruckemann's theory 

as a special case when the wedge is very thin. 

Application of the exact perturbation theory to a special type 

of hypersonic lifting vehicles — the Nonweiler wing or Caret wing — 

is made possible by extending the two-dimensional perturbation 

method to a three-dimensional one. The stability of a pitching 

Nonweiler wing is thus studied in detail and a criterion for 

stability given in Chapter V. The three-dimensional effect of the 

flow on the stability derivatives has also been discussed. 



2 THE igRnmBATIKM l&WATEMS 

As stated In the introduction* the unsteady hypersonic or supersonic 

flow past a wedge-like body to be studied in this thesis is assumed to be 

a small perturbation to some reference steady flow past a wedge — the 

pure wedge flow. 

The bow shock is assumed to be attached to the wedge apex, hence 

the flow field between the bow shock and the upper surface of the wedge 

and that between the bow shock and the lower sureface are independent of 

each other and can be treated using identical analyses. We shall 

therefore consider only the flow field between the bow shock and the 

upper surface. 

Let the system of coordinates xOy be such that Ox coincides with 

the wedge surface in the reference steady flow case, and 0 is the wedge 

apex (Fig.l). Denote by u and v, respectively, the velocity components 

of the gas in the x,y direction, and by p and p the pressure and density 

of the gas; also by Uo,Vo,pQ and the corresponding quantities in the 

pure wedge flow. Obiously, = o, under the system of coordinates 

chosen. The time variable is denoted by i. The basic equations Wiich 

describe the inviscid gas flow between the bow shook and the upper wedge 

surface may be expressed in the following form. 

M = 0 

ax ay 

= _ 1 ap 

ay p a% . 

^ + 5 ^ 5 + ̂ 2 2 = 

ax ay p ^ ' 

^ 

at az 

(1) 
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where y is the ratio of the specific heat of the gas at constant pressure 

to the specific heat at constant volume. 

For small perturbation, vs may eiqpress 

u = U Q + e u + ... 

V = ev+ ... 
(2) 

p = P o + C P + ... 

P = PQ + CP + ... 

where e is a small quantity which characterizes the deviation of the 

unsteady flow from the pure wedge flow. The quantities u/u^, P/Po 

and p/p , together with their derivatives are assumed to be of order 

unity in the flow region being considered. In this thesis we shall 

limit ourselves to finding only the terms of the first degree in the 

small parameter e. 

The non-dimensionalized independent variables x,y and t are 

introduced as follows 

T = # , y = ? . t = ^ , (3) 

I L I 

where & is some characteristic length for which the chord length of the 

wedge is taken throughout the thesis. 

Putting (2) and (3) into (l) and on dropping quardratic and higher 

order terms in e, we obtain the following system of linear equations for 

the determination of the perturbation flow quantities u,v,p and p: 

w 8 



('t) 

M + m + fo, ^ 0 
at ax ax ay 

^ = _ _ l _ a E 
at ax P o % 2 * 

az + ̂  i_aB 
at <# Po% ay 

m + aa = .%( a* + ae ) 
at ax at ax ^ 

where = (yp^p^)^ 18 (h6 speed cf eocnd in the pure wedge flow. 

Making a tranaformation 

§ = X + t 

% = X - t (5) 

C = 2y 

we obtain, 

as u_ L 21 ac an' ac = 0 

a& = _ ,,i I,111 lY aE + as \ 
as 2Po*o 

(6) 
az = _ _ i _ a E 
as Po*o as 

as = a* a& 
as *o as . 

Differentiating the last equation with respect to ^ of (6) and then auooeeaively 

making use of the first, the second and the third equations of (6), we 

obtain 



2 
11 2 2 2 2 
JO afs = _ , ^ r ^ + _a_!L ) + 
T s Po o L z i as&n aeac 

% a§ 

4 

2 2 2 2 - 2 
( 2_E + _6_B- ) + f & P, + &ZE \ + aZE 
/ ;%2 asan ' a^am 37,2 U , 
^ 2 - ^ 1 ° i ' ' 

where = u /a is the Mach number behind the bow shock in the pure 
0 0 0 

wedge flow. Returning from variables g,T) end g to x,y and t, we have 

( M 2 - i ) 2 L B + 2 M 2 . 2 L E + M 2 : ^ % - Z L B = o ( 7 ) 
o ^ 2 o *St o ^.2 .yZ 

which includes only one unknown function p. 

The required flow field can now be found by first solving the wave 

equation (?) for p, then the second equation of (4) for u, the third for 

V and the fourth for p. 

Equation (7), the key equation la the problem, should be recognized 

to be the same equation as that satisfied by the perturbation velocity 

potential in subsonic and moderate supersonic flows past slender bodies. 

In those cases the perturbation pressure is a linear function of the first 

3 
derivatives of the perturbation velocity potential . 

For steady flow we have = 0, and equations (4) and (7) reduce 

16 2 
to those obtained by Chu and by Chemyi . 
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3 THE BOONaUg (XMPrnONS 

We shall now derive and linearize the required boundary conditions 

for determining the flow field. Denote by 8 and p , regpeotively 

the flow deflection angle and the shock wave angle in the pure wedge 

flow (Fig.l), and for brevity, let (p = g-Q, If in the reference steady 

flow, the wedge ia at zero Incidence, Q is equal to the semi-vertex 

angle $ of the wedge otherwise it is equal to the sum (for the lower 

surface) or the difference (for the upper surface) of the semivertex 

angle and the angle of attack #. Let the wedge surface he given by 

F(x,y,t) = e8(x,t) - y = 0 (8) 

with 6(x,t) known. 6 represents the disturbance at the body surface in 

most general cases. Such a disturbance may be due to any motion — 

periodic or aperiodic —- of a rigid wedge, or due to a steady or unsteady 

deformation of a wedge-like body, or due to a changing of body shape or 

of incidence. The bow shock may be described by 

G(x,y,t) = e fgCz/t) + X t&op - y -= 0 (9) 

where fg(x,t) is unknown and to be determined as part of the solution. 

The two functions 6 and f^ together with their derivatives are assumed 

to be of order unity. 

The boundary condition at the body surface, written in terms of 

x,y and t, is simpHy 

M + 3.9F = 0 

where 
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and V is the velocity vector of the gas, v = lu + where are the 

unit vectors in x,y direction, respectively. After linearization, this 

boundary condition becomes 

at y = 0, V = + as ( 0) 
at ax 

The boundais' conditions at the bow shock, written in terms of x,y 

1 
and t, are as follows 

r * .-(a) 
Oontinulty oondition: p(u + v.' vG) | = 0 (ll) 

V o at J(_) 

Momentum condition in the tangential direction: 

' V ' ? ](G) = 0 (12) 

(m) 

where ? is any vector in the tangential direction of the shock. 

Momentum oondition in the normal direction: 

rp(n ^ + V ' + (9G)2p (s) _ 0 (13) 
Lr o at J(m) 

Energy condition: 

i (u sf + 3 . 7G)2 + (9G)^ = 0 (14) 
L o at 

where h denotes the specific enthalpy of the gas. 

In (ll) to (14) the subscript s refers to the flow quantities just 

behind the bow shock, while the subscript * refers to the flow quantities 

in the free stream. Bracket means the jump of the quantity inside the 

bracket from « to s. 

Setting e = 0 in (ll) to (l4), we obtain the following relations, 

which the flow quantities in the pure wedge flow should satisfied, and 

which are useful in deriving the boundary conditions for unsteady flow, 

— 1 2 — 



6 u. gin (p = a n sin 8 
"00 * "o3 CO 

U COS m = U COS B 
O T a) 

Po * = p» •" o j ! 

k. * i = h. *'i vl 

where Ug, is the speed of the gas in. the free stream. 

5%am(ll) velbnm 

r 9f c Sf c -] 
(pQ + *p)[ ^ + ( % + eu)(taa cp + — ) - *? J 

r Sff &fc -| 
= P«|_ Fb + %) °08 8 (tan cp + e + U* sin e 

(1$) 

or, 

"0% * '[ P % •*'" " * '0'% ^ 1 tsn 9 + % - v) ] 

= P""" " ^ f > o ^ e ̂  

Upon using the first and the aeoond relations of (l5) we obtain, 

at y = X tancp, 

. afg 3f. 
— tancp - ̂  + r tan q) - A - B r-r (I6) 
% % Po 

where 

A = 1 - %— , B = A co8%. (17) 
Po 

As the tangential vector ? J. ̂  

afg 
T = 1 + ̂ (tan tp + G g ^ ) , 

and equation (12) becomes 

af. 
(u^ + gu - {(g cos e) + (ev + IL sin e) (tan (p + e = 0 
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which can be further simplified by using the first two relations of (l5) 

to obtain, 

at y = % tan. u. > tan m = -0 ̂  (l8) u. ' V , 
^ ^ tan cp 
o o ax 

where 

0 = (-^ - 1) sin ̂  008 
ĉo 

2 
The linearized expression for 9G is 

. 2 . 2 
vG* = (g ̂ ^4 + tan (p)̂  + = seô cp + e 2tan (p ̂ 5 , 

(19) 

and hence equation (l3) becomes 

(Po + «p)[ 4*0 ̂  + (%% * 64(tan. (p + e - ev +(PQ+ «p)(8eofy+e2taapg^S) 

- P. 
5 . 

3f. 
eu rr* + U oos 8 (tan m + g + 0^8*^ G 
O 0u 00 ™ 

Q J - f , 2 ^5\ 
(tan % + G ̂ 3̂ )̂ + U_8ln 8 + P^fsec ̂  + e 2tan qi 

or 

. o p o r 2 2 2 
p^tr tan cp + see % + g pu^ tan cp + p sec cp + 2p^ tan cp ̂  

&ff 3f; 
+ 2p^u^ tan (p(û  ̂  ^ + * ta* ? " ?), 

p of Binfp 

cos 
-T—r + p sec cp + e 

6 00 ^ 

2p_U_ + n COB 8 + 2p, tan cp ̂  

cp 
cos qr 6 at w ax 

Using the first three relations of (l5) we obtain. 

at y =Xtan 

tan <p - ̂  ^ tan , • = 0 

Finally, from (14) we get 

ax 

(20) 
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ir sf c -| 
^ at + eu) (tan cp + g ̂  " ev _ 

JZ 

/ 2 3^5, 1 * «P/Po 
* \(seo , + e Ztan tp ̂ ) J T - ^ 

-1 p 3^c 

" ^ i r " « E r ) - ev 
af« 

+ h (aeô cp + e Ztaa cp . 
00 T ' jX 

Expanding and. linearising the last equation and then simplifying the 

resulting equation with the fourth and the second relations of (l5), we 

obtain, after some algebraic manipulations, 

at y X tan (p, 

u_ 
uo 

tan (p — —2-] P_ "Y 

b ~ (Y - 1)M^ Bin ? ooscp Po (Y - e m cp cos cp 

pQ^m 0 

P.% 

2(h^ - h ) _, af 

u 

I C i 
J ax . 

Eliminating v from the last equation and equation (l8) gives, 

J P at y = X tan cp, -
u (y - 1)M^ Po (Y - DM, b P o % % 

af. 
(21) 

Equation^ (l6), (l8), (20) and (2l) are the required boundary conditions 

at the bow shock lAich may be solved to give 

at y = X tan cp: 

I 

^ g A(1 + yW) sin cp cos cp - C(Y - l)W j-
at 

afg _ 
+ B(l + yW) sin cp cos cp + 0(W - yWcos^cp sin̂ cp) j- = R 

Po*o% 

H cot cp rr . af. 
^ ^ "1̂  A(2 + (y - l)W) sin cp cos cp - C('Y - l)W j — ^ 

at 

{ B(2 + 2 1 ^^9 
(y "" 1)W) sin cp cos cp — C(Y — l)W cos cp j- = L 

f; = f H [{ 
c(v - i)w 1 ^ 5 
sin cp cos cp J at 

B(y + l)w - G(y - l)W cot cp j- J 

(22) 
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iL. = -1 
"o 1 " 

I A( l + yW) sitl cp cos cp - C(y - l)w j- ̂  5 

+ 4 B(l + yW) sin cp cos ̂  + C(l - yW) cos cp 2 1 H i 
ax 

where 

H = M tan W = (23) 
& o T? o T 

If the motion of the gas is periodic or even steady, the above five 

boundary conditions (10) and (22) are sufficient for the determination of 

the five unknown functions u,v,p,p and f^. For oases of aperiodic motions, 

we need initial conditions as well. 

This thesis is mainly concerned with periodic motions of a wedge in 

Invlscid and in viscous flows, and also with steady flow. But a method 

of applying the approximate general solution given in Chapter II of the 

l8 

thesis to aperiodic motions of a wedge has also been developed Which, to 

some extent, may be useful in determining the effect of ablation of a wedge-

like body on its stability derivatives. 
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OHAPTSa II 

APPROXIMAIE THEORY 



1 

In this Chapter, the perturbation equations derived in Chapter I are 

first approximated and then solved to obtain a general solution, ;diioh 

oan be applied to both periodic and aperiodic motions of a rigid or a 

flexible wedge with or without angle of attack, no matter whether the 

wedge is thick or thin. The application of this general solution to a 

pitching wedge gives an exact formula for the stiffness derivative for 

the most general cases and an approximate formula for the damping derivative. 

A new set of reflected waves due to the motion of the bow shock is found 

to be important for relatively thicker wedges and to be a factor which 

tends to strongly destabilize the motion of the body. Also it becomes 

dominant for very thick wedges. 

Mcintosh's result^^ and Appleton's result(see also Ref,22) are 

reproduced here as special cases when the flow is hypersonic and the 

wedge is slender. Also for supersonic flow, the approximate theory 

19 

agrees very well with Van Dyke's theory , and with the experimental 

results by Pugh and Wbodgate^. 

The validity of the approximation is discussed in this Chapter, and 

will be demonstrated by a comparison with the exact theory in Chapter III. 

In the light of the exact theory it is seen that the approximate theory 

is valid for flow Mach numbers behind the bow shock as low as 2.0. 

For stability analysis of an oscillating wedge, this approximate 

theory will be shown to be a special case in the exact theory. However, 

the former is exact with respect to the frequency parameter and oan be 

applied to oases of aperiodic motions, whilst the exact theory can only 

be applied to periodic motions. Also the physical meanings of wave 

interaction and reflection are easier to discuss using the approximate 

theory. 
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= 0 (3) 
0 _ ^ 

2 GBMBUL SWLmnCM 

As stated in Chapter I, the equation to the problem of findiiig 

the flow field is 

(Mo - 1' ̂  " "o ^ ^ ° (1) 

n 

Approximation is made here that the coefficient — 1 of the first term 

of equation (l) is to be replaoed by thus 

* ax* at̂ ^ ar^ 

which, after transforming to variables ^ and g by the transformation 

(1.5), becomes 

35 ac' 

This approximation is obviously valid for large values of e.g. 

for the case of hypersonic flow past a wedge which is not too thick. 

In the hypersonic small—disturbance theory both the equations of 

motion and the boundary conditions are approximate and the error of the 

theory is of order of Whereas in the present theory the boundary 

conditions are exact (see Chapter l) and the only approximation 

introduced is to neglect, in the coefficient of one term in an equation, 

compared with unity. Thus the error in the present theory is of order 

of For hypersonic flow past a very thin body p and are of the 

order of magnitude, and the present theory should feduce to Mcintosh's 

theoiy lAick le baaed on the hypersonic small-disturbance theory, and 

this win be shown in Section 3.2.6. However, for relatively thick wedges 

and are of different orders of magnitude, e.g. for the free stream 
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Maoh number M = 17^ 6 = 20°^ we have = 4.5$* azid for Mm = 17, 

8 = 30°^ we have = 45^, = 11.7^. Therefore the present theoiy can 

g i v e b e t t e r r e s u l t s than e i t h e r M c l n t o c h ' s o r A p p l e t o n ' s t h e o r i e s and can 

be applied to relatively thick wedges for which the other two theories 

cannot apply. Besides, the present theory is even a very good approximate 

theory for both hypersonic and supersonic flows providing M is larger 

than 2.0, as may be deduced by comparison with the exact theory in Chapter 

III and with experimental results (see Section 3.2.4). 

From the derivation of equation (1.7), it is clear that this 

approximation is equivalent to dropping the term ̂  ^ in the continuity 

equation 

% SX 

a! + aa + + az) = .0 U ) 

which now becomes 

at ax Uo ax ay 

af + fo az = 0 (5) 
35 "b SG 

Using the fourth equation of (I . 6 ) , we have 

and the whole system of approximate equations reads 

a(p/p.%%) ^ = 0 

0 as ac 

a": = _ — ] — (22 + 32) 
as ZpgU^ ^as am' 

az = 
as po*o ac 

(7) 

as = 3% a 2 2!^ 
b as 
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The general solution to equation (3) is 

V p o o = ? MnC* - fp(S + MnG' (8) 

where and are arbitrary functions-of two IndepeddaAt variaSle*, 

From the third equation of (7), we obtain 

V = Tl) + fgfg + TO + f^tC, Tl) (9) 

with another arbitrary function f^. Putting (8) and (9) into the first 

equation of (7), we have 

or 

• 6 = 

(10) 

(11) 

As f^ is a function of ^ only, it can be absorbad into f^ and fg by letting 

fl(s - HoG, T|) = f*(5 - %) + if^dl) (12) 

fgCs + MoG, TI) = fg^s + M^G, -q) + (l3) 

then f and f^ are arbitrary functions of two independent variables, and 

we have 

V = f,(5 - Tl) • fjt? + n) 

r/poS = - "oC' - ^2*5 + M^c. n) 

From the fourth and the second equations of (7) we obtain 

aop/po = fi(5 - %oG' TO - fgCs + MoG' + ^3(5, TO 

-2MU = f^(s _ -q) - f2(S + Tj) + f^(G, Tl) 

+ [ ^1(5 " MoG, %) - fats + MoG, ] 4S 

where f^ and f^ are arbitrary functions. 

Written in terms of the independent variables x, y and t, the general 

(14) 

(15) 

(16) 

(17) 
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solution to the approximate perturbation equations (7) can be expressed 

through four arbitrary functions f^ to f^ of two independent variables 

as follows 

V = f (x + t x - t ) + j^(xtt + % - t) (18) 

p/p^a^ = f^(x + t - X - t) _ f^(x + t + 2M^y, x - t) (l9) 

a^p/pQ = f^(x + t - X - t) - fg(x + t + x - t) 

+ f;(y, X - t) 

-2M^u - f^(x + t - X - t) - fg(x + t + 2M^y, x - t) 

" [ aii H - "oS' - ^2(5 - Ti) } <%]; = X * t 
11 = X - t 
G = 2y 

+ f^(y, X - t) 

where the functions f^ and f^, in which one of the two independent 

variables 2y is replaced 1* y, are still arbitrary in form. 

The functions f (x + t - x - t) and fg(x + t + 2M^y, x - t) 

describe the distrubances which propagate along two families of characteristics 

which are the intersections of two characteristic planes (here the time 

variable t is considered as one coordinate) 

X - M y = Const. (22) 

X - t = Const. (23) 

and 

X + M y = Const. (24) 

X - t = Const. (2$) 

This physical interpretation is easily obtained from the fact that the 

values of functions f^ and f^ should remain constant at different moments 

of time. Along the first family of characteristics disturbances propagate 

in the direction towards the bow shock, whereas along the second family 

- -



o f c h a r a c t e r i s t i c s d i s t u r b a n c e s p ropaga te i n t h e d i r e c t i o n away f r o m t h e bow 

shock. These waves — the propagations of disturbances are seen to be the 

Mach waves within the approximation of the present theory. 

It is easily seen from the general solution given above that the orders 

of magnitude of the perturbation quantities are as follows 

^ = o(r' (26) 
o o 

o 

^ (28) 

Therefore the orders of magnitude of the perturbation quantities, at least 

for flows past a wedge-like body, depend mainly upon the Maoh number 

behind the bow shock rather than the free stream Mach nunber Mm. Of course, 

for hypersonic flow past a slender body M is of the same order of 

magnitude as Mm, and we then arrive at the same conclusion regarding the 

orders of magnitude of the perturbation quantities as that in the ordinary 

hypersonic small — disturbance theory. 

The boundary conditions are those derived in Chapter I. 

In principle, the problem of determining an unsteady flow past a 

wedge—like body has been reduced to that of finding five unknown functions 

f to fg of two independent variables to satisfy the five boundary conditions 

and, appropriate initial conditions as well if the motion is an aperiodic 

one. Mathematically, this is equivalent to solving a system of five 

first order linear integro — partial differential — functional equations. 

For most engineering problems, the only unknown flow parameter required 

is the pressure distribution p. It is then important to notice that in order 

to find p, we need find only three unknown functions satisfy 
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(through (18) and (l9)) the boundary conditionsfljO) and the first and the 

second of (1,22). We are therefore only required to solve a system of three 

first order linear partial differential — functional equations. After 

doing this, the other quantities u and p can, if needed, be found from the 

remaining two boundary conditions. 
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3 PaUDDIC MOTBMS W A IQDGE 

3.1 FOHMnATHM OF THE 

order to apply the general solution to any praotloal problem, 

it would be useful to change the forms of the arbitrary functions f^ 

and fg as follows* 

f^(x + t - X - t) = f^(x- M^y, x - t), (29) 

f2(x + t + 2 M ^ ; X - t) = f^(x + M^y, x » t). (30) 

Di the right hand sides of expressions (29) and (30), as the functions 

are still arbitrary and to avoid introducing new symbols for these new 

functions we use the same symbols f^ and f^, keeping in mind that they 

may be different in some way from the original ones. 

* * # # * 
For a harmonic motion of a wedge, the wedge gurfaoe"is given by 

5(x, t) = e^6(x), (3l) 

* These simpler forms of the arbitraiy functions could also be obtained 

3 

directly if the Gallilean transformation was applied instead of the 

transformation (l.5). However, by using Gallilean transformation, 

equations (1.6) would be moi^ complicated. 

** Any periodic motion, according to Fourier's theorem, can be expressed 

as a sum of harmonic motions. As the basic perturbation equations 

(1.4) and boundary conditions (1.10) and (1.22) are linear, the 

solution to a periodic motion is therefore the sum of solutions to 

the harmonic motions. Hence we need only study a harmonic motion of 

a wedge in detail. 

It will be understood that throughout this thesis we consider only 

real parts of all the complex expressions. 
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where, A(x) is the "amplitude" function and is given in every practical 

problem, and 

k u ^ (32) 

where w is the circular frequency. So k is the non-dimensional 

frequency parameter based on the chord length of the body a&d the flow 

speed u behind the bow shock in the reference steady flow which is of 

the same order of magnitude as the free stream velocity Um, no matter 

whether the wedge is thick or slender. For a slender wedge, u^ - Um, 

and the parameter k defined by (32) ia twice that in American, notatloa 

and equals to X, in British notation,. For a thick wedge, u is less 

than Urn, but the parameter k given by (32) retains its physical meaning, 

as can be seen from its definition. 

Because the basic perturbation equations and boundary conditions 

(I.10) and (1.22) are linear, the motion of the gas as observed from a 

fixed position should also be harmonic with the same period as the wedge, 

ikt 

Therefore the perturbation quantities must be equal to a times some 

functions of x, y only, and by taking into account the forms of the 

arbitrary functions f and fg, we may write 

.JB—. 
Po*o 

ik(t - x) 

ik(t - x) 

ik(t - x) = e 

-2M u = e^k(^ " 
o 

F^(x - M^y) + Fg(x+ M^y) j 

F^(x - M^y) - Fg(x + M^y) 

F^(x - M^y) - Fg(x + M^y) + PgCy) 

(33) 

"'fry 

- M^y) - fg(i H- U j ) + SF^(y) 

- «oC' • «oC- 11) ] <% 

Tl~x—t 
G=2y, 

where F^,F^,F^ and F^ are arbitrary functions of one independent variable 
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only. The la at expreggioa of (33) can be further simplified as below. 

Since 

then 
fl(S " _ M^y), 

!fi = 
a-ri 

and hence 

af. 
= J 5 ^ * 5 = - i k e " ^ ' * e ~ ^ K d ( § ) 

= e 

s-q 

-ikT| 
-2ikj (x - M^y) dx + F (x - M^y) 

Similarly, 

F g(x + M^)dx + Fg(x f M ^ ) j. 

Therefore the last expression of (33) becomes 

-M u = 
o F^(x - M^y) - F^(x + M^y) + ?^(y) 

-ik { (z - M^y) - Fg(x + M^y) jdx (34) 

Now the wedge airface may be accordingly expressed as 

6(x, t) = 

with 

6^(x) = e^6(x), 

while the shape of the bow shook is described by 

fg(x, t) = e^(^ ~ ^^Fg(x), 

(35) 

(36) 

(37) 

where t&e function Fg(x)* and the other four functions F^, F^, F^ and 

are to be determined by the boundary conditions. / 

Combining the first equation of (1.22) with the first equation of (33), 

the second of (1,22) with the second of (33), we obtain 
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P^c (1 - H j x ) + F2( (1 + x) = 

F^( (l - H j x ) - Fg( (l + H^)x ) = 

Solving these two equations to obtain and as 

FX (1 - H j x ) = :^(N + L)e""^(^ ~ 
'1 2 

u 
^2^ (1 V * ) = - ^ N - L)e' 

-ik(t - .{) 
(38) 

then 

r,(x) = N(^i-f^, t) * L{:j-f^, t) - 1 - H 

(39) 

FjCx) 
"or 

" fCrTTT' 
a a 

—ik(t — 
1 "fH 

Putting (39) into (1.10) we obtain 

f(rrTr. t) + " 
-lk(t - : ^ ) 

(40) 

+ H * ^^1 + H ' 
'ik(t -

e 1 + H 
-) 
a 2A]}(x) 

a a 

The fucctions N and L can be expressed^ through the first two equations 

of (1.22), in terms of Fg(x) 

N(x, t) = [ N2Pg(x) + iM^Fg(x) 

L(x, t) = + ikL^F^(x) 

0 f 

ik(t - x) 
(41) 

where the non-dimensional constants and can be obtained by-

combining (1.17), (1.19) and the first two equations of (1.22) as follows 

^2 = 
(1 - TC) COS'S) 

1 - W 

P- 2 

1 + — 1) tan^cp - " 1 ) 

2H (1 -"^oosty 

(^) 

A 
1 - W 

ly = tan (p 
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Subgtituting expressions (41) into equation (^) gives 

aFjC-

where 

x 
H -) - * ® 5 ( T T T r ) = 2A^ (x) , 

Letting 

we finally obtain 

aFg(x) + bFg(m^x) 

or 

where 

¥^(mK) 

" = h * h ' 

b = 

0 = + ly, 

a = - Li, 

1 - H 

1 + 

+ ik fg(x) + dFg(m^) = (1 - H j x ), 

+ik 

\ = - 2 ' 

<g'5(°) , 

dcr I ' a = 

c 
^ - I' 

etc., and 

(43) 

(4t) 

(45) 

^Fg(x) + ̂ Fg(B^x) j = ^^( (1 - H j x ), (46) 

(47) 

Equation (46)^ a functional-differential equation for F^(x), is our 

basic equation for hypersonic and supersonic flows past an oscillating 

wedge. A special case of equation (46) when the second group of terms on 

its left hand side disappears was obtained ly Chernyi^ and Chiî ^ for steady 
•1 / 

flows, and by Mcintosh for hypersonic flow past a slender wedge. After 

solving Fg(x) from this equation, we oan obtain the two functions M and I, 

from (41), and then F^(x) and Fg(x) from (39), and finally p(x, y, t) and 

v(x, y, t) from the first two equations of (33). The final expression for 

the perturbation pressure p(x, y, t) is 
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X - MpP 
+ ik( oFg(l _ H ) - dPgCi + g ) ) 

(48) 

and the perturbation pressure at the wedge surface is given by 

p(x, t), = G^kCt - ^)r I 

M L ^ s ' l - " bFgCi * J i j 

* iki - ® 5 { : p f ^ ) }] & & 

(49) 

3.2 PITCHING MOTION OF A WEBIE 

Figure 2 describes a general pitching motion of a wedge about its 

pivot 0 , t being the semi-vertex angle of the wedge, a the angle of attack, 

xlcfe 

ee the angular displacement of the wedge, and g the amplitude of this 

angular displaoement. The function A (x) oan be obtained as follows. 

The coordinates x, y of the new position P of a point P on the wedge 

surface ater an angular displacement g e ^ have the relation 

y = O^pQee*^* oo8<< xP^O^ 

ilrt 
y = ge (x - h cos *) 

= ee*^^(x - O^P^ee^^^ slndC OPgO - h cos *) 
1 o' 

= ee^^^(x - h cos ^) , 

in which the quadratic term of g has been neglected. From this we get 

5(x, t) = e ^ ( x - h cos *) 

and 

(50) A^(x) = e^^*{x - h cos 

For the upper surface, Q = * - a and 8(x, t) = e (x - h cos *), 

for the lower surface, Q = * + # and 5(x, t) = e*^*(x - h cos *). 

For determining the flow field between the bow shock and the surface 
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of a wedge with finite length, it is onj^ necessary to prescribe the 

disturbance over the surface, because in supersonic flow, the downstream 

disturbance is not felt upstream, 

3.2.1. GENERAL FORMULAE FOR TEE AERODYNAMIC DERIVATIVES 

For any periodic motion of a wedge, once the function A^(x) is given, 

the basic equation (45) can be solved by the method of power series. 

For pitching motion of a wedge, the function 6^(x) is given by equation 

(50), and hence we have 

+ ikx - ikh cos , 

and 

A^( (1 - Hg)x ) = e*^^ 1 + lk(l - Hg)x - ikh cos ̂  

Let 

then 

ik(l - H )% r (51) 
= ^ (n + 1 _ ith cos ̂ ) ̂ ^ 1 . 

n ^ 

CO 

FjCx) = V , 

n O 

n=0 n=0 

F 5 ( x W = £(n + . 

n=0 

Putting expressions (5l) and ($2) into equation (45), we obtain 

(52) 

CO 

r 

1 
(n + l)'b^+^(a + bm^) + ikb^(c + dm^) 

= rik(l - H )x 
= 2 2(n + 1 - ikh cos )̂ ) ̂  

n.=0 

By equating the coefficients of terms of the same power in x on both sides 

of the last equation, we have 
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b (a + b) + ikb^(x + b) = 2(1. - ikh cos , 

ZbgCa + brn̂ ) + lkb^(o + dm^) = 2(2 - ikh co3^)ik(l - H^) ^ 

3b (a + bm) + ikb (c + dnr) = 2(3 - ikh oos 
a^ "a" ?' 2 

(53) 

-1% 
ik(l - H ) 

(a + l)b^^^(a + brn̂ ) + lkb^(o + dm^) = 2(n + 1 - ikh cos *)-! 

aad 80 on. 

Therefore the coefficients b^, b2,...bgy«.. of the power series F^(x) 

can be sucessively expressed in terms of b , aa# integral constant to be 

by the additional condition that 

fg(o, t) = 6(o, t), 

which arises because of the attachment of the bow shock to the wedge vertex. 

Hence b^ = - h cos (54) 

and all of the coefficients b can be sucessively determined, and the 

function F_(x) found. It is evident that b = O(k^) for small k, henoe the 
' \ - 1 

radius of oonvsrgenoe of the power series for FVix) is of order k , which 

is much greater than unity for stability analysis. 

We are mainly interested in the pressure disOributyjon over the wedge 
* * 

surface, then by using equalities (52), we obtain from (49)' 

°' Sc(t - X) = 

*Po*o*o* * * 

00 

^ [ (a + l)bn l(* -

i&ere 
= 1 V " ' (55) 

n=0 

(n + l)l3a+i(a - bm^) + î :b̂ (c - dm^) j . (5%)) 

With formula ($5) in hand, we are in a position to derive formulae 

(1 - H ) 
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"1 

fow asrodynamio derivatives. In doing so, the base flow effects are 

neglected and we give only formulae for the case of zero incidence. 

For zero incidence, 8 = and the perturbation pressure p at 

the lower surface is equal in magnitude and opposite in sign to that 

at the corresponding point of the upper surface 

The general expression for the pitching moment M about a pivot 

(Fig.2) acting on the wedge of unit span is 

|. l/cos $_ _ l/cos * _ _ 
M = I - p^ ) cos * (z - h)dx + 'stan ̂ dx 

l/oos _ l/co88_ _ 2 
(î  - p^ )co8 8 (x cos 8- h)dx: + j (p-_p^)x8in 8dx 

l/oos _ p^ )(x - h cos Q)dx (57) 

Jo 

from whichf the non-dimensional pitching moment coefficient c^ can be 

o b t a i n e d as 

.l/oos 
r. _ M _ f c m S ,,2 (0 - G )(x - h <:ose)'3x, 

^ P»"o, ° ^ % 

idlBM 

Now for the case of zero incidence, 

0̂. U O "t» CO 
n=0 

and hence from (58), 

0 = 2 ^ 
B„ « 2 T- .l/coa e 

rcn 00 
'm ^ 

Upon integration this reduoes to 

_ itt u 2 -ik/oos 8 Z 

X r ' ik I ^ 
^ o rm CO 

= € e 

(58) 

0 = (59) 
p ^ ir 

CD 0 3 CO CO 

n=0 

- dJa.|). (61) 
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where 

S_ = 

n 
nl gik/cosG + nfn - l)(n - 2).,.(a - 4 + l)^ 

B (ik)A j6=o (ik)"co8^ " ^6 

q = _ Ik r 1 + + 
n + 1g La + 1 (a + l)(a + 2)co88 

(a + l)(a + 2)(a + 3)oo8^G 

(63) 

Expressioa (6l) is the most general formula for the two aerodyaamic 

derivatives -n^ aad -mg . The derivative , called here the ia-phase 

component o f p i t c h i n g moment, i s composed of terras p r o p o r t i o n a l to t h e 

steady-state positioa aad higher order even derivatives of the motioa, 

(i.e. the zeroth derivative, the secoad, the fourth etc.). Thus ia 

the first term -o , the stiffaess derivative ia the ordinary sease, is 

% 

frequeacy iadepeadeat aad oaa be calculated from steady flow theory (see 

Section. 4), the other terms are proportioaal to k^, ect. The 

derivative —m^, c a l l e d here the out—of—phase component of p i t c h i n g moment, 

c o n s i s t s of terras p r o p o r t i o n a l t o the odd derivatives of the m o t i o n . 

(i.e. the first derivative, the third, etc.). Thus ia -mg, the first term 

-c , called here the dampiag-ia-pitch derivative*, is frequeacy iadepeadeat, 

whereas the other terms are proportioaal to k^, k^, k etc. The ia-phase 

compoaeat aad the out-of-phase compoaeat of pitchiag momeat are 

proportioaal to k ^ aad respectively, ia American, aotatioa. 

In Figs 4 to 7 are plotted curves for both ia-phase aad out-of phase 

momeat derivatives versus pivot positioa for various values of free stream 

Mach numbers and flow d e f l e c t i o n a n g l e s . G e n e r a l l y both in—phase and 

* Throughout the thesis tae damping derivative so defined ia smaller by a 

factor of u / u than the damping derivative in the ordinary sease, aad 
CO O 

this is due to the defiaitioa of k. 

— 34 -



out-of-phaae moment derivatives increase in absolute value with increasing 

wedge angle 8 for a given value of M . However, under certain conditions, 

negative value of the out-of-phase derivative are obtained, (Fig.13) and 

this will be discussed in detail in Section 3,2,5. 

For prnmll frequency parameters k, of interest for stability analysis, 

we fwn obtain some very useful conclusions by analysing the structure of 

formula (6l). 

It i s evident from equations (53) that is of order k . On the 

other hand, (63) shows that is of order k for any integer (including 

zero) n. It is therefore concluded that the series in (6l) is arranged 

essentially in the oixier of ascending powers in k, and hence for unsteady 

theory of any order (i.e. accurate up to terms proportional to any power 

in k), closed form formulae for the aerodynamic derivatives can be obtained 

by truncat jt>2 the series in (6l). Indeed, in order to be accurate up t o 

terms p ropo r t i ona l to we need only pick up the first (n + 1) terms i n 

(6l) and neglect the terms of higher order than k^ In these first (n + l) 

terms. Closed form formulae for the stability derivatives (the stiffness 

derivative and the damping derivative)will be given later in Section 3,2.3, 

3.2.2 WAVE INTERACTION AND REFLECTION 

A physical interpretation to the results obtained in Section 3.2.1, 

is given by rearranging the expression (55) for the pressure distribution 

over the wedge surface as follows 

CO XI 

P o % % ^ h=o 

= Y -^(n + l)b^+^(a + bug) + ikb^(c + dmj J(^ + g j 

n=o 
m n 

- I "a [(" ' - " V t • b - • a u 
n=0 
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03 ^ 

= - 2 (a +1 - ikh 008^ ) 

n=o_ 

1 ) ^ 1 ' ̂  + ikb_ . d n 
r _ J E — 
1̂ + 

n=o 

°'^K-x) = a ; w o — ^ 
r b 

nS) (l + 

2(n+1-ikh cos^ 

-

ad - bc\ n 1 
J 

= a'(x) * 2b y eos j,) 
1 ^ a + bm* 

(ikm x) 
n 

n=o 
n; 

HI 

ad " be n 

n:% 

CO CO 

a 
a 

= 4 > ) 2 'K'"' (" + 1 -

a=0jg=0 

CO CO 

A T 
- ^ K" * •*> 1 I 

4=0 n=0 

(ika/x)°' CO CO 

= &;(%) - 2 % (n ^ 1 - ikh^cos t) 

j&=1 n=Q 
0 

m X 
- l%(XaC - a) I 

= [ a ' W + 2 ^ ] 

4=1 
m_x 

- lk(XgO + d)[̂  + g ) + Y + Hg) . . (64) 

&=1 

Formula (6A) for the pressure distribution at the wedge surface is 

a convenient form for discussing waves and waves reflections. 

We conclude from formula (64) that there are two sets of waves which 

contribute to the pressure distribution at the wedge surface. The first set 

of waves is due to the disturbance A^(x) at the wedge surf&ce, while the 
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second is due to the motion of the bow shock ). Both sets of 

waves have their secondary as well as primary contributions to the 

pressure distribution at the wedge surface. 

From the definition (47) it is obvious that \ is independent of the 

motion of the the wedge, so its physical significance in unsteady flow is 

exactly the same as that in steady flow which has been discussed in detail 

by Chernyi^. In our case, by putting k = o, and combining equations (38) 

and (4l), we obtained 

Fgf (1 + H j x ) + XgF^( (1 - H j x ) 

N(1 + \ ) - L(1 -

1 
= i N^d - L (1 -Xa)J Fg(x) 

I 

= 0, 

therefore 

From (6$) and noting the second expression of (33) for p, it follows that 

in both steady and unsteady flows if we take as a measure of the flow 

disturbance the corresponding change in pressure, the quantity will 

represent the reflection coefficient of a disturbance from the bow shock. 

This reflection coefficient is the ratio of the amplitude of the 

disturbance reflected from the bow shock (along the characteristic 

X + M^y = const.) to the amplitude of the disturbance incident on the bow 

shock (along the characteristic x - M y = const.) 

The first group of terms in the formula (64) represents the first set 

of waves. It is obvious that with the bbw shock present, at time t the 

pressure acting by the fluid on the wedge surface at a point P with abscissa 

X (Fig.3) depends not only upon the instanteneous inclination angle 
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(represented by ) of the surface at P itself, but also 

upon, the Instantaneous inclination angle at the same moment of time t of 

the surface at the points with abscissas m x, etc. One can easily 

show that the M h term of the first series in (64) corresponds to a 

disturbance at the wedge surface which has struck the point P after 

multiple reflections from the bow shock surface with a reflection coefficient 

X (andf of course, also after (j& - 1) multiple reflections from the wedge 

surface with a reflection coefficient of unity in accordance with the 

present linear wave theory). 

The second group of terms in the formula (64) represents the second 

set of waves. It is easy to see that at time t the pressure acting on 

the wedge surface at the point P (Fig.3) depends also upon the instantaneous 

distrubance of the bow shock (represented by ike^^^ ^ ^ ) ), and 

upon the instantaneous disturbance at the same moment of time t of the bow 

shock at the points with abscissas m x/(l + , m^x/(l + , etc. In a 

similar way one can also show that the ̂ "bhterm in the second series in (64) 

corresponds to a disturbance at the bow shock which has stiruck the point 

P after 2 multiple reflections on the bow shock surface with the same 

reflection coefficient x (and also after ̂  multiple reflections from the 

wedge surface). 

In steady flow, k = 0, the second set of waves disappears. For the 

case of hypersonic flow past a slender wedge, it will be shown in Section 

3.2.6 that the quantities p,and v in the formula (64) are negligible 

compared with the reflection coefficient x ,and hence the second set of 

waves is negligible. Therefore the second set of waves result from the 

motion of a thick wedge. 

Lighthill^^, Ghu^^, Ghemyi^, and Mclntosh^^ among others, studied 
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interactions of disturbances with, a bow shook and obtined equations which 

are a spec ia l case o f equation {Aki) of the present theory when the second 

group of terms in the left hand side of this equation is dropped. 

They obtained one set of waves (the first set) only. This is so 

because the oases they considered are equivalent Either to a steady flow 

Past a thick wedge (in this case, k = O) or to an unsteady hypersonic 

flow past a slender wedge (in this case, p, and v are negligible). 

The motion of the bow shock (in our present case) is due to the 

disturbance at the wedge surface^ so it might be thought that the second 

set of waves has only secondary effects on the pressure d i s t r i b u t i o n , at 

the wedge surface. However^ numerical results (Figs 8 and 9) show that 

it is as important as the first set of waves for hypersonic flow past a 

thick wedge, and it becomes dominant at the critical situation. It is 

due to this set of waves that negative damping appears for hypersonic flow 

flow past a wedge under certain conditions. 

I t i s obvious from equation (64) that for smal l values of the frequency 

parameter k, the second set of waves affects mainly the out-of-phase 

moment derivatives and has little contributuion to the in—phase moment 

derivatives, and particularly, within the first order unsteady theory it 

only affects the damping derivatives and not the stiffness derivatives, 

because the cofficient of the second group of terms in (64) includes a 

factor ik. 

Curves of the reflection coefficient A. versus flow deflection angle 

8 for several values of free stream Mach number are plotted in Fig.10. 

Also plotted there, for comparison, are curves of X obtained in C h a p t e r I I I 

(or from Ref.2) tdiich are exact within the small perturbation theory and 

could be obtained from the first of equations (47), the definition 

of X , if for the quantity in the parameters a and b is substituded 
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(1^ -1 ̂ tancp instead, of M^tancp . It is interesting to notice that the 

only approximation made in the present theory is to replace the coefficient 

(bf - l) of the fourth term in equation (6) by so putting = (M^-1)* 

tancp is, to some extent, a correction to the approximation made. But 

throughout this Chapter, in calculating X , M^tancp is used for 

The two families of curves are seen from Fig.10 to differ only quantitatively 

but not qualitatively. 

As seen from the figure, the reflection coefficient X can be positive 

as well as negative, i.e. in some cases the reflection takes place without 

the disturbance changing sign, while in other cases the sign of the 

.2 

disturbance is changed due to the reflection from the bow shock. Ghernyi 

proved t h a t < 1 . This Is to be expected physically, as it is the ratio 

of the amplitude of the disturbance reflected from the bow shock to the 

amplitude of the disturbance incident on the bow shock. With the -

approximation made in this theory, as proved above, retains the same 

physical meaning, therefore it should be expected physically that the same 

result that {Xg^l<1 will still hold. Mathematical proof of this is given 

in the Appendix A. 

Again, from an examination of the curves in Fig.10, it follows that 

for small values of the free stream Mach number the quantity | is 

small, but it increases with and the flow deflection angle e, and 

becomes appreciable for hypersonic flow with sufficiently large flow 

deflection angles which are smaller than the shock detachment angle 

Therefore, the reflected wave effects of both sets of wave 3 which depend 

mainJy upon the value of x become very important for hypersonic flow past 

a wedge which is not too thin, and can never be neflected. Figs 13 and 14 

show how important these reflected wave effects are. 

It can be seen that the reflection coefficient also increases in 
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absolute value for deoreasing y and finally tends to -1 when y tends to 1, 

i.e. the disturbances lAen reflected from the bow shook change their sign 

but retain their magnitude, (With regard to Newtonian limit, see Seotiog 

3.2.5) 

3.2.3 STABILirY DERIVATIVES 

It has been pointed out in Section 3,2.1 that for unsteady theory of 

any order, closed form formulae for aerodynamic derivatives can be obtained 

from the general formula (6l) by, trucnating its terms. In this soctioa 

we derive the unsteady theory of the first order i.e. accurate up to terms 

proportional to the frequenqr parameter k. To do so, we need the first two 

terms in (6l) only. 

Prom equations (56), (53) and (54), we have 

0 
_ 2(a - b)(l - ikh cosg ) (b? - gd)]̂  

a + b ^ ^ a + b ^ ' 

" " [a + bm^ (1 + Hĝ )(a + b)(a + bmj _ + ) 

idiile from (63), we get 

So = - S n - [ l 

^ • f l l ' 

Putting expressions (67) and (66) Into the general formua (6l) a^d 

2 
neglecting terms of order k or higher, we obtain the closed form formulae 

for stiffness derivative -o and damping derivative -c as follows 
m@ ^ ^ 

" 008%)^ - G^hoos^e + i(2G^ " 

— 4-1 "" 



where 

Ea = (1 + - V ' ~ + d)/(l . Xj, 

r - ^ * \ - a 1 V l i 
"a - 1 - Xjn^ - (1 + H^)(i _ x^)(1 . x^m^) " 2 1 - k* ' 

It will be proved, in Seotion 4 that the formula (68) ig an exact 

formula for stiffness derivative in the most general case, despite the 

approximation made i n Section 2. For several combinations of free 

stream Mach number M from 1.5 up to 30, and for flow deflection angles 

8 from zero up to the corresponding detachment angles, the differences 

between the in-phaae derivative -m^ and the stiffness derivative -c , 
8 

and the out-of-phase derivative -mgand the damping derivative -c^ 

are negligible. For k = 0.01 the difference is within 0,01%, whereas 

for the case k = 0.1 it does not exceed 0.1#, even if k = 1.0, which is 

most unlikely in any p r a c t i c a l situation, i t s maximum value is about 3%, 

Ixi t ab le 1, are shown some t y p i c a l examples. 

As seen from Sections 3 . 2 . 1 and 3 . 2 . 2 , the structure of the general 

formulae ( 6 l ) and (64.) for aerodynamic derivatives i s a double series, 

which may be arranged either (essentially) in the order of ascending powers 

in the frequency parameter k, or in the order of ascending powers in the 

reflection coefficient X . In the former case, each term of the series 

contains all the terras proportional to each power in while in the 

latter case, each term of the series contains a l l the terms proportional 

to each power in k. Now it has been shown in Figs.13 to 16 and Table 1 

that the reflected wave effects are very important, and the terms 

proportional to k^ or higher are negligible. Therefore formulae (68) and 

(69) are the most useful ones for practical calculations, taking into 

account the fact that they are in closed form and the condition that k « 1 

is always satisfied for stability analysis. After all, it is important 
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to know that the first order theory includes all the reflected wave effecte 

(of course* up to order of k), This can be confirmed by rewriting (70) as 
CO 

\= 1 z I ] - (X^=^d)[l X 

4=1 (71) 

a ^ ( x m ) ^ 

=a = [ ^ - Z ^ ^)[ i l T T T T ^ ^ I 
4=1 m 4-1 

4:^ ' 
and noticing that within the unsteady theory of the first order 

t 
6 ̂  (x) = 1 + 2ikx - ikh cos 

Fg(%) = ^ 8 
(72) 

Thus from (64) and (71), we conclude that the quantity takes into account 

all the reflected wave effects of the first set of waves, while I and G 
' a a 

take into account all the reflected wave effects of both the first and the 

second sets of waves* 

3.2.4 SUPERSONIC PLOW, AND HYPERSONIC FLOW PAST THICK WEDGES 

For hypersonic flow past a slender wedge, the local Mach numbeiM 

is very large and the present theory is justified by itself. Besides, 

as shown in Section 2, the present theory can also be applied to cases 

of hypersonic flow past thick wedges (e.g. = 17, 8 = 30°) or of 

relatively high supersonic flow past a slender wedge. 

For supersonic flow. Figs.15 to 17 give coiq)arisan8 for the stability 

derivatives of a wedge between the present theory and the experimental 

results by Pugh and Woodgate^, and also the theory of Van I(ykê ^ which 

is a potential theory including the non-liaear effect of thickness up to 

the second order, and also the exact theory in Chapter III. Good agreements 

are obtained. On the other hand, for the case of hypersonic flow past a 

thick wedge there exist, to the author's knowledge, no experimental results 
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or other theories for comparison with the present theory. But it is 

expected that for a given value of the present theory should work for 

hypersonic flow past thick wedges as well as it does for supersonic flow. 

This is confirmed by the exact theory in Chapter n i lAich shows that the 

present approximate theory gives excellent results for M > 2.0. However, 

there is still room for ijnprovement when M is less than 2,0. 

3 . 2 . 5 GENEW, GRirmiCN FOR STiABILlTY 

One of the several important results obtained in this theory is the 

general criterion for neutral damping. 

It is well-known that for supersonic flow, under certain circumstances 

negative damping is obtained, Neutz%l damping boundaries can be obtained 

from theories in Ref.3, 19, 11 and 12. 

A general criterion for neutral damping of a wedge in hypersonic or 

supersonic flows can be obtained from formula (69). Thus we have, by 

setting -c equal zero, 

I (h coa^e)^ - G^(h cos^e) + i ( 2 G - I ) = 0 , (73) 
cL a & & 

2 
which is a quadratic equation for h cos g. The discriminant of (73) is 

A* = - y / 3 . (74) 

If A < o, the damping derivative is always positive for all values of 

h, i.e. the wedge is stablized by the gas flow as it oscillates about all 

* 

pivot positions. If A > 0, the dancing derivative is positive for some 

values of h and negative for other values of h, i.e. the wedge is stablized 

by the gas flow when it oscillates about some pivot positions, and 

destablized for others. Setting A equal zero we obtain, either 

21^ = 3G^, (75) 

or 

21^ = (76) 
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For a f i z e d v a l u e o f M , when 9 i s increased, e q u a t i o n (75) i s f i r s t 

s a t i s f i e d and hence i t i s t h e c o n d i t i o n wanted. 

I f t h e v a l u e s o f M and 0 a re such t h a t c o n d i t i o n (75) i s s a t i s f i e d . 

t h e damping d e r i v a t i v e f i r s t becomes zero a t 

G 
a 
21 

? G 
h COS 8 = 1;=-, 

a. 

from which the critical pivot position h , at which the damping derivative 

first becomes zero, is given by 

Thus the critical pivot position runs from one-third of tho chord length 

for a very thin wedge to about two-thirds of the chord length for hypersonic 

flow past a very thick wedge. This conclusion agrees very well with the 

figures given in Ref.3, 4 and 19, and is proved in Chapter III to be exact 

disregarding the approximation made in this Chapter. 

The quantities I^ and defined in (70) are explicit functions of 

the free stream Mach number M and the bow shock angle g la the reference 

steady flow\ Therefore equation (75) gives a relation between and g, 

and is solved for 6 with given by the method of iteration. The result 

Is plotted in Fig.18 as a curve of.M versus g which is a locus of the 

highest points of all the neutral boundaries (i.e., curves of vs h 

for constant values of 9). It is shown by the exact theory in Chapter III 

that for a given Mach number 14 the critical angle Q predicted ty the 

approximate theory is about 2° larger then its exact value. 

The curves of Fig. 18 have a number of interesting features. Firstly, 

from an examination of them it follows that for a given value of there 

is always a critical v-lue 8 of the flow deflection angle at which the 

dmaping derivative first falls down to zero for the pivot position at 
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^or " 3 * If 8 < 9^* the body is stablized by the flow passing 

it, if 0 > 8 ^ the wedge is stronly destablized by the flow passing it 

(Figs. 19, 11, 12) for pivot position within a zone which is determind 

by the difference 8 - 8 ̂  and the free stream IWach number ]M̂ * Usually 

for hypersonic flow when 9 - 8 equals 1 degree or so this zone of 

destablizabion of pivot position covers nearly the whole chord of the 

wedge (Pig.19). 

For a given flow deflection angle 8, there is always a critical value 

of free stream]Maoh number M , at which the damning derivative first 

falls to zero for the pivot position at h = ^ + ̂ tan^8. If 

the wedge is stablized by the gas passing it, if wedge is 

strongly destablized by the gas flow passing it for the pivot position 

within a zone which is determined by the angle 9 and the difference 

M — Thus increasing the free stream Mach number increases the 

stability of the body, other factors being constant, and vice versa. 

It is important to notice that the critical value of the flow 

deflection angle 8 for a fixed value of is a few degrees less than 

the corresponding detachment angle for the same value of Therefore, 

the wedge is strongly destablized by the flow passing it before shook 

detachment occurs. 

It is also noticed that for hypersonic flow, 8 is about 41° or 

so, hence the critical pivot position h is about 0.6, near the centre of 

gravity of a free wedge with uniform mass distributuion. The critical 

value M _ of thelMach number behind the shook is about 1.$$ or so, thus 
ocr 

the flow behind the bow shock is still a purely supersonic flow. In 

contrast to this, for supersonic flow, 8 ̂  is very small and h ^ is about 

one-third, and for most oases for zero damping to be obtained at a pivot 

position h = 2/3, the free stream Mach number must be as low as about 1.2^* 
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and the flow over the wedge aurface is therefore not a purely supersonic 

one. 

As seen from Figs.8 and 9, the effect of the second set of waves is 

to reduce the derivative, and near the critical situation it 

becomes dominant. It is due to this effect that the damping derivative 

becomes zero and negative. 

Decreasing y increases the values qf both 6 ^ ^ and Q but the main 

picture remains about the same that, for a fixed value of the wedge 

will be stronly destablized by the flow before e reaches 

In the double limit - 4 * andy 1, the wedge is always stablized 

by the flow passing it, and therefore the pressent theory in its limiting 

case, agrees qualitatively with the Newtonioan theory. 

3.2,6 BYPERSONIC SLENDER WEDGE THEORY 

For hypersonic flow past a slender wedge, the shook angle g, the flow 

deflection angle 8 in the reference steady flow, and their difference^ 

are all pmAll so that when their quadratic and higher terms are neglected, 

we obtain, 

slnq) = cos g = 1, etc., 

hence, 

h2 = ^ " 1)%^ , (78) 
* ° gyK - (y - 1) 

where K $ Is the hypersonic similarity parameter based on the shock 

angle p In the reference steady flow. 

Furthermore, we have, 

= 2 + Cy - ^ 

(y + (79) 

M = (V +.1) 
o e{[ 2 + (y - 1)5% j^2 - ( - 1) 

—4-7 "* 



and therefore, from (42), 

N, = 2 ( s i i 4 , L, = ^ 
^ ' iy * DK^' 2 " V - 1' (go) 

= 0, = 0, 

(2H - 1) - 1 
^ = p , 

+ 1) + 1 

p = 0, (81) 

V — 0; 

Therefore the seoond set of waves due to the motion of the bow shook 

disappears and we are left with, for the pressure distribution over the 

wedge surfacef 

CD 

P'*' - x) = I 

from which, the in-phase component and the out-of-phase conqponent 

of the pitching moment derivative are obtained as follows 

^ - (y - 1) r #1 (1 " " Woo^(m^ - l)-h^ 

- e = W ^ 

(m^ + 1 - 2h)8in k (m^ - l) (m^ + l)(l - cos k (i/ - l) ) 
* Ull-l-llîl I I III' I' ' r 'IT — — — — — ^ L — — 

k(m^ -1)^ - 1)^ 
EL ^ 

. = ^ 2YK^ - (v - 1) f rk(^ - h + h^) + zY (1 W ( m h)8ij:k(m^ 1) 

^ k L 2 + (_ . 1)%^ J L A ^ (m: - 1) 

(83) 

- m 
2 + (Y - 1)K ^ 

2h + (m^ +1 - 2h)oo8 k(m^ - 1) (m^ + l)8in k(m^ -

^ k(mf . 1)^ k^(mf . 1)3 
a " a 

Formula (82) and the special case of formulae (83) when h = 0 are, 

apart from different aymbols used. Identical to those obtained in Ref.l4» 

Thus we see, Mcintosh's result is a special case of the present general 

theory lAen the flow is hypersonic and the wedge is slender. However, in 
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Ref.14* the formulae for stability derivatives were given only in the form 

(83) of an infinite series in the order of ascending powers in x , but not 

in the form equivalent to formula (6l), which is arranged essentially in the 

order of ascending powers in k, and which has been shown to be the most 

conwiient form for practical calculations. 

From (68) and (69), we obtain formulae for the stiffness derivative and 

the damping derivative as follows 

.2 
2^ "(l - 2h), 

^ + 1 

"°m^ -

2 
(# - WQ(K, y) - ^hd - 2h) 

+ 1 

(84) 

where 

Q(K, Y) = 2(Y + 1)K^ + 2(2Y- - iY ' ll (8$) 

(K^ + 1)[ 2(2Y - 1)K^ + (y + $)K^ - (v - 1) ] 

Formulae (84) are, apart from different symbols used, identical to 

those first obtained in Ref,13, and corrected in Ref,22. 

In Figs 4 to 7, are plotted results of the hypersonic slender wedge 

theory compared with that of the general theory. An examination of these 

curves shows that the hypersonic slender wedge theory under-estimates the 

effect of thickness, as is to be expected* The range of applicability of 

the hypersonic slender wedge theory depends on the percentage of error 

allowed. For the stiffhess derivatives at h = 1, its error is 3^ for 

= 17, 0 = and 24^ for % = 10, 6 = 19°19% Whereas for the damping 

derivatives at h = 1, its error is for =17,8 = 9°9 , and 28$:, for 

= 10, 6 = 19^19 . 

However, the hypersonic slender wedge theory as given by formulae (83) 

or that in Ref.14 is not convenient for practical calculations, because the 

reflected wave effects are important for hypersonic flow, and closed form 
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formulae are not possible to obtain. On. the other hand, (68) and (69) 

are the most general formulae in closed form which are more accurate and 

singile for practical calculations. Thus it is a disadvantage using 

formulae (83) instead of (68) and (69) even for hypersonic flow past a 

slender wedge. Formulae (&4) eure only slightly simpler than their 

general forms (68) and (69). Therefore, it is sensible to use formulae 

(68) and (69) for practical calculations as t h ^ give more accurate 

results than those of either formula (83) or (84). 

3.3 PimGING MOTION OF A WEDGE 

For plunging motions of a wedge, we have 

<<25. 
bx at 

which in^lies that 

and hence 

A^(z) = e ^ . 

= [ lk(l -

(1 - ) = Ik 2 (86) 

Therefore to obtain formulae for aerodynamic derivatives of a wedge 

in plunging motion, we need only replace the right hand side of equation 

(45) ly (86) instead of (51), and thus we obtain for determining the 

coefficients b^ in the power series of Fg(x) the following equations 

b^(a + b) + ikb^(c + d) = 21k, 

2b2(a + ba^) + lkb^(o + dm^) = ik(l - Ĥ )̂ j , 

(87) 

2 j ik(l - H ) 1^ 
3bg(a + bm^) + ikb2(o + dm̂ )̂ = 2jk^ , 

(n + l)b_.^(a + bm^) + ikb^(c + dnf) 
2ik ik(l - a^) 

n+1^ a^ n^ a^ nl 
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and 8o on. Also we have the additional condition 

= 1, (88) 

using the same reasoning as that for a wedge in pitching motion. 

The other formulae (55), ($6), (6l), (63) and (64) are all unchanged in 

form. Since in both series of A (x) and Pg(x), the first term is proportional 

to ik, no steady-state part contributes to the in-phase conqoonent, and the 

second set of waves affects the in-phase component more strongly than the 

out-of-phase coo^nent for not too large values of k. 
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A sm&mY ]%ows 

For steady hypersonic and supersonic flows past a wedge-like body, the 

flow is also considered as a small, perturbation to some reference steady 

flow past a wedge. 

This case has been studied in detail in Refs.l6 and 2. No approxijnatlon 

Is necessary for steady flows, thus the results are exact within the linear 

perturbation theory. From our scheme, by setting all derivatives with 

respect to time t in (1.7} equal zero, we obtain, instead of equation(1 ), 

(M^ . 1) ̂  ^ = 0. (89) 

The other perturbation equations may also b€ simplified. 

solving these perturbation equations to satisfy the boundary 

conditions (1.10) and (1.22) with all the derivatives ^36 equal to zero, 

we can obtain the pressure distribution etc. This has been done by Chu^^ 

2 

and Chemyi . Their result for pressure distribution over the body surface, 

written in the present notations, is as follows. 

p(x, ,o) = 1 
2 

o % '"o jt=1 

where 4|(x) is now equal to A (x), the slope of the body surface, m̂ ^ and 

are calculated, respectively, from formulae (44) and (47) with H = (M^ " 1)̂ taacp 

Instead of M tan (p. 
o 

The stiffness derivative -o « , by definition, can be obtained from 
mo ' 

steady flow theory. For a wedge, it can easily be obtained by completing 

the integral ($8) with ^(x) = in formula (90) . The result is 
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where 

E = 
"I + X 

-1 + X 
a 

a H = ( ^ - 1 ) ^ tan 9 

~ 2(M^ - 1)"̂  tan (p 

(92) 

1) 

_ ̂  " 1) ^ ^ 9 - " "*) ] 

Thus the stiffness derivative —o of a wedge calculated by the exact 

steady flow theory, is 

-c 
'me 

8 tan (o/Pqn /%\2 

ooe^G "oe 00 

1 ~ ^ 2 - 1) - h 008^^) 

1 ~ 1) tanZ? - yW(%; _ ,) j 

(93) 

Formula (93) ahould be recognized to be identical to formula (68) in 

which the quantity is calculated using tan (p. Summing up, we 

have derived an exact formula (93) for the stiffness derivative of a wedge 

which can be applied in the most general cases, i.e. for a thick wedge or 

a slender wedge in supersonic flow as well as in hypGraonic flow, and we 

have also proved that in the most general cases the present general theory 

does give an exact formula for the stiffhess derivative of a wedge, 

disregarding the approximation that has been introduced in deriving it* 

The reason for this is that for the special case of a wedge with mmAn and 

steady change in its incidence the perturbation quantities are all constants 

and their second derivatives with regard to % vanish* therefore the approximatioa 

that the coefficient - 1 of the term $ ^ p / i n equation(l7) be replaced 

by does not affect the solution of the problem which is then completely 

determined by the exact boundary conditions. 
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CHAPTER III 

EXACT THEORY ^ 



1 INTRODUCTION 

In this Chapter we restrict ourselves to the problem of unsteady 

hypersonic and supersonic flows past an oscillating wedge. The perturbation 

equations are solved by expanding the unknown functions as power series of 

ik, where k is the frequency parameter defined in (11.32). Exact formulae 

for the stability derivatives of a wedge in inviscid hypersonic and supersonic 

flows are thus obtained in closed form which can be applied to wedges of aqy 

thickness, providing the bow shock is attached to the wedge. Also obtained 

is an exact criterion for stability. This exact theory will be shown to 

include both the approximate theory developed in the last Chapter and the 

theory of Carrier & Tan. Dyke (for supersonic flow) as special oases. Comparisions ' 

with experimental results for supersonic flow are also given. 
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2 IGBMOD OF EGLMTimN 

Because the perturbation equations (1.4) and boundary conditions (I.IO) 

and (1.22) are linear for a harmonic motion of the wedge given by 8(x, t) = 

e^\(x), the motion of the gas, as observed from a fixed position, must 

also be harmonic with the same period as the wedge. Therefore the perturbation 

quantities may be expressed as 

u = u e^^^(x, y) , 

V = u^e^V(x, y) , 

P = y) * (T) 

p = ^ ^ e ^ a ( x , y) , 
o 

fg = e^^Q(x) , 

where U, 7, P, R, Q are time-independent unknown functions to be determined 

from the perturbation equations and the boundary conditions. 

Putting equation (l) into (1.7) and (I.4)» we obtain 

9x By 

f = - - ikM/ , 

^ ^ - HcU , (2) 
ax ax ' 

" i = " S ' 

where the first equation, useful in what follows, is derived from the others. 

Similarly, by putting (l) into (1.10) and (1,22) we obtain the following 
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boundary conditions: 

at the body, y = 0, V = A (x) + ikA(x) , 

at the shock, y = x tan cp, V = AQ (x) + IkBQ(x) , 

P = GQ (x) + ikDQ(x) , (3) 

0 = EQ'(x) + ikFQ(x) , 

R = GQ'(x) + ikJQ(x) , 

where the constants A through J are dependent only on the reference steady 

flow and can be found to be 

A = Y""™ ̂  B(1 + yW) sin cp cos cp C(¥ — yW cos cp — sin cp) 

B = 

C = 

D -

E = 

F ~ 

2 ^ ^ A(l + yW) sin cp cos cp - 0(y - l)W j , 
M t 
1 

H cot qy, 2 
^ ^ I B ( 2 + yW - W) sin ̂  cos ̂  - 0 ( y - l)W cos 

H cot cp -
A(2 + yW - W) sin ̂  cos ̂  - G(y - l)W 

B(l + yW) sin cp cos cp + C(l - yW) Cos' 

(4) 

9 

^ ^ A(l + yW) sin cp cos cp - C(y - l) 

G = M + 1)W - G(y - l)W cot cp 

W 

J = A(Y ^ D W -M (1 - W) sin cp cos cp 

For most e n g i n e e r i n g p rob lems t h e v a l u e s of the frequency pa ramete r k 

defined in (1.32) are small, of order of magnitude 0.01. Now, expanding 

the five unknown functions and the "amplitude function" in power series in 

ik. 
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V = 
v(°) 

4- ikV 
1) 

+ (ik)2v(2) + # 

p = p(°) 
•f ikP 

1) 
-f (ik)2p(2) + , 

u = n(°) 
+ IkU 

1) 
f (ik)2p(2) 4- . 

R = 
K(°' 

+ ikR 
1) + (±k)2R(2) + . 

Q = 
Q(°' 

-f ikQ 
1) 

-f (ik)2Q(2) + * 

A = 
A(°> 

4- ikA 
1) + (ikO^afZ) + # 

# # ^ 

(5) 

Putting (5) into equations (2) and equating the teima of the same order of 

ik on both of each equation^ we obtain 

(wg - 1) B P 

(o) 

ay 

(o) 
au 
3% 

ax 

ax 

M 
(o) 

b 5x 

1 ap(^) 

ax 

(o.' 

ax 

0 

ax 3x ay 
•) 0 

- 1 ) ^ 
ax 

(1) 

ay 

(1) 

M 
av 

ay^ 

(1) 

2M" 2 as 
(o) 

b ax 

au 
ax 

b ax 

1_ 

^o 

M v(°' 

u(o) , 

^(o) + M ! 
(1) 

,(o) + ^ 

ax 

(1) 

_ p(o) + ̂  
(1) 

ax 

ax ' 

ax ay 
) 

(6l) 
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and for na 2: 

ax^ Sy^ ° 

2 P ^ = _ M a ^ - M /'"I) , 
ay o ax o 

a A l = _ n('̂ -i) , (6 ) 

ax ax ^ 

,(n-l) , a g l = p(n-t) . ̂  , 

Similarly, we obtaia for the boundary conditions. 

y = 0., 
y(0) = 6^°) (x) , 

y = X tan (p , 
l/°) = A;(°)'(x) , 

p(0) = CQ(°)'(x) , 

y(0) = EQ(°)'(x) , 

gXo) = GQ(°)'(x) , 

y = 0 , yd) = 4(1)'(x) + (x) , 

y = X tan cp , 
y(l) = AQ^^^'(x) + BQ(°)(x) , 

p(l) = GQ(l)'(x) + DQ(°)(x) , 

y(l) = ' (x) + FQ(°)(x) , 

%(l) = ' (x) + JQ(°)(x) , 

)r n 2: 2: 

y = 0 , ?(*) = ' (x) + , 

y = xtan ^ , 
y(n) = ]%!(*)'(%) + BQ(*-I)(x) 

p(a) = C%!(*)'(x) + ix^>i-l)(x) 
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u(^) = ' (x) + ) (x), 

' (%) + . 

The problem of solving the equations (2) to satisfy the boundary 

conditions (3) is now reduced to that of first solving the equations (6^) 

to satisfy the boundary conditions (7 ), and then equations (6^) to satisfy 

(7 ), and so forth. 

The solution of the first problem will give the stiffness derivative, 

vdiereas that of the second problem will give the damping derivayive (Ih 

principle, the above procedure of solving the equations (2) to satisfy the 

boundary conditions (3) can be successively carried on to any order in ik, 

i.e. to give aerodynamic derivatives as accurate as desired. However, it 

has been shown in Chapter II that terms proportional to k or higher have 

neligible contribution to the aerodynamic derivatives). 

For a wedge with zero incidence , oscillating about a pivot 0^ (Pig.2), 

the "amplitude function" is given by 

6(x) = X - h cos 6 , (8) 

With (8) given, the solution to the equations (6 ) which satisfies (7^) 

is easily found to be 

v(°) = 1, p(°' = c / l , n'"' = l a , = G/Z. (9) 

i 6 2 
which is a special case of the result obtained by Ghu , and by Chemyi , 

Also, for later use, we write down the following expression 

Q^°\x) = x/K - h cos 8 , (10) 

in which the value -h cos e of the integral constant is obtained by an 

additional condition that 

fg(o, t) = 5(0, t) 
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which arises because of the attachment of the bow shock to the wedge. 

By making use of the solution (9) for the steady flow, the following 

equation is derived from (6 ) 

(«! - 1 ) ^ - ̂  = 0 (11) 

to which the general solution is 

v(l) = F^(x - . 1 ) ^ + + (M^ - 1)&) , (12) 

where and are two arbitrary functions. 

Prom the second equation of (6^), is obtained 

= K[ P^(x - (1^ - l)^y) - FgCx + (M^ ~ 1)^) ] - M^y + F^(x), (13) 

in which is another arbitrary function, and 

o i ' (14) 
( ^ - 1)^ ' 

f 1) 

By combining the third and the fifth equations of (6^) to eliminate U , 

and putting (12) and (13) into the resulting equation, we obtain 

F^(x) = C^x + , 

in which is arbitrary constant, and 

. (15) 

To satisfy the boundary conditions at the bow shock, y = x tan cp, wa 

have, from equations (12) and (13) and using (7^), 

F ( (1 - H)x ) + Fg( (1 + H)x ) = AQ('^)(x) + Bx/Z - Bh cos 9 , 

(16) 

xF F^( (1 - H)x ) - Fg( (1 + H)x ) ] = ^("')'(x) + W A - & cos 8 

+ M^x tan cp - O^x - , 

and hence. 
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2F^(x) 
g ^ tan (p - G. 

+ I" " 
A X 

X & 
1 - H K 

- (B + ̂ )h 008 e , 

ZPgCx) 

where 

(17) 

1 + H M. 

- (B - 008 8 , 

H = (M^ - 1)2 tan. ̂  , (18) 

To satisfy the boundary oondition (7^) at the wedge aurfaoe y = 0, 

we obtain 

Q(l)'(x) -XQ^l)'(m30 = 

Zpj 1 - — H(^ + M tan —0,^/% * h cos 8(B - 1) 
Ll 2 o , J I a 

(A + 0/%) 
(19) 

where 

1 - H 
™ - 1 + H * (20) 

and 

G + xA 

(21) 

By a method similar to that in Chapter II, it is easy to prove that 

the quantity X given by (2l) represents the reflection coefficient of a 

disturbance from the bow shock, i.e* X is equal to the ratio of the amplitude 

of the disturbance reflected from the bow shook (along the characteristic 

% + (M^ - iy^y = const*) to the amplitude of the disturbance incident on 

the bow shook, (along the characteristic x - (M^ - l)^y = const.) 

Also this reflection coefficient X is, at least for periodic unsteady 
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motions, identical to that derived for steady flows in Rafs.lS and 2. 

The solution to the functional equation (19) Is a linear function 

of 3^ 
g % H(D/A + M tan cp - 0.) 

2| 1 . IT . 2 2 — : : — 1 . 

A + h 008 ofB - l) 

(l +I0(A +(Vx) A 

and therefore, the pressure distribution over the wedge surface is given by 

whezre 

o) = (2G - I)x - Ih cos 8 , (22) 

I 

E 

B + D - EB , 

1 — Xni 

% - 0 

A 

(1 - X)-{ ̂  + M tan cp — 
''A 

M, 
- 0 

A 

(23) 

(1 - Xm)(l + H) 

1 + X)B 

— 63 — 



3 THE Z&ABILD% 08^% THE TOMCT THEORY 

To the unsteady theoiy of the first order, the pitching moment 

ooeffioiant consists of the stiffness derivative -c and the damping 

derivative -o , 

"̂ 6 

(-0^ ) + lk(-o^ )j. (%) 
n o -J 

^ the same reasoning as in Section II.3.2.1 * and using the solutions (9) 

and (22) we obtain 

.0.. 
"°m " (^)-'^E(t - h 008^8) , (25) 

8 o CO cos 8 

"^m. " (^2) ^ I(h 008^6)^ - Qh oos^e + ̂ 2 G - I) . (26) 
oe COS 

The quantities E and I in (25) and (26) are seen to be, respectively, 

equal to the quantities E and in (11,70), so the stiffness derivative 

obtained in this Chapter is the the same as that in ChapterII, as it should 

be. 

On the other hand, the quantity G is, in general, not equal to the 

quantity G in (II*70), so the formula (26) for the damping derivative is 

not the same as the formula (11.69). However, as shown in Applendix B, 

if » 1 so that the terms proportional to are negligible, G is 

reduced to G , and therefore the present exact theory includes (to the 

first order of k) the approximate theory in Chapter II as a special case. 

Comparisons between this exact theory and the previous approximate 

theory for various free stream Mach numbers M and flow deflection angles 

8 are plotted in Pigs.11, 12, 17. Also plotted for supersonic flows are 

19 

the results of Van Dyke's theory and the experimental results Pugh 

and Woodgate^. 
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It can be concluded from these figures that the approximate theory 

works very well for the dach number behind the bow shook bigger than 

2.0, but not so otherwise. 



6 FMt 

The atabillty of an oaoiUatiag pltohing wedge in supersonic and 

hypersonic flows may be examined, by considering an exact criterion for 

the conditions at which the damping derivative first becomes zero at some 

cirtioal position of the axis of oscillation. This can be obtained by 

solving the following equation 

I(h 008^8)2 _ Gh cos^e + ̂ (20 - I) = 0 , (27) 

and this is done by an iteration method and the result is plotted in Fig.18* 

Also plotted in the same figure, for comparison, are the results of the 

approximate theory. It is seen that the approximate theory underestimates 

the thickness effect by a few degrees for supersonic flow and by about two 

degrees for hypersonic flow. 

Although in general, / G, the critical pivot position h , at which 

the damping derivative first becomes zero, is the same in both the exact 

theory and the approximate theory, and is given by 

^or = 3 * i , (28) 

where 8 ^ is the critloal flow deflection angle, at which the damping : 

derivative first becomes zero. 

Neutral damping boundaries for given wedges can also be obtained from 

equation (27), and the results for & thin'.wedge and a very 

thick wedge are plotted in Figs.20 and 21. Plotted in Fig.20, for comparison, 

is also the theory of Carrier and. Van Dyke^ ̂ ^ ̂  s seen that both theories 

give the same result for supersonic flow, as is expected. 
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1 imTROOMTim 

In. this Chapter we shall study the effect of viscosity on the stability 

derivatives of an oscillating wedge. 

For moderate supersonic flow, the pressure field over the wedge, and 

hence the stability derivatives of the wedge is not significantly altered 

by the presence of the viscous boundary layer which is relatively thin. 

On the other hand, with increasing Mach number the boundary layer becomes 

relatively thicker and the pressure field may be quite different from the 

inviacid one. This causes a significant change in the stability derivatives. 

17 

Orlik-Ruokmann has examined the viscous effect on the stability derivatives 

of a thin, sharp wedge. Using piston theory, closed form formulae for the 

stability derivatives were obtained which showed that for a free stream 

Mach number of 17 and a wedge of 3 degrees seml-vertef angle the viscous 

effect may alter the stability derivatives by about 50 percent of the 

invisoid value at the wedge vertex to 200 percent at the end of the wedge. 

However, in Ref.17 the effect of the reflected waves coming from the bow 

shock is neglected, and the assumption of a slender wedge is made. 

It is the purpose of this Chapter to develop a theory which includes both 

both the thickness effect and the effect of wave reflection. Comparison 

of the present theory with Orlik-Ruckmann's theory is given in Section 6. 

In this Chapter we consider only a sharp oscillating wedge in viscous 

hypersonic or supersonic flows at zero incidence. An empirical formula for 

estimating the effect of the leading edge bluntness has been proposed by 

East^. 

The boundary layer is assumed to respond instantaneously to the unsteady 

flow quantities. Ebyaically this assumption is valid if the time required 
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for the boundary layer to adjust itself to the Inatantaaeoug incidence of 

the body is very m m n compared with any characteristic time in the problem. 

In. stability analysis, particularly for hypersonic flow, the frequency 

parameter k is usually very small, this means that the period of oscillation, 

which may be taken as a characteristic time for comparison with the time 

required for the adjustment of the boundary layer, is very large compared 

with the time required for a fluid particle to pass through a characteristic 

length in the problem (say, the chord length of the wedge). The latter is 

easily shown to be of the same order of magnitude of the adjustment timefRefs 

2$, 26, 27). Hence the boundary layer adjustment time is very smmll, oomparied 

with the period of oscillation of the body. 

Therefore this quasi-steady assumption for the unsteady boundary layer 

should be expected to te valid for the purpose of stability analyses. More 

discussion is given in Ref.17. 

With viscosity present, the wedge is thickened by the displacement 

boundary layer. This introduces an effective wedge at zero incidence which 

is of semi-vertex angle 8^ equal to the semi-vertex angle 8^ of the original 

wedge plus the average inclination of the displacement boundary layer to the 

surface of the original wedge (Fig.22). From the viewpoint of the perturbation 

theory the viscous flow past the original oscillating wedge is considered as 

the inviscid flow past the effective wedge which is oscillating at the same 

frequency as the original wedge and which is deforming according to the 

changing displacement thickness of the boundary layer on the original wedge. 

This implies an assumption that waves reflect from the boundary layer as 

from a solid surface. The problem of finding an unsteady viscous flow field 

is thus transformed to a suitably formulated problem of finding an unsteady 

inviscid flow field for which the methods developed in Chapters II and III 

can be applied. 
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For oalculatlog the stability derivatives the exact theory in Chapter 

III may be uaed. However it is only ia the casee for which the Maoh 

number behind the bow shook is large that the viscous effect will be 

significant, and in these oases the approximate theory gives excellent 

results as compared with the exact theory. Therefore, in this Chapter when 

calculating the viscous effect we use the approximate theory but follow 

the same framework as that in the exact theory, so it is easy to extend, 

if required, the present method to give exact results. 

70 



2 INVISGID FLOW 

Let the aystem of ooordlnates xOy be auoh that Ox oolnolda with the 

aurfaoe of the effective wedge in its average position, and 0 the vertex 

of the wedge (Fig.22)* Let t be the time variable, u(x, y, ?), v(x, y, t) 

the velocity oomponenta in x, y direotions, reepeotlvely, p(x, y, t) the 

preeeure, and F(x, y, t) the density, of the fluid partioles. Subaoripts 

o and 1 refer, respectively, to the quantities of the steady flows past 

the original wedge and the effective wedge, thus u^, v , p^, a^, 

and p are, respectively, the velocity oomponents in the x, y directions, 

the pressure, the density, the speed of sound, the Maoh number and the 

shock angle in the steady flow past the effective wedge, etc. Obvisously 

v^ = 0. For simplicity, let =0^ - 8^. 

For small perturbation from the pure wedge flow past the effective 

wedge, we have, say, 

P = p^ + ep + etc. (1) 

The non-dloenslonallaed variables x, y, and t are introduced to 

relate to the dimensional variables x, y, t by 

— " 11 t 
t = 1 . (2) 

4 4 4 

To study the gas motion resulting from a harmonic motion of the wedge 

with a given olroul&r frequency w we have, by a method similar to that tn 

the previous Chapter, the following equations respectively for the wedge 

surface and the bow shook, 

y = «&(x, t) = «e*^1*A(x), (3) 

and 

" - 91 
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y = X tanm, + *e*^1*Q(x), (4) 



where 

, (5) 

la the frequency parameter based on the wedge length and the speed of 

gas behind the bow shook in the steady flow past the effective wedge. 

We may also express, say 

p = p^a^u^e4^P(x, y), .3to. (6) 

After making the same assumption as in Chapter II that the coefficient 

- 1 In (1.7) be replaced by we obtain the following equatlms for 

the time-independent perturbation quantities 

I = - =^1H -

(7) 

Similarly, the boundary conditions are 

f 
y = 0, V = A (x) + Ik^(x), 

y = xtantp^, V = A^Q^x) + Ik^B^Q(x), 

P = O^Q^x) + ik^D^Q(x), (8) 

U = E^Q'(x) + ik^F^Q(x), 

_ I 
a = G^Q (x) + ik^J^Q(x), 

1 art 

o being replaced by the subscript 1. 

idieî  the constants A^ through are given by (111.̂ 4̂ ) with the subscript 
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Purthor, the five uokoowa functions may be expanded as a power aeries 

In Ik^, 

7 = v(°) + Ik 7 

P = p(°) + Ik P 

n = o(°) + ik,U 

a = R(°) + ik^R 

= o(°) + 
ik^Q 

+ * * * * 

® J 

^ 

(9) 

. 
also, 

6 = &(*) + IkY&d) + ..., (10) 

Substituting (9) Into equations (7) and equating the terms of the mmmm 

power in Ik^ on both sides of eaoh equation, we obtain the zeroth ordar 

the first order perturbation equations as follows 

4 
.2p{o) a2p(o) 

0, 
3% ay 

a l £ l = 
8% 

a A l = iZ 

8% * 

(o) 

( l 1 o ) 

ax ax 

^ 
and. 

& 
2p(l) ^2*(1) 

£11 
(o) 

ay. 
- 4 % - ' 

73 -



au(i) 

ax 
(11,) 

R(O) . f aaill = 
BX 

p(°) 4 alill, 
a* 

ax 
• i-alill 

ay 
+ p(o) = 0 

Similarly, we obtain the following zeroth and the first order boundary 

conditions 

y — 0, v(o) = 

y = xtmiq^. y(o) — 

p(o) _ 
(12„) 

= 

5(0) = 

and. 

y = 0, yCl) -

y = X tan qy. 
v(i) = 

p(1) = (12,) 

yfi) = i,Q''"'(x)»E,a'°^(x), 

a(l) _ 

Equatloaa (ll) and boundary ooaditio&a (12) will be uaed in Seotiona 3 and 

4. 

To describe the diaplaoement boundary layer, another system of 

ooordlnatee xK)'y ia introduced for which Ox' la along the original wedge 

surface at its average position (Plg*22). Denote by 5*(x', t) the 

displacement thickness of the viscous flow past the original wedge at time 

t, and ty 6*(x') that in the steady flow past the original wedge, (of course, 
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both of them are alwaye measured from the original wedge surfaoe). Then 

it is easy to see that the average inollnatloii of the displaoement boundary 

layer to the original wedge surface is equal to 0*(l) for a very thia wedge 

and approximately so for thicker wedges. We therefore define the semi-

vertex angle 8̂  of the effective wedge as 

Gl = Go + 5*(1). (13) 

In order to obtain the displaoement thiokness at any time, it is 

necessary to know the unsteady inviscid flow past the original oscillating 

wedge. This has been done in Chapters II and III, the results are quoted 

as follows* let u , v represent the velocity components behind the bow 

f 1 

shook in X , y directions, respectively, and subscipt orig refersto the 

quantities in the unsteady invisoM flow past the original wedge, then 

•wwt I 

orig 

I ilc.t 
= - ea n^^). 

-I ; j&it 

*orig = *o«* Ylnv' 

(14) 

'orig = Po'l 

ikLt 

Pdrig " Po/l * Binv)* 

where u is the velocity component of the gas behind the bow shock in the 

I 
X direction in the steady flow past the original wedge, and 

^inv 

S t o = " t o " 

in which. 
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o) = G^/A^ = 

pili(x, 0) = (2Q^ - E^)x * [sjB^ _ 1) . D^]h cog S 

o) = (2G^ - H^)x + [ N_,(B^ - 1) - J ^ ] l i oos 9 ^ , 

wheire h la the nonr-dimenslonalized pivot position measured from the apex 

of the wedge, the constants through G^, J are equal to the oorresponding 

quantities given by (III.4), thus A = A, etc. The constant G is 

(16) 

Go = 
1 V o ^ \ 
1 - - t1 - > „ ) ( 1 - ) ( 1 - h"3 

(17) 
o o 

with 

m. l l f o 
1 + H / 

X = 
C_ - A. 

G o + ^ o 

Ho = tan 

"o = " °o) (18) 

^ [ ® o - \ - \ / ( ^ o * 

In (15), the other quantities such as being of no use In this Chapter, 

are not quoted here. 
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l i m E m r m & c T i G N 

A8 the boundary layer responds instantaneously to the flow quantities 

in the unsteady flow past the original wedge, for the case of weak interaction* 

in the x'y' systen of coordinates the displacement thickness 6*(x) t) at ' 

time t can be written by^ 

= d Eszls (19) 

^ ".rig ' 
were the hypersonic interaction parameter x is as follows 

in which Rex is the Reynolds number based on the non-dimensionalized length 
! 

X from the wedge vertex^ 0 is the constant of proportionality in the iinAAr 

viaoosity-temperature law and is determined by matching the viscosity relation, 

usually evaluated at the surface temperature, with the exact value of the 

viscosity p, for which the power law 

H ec (21) . 

is taken and the values of the index n are taken as 0.76 for air and 0.647 

for heluim throughout this Chapter. Thug 

W 

where T is temperature of the gas and the subscript b refers to the body 

surface. The quantity d^^^ in (l9) is 

A(P^) 1 

^ ( V - 1 ) B ( V . («) 

The two constants A(I^) and B(I^) are dependent on the Erandtl number 

4 
and given below ; 
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1 A 
B 1 1 r A 
B 1 

1.0 0.865 
1 

0.166 

0.725 0.968 0.1^5 1 

For an. insulated 

V ^ o r l 

and heaoe 

orig 
1 (Y - (84) 

orlg 

A(fr) i 
- + (Y - i)B(p^) + A(p^)(p^)^ , 

M' 
orig 

Tiihereas for a veiy cold body^ 

(25) 

V^orlg = 1 ' 

and hence 

(26) 

A(PJ 

"orig = " (v - 1)B(P,) . 

orig 

(27) 

Using equations (14), and denoting ge^l^ by *(t), the quantities 

^orlg, ̂ orig '̂ orig expressed as 

—'2 —ig 

^ ^ orlg * ̂  orlg _ ^ 

"yPorxg^orlg 

1 " 
< -

u 1 + 2g(t)U 
inv 

1 + e(t)^M^P, 
0 inv 

,M P.. + 2U. 
inv Y o^inv ' ̂ ^inv' I ' ;] 

orig ' 

orig 

r / ( V , 
(28) 

^^Vlnv ^̂ ô'̂ lnv ̂  ^^inv^ J 
o o 

where E is the Reynolds number at x = 1, using the quantities in the 
e I fO 

steady Invlscld flow past the original wedge, and d^ Is given by 
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A(PJ V _ 1 ^ 
= — 2 — + (y - l)B(P^) + —A(P^)(P^)^ for an insulated body 

jL(P_) (29) 

^ - " "A"' + (Y - 1)B(P ) for a veiy oold body 
° IT ^ 

o 

Putting (28) into (19) we obtain 

rVJ r . .r .A(]̂ J , M^A(P^) 

0 0 0 0 

. ( I - I I . (30) 
2 M^d 

o o 

wheire 

d l ^ (1X^1 

It hag been shown in Chapter II that for large value of the ratio 

of to is of order of iyiT̂  and thus the term in (30) may 

be neglected within the approximate theory. 

Making use of the invisoid solution (14) to (|$ and integrating (30)to 

give the displacement thickness 

2 % ''' ' 

M r J 1, Pi2(xl o) , A(PJ „ o) , 

6*(xl t) = • t(t) 

G O ^ ' O O % ' 

where (32) 

A(PJ A(pJ 
= «o 

0 0 o o 

is a constant depending only on the steady flow over the original wedge. 

As seen from (32) we have 

5^(1) = 2Y^ 04) 
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and hence for weak interaction the semi-vertex angle of the effect wedge 
1 

is given by (see Fig.22) 

8l = ^o + 2?w' (35) 

I I 

In transforming from the x y ayatem of coordinates to the %y system, 

we notice that the two systems of coordinates differ only by an angle of 

rotation 6^11), which is neverthless very small compared with umity, thus 

we shall use the equalities 

staS'd) = 6ji), =036^(1) = 1, 

throughout this Chapter, and hence we can easily obtain the disturbance 

function y = g(x, t) over the effective wedge surface in the xy system of 

coordinates as below 

6(x, t) = 5^(1)( (x)2 - X ) + e(t)(x - h cos g^) 

+ e(t)6Q(l) 
A(PJ 

Z _ # ^ ik^ ' f \ - |) 
W 

Ajr,.) 

( x ) 
dx j 

-dx 

(36) 

It is clear now that this disturbance consists of three part& 

The first part of the disturbance can be seen to be samll compared 

with the effective wedge over most of its surface, except near the apex. 

Because, for weak interaction 6*(l) is small compared with 8^, and even 

smaller after multiplying by a small factor ( (x)^ - x ) and compared 

with 8 ; ftr strong interaction G^fl) ^ay be comparable with 8^, but it 

is then multiplied by a even smaller factor (xf - x) (see Section 4)* so 

the first term is still small compared with 6 ̂ . Therefore the small 

perturbation theory can be applied to this first part of disturbance. 

As the perturbation equantions are linear, the perturbation pressure and 
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hence the stability derimtives contributed by these three parts of the 

disturbance can be calculated separately. Now the peirturbation pressure 

caused by the first part of the disturbance is independent of time and 

therefore gives no contribution to the moment coefficient and hence the 

stability derivatives as the effective wedge is at zero incidence to the 

free stream. Therefore the first term on the right hand side of (36) can 

be dropped out for the puipose of stability analysis. 

In the second term on the right hand side of (36) cos 8^ could be 

well replaced by cos 8^ (this would cause an error less than o.$$) as 6^(l) 

is usually very small. 

Therefore the contribation to the stability derivatives due to this 

term is that of a wedge with semi-vertex angle 8^ in the inviscid flow 

and can be found from the previous chapter. 

We need therefore calculate the perturbation pressure due to the last 

term on the right hand side of equation (36) only. To do this, we write 

all the unknown quantities with a subscript v^ thus the zeroth order solution 

for the perturbation quantities is obtained, from equations 

(llj, as 

7^°) = - M^y) + F(°)(x + M^y) , 

(37) 
p(o) = F(°)(x _ M^y) - F(°)(x + M^y) + F^^^x) , 

where and are arbitrary functions. Substituting the above 

equations into the fifth equation of (ll ) is obtained 

dpi°^/dx = o, 

. . pj^Xx) = const. 

To satisfy the boundary conditions (12^) at y = x tan (py, we have 
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F<°'( (1 ,(o) 
H^)x ) + (1 + H^)x ) = A^Q[°)'(x) , 

F(°)( (1 , (o) 
( (1 - H^)x ) - (1 + H^)x ) = (x) - Fl°/, r(o) 

and he&ce 

2F(°\x) 

2P^) (x) 
(39) 

where 

tancp . 

To satisfy the boundary condition (12 ) at y = 0, we obtain 

2 V w 

(Â  + C^)(1 - H^)2 (x)2 

(40) 

(41) 

the solution to whioh is 

Qv°)(x) " TT—:z: 1 (x)2 + const. (42) 
( (1 -.X/(m^)^ )(^ + 0^)(1 - H^)2 

where 

1 
(C^ + A^), (1 - H^)/(1 + H^) 

The integral constant in (42) is equal to aero, ZUS 

^5^(0, t) = 5(0, t). 

Finally we find the zeroth order solution as 

v(°)(x, y) 

(x, y) 

V w J - J . 
_i_ L _ „ 

1 - X^/(my)2 (x - M^y)2 (m^)^ (x + M^y)' 

V w 
(43) 

1 - &i/(ay)^ (x - M,y)2 (ay)2 (x + M^y) 

and, particularly, the pressure at the surface 
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o) 
w 1 ) 

( 1 - ) (x) 
(44) 

To find the first order solution we should solve equation (11^) to 

the boundary conditions (l2^), in which the first condition becomes 

y = 0= y-' = 2 ^ , 1 * • v { ^ - o) - ; 

D O C O 

satisfy 

0: vjt) = 2X^Z^ 

for the Using the zeroth order solution (43) and a method similar to that 

f 1) 

zeroth order solution, the perturbation pressure (x, o) at the surface 

is found to be (the problem could be easier solved by making a transformation 

F = X r M ^ y ^ ^ = X + M^p) 

p(l)(x, o) = lj[ Wq % 
^ Wph cos 8. 

(x): 
(45) 

where, 

"r = 

and 

I 
% 1 

— : 

(1 - H,) 1 - X^(ny)2 w 1 - X^/(m^)2 i - x^/(m^) 

1 + A_y(m^)^ n 

, 1 + X /(m )^ 

4(31 + D,) 

(1 - H^)(Ai + C^) 2 

1 +Xi 1 X. 

TTTq- - 2(1 + ' - ̂ 1) * T-r-g; - 2 

' - V - T 

- °i 1 

* 2 1(1 ^ 

% = V ' - -

K + T 
w w 

:a, - =1) 

0 0 " 
Xl/(mi)2. 

"%) + 2M[r Y(' 

(46) 

o o 

w 
M 

< ^ 0 

i - 1) - ^0} ' 2H - 1) - ®o}. 

0 0 
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For weak interaction, the tolal moment coeffielent of the wedge la 

viaoous flow la equal to that of the effective wedge (c^)^^ plug that 

due to the deformation of this effective wedge (o ) 

o h = (Veff * (°m'„ . («' 

The moment coeff ic ient as stated before, can be found from previous 

chapters, whereas the moment coeff ic ient (ĉ )̂  can be obtained by using the 

solution (44) and (45) and performing the integration in the general formula 

for the moment coeff icient about a pivot position h as 

- ' - °m >« * ] ' (43) 
8 8 

where, as b e f o r e , l a the speed of gas in the free stream. And therefore 

the s t i f fnes s derivatlfes (—c ) and the damping derivative ( - c ) due 
8 *8 " 

to the deformation of the e f fect ive wedge in the case of weakloteractlon 

are as follows 

A,,. 
8 1 ̂ 0) w % 

COS 8^(1 -Xy(m^)^) 

"-2 2%, r 2 2 T ? 1 
W (h COS A.) — f W Yh cos n + 4% 

1 CO ® 2 
COS 8^ 
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6 EBROmi 

The case of strong inteaction has been, discussed in Ref.1 for a flat 

plate at zero angle of attack. With Q small the results in Ref#1 need 

only be slightly changed by replacing quantities in the free stream by 

the corresponding ones in the unsteady inviscid flow past the original 

wedge. Thus the displacement thickness 5 (x , t) at time t, expressed in 

I » 
the X y system of coordinates, is given by 

5 '(%'. t) = a x ' ^ , 
orig 

(50) 

with the constant o tabulated below. 

Values of c, (P == 1#0) 

very cold body insulated body 

Y — 1 ®4-

V ™ 1.667 

0.397 

0.457 

0.738 

0.858 

Perturbing equation (50) for the small quantity e gives 

6*(x%t) = 

in which 

Y = 2 y 

" 1)^ 

= 
2 M. 

Prom (51), we obtain, in the case of case of strong interaction, 

and henoe, 

6^(1) = 2Y^ , 

1̂ = 9, + 2Y^ . 

(51) 

(52) 

(53) 

(54) 

Following the same line as that in Section 3, the disturbance function 

over the surface of the effective wedge, written in the :qr system, is 
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expressed as 

5(x, t) 

lAiere 

5g(l)(x* - x) + e(t)(x - h C038 Q) 

+ *(t)5*(l) ZgX* + ik^(- o)x*) (55) 

%o*o 
(56) 

By a method similar to that In Section 3, we obtain the following fonmilae 

for the.stiffness.defivative (*o )8 and the damping derivative (-o* )8 caused 
"̂ 8 *8 

by the deformation of the effective wedge in the case of strong interaction. 

(57) 

e 

where 

.'S 11 

oos^ eu 

i8^(h 008^8^ f - §(8^ + Sq)h oos^e^ + 

Sq = * ___ . + 2^( __.^L - ) j , 
(1 - H^)* 1 - A^/(m^)^ ^ 1 - ^ 1 - X^/(B^) 

1 1 + &./(au)* 
S_ = r.(l - Hj* ] ]--

1 " X^/(m^) 

and. 

E = 
4(B + D ) 2 1 + X. X. 

— T . = , " - % - N ' "2 r n r - t(i -
9 (1 - H^)(A^ + C^) 1 

T = mt 

1 

4(^1 - Di) ^ ^ , 3 1 + 4 ^ 

(1 - H^)(jy + C^) 
— - I 7 ^ ^ ^ 

(58) 

'-a = K [ - 1 ) - j. ] -
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5 KUXEim OP THE ERROm AMD WOM imHKAGrKMS 

In the case for which a strong pressure Interaction exists over the 

whole wedge surface the formulae (57) for the stability derivatives caused 

by the deformation of the effective wedge should be used together with 

that for the effective wedge oscillating in inviacid flow to give complete 

formulae for the stability derivatives of the original wedge in viscous 

flow; whereas in the case for which a weak pressure interaction exists 

over the whole wedge surface the formulae (49) should used instead of (57). 

However there are oases for which a strong interaction exists in a 

Mgion near the apex of the wedge and a weak interaction exists in a region 

near the trailing edge of the wedge. ]h these cases, there must be an 

intermediate region between the two for which neither the stirong interaction 

theory nor the weak interaction theory can be applied. The author knows no 

theoiy which can be applied for this intermediate region. The two regions 

are thus assumed to extend and match at some intermediate point. Physically, 

the real flow field over the wedge surface has a continuous pressure 

distribution, continuous displacement thickness, etc. Unfortunately, it is 

impossible to choose a matching point such that all these conditions are 

satisfied. Therefore it is an artificial method to choose a matching point, 

and the flow field is distorted to some extent by any choice. 

17 

Orlik-Ruckemann matched the two regions at the point (denoted here 

by Xp) where the pressures calculated by the two asympbtic theories of the 

strong interaction and the weak interaction are equal. It is preferred ;ko 

match the two regions at the point x where the displacement thicknesses 

in the steady flow case calculated by the two theories are equal. Thus 
the formula for x is 

m 
2d 4 

X, = (-;2) (59, 
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One advantage by usiag rather than, x as the matching point is that 

for slender wedges at the point the slope of the displacement boundary 

layer calculated by the weak interaction theory is less than 8^, and that 

calculated by the strong interaction theory is larger than 8^, and this 

justifies the use of two asymptotic theories for the two regions so 

constructed. (However, for thick wedges, for which the whole viscous 

effect is then small, the strong interaction region so constructed is 

overextended by a samll percentage of the length of the wedge, e.g. for 

M = 17, 8 = 10°, it is overextended by 2*4^ of the wedge length)* 
CO O 

Whereas at the point x the two slopes are generally either both larger 

than 8 or both less than and this makes it incorrect to use the 

asynptotioformulae of the weak or the strong interaction theories for their 

regions so constructed. 

After determining the matching point position x^, it is straight 

forward to obtain the following formulae for the stiffness derivative 

(-C ) and the damping derivative (-c ,) due to the deformation of the 
m m lu ̂  in 

effective wedge in oases for which both weak and strong interaction 

exist over the wedge surface. 

J - H c o . 2 e # ) 
6 

4-
cos^^^^d - X y ( m ^ ) T 

(Ib.)2r f s . ' ̂  ^ ^ 

'8" "1 P* ^ L oogi 

7 
(60) 

( - m ) m = 
Q 1 ̂ 00 CO Gv8 U-j 

11 2 

COS 8^ 
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where 

8̂  . (61) 

Obviously, formuale (60) oan be used only for the values of Z lying 

between zero and 1*0, and include both formulae (49) and (57) as special 

cases when % is equal to zero and 1,0, respectively. 
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6 amMEfUCAl AND DISCUSSIONS 

Numerloal examples are given la Figs.23 to 30. All oaloulations were 

made for an ioaulated body, and for the Reynolds number R . = 10^ , 
01,0 

and for a gas with ==0.725, n = 0.76 and y = 1*4. except in Figs,29,30 

for which y = 1.667 and 0 = 0.647. 

It is seen that for the free stream Maoh number up to 17, the viscous 

effect Is Important for a thin wedge, but negligible for a relatively 

thicker wedge, say the semi-vertex angle = 15°. 

The viscosity of the gas is seen to play two roles: first, it thickens 

the wedge by a semi-vertex angle equal to the average inclination of the 

displacement boundary layer; secondly, it makes this effective wedge 

deformable. For a very thin wedge the second role is dominant; whereas 

for a relatively thicker wedge, both effect have the same order of 

magnitude, and with Increasing wedge thickness, the first role becomes 

dominant. 

For the stiffhess derivatives, these two roles produce opposite 

effects thus,the first role only would overestimate the magnitude of the 

viscous effect, while the second role cancels part of this effect. For 

the damping derivatives the first role is to stabllze the wedge, whereas 

the second role Is to destabllze the wedge for forward pivot positions 

and stabllze It for rearward pivot positions. The combined effect is ' 

roughly the same a$ that of the second role. 

Although the overall effect of viscouity Is to decrease the damping 

derivatives for forward pivot positions, for ^ = 10^, no negative talues 

of the damping derivatives are obtained due to the viscous effect. With 

decreasing Reynolds number, the damping derivative may become negative for 



a slender wedge 

The viscous effect depends, strongly on the flow Maoh number M behind 

the bow shock which represents the combined effect of the free stream Maoh 

Maoh number and the semi-vert ex angle 8 . The viscous effect depends 

also upon the Reynolds number. Thus decreasing the value of the Reynolds 

number by a factor of one half increases roughly the viscous effect by 

about ^̂ 0$ for oases of weak interaction, and by about 2 W for oases of strong 

interaction. The viscous effect tends to zero as the Reynolds number tends 

to infinity. The value of is larger for a very cold body than for 

an Insulated body, but the value of is much smaller for a very oold 

body than for an insulated body. However, X is smaller for a very cold 

body than for an insulated body and therefore the viscous effect for a 

very cold body is smaller than that for an insulated body. All these 

conclusions can be easily seen from the general formulae (49), (57) and 

(60). 

For a veiy high Maoh number, as seen from Figs,27 and 28 the effect 

of reflected waves coming from the bow shock is important even for very 

thin wedges, and can no longer be neglected for hypersonic flow. This is 

so, because the wedge is now thickened by the viscous layer. The effect 

of wave reflection consists of two parts: the inviscid part and the viscous 

part. Numerical results show that for = 17 and 8 up to 10° the inviscid 

wave reflection has negligible contribution, (about 2% of the overall effect 

of wave reflection) 

Di Figs.29 and 30 are plotted comparisons between the results from the 

17 o 

present theory and the Orlik-Ruokemann*s theory for 1̂ ^ = 17, , 

Y = 5/3, and 0 = 0.647. Veiy good agreements are obtained except for the 

stiffness derivatives for pivot positions near the nose of the wedge. 
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A step-by^gtep oomarlaon betweai the two theories is difficult 

because the theoretical models used are different. In. Ref.17, the piston 

theory is used, and the viscous effect is divided into a static viscous 

pressure interaction and a dynamic pressure interaction, which is related 

to the effective change of the flow deflection angle and the normal 

velocity, respectively, of the wedge surface. Whereas the present theoiy 

is developed using a small peirturbation method and the viscous effect is 

shown to thicken the wedge to an effective one and to make this effective 

wedge deformable. There are also several minor points which are different 

in the two theories, e.g. the Reynolds numbers used, the diflnitions of 

the frequency parameter, the positions of the matching point of the weak 

and the strong interaction regions, and some empirical coefficients used 

in Ref.l7,eto. The slightly different results shown in these figures might 

be attributed to these mionor points. However some more discussions are 

useful. 

Within the small perturbation theory, which is a basic assumption 

common to both theories, the present theory is exact with regard to the 

thickness effect and the reflected wave effect. But in Orlik-Buckemann's 

theoiy the effect of viscous wave reflection is neglected, though that of 

the inviscid part is included which is nevertheless negligible as shown 

by the present theory. Also in Raf.17 the thickness effect is not fully 

included as it is based on Mclntoch's theory(see Chapter II). For the case 

plotted in these figures the wedge is thin, but it is now thickened by 

the displacement boundary layer to more than double its genmetrical 

thickness. As seen from Fig.28 the effect of the wave reflection is to 

decrease the damping derivative, but that of the thickness is to increase 

it, they tend to cancel each other and as a result, Orlik-jRuckemann's theory 

agrees very well with the present theory. (Fig,30) Also from Figs 27, the 
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effect of the wave reflection is to deorease in absolute value the stiffness 

derivative, while the effect of the thickness is to increase it in absolute 

value* These two effects also tend to cancel to some extent.(Fig,29). It 

is therefore concluded that Orlik-Ruchemann*8 theory is a special case in 

the present theory when the wedge is very thin. 

In both theories there is a singularity at the wedge apex. Strictly 

speaking, neither of these two theories can be applied to any region near 

this singular point. Also the present theory by assuming the attachment 

of the bow shock to the wedge apex, can only be applied to cases for vhioh 

the wedge is sharp and the bluntness at the wedge apex due to viscous effect 

is very mmAll compared with the wedge length. For a preliminary estimate of 

these effects of bluntness, Ref. 5 should be referred to. 
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GHAPTER V 
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1 H^TRODUCTION 

In. recent yeeirs, several methods^ have been suggested for 

designing wing shapes of hypersonic lifting vehicles to support known 

invisoid two-dimensional and conical flow fields. Among these, the 

30 

caret wing proposed by Nonweiler is the simplest one which, at design 

condition, generates a uniform two-dimensional flow on its lower surface 

and a plane shock attached to the swept leading edges. The upper smrface 

is designed to be either parallel or at some negative incidence to the 

free stream and hence will, particularly at hypersonic or high supersonic 

speeds, contribute a very small amount to the pressure on the body which 

will therefoM be neglected for the purpose of stability analyses. Since 

at the design conditions the upper and lower surface flows on caret wings 

are Independent there is no need to define the upper surface shapes and 

in this thesis the caret wing will be simply represented by its lower 

surface. 

35 

Theoretical work has been reported by Gollingboume and Peckam 

36 
and Ckx)ke , among others, investigating the effects af several variables 
on the aerodynamic efficiency of caret wings. Whereas experimental work 

37 
has been reported concerning the overall force , pressure distribution 

ga OQ y ̂  
and flow visualisation ' , and heat transfer rates . 

As ther is no restriction with a caret wing on its aspect ratio in 

A1 

achieving the attached-shook condition, Peckham pointed out that an 

aspect ratio could be chosen which gave adequate lift and longitudinal 

as well as lateral stability at low speeds. Apart from this commant, 

however, no theoretical or experimental work exists concerning the 
/ p 

longitudinal stability of caret wings (Bagley has given some preliminary 

theoretical estimates of the lateral forces and moment on yawed caret 

wings). 
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It Is the purpose of this Chapter to develop an exact theory for the 

stability of pitching caret wings at design, conditions in hypersonic flow. 

By extending the two-dlmentlonal perturbation theory in Chapter III for 

oscillating wedges, exact formulae for the stability derivatives of car^t 

wings at design conditions in hypersonic flow are obtained which are valid 

for any incidence of the lower ridge of the caret wings. 

It will be shown that the stability derivatives of a caret wing at 

its design condition are independent of its aspect ratio but dependent only on 

the flight Mach number N and the incidence 8of its lower ridge* For a 
00 

given value of the damping derivatives are shown to become negative 

for some positions of the pitching axes several degrees before 8 is 

increased^ to the shock detachment angle. A general criterion for the 

stability of caret wings is obtained and numberical results included. 

It is also shwon in this Chapter that for a small departure of the 

caret wing from its design condition, the flow field below the wing 

remains, within the linearized theory, two-dimensional for a steady 

disturbance, and the cross flow is caused by the unsteadiness of the 

disturbance. This cross flow is seen to greatly increase the damping 

derivative for forward pivot positions emd to decrease the damping 

derivatives for rearward pivot positions. 

It should be noted that in this Chapter, whenever we compare oases of 

different values of 8 for a given value of M^, we are comparing different 

caret wings at their design conditions and not the same caret wing at 

different incidences. 
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2 FOabULATION OF THd PAOBLEM 

2.1 GEOWETaZ 

Fig.3l shows a caret wing at design condition of delta planform and 

of length i, and span 2s whose lower ridge and the plane of leading edges 

are at incidences 0 and p to the free stream direction, respectively, 

measured in the central plane of the wing. The base of the wing is chosen 

to be perpendicular to the free stream direction in all cases, hut there 

is no difficulty in applying the present theory to other cases for which 

the base of the wing is not perpendicular to the free stream direction. 

Let the right-hand system of co-ordinates Ox yz be such that 0 

is at the apex of the wing, Ox along its lower ridge, Oy lies in the 

central plane of the wing and is positive downwards, when the wing is 

at its design condition. The length ^ of the wing is ag&in taken aa a unit 

length to non-dimensioiialize all the length quantities, e.g. 

s = % , X = % , etc. (l) 

jg % 

For any oscillation of the wing about an axis parallel to Qz, the 

flow field must be symmetric with respect to the central plane Oxy, we 

need therefore only consider the flow field for which z ̂  0. When the 

caret wing is flying steadily at its design condition, the equation of 

the plane of leading edges is 

y - xtan ̂  (2) 

where 

rp = [3 — 9 

whereas the equation oi the wing surface is 

y + z cot r = 0 (4̂  

where P is the angle between the central plane and the wing surface, and 

can be determined from the following equation 

tan r = 9 P/sin % (5) 



Once any set of three independent parametera is given, all the other 

geometrical quantities can be determined. These independent parameters 

may be, say, 8, y and r. For practical calculations it is convenieat to 

use the free stream Hach number M , incidence p of the plane of leading 

edges and the aspect ratio 8, since then all the other quantities can 

be expressed explicitly in terms of these three parameters. 

2.2 THE PEHTUaB^^lCJ B0UAT1C38 

To obtain the stability derivatives of a pitching caret wing, it is 

necessary to know the flow field on its lower surface This is done by 

solving the equations of motion by the perturbation method developed 1: 

Ohaytsr HI, ' ' 

Let t be the time variable, u(%,y,z,t), v(x,y,z,t) and w(%,y,z,t) 

the velocity components in the x,y,z, directions, respectively. Denote 

by aod p{x^y,z,t), the pressure and density of the fluid, 

respectively. Then the basic equations for the motion of the fluid between 

the shock and the lower surface of the caret wing are 

+ = _ 1 aS , 

at 3x £y 5z p ax 

aS + u az + ; az » ; az . 

at ax ay az p ay 

a% + 3 a% + V a% + * a% = _ i ag , (6) 

at 3% ay az p az 

+ = o , 

at ax ay 

aZ + + ajawi = o. 

at ax ay 3% 

Denote by u , v^, w^, and p^, respectively, the velocity components, 

the pressure, and the density of the gas in the steady flow when the wing 

Is at its design condition. Obviously, v^ = w^ = 0, under the system of 

co-ordinates chosen. For a small oscillation of the body the flow 

quantities may be expressed as 
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U = U + gU + ... , 

V = ev + ... , 

w = ew + ... , (7) 

P = Po + ep + ... , 

P = P o + ep+ ... . 

where e is a small quantity which characterises the deviation of the 

flow field from that for the design condition and for which the 

maximum angular displacement of the oscillation of the wing will be 

taken in this Chaptor. 

Putting (7) into (6) and upon non-dimenaionalislng the independent 

variables, we obtain 

ay + as =. _J__ ae , 
5% p^u^ au * 

az + az =_ _JL_ a: , 
at 5x p^u^ ay 

ae + a% =_ _j__ aB , (g) 
at a% pQUo sz ' 

2 

ag + aE + i l A . (ail + az + m = o. 
at a% ax ay az' 

in which a is the speed of sound in. the steady flow at design condition, 

and the non-dimensionalizod time variable t is defined by 

t = t u^/% (9) 
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Malting a transformation 

§ 

11 

C 

X 

x + t, 

x - t , 

2y 

2z 

(10) 

we obtain from Bqs.(8) 

as 

% 

as 

2po\ 
- ( 

) 

1 am 
Po% ac 

. - L . 
Po% ax 

a 2 ̂  
o 5^ 

(11) 

^ + *o PQ 
as % ' as ail ' a; ax 

a. a^ OS 

4" r A + A _ ) + ( A . 
' ssan 35311 3T|' 

+ 4 + 4 . 
X ax 

M 2 4 - 4 - 4 
S5 ac ax 

i ( # * & ) P ' 

where M is the Maoh number behind the shock in the steady flow at the 

design condition. Hence equations (8) become 
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0% o" sy oz 

m + M = , 
S t 2 % P o U Q a x ' 

M + M = , 
at ax ar da, 

^ + 21% = _ _ i _ a E 
at ax az ' 

%'(#* !# ) = 

2 

m + ̂  + + M + = 0 . 
at ax ax ay az 

In the perturbation equations (l2), there are only five independent 

equations but the first one Is useful for what follows. 

The flow field can now be found by successively solving the first 

equation of (l2) for p, the second for u, the third for v, the fourth 

for w, and the fifth for p. 

for a periodic motion of the body, the resulting flow field, as 

observed from a fixed point, must also be periodic with the same period 

as the body, because the perturbation equations (l2) and the bounda^p 

conditions (see Section 2.3) are linear. As shown la Chapter II, 

we need only study the flow field resulting from a harmonic motion of the 

body with a given circular frequency w. Hence the flow quantities may 

be expressed as 

u = *0 G(x, y, z) , 

V = "b V(x, y, z) , 

w = u^ e ^ W(x, y, z) , (13) 

p = Po*o"6 P(x, y, z) , 

Po o gikt z) , 

% 
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k = u) f/u-Q. 

in which, agam , the non-dimensional parameter k is given by 

(14) 

Thu.3 k is seen to be the frequency parameter based on the length jg, of 

the wing and the flow speed u.̂  of the gas in the steady flow below the 

surface at the design condition, k is generally very small, particularly 

at hypersonic and high supersonic speeds. 

Putting (13) into (12), we obtain 

(M^ - l) ̂  = - ik2M ^ ̂  - (ik) , 

ax 

8% 
ikW 

(15) 

g = l l - i i ( H . p ) , 

3% ay az 
-M - iki4 p. 
o ax 0 

Expanding the time-independent unknown quantities as a power series 

in ik 

u = = -f- ik 
y(l) H- (ik) ^ 

V -= v(o) + ik y(l) + (ik) ^ ^ 

w = = + ik w(i) + (ik)'w(") + . . , ; 

p = = p(o) + ik p(l) + (ik) p(^) + # * # ^ 

R = = R(°) 4- ik 
,̂(1) 

+ (ik)'R(^) ^ ^ 

(16) 
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and putting these expressions into (14) we obtain a sequence of systems 

of partial differential equations by equating terms of the same power in 

ik on both sides of each equation in (15). However, for stability analysis, 

only the systems of the zeroth order and the first order equations are 

required. These are: 

(M 2 - 1 ) . a M i = 0, 

cpr ay^ 

as<!l = 
3x cPC * 

ax az * 

= afiZl 
ax ax * 

and, 

d V 

(M 2 .1) a M l . j M l l . A H = - 2M 2 a £ l 
° ax2 3.2 o ax 

aaill = 
ax (9c * 

2 £ 2 . = v(o), 
ax ay 

ai/ll = 
ax Mg az ' 

(IT^) 

( aiill ) = e , 
ax Mg \ ay az j 
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where 

K = 1)^, (18) 

= K2(u(°)/M - (19) 
% 

2.3 BCUHDwaZ CONDIIIOnS 

1). At z = 0, W = 0 , (20) 

which, arises from the symmetry of the flow field with respect to the 

xy plane. 

2). At the wing surface 

For a pitohing caret wing, the wing surface at time t is given by 

fb(x, y, z, t) = e(t) (% - 3^) - y - z cot r = o, (21) 

with «(t) = e and g is the maximum amplitude of the oscillation 

of the wing. "The axis of pitching is parallel to z axis and intersecting 

the %y plane at a point P^(xQ, 7^)* 

The condition to be satisfied at the wing surface is that the relative 

normal velocity is equal to zero, i.e. 

Thus, the linearized boundary condition is, 

at y + z cot r = 0, V + W cot r = 1 + ik(x - x j . (22) 

3). Across the shock wave 

Let the equation of the bow shock at time t be 

G(x, y, z, t) = e(t) Q(x, z) + x tan ? - y = 0, (23) 

with Q(x, z) unknown, to be determined as part of the solution. Then 

the conditions to be satisfied at the bow shock are 

(g) 

OmtiEuitys [ p H ^ ~ = 0 , (a-) 
(co) 
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momentum: V ' tL 
(8) 

(oo) 
0, (25) 

[ 3 . iL 
(8) 

( c o ) 

0, (26) 

2 2 _(s) 
VG) + (VG) p 

( co ) 

0, (27) 

Energy: [ 
p . 2 2 _(s) 
+ 7 * vG) + (vG) h 

( oo ) 

= 0, (28) 

where h is the specific enthalpy of the gas, and are two different 

vectors on the surface G = 0 for which is taken to be parallel to the 

xy plane. 

How the canponents of the vectors in (24) to (28) can be found 

to be 

V 

VG 

t 

x-component 

%(1 + G(t)U) 

U cos 8 
00 

tan cp + e(t)Q^ 

1 

-e(t)Qg tan cp 

y-component 

%e(t)V 

-n sin 8 
CO 

tan cp + e(t) 

e(t)Q, 

z ~ c o m p o n e n t 

U^G(t)W, 

0 , 

6(t)Q , 
z 

0 , 

seĉ cp + G(t)(Q^+Qg)tan cp. 

where U is t h e flow speed in t h e free stream. A l t h o u g h vG is different 
CO _ 

from that for the two-dimensional flow past a wedge Viith semi-vertex 

angle 8, within the linear perturbation theory, (vG) , v * vG, and 

V ' remain the same in form as those for the two-dimensional flow 

except that in the present case z appears in Q as a parameter. Because 

of this, the boundary conditions across the bow shock w h i c h are derived 

from (24), (25), (27), and (28) should remain the same as those for the 

two-dimensional flow except tliat for the present case z is included in 

the function Q as a parameter. These boundary conditions can be written 

down from Chapters I and III as follows: 
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at y = X tan cp, 

V = A z) + Ik B Q(x, z), 

P = G Q^(x, z) + Ik D Q(x; z), 

(29) 

U = E z) + Ik F Q(x; z), 

a = G s) + ik J Q(x, s ) , 

where the oongtants A through J are defined In (III.4). Whereas from (26) , 

the fifth boundary condition across the bow shook is 

at y = X tan y, 

W = K Qg(x, z) (30) 

where 

P 
K = » gin ̂  008 ̂  1 ) = — G (31) 

As in all the boundary conditions (20), (22), (29) and (30), the 

ordinate y^ does not appear, for pivot axes parallel to z-axis with the 
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game value of x but different values of y , the pressure distributions 

should be the same. Further, the perturbation force vector p is 

p " E(t) p a^u^PC e(t)sin T, cos r )* 

The z-component of p%has no contribution to the moment about an axis 

parallel to z direction, and the %-component of p is of smaller order 

than the y-component and should be neglected. Hence in the formula for 

the oment of perturbation force the parameter y^ disappears. It is 

therefore concluded that the stability derivatives of a caret wing for 

pivot axes parallel to z-direction with the same value of should 

remain the same for different values of y^. This conclusion is very 

important for experimental performance, as the axis of pit hing normal 

to the ridge line may be fixed wherever is convenient. 

Letting 

Q(x, z) " z) + ik z) + (ikj^Q^^^Cx, z) +... (32; 

we obtain the following boundary conditiins for the zeroth and the first 

order solutions. 

z " 0, 
w(o) - 0, 

y + z cot r " 0, ? ( * ) + w(°)cot r ' " 1 

y - X tan ̂  " 0, 
v(o) " A 0^°^(x. z), 

p(o) 
- C z), 

u(°) 
- E z). 

R(°) 
- z). 

w(o) . K z). 

Z " 0 
w(i) " 0, 

y + z cot r * 0 ?(1) + w^i^cot r - X 

y - X tan « " 0 ?( ! ) z) 

p(l) - c z) 
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u( l ) . E Q^^)(x, z) + F z ) , 

R(l) . G Q^^)(x, z) + J Q(°)(x, z ) , 

%(!) . K Q(l)(x , z ) . 

In order to find the aerodynamic derivatives of a caret wing the 

equations (15) should be solved to satisfy the boundary conditions (20), 

(22), (29) and (30). In this thes i s we restrict ourselves to finding 

only the stiffness and the damping derivatives. For this purpose 

equations (17^) and (17^) should be successively solved to s a t i s f y the 

boundary conditions (33 ) and (33^), respectively. 
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3 THE STIFFNESS DEaiVATrVES 

In order to find the stiffness derivative of a pitching caret wing, 

we need only solve equations (17 ) to satisfy the boundary conditions 

(36^). This can be easily found to be a constant flow: 

v(o)_ p(o)_ 0 _ n(o)= R(°)= w(°)= 0, (34) 

A A 

also, 

hence 

= & 0^°)' = 0, 

A 

Q(°)(x, z) = 3 (35) 

A 

in which the constant of integration is determined from an additional 

condition that the bow shock is always attached to the apex of the caret 

wing. 

Since 0, and all the seroth order flow quantities are 

independent of z, it is concluded that the steady flow field below the 

lower surface of the wing due to a small steady departure of the wing 

from its design condition is (within the linearized theory) still a two-

dimensional flow. The three-dimensional effect can only arise from the 

unsteadiness of the disturbance. 

As seen from equation (3$), the shock wave resulting from an in-

phase (steady) disturbance remains a plane attached to the apex of the 

caret wing and parallel to the z-direction. Since A is generally 

smaller than unity, the shock will be,according to (3$), detached from 

the leading edges of the wing for an increase of incidence of its lower 

ridge, and vice versa. 

Having obtained the expression for the stiffness derivative 

can be easily obtained by performing the integration for the moment of 

perturbation pressure g(t)yM p ^ P ^ a b o u t the pivot axis over the wing 

surface. In doing so the pressure acting on the upper surface is assumed 

to be equal to zero and thus has no contribution. 

The moment of pressure is obviously twice that contributed from that 

half of the wing for which z 0, because of the symmetry of the flow 
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field with respect to the plane. 

: . M = 2 
aw 

+ ik I 3in r (x - XQ)ds 

e(t)YM^pQ p(°) + ik tan r (x - ;:)dkd?, (35) 

where Sw is the surface of half a wing and D its projection on the 

xy plane. 

How the pitching moment coefficient c is 

M 
m + ik (-cmg)j (37) 

where T is some characteristic quantity proportional to the volume of 

the caret wing. For simplicity, we take 

T = ' S 5 4 8, (38) 

where 5 is the plan area of the caret wing. Then the stiffness derivative 

-Co of a caret wing at its design condition is 

mg f r Po^-o r p(°) 
U 8 

1 /co88 xtanco COS8 

dx j (x-xo)dy + 
/cosp xtanp 

/cosG 
dx (x -

)( (f ) I 
O ' 00 00 

i(s (#) 

in which 

l/co8 e , j = cos (c/cos p (43) 
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are quantities with an obvious geometric significance. 

One conclusion to be drawn from formula (?9) is that the stiffness 

derivative of a catet wing at its design condition is independent of its 

aspect ratio but dependent only on the flight Mach number and the incidence 

of its lower ridge. 

Ill 



A THE DAMPING DEaiVATIVES 

In order to find the damping derivative of a caret wing, the first 

order equations (17^) must be solved to satisfy the boundary conditions 

(3) ), This seems quite complicated, but a detailed examination of it 

shows that the solution to (l7^) is represented by linear functions 

of X, y, z. Thus putting 

1 o' 
p(1) = = A x + B^y 

AgX + V 

W^l) : = A^x + 
V 

: = A^x* 
V 

8,(1) : = AgX + B^y 

(41) 

into (17 ) (3)^), the constants through can be determined 

uniquely. For our interest, we write down the following results only 

in which 

G 
3 

p(i) = A^x - ZM^y + Ol%o' 

v(i) = X + B^y - x^, f 

#(1) = GjZ, 

D/A 

20 

qfl) = 

GjZ, 

D/A 

20 C 

4 " 

2 

Go - Gj ' 

E(B - l) - D, 

- A 
. D/1 - E(^^- 1) -

2*2 1 + 

* 112 " 

EH/Zc^ 

(42) 

^3 2 X + —^ z + Const«, 
2E 

(43) 



The solution for and may, if desired, also be written down, 

here we just point out two interesting points that = Cg = 0, 

and all the constants are independent of T, 

The constant of integration in (42) may be found to be equal to 

zero by using the additional condition that the shock wave is always 

attached to the apex of the caret wing. 

The whole flow field does not depend on the aspect ratio s (or T), 

though the latter does appear in the boundary conditions (32). 

All the flow quantities except do not vary with z, therefore 

the flow field will be two-dimensional if and only if an additional 

condition that GU = 0 is satisfied. Generally this is not the case, 
J 

and the cross flow does affect the pressure distribution. Therefore 

the flow field caused by an unsteady disturbance is essentially a three-

dimensional one. Further, 0^ is always negative as shown by a series 

of numerical calculations, thus when the wing is oscillating to increase 

its incidence, the fluid will be flowing towards the central plane and 

vice versa. Also as seen from (43) the three—dimensional effect increases 

the pressure by an amount — w h i c h is proportional to x, and 

hence greatly stabilizes the body for forward pivot positions and 

destabilizes it for rearward pi ot positions. ^ numerical example 

is- shown in Fig*33. 

The shape of the bow shock resulting from an out-of-phase disturbance 

is seen to be a surface which intersects at parabolas with planes either 

parallel to the central plane or perpendicular to the lower ridge of the 

caret wing. It is concave for an increase of incidence and convex for 

a decrease of incidence. 

Having obtained the solution (/̂ 2) for the pressure distribution 

the damping derivative -Omg ^ caret wing at its design 

condition may be obtained from (37) combined with (^2) as follows 

-Cm; = ^ 
A roa CO « 
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where D sin <p 
1 

2 cos8 cosg ' 

4 

(Di - Ai)(j^ - g*) 

6 sin 8 

Al(j 

12 ein 6 

Ml sin 
o 

3co* $ cos8 

+ M 

- 2 .4 
cot 8 (] 

k 
g ) 

4 2 
j can (p 

4 

(45) 

_ 3_e2§_l (j, -g3) * (f 

2*in 2 sin 

It i* interesting to notice that like the stiffness derivative, the 

damping derivative of a caret wing at its design condition is also 

independent of its aspect ratio and dependent only on the flight Mbch 

number and the incidence of its lower ridge. 

In using formula (44), care should be taken that due to the definition 

of the frequency parameter k, in order to obtain the value of the damping 

derivative in the usual sense, the value calculated from (46) should be 

multiplied by a factor U*/u . However, the author feels that the definition 

for -Cg^ given by (3?) is the most natural one. 
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5 GENERAL CRITERION FOR STABILITY 

The stability of a caret wing at its design condition may be 

investigated through a general criterion for the critical condition for 

which the damping derivative first becomes zero. Since the damping 

derivative -Cm^ is a quadratic function of x , the condition for which 

it first becomes zero is obviously that 

. 0 (46) 

and the corresponding critical pivot position given by 

"ocr - - <47) 

Equation (46) gives an explicit relation between the flight Mach 

number M and the bow shock angle 6 at the design condition. Unfortunately 

this relation is too complicated to solve and eapress any quantity 

explicitly in terms of the other. However the method of iteration may 

be used and the result is plotted as a curve of vs 6 (FigJWj. In 

this figure, for a given value of different 8 correspond to 

different caret wings at design condition and not to the same wing at 

different incidences. 

As seen from Figjki for a fixed value of there exists a maximum 

angle of attack 6 for which the damping derivative of the corresponding 

caret wing at its design condition first becomes zero for the pivot 

position at x^ given by (47). At hypersonic speeds this critical angle 

8 is only a few degrees below the shock detachment angle (i.e. the flow 

deflection angle in two-dimensional flow case at which the bow shock 

begins to be detached from the body). On the other hand for a fixed value 

of incidence, there exists a minimum value of Mach number for which 

the damping derivative of the corresponding caret wing at its design 

condition first becomes zero for pivot position at given by C ?). 

Neutral damping boundaries for given caret wings may also be 

obtained from equation (46). 
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6 ILLUSTEAIIVE EXAMPLES 

Typical results for the stability derivatives of a caret wing versus 

the position of the pivot axis are plotted in Figs 32 to 3$. In Figi 35 

as well as in Fig.34,different 8 correspond to different caret wings at 

design condition and not to the same wing at different incidences. In 

all these figures a gas with y * 1.4 is uaed. For a given and 

varying 8, the stiffness derivative of the corresponding caret wings at 

design condition increases with increasing 8, but after 8 reaches some 

value depending on the flight Mach number, it rapidly decreases to very 

large negative value. 

The three-dimensional effect is seen to greatly increase the damping 

derivative for forward pivot positions and to decrease it for rearward 

pivot positions. 
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7 DISCUSSIONS 

The formulae for the stability derivatives of an oscillating caret 

wing obtained in Sections 4 and 5 are exact with regard to the incidence 

so far as that part of the moment of pressure contributed from the upper 

surface of the wing can be neglected. This may be the case for hypersonic 

and high supersonic speeds. For moderate or low supersonic speeds, these 

formulae should be modified to take into account the contribution to the 

moment of pressure from the upper surface. However, the present work 

is concerned primarily with the operation of the caret wing at the design 

conditiions, i.e. hypersonic or high supersonic speeds, and the contribution 

of the upper surface has been neglected. 

As for the viscous effect, assuming, as it is likely to be, that for 

a caret wing it is of the same order of magnitude as that for a two-

dimensional wedge-shaped wing, then it is negligible for practical interests. 

Aa sbKwm inCh.IV,, if Reynolds number based on the wing length is 

of the order 10^, which is much lower than that in practical flight 
/• 

condition^ , the viscous effect is very small for the flow deflection 

angle 8 greater than* say, 10° and at hypersonic speed. For a caret wing, 

any incidence 8 of the lower ridge less than, say, 10° would be out of 

practical interests, for the caret wing should have a finite volume and 

its upper ridge should be at most at zero incidence. Therefore, the 

formulae (39) and (44; for the stability derivatives obtained from 

inviscid flow theory are adequate for practical use, and the viscous 

effect may be neglected. 
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CHAPTER VI 

GEMKWl DISCUSSIONS AND cmCLOSIONS 



1 DISCUSSIONS 

Perturbation method is one of the most useful methods in 

45 

Mathematical Physics, and particularly in Fluid Mechanics , If the 

perturbation from a known flow field is small, one can linearize the 

perturbation equations and thus reduces a non-linear problem to a 

linear one. That the perturbation from a pure wedge flow is small 

is the main assumption in this thesis and is valid for the purpose 

of analising stability and flutter. For cases for which the known 

flow field is simple an analytical study of the linearized 

perturbation equations may be possible. Such is the case in the 

thesis. In general, numerical solution to the perturbation equations 

is necessary, and little physical insight can be obtained. It is 

not always possible to get physical insi^lit even in analytical cases, 

for instance, a complete analytical study has been made in Chapter V 

of the stability of a pitching Nonweller wing, but it is still 

difficult to know how the unsteady waves, which are included in the 

formulae for the stability derivatives, are reflected from the shock 

wave 8. 

The inviscid perturbation method in Chapters II and III is a 

regular one, whereas the viscous perturbation method in Chapter IV 

is singular with a singularity at the wedge apex which is inherented 

in any boundary layer theory. 

In Chapter II, the perturbation equations are approximate but 

the boundary conditions are exact. This inconsistence might be 

easily removed by neglecting all terms proportional to in the 

boundary conditions. However, consistency of an approximate theory 

does not necessarily give the most accurate result. It is believed 
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that by exactly satisfying; the boundary conditions, as is done in the 

thesis one may expect a more accurate result, as one starts with 

exact rather than approximate data. Also, keeping terms proportional 

to in the boundary conditions may, to some extent, keep in more 

characteristics of the supersonic flow. These expectations are 

confirmed partly by comparisons with experimental data for supersonic 

flow, (uid partly by conp&risons with the exact theory in Chapter III 

which shows tnat in this way the approximate theory gives excellent 

results for M as low as 2,0« 
o 

The method used in Chapter III for solving the perturbation 

equations is a powerful one for stability analysis for which the 

frequency parameter k is very small. This method of solution gives 

exact formulae for the stability derivatives, i.e. the stiffness 

derivative and the damping derivative. Should terms proportional 

to k^, k^, k*, ... in the aerodynamic derivatives be required, the 

higher order equations (III.6 ) should be successively solved* 

However, Chapter II shows that for pitching motions of a wedge these 

higher order terms in k have negligible contribution to the 

aeroaynamic derivatives even if k is not small compared with unity. 

As for flutter, for which k may be comparable with unity, this 

method should cease to be used unless the convergence of the power 

series ($) in Chapter III is proved. 

On the other hand, the solution given in Chai^ter II is exact 

with regard to the frequency parameter k, as long as k is not too 

large compared with unity (otherwise the velocity disturbance at the 

body surface is, for a given value of e, not small compared with the 

local velocity of the gas). Hence it can be applied for the case of 

flutter as well as for stability analysis, and also for cases of 

— 120 — 



aperiaic motions. It should be noticed that this solution is 

approximate with regard to the thickness and the free stream Mach 

number (more precisely, to the combined effect of the two, as 

representedby However, the method can be improved to give 

more accurate solutions. Thus it is proposed here that the flow 

- 2 

guantities u, v, p, p and be expanded in power series of , 

say, 

p . p(°) + M + M + ... (l) 
* o 0 

Putting these expressions into the exact perturbation equation8(i:4) 

and (1,7) and equating like terns of U we obtain a sequence of 

systems of equations to be solved successively, for example, we 

have, for p, 

as' 

(2) 
35 ^ ^ a-T) 

( n * 1^2,3^ *«» ) 

where g* = M (. The boundary conditions should also be treated in 

the same manner. Now p^^^ has been obtained in Chapter II and one 

may easily find p^^^ by the same methoa of solution as that for p^ 

and so forth. In this way, one may obtain a solution as accurate 

as required, assuming that all the p^^^ 's are of the same order of 

magnitude. For cases where the bow shock is attached to the wedge, 

we have M > 1 and these series must converge. As p^°^ by itself 

gives excellent results for M as low as 2.0, it is believed that only 

terms up to p^^^ are required to give a good solution which can be 
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applied for M as low as about 1.2. 

Success has been made of extending tlie two-dimensional 

perturbation method to a three-dimensional flow past a special type 

of bodies — the Nonweiler wing, and an analytical solution obtained. 

However, to apply the perturbation method to flow past a three-

dimensional body of general shape, even a circular cone, analytical 

treatment is not possible and numerical methods must be used instead. 

As mentioned in the Introduction of Chapter I, only a few 

experimental results for unsteady hypersonic flow have been reported, 

It is therefore suggested that the following experiments may be 

performed at the Department of Aeronautics and Astronautics of the 

University of Southampton: 

a) Measurements of the stability derivatives of relatively thick 

and very thick wedges in hypersonic and supersonic flows in 

order to check formulae (ill, 25) and (ill. 26) and the stability 

criterion for a wedge. 

b) Measurements of the stability derivatives of very thin wedges in 

hypersonic flow to check formulae (IV. 60). Also to obtain 

information of bluntness effect of a slender wedge, and of the 

phase lag between the unsteady boundary layer and the motion of 

the wedge. As the bluntness effect and the phase lag are 

neglected in the thesis, such expefiments could give a range of 

applicability of the present theory. 

c) Measurements of the stability derivatives of Nonweiler wings in 

hypersonic flow at their design conditions to check the 

theoretical results obtained in Chapter V, It would be useful 

also to perform these experiments for lower Mach number to check 

the assumption made in the thesis that the perturbation pressure 
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on the upper surface of the wing is negligible compared with that 

on the lower surface. 
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2 CONCLUDING RmABKS 

Exact (linearized) perturbation equations and boundary 

conditions for inviscid hypersonic and supersonic flows past 

a wedge-like body, for which the bow shock is attached to the 

body, are derived, and the problem of finding the flow field 

reduced to that of solving a wave equation containing only one 

unknown function. This system of equations can be applied to 

both unsteady and steady flows over both slender and thick, 

rigid or flexible bodies performing either periodic or aperiodic 

motions. 

16 .2 

These equations include those obtained by Chu and by Chernyi 

as a special case when the flow is steady. 

Two methods of solution have been developed to solve the 

perturbation equations. The first is applicable to periodic 

motions only in which all the unknown functions are expanded 

into power series in the frequency parameter k. Thus it can 

be applied to stability analyses for which k is very small. 

The second method is applicable for any motion —— periodic or 

aperiodic — in which all the unknown functions are expanded 
-~2 

into power series in . It can be applied to flutter as 

well as stability analysis, for there is no restriction on 

the frequency parameter. 

The application of the first method to a pitching wedge in 

inviscid hypersonic and supersonic flows gives exact formulae 

for the stability derivatives in the most general cases. In 

these formulae the effects of wave reflection and of thickness 

fully included. 
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6 This exact theory includes the r eory of Carrier & Vaa aa 

a special case when the flow ia supersonic. 

7 It is shown that whereas the stiffness derivative of a wedge 

increases in magnitude with its thickness, the damping 

derivative first increases with the thickness and thmfalls to 

very large negative values several degrees before the semi-

vertex angle reaches the shock detachment angle. 

8 Increasing flight Mach number tends to increase the stability 

of the wedge, however, it is shown that even at hypersonic 

speeds,under certain circumstances the body may be destablizied 

by the flow passing it. A general criterion for stability is 

also obtained. 

9 Solution to the perturbation equations by the second method 

has been carried out to the first term in the power series in 

M . The application of the solution to a pitching wedge in 

inviscid hypersonic and supersonic flows yields approximate 

formulae for the aerodynamic derivatives in two forms of power series 

in the frequency parameter k and in the reflection coefficient 

X, the value of which in the unsteady flow is shown to be the 

same as that in the corresponding steady flow. lliTiile the 

damping derivative so obtained is approximate, the stiffness 

derivative is proved to be exact. 

10 In addition to the set of waves due to the disturbance at the 

body surface which has been discusseu previoualy^^'^^'^'^^, a 

new set of waves due to the motion of the bow shock is discovered 

which exists for relatively thick wedges only. This set of waves 

is found to be a factor which tends to strongly destablize the 

motion of the body. It is shown to be important for thick wedges 
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and become dominant near the critical situation. Effects of the 

reflected waves of both sets are shown to be important for 

relatively thick wedges. 

11 For pitching motions of a wedge, it is shown that the terms 

2 

proportional to k or higher orders of k in the aerodynamic 

derivatives are negligible. 

12 It is shown that for stability analysis the exact theory 

developed in Chapter III includes the approximate theory 

developed in Chapter II as a special case which, in turn, 
14 13 

includes both Mcintosh's theory and Appleton'g theory 

(see also Bef, 22) as special cases when the flow is hypersonic 

and the wedge is slender. As to the ranges of applicability of 

the theories of Mcintosh and of Appleton, it depends on the 

error allowed. However, both the exact and the approximate 

theories give more accurate and simpler formulae for the 

stability derivatives than either Mcintosh's theory or Appleton's 

theory does. 

13 Viscous effect is included by modifying the body shape to account 

for the displacement boundary layer. Thus the concept of an 

effective wedge is introduced which is the original wedge 

thickened by a semi-vertex angle equal to the average inclination 

of the displacement boundary layer, and the viscous flow field 

past the original oscillating wedge reduced to an inviscid flow 

field past the effective wedge which is oscillating and deforming 

according to the actual growth of the boundary layer, which is 

assumed to be in-phase with the motion of the body. 

14 Closed form formulae for the stability derivatives of a sharp 

pitching wedge in viscous hypersonic flow are obtained which 
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fully includes the effects of iMnre reflection wid of thickaegs. 

The viscosity of gas is shown to play two roles: first it 

thickens the wedge to an effective one, secondly it makes this 

effective wedge deformable. 

15 The effect of viscosity is shown to destablize the body for 

forward pivot positions and to stablize it for rearward pivot 

positions. It is important for thin wedges in hypersonic flow, 

but decreases with increasing thickness. Comparisons witn 

inviscid flow are given. 

16 The viscous perturbation theory appears to include Orlik-

17 

Ruckemannk viscous piston theory as a special case when the 

wedge is very thin. 

17 Extension of the two-dimensional perturbation theory to a three-

dimensional one is made and the results applied to the study 

of the stability of a pitching caret wing at its design 

condition in hypersonic or high supersonic flows. Exact 

formulae for the stability derivatives and a general criterion 

for stability are obtained. The stability derivatives of a 

caret wing at design condition are shown to be independent of 

its aspect ratio but dependent only on the flight Mach number 

and the incidence of its lower ridge. 

18 It is shown that there is no three-dimensional effect on the 

stiffness derivative of a caret wing, but this effect is 

dominant for the damping derivative and greatly increases it 

for forward pivot positions &md d^icreases it for rearward pivot 

positions. 
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CONCLUSIONS 

A general perturbation theory of unsteady hypersonic and 

supersonic flow past a wedge-like body has been developed which can 

be applied to inviscld and viscous flows over both slender and 

thick, rigid or flexible bodies performing either periodic or 

aperiodic motions, providing the bow shock is attached to the body. 

The theory is applied to study the stability of a pitching wedge, 

and gives results which include as special cases most of the 

up-to-date theories for oscillating wedges : the theory of Carrier & Van Dyke 

theory of Carrier for supersonic flow, Mcintosh theory for 

hypersonic flow past a slender wedge BJid Orlik—Ru-ckemann'a theory 

for viscous hypersonic flow past a slender wedge. A general 

criterion for stability of a wedge is also given. An exact theory 

for the stability of a pitching Nonweiler wing at design condition 

In hypersonic flow is also obtained using the same perturbation 

method. 
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APPMDIZ A 

PROOF OF THE BEQUALirY | | < 1 

Let 

^ Pm ° ' p* 

' _ r ^ V — i,,/̂ o 
i2 = z a j 1 
2 aL 2 p* 

then., it la clear that 

^2 * "2 

The density ratio (̂ m/Po is given by 

!» : ^ — J . (A ) 
P Y * 1 ( • i)m2 ,in% ^ 
ffl CO 

This relation at the bow shook is symmetric with respect to the subscripts 

o and m, hence we have 

^ * (y A ) w • 

From (A^) and it follows that 

Replacing every term on the right hand sides of expressions (A^) by its 

minima, we obtain 

' 

= 1 _ 1) tan% + yW - v C % 

PoA ^ ' 

- 1 - 1) tan% > o 

Therefore, 
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X. - 1 ! * 
1% + %2 

and 

ZLp 

It follows that 

x j < 1 . 
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APPEMDn B 

IBDUanON G TO 

We want to prove in this Appendix that the quantity G in Chapter I I I 

reduces to the quantity in Chapter I I when the teimg proportion to 

are neglected. 

Firstly, the two quantities are, 

X G + d 
(B<) 

1 + X m X H ^ X G + d 
a a a i & 

° 1 - ''a-a ' (l - ' 1 - ̂  ' 1' 

2 0 = I + "i-z-Ys * — * 

(1 +«l) ' 

where, the quantities o, d, x , ^ , y , and are defined in Chapter II# 

We can establish the following relations Immediately by their definitions: 

A = Ng ,, B = + Ng , C = Lg , 

D = Lg seo^^, E = -N^ cot (Bg) 

In which, the quantities , Nx and are defined in Chapter II. Also, we 

have, generally 

and 

X.c + d 

I = la = ® a - - r r i ; ' < V 

E = - = E , 

A 

where I and E are defined in Chapter II 
a a 

When 1 the terms proportional to M ^ are neglected, we obtain 
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= X, = H, = m, 

h — 1) e / a = o(m^^) = 0 . 

Therefore, making use of (B^) and (B^), we have 

a a . a k a 

(Bg) 

2G 

but 

1 + X^(B + D + G + H A ) + ( B - D - C - H A ) X^o + d 
8, & Si • . , & & g, 

1 1(1 -Xam^(l +H^) ^ ~ ^ a 

A + C - Ng + Lg - a 

E + D + 0 + H^A = jĵ  t Nj + 1^(1 + oot^f) + + V 2 

= 3l + i, » Hgt 1 + SJ * 21^ 

c * a(l + H ) + Lg(l — H ), 
A c & 

and Glmilarly, 

B - D - G - H A = d + b(l - H ) - LgXl + H^), 

where a, b, o and d are defined in Chapter II. 

By making use of all these relations, we finally obtain 

or - ' ' " 
1 - ''â a " (1 - V a ' C - V V ^ " ^a 

-X^( a(l * H„) . L,(1 - H„) ) - ( b(l - H^) - L^d + IlJ ) 

»2(1- " V 
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the last term on the right hand side of the above equation can be simplified 

as follows, 

b(a + L_m ) - a(bm - L_) 
the last term = r — L ^ ^ 

1 - ka*a aNg 

b(l - m^) + Lgd -

N,{1 -

and therefore, 

1 (1 - '-a>V2^2 

1 - V a 

^ - \»a , 

G — G • Q oE $D I 
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APPROXIMATE THEORY 
S L E N D E R V V E D G E T H E O R Y 

- 0 - 8 

Fig 4 Con-oar ison of the m - p h a s a m o m e n t d e r i v a t i o n - m , 
k - 0 0 5 
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Fig 8 E f f e c t s of t h e s e c o n d s e t of w a v e s 
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APPROXIMATE THEORY 
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EXACT THEORY 
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VAN DYKE 
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Fig 17 . . C o m p a r i s o n of - C m g 
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A P f ^ R O X I M A T E T H E O R Y 

W I T H O U T T H E S E C O N D 
S E T O F W A V E S 

- 2 0 

Moo.17, 43° 54 

Fig,19. E f f c c t of t h e sccond s e t of wBvcs on t h e damping 
(dGi~ivcitiv(2 . 
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DESTABILIZING 

- 0 2 

ig.21 . N e u t r a l d a m p i n g b o u n d a r y for a w e d g e of 40** s e m i v e r t c x 
a n g l e . ^ = 1 4 . 

F



w
 
(U
 

u
 

ml
 M
 

C
D
 

"O
 

O
 

"O
 

U
 

(M
 

(M
 

Li_
 



10 

0 8 

0 6 

0 4 

0 2 

- 0 2 

- 0 4 r 
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M o o = 1 7 , ^ = 1 - 4 , h = 0 7 
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Fig.24 Damping d e r i v a t i v e s of s h a r p w e d g e s . M o o = 1 7 

7̂  = 1 4 , h = 0 . 
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Fig 2 5 S t i f f n e s s d e r i v a t i v e s of a sharp w e d g e Moo 17. 



- c. 
VISCOUS 
INVISCID, THEORY 
EFFECTIVE WEDGE 
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M o o = 17, y = 1 4 , e-o = 12° 
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d e r i v a t i v e s . M o o = 1 7 , y = 1 4 G-g = 3^ 



VISCOUS COMPLETE 
WITHOUT WAVE REFLECTION 

Fig 2 8 E f f e c t s of w a v e r e f l e c t i o n on the d a m p i n g 
d e r i v a t i v e s M oo = 17, T = 1 4 , G"o = 3 ° 
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INVISCID THEORY . 
VISCOUS THEORY ( R . (Z) = 10' 

0 
ORLIK - R U C K E M A N N ( RgJ-O = 10 ) 

Fig 2 9 .Compar ison of the s t i f fness d e r i v a t i v e s of a s h a r p 
i n s u l a t e d w e d g e = 0^ = 3'' . 
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Fig .30 C o m p a r i s o n of the damping der ivat ives of a s h a r p 
i n s u l a t e d w e d g e . M = 17^ Y = , 9^ = 3* 
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F i g 3 2 S t i f f n e s s d e r i v a t i v e of a c a r e t w i n g a t 
i t s d e s i g n c o n d i t i o n . = 17, & = 20"* 
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Fig 3 5 D a m p i n g d e r i v a t i v e of c a r c t w i n g s a t design 
condi t ion . M o o = 1 7 Xo = 0 7 
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