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ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF AERCNAUTICS AND ASTRONAUTICS

Doctor of philosophy
A PERTURBATION THEORY OF UNSTEADY HYPERSONIC AND SUPERSONIC FLOWS

by Wai How Hui.

A general perturbation theory for hypersonic and supersonic flows past
a wedge~like body is developed, which can be applied to both unsteady and
steady flows for which the bow shock is attached to the body. It may be
used to describe inviscid and viscous flows over both slender and thick,

rigid or flexible bodies performing cither periodic or aperiodic motions.

The exact (linearized) perturbation equations and boundary conditions
are first derived, and the problem of finding the flow field reduced to that

of solving a wave equation containing only one unknown function.

Approximate formulae for the aerodynamic derivatives of a pitching
wedge in inviscid flow are obtained in two forms of power series in the
frequency parameter and in the reflection coefficient which include McIntosh's
theory and Appleton's theory as special cases, Two sets of waves are shown
to exist, the first is due to the disturbance at the body surface, the
second is (ue to the motion of the bow shock and is found to be a factor

strongly destablizing the motion of thick bodies.

Fxact formulse in closed form are obtained for the stability derivatives
of a pitching wedge of any thickness in inviscid hypersonic and supersonic
flows. Also obtained is an exact general cirterion for stability. It
ineludes the approximate theory and the theory of Carrier & Ven Dyke as special
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The effect of viscosity is included and closed form formulae for the
stability derivatives of a wedge obtained which include the effects of
wave reflection and thickness, and which appears to include Orlik=Ruchemannts

theory as a special case.

Finally, by extending the perturbation method previously mentioned,
exzact formulae for the stability derivatives of a pitching Nonweiler (caret)
wing in hypersonic flow are obtained and shown to be independent of its
aspect ratio. The three-dimensional effect of the flow is shown to be

dominant for the damping derivative.
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NOMENCLATURE

4,B,C = constants defined in (I.17) and (I.19).
Z,ﬁ,ﬁ,ﬁ,ﬁ,ﬁ,é,& = congtants defined in (III.&)

a,b,c,d = constants defined in (II.43)

a = gpeed of sound

A1,82703’D1 = constants defined in (V.43)

A(Pr), B(Pr) = constants tabulated in Section IV, 3

b = coefficients of power series of Fﬁ(x), (11.52)
c = constant of proportionality in the linear

viscosity-temperature law, (IV,21)

o = arbitrary constant
Cy = constant defined in (III.15)
c = pitching moment coefficient
"Cme = stiffness derivative
«cmé = damping derivative
CP = pressure coefficient
d = parameter defined in (IV.23)
E = parameter, C/&
E = parameter, "C"O/'}i.0
Ea = constant defined in (V.19)
€, = constant definec in (V.19)
F(x,y,t). . = function defined by (I.8)
Fl’Fz’FB’Fk’Fﬁ = unknown ‘functions
fl;fz;fB,f4 = arbitrary functions
fs(x,t) = function describing the shape of the bow shock, (1.9)
fb(x,y,z,t) = function describing the caret wing surface, (V.21)
fx*’fz* = arbitrary functions
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G(x,y,2,t) function describing the bow shock

G = parameter defined in (III.23)

Go = parameter definded in (IV,21)

G, = parameter defined in (II.7)

G2,G3,G4 = parameter defined in (V.45)

g = constant defined in (V.40)

H = parameter, (Moz—l)%tan ©

Ha = parameter, Motan 0]

H, = (Mlz—l)%tangw‘

HO = Motan N

b = non-dimensionalized pivot position measured from

the wedge apex; specific enthalpy

I = parameter defined in (III.23)

I, = parameter defined in (II1.70)

i = (wi)%

3 = constant defined in (V.40)

;,7“ = upit vectors in the x,y directions, respectively
K = hypersonic similarity parameter, Mgg

K - constant defined in (V.31)

k =  frequency parameter,(nﬁ/uo

Rw;is = constants defined in (IV.46) and (IV.58), respectively
Z = chord length of the body

L = function defined by (I.22)

51’12 =. constants defimed in (11,42)

M = Mach number; alsoc pitching moment

m = parameter, (1-H)/(1+H)

m = parameter, (1»Ha)/(l+Ha)

~Ma = in-phase component of pitching moment

~Ig = out~of-phase component of pitching moment
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function defined by (I.22)

congtant defined in (IV.16)

constants defined in (II.42)
time-independent perturbation pressure
perturbation pressure

gas pressure

gas pressure in the free stream
Prandtl number

time~-independent function describing the shape of
the bow shock

function defined in (II.85)
constents defined by (IV.46) and (IV.58), respectively
time~independent perturbation density

Reynolds number

constants defined by (IV.46) and (IV.58), respectively
plan area of the caret wing

semi~span

3/1

constants defined by (IV.58)

coefficients defined by (II.62)

gas temperature

coefficients defined by (II.56)

constants defined by (IV.46) and IV.58), respectively
time wariable

non~dimensional form of T

vectors tangential to the shock wave surface

velocity components of gas in X,y,z direction,
respectively

perturbation velocity componentsof gas defined in
(I.2) and (V.7)
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VARY/

velocity components of invigeid gas behind the
bow shock in the x',y' directions, respectively

time~independent perturbation velocity components

velocity, pressure and density,respectively,
of gas in the free stream

velocity, pressure and density, respectively,
of gas in the reference steady flow past the
original wedge

velocity, pressure and density, respectively,
of gas in the reference steady flow past the
effective wedge

constant defined in (I.23)

constants defined in (IV.46)
neo~-dimensionalized matching point position

xmcos 91
eartegian coordinates

non-dimensionalized form of %,¥,%Z respectively

non-dimenionalized form cartegian coordinates
along and perpendicualr to the original wedge
surface in its average position, respectivVely

non~-dimensionalized coordinstes determining
the pivot axis of the caret wing

parameters defined in (IV.31) and (IV.52),
respectively

parameters defined in (IV.33) and (IV.56),
respectively

flow deflection angle in the reference steady
flow, also angle of attack of the lower ridge

of the caret wing at its design condition

samll parameter, maximum amplitude of oscillation
semivertex angle of the wedge

angle of attack of a wedge

shock wave angle in the reference steady flow;
also incidence of the plane of leading edges

of a caret wing at its design condition

B—-8

angle between the plane of symmetry of a caret
wing and the wing surface
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v = ratio of specific heats of gas

o = circular frequency of oscillation

Q = index in the power law of viscosity-temperature law

T = gas dengity

p = perturbation gas density

6(x,t) = disturbance function at the body surface

6*(X’,t) = displacement thickness

60*(1) = g4=0q, approximately the averége inclination of the
displacement boundary layer

A(x) = Mamplitude function® of the disturbance at the body
surface

A1(xﬂ = A(x:)eikX

s = discriminant definea in (II.74)

A = rpeflection coefficient, (G - »4)/(C + uA)

Ay = approximate reflection coefficient, -b/a

ot = parameters defined in (II.47)

pos¥o = parameters defined in (IV.18)

(¥ = viscosity

# = Mb/(sz"W)%

T = characteristic volume defined in (V.38)

;? = vector in the tangential direction of the bow shock

o = constant tabulated in Section IV.4

€ a7y % = variables defined in (V.10) and (I.5)

¢! = Mg

; = hypersonic interaction parameter

SUBSCRIPTS

#

free gstream

o0

o = reference steady flow past the orignal wedge or
past a caret wing at design condition

o yiil =



er
eff

inv

orig

SUPERSCRIPTS

(0), (1) 000 (n)

reference steady flow past the effective wedge
upper surface

lower surface

body surface

critical value

effective wedge in inviscid flow

time~independent quantities in the unsteady inviscid
flow past the original wedge

quantities behind the bow shock in the unsteady
inviscid flow past the original wedge

quantities arising from the deformation of the
effective wedge due to the change in the displacement
thickness only

weak interaction

strong interaction

cases of mixing of a weak interaction and a strong
interaction

the zeroth, the first and the nth order solution for
the time~independent perturbation quantities,
respechively
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1 INTRODUCTION

Steady supersonic flow has been extensively studied using
potential theory, whereas steady h¥personic flow has also been

studied in great detaill’Z,

The purpose of studying unsteady hypersonic and supersonic
flows is mainly to predict the aerodynamic forces that act on
vehicles as a result of unsteady motions relative to uniform
hypersonic¢ or supersonic flight., This study is of special importance
for aerodynamic stability and contrel of wvehicles.

Unsteady supersonic flow has been systematically studied using

potential theoryﬁ, which is a linearized theory. For hypersonic flow

the assumptions used in linearization of the flow equations are no

longer valid even for slender bodies, and the problems are essentially
non-linear. Also the entropy gradients produced by curved shock waves

make the classical isentropic irrotational approach inapplicable.

Many experimental results for unsteady supersonic flow have bheen
reportedz’&. In contrast to this,for hypersonic flow, those which
can be usec to compare with theoretical prediction appear to be quite
limited, this is due to the Gifficulties involved in experiments.
East5 has obtained experimental results on oscillating wedge-shaped
airfoils with and without nose blunting, and has compared these with

various predictions. IHe also gives a study of available theories.

Unsteady hypersonic flow has been studied using Newtonian impact
theoryl’which assumes that there are no interactions between the fluid
particles, and that when such particles collide with the surface of

the body, their component of momentum normal to the surface is altered,



with the result that a pressure force is exerted on the body. This
simple theory is valid only in the double limit that the flight.

Macix number M _ —* ® and the ratio of specific heats y—% 1, but
otherwise gives poor results. It is usually usea for the estimation
of pressures an¢ overall forces on bhodies in both steady and unsteady
flows6.

Lightbill's piston t.heory7 appears to be the first theory which
can be used to predict aerodynamic forces acting on a supersonic or
hypersonic oscillating airfoeil, It gives a simple, explicit
relationghip between the pressure on a surface and the downwash.
However, it is based on the hypersonic small-disturbance theory snd
ignores tihe existence of the bow sheck, and therefore can only be
applied for Mag => 1 and M 8 < 1, where § is a measure of the
maximum surface slope. This limits its range of applicability.

Thus for M6 > 1, Miles' strong-sheck piston theory8 may be used
instead, in which the simple wave relationship in the piston theory
is replaced by the shock wave relationship for compression surfaces.,
Although this is on a semi-empirical basis it gives better results

5

for M;e > 1 and is shown by Bast” to be coincident with Newtonian

impact theory in the double limit M_—» @ and v ¥ 1,

In the unsteady shock-exzpansion theory"lo which is analogous
to the strong-shock piston theory, an unsteady flow problem is, by
snitably interpreting the results of the hypersonic small-disturbance
theory, reduced to a steady problem with the body shape slightly
distorted to account for the unsteady motion, and this steady problem

is then solved by the shock-expansion method.

Piston theory, strong-shock piston theory and unsteady



shock-expansion theory are all closly related to the hyperseonic
small-disturbance theory and subject to the same approximations.
These theories can therefore be applied only for hypersonic flow
past slender bodies. Besides, in these theories the bow shock is
either ignored or assumed to be able to completely attenuate waves
coming from the body surface and hence the effects of the secondary
waves coming from the body and reflected from the bow shock are

neglected.

For an oscillating wedge in supersonic flow, exact potential
theory has been developedll’lz. On the other hand for am oscillating
wedge in hypersonic flow, theoretical studies have been made by
Appleton.l3 (see also Ref. 22 for some correction to Ref, 13) and by

Mclnto&hlk with the aim to include the effect of the reflected waves

from the bow shock. These two investigators both assume that the
perturbation from a pure wedge flow is small and thus linearize the
equations of motion of the fluid behind the bow shock, Besides they
both made the piston theory approximation, or the hypersonic small-
disturbance approximation without discussion of its walidity. (see
also next paragraph) It is shown independently that the strong-shock
piston theory is a special case in their theories when the reflected
waves are neglected. McIntosh alse points out that an important
effect of the waves reflected from the how shock is a phase shift

in the unsteady pressure distribution. In fact, Appleton's theory,
being accurate up to the first order in the frequency parameter, is
also a special case in McIntosh's theory which was therefore, before
the present theory, the most up~to-date theory for hypersonic flow

past an oscillating slender wedge.

However, McIntosh's theory is basec on the hypersonic small-

-l -



disturbance approximation without discussion of the validity of
approximations, and the effect of thickness of a wedge is not known.
Although hypersonic small-disturbance theory has been shown to give
good results for steady hypersonic flow past slender bodiesi’g} as
corrared with experiments and with some exact theories, Mileg heas
remarked, 'that the success of the linearized perfect fluid solution
for a specific configuration in steady flow, as determined by a

comparison with experiment, offers no guarantee of the practical

validity of the corresponding unsteady flow solution'B.

As for Mach wave interaction with and reflection from a shock

6

wave, the problem has been solved by Lighthillis, Chul , and

Chernyi2 for wedge~like bodies of any thickness in steady supersonic
and hypersonic flows providing the bow shock is attached, 1In
contrast to this, in unsteady flow the problem has only been
studiedlB’lh using hypersonic small-disturbance approximations.

In this thesis it is proposed to find a solution of an unsteady

inviscid or viscous flow over rigid or flexible wedge-like bodies

of any thickness performing €ither periodic or aperiodic motions,
providing the bow shock is attached. From this solution one is
then in a position to find out what was neglected and to give

comments on the existing theories.

The same assumption is made that the perturbation from a pure
wedge flow is small, but the perturbation method is applied to the
original equations which describe the motion of the inviscid gas
rather than to the hypersonic small-disturbance equations. An exact
system of linearized perturbation equations is thus obtained in
Chapter I, and the problem of finding the flow field reduced to that
of solving a wave equation containing only one unknown funotion.

16

These perturbation equations include those obtained by Chu™ and by

-5 -



Chernyi2 as a special case when the flow is steady. It will be
shown that McIntosh's theory and Appleton's theory are special cases
in the approximate theory (when the flow is hypersonic and the wedge
is slender) developed in Chapter II of this thesis which, in turn, is

a special case of the exact theory developed in Chapter I1I of the
thesis. The exact theory also includes thetheory of Carrier and Van Dykﬁ1q’12

as a special case when the flow is supersonic, and gives a general

criterion for stability of a pitching wedge.

It will be shown that in addition to the set of waves due to
the disturbance at the body surface which has been discussed
previously, another set of waves is discovered which is due to the
motion of the bow shock and which exists for relatively thick wedges
only. This new set of waves is found to be a factor which tends to

strongly destablize the motion of the bedy.

The extention of the inviscid perturbation theory in Chapters II
and III to viscous flow is made by suitably modifying the body shape
to account for the displacement boundary layer. This produces
formulae in closed form for the stability derivatives of sharp,
oscillating wedges in viscous hypersonic flow. This viscous

4

perturbation theory appears to include Orlik-Ruckemann's theory1
as a special case when the wedge is very thin.

Application of the exact perturbation theory to a special type
of hypersonic lifting vehicles — the Nonweiler wing or Caret wing —
is made possible by extending the two~dimensional perturbation
method to a three-dimensional one. The stability of a pitching
Nonweiler wing is thus studied in detail and a criterion for
stability given in Chapter V. The three~dimensional effect of the

flow on the stability derivatives has also been discussed.

- O -



2 THE PERTURBATION EQUATIONS

As stated in the introduction, the unsteady hypersonic or supersonic
flow past a wedge~like body to be studied in this thesis is assumed to be
a small perturbation to some reference steady flow past a wedge — the

pure wedge flow.

The bow shock is assumed to be attached to the wedge apex, hence
the flow field between the bow shock and the upper surface of the wedge
and that between the bow shock and the lower sureface are independent of
each other and can be treated using identical analyses., We shall
therefore consider only the flow field between the bow shock and the

uppe surface.

Let the system of coordinates XOy be such that O0X coincides with
the wedge surfrce in the reference steady flow case, and O is the wedge
apex (Fig.1). Denote by U and ¥, respectively, the velocity components
of the gas in the X,§ direction, and by D and ; the pressure and density
of the gas; also by ug,v,,p0 and.po the corresponding quantities in the
pure wedge flow. Obiously, v, = o, under the éystem of coordinates
chosen. The time variable is denoted by T. The basic equations which
describe the inviscid gas flow between the bow shock and the upper wedge

surface may be expressed in the following form.

.%E ?(Qkﬂ \(Kr_)‘ = 0
b ax Y
H, g éﬁ . 93 - 1@
P p 3% . (1)
¥, v, QY = - 1 an
5% %
a(i/oV) @L[o'.”). = M
at % v



where vy is the ratio of the sp=scific heat of the gas at constant pressure
to the specific heat at constant volume.

For small perturbaticn, we may express

[«

= Uy t el t ooee

(o]
V = eVt e
- (2)
P = Dyt cpF oeeo
P = pp Fept oeee

where ¢ is a small quantity which characterigzed the deviafiion of the
unsteady flow from the pure wedge flow. The quantities w/ug,, p/pg

and p/po, together with their derivatives are assumed to be of order
unity in the flow region being considered. In this thesis we shall
limit ourselves to finding only the terms of the first degree in the

small parameter €.

The non-dimensionalized independent variables x,y and © are

introduced as follows

X:X: y = I, t:*}s"y (3)

—
P -
4@ ¢

~

where £ is some characteristic length for which the chord length of the

wedge iz taken thrcughout the thesis.

Putting (2) and (3) into (1) and on dropping quardratic and higher
order terms in e, we obtain the following system of linear equations for

the determination of the perturbation flow quantities u,v,p and p:



at  ax uO
au , au - _ .1 2p
ot ax oty 3%
(4)
‘aX-;-Av::_. 1«&2
at  2x P U,
3B, 2R = R 28, 28
at * 3% a at * 3K )
where a, = (ypb/po)ﬁ'is the spoed cf eound in the pure wedge flow.
Making a transformation
E = x+ i
= x=1% (5)
g =
we obtain,
p -
8 . e i 28, 2L et
ag“uo[?(arf_*aﬂ))'agJ:O
3 2p_ut 3% 3
oo
(é)
- A3
o P4, o
fo:d 0 JE .

Differentiating the last equation with respect to 7 of (6) and then successively
making use of the first, the second and the third equations of (6), we

obtain



2 2 2
35 - - [ ;§;+ag§% >+a§§z
= X [( EER ) + (2R, 2R )] + bEE
agaﬂ agan an Cz 3
or M2 ﬁiﬁ_ﬁi” = 1 (ﬁ_. ) P
) 5€2 aC 43 A

where M = uo/aO is the Mach number behind the bow shock in the pure

wedge flow. Returning from variables £,7 &nd ¢ to x,y and %, we have

2
(Mz - 1) * + 2° :25% + MR 5;% 3~9 = 0 (7)
5] ay

which includes only one unknown function p.

The required flow field can now be found by first solving the wave
equation (7) for p, then the second equation of (4) for u, the third for

v and the fourth for p.

Equation (7), the key equation in the problem, should be recognized
to be the same equation as that satisfied by the perturbation velocity
potential in subsonic and moderate supersonic flows past slender bodies.
In those cases the perturbation pressure is a linear function of the first
derivatives of the perturbation velocity potentiala.

For steady flow we have /3% =0, and equations (4) and (7) reduce

16

to those obtained by Chu'~ and by Chernyiz.



3 THE BOUNDARY CONDITIONS

We shall now derive and linearize the required boundary conditions
for determining the flow field. Denote by 6 and B, respectively
the flow deflection angle and the shock wave angle in the pure wedge
flow (Fig.1), and for brevity, let ¢ = g~g. If in the reference steady
flow, the wedge is at zero inecidence, ¢ is equal to the semi~vertex
angle § of the wedge otherwise it is equal to the sum (for the lower
surface) or the difference (for the upper surface) of the semivertex

angle and the angle of attack . Let the wedge surface he given by
F(x,y,t) = eb(x,t) -y = 0O (8)

with 8(x,t) known. § reﬁresents the disturbance at the body surface in
mogt general cases. Such a disturbance may be due to any motion -
periodic or aperiodic = of a rigid wedge, or due to a steady or unsteady
deformation of a wedge-like body, or due to a changing of body shape or

of incidence. The bow shock may be described by
G(x,y7,8) = ¢ fs(x,t) + xtap -~y = O (9)

where fs(x,t) is unknown and to be determined as part of the solution.
The two functions § and f5 together with their derivatives are assumed

to be of order unity.

The boundary condition at the body surface, written in terms of

x,y and t, is simply

where



and ¥ is the velocity vector of the gas, v = iu + Jv, where 1,] are the
unit vectors in X,y direction, respectively. After linearization, this

boundary condition becomes

aty = O, ¥y o 88, &
u T Bt T ax (10)

The boundary conditions at the bow shock, written in terms of x,y

and t, are as follows1

-(8)
N s oG . 2. oy =
Continuity condition: [p(uo STtV vG)J(m) 0 (11)

Momentum condition in the tangential direction:

(3.7 ] =0 (12)
(=)

where T is any vector in the tangential direction of the shock.

Momentum condition in the normal direction:

(13)

]
O

[pta, o+ - w0+ o0 JES; )
Energy condition:

(14)

I
O

[+ L2 (i | =
where h denotes the specific enthalpy of the gas.

In £11) to (14) the subscript s refers to the flow quantities just
behind the bow shock, while the subscript « refers to the flow gquantities
in the free stream., Bracket means the jump of the quantity inside the

bracket from « to s.

Setting e = 0 in (11) to (14), we obtain the following relations,
which the flow quantities in the pure wedge flow should satisfied, and

which are useful in deriving the boundary conditions for unsteady flow,

- 12 -



P, Sing = p U sinp

u, cos @ = Umcoss
2 2 2 .2 (15)
P, * aY, sine = p +p U~ sin’p
L2 iR
ho + 5 u, = h_ +% U,

where U, is the speed of the gas in the free stream.

From (11) we have

af5 aﬁs
(po + ep)[ eu_ ST + (u.o + eu) (tan @ * 'g;("") A :l
af af -
- ] o5 .
pw[ eu  Tx< * U, cos® (tan ¢ + ¢ ax) + Uy sin evJ’
or,
of . af -
P4, tan © + e[ pu, tan o + po(uo Tt U tan o + % T3 v) _j
. of af
- sin 8 59
T Pole o epm(uo 5—’-&2 * U cos 832

Upon using the first and the second relations of (15) we obtain,

at y = x tano,
\ of of
u Y LR D N -
utanq) 2 e tan o = Aat BaX (16)
0 o] 0
where
P, )
A = ] ==, B = A costp. (17)
Po

As the tangential vector T 1 vG

df
= I+ 3(tang +e 5;;5;),

-y

-y

and equation (12) becomes

of
(u‘o'i-.gu---Um cos §) + (ev + U, sing) (tang + e bx)

i
O



which can be further simplified by using the first two relations of (15)

to obtain,
aty = x tan ¢ u v E’i’_j_
- > — b i d provd .
a + a tan 0] C % (18)
o) o
where
Po .
¢ = (B- - 1) sin ¢ cos o (19}
The linearized expression for VG2 is
of , af
2 _ 2 2 .
an(e-é—}—{i'ftancp) + 1 wseccp*reZtancp-a-;é

and hence equation (13) becomes
al b
(po + ep)[ eu T3 at + (u + eu}(tan @ + ¢ ) - ev ] +(p + ep)(SeG cp+e2tangog}?‘)

af
pw[euoggé+Ucose(tancp+e~—i)+Usmej +p(seccp+e2tancp--5~

or
af
puztancg+p SeC(p*‘e[pU. tancp+psecq>+2p taﬁcp-é—f
oty of
+ 2p U tancp(uo-é—%*+uog;c~+wtancp~v):‘
. 2 £
pU’isms sin 8, ofy ?f_ﬁ s
= D) * P seccp**e[Zp OS@\uoat+Umcoseax)*2pmtan<paxj
cos L]
Using the first three relations of (15) we obtain,
2u 2v P 1 p -
S22 tan @ = 5=+ ~ tan o ¥ o3 = 0 (20)
u ® u o opg ¢ M_sin @ c08 ¢ p i,

Finally, from {14) we get
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<

of dF
euogscji“f (u + eu)(’ﬁancp*“egf) -ev:]

rly_[:\'

3_1:5) 1+ sP/PO
ax | 1 + ep/pO

2
+ ho(sec o+ e 2tan o

3t 2

af
— 5
~—%[euoab +Umcose(ta,ncp+a-é—£i)-gv]

af
2 —
'*‘hm(seccpfe.?.t&ncpax);
Expanding and linearising the last equation and then simplifying the
resulting equation with the fourth and the second relations of (15), we

obtain, after some algebraic manipulations,

it

at y x tan o,

1 0 Y D
+ .
(y = 1M 8in ¢ cos ¢ p & U,

2. tan @ - T - e
uo Y ('y - ‘];)MS s8in ¢ cosy Po

; _ .
) (EQ o) af§ . [ poJ; cos § o 2.(hb hb) ] af5
0 at R AX «
o

pu

@ w O

Eliminating v from the last equation and equation (18) gives,

at y = x tan g, L SR IR /g ”V 2 = ( w= (21)
Y% (y - 1)M§ bo by = DM pasu 3t

Equationd (16), (18), (20) and (21) are the required boundary conditions

at the bow shock which may be solved to give

at y = x tan ¢:

{

£
cot R 0
ﬁ[{!{('} + W) Slncpcos(p'nC(y—-})W}S%é

Gld

) af,. -
. 2 . 2 -
+ { B(1 + yW) sin ¢ cos ¢ + C(W - yWeos p -, sin ¢) } Szé J = K

H cot ¢ G
P = & - i - - =
oo 1T - W [{ A2 * (y = 1)W) sin ¢ cos ¢ = Cly 1)w} ot
: y of . -
*{502+ (y = W) sincpCOScp-CW"”W""SZ‘P}S':EﬁJ = L
LR cot o _ Sy = DU 2
Po an[{A(\’+1)w Sjﬂcpwscp}at

+{B(y+1)W~C(V"7)Wc°J“P}§fE§]
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af
P‘.—- et ...:.1..... 2 __,,.5.,
o T [{ 401+ i) sin g oos g - Cly = W } 3¢
2 13
+ { B(1 + yW) sin ¢ cos ¢ + C(1 =~ yW) cos™p } res ]
where

— o R R
Ha = Mo tan s W = MO sin e (23)

If the motion of the gas is periodic or even steady, the above five
boundary conditions (10) and (22) are sufficient for the determination of
the five unknown funections u,v,p,p and f5. For cases of aperiodic motions,

we need initial conditions as well.

This thesis is mainly concerned with periodic motions of a wedge in
inviseid and in viscous flows, and also with steady flow. But a method
of applying the approximate general solution given in Chapter II of the
thesis to aperiodic motions of a wedge has also been deve10p6d18 which, to
some extent, may be useful in determining the effect of ablation of a wedge-

like body on its stability derivatives.

- 16 -



CHAPTER II

APPROXTMATE THEORY <02 21



1 INTRODUCTION

In this Chapter, the perturbation equationg derived in Chapter I are
first approximated and then solved to obtain a general solution, which
can be applied to both periodic and aperiodic motions of a rigid or a
flexible wedge with or without angle of attack, no matter whether the
wedge is thick or thin., The application of this general solution to a
pitching wedge gives an exact formula for the stiffness derivative for
the most general cases and an approximate formula for the damping derivative.
A new set of reflected waves due to the motion of the bow shock is found
to be important for relatively thicker wedges and to be a factor which
tends to strongly destabilize the motion of the body. Also it becomes

dominant for very thick wedges.

McIntosh!'s result’ and Appleton's result!’ (see also Ref.22) are
reproduced here as special cases when the flow is hypersonic and the
wedge is slender. Also for supersonic flow, the approximate theory

9

agrees very well with Van Dyke's theory1 , and with the experimental

results by Pugh and WbodgateA.

The validity of the approximation is discussed in this Chapter, and
will be demonstrated by a comparison with the exact theory in Chapter III.
In the light of the exact theory it is seen that the approximate theory

is valid for flow Mach numbers behind the bow shock as low as 2.0.

For stability analysis of an oscillating wedge, this approximate
theory will be shown to be a special case in the exact theory. However,
the former is exact with respect to the frequency parameter and can be
applied to cases of aperiodic motions, whilst the exact theory can only
be applied to periodic motions. Also the physical meanings of wave
interaction and reflection are easier to discuss using the approximate
theory.

- 18 -



2 GENERAL SOLITION

As stated in Chapter I, the key equation to the problem of finding

the flow field is

2 2 2 2
2 A 2 23 p 3P .
> - 1) 2B+ ar B sy - = 0 (1)
o BXZ 0 XD o atz ayz

Approximation is made here that the coefficient Mi -~ 1 of the first term

of equation (1) is to be replaced by Mg, thus

2 2 2 2
e 2 Nhe Rhe A @
K at Y

which, after trensforming to variables g, T and { by the transformation

(I.5), becomes

2 2
Mi-bmg - bnE = 0 (3)
oF BQ

This epproximation is obviously valid for large values of Mo’ oo

for the case of hypersonic flow past a wedge which is not too thick.

In the hypersonic small-disturbance theory both the equations of
motion and the boundary conditions are approximate and the error of the
theory is of order of 52. Whereas in the present theory the boundary
conditions are exact (see Chapter I) and the only approximation

introduced is to neglect, in the coefficient of one term in an equation,

M;Z compared with unity, Thus the error in the present theory is of order
of M;z. For hypersonic flow past a very thin body 32 andM:2 are of the

same order of magnitude, and the present theory should reduce to McIntoshts
theory whick is based on the hypersonic small-disturbance theory, and
this will be shown in Section 3.2.6. However, for relatively thick wedges

2 -
g and Mo2 are of different orders of magnitude, e.ge. for the free stream

-1 -



Mach number M@ =17, 8 = 200, we have 52 = 19%, M;Z = Lo5%, and for Mo = .17,

g = 300, we have 82 = L5%, M;z

= 11.7%. Therefore the present theory can
give better results than either McIntoch'!s or Appleton's theories and can
be applied to relatively thick wedges for which the other two theories
cannot apply. Besides, the present theory is even a very good approximate
theory for both hypersonic and supersonic flows providing ME is larger

than 2.0, as may be deduced by comparison with the exact theory in Chapter

III and with experimental results (see Section 3.2.4).

From the derivation of equation (I.7), it is clear that this

p
approximation is equivalent to dropping the term 39 %ﬁ in the continuity

o
equation
p p p .
§n+5,_+...o...a.g.+ﬂ‘f = 0
TR TR e T T (4
which now becomes
ﬁf..g..?..c.’.ﬁz:o (5)
%€ U ar
Using the fourth equation of (I.6), we have
3(p/p 8 _u)
" pOOO_l_.éY::O’ (6)
° o o

and the whole system of approximate equations reads

M.w+ﬂzo

) of ¢
1 SR 9P , 9P

%€ 20,4, (ag NS

(7)

av - A 9p

og Po%o OC
3R - 2 af

ok ° 3E
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The general solution to equation (3) is

W, = £z =iy ) - e + M, 1) (8)

# *
where £, and f, are arbitrary functions: of two independéfit variables.

From the third equation of (7), we obtain

* 3
v o= f1(§ - MOC,: )+ f2(§ +.M0§5 m o+ fé(é: m (9
with another arbitrary function f . Putting (8) and (9) into the first

equation of (7), we have

af
% - 0 (10)
or
£, = £,(n) (11)
is £, is a function of 1) only, it can be absorted into f: and £, by letting
¥ "
£,(g = Mg, M) = £,(5 =M, M+ EL(M) (12)
£,(5 + Mg, M) = £ + Mg, M) + (), (13)
then f1 and f2 are arbitrary functions of two independent variables, and
we have
v = £(g =M, M+ e+ ML, ) (14)
P/poao = fj(g - M.Cs m - f2(§ MG, m (15)

From the fourth and the second equations of (7) we obtain

ap/py = £(g =My M = L(g « Mo, M) + £5(g, W) (16)

H

-Mu = £ (g =M, M - (g + Mo, M+ LA )

(17)

. gﬂ[ £ (g =0, ™) - £y(e + Mg, M) |

where £, and £, are arbitrary functions.

3 4

Written in terms of the independent variables x, y and t, the general
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solution to the approximate perturbation equations (7) can be expressed

through four arbitrary functions £, to f, of two independent variables

1 4
as follows
v o= f1(x+ t =24 7, X ~ ) *i:(x% tw-QMOy,x—-t) (18)
v/p 2, = £,(x+ &= Ay, x = t) - f(x+ &+ ALY, x - t) (19)

agp/p, = filx+t - Ay, x=1t) - L(x+t+ My, x -~ )

+ fB(y, x - t) (20)
- u = fq(x *h .My, x - %) - fz(x b+ My, x - t)
%ﬁj- {fq(i =M 0, M = Ey(g + M T, M) } dg}g N €3
' N=x=1%
¢ =2y

+f4(y? X”t‘)

where the functions f3 and fz, in which one of the two independent
d

variables 2y is replaced by y, are still arbitrary in form.

The functions f1(x th- My, x - t) and fz(x *h+ My, x - t)
describe the distrubances which propagate along two families of characteristics
which are the intersections of two characteristic planes (here the time

variable t is considered as one coordinate)

x =My = Const. (22)
% - % = Const. (23)
and
x+ My = Const. (24)
x -1t = Const. (25)

This physical interpretation is easily obtained from the fact that the
values of functions f,I and f2 should remain constant at different moments
of time., Along the first family of characteristics disturbances precpagate

in the direction towards the bow shock, whereas along the second family



of characteristics disturbances propagate in the direction away from the bow
shock, These waves — the propagations of disturbances — are seen to be the

Mach waves within the approximation of the present theory.

Tt is easily seen from the general solution given above that the orders

of magnitude of the perturbation quantities are as follows

u/u

Y
7a, T OCEE? (26)
p/p,
i < 0(M,) (27)
o]
o/ 0,
;7;: = O(Mb) (28)

Therefore the orders of magnitude of the perturbation quantities, at least
for flows past a wedge-like body, depend mainly upon the Mach number M0
behind the bow shock rather than the free stream Mach number Mw. Of course,
for hypersonic flow past a slender body Mo is of the same order of
magnitude as Mw, and we then arrive at the same conclusion regarding the
orders of magnitude of the perturbation quantities as that in the ordinary

hypersonic small —— disturbance theory.
The boundary conditions are those derived in Chapter I.

In principle, the problem of determining an unsteady flow past a
wedge-like body has been reduced to that of finding five unknown functions
f1 to f5

and, appropriate initial conditions as well if the motion is an aperiodic

of two independent varisbles to satisfy the five boundary conditions

one. Mathemtically, this is equivalent to solving a system of five

first order linear integro — partial differential — functional equations.

For most engineering problems, the only unknown flow parameter required
is the pressure distribution p. It is then important to notice that in order

to find p, we need £ind only three unknown functions £1,f2 and f5 to satisfy

-23 ~



(through (18) and (19)) the boundary conditions{J10) and the first and the
second of (I.22). We are therefore only required to solve a system of three
first order linear partial differential — functional equations. After
doing this, the other quantities u and o can, if needed, be found from the

remaining two boundary conditions.

- 24 =



3 PERIODIC MOTTONS OF A WEDGE

3.1 FORMULATION OF THE PRORLEM

Ya order to apply the general solution to any practical problem,

it would be useful to change the forms of the arbitrary functions fT

and f2 as follows*

i

f1(x *h - My, x - t) f1(x ~ My, x - ), (29)

fz(x tte My, x - ) = fz(:x MY, X~ t). (30)
In the right hand sides of expressions (29) and (30), as the functions

are still arbitrary and to avoid introducing new symbols for these neyw

functions we use the same symbols £ and fz, keeping in mind that they

1
may be different in some way from the original ones.

. H3
For a harmonic motion  of a wedge, the wedge gsurface -is given by

s(x, £) = e Fa(x), (31)

* These simpler forms of the arbitrary functions could also be obtained
directly if the Gallilean transformaﬁiona was applied instead of the
transformation (I.5). However, by using Gallilean transformation,

equations (I.6) would be more complicated.

## Any periodic motion, according to Fourier's theorem, can be expressed
as a sum of harmonic motions. As the basic perturbation equations
(I.4) and boundary conditions (I.10) and (I.22) are linear, the
solution to a periodic motion is therefore the sum of solutions to
the harmonic motions. Hence we need only study a harmonic motion of

a wedge in detail.

##¥% It will be understood that throughout this thesis we consider only

real parts of all the complex expressions.
- 25 -



where, A(x) is the "amplitude" function and is given in every practical

problem, and
ko= 84 (32)
o

where ¢ is the circular frequency. So k is the non-dimensional
frequency parameter based on the chord length of the body and the flow
speed u, behind the bow shock in the reference steady flow which is of
the same order of magnitude as the free gtream velocity Us, no matter
whether the wedge is thick or slender, For a slender wedge, u, 2 Vo,
and the parameter k defined by (32) is twice that in American notation
and equals to A, in British notation. For a thick wedge, u, is iess
than Uw, but the parameter k given by (32) retains its physical meaning,

as can be geen from its definition.

Because the basic perturbation equations and boundary conditions
(1.10) and (I.22) are linear, the motion of the gas as observed from a
fixed position should also be harmonic with the same period as the wedge.
Therefore the perturbation quantities must be equal to aikﬁ times some
functions of x, y only, and by taking into account the forms of the

arbitrary functions £, and fz, we may write

1

&

L
ot
H

+

X)[ F(x = M)

7))+ Fy(xe Moy)j,.

o ik(t -
%;. = Gkt - X)[ Fq(x =M y) - Flx + My) + Fa(y) ],
~Uu = oL (t - X>[ F(x - My) - Fy(x + My) + 2, (y) ]

(33)

+ {%Tﬂ [f,i(g - M, m - f2(5 ¥ M m ]d&; }gfx"z
=,

where FB’FB’FB and F4 are arbitrary functions of one independent variable
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only. The last expression of (BBY can be further simplified as below.

Since
- = o iKMn BT
" £lg =g, ) = XM (EXT_yg,
& T ew jkeiknF (g...f'...ll - M ) 4 }.e"'ikﬂF'
n 182 o T 1?
and hence
af .
’ froed ——-1 — - "'lknh m - —.ik'n ! g
%ﬂ £,dg [ S o ike j (551 - M y)dg + e md(z)
=
= o -2:1.1{J Fy(x - My)dx + F,(x = M y) ]
Similarly,
.a,..’ —— ”j‘k‘n g 4 ) N
Bﬂj fzdg e [ 21kj Fz(x + Moy)dx + Fz(x f»Mby) J.

Therefore the last expression of (33) becomes
g = I E o) - ey B
-ikj' { F,(x = My) = F(x +My) }dx :{ (34)
Now the wedge aurface may be accordingly expressed as

5(x, 1) = et - X)131(:c), (35)
with

a0 = &), (36)
while the shape of the bow shock is described by

fﬁ(x, t) = eik(t - XDFs(xj, (37)

where the function Fs(xﬂ, and the other four functions FB’ FB F3 and F4,

are to be determined by the boundary conditions.

' Combining the first equation of (I.22) with the first equation of (33),

the second of (I.22) with the second of (33), we obtain



~ik(t - x)

PO -H)x) +F( (1+H)x) = Nae
3

- - — ~ik(t - %)

FT( (1 Ha)x ) Fz( (1 + Ha)x ) = Lu e
Solving these two equationg to obtain F’I and F2 as
u

_ _ _o ~ik(t = x)

R (1-H)x) = 520+ e :

(38)

1!

R (1+E)x) = 2N - e it = 9

then

u - P
- o X X -ik(t - )
R (x) = 33 NGEg T W) U ) |5 T~

(39)
u P
R = i 0 - i o Joit® - THE)
Putting (39) into (I.10) we obtain
- N X
N( 8) + L(Ee, 1) ikt =727
[ ¥ B’ 15’ ] 2 (40)

x ik (f - )
+ | N e t) - L2 o £) Je T+H = 28(x)
The fucctions N and L can be expressed, through the first two equations
of (I.22), in terms of F5(x9

N, 8) = [ TFle) + A EG) o olk(t = x) »

it

Jlk(ﬁ -x)

L(x, %) [ 5(}:) + 4, Py ()

where the non-dimensional constants 'ﬁ'l N ”ﬁz s *]":1 and TQ can be obtained by

combining (I.17), (I.19) and the first two equations of (I.22) as follows

P, A
(1 = p=)cos p -
e _ r 2 p
N, = e LT+;§(M§~1)tan@~yW(p§~1)J,
p
= (1 —-p'g")sinch cos% [ s W( " ]
- - W “ﬂ” YT
! ' (42)
- RH (1 = )cos@
T, = e xzlyggog) ),
E_‘ = ‘b&nzc_p ‘ftza



Substituting expressions (41) into equation (40) gives

. !..”:ng m :
TG bR (7 L i o753 EERE o )] 24(x)5
where
a = '1\72-&32,
R 22)
c = K1+ET’
Letting
1 - Ha
8 o= (44)

we finally obtain

[aF;(x) + bF;(maxﬁj + ik[cFE(x) + dFE(magj] = ZA;( (1 - Ha)x ), (45)
or

[ Pl = A Fyln) |+ wrg(x) + om0 | = Za( (1-B)x),  (468)

where

!
5
2
.

1
Fs(magj = =5

= mXx
a

g, V= £ (47)

Pl
i
H
m\.!D"
o
it

Equation (46), a functional~differential equation for FS(X)’ is our
basic equation for hypersonic and supersonic flows past an oscillating
wedge. A special case of equation (46) when the second group of terms on

116

its left hand side disappears was obtained by Chermyi and Chd for steady

flows, and by McIn‘bosh14 for hypersonic flow past a slender wedge. After
solving Fﬁ(x) from this equation, we can obtain the two functions N and L
from (41), and then Ea(xj and Fz(x) from (39), and finally p(x, y, &) and
v(x, y, t) from the first two equations of (33). The final expression for

the perturbation pressure p(x, y, t) is



k(b - x)’ X =N y ) X+ My

?ix, szt) = - | P (r— ) - bf5(7~;"ﬁ"“)
) pOuO 0 y (48)
‘ x ~Hy X+ Ny -
+ 1ki QF5(7~:7§;“) dF 1 v E, T jJ

and the perturbation pressure at the wedge surface is given by

ik(t - %),
[S] | X X

o = i aF (=) ~ bFL( )
%f)ouo Mo L 51“Ha 5% *‘Ha

+ k| oF (= Erm fﬂa) - dF (= Eem fHa) ﬂ .

p{x, o, t)

(49)

3.2 PITCHING MOTION OF A WEDGE

Figure 2 describes a general pitching motion of a wedge about its

pivot 01, ¢ being the semiwvertex angle of the wedge, o the angle of attack,
eelkt the angular displacement of the wedge, and e the amplitude of this

angular displacement. The function A1(x) can be obtained as follows.

The coordinates x, y of the new position P of a point PO on the wedge

surface ater an angular displacement eelkt have the relstion

y = 0,P eelkt cos .« xP 0O

1o o1
y = lkt(x - h cos )
= eelkt(x - QP e;e‘mJc sine« OP 0, = h cos {)

1o 01
= e P(x - h cos $) s
in which the quadratic term of ¢ has been neglected. From this we get
6({xy, t) = elkt(x - h cos )
and

A1(x) = ¢ h cos §) (50)

For the upper surface, § = § - ¢ and 8(x, t) = elkt(x - h cos ¢),

i

for the lower surface, § = ¢ + ¢ and 5(x, t) 1kt(x -~ h cos §).

For determining the flow field between the bow shock and the surface
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of a wedge with finite length, it is only necessary to prescribe the
disturbance over the surface, because in supersonic flow, the downstream

disturbance is not felt upstreanm.
3.2+.7+ GENERAL FORMULAE FOR THE AERODYNAMIC DERIVATIVES

For any periodic motion of a wedge, once the function A1(x§ is given,

the basic equation (45) can be solved by the method of power series.

For pitching motion of a wedge, the function A1(x} is given by eguation

(50), and hence we have

. .
AT(X) o elkx(T + ikx -~ ikh cos Q),
and
Al (1=8)x) = e 1+ ik(1 - B )x - ikh cos 4
1 a’” { a v
2 (ik(T - H )x jn (51)
= zJ (n + 1~ ikh cos y) = .
Let 1’120
[os]
= ¢ n
=0
then
oy ' "’f
F5(max9 = banxg ’ F5(xj ::,EJ(H + 1)bn+1x§ s
n=0 n=0

o (52)
i . %

Fs(th)= E}n + 1)bn+1m2xg .
' n=0

Putting expressions (51) and (52) into equation (45), we obtain

@
AR Il . ny LR
). { (n + 1)bn+1(a + bma) + 1kbn(c + dma) Jx w R
n=0 o % ik('f — Ha)x i
= Z 2(1’1 + 1 - ikh cos }6') nt ] ®

n=0
By equating the coefficients of terms of the same power in x on both sides

of the last equation, we have
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bT(a + b) + ikbo(x +b) = 2(4 - ikh cos Q)’

I

2b2(a + bma) + ikbj(c + dma) 2(2 ~ ikh cosy)ik(1 - Ha)

(it h
3b (a + bmg) + ikb (e + d@i) = 2(3 - ikh cos ¢) 1 ( 5 a)} ’

LN ENEFEENEENYE] (53)

n
N . s} [ik(1 - Ha);
(a + bm)) + ikb (e + dm) = 2(n+ 1 = ikh cos ¢) = =

(n + 1)bnﬂ

and so on.

Therefore the coefficients bq, b,seeeb ;eu. Of the power series F5(xj

2
can be sucessively expressed in terms of bo’ and integral constant to be foumd

by the additional condition that

f5(o, t) = §(o, %),

which arises because of the attachment of the bow shock to the wedge vertex.
Hence b = - hcosy (54)

and all of the coefficients bn can be sucessively determined, and the

functiou_Fs(x) found, It is evident that bn+1 = O(kn) for small k, hence the

radius of convergence of the power series for FS(XJ is of order k'q, which

is much greater than unity for stability analysis.

We are mainly interested in the pressure distributuion over the wedge
9 - - s

surface, then by using equalities (52), we obtain from (49)-

p(x, 0, %) - rox ' x . x X N
o - = gR, (=) — BF,( ) % ik | cF (~—:f-0~df'(—--m)
%Poaouoelk(t - %) SEM - Ha, 58 + H, [ 541 Ha 5'1 + H, J
@ ‘ . n

. T n X . ny, X

= 2 [ a0y, (- ) (72 )+, (o) 50) ]
-. =) Tx (55)
Where néb I ?

®

a

With formula (55) in hand, we are in a position to derive formulae
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fow asrodynamic derivatives. In doing so, the base flow effects are

neglected and we give only formulae for the case of zero incidence.

For zero incidence, g = ¢, and the perturbation pressure pz at
the lower surface is equal in magnitude and opposite in sign to that

at the corresponding point of the upper surface B, *

The general expression for the pitching moment M about a pivot O1

(Fig.2) acting on the wedge of unit span is

: 1/COS 1/3031& - -
Moo= j (P ~ p, Joos § (z*h)dX*‘} (p, - P, )siny *ztan ydx

o) 1 o £ u

~ 1/cos 5 _ 1/cosg 5
= . (pg - D, Yeos & (x cos 8= h)dx +jo (p -p u)xs:e_n pdx

1/cos -

= J /o e(12(; - p, )(x = h cosg)dx (57)

°

from which, the non-dimensional pitching moment coefficient c can be

obtained as

M (,1/cos 0
c = =
m 1 1R } (6. =~ C_)(x - h cosg)dx, (58)
”2’9&[{» o p,@ Pu
where
P-D
Cp puined : 20 = Qp (59)
AR

Now for the case of zero incidence,

ikt X @
Po 2 ikx n (60)

c. = - = )( ) T X,

B %u Mo néo a
and hence from (58),

2 2 1/cos o w1 _ o il
c, = ) z Tnjo (x7' = xh cos g)e dx .
n=0

Upon integration this reduces to

ikt p 2 ~ikfcos o =
- e 0y Oy g 5
¢, T T (p)(U) e ), T(8p4q = b cos 8 8)
(o} fo) @

n=0
ng - i), (61)
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where

n
- .{:Mw - - -
s, = - nln oik/cos8 | S n(n 1)(n0“ 2;7;.in £+ 1) (62)
{ 1k) 470 (ik)” cos 6
_ ik 1 il
Sn o * 15 [n e (n+ 1)(n + 2)cosd
o1y R -
(ik)
=~ + ...J . (63)

(n+ 1)(n+ 2)(n + 3)coss

Expression (61) is the most general formula for the two aerodynamic

derivatives =Ty and ~me . The derivative = called here the in~phase

8,
component of pitching moment, is composed of terms proportional to the
steady~state position and higher order even derivatives of the motion.
(i.e. the zeroth derivative, the second, the fourth etc.). Thus in ~Ty 5
the first term ~g@}, the stiffness derivative in the ordinary sense, is
frequency independent and can be calculated from steady flow theory (see

Section 4), the other terms are proportional to k2, k4, k6

s, ects The
derivative ~mé, called here the out—of-phase Component of pitching moment,
consists of terms proportional to the odd derivatives of the motion.

(i.es the first derivative, the third, etc.). Thus in -my, the first term
~c_ , called here the damping-in-pitch derivative*, is frequency independent,

2, 1%, k° etc. The in-phase

whereas the other terms are proportional to k
component ~T, and the out-of-phase component ~ﬂ% of pitching moment are

proportional to kzMé and kM,, respectively, in American notation.

In Figs 4 to 7 are plotted curves for both in-phase and out-of phase
moment derivatives versus pivot position for various values of free stream

Mach numbers and flow deflection angles. Generally both in-phase and

% Throughout the thesis tne damping derivative so defined in smaller by a
factor of Ud/uo than the damping derivative in the ordinary sense, and
this is due to the definition of k.
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out~of-phase moment derivatives increase in absolute value with increasing

wedge angle ¢ for a given value of M . However, under certain conditions,
oo

negative value of the out-of~phase derivative are obtained, (Fig.12) and

this will be discussed in detail in Section 3.2.5.

For small frequency parameters k, of interest for stability analysis,
we can obtain some very useful conclusions by analysing the structure of

formula (61).

Tt is evident from equations (53) that T  is of order kx*. On the
other hand, (63) shows that s, is of order k for any integer (including
zero) n. It is therefore concluded that the series in (61) is arranged
essentially in the order of ascending powers in k, and hence for unsteady
theory of any order (i.e. accurate up to terms proportional to any power
in k), closed form formulae for the aerodynamic derivatives can be obtained
by truncatinrg the series in (61). Indeed, in order %o be accurate up to
terms proportional to k¥* we need only pick up the first (n + 1) terms in
(61) and neglect the terms of higher order than k* in these first (n + 1)
terms. Closed form formulae for the stability derivatives (the stiffness

derivative and the damping derivative)will be given later in Section 3.2.3.

34202 WAVE INTERACTION AND REFLECTION
A physical interpretation to the results obtained in Section 3e<e1,
is given by rearranging the expression (55) for the pressure distribution

over the wedge surface as follows

> n
p(x, 0, ) R ( n R n x

‘ - - n+ 1)b__.(a=bm) + ikb (¢ - dm)) (= )
'Ouoabelk(t~x) 2nZo [ n+1 a n a’ 1 =5

n=o

Zi n
- m
a

n=0

bl _ n
= 5 Hm o Doy ga s omy) + akb (o v @) (G

n
. . - 7] X
(n+ Nby,, b+ ikb °d J(ﬁv:fﬁ;)

|
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o

b Y !
= - Z (n +‘I-ikhcos¢)-£-l—£%}~

CZJ —~
- Zt(n+1)b cbor b L )"
=0
[e2]
p(x, o, %) .t < 1 r_b 2(n+1=ikh cosy )€4(1-5a)%)"
pua eik(t"x) =84 +n;b {1 +3 )nLa+bmp ) nt
000 : a a ’
bey.n 7
-~ ikb (W-)x
a + bmn J
e . ~ (ikm )"
= A (x) *+ 2D 23—“""1-@ c0s ) . a
1 a + bmn n?;
a8
¥ ad = be X n
...m}j s b (5 ,,H)

o o . n
= A ' 1y 2 (n+1-:i§h@_sw)(ma’c}
= 8,00 =2 ) ) () =

n=o £=0

© o m
- ik (e + d) ZJK ZJ q“%"ﬁ”)n
470 n=o
g__ ikh ) {Hlem x)"
_ ' n+t 4 e o8
= 2y(x) - 22 L ni
nx
- ik(n e + d) 2%3‘5( Br)
&
270
w t < £ 1 I
= [ a0 +2) alai(elo) |
4=1
x
- 0 + O Ryl Za e ,H>] (64)

Formula (64) for the pressure distribution at the wedge surface is

a convenient form for discussing waves and waves reflections.

We conclude from formula (64) that there are two sets of waves which
contribute to the pressure distribution at the wedge surface. The first set

4
of waves is due to the disturbance A1(x) at the wedge surface, while the
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second is due to the motion of the bow shock ikFy(~%-—-). Both sets of
a
waves have their secondary as well as primary contributions to the

pressure distribution at the wedge surface.

From the definition (47) it is obvious that ha is independent of the
motion of the the wedge, so its thysical significance in unsteady flow is
exactly the same as that in steady flow which has been discussed in detail
by Chernyiz. In our case, by putting k = o, and combining equations (38)

and (41), we obtained

+

Fy( (1+H)x) « AF((1-H)x)

i

[t e A) =101 - ) ]

= [ F,0 ) -1 (1 -0) |5

i

O)
therefore

_ "Fz( ('I + H )X )
a~ F001- Hz)x ) (€

From (65) and noting the second expression of (33) for p, it follows that
in both steady and unsteady flows if we take as a measure of the flow
disturbance the corresponding change in pressure, the quantity Ka‘Will
represent the reflection coefficient of a disturbance from the bow shock.
This reflection coefficient is the ratio of the amplitude of the
disturbance reflected from the bow shock (along the characteristic

x+ My = const.) to the amplitude of the disturbance incident on the bow

shock (along the characteristic x - Mby = conste)

The first group of terms in the formula (64) represents the first set
of waves. It is obvious that with the baw shock present, at time t the
pressure acting by the fluid on the wedge surface at a point P with abscissa

x (Fig.3) depends not only upon the instanteneous inclination angle
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(represented by eik(t - X)A;(x) } of the surface at P itself, but also

upon the ingtantaneous inclination angle at the same moment of time t of

the surface at the points with abscissas m X, mix, etc. One can easily

show that the £th term of the first series in (64) corresponds to a
disturbance at the wedge surface which has struck the point P after £
multiple reflections from the bow shock surface with a reflection coefficient
R& (and, of course, also after (£ ~ 1) multiple reflections from the wedge
surface with a reflection coefficient of unity in accordance with the

present linear wave theory).

The second group of terms in the formula (64) represents the second
get of waves. It is easy to see that at time t the pressure acting on

the wedge surface at the point P (Fig.3) depends also upon the instantaneous

distrubance of the bow shock (represented by 11 T (E = x)F5(1 f = ) ), and
upon the instantaneous disturbance at the same moment of time % o? the bow
shock at the points with abscissas max/(T + Ha), mix/(1 + Ha), etce In a
similar way one can also show that the Lthterm in the second series in (64)
corresponds to a disturbance at the bow shock which has struck the point

P after ? multiple reflections on - the bow shock surface with the same

refleotion ccafflcient X, (and also after 4 multiple reflections from the

wedge surface).

In steady flow, k = 0, the second set of waves disappears. For the
case of hypersonic flow past a slender wedge, it will be shown in Section
3.2.6 that the quantities pand ¥ in the formula (64) are negligible
compared with the reflection coefficient xa,and hence the second set of
waves is negligible. Therefore the second set of waves result from the
motion of a thick wedge.

16 2 hM

s Chernyi™, and McIntos among others, studied

Lighthill'®, Chu
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interactions of disturbances with a bow shock and obtined equations which
are a special case of equation (46) of the present theory when the second

group of terms in the left hand side of this equation is dropped.

They obtained one set of waves (the first set) only. This is so
because the cases they considered are egquivalent €ither to a steady flow
past a thick wedge (in this case, k = 0) ‘or to an unsteady hypersonic

flow past a slender wedge (in this case, p and v are negligible).

The motion of the bow shock (in our present case) is due to the
disturbance at the wedge surface, so it might be thought that the second
set of waves has only secondary effects on the pressure distzibution at
the wedge surface. However, numerical results (Figs & and 9) show that
it is as important as the first set of waves for hypersonic flow past a
thick wedge, and it becomes dominant at the critical situation. It is
due to this set of waves that negative damping appears for hypersonic flow

flow past a wedge under certain conditions.

Tt is obvious from equation (64) that for small values of the frequency
parameter k, the gecond set of waves affects mainly the out-of-phase
moment derivatives and has little contributuion to the in-phase moment
derivatives, and particularly, within the first order unsteady theory it
only mffects the damping derivatives and not the gtiffness derivatives,
because the cofficient of the second group of terms in (64) includes a

factor ik.

Curves of the reflection coefficient Xa versus flow deflection angle
g for several values of free stream Mach number M are plotted in Fig.10.
Also plotted there, for comparison, are curves of » obtained in ChapterIIl
(or from Ref.2) which are exact within the small perturbation theory and
which could be obtained from the first of equations (47), the definition
of ka, if for the quantity Ha in the parameters a and b is substituded
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0 -1¥teng instead of M tanp . Tt is infteresting to notice that the
only approximation made in the present theory is to replace the coefficient
(Mg ~ 1) of the fourth term in equation (6) by Mi, so putting H, = (M§~1)'
tane 1is, to some extent, a correction to the approximation made, But
throughout this Chapter, in calculating Ka’ Motan¢ is used for Ha'

The two families of curves are seen from Fig.10 to differ only quantitatively

but not qualitatively.

As seen from the figure, the reflection coefficient xa can be positive
as well as negative, i.e. in some cases the reflection takes place without
the disturbance changing sign, while in other cases the sign of the
disturbance is changed due to the reflection from the bow shock. Chernyiz
proved thatiM <1 . This %Is to be expected physically, as it ieg the ratio
of the amplitude of the disturbance reflected from the bow shock to the
anplitude of the disturbance incident on the bow shock. With the - -
approximation made in this theory, as proved above, A, retains the same
physical meaning, therefore it should be expected physically that the same
result that |Agi<1 will s$ill hold. Mathematical proof of this is given

in the Appendix A.

Again, from an examination of the curves in Fig.10, it follows that
for small values of the free stream Mach number M_, the quantity |A,} is
small, but it increases with M, and the flow deflection angle g, and
becomes appreciable for hypersonic flow with sufficiently large flow
deflection angles which are smaller than the shock debachment angle Omax®
Therefore, the reflected wave effects of both sets of waves which dependl
mainly upon the value of Ay become very important for hypersonic flow past
a wedge which is not too thin, and can never be neflected, Figs 13 and 14

show how important these reflected wave effects are.

Tt can be seen that the reflection coefficient ha also increases in
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absolute value for decreasing y and finally tends to ~1 when Yy tends to 1,
i.e. the disturbances when reflected from the bow shock change their sign
but retain their magnitude., (With regard to Newtonian limit, see Section

34245)
3.2,3 STABILITY DERIVATIVES

It has been pointed out in Section 3e2»1 that for unsteady theory of
any order, closed form formulae for aerodynamic derivatives can be obtained
from the general formula (61) by, trucnating its terms. In this scction
we derive the unsteady theory of the first order i.e. accurate up to terms
proportional to the frequency parameter k. To do so, we need the first two

terms in (61) only.

From equations (56), (53) and (54), we have

_ _ 2(a = b)(1 = ikh cosg )
To'“" a+b B +2ik'(—;";—'%'lh0086,
= -—-1—--- - . -
R [#,(a = b)) + k5 (e = bn) ] (66)
a ~ bm g
- . 8 be -~ ad 2\
“"'m[wbm (1+H)(a+b)(a+m)J*°(k)

while from (63), we get

- ik ik 2.7
S 7 ~ cos B 1 2 o 6+0(k).!’
ik ik K
S = —% + O(k ) (67)
1 c:,osQe 6 cosf J
S, = = ik 3 % &_________ + O(k'?') J
cos” 8

Putting expressions (67) and (66) into the general formua (61) and
neglecting terms of order k2 or higher, we obtain the closed form formulae

for stiffness derivative -c g and damping derivative --cmé as follows

£ 2
"oy = 4~< °>(U° ) 7 B} - B oos"e), (68)
-0, = eo}(-ﬁ-m)-—l—* [I (h cos 9)2 -G hcosze+ 7;-(2(} - I )],(69)
& ® co
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where

E, = (1 +2)/(1=1), I,= E -~ (O c+d/(1=2), (
70)

s = 1 + kama _ Xa“ +y _ hac + 4

a T-2am, (1 + Ha)ﬁ - xa)ﬁ - xama) CEE I Y

It will be proved in Section 4 that the formula (68) is an exact
formula for stiffness derivative in the most general case, despite the
approximation made in Section 2. For several combinations of free
stream Mach number Mco from 1.5 up to 30, and for flow deflection angles
8 from zero up to the corresponding detachment angles, the differences
between the in~phase derivative -, and the stiffness derivative -Cp
and the out-of-phase derivative ~m1éand.the damping derivative - °
are negligible. For k = 0,01 the difference is within 0.01%, whereas
for the case k = 0.1 it does not exceed 0.1%, even if k = 1.0, which is

most unlikely in any practical situation, its maximum value is about 3%.

In table 1, are shown some typical examples.

As seen from Sections 3.2.7 and 3.2.2, the structure of the general
formulae (61) and (64) for aerodynamic derivatives is a double series,
which may be arranged e@ither (essentially) in the order of ascending powers
in the frequency parameter k, or in the order of ascending powers in the
reflection coefficient Aa. In the former case, each term of the series
contains all the terms proportional to each power in Ra’ while in the
latter case, each term of the series contains all the terms proportional
to each power in k. Now it has been shown in Figs.?j to 16 and Table 1
that the reflected wave effects are very important, and the terms
proportional to k2 or higher are negligible. Therefore formulae (68) and
(69) are the most useful ones for practical calculations, taking into
account the fact that they are in closed form and the condition that k<< 1

is always satisfieé for stability analysis. After all, it is important



to know that the first order theory includes all the reflected wave effecis

(of course, up to order of k). This can be confirmed by rewriting (70) as

o] [ee] o3
- . - PR r ZE]
B = 1+2) A, I = (12 )0 [-0erd] 1)
251 =1 21 (71)
® o (rm)*
- 5 L C 1 1 aa
Gy = [ 1z zJ(Aama) ] = g d)t I ) ' };a YO,
2= o =1
1 Ly
and noticing that within the unsteady theory of the first order
]
A1(x) = 1 + 2ikx -~ ikh cos 8
(72)
.. 2
Fs(x) = =S -~ hecosg

Thus from (64) and (71), we conclude that the quantity E_ takes into account
all the reflected wave effects of the first set of waves, while Ia and Ga
take into account all the reflected wave effects of both the first and the

second sets of waves.
34244 SUPERSONIC FLOW, AND HYPERSONIC FLOW PAST THICK WEDGES

For hypersonic flow past a slender wedge, the local Mach numberMo
is very large and the present theory is justified by ifself. Besgides,
as shown in Section 2, the present theory can also be applied to cases
of hypersonic flow past thick wedges (eege M, = 17, 6 = 30°) or of

relatively high supersonic flow past a slender wedge.

For supersonic flow, Figs.15 to 17 give comparisons for the stability
derivatives of a wedge between the present theory and the experimental

19 uhich

results by Pugh and WbodgateA, and also the theory of Van Dyke
is a potential theory including the non-linear effect of thickness up to
the second order, and also the exact theory in Chapter III. Good agreements
are obtained. On the other hand, for the case of hypersonic flow past a

thick wedge there exist, to the author'g knowledge, no experimental results



or other theories for comparison with the present theory. But it is
expected that for a given value of MO the present theory should work for
hypersonic flow past thick wedges as well as it does for supersonic flow.
This is confirmed by the exact theory in Chapter III which shows that the
present approximate theory gives excellent results for Mb > 2.0. However,

there is still room for improvement when Mb is less than 2.0.
3e2.5 GENERAL CRITERICH FOCR STABILITY

One of the several important results obtained in this theory is the

general criterion for neutral damping.

It is well~-known that for supersonic flow, under certain circumstances
negative damping is obtained., Neutral damping boundaries can be obtained

from theories in Ref.3, 19, 11 and 12.

A general criterion for neutral damping of a wedge in hypersonic or
supersonic flows can be obtained from formula (69). Thus we have, by

setting ”cmé equal zero,

2 2
Ia(h cos 9)2 - Ga(h cos“g) + %(ZGa - Ia) = 0, (73)

which is a quadratic equation for h cosze. The discriminant of (73) is

£ 2
no= G- 4Ia(zaa - Ia)/B. (74)

If p¥ < 0, the damping derivative is always positive for all values of

h, i.e. the wedge is stablized by the gas flow as it oscillates about all
pivot pogitions. If A* > 0, the damping derivative is positive for some
values of h and negative for other values of h, i.e. the wedge 1s stablized
by the gas flow when it oscillates about some pivot positions, and

*
destablized for others. Setting A equal zero we obtain, either

L, = 3G, (75)

or

2T = G (76)



For a fized value of Y , when g is increased, equation (75) is first

sasisfied and hence it is the condition wanted.

If the values of M and g are such that condition (75) is satisfied,
o]
the damping derivative first becomes zero at
G

2 a
21&

from which the critical pivot position hcr’ at which the damping derivative

first becomes zero, is given by

= 1
hcr T3

+ %tan 6 (77)

Thus the critical pivot position h . runs from one~third of the chord length
for a very thin wedge to about two-thirds of the chord length for hypersonic
flow past a very thick wedge. This conclusion agrees very well with the

figures given in Ref.3, 4 and 19, and is proved in Chapter III to be exact

disregarding the approximation made in this Chapter.

The quantities Ia and Ga defined in (70) are explicit functions of
the free stream Mach number M; and the bow shock angle 8 in the reference
steady flow. Therefore equation (75) gives a relation between M _ and 8,
and ig solved for 8 with given Mg by the method of iteration. The result
is plotted in Fig.18 as a curve of.Mg versus g which is a locus of the
highest points of all the neutral boundaries (i.e., curves of M» vs h
for constant values of g5). It is shown by the exact theory in Chapter III
that for a given Mach numberlgn the critical angle Oop predicted by the

approximate theory is about 2° larger then its exact value.

The curves of Fig. 18 have a number of interesting features. Firstly,
from an examination of them it follows that for a given value ofMtn there
is always a critical volue ecr of the flow deflection angle at which the

dmaping derivative first falls down to zero for the pivot position at
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=24 2
h 3* %ﬁan ecr' If g < Sap?

it, if ¢ > ecr’ the wedge is stronly destablized by the flow passing it

the body is stablized by the flow passing

s (Figs. 19, 11, 12) for pivot position within a zone which is determind
by the difference 8 - 8o and the free stream Mach number Mm. Ugually
for hypersonic flow when 5 = @cr equals 1 degree or so this zone of
destablization of pivot position covers nearly the whole chord of the

wedge (Fig.19).

For a given flow deflection angle 6, there is always a critical value
of free stream Mach number Mbcr’ at which the damping derivative first
falls to zero for the pivot position at h_. = i+ %tan2e. IEM, >M
the wedge is stablized by the gas passing it, if M <‘chr’ the wedge is
strongly destablized by the gas flow passing it for the pivot position
within a zone which is determined by the angle 9 and the difference -
chf* M, o Thus increasing fhe free stream Mach number increases the
gtability of the body, other factors being constant, and vice versa.

It is important to notice that the critical value of the flow
deflection angle ecr for a fixed value of M_ is a few degrees less than
the corresponding detachment angle for the same value of M_. Therefore,

the wedge is strongly destablized by the flow passing it before shock

detachment occurs.

It is also noticed that for hypersonic flow, ecr is about 410 or
so, hence the critical pivot position hcr is about 0.6, near the centre of
gravity of a free wedge with uniform mass distributuion. The critical
value Mocr of the Mach number behind the shock is about 1.55 or go, thus
the flow behind the bow shock is still a purely supersonic flow. In
contrast to this, for supersonic flow, Oop is very small and hcr is about
one-third, and for most cases for zero damping to be obtained at a pivot

position h = 2/3, the free stream Mach number must be as low as about 1.2
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and the flow over the wedge surface is therefore not a purely supersonic

one.

As seen from Figs.8 and 9, the effect of the second set of waves is
to reduce the damping derivative, and near the critical situation it
becomes dominant. It is due to this effect that the damping derivative

becomes gero and negative,

Decreasing v increases the values of botheamax andg;cr, but the main
picture remains about the same that, for a fixed value of Mw’ the wedge

will be stronly destablized by the flow before g reaches g .

In the double limit M —?e andy = 1, the wedge ig always stablized
by the flow passing it, and therefore the pressent theory in its limiting

case, agrees qualijatively with the Newtonican theory.
3.2.6 HYPERSONIC SLENDER WEDGE THEORY

For hypersonic flow past a slender wedge, the shock angle g, the flow
deflection angle 8 in the reference steady flow, and their difference ¢

are all small so that when their quadratic and higher terms are neglected,

we obtain,
ginow = @, cos g = 1, etc.,
hence,
2 2. 2 _ 2+ (y =K
HY = MJ ten"¢ = (78)

where K = Mf is the hypersonic similarity parameter based on the shock

angle p in the reference steady flow.

Furthermore, we have,

;

o 7 Ve
8:1; 24 (y = 1)K2
o= ¥ > s
QO (‘Y + 1)K (79)

_ (vt 1)K° oy

o T g{[2+(\,-—1)K2]{;2K2*( -1)]}~2~

bl -




and therefore, from (42),

= 20> + 1) - 4y
N2 - 2’ L2 - v 3 T’
b+ DE (80)
o= o, T, = o0,
oK, - 1) -
la = 5 »
K3(28, + 1) + 1
g = 0, (81)
v = 0,

Therefore the second set of waves due to the motion of the bow shock
disappears and we are left with, for the pressure distribution over the

wedge surface,

E(X4 Oy t) — ! < 4 V4
ot e L dae, @
Po0%0 =1

from which, the in-phase component -m; and the out~-of-phase component =4

of the pitching moment derivative are obtained as follows

2 _ 2 4 2
_ 2vK 1) ,. ¥ (1 = b}(m; = b)cosk(m; - 1)=h
-m, = 48[ 2+ (v {_-» h + %i ~t mi i =
* (ma + 1 = 2h)gin k (ma - 1) (ma + 1)(1 - cos k (mﬁ - 1))
T k(m? - 1)2 T kz(mz - 1)3 i }J,
22 a (83)
) (1= h)(m ~h) sink(m; £_1)
-—m = 2\{1{ - ('v - ‘E) k(% - h + hz) + 2 2
8 kLo, (y ] [ E: i (ma -1)
2h + (ma +1 = 2h)cos k(ma - 1) (ma + 1)81n k(@é - 1)
- i1 =X -
k(mﬁ - 1)2 kz(mi - 1)3 }]

Formula (82) and the special case of formulae (83) when h = O are,
apart from different symbols used, identical to those obtained in Ref.14.
Thus we see, McIntosh's result is a special case of the present general

theory when the flow is hypersonic and the wedge is slender. However, in
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Refs14, the formulae for stability derivatives were given only in the form
(83) of an infinite series in the order of ascending powers in Xg? but not
in the form equivalent to formula (61), which is arranged essentially in the
order of ascending powers in k, and which has been shown to be the mogt

convenient form for practical calculations.

From (68) and (69), we obtain formulae for the stiffness derivative and

the damping derivative as follows

K2
*-Cm = ZPB p) (1 hd 211),
~o = 4o (- 0)QK, y) - —=—h(1 - 20) |,
g L\3 Y 2+ 1 }
where

(6% + ) 2(2v = DFF ¢ ly + O - (v = 1) ]

Formulae (84) are, apart from different symbols used, identical to

those first obtained in Ref.13, and corrected in Ref.22.

In Figs 4 to 7, are plotted resulis of the hypersonic slender wedge
theory compared with that of the general theory. An examination of these
curves shows that the hypersonic slender wedge theory under-estimates the
effect of thickness, as is to be expected. The range of applicability of
the hypersonic slender wedge theory depends on the percentage of error
allowed. For the stiffness derivatives at h = 1, its error is 3% for
M, =17,8 = 909: and 24% for M, = 10, 6 = 190191. Whereas for the damping
derivatives at h = 1, its error is 6% for M, = 17, 8 = 9°9l, and 28% for
i, =10, 6 = 19°19 .

However, the hypersonic slender wedge theory as given by formulae (83)
or that in Ref.14 is not convenient for practical calculations, because the

reflected wave effects are important for hypersonic flow, and closed form
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formulae are not possible to obtain. On the other hand, (68) and (69)
are the most general formulae in closed form which are more accurate and
simple for practical calculations. Thus it is a disadvantage using
formulae (83) instead of (68) and (69) even for hypersonic flow past a
slender wedge. Formulae (84) are only slightly simpler than their
general forms (68) and (69). Therefore, it is sensible to use formulae
(68) and (69) for practical calculations as they give more accurate

results than those of either formula (83) or (84).

3.3 PLUNGING MOTION OF A WEIDGE

For plunging motions of a wedge, we have

X
DX 3t ?
which implies that
A1(X) = elkx’
and hence
w[ik('i - Ha)xT’
b . =
8.0 (1-H)x) = ik ) o (86)
0=0

Therefore to obtain formulae for aerodynamic derivatives of a wedge
in plunging motion, we need only replace the right hand side of equation
(45) by (86) instead of (51), and thus we obtain for determining the

coefficients b in the power series of FS(x) the following equations
b1(a + b) + ikbo(c +4d) = 2ik,
2by(a + b)) + kb, (o + dn ) 251{ ik(1 - H,) ] ,

= 2
4 = 25_kL lk(;; %) ’} ,

¢ + dm
a

1l

3b3(a + bmi) + ikbz(

erenen pobeo o (87)

ny . . n 214: k(1 - B) ]n
(n + T)bn+1(a +bm) + ikb (¢ + dm) = = ,
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and so on. Alsc we have the additional condition

b= 1, (88)

8]
using the same reasoning as that for a wedge in pitching motion.
The other formulae (55), (56), (61), (63) and (64) are all unchanged in
H
form. Since in both series of‘A1(xQ and F5(xj, the first term is proportional
to ik, no steady-state part contributes to the in-phase component, and the
second set of waves affects the in-phase component more strongly than the

out~of-phase component for not too large values of k.



4 STEADY FLOWS

For steady hypersonic and supersonic flows past a wedge-like body, the
flow is also considered as a small perturbation to some reference steady

flow past a wedge.

This case has been studied in detail in Refs.16 and 2. No approximation
is necessary for steady flows, thus the results are exact within the linear
perturbation theory. From our scheme, by setting all derivatives with

respect to time t in (I.7) equal zero, we obtain, instead of equation(17),

2 2
(0 - 1) SR 2B = o, (89)
>

The other perturbation equations may also be simplified.

By solving these perturbation equations to satisfy the boundary
conditions (I.10) and (I.22) with all the derivatives ¥ 3t equal to zero,
we can obtain the pressure distribution etc. This has been done by Ghu16
and Chernyiz. Their result for pressure distribution over the body surface,

written in the present notations, is as follows.

(xs ) -
‘; Ou§° (M2 - 1)_% [ A1(x) 22?& A (m x) ] (90)

where A (x) is now equal to N {x), the slope of the body surface, m, and %a
are calculated, respectively, from formulae (44) and (47) with H, (M - T)Qtanm

ingtead of Mﬁtan 0,

The stiffness derivative ~Cog > by definition, can be obtained from
steady flow theory. For a wedge, it can easily be obtained by completing

4
the integral (58) with A (x) = 1 in formula (90). The result is

Fi——-g("")(m)z L&'} - b cos®s), (91)
Pe "o cos e
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where

. -1+ Aa'
E o= L1 + A +
a” H = (Mi - 1)% tan o

[1-—1—'—-1W(§-‘?--—1)]

[ 1+ ﬁ*(M2 - 1) tan® o - YWCH" - 1) ]

(92)

= Z(M - 1)% tan o

Thus the stiffness derivative -c of a wedge calculated by the exact
0
steady flow theory, is

02 | 1= 5@ - 1) ] - b cose)

8 tan ¢,Po
- = ------52( ) ( ) . 93
8 co sze Pess (93)

s {."‘”“’Q‘(MQ"T) tancp*yw('p””‘l)]

Formula (93) should be recognized to be identical to formula (68) in
which the quantity Ea is calculated using Ha = Mo tan . Summing up, we
have derived an exact formula (93) for the stiffness derivative of a wedge
which can be applied in the most general cases, i.e. for a thick wedge or
a slender wedge in supersonic flow as well as in hypersonic flow, and we
have alse proved that in the most general cases the present general theory
does give an exact formula for the stiffness derivative of a wedge,
disregarding the approximation that has been introduced in deriving it.

The reason for this is that for the special case of a wedge with small and
steady change in its incidence the perturbation quantities are all constants

and their second derivatives with regard to x vanish, therefore the approximation
that the coefficient Mi - 1 of the term azp/axz in equation(]7) be replaced

by Ms does not affect the solution of the problem which is then completely

determined by the exact boundary conditions.
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CHAPTER III

EXAGT THEORY <27 4



1 INTRODUCTION

In this Chapter we restrict ourselves to the problem of unsteady
hypersonic and supersonic flows past an oscillating wedge. The perturbation
equations are solved by expanding the unknown functions as power series of
ik, where k is the frequency parameter defined in (II.32). Exact formulae
for the stability derivatives of a wedge in inviscid hypersonic and supersonic
flows are thus obtained in closed form which can be applied to wedges of any
thickness, providing the bow shock is attached to the wedge. Also obtained
is an exact criterion for stability. This exact theory will be shown to
include both the approximate theory developed in the last Chapter and the

theory of Carrier & Van Dyke (for supersonic flow) as special cases. Comparisions .’

with experimental results for supersonic flow are also given.
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2 METHOD OF SOLUTION

Because the perturbation equations (I.4) and boundary conditions (I.10)

and (I.22) are linear for a harmonic motion of the wedge given by 8(x, t) =
1kt
A(x), the motion of the gas, as observed from a fixed position, must

also be harmonic with the same period as the wedge. Therefore the perturbation

quantities may be expressed as
u = uoell(tU(X’ Y) )

v = uoelktv(x, y)

P = Po?o u- e P(X’ ¥) s (N
pLU
g = Z © lktR(X: Y) 3
o]
ikt
f5: ell Q(X) 2

where U, V, P, R, Q are time-independent unknown functions to be determined

from the perturbation equations and the boundary conditions.

Putting equation (1) into (I.7) and (I.4), we obtain

2 2
02 - DEE- 2L = - 2l 8- ()30F
[7.4 Y
ifj oot . énY - 7
= M2 - AV,
iq - - .-1-.- a—}z P
3% MO 3% ik, (2)

3 .Q.R-' el q ég
ikR + o ikP + 3%

ax ) = O,

T
where the first equation, useful in what follows, is derived from the others.

Similarly, by putting (1) into (I.10) and (I.22) we obtain the following
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boundary conditions:

1
at the body, y = O, v A (x + ika(x) ,

il

at the shock, y = xtang, V = KQi(X) + ikBo(x) ,
P o= TQ (x) + ikDo(x) , (3)
U o= FQ (x) + ikFQ(x) ,

PO o
R = GQ (x) + ikJQ(x) ,
where the constants 4 through T are dependent only on the reference steady

flow and can be found to be

- % .
I = 25 B(1+ i) sin g cos o + O(H = yi cos%y = sin’y) |,

o cot ¢ . 7
B = aﬁ%:ﬁﬁ: A(1 + W) sin ¢ cos ¢ - Cly = DW J ’
- H cot @ ™
g = "%-":”ﬁ-[ B(2 + yW - W) sin @ CO8 ¢ = C('y - W 0052¢P J s
- Hacot © -1
D = m[ A_(2 + -\/w - W) Sin 0 cos © - C('Y - 1)w J ?
1 (4)
- . . 2 7
E = - w[ B(1 + yW) sin ¢ cos ¢ + C(1 =~ yW) cos™op J s
? = -:-I:%-—w[ A(‘] + 'YW) sin ¢p COS o ~ C('\{ - 1)w ] E
- cot N
GMMOT'*'W) B(Y+1)W"C(Y"1)WCOtCPJ’
T =

cot Cly = DW
M (1 - wS[ My + DV = S5 os 6 7

For most engineering problems the values of the frequency parameter k
defined in (I.32) are small, of order of magnitude 0.01. Now, expanding
the five unknown functions and the "amplitude function®" in power series in

ik,

- 57 =



- Q(Q) . ikQ(ﬂ . (ik)ZQ(Z) *oave s

= 4 D w0 .

v 5 e,
po= 2O 4 up(M  (30262) 4 L

g = 18 4 aal® . (ﬂc)zP(z) e

O R G DR (5)
Q

A

Putting (5) into equations (2) and equating the terms of the same order of

ik on both of each equation, we obtain

22p0)  2p0)

(M‘2 - 1) = 0,
(o} ax2 ay2
éP(O) = o §V(O) ,
o) 0o B¥X
..B_Il.(j.?. -1 .@fﬁ (6)
o% M o ? [e)
o)
ER(O) - EP(O,’
QX >
(°) (0) (o)
aP 1,30 aVv -
% Y ( % * dY ) 03
2 (1) - 2. (1) - (o)
0f - Vi - A = Al B,
° 3% 3y
(1) (1)
AP _ dV . L0,
= = - M, S - MV,
al? |1 2 )
3% Mo ox ? (61)
( BR(T) (o) BP“)
R )+ X P ax
Vet ) 7 0
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and for nx 2:
of - ﬂii;n) - i;;n) = - 2f @’235;(:”1)* - wZpne?)
s
at® | 1 e
X Mo % ’
Sn1) %ﬁ, - o) agifﬂ
ot 2 g SIS
Similarly, we obtain for the boundary conditions,
y = 0., v = 20y,
;o= xtamg, v = T,
po) = Gl (x , (7.)
go) = Flo) '
R0 = 5l ,
s =0, B N O LI O Y
y = xtmg, v = 1@ 5w,
B = 5l )+ T, (7,)
O N R NI
B = 5w+ 5,
and for n 2 2:
v =0, NG N G LR RN G DN e
;o= xtang, v = T8V,
= 5™ () + 5™ (7.)
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o® = g5y L T (),
R(ﬂ) - EQ(H)'(x) ,,,"jQ(n"ﬂ(x).

The problem of solving the equations (2) to satisfy the boundary .
conditions (3) is now reduced to that of first solving the equations (60)
to satisfy the boundary conditions (70), and then equations (61) to satisfy

(71): and so forth.

The solution of the first problem will give the stiffness derivative,
whereas that of the second problem will give the damping derivayive (In
principle, the above procedure of solving the equations (2) to satisfy the
boundary conditions (3) can be successively carried on to any order in ik,
i.e. to give aerodynamic derivatives as accurate as desired. However, it
has been shown in Chapter II that terms proportional to k2 or higher have

neligible contribution to the aerodynamic derivatives).

For a wedge with zero incidence , oscillating about a pivot O1 (Fig.2),

the "amplitude function' is given by
AMx) = x=~hcoso e (8)

With (8) given, the solution to the equations (60) which satisfies (70)
is easily found to be

vo) = 1s plo) = /L, ) = E/3, rl®) = /L, (9)

16

which is a special case of the result obtained by Chu'~, and by Chernyiz.

Also, for later use, we write down the following expression

Q(O>(x9 = x/E=-hcos 8, (10)
in which the value ~h cos g of the integral constant is obtained by an

additional condition that

fs(c, t) =50, t)



which arises because of the attachment of the bow shoeck to the wedge.

By making use of the solution (9) for the steady flow, the following
equation is derived from (61)
2 22t ()

(M° - 1) = 0 (11)
0 axg ayz

to which the general solution is

V(ﬂ - F1(X - ('Mi - 1)%37) + Fz(x + (Mi - T)%Y) s (12)

where FH and F2 are two arbitrary functions.

From the second equation of (61), is obtained

() = 0 p - 02 - %) - myx v 0F - %) -y e By, (19)

o
in which EB is another arbitrary function, and
M
. (
L . 14)
(af - 1)

By combining the third and the £ifth equations of (61) to eliminate 0(1),

n =

and putting (12) and (13) into the resulting equation, we obtain

FB(XD = Cx*+ G,y

in which Co ig arbitrary constant, and
¢, = KZ(U(O)/Mb -9y, (15)
To satisfy the boundary conditions at the bow shock, y = x tan ¢, we

have, from equations (12) and (13) and using (71),

F1( (1= H)x) + Fyl (1 +H)x) = 'KQ(q)(x) + Bx/L - Bh cos 6 ,
(16)
%[ F1( (1=-Hx) = F((1+H0x) ] = EQ(1)’(X) + Dx/L = Dh cos 8

+Moxtancp~0x-co,

1
and hence,
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- Cy (1)t _x "B 1L &
2F + = = "W
(= A+H Y (T | S " T-H x
- (F+Dncos s,
o . (17)
— - A+ M tan g = C, . G
_ ~_GC (1)1 x B o) ¢ 17..% -
2F,(x) E -2 (5 * " " A+E*x
- (B - %)b cos §
where
) *
H o= (M - 1)% tan ¢ » (18)

To satisfy the boundary condition (71) at the wedge surface y = 0,

we obtain

D (x) =g () =

2H1 "Hzgngé‘kMotan‘P'Ci)/" }1 %= + h cos e(§~1)j

A B (19)
(& + C/u)
where
- H
m = %"’_’;"ﬁ 3 (20)
and
y = Lok (21)
G+ A

By a method similar to that in Chapter II, it is easy to prove that
the quantity ) given by (21) represents the reflection coefficient of a
disturbance from the bow shock, i.e. A is equal to the ratio of the amplitude
of the disturbance reflected from the bow shock {along the characteristic
X * (Mi . 1f%y = conat.) to the amplitude of the disturbance incident on

kR
the bow shock. (along the characteristic x = (Mg - 1)%y = conste)

Also this reflection coefficient ) is, at least for periodic unsteady



motions, identical to that derived for steady flows in Refs.16 and 2.

The solution to the functional equation (19) is a linear function -

Of X, - o -
Z“”HZ“E“H(D/A-vMotanQp 01)j
t Y 2 h ':é' -
Q(T) (x) = A _ « + Lcos 3( 1) ,
(1% am){1 + B4 + ¢/n) A

and therefore, the pressure distribution over the wedge surface is given by

P<1)(x, o) = (26 -~ I)x =~ Th cos 6 , (22)

where

o= o 1A
I 41_;\,
M -T 23
Gml[1+%1*7‘m+u2E/3 + ()
P T~ Am n
5 M -G =
(1= 2+ tan ¢ = u° —2 -H?f?}‘)f}
" A A (1-1)4

]

(1 = am)(1 + H)



3 THE STABILITY DERIVATIVZS USING THE EXACT THEORY

To the unsteady theory of the firsgt order, the pitching moment
coefficient Cy congists of the gtiffness derivative - and the damping

8
derivative -Cp

:
o, = et [(-cme> * k(-0 ) ] (24)

By the same reasoning as in Section ITe3s2.1, and using the solutions (9)

and (22) we obtain

By, B ;
~e, = &-(p2) (39)—Ls-i(% - b coso) , (25)
8 [o} o« 08 6

u .
¢ = D ED—T5{ IUn 0os®0)* - ch cos®o + H2e - 1) | . (26)
B o o cos” g
The quantities E and I in (25) and (26) are seen to be, respectively,
equal to the quantities Eé and Ia in (II.70), so the stiffness derivative

obtained in this Chapter is the the same as that in ChapterII, as it should

be.

On the other hand, the quantity G is, in general, not equal to the
guantity Ga in (II.70), so the formula (26) for the damping derivative is
not the same as the formula (II.69). However, as shown in Applendix B,
if M5 >> 1 so that the terms proportional to M';z are negligible, G is
reduced to Ga’ and therefore the present exact theory includes {to the

first order of k) the approximate theory in Chapter II as a special case.

Comparisons between this exact theory and the previous approximate
theory for various free stream Mach numbers M_ and flow deflection angles
g are plotted in Figs.11, 12, 17. Also plotted for supersonic flows are
the results of Van Dykels theory19 and the experimental results by Pugh

and Wbodgateé.
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It can be concluded from these figures that the approximate theory
works very well for the rach number Mb behind the bow shock bigger than

2.0, but not so otherwise.



4  GENERAL CRITERTON FOR STABILITY

The stability of an oscillating pitching wedge in supersonic and
hypersonic flows may be examined by considering an exact criterion for
the conditions at which the damping derivative first becomes zero at some
cirtieal position of the axis of oscillation. This can be obtained by

solving the following equation

I{h 00329)2 - Gh 0032

e+w-1) =0, (27)

and this is done by an iteration method and the result is plotted in Fig.18.
Algo plotted in the same figure, for comparison, are the results of the
approximate theory. It is seen that the approximate theory underestimates
the thickness effect by a few degrees for supersonic flow and by about two

degrees for hypersonic flow.

Although in general, G, # G, the critical pivot position h,.s at uhich
the damping derivative first becomes zero, is the same in both the exact

theory and the approximate theory, and is given by

= 141407
Bep = 33 ta70, (28)

where 8op is the critical flow deflection angle, at which the damping

derivative first becomes zero.

Neutral damping boundaries for given wedges can also be obtained from
equation (27), and the results for » thin' -wedge and a very
thick wedge are plotted in Figs.20 and 21, P%otted in Fige20, for comparison,
is also the theory of Carrier and Van Dyke' '»'28 seen that both theories

give the same result for supersonic flow, as is expected.
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CHAPTER IV

EFFEGTS OF VISCOSITY <0¢ 22



1 INTRODUCT TON

In this Chapter we shall study the effect of viscosity on the stability

derivatives of an oscillating wedges

For moderate supersonic flow, the pressure field over the wedge, and
hence the stability derivatives of the wedge is not significantly altered
by the presence of the viscous boundary layer which is relatively thin.
On the other hand, with increasing Mach number the boundary layer becomes
relatively thicker and the pressure field may be quite different from the
inviscid one. This causes a significant change in the stability derivatives.
erik»Ruckmann17 has examined the viscous effect on the stability derivatives
of a thin, sharp wedge. Using piston theory, closed form formulae for the
stability derivatives were obtained which showed that for a free stream
Mach number of 17 and a wedge of 3 degrees semi-verteg angle the viscous
effect may alter the stability derivatives by about 50 percent of the
invigeld value at the wedge vertex to 200 percent at the end of the wedge.
However, in Ref.17 the effect of the reflected waves coming from the bow

shock is neglected, and the assumption of a slender wedge is made.

It is the purpose of this Chapter to develop a theory which includes both
both the thickness effect and the effect of wave reflection, Comparison

of the present theory with Orlik-Ruckmenn's theory is given in Section 6.

In this Chapter we congider only a sharp oscillating wedge in viscous
hypersonic or supersonic flows at zero incidence. An empirical formula for
eastimating the effect of the leading edge blunitness has been proposed by
Easts.

The boundary layer is assumed to respond ingtantaneously to the unsteady

flow quantities. Physically this assumption is valid if the time required
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for the boundary layer to adjust itself to the instantaneous incidence of

the body is very small compared with any characteristic time in the problem,
In stability analysis, particularly for hypersonic flow, the frequency
parameter k is usually very small, this means that the period of oscillation,
which may be taken as a characteristic time for comparison with the time
required for the adjustment of the boundary layer, is very large compared
with the time required for a fluid particle to pass through a characteristic
length in the problem (say, the chord length of the wedge). The latter is
easily shown to be of the same order of magnitude of the adjustment time(Refs
25, 26, 27), Hence the boundary layer adjustment time is very small comparied

with the period of ogecillation of the body.

Therefore this quasi-steady assumption for the unsteady boundary layer
should be expected to te valid for the purpose of stability analyses. More

discussion ig given in Ref.17.

With viscosity present, the wedge is thickened by the displacement
boundary layer. This introduces an effegtive wedge at zero incidence which .

is of semi-vertex angle 8, equal to the semi-vertex angle 90 of the original

1
wedge plus the average inclination of the displacement boundary layer to the
surface of the original wedge (Fig.22). From the viewpoint of the perturbation
theory the vigscous flow past the original oscillating wedge is considered as
the inviscid flow past the effective wedge which is oscillating at the same

frequency as the original wedge and which is deforming according to the
changing displacement thickness of the boundary layer on the original wedge.
This implies an assumption that waves reflect from the boundary layer as
from a solid surface, The problem of finding an unsteady viscous flow field
is thus transformed to a suiltably formulated problem of finding an unsteady
inviscid flow field for which the methods developed in Chapters II and III

can be applied.
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For calculating the stability derivatives the exact theory in Chapter
ITI may be used. However it is only in the cases for which the Mach
number behind the bow shock is large that the viscous effect will be
significant, and in these cases the approximate theory gives excellent
results as compared with the exact theory, Therefore, in this Chapter when
calculating the viscous effect we use the approximate theory but follow
the same framework as that in the exact theory, so it is easy to extend,

if required, the present method to give exact results.
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2 INVISCID FLOW

Let the system of coordinates §b§ be such that Ox coincide with the
surface of the effective wedge in its average position, and 0 the vertex
of the wedge (Fig.23). Let t be the time variable, w(X, ¥, T), v(X, ¥, 1)
the velocity components in x, y directions, respectively, p(%X, ¥, &) the
pressure, and &(E, ¥s t) the density, of the fluid particles. Subscripts
o and 1 refer, respectively, to the quantities of the steady flows past
the original wedge and the effective wedge, thus Uy, Vis Pys pqr 8qs
M1 and.a1 are, respectively, the velociiy components in the §, ; directions,
the pressure, the density, the speed of sound, the Mach number and the
shock angle in the steady flow past the effective wedge, etc. Obvisously

vy = 0, For simplicity, let Py =§31 ~ 640

For small perturbation from the pure wedge flow past the effective

wedge, we have, say,
.I; = p1 * gD ¥ esey eta, (1)

The non-dimensionalized variabies Xy, ¥, and t are introduced to

relate to the dimensional variables X, ?,'E by

s e u %
X = '% s ¥ - § P t = - L] (2)
L £ 2

To study the gas motion resulting from a harmonic motion of the wedge
with a given cirecular frequency w we have, by a method similar to that in
the previous Chapter, the following equations respectively for the wedge

surface and the bow shock,

ed(x, t) = seik‘itA(X), (3)

=
{

and

y = xtang, + ee1%(x), (4)

-7 -



where

1

k, = wi/u

1)

(5)

is the frequency parameter based on the wedge lengthz and the speed of

gas behind the bow shock in the steady flow past the effective wedge.

We may also express, say

p = p,la,lu,]eikT tP(x, y), . .3te.

(6)

After making the same assumptilon as in Chapter II that the coefficient

M? -~ 1 in (I.7) be replaced by M?

the time-independent perturbation quantities

2 2

23°P 3

152 3

dV

11
H

1 3x

o)
Wl
1

M1 ox

FOR
bes]
+
o oo/
—

lae)
+
g g
+
&P
o%F o4
<l

Similarly, the boundary conditions

i

y = 0, v

i

y = xtancP1, v

P =

i

U

R =

through T

where the consgtants i 1

1

2P 2L - opf &

= 128 5y,

= ik,P

22 _ (. 2
Rlag (uc1)2M1P,

T

1

(22,

= 0.

are

2'(x) + ikp (),
L4 ( + 1B A,
G, (x) + 25,000,
Eq () + 1 F,q00),

- 1 _
G,Q (x) + :lc1J1Q(X),

o being replaced by the subscript 1.

-2 -

, we obtain the following equations for

(7)

(8)

are given by (III.4) with the subscript



Further, the five unknown functions may be expanded as a power sgeries

irlj-kfi,

also,

A

H

i

<o)
plo)
(o)
glo)

Q(0)

A(O) + ikfa(1) * aeey

. (1)
ikTV

+ ik1P(1)

+ ikTU(T)

e (1)

+

&

ik1Q(1)

+

LA A S ]
eengy
L AAE ] (9)

LAAS |

LAY ]

(10)

Substituting (9) into equations (7) and equating the terms of the same

power in ik1 on both sides of each equation, we obtain the zeroth order and

the first order perturbation equations as follows

and,

MQBZP(O) ~B§P(o) - o,
1.2 5
3p(o) - EV(o)
dY 1 %
al? o1 ax (11,)
% Mﬁ 3x 0
5g(0) N . plo)
% dx
SR TN U
% M Sy
Mza:zPh) _a2n R (0)
1 ax2 ay? 1 ax *
(1) (1)
aB L = _y alll oy o)
= My B - M T,



-1, -V A (o)
X M, 3% U (111)
R( 0) FS a.ll(.z-)- - P( 0) + Bf.'.?l,
X X

ST U O B
X k% Y

Similarly, we obtain the following zeroth and the first order boundary

conditions
y =0, wo) = (o),
y = xtang, v = L',
PO = 700 (), (12,)
o) = 59 ),

NOJNE OISy

and,
y =0, W = (0 4, i),
y = xtan g, w1 = -51Q(1)'(x) +°§1Q(0)(x), |
KD = 541" + 5,0 ), (12,)
oM = ETQ(”t(x) +§1Q(°)(X);

3(1) = E%Q(q)‘(x) + EQQ(O)(x)n
Equations (11) and boundary conditions (12) will be used in Sections 3 and
4
To deseribe the displacement boundary layer, another system of
coordinates x$0'y is introduced for which Ox! is along the original wedge
surface at its average position (Fig.22). Denote by 5*(x', t) the
displacement thickness of the viscous flow past the original wedge at time

%, and by 6:(::') that in the steady flow past the original wedge. (of course,



both of them are always measured from the original wedge surface). Then

it is easy to see that the average inclination of the displacement boundary
layer to the original wedge surface is equal to 5:(1} for a very thin wedge
and approximately so for thicker wedges. We therefore define the semi-

vertex angle 91 of the effective wedge as

0, = 8, *5.(1) (13)

In order to obtain the displacement thickness at any time, it is
necessary to know the unsteady inviscid flow past the original oseillating
wedge. This has been done in Chapters II and III, the results are guoted

t .l
» Vv represent the velocity components behind the bow

as follows. Iet u
t H
shock in x , y directions, respectively, and subscipt orig refersto the

quantities in the unsteady inviscid flow past the original wedge, then

ot y ikt
s, = (1 + ¢e 1 U, )
ubrlg Y inv’?
) o ik1ﬁv
vcrig = ou.ee inv’
(14)
ik,

ot . — 1
Porig = o1 *+ yhee Py ),

ik1t

Portg = Poll *HMgee Ry,
where u; is the velocity component of the gas behind the bow shock in the

H
x direction in the steady flow past the original wedge, and

v, o= ol yone ot L

inv inv 1 inv

Vi = Vioy * ik1V§§i *eees

Fipg = 7 ) o e v
R = Rggé ¥ ik1R§;L ¥ oeees

in which,



(o) - ™ _

Pimr(x’ o) = Co/Kc) = E

(0) - =

Ripe(%s 0) = GO@O Z W, (16)
fé;%(x, 0) = (2G, = EB)x + [;Eo(ﬁg -1 - ﬁg_}h~cos 0 s
R“)(x o) = (2 - N)x + [N (B ~1) -7 ]hcose

inv T? o o o'"o ) o?

where h is the non~dimensionalized pivot position measured from the apex
of the wedge, the constants Eg through E;, 3; are equal to the corresponding

quantities given by (III.4), thus Eg =1, etc. The constant Go is

1+ in La o+ ¥
1T=2am — (1 *7&0)(1 - Ao (1 o)
with
m =1”H A =C°~A° H = M tan
0 1 +H°7 o) T +K, o o Do
[o} [a}
=[5 =T +3 taRe | /(5 +3
b, = [BO--AO-fGo tai | /(E, +T,) (18)

— Liid L Rl 2 - Ll Ld
vy = [Bo -3, =T, taly | /(& +T)
In (15), the other quantities such as U§ZL, being of no use in this Chapter,

are not quoted here.



3 _WEAK _INTERACT IGN

As the boundary layer responds instantaneously to the flow quantities
in the unsteady flow past the original wedge, for the case of wesk interaction,
. t 1 1 ,
in the x y systen of coordinates the displacement thickness 5*(x, t) at -

time t can be written 'by1

=

26 (x, x::_al = g lorig (19)
] 8
- orig .

orig
where the hypersonic interaction parameter ¥ is as follows

1
- (Q)ﬁMB
X = 1 s (20)
(r,_1)*
ex
%
in which Rex is the Reynolds number based on the non=dimensionalized length
H

x from the wedge vertex, C is the constant of proportionality in the linear
viscosity-temperature law and is determined by matching the viscosity relation,
usually evaluated at the surface temperature, with the exaet value of the
viscosity p for which the power law

pow T (1) -

is taken and the values of the index () are taken as 0.76 for air and 0.647

for heluim throughout this Chapter. Thus

- M Sorigy _ Torig\1 =0
COI‘ig - (Morig)( Tb ) - ( Tb ) (22)

vwhere T is temperature of the gas and the subscript b refers to the body

surface. The quantity dorig in (19) is
22 B e (
d. o= m*y""lBP R 23)
orig T .. r
Mirig orig
The two constants A(?r) and B(F}) are dependent on the Prandtl number P&

and given below1:



Pr A 3
1.0 0.865 0.166
0.725 | 0.968 0.145
For an imsulated body,
- - R
Tb/Torig T+ by =) (Pp) Morig/ 23 (24)
and hence
A(Pr) L. -1
dorig ) *ly - T)B(Pr) * A‘(Pr)(Pr)g 1"'."2” ? (25)
orig
whereas for a very cold body,
Tb/Torig =1, (26)
and hence
AP
dopig = = t(y - 1B(R,) . (27)
orig

Using equations (14), and denoting eel‘k{u by e(t), the quantities

M . X . andd . can be e esse
orig, “orig ad orig xpressed as

miz ...!2 . -
2 4 orig Ty orig _ POI‘1 N e(t)MoRinv ‘Quj— T 2“:(JG)UJZ:WJ

—

|/
orig = -
Y Porig/gorig Po [1 * e(MP J

e AR
= M, [1 +e(t) (M.oRinv YU P * 2Uinv) ] ’

i}

(v = (e,

:?’ A 1 “
. ) [_1+e(’c)(MOR.V- MOP o+ SU, V)J,,
orig 1 -

2o inv
) (28)

I

M4
oo

{
is the Reynolds number at x = 1, using the quantities in the

i

A(P -
dorig s [1 - e (%) 2 (MoRinv VM Pie * 2U:imr) J ’

where Re‘} ,0

gteady inviscid flow past the original wedge; and do is given by
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A(P )

= - X =1, 7‘3‘ .
d, 2 * (y - B(R,) + 5—i(P)(P,)? for an insulated body
o
. A(R) (29)
, = s+ (y = 1)B(Pr) - for a very cold body
o]

Putting (28) into (19) we obtain

1 T, (P ) M A(P)
& (X: b - ‘,[ (i e(t){ 'YM - %)Pinv - 02 -
dx ()" MOdo Ma
24(P )
* (% S e LI }] ’ (30)
Md
[e 2o
where
2 e
a M ax
io= 2 o 8l (31)
(R, )7 o
el,0

It has been shoun in Chapter II that for large value of M§ the ratio
2 .
of U, %o M P,  is of order of M~ and thus the term Uy in (30) may
be neglected within the approximate theory.
Making use of the inviscid solution(14)to (4 and integrating (30)to

give the displacement thickness

85(x) 1) = ZYW(X‘)—% . e(t)[ 2 7 x4

sr) Aoy, ae) a0
+ JJ:C Y M hadiiv T i - 3
{Y(M d ? | (x )% - Mido j (x)% }]
where (32)
(P.) Alp.)
. 1 r
Z. = -=)E - 33
o Mot Y(deo 5 E, (33)

ig a constant depending only on the steady flow over the original wedge.

As seen from (32) we have

*
8,(1) = 21, (34)



and hence for weak interaction the semi-vertex angle 5, of the effect wedge

1
is given by (see Fig.22)

8, = A, * 2. (35)

1
In transforming from the x y gystem of coordinates to the xy system,
we notice that the two systems of coordinates differ only by an angle of
rotation 52(1), which is neverthless very small compared with unity, thus
we shall use the equalities
* % NORERE
sin® (1) = 8 (1), et T T
o} o)
throughout this Chapter, and hence we can easily obtain the disturbance

function y = g(x, t) over the effective wedge surface in the xy system of

coordinates as below

8(x 8) = 52(1( (T = x) *+ ¢(8)(x = b cos g )
g (1)
1. W A(P) P (%, 0)
eonsf g, d e PG - |
(1) Q0

A(Pr) . Rinv(x, o) .
e g IR )

[0 3¢ ]

It is clear now that this disturbance consists of three parts.

The first part of the disturbance can be seen to be samll compared - -
with the effective wedge over most of its surface, except near the apex.
Because, for weak interactionéiz(1) is small compared with 8,, and even
smaller after multiplying by a small factor ( (x)% - x ) and compared
with 81; for strong interaction 6§(1) may be comparable with o _, but it
is then multiplied by a even smaller factor (2%‘~ x) (see Section 4), so
the first term is still small compared with 61. Therefore the small

perturbation theory can be applied to this first part of disturbance.

As the perturbation equantions are linear, the perturbation pressure and



hence the stability deriwatives contributed by these three parts of the
disturbance can be calculated separately. Now the perturbation pressure
caused by the first part of the disturbance is independent of time and
therefore gives no contribution to the moment coefficient and hence the
stability derivatives as the effective wedge is at zero incidence to the
free stream. Therefore the first term on the right hand side of (36) can

be dropped out for the purposc of gtability analysis.

In the second term on the right hand side of (36) cos 6, could be
well replaced by cos 97 (this would cause an error less than 0.5%) as 5:(1)

is usually very small.

Therefore the contribation to the stability derivatives due to this

term is that of a wedge with semi-vertex angle 91 in the inviscid flow

and can be found from the previous chapter.

We need therefore calculate the perturbation pressure due to the last
term on the right hand side of equation (36) only. To do this, we write
all the unknown quantities with a subscript v, thus the zeroth order solution
for the perturbation quantities Péo), Véo), is obtgined, from equations

2

(110), as

véo) = Fgo)(x - y) + FQO)(X +My)
(37)
Péo) = Fgo)(x - M1y) - Fgo)(x + M1y) + Fgo)(x) s

where Fgo), Eéo) and Fgo) are arbitrary functions. Substituting the above

equations into the fifth equation of (110) is obtained

dFéo)/dx = o,
(38)

i

7l (z)

congh,

L ] L3

To satisfy the boundary conditions (120) at y = x tan Gys WO have
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WO -m)x) s B en)x) = 1w,
RO - m)e) - mO ) = a0 o - B,
and hence
() = (7 57500 x s _ (o)
AF(x) = (A + QT (5 _H1) -F )
29
(o) - 0)' ) '
2F2 (x) = Qv 1 — H1) FB s
where
Hy = M, tang.. (40)
To satisfy the boundary condition (120) at y = 0, we obtain
2Y Z
o) -2l () = i P2)
3, + B0 -H)F (7
the solution to which is
(0) — AY Z 2
Q, (x) = - (x)* + conste. (42)
( (1 =2,/ (m, 2 )(A +C)(1 -8 )2
where
A= (0= a/e v A, mp = (1-H)/(1+H).
The integral constant in (42) is equal to gzero, as
£,.(0, 1) = 6(o0, t).
Finally we find the gzeroth order solution as
Y Z A
Vfro)(x,y)= — {_ : 7 11 1 _;_]’\
1T=2/(m)% " (x-My)® (m)® (x+1y)® o)
Y Z - A
(o) _ WoW ! 1 1 1
Pv (X: y) = L * .

1o h /) - gn)E (m)F (xs wg)®

and, particularly, the pressure at the surface

- 82 -



P&o)(x, o) = YWZW( [ K7/(m1y§ ) 1

(1-2/)¥) (D7

L3 (4’4’)

To find the first order solution we should solve equation (111) to

satisfy the boundary conditions (12 ), in which the first condition becomes

L A(P) A(P) .
y=0: v = 2xz x® » f“)j n - DEiato o - =ERRe o) |-
O O o0

Using the zeroth order solution (43) and a method similar to that for the

zeroth order solution, the perturbation pressure P§1)(x, o) at the surface

is found to be (the problem could be easier solved by making a transformation
=x =My, N =x+1My)

L W h cos g

(1) - .
14 (x, 0) = YW[ W x - —~"z;;%""l J s (45)
where,
B S L ¥ G L 1+x,1/(m1)%)]
: (1= 8) 1 -2 m)F V1o /m)F 1= /)T
_ _é_*j-»)‘./(m)z
W, = rw(1 - H1 Y /(m )2
and
4(B, + D) 1+
= 1, 1 1,1 1] N
o A Ll ) s Loty
v (1-—H1)(Z1'+“61)+2m1 voorsE 2
X 4(B, - DB,) T+ A
‘f = m§ 1 1 +..1(J...._,_>\)__ 1+l<1+_—l)
¥ (’)[mnpmﬁ'@) R e AN
(46)
K +T A(P) A(P)
_ i W r 1 . r _
= 7 (5= =)+ 2M -2)(26_ - E) - (26 - N )
%y W(S - Kq/(m1)§? 0[ Y(Mido 2 o ) Mido o o ]
() A(R.)
_ S 1 .
r,o= ] —;—{N(B 1) Jl-—y(MOdo hy{ 5B, - 1) - B}]

- 83 -



For weak interaction, the tolal moment coefficient . of the wedge in
viscous flow is equal to that of the effective wedge (cm)effﬁ plus that

due to the deformation of this effective wedge (cm)w
b
boud ¢}
Cn <Cm)eff +( m)w . (47)
The moment coefficient (cm)eff’ as stated before, can be found from previous
chapters, whereas the moment coefficient (cm)W can be obtained by using the

solution (44) and (45) and performing the integration in the general formula

for the moment coefficient about a pivot position h as

i

(c)

mw

u 1/cos ¢ -
éﬁle(sj?(ﬁ%)24jo 1[ Péo)(x, o) + ik1P§1)(x, o) J(x - h cos 91)dx

i

dﬂ[(«%)w+iﬁbwm)w], (48)

¢ 9

where, as~before,3m is the speed of gag in the free stream. And therefore

the stiffness derivatifes (~cm )w and the damping derivative ('cm{ )w due
8 8

to the deformation of the effective wedge in the case of weakinteraction

are as follows

22xz(1+x/(m)§)

(»cme)w = é;<*1)( ) 2 ) (4 ~nh 903261) ,
c05%a, (1 =1/ (2)%) (49)
w22 |
(ep e = FGHGH ] wtn cosfo)? - 50, ¢ n oo, + Ty .
003231
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4 STRONG TNTERAGT ION

The case of strong inteaction has been discussed in Ref.1 for a flat
plate at zero angle of attack. With 6, small the results in Ref.1 need
only be slightly changed by replacing quantities in the free stream by
the corresponding ones in the unsteady inviscid flow past the original
wedge. Thus the displacement thickness 5*(5{! ; t) at time t, expressed in

11
the x y system of coordinates, is given by

.-.-é.

K ori
ox =8

Mbrig

’ (50)

i

#, 1
8 (X’t)
with the constant ¢ tabulated below.

Values of o, (Pr = 140)

vary cold body insulated body

v = 1.607 0427 0,858

Ferturbing equation (50) for the small quantity e gives

.

%, 1 - y |
6 (x,t) = 2Ax L1 ée(t)ubRinv IR (51)
in which

de cAié 1

Ys :w:.ﬁmﬁ}" . (52)
4
2(R ) )
e0, 1

From (51), we obtain, in the case of case of strong interaction,

#*
8,(1) = 2, (53)

and hence,

B, = 8, * 2%, . (54)

Following the same line as that in Section 3, the disturbance function

over the surface of the effective wedge, written in the xy system, is



expressed as

506, 1) = 6 (DGE = x) + o(6)(x = B coso )

v e o] 258 + ik (= 2D =, )] (59)

where

7. = e (56)

By a method simllar to that in Section 3, we obtain the following formulae
for the.stiffnessvdﬁrivaﬁive:(—cm Ya and the damping derivative (ucm_}s caused

a 8
by the deformation of the effactive wedge in the cage of strong interaction.
1

u, 2 27 X (1 + M/(mpz)

(o5 ) = {3;(%30;](@-3;) - : - b cos’s)
05y (1 = 21/ (m))%) (57)
u, 2 2¢ ) -
(--cmé) g = %;(gi) ('ﬁ‘i) m%r[ 35,.(h coszeﬁ - %-(S]P + 8 008291 + %:;'Sq J ’
GOS4 91
where
RES — -t '
ag 1 4+ M/(m)* Ky =T 1+ )\1/(%)?

ol 3

S, = 4 5 1. ) ?
« =5 P S ST S IR ]

31 ¢ 0/ m)*

S = r(1-H ,
i z 1 - A,l/(mT)”‘%

and,
- 43, + D) | 31+ A
K, o= g+ -2+ 5D, (58)
(1 - H)(4, +C) 1 1 1
: 4(B, = D,) 1+ R
T, o= o) TR 0 e
(1 -H)(4 +C) 1 1 1

- Ks * ﬁs 7
q. = 2(5 - ) - +M (26 - N ) ,
S YA R




5 MATCHIG OF THE STRONG AND WEAK INTERACTIONS

In the case for which a strong pressure interaction exists over the
whole wedge surface the formulae (57) for the stability derivatives caused
by the deformation of the effective wedge should be used together with
that for the effective wedge oscillating in invigeid flow to give complete
formulae for the stability derivatives of the original wedge in viscous
flow; whereas in the cagse for which a weak pressure interaction exists

over the whole wedge surface the formulae (49) should used instead of (57).

However there are cases for which a strong interaction exists in a
region near the apex of the wedge and a weak interaction exists in a region
near the trailing edge of the wedge. In these cases, there must be an
intermediate region between the two for which neither the strong interaction
theory nor the weak interaction theory can be applied. The author knows no
theory which can be applied for this intermediate region. The two regions
are thus assumed to extend and match at some intermediate point. Physically,
the real flow field over the wedge surface has a continuous pressure
distribution, continuous displacement thickness, etc. Unfortunately, it is
impossible to choose a matching point such that all these conditions are
satisfied, Therefore it is an artificial method to choose a matching point,
and the flow field is distorted to some extent by any choice.

17 patehed the tuo regions at the point {denoted here

Orlik=-Ruckemann
by xp) where the pressures calculated by the two asymplotic theories of the
strong interaction and the weak interaction are equal., It is preferred %o
match the two regions at the point X where the displacement thicknesses

in the steady flow case calculated by the two theories are equal. Thus

the formula for X is

2(10 ra -

x = (=) Xo,1

(59)
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One adventage by using X rather than xp as the matchiang point is that
for slender wedges at the point X the slope of the displacement boundary
layer calculated by the weak interaction theory is less than 80, and that
calculated by the strong interaction theory is larger than so, and this
justifies the use of two asyptotic theories for the two regions so
constructed. (However, for thick wedges, for which the whole viscous
effect is then small, the strong interaction region so congtructed is
overextended by a samll percentage of the length of the wedge, e.g. for
M= 17 8, = 100, it is overextended by 2.4% of the wedge length) .

Whereas at the point xp the two slopes are generally either both larger
than 8, or both less than eo, and this makes it incorrect to use the
asymptotieformulae of the weak or the strong interaction theories for their

regions so constructed.

After determining the matching point position X it is straight
forward to obtain the following formulae for the stiffness derivative
(«cm )m and the damping derivative (»cmé)m due to the deformation of the
effective wedge in cases for which both weak and strong interaction

exist over the wedge surface.

1 7
p w, 2 ¥ 2 (1 + 3 /(m)%) 7
(= ), = ")(Q)[ R R R b o)
0 cos /491(1 - )\1/(m1)_§)
z*»:z(wx /(m)"‘-) | 3 .
3/3@ (1 - /(m )?ﬁ X1 - ) - h cos e (1 -X; ) }]
(60)
(~c_) = 4*—-@1)(3"—) it [ 25 (h cos%9)? § 2(3 + 5 )h cos” :
m Mite, U, 2[ z;;¥772;;1 cos® g) X, =75, g2 eos e,
11 5.

* ‘%”qu i "W{W (h cos e )31 - If) - '-(W #i,)h cos e(?—x %)

o - 5} ]



where

X, T X, 0080, . (61)

Obviously, formuale (60) can be used only for the values of Ly lying

between zero and 1.0, and include both formulae (49) and (57) as special

cases when Xm is equal to zero and 1,0, respectively.,
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6 NUMERICAL EXAMPLES AND DISCUSSIONS

Numerical examples are given in Figs.23 to 30. All calculations were

6

made for an ingulated body, and for the Reynolds number Re =10~ ,

130
and for a gas with Pr =04725, 0 = 0670 and v = 1ede except in Figs.29,30
for which Y = 1-667 and () = 04&7:

It is seen that for the free stream Mach number up to 17, the viscous
effect is important for a thin wedge, but negligible for a relatively

thicker wedge, say the semi-vertex angle 8, = 15°.

The viscosity of the gas is seen to play two roles: first, it thickens
the wedge by a semi-vertex angle equal to the average inclination of the
displacement boundary layer; secondly, it makes this effective wedge
deformable, For a very thin wedge the second role is dominant; whereas
for a relatively thicker wedge, both effect have the same order of
magnitude, and with increasing wedge thickness, the first role becomes

dominant .

For the stiffness derivatives, these two roles produce opposite
effects thus,the first role only would overestimate the magnitude of the
viscous effect, while the second role cancels part of this effect. For
the damping derivatives the first role is to stablize the wedge, whereas
the second role is to destablize the wedge for forward pivot positions

and stablize it for rearward pivot positions. The combined effect is -’

roughly” the same as that of the second role.

Although the overall effect of viscouity is to decrease the damping

derivatives for forward pivot positions, for Re1 0o = ?Oé no pegative wmlues
b4

of the damping derivatives are obtained due to the viscous effect. With

decreasing Reynolds number, the damping derivative may become negative for
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a slender wedge

The viscous effect depends, strongly on the flow Mach number Mo behind
the bow shock which represents the combined effect of the free stream Mach
Mach number M_ and the semi-vertex angle 65° The viscous effect depends
also upon the Reynolds number. Thus decreasing the value of the Reynolds
number by a factor of one half increases roughly the viscous effect by
about 40% for cases of weak interaction, and by about 20% for cases of strong
interaction. The viscous effect tends to zero as the Reynolds number tends
to infinity. The value of Cbrié is larger for a very cold body than for

an insulated body, but the ¥alue of d ig much smaller for a very cold

orig
body than for an insulated body. However, X is smaller for a very cold
body than for an insulated body and therefore the viscous effect for a
very cold body is smaller than that for an insulated body. All these

conclusions can be easily seen from the general formulae (49), (57) and

(60) .

For a very high Mach number, as seen from Figs.27 and 28 the effect
of reflected waves coming from the bow shock is important even for very
thin wedges, and can no longer be neglected for hypersonic flow. This is
80, because the wedge is now thickened by the viscous layer. The effect
of wave reflection consists of two parts: the inviscid part and the viscous
part. Numerical results show that for M_ = 17 and 0_ up to 10° the inviseid
wave reflection has negligible contribution. (about 2% of the overall effect
of wave reflection)

Tn Figs.22 and 30 are plotted comparisons between the results from the

present theory and the Orlik-Ruckemann's theory17 for M _ =17, 90 = 30,
v = 5/3, and Q = 0.647. Very good agreements are obtained except for the

stiffness derivatives for pivot positions near the nose of the wedge.



A step-by-step comarison between the two theories is difficult
because the theoretical models used are different. In Ref.17, the piston
theory is used, and the viscous effect is divided into a static viscous
pressure interaction and a dynamic pressure interaction, which is related
to the effective change of the flow deflection angle and the normal
velocity, respectively, of the wedge surface. Whereas the present theory
is developed using a small perturbation method and the viscous effect is
shown to thicken the wedge to an effective one and to make this effective
wedge deformable. There are also several minor points which are different
in the two theories, e.g. the Reynolds numbers used, the difinitions of
the frequency parameter, the positions of the matching point of the weak
and the strong interaction regions, and some empirical coefficients used
in Ref.17,etc. The slightly different results shown in these figuces might
be attributed to these mionor points. However some more discussions are

ugeful.

Within the small perturbation theory, which is a bagic assumption
common to both theories, the present theory is exact with regard to the
thickness effect and the reflected wave effect, But in Orlik-Ruckemann'sg
theory the effect of viscous wave reflection is neglected, though that of
the inviscid part is included which is nevertheless negligible as shown
by the present theory. Also in Ref.17 the thickness effect is not fully
included as it is based on McIntoch's theory(see Chapter II). For the case
plotted in these figures the wedge is thin, but it is now thickened by
the displacement boundary layer to more than double its genmetrical
thickness. As seen from Fig.28_the effect of the wave reflection is to
decrease the damping derivative, but that of the thickness is to increase
it, fhey tend to cancel each other and as a result, Orlik-Ruckemann's theory
agrees very well with the present theory. (Fig.30) 4lso from Figs 27, the
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effect of the wave reflection is to decrease in absolute value the stiffness
derivative, while the effect of the thickness i1s to increase it in absolute
value. These two effects also tend to cancel to some extent (Fig.29). It
ig therefore concluded that Orlik-Ruchemannts theory is a special case in

the present theory when the wedge is very thin.

In both theories there is a singularity at the wedge apex. Strictly
speaking, neither of these two theories can be applied to any region near
this singular point. Also the present theory by assuming the attachment
of the bow shock to the wedge apex, can only be applied to cases for which
the wedge is sharp and the bluntness at the wedge apex due to viscous effect
is very small compared with the wedge length. For a preliminary estimate of

these effects of bluntness, Ref. 5 should be referred to.
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CHAFTER V

STABILITY OF NONWEILER WINGS %2244



1. IWTRODUCT TON

In recent years, several methodsBo"B& have been suggested for
designing wing shapes of hypersonic lifting vehicles to support known
inviscid two-dimensional and conical {low fields. /[mong these, the
caret wing proposed by NonweilerBO is the gimplest one which, at design
condition, generates a uniform two-dimensional flow on its lower surface
and a plane shock attached to the svwept leading edges. The upper surface
is designed to be either parallel or at some negative incidence to the
free stream and hence will, particularly at hypersonic or high supersonic
gpeeds, contribute a very small amount to the pressure on the body which
will therefore be neglected for the purpose of stability analyses. Since
at the design conditions the upper and lower surface flows on caret wings
are independent there is no need to define the upper surface shapes and
in this thesig the caret wing will be simply represented by its lower

surface.,

Theoretical work hag been reported by Collingbourne and Pecka.m35

and Cooke36, among others, investigating the effects pf several variables

on the aerodynamic efficiency of caret wings. Whereas experimental work

37, pressure distribution

s and heat transfer rates4o.

has been reported concerning the overall force

and flow visualisation o223

48 ther is no restriction with a caret wing on its aspect ratio in
achieving the attached~ghock condition, Peckhamm pointed out that an
aspect ratio could be chosen which guve adequate 1ift and longitudinal
as well as lateral stability at low speeds. Jipart from this comment,
however, no theoretical or experimental work exists concerning the
longitudinal stability of caret wings (Bagley42 has given some preliminary

theoretical egtimates of the lateral forces and moment on yawed caret

wings) .
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It is the purpose of this Chapter to develop an exact theory for the
stability of pitching caret wings at design conditions in hypersonic flow.
By extending the two-dimentional perturbation theory in Chapter III for
oscillating wedges, exact formulae for the stability derivatives of caret
wings at design conditions in hypersonic flow are obtained which are valid

for any incidence of the lower ridge of the caret wings.

It will be shown that the stability derivatives of a caret wing at
its design condition are independent of its aspect ratio but dependent only on
the flight Mach number M& and the incidence pof ite lower ridge. For a
given value of M the damping derivatives are shoun to become negative
for some positions of the pitching axes several degrees before 0 is
increaSed* to the shock detachment angle. A general criterion for the

stability of caret wings is obtained and numberical results included,

Tt is also shwon in this Chapter that for a small departure of the
caret wing from its design condition, the flow field below the wing
remains, within the linearized theory, two-dimensional for a steady
disturbance, and the cross flow is caused by the unsteadiness of the
disturbance. This cross flow 1s seen to greatly increase the damping
derivative for forward pivot positions and to decrease the damping

derivatives for rearward pivel positions.

#*

It should be noted that in this Chapter, whenever we compare cases of
different values of §for a given value of M_, we are comparing different
caret wings at their design conditions and not the same caret wing at

different incidences.
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2  TORGULATION OF THi PROBLEM

Fig.31 shows a caret wing at design condition of delta planform and
of length ¢ and span 28 whose lower ridge and the plane of leading edges
are at incidences 9 and § to the free stream direction, respectively,
measured in the central plane of the wing. The base of the wing is chosen
to be perpendicular to the free stream direction in all cases, but there
is no difficulty in applying the present theory to other cases for which

the base of the wing is not perpendicular to the free stream direction.

Let the right-hand system of co-ordinates 0% ?7"5 be such that O
is at the apex of the wing, 0% along its lower ridge, O§ lies in the
central plane of the wing and is positive downwards, when the wing is
at its design condition. The length 4 of the wing is again faken as a unit

length to non-dimensionalize all the length quantities, e.Z2.

, etc. (1)

w
it
ISERIGH!
¥
i
S RN

For any oscillation of the wing about an axis parallel to 0z, the
flow field must be symmetric with respect to the central plane Oxy, we
need therefore only consider the flow field for which z < O, When tne
caret wing is flying steadily at its design condition, the equation of

the plane of leading edges is

y =~ xtan o = O, (2)
where

o = -6 (3)
whereas the equation of the wing surface is

y+zctl = 0 (4)

where T' is the angle betveen the central plane and the wing surface, and

can be determined from the followin; equation

ten T = s £O8 B/Sil’l w (5)
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Once any set of three independent parameters is given, all the other
geometrical quantities can be determined. These independent parameters
may be, say, 6, ¢ and I'. For practical calculations it is convenient to
use the free stream lach number M, incidence B of the plane of leading
edges and the aspect ratio s, since then all the other quantities can

be expressed explicitly in terms of these three parameters.

2.2 T JABLTIC BQUATICHS

o

To obtain the stability derivatives of a pitching caret wing, it is
necessary to know the flow field on its lower surface This is done by
solving the equations of motion by the perturbation method developed i3
Chartar TIL.

Let T be the time variable, U(%,7,2,8), V(X,¥,Z,t) and W(X,¥,2,5)
the velocity components in the 3’5,3?,32, directions, respectively. Denote
by p(%,7,2,5) and ;(?:,S;,_z’,'{) , the pressure and density of the fluid,
respectively. Then the basic equations for the motion of the fluid betueen

the shock and the lower surface of the caret wing are

W, AW, W, @ o 1w,
ot 3% sy Q% p oX
Z+E§§+§Z+§Z:,%§§’
at % Y K} p oY
WG, M 1R, (6)
at ox oy 3z p 0%

aﬁ@1+~aQ?)+;MQ?z+;aQ?lx o,

3t % ¥y 3z

4, 26D, 3GD , aEW - o,
ot X Y 3%

Denote by Ugs Vor W Py and Po? respectively, the velocity components,
the pressure, and the density of the gas in the steady flow when the wing
is at its design condition. Obviously, Vg F W, T 0, under the system of
comordinates chosen. For a small oscillation of the body the flow

quantities may be expressed as
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1
<
+

ell'*'... »

Q
v = eVt ees
’\:7 = eWt ... (7)
E = Po+ EP "t ece
E = pO+ gp'i' roe @

where ¢ is a small quantity which characterises the deviation of the
flow field from that for the desizn condition and for which the
maximum angular displacement of the oscillation of the wing will be

taken in this Chaptor.

Putting (7) into (6) and upon non~dimensionalising the independent
variables, we obtain

2t 2x b\, oU
WL oo
dt  3x poly Y
ﬂ.;ﬂ :._...1....5.‘.12 (8)
ot ox 0ot 0% 7
QP . IR - g 222 4 O
at * 3% % (at ax) ?
n.a
.5)2.,.%.,.;2..9...(@}?:.,.%&4.@."!) = 0.
at uo 2% dy 0z

in which a, is the speed of sound in the steady flow at design condition,

and the non~dimensionalized time variable t is defined by

—

t o= tu/) (9)
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Making a transformation

g = x+ 1,
W=X*t,
¢ = (10}
X = 2z
we obtain from Eqs.(8)
- A9, 2Ry
2% 2o00, - on’’
v oo o .Aae
oF P, 3C
v - _ 1.
% ol 2 7 (1)
W . 522
'S o 2’
&p -
2, 0% [y c2u,2uy, 2V, 87 -
S GRS TR A S
. u®22 , 2 2 2 2
. . ~2§ ﬁ.% = - pu |%( b_% + 28y, 0V, o1 |
a,” 3 °° e OEON T oEdC  ogax
2 2 2 2 . .2 2
:7};[(&%+-§;‘,—9~)+(~§——§—+§-5)J+§~§+3—8
% 5ol BN am a ¥
.. M25%~a%~3% =l(ﬁr+@)z,
° % ° o 400 ol

where Mo is the Hach number behind the shock in the steady flow at the

design condition. Hence equations (8) become
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2 2 2 2 p
(M%) R4 %2R ;222 _2P_2D - g
Ho =1 T3+ 2, 558 " T3 5 5 ’

. % © >t 2y Dz
gu ou o 1 _2p
ot ax ooty 0% 7
.a.;:+a.1r:m 1 QE,
S % pOuOBy (12)
oW Loow 1 @.E’
ot ox pOU-OaZ
220 4 20 - 9B, OB
& ( 3t * % ) = >t * ax
2

a -
@E+.§Q+£9.~9.~(.QH’.+&Z+.§E) = 0 .
3t ox u DX Y 2z

o)

In the perturbation equations (12), there are only five independent

equations but the first one is useful for what follows.

The flow field can now be found by successively solving the first
equation of (12) for p, the second for u, the third for v, the fourth
for w, and the fifth for p.

For a periodic motion of the body, the resulting flow field, as
observed from a fixed point, must also be periodic with the same period
as the body, because the perturbation equations (12) and the boundary
conditions (see Section 2.3) are linear. Ls showm in Chbapter IT,
we need only study the flow field resulting from a harmonic motion of the
body with a given circular frequency w. Hence the flow quantities may

be expressed as

u o= oug elkt Ulx, v, 2) »
ikt
v o= oue “v(x, Vs Z) s
W= Ul e u(x, v, 2, (13)
ikt
p = Pooe © P(x, ¥, 2z) ,
Po'o ikt
p*‘"’o;'e@ R(x, v, z) ,
o
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in which, agaln the non-dimensional parameter k is given by
k = o 2/&0. (14)

Thus k is seen to be the frequency parameter based on the length 7 of
the wing and the flow speed e of the gas in the steady flow below the
surface at the design condition. k is generally very small, particularly

at hypersonic and high supersonic speeds.
Putting (13) into (12), we obtain
2 2

. P P P . P \ 2
(1\102 - ,}) a 5 - o > — a 5 e 3k21V102 %;: - (lk) MO P 2
ax~ By o}

-a.g :;...-l»-ag_.'v
X M dx iU,
0
ﬂ - __.1,.522_ }
o Mo 3y ikV

(15)

§E+ﬂ+§ﬂ = e -é.lf

Expanding the time-independent unknown quantities as a power series
in ik

R O BURN C DR TR B
MR O IR G R T C N
P (R O B R C B (16)
OB G IR C
R I R N R
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and putting these expressions into (14) we obtain a sequence of systems

of partial differential equations by equating terms of the same power in

ik on both sides of each equation in (15). However, for stability analysis,
only the systems of the gzeroth order and the first order equations are
required. These are:

a2 - ) 2pl0)  p2pl0)  33plo) 0
o 5

.alf.ffl:_ﬁ..g.z...
o]

ox ax ?

(o) (o)
- 1A I At

% M, oy

(17,)

Ew(0) 1 . plo)

X = - Mo oz 7
AE(O) _ aE(O)

ox o ¢
2 @ Ay

ox I‘LO Yy Pk

and,
2.(1) 25(1) 2,5(1) (o)

(=) S - BEm - B E = o P A

© ax 3y 3z °
a1 (o)

ax M, ex ’

% M, 3y

(171)

gw(’l) _ .l.. \P(1> W(O)

3% Mo 3z ?

(1) (1)

B%X o E)Pax + (P(O) - R(o))

a2 ( D

% M dy Dz 2?

[¢]



where M
- 2 2
< = M/ - 1) - (18)

and
e, = KZ(U(O)/}-'IO - P(O)). (19)

2.3  BCUSDLRY COMDITICHS

1. At z =0, W= 0, (20)
which arises from the symmetry of the flow field with respect to the
xy plane.

2). At the wing surface
For a pitching caret wing, the wing surface at time t is given by

£.(x ¥, 2, 8) = e(t) (x=x) ~y~zcotT = 0, (21)

with e(t) e elkt and e is the maximun amplitude of the oscillation

of the wing. The axis of pitching is rarallel to z axis and intersecting

U

the xy plane at a point Po(xo, yo).

The condition to be satisfied at the wing surface is that the relative
normal velocity is equal to gzero, i.e.
of, . ofy _23f, 2%

uoa’ﬁ+uax+vay+waz = 0

Thus, the linearized boundary condition is,

at y+tzcotI = 0, Ve Weot T = 1+ ik(x - xb). (22)

3). Across the shock wave

Let the equation of the bow shock at time t be

Gz, v, 2, ) = e(t) Qx, 2) +xtano -y = 0, (23)

with Q(x, z) unknown, to be determined as part of the solution. Then

the conditions to be satisfied at the bow shock are
{8)
Continuity: [ p ﬁ% + ¥ e wC J = 0, (24)
° ()
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momentum: . v = 0, (25)
_(8)
[?} . "82 J = 0, (26)
()
2 2 _(s)
[ +¥ ) + (v0) Pl o (27)
PN 2 2 _(s)
Energy: [-é(%% +v v + (¥G) h J = 0, (28)

where h is the specific enthalpy of the gas, ?1 and‘?é are two different
vectors on the surface G = O for which ?1 is taken to be parallel to the

Xy plane.

Hlow the components of the vectors in (24) to (28) can be found
to be

x~conponent y~component z~component
-3
v u (1 + ¢(t)U) u e(t)V u_e(t)W,
;a: U; cos B ---Uco sin 6 o
vG tan o + e(t)Qx -1 e(t)q
-3 z
t1 1 tan o + ¢(t)G 0

%z

- 2
‘t2 ~e{t) QZ tan o e(t) QZ secp + e(t)(QX+QZ)tan ©,

where U is the flow speed in the free stream. Although VG is different
from that for the two~dimensional flow past a wedge with semi-vertex
angle 9, within the linear perturbation theory, (v@) ,'3 * VG, and

3 *‘? remain the same in form as those for the two-dimensional flow
exceot that in the present case z appears in Q as a parameter, Because
of this, the boundary conditions across the bow shock which are derived
from (24), (25), (27), and (23) should remain the same as those for the
two-dimensional flow except that for the present case z is included in
the function Q as a parameter. These boundary conditions can be written

down from Chapturs I and ITI as follows:



at y = x tan ©s

z) + 1k B Q(x, 2),

<
i

i

L
=

P o= EQ(X, z)+ik§Q(X, z),

(29)
z) + ik F o(x, 2),

Lo
it

=

£
Ly

i

R G QX(X, z) + ik J x, z),

where the constants 4 through J are defined in (III.4). Whereas from (26),

the fifth boundary condition across the bow shock is
at  y = x tan ¢,
W =K Q,(x, 2) (30)

where

- p
K = =~ ging cos g ( ;3 -1) = =C (31)

e o]

As in all the boundary conditions (20), (22), (29) and (30), the

ordinate Y, does not appear, for pivot axes parallel to z-axis with the
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same value of X but different values of Yoo the pressure distributions

should be the same. Further, the perturbation force vector 3 is
; = c(t) poaOuOP( e(t)sin I', =sinyp, cos [ ).

The z~component of Znhas no contribution to the moment about an axis
parallel to z direction, and the x-component of ; is of smaller order
than the y-component and should be neglected. Hence in the formula for
the oment of perturbation force the parameter Yo disappears. It is
therefore concluded that the stability derivatives of a caret wing for
pivot axes parallel to z-~direction with the same value of e should
remain the same for different values of Yo This conclusion is very
important for experimental performance, as the axis of pii hing normal

to the ridge line may be fixed wherever is convenient.
Letting
ox, 2 = ¢k, 2 + ik P, 2 ¢ WRP(x, ) 4. (R

we obtain the following boundary conditiins for the zeroth and the first

order solutions.

z =0, w® < o,
y+zcot D =0, v « 4y@eer = 1,
y ~ x tan = 0, vl - % Q;o)(x, z),
O EQ}E"’ — (33,)
v - g Qéo)(x, z),
R - ¢ Qio)(x, z),
PCORN Q;o)(x, z).
and, z =0 W = o,
y+zecotT =0 v 4y Weor 1 = x - x,
y - % tan © = 0 v .3 Q:;l)(x, 2) + 8 Q9 x, 2),

e - oW, )+ P, 2, 63
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1 = TP, 2+ F o, 0,

R(l) - E Q}El)(x, z) + E—Q(O)(x, z),

W(l) = E Qél)(x, z).

In order to find the aerodynamic derivatives of a caret wing the
equations (15) should be solved to satisfy the boundary conditions (20),
(22), (29) and (30). In this thegis we restrict ourselves to finding
only the stiffness and the damping derivatives. For this purpose
equations (170) and (171) should be successively solved to satisfy the

boundary conditions (330) and (331), respectively.
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3 THE STIFINESS DERIVATIVES

In order to find the stiffness derivative of a pitching caret wing,
we need only solve equations (170) to satisfy the boundary conditions

(360). This can be easily found to be a constant flow:

i

V(O):: 15 P(O)= 'g' E E, U(O): ':E.s R(O): ..%5 W(O): 0, (34)
AA ‘A A
alsgo,
(o)  _ 1 (o) . -
% ¢ < =0
hence
9 x, 2) = E-x, (%)
A

in which the constant of intesration is determined from an additional
condition that the bow shock is always attached to the apex of the caret
wing.

(o)

independent of z, it is concluded that the steady flow field below the

Since W 0, and all the geroth order flow quantities are

lower surface of the wing due to a small steady departure of the wing
from its design condition is (within the linearized theory) still a two-
dimensional flow. The three-dimensional effect can only arise from the

unsteadiness of the disturbance.

As seen from equation (35), the shock wave resulting from an in-
phase (steady) disturbance remains a plane attached to the apex of the
caret wing and parallel to the z-direction. Since A is generally
smaller than unity, the shock will be,according to (3%), detached from
the leading edges of the wing for an increase of ineidence of its lower

ridge, and vice versa.

Having obtained the expression for P(O), the stiffness derivative
can be easily obtained by performing the integration for the moment of
perturbation pressure e(t)yMbpoP(o) about the pivot axis over the wing
surface. In doing so the pressure acting on the upper surface is assumed

to be equal to zero and thus has no contribution.

The moment of pressure is obviously twice that contributed from that

half of the wing for which z < 0, because of the symmetry of the flow
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field with respect to the xy plane.

N ] (o) . .p (17 .. -
i .M 2j5wj e(‘t)yMOpo[P £ ik P Jsml‘(x—nxo)ds

Ve

= 2jD} e(t)yIvIopO[P<o) + ik Pm] tan I (% -~ X_)dxdy, (38)

o

where Sw is the surface of half a wing and D its projection on the

Xy plane.

Now the pitching moment coefficient Ch is

HH

M . ~
¢ = P ) G(t)l}’cme + ik ("'Cmé)—l? (37
20 T

o W

where 1 1s some characteristic quantity proportional to the volume of

the caret wing., For simplicity, we take

v = 1+8 = 7%, (38)

where S is the plan area of the caret wing. Then the stiffness derivative

~Cmg of a caret wing at its design condition is

(o)
poaouo tan ' P .

~Cp, =
9 me;ZS
T/cose xtancg €00 /cosy  xtang -
L, o, ]y e ] fxe s |
) ) /cosp (x cose)co 0
P u 2
) - :.:-é:- - -2 § L 7Y - N
e om Ty (57)(g) L3 -x ()
in which
2= 1/cos @, j = cos ¢/cos g (40)



are quantities with an obvious geometric significance.

One conclusion to be drawn from formula (39) is that the stiffness
derivative of a catet wing at its design condition is independent of its
aspect ratio but dependent only on the £light Mach number and the incidence

of its lower ridge.
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4, THE DAMPING DEIIVATIVES

Tn order to find the damping derivative of a caret wing, the first
order equations (17 ) must be solved to satisfy the boundary conditions
(331). This seems qulte complicated, but a detailed examination of it
shows that the solution to (171) is represented by linear functions

of x, ¥, z. Thus putting

(1) =

P = ATX + B1y + Cjz + D1XO,

1)

V( ) = Azx + B2y + sz + szo,

wm = Agx + By + G,z + DX, (41)
(1 -

U = A4x + BAY + CAZ + D&Xo’

(1 = b+ By + Ogz + DeXys

into (17 ) and (33 ), the constants A, through Dy can be determined

unlquely. For our 1nterest, we write down the following results only

(1) -
PV o= ax- 2y ¢ DX,
V“) = x+ Bzy - Xy
(42)
A1) = 0325
a,~H - D/i D+ Cq
Q(1) = - £ + ﬁééﬁ x + —% 2> + Const.,
2C G K
in which 2
L, = @ 2. ¢
poed - i 3
1 o M 3
D, = E(B - 1) - D, (43)

o 1
Moot D1/A+ E(x- 1) - %H

1

<«
W
H
b3
N
o

5+ EL/2c°
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The solution for U(1) and R(1) may, if desired, also be written down,
here we just point out two interesting points that C4 = C5 = 0,
and all the constants are independent of T.

The constant of integration in (42) may be found to be equal to
zero by using the additional condition that the shock wave is always

attached to the apex of the caret wing.

The whole flow field does not depend on the aspect ratio s (or I'),

though the latter does appear in the boundary conditions (331).

All the flow quantities except W(q) do not vary with z, therefore
the flow field will be two-dimengional if and only if an additional
condition that 03 = Q is satisfied. Generally this is not the case,
and the cross flow does affect the pressure distribution. Therefore
the flow field caused by an unsteady disturbance is essentially a three-

dimensional one. Further, C, is always negative as shown by a series

of numerical calculations, tius when the wing is oscillating to increase
its incidence, the fluid will be flowing towards the central plane and
vice versa. Also as seen from (43) the three-dimensional effect increases
the pressure by an amount ~2K263x/N6 which is proportional to x, and
hence greatly stabilizes the body for forward pivot positions and
destabilizes it for rearward pi ot positions. A numerical example

is. shown in Fig. 33.

The shape of the bow shock resulting from an out-of-phage disturbance
is seen to be a surface which intersects at parabolas with planes either
parallel to the central plane or perpendicular to the lower ridge of the
caret wing. It is concave for an increase of incidence and convex for

a decrease of incidence.

Having obtained the sclution (42) for the pressure distribution
P(T), the damping derivative ”Cmé of a caret wing at its design

condition may be obtained from (37) combined with (25) as follows

"‘cmé = A‘( )(UO) '293}%‘%[ 2 +G3XO+GA'J ? (‘-’l/‘*)
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where

D sing
Gz“”‘l
2 cos® cosf
2 2 2
Dy ~ A ~g) M, sin @
G, = + v

E 6 sin 6 3cos B cosb

3 3

A (5 - 2 & 4 o2

¢ = 14 " ¢) ey |cot8 U -8) J ten g
A 12 sin © o 4 4

(45)

, 2 -2
~3cos 8 (3 _p3y , U ogD)

2¢in 0 2 sin ©

It is interesting to notice that like the stiffness derivative, the
damping derivative of a caret wing at its design condition is also
independent of its aspect ratio and dependent only on the flight Mach

number and the incidence of its lower ridge.

In using formula (44), care should be taken that due to the definition

of the frequency parameter k, in order to obtain the value of the damping

derivative in the usual sense, the value calculated from (44) should be

multiplied by a factor Um/uo. However, the author feels that the definition

for ~Cmg given by (37) is the most natural ome.
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5 GENERAL CRITERION FOR STABILITY

The stability of a caret wing at its design condition may be
investigated through a general criterion for the critical condition for
which the damping derivative first becomes zero. Since the damping
dexivative ~Cmg is a quadratic function of X s the condition for which

it first becomes zero is obviously that

2 - 4 G,6y

63 2 = o (46)

and the corresponding critical pivot position Xoer is given by
Xooy = ~ G3/264 )

Equation (46) gives an explicit relation between the flight Mach
numbex M_ and the bow shock angle B at the design condition. Unfortunately
this relation is too complicated to solve and express any quantity
explicitly in terms of the other. However the method of iteration may
be used and the result is plotted as a curve of M_vs 8 (Fig3h). In
this figure, for a given value of M _, different 6 correspond to
different caret wings at design condition and not to the same wing at

different incidences.

As seen from Fig3/ for a fixed value of M  there exists a maximum
angle of attack Gcr-for which the damping derivative of the corresponding
caret wing at its design condition first becomes zero for the pivot
position at xccr given by (47). At hypersonic speeds this critical angle
ecr is only a few degrees below the shock detachment angle (i.e. the flow
deflection angle in two-dimensional flow case at which the bow shock
begins to be detached from the body). On the other hand for a fixed value
of incidence, there exists a minimum value of Mach number M_ for which
the damping derivative of the corresponding caret wing at its design

condition first becomes zero for pivot position at %, . given by ¢y,
c

Neutral damping boundaries for given caret wings may also be

obtained from equation (46).
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6 ILLUSTDATIVE EXAUPLES

Typical results for the stability derivatives of a caret wing versus

the position of the pivot axis are plotted in Figs 32 to 35. In Fig: 35
as well as in Fig.34,different 0 correspond to different caret wings at
design condition and not to the same wing at different incidences. In
all these figures a gas with y = 1.4 is used. For a given M _ and
varying 6, the stiffness derivative of the corresponding caret wings at
design condition increases with increasing 6, but after 6 reaches some
value depending on the flight Mach number, it rapidly decreases to very

large negative value.

The three~dimensional effect is seen to greatly increase the damping
derivative for forward pivot positions and to decrease it for rearward

pivot positions.
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7  sISCUSSIONS

The formulae for the stability derivatives of an oscillating caret
wing obtained in Sections 4 and 5 are exact with regard to the incidence
so far as that part of the moment of pressure contributed from the upper
surface of the wing can be neglected. This may be the case for hypersonic
and high supersonic speeds. For moderate or low supersonic speeds, these
formulae should be modified to take into account the contribution to the
moment of pressure from the upper surface. However, the present work
is concerned primarily with the operation of the caret wing at the design
conditiions, i.e. hypersonic or high supersonic speeds. and the contribution

of the upper surface has been neglected.

As for the viscous effect, assuming, as it is likely to be, that for
a caret wing it is of the same order of magnitude as that for a two-~
dimensional wedge-shaped wing, then it is negligible for practical interests.
As shown in Ch.IV; , if the Reynolds number based on the wing length is

of the order 1069 which is much lower than that in practical flight

Pl

condition™ , the viscous effect is very small for the flow deflection
angle 8 greater than, say, 10° and at hypersonic speed. For a caret wing,
any incidence 6 of the lower ridge less than, say, 10° would be out of
practical interests, for the caret wing should have a finite volume and
its upper ridge should be at most at zero incidence. Therefore, the
formulae () and (44) for the stability derivatives obtained from
inviscid flow theory are adequate for practical use, and the viscous

effect may be neglected.
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CHAPTER VI

GENERAL DISCUSSIONS AND CONCLUSIONS



1 DISCUSSIONS

Perturbation method is one of the most useful methods in
Mathematical Physics, and particularly in Fluid Mechanicshﬁ. If the
perturbation from a known flow field is small, one can linearize the
perturbation equations and thus reduces a non-linear problem to a
linear one. That the perturbation from a pure wedge flow is small
is the main assumption in this thesis and is valid for the purpose
of analising stability and flutter. For cases for which the known
flow field is simple an analytical study of the linearized
perturbation equations may be possible. Such is the case in the
thesis, In general, numerical solution to the perturbation equations
is necessary, and little physical insight can be obtained. It is
not always possible to get physical insight even in analytical cases,
for instance, a complete analytical study has been made in Chapter V
of the stability of a pitching Nonweiler wing, but it is still
difficult to know how the unsteady waves, which are included in the
formulae for the stability derivatives, are reflected from the shock

waves.

The inviscid perturbation method in Chapters II and III is a
regular one, whereas the viscous perturbation method in Chapter IV
is singular with a singularity at the wedge apex which is inberented
in any boundary layer theory.

In Chapter II, the perturbation equations are approximate but
the boundary conditions are exact. This inconsistence might be

. -2,
easily removed by neglecting all terms proportional to M, in the
boundary conditions. However, consistency of an approximate theory

does not necessarily give the most accurate result., It is believed
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that by exactly satisfying the boundary conditions, as is done in the
thesis one may expect a more accurate result, as one starts with
exact rather than approximate data. Also, keeping terms proportional
to MO"Q in the boundary conditions may, to some extent, keep in more
characteristics of the supersonic flow. These expectations are
confirmed partly by comparisons with experimental data for supersonic
flow, un? partly by conparisons with the exact theory in Chapter III
which shows that in this way the approximate theory gives excellent

results for Mo as low as 2.0,

The method used in Chapter III for solving the perturbation
equations is a powerful one for stability analysis for which the
frequency parameter k is very small. This method of solution gives
exact formulae for the stability derivatives, i.e, the stiffness
derivative and the damping derivative. Should terms proportional
to k2, kﬁ, kk, wee in the aerodynamic derivatives be required, the
higher order equations (III.GD) should be successively solved.
Iowever, Chapter II shows that for pitching motions of a weage these

higher order terms in k have negligible contribution to the

aerocynamic derivatives even if k is not small com ared with unity,.
j

As for flutter, for which k may be comparable with unity, this
method should cease to be used unless the convergence of the power

series (5) in Chapter III is proved.

On the otber hand, the solution given in Chapter II is exact
with regard to the frequency parameter k, as long as k is not too
large compared with unity (otherwise the velocity disturbance at the
body surface is, for a given value of e, not small compared with the
local velocity of the gas). Hence it can be applied for the case of

flatter as well as for stability analysis, and also for cases of
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apericic motions, It should be noticed that this solution is
approximate with regard to the thickness and the free stream Mach
number {wmore precisely, to the combined effect of the two, as
representedby Mo)' However, the metiiod can be improved to give

more accurate solutions. Thus it is proposec hiere that the flow

guantities u, v, p, p and fé be expanded in powexr series of M0—4
88y,
p = p(o) + Monzp(l) + Momkp(&) + ese (1)

Putting these expressions into the exact perturbation equations(Ii4)
and {(I.7) and equating like terms of MO'Q, we obtain a sequence of
systems of equations to be solved successively, for example, we

have, for P,

5213(0) N E’Lzﬁ(o)

= (2,)
’852 BQ'Z
2 (n) 2 (n
E— - M(z) = 7 (B2 ) pla=) (2,)
% 3" 2 2 .
( n = 1,2,3, eer )
where (= M Ce The boundary conditions should also be treated in

the seme manner. Now p(o) has been obtained in Chapter II and one

(o)

may easily find p(l) by the same methoc of solution as that for p° 7,

and so forth. In this way, one may obtain a solution as accurate

as required, assuming that all the p(n) 's are of the same order of
magnitude. For cases where the bow shock is attached to the wedge,

we have MO > 1 and these series must converge. As p(o) by itself
gives excellent results for Mo as low as 2.0, it is believed that only
(2)

terms up to p are requirecd to give 2 goou solution which can be
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applied for Mo as low as about 1.2.

Success has been made of extending the two-dimensional
perturbation method to a three-dimensional flow past a special type
of bodies — the Nonweiler wing, and an analytical solution obtained.
However, to apply the perturbation method to flow past a three-
dimensional body of general shape, even a circular cone, analytical

treatment ig not possible and numerical methods must be used instead.

As mentioned in the Introduction of Chapter I, only a few
experimental results for unsteady hypersonic flow bhave been reported,
it is therefore suggested that ithe following experiments may be
performed at the Department of Aeronautics and Astronautics of the
University of Southampton:

a) Measurements of the stability derivatives of relatively thick
and very thick wedges in hypersonic and supersonic flows in
order to check formulae (III. 25) and (III. 26) and the stability
criterion for a wedge,

b) Measurements of the stability derivatives of very thin wedges in
hypersonic flow to check formulae (IV., 60)., Also to obtain
information of bluniness effect of a slender wedge, and of the
phase lag between the unsteady boundary layer and the motion of

the wedge. As the bluntness effect and the phase lag are
neglected in the thesis, such experiments could give a range of
applicability of the present theory.

c) Measurements of the stability derivatives of Nonweiler wings in
hypersonic flow at their design conditions to check the
theoretical results obtained in Chapter V. It would be useful
also to perform these experiments for lower Mach number to check

the assumption made in the thesis that the perturbation pressure
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on the upper surface of the wing is negligible comparea with that

on the lower surface.



Wl

2 CONCLUDING REMARKS

Exact (linearized) perturbation equations and boundary
conditions for inviscid hypersonic and supersonic flows past

a wedge~like body, for which the bow shock is attached to the
body, are derived, and the problem of finding the flow field
reduced to that of solving a wave equation containing only one
unknown function. This system of equations can be applied to

both unsteady and steady flows over both slender and thick,

rigid or flexible bodies performing either periodic or aperiodic

motions.,
These equations include those obtained by Chu16 and by Chernyi2
as a special case when the flow is steacy.

Two methods of solution have been developed to solve the
perturbation equations. The first is applicable to periodic
motions only in which all the unknown fupnctions are expanded
into power series in the frequency parameter k. Thus it can
be applied to stability analyses for which k is very small.
The second method is applicable for any motion — periedic or
aperiodic — in which all the unknown functions are expanded
into power series in MO“Q. It can be applied to fluttier as
well as stability apnalysis, for there is no restriction on
the frequency parameter.

The application of the first method to a pitching wedge in
inviscid hypersonic and supersonic flows gives exact formulae
for the stability derivatives in the most general cases. In
these formulae the effects of wave reflection and of thickness

are fully included.
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10

This exact theory includes the theory of CGarrier & Van Dykeq1’12 a8

a special case when the flow is supersonic.

It is shown that whereas the stiffness derivative of a wedge
increases in magnitude with its thickness, the damping

derivative first increases with the thickness and then falls to

very large negative values several degrees before the semi-

vertex angle reaches the shock detachment angle.

Increasing flight Mach number tends to increase the stability

of the wedge, however, it is shown that even at hypersonic
speeds,under certain circumstances the body may be destablized

by the flow passing it. A general criterion for stability is

also obtained.

Solution to the perturbation equations by the seconc¢ method

has been carried out to the first term in the power series in

MO”Q. The application of the solution to a pitching wedge in
inviscid hypersonic and supersonic flows yields approximate

formulae for the aerodynamic derivatives in two forms of power series
in the frequency parameter k and in the reflection coefficient

A, the value of which in the unsteady flow is shown to be the

same a8 that in the corresponding steady flow., While the

damping derivative so obtained is approximate, the stiffness
derivative is proved to be exact.,

In addition to the set of waves due to the disturbance at the

body surface which has been discusseu previously15’16’2’14,

new set of waves due to the motion of the bow sbock is discovered
which exists for relatively thick wedges only. This set of waves

is found to be a factor which tends to strongly destablize the

motion of the body. It is shown to be important for thick wedges
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12

13

1h

and become dominant near the critical situation. Effeétsvdf the
reflected waves of both sets are shown to be important for
relatively thick wedges.

For pitching motions of a wedge, it is shown that the terms
proportional +to k2 or higher orders of k in the aerodynamic
derivatives are negligible.

It ig shown that for stability analysis the exact theory
developed in Chapter III includes the approximate theory
developed in Chapter II as a special case which, in turn,
includes both McIntosh's ’tzheoryll‘t and Appleton's theory13

(see also Ref. 22) as special cases when the flow is hypersonic
and the wedge is slender. As to the ranges of applicability of
the theories of McIntosh and of Appleton, it depends on the

error allowed. However, both the exact and the approximate
theories give more accurate and simpler formulae for the
stability derivatives than either McIntosh's theory or Appleton‘'s
theory does.

Viscous effect is included by modifying the body shape to account
for the displaccment boundary layer. Thus the concept of an
effective wedge is introduced which is the original wedge
thickened by a semi~vertex angle equal to the average inclination
of the displacement boundary layer, and the viscous flow field
past the original oscillating wedge reduced to an inviscid flow
field past the effective wedge which is oscillating and deforming
according to the actual growth of the boundary layer, which is

assumed to be in-phase with the motion of the boagy.

Closed form formulae for the stability derivatives of a sharp

pitching wedge in viscous hypersonic flow are obtained which
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16

17

18

fully includes the effects of wave reflection and of thickness.
The viscosity of gas is shown to play two roles: first it
thickens the wedge to an effective one, secondly it makes this
effective wedge deformable.

The effect of viscosity is shown to destablize the body for
forward pivot positions and to stablize it for rearward pivot
positions. It is important for thin wedges in hypersonic flow,
but decreases with increasing thickness, Comparisons witn
invigcid flow are given.

The viscous perturbation theory appears to include Orlik-

17

Ruckemannk viscous piston theory ' as a special case when the
wedge is very thin.

Extension of the two-dimensional perturbation theory to a three-
dimensional one is made and the results applied to the study

of the stability of a pitching caret wing at its design
condition in hypersonic or high supersonic flows. Exact
formulae for the stability derivatives and a general criterion
for stability are obtained. The stability derivatives of a

caret wing at design condition are shown to be independent of

its aspect ratio but dependent only on the flight Mach number

and the incidence of its lowexr ridge.

It is shown that there is no three-~dimensional effect on the

stiffness derivative of a earet wing, but this effect is
dominant for the damping derivative and greatly increases it
for forward pivot positions and decreases it for rearward pivet

pesitions.
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CONCLUSIONS

A general perturbation theory of unsteady hypersonic and
supersonic flow past a wecge-like body has been developed which can
be applied to inviscid and viscous flows over both slender and
thick, rigid or flexible bodies performing either periodic or
aperiodic motions, providing the bow shock is attached to the body.
The theory is applied to study the stability of a pitching wedge,
and gives results which include as special casesmost of the
up-to-date theories for oscillating wedges : the theory of Carrier & Van Dyke
+theory—of—Carrier for supersonic flow, McIntosh theory for
hypersonic flow past a slender wedge and Orlik-Ruckemann's theory
for viscous hypersonic flow past a slender wedge. A general
criterion for stability of a wedge is also given. An exact theory
for the stability of a pitching Nonweiler wing at design condition
in hypersonic flow is also obtained using the same perturbation

method,
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APPENDIX A

PROOF OF THE INEQUALITY p\ a [ < 1

Let
1 p p
N2 = 1 + E-Q(Mi - 1) taﬂch - yW(;*gw 1)
- (i)
1
- " X............
L, = [ 1 w( - 1) J
then, it is clear that
1 ’\y'
)\a s [] ] 4}»2
I, + N
2 2
The density ratio Pw/Po is given by
P = - 2
--9 peed X " :}l + 2 2 & (-’-&3)
Pm Y ('\/ + T)Mm sin™p

This relation at the bow shock is symmetric with respect to the subscripts

o and «», hence we have

Po _ v =1 2 .
. - v * ('y + W ° (“4)
From (1-13) and (.. 4) it follows that
- pO + 1 - 1 + 1 50
1<pm<'\"‘1’ o<W <1, 5 =<1 . (ag)

Replacing every term on the right hand sides of expressions (A.,‘) by its

minima, we obtain

v Po,.2 2 v = 1. 2
N, = ‘!+pw(Mo~‘§) tancp+yWny( ,va+¥+1)
e
e T0.R 2 2y = - 2
= ;--»m(l\&O 1) tanp *Y - 11J o 1>-:(Mz 1) tan"p > o ,
! Yy =1 yv=1yv =1
L2>2H[1-— 5t j>o.

Therefore,
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It follows that

1"‘ [} 2’<1,
L, + I,

21,
s
L, + N,
<1
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APPENDIX B

THE REDUCTION OF G TO Ga

We want to prove in this Appendix that the quantity G in Chapter IIT
reduces to the quantity G, in Chapter II when the terms proportion to Mg2

are neglected.

Firstly, the two quantities are,

1 +Am Apo+ VY A e+ d
Gg = )\aa__ ha Y - % R T s (8,)
T=Am ~ (-2 = n )1+ H) T 1
+ Am ang"E
2G == I+H-:]l-—:—xr—n+% ‘E +
= /M - C -
(1-x)’ig+M tan © =< —— - aen) -B-}
LY o % (’I*R)’T{
- ®,)
(1 =am) (7 +2H) ’ 2

where, the quantities ¢, d; Age Pous B and Ha are defined in Chapter II,

We can establish the following relations immediately by their definitions:
L= T, ,, B =T, +¥W,, ¢ = I, ,

D = fé secch, E o= Qﬁe cot ¢ (BB)
in which, the quantities -1'571, Té. and 'f,z are defined in Chapter II. Also, we

have, generally

)\ac+d
I"Ia"Ea",}mxa, (B4)
and
B =2 =5,
A

where Ia and Ea are defined in Chapter IT

When all the terms proportional to M;'z are neglected, we obtain
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s
i
>
it
[
“H:
=
i

M,
(B
w = 1, i = o(M;Z) = o.

Therefore, making use of (84) and (B5), we have

- - T+x, 5
1+3m (1 - ha}(D/K *HY o/4 - 1 - xa % ) A e+ d
o0 = a3 , ah _la
1T - Anm T =2
a a (1 = kama)(1 + Ha) a

1+ A, Aa(B +D+ C+ HaA) + (B=D=C = HaA) kac + d

i

-~ -

T=-A.n - T = )
a'a A1 - am ) (1 + H) a
but
A+ C= Nz + L2 = a
E- - T - = - 2 - —
B+D+C+HA = J? + NZ + L1(1 + gotTe) + L2 + HANZ

= W, + L+ 001+ 8) + 2,
= ¢ 4 a1 + Ha) + i2(1 - Ha},

and similarly,

i

BeD=GC~- Haﬁ = 4+ b(1 Ha) - L2(1 + Ha),

where a, b, ¢ and d are defined in Chapter II.

By making use of all these relations, we finally obtain

1+ Agm, N Agp + Y Aget d
- D -
T=ogm, ~ = Y0 =)+ H) T =X

G
a

g alt +5) +T(1=5) ) = (i =) = T,01 + 1) )

o+
Hy(1 = a,m) (1 + B

- 132 -



the last term on the right hand side of the above equation can be gimplified

as follows,

b{a + Tm ) = albm - L,)

the last term = i 2.8 I
1T - An e

a a ¥

2

b(1 = ma) + L2(1 - Aama)

N2(1 - xama)

- - T./3
) 1 m, + (1 §§)maL 5
T - Aama
jned —-—1-:——-7\3—?:-—-—
T - kama )
and therefore,
G = Ga - Q-faoD-
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Fig.21  Neutral damping boundary for a wedge of 40° semivertsx
angle. 7 =14.
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Fig.22 Effective wedge related to the original wedge.
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Fig 32 Stiffness derivative of a caret wing
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