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High-order simulation techniques are advantageous for acoustic simulations. To effectively apply
these methods, the domain geometry has also to be accurately described with high-order
elements. In this thesis, mesh curving algorithms are considered under the restriction that only a
fine linear target mesh is provided as input geometry. This situation can arise especially in the
industrial context, where the original CAD data is not available, e.g. with scanned data or for a

subcontracted simulation company.

Here, four mesh curving algorithms are described, one nodal method and three modal methods.
Their applicability and curving accuracy is assessed and compared on basic geometries. This
leads to a preselection of two modal methods which are then further tested for their influence on
the simulation results for Helmholtz scattering problems. A modal curving that is based on the
H'-seminorm optimisation is selected as the more beneficial approach to curve meshes for
acoustic simulations. It significantly reduces the geometrically induced field error compared to
the other curving approaches. The chosen H' modal method is extended to 3D and applied to an

academic and a realistic test case.

The second aspect of the thesis is the evaluation of the relation between the geometry
discretisation error (GDE) and the field error that is induced by the geometric inaccuracy (GIE).
This is first studied for the 2D Helmholtz scattering by a cylinder with nodal meshes obtained
with the software Gmsh. Different measures are considered for the geometric accuracy and for
the field error. The final model is described by an area based GDE and a field error evaluation
along a ring in the simulation domain. It shows a linear relation between the GIE and GDE and a
super-linear dependency of the frequency w. Tests with modally curved meshes on the circular
geometry and for the scattering by a distorted ellipse show that the considered GDE measure

does not fully explain the dependency of the GIE on the geometric accuracy.
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Chapter 1

Introduction

1.1 General Context

Among the environmental effects of air traffic, the noise from landings and take-offs is the most
directly noticeable ([56]). It reduces the quality of life in neighbouring areas, leading to decreases
in rents and depreciation of houses. Based on the data from the Amsterdam Airport Schiphol in
1999 as an example, the social cost arising therefrom is estimated between €400 and €900 per
landing ([58]). But noise pollution from aircraft is not only triggering annoyance in residents
close to airports. It is also seen as a possible risk factor for hypertension ([74]), to have an
adverse impact on reading and speech perception of school children ([41]) and is also associated

with sleep disturbance and tinnitus ([95]).

Besides this community noise, airport staff is also exposed to high noise levels, which is
described as ramp noise. The main contribution to the ramp noise is emitted by the auxiliary
power unit (APU).

The increasing awareness of the negative effects of noise pollution and rise in air traffic led the
European Commission to announce an objective of a 65% decrease in aircraft noise from 2000 to
2050 ([25]). This represents a challenge for aircraft and engine manufacturers, which can only be
attained by developing breakthrough design innovations and novel acoustic treatments. A design
process including prototyping and physical testing is very time consuming and costly. Therefore,
advanced virtual prototyping tools, including CAD software to model the geometry and
numerical simulations to test the resulting acoustic properties, are required. The complexity of
the problem necessitates trade-offs between the accuracy of the solution and the runtime and

memory needed to achieve it.

The CRANE project, within which this PhD is embedded, aims at reducing this trade-off by
developing methods that improve the accuracy that can be reached within reasonable runtime and
memory bounds. The main focus thereby lies on the efficient prediction of community and ramp

noise.



Chapter 1. Introduction

1.2 Motivation for Geometric Enhancement in Acoustical

Simulations

Numerical methods are based on the concept of discretisation. In the framework of this PhD,
these are spatial discretisation and the discretisation of the field. For computations in the
time-domain also time discretisation is needed. In the frequency-domain, the bottleneck for the
refinement of the discretisation is given by the available memory. In the time-domain,
computations are less memory-consuming and this bottleneck is not present. Therefore, time
discretisation is neglected in this thesis and it is focused on simulations in the frequency-domain.
For spatial discretisation, the computational domain can be divided into non-overlapping
elements forming a mesh. Some methods do not rely on a mesh structure, but on function
evaluations at specified points in the computational domain (the so-called collocation methods or
meshless methods). This PhD will focus on the analysis of mesh-based methods.

In the standard finite element method (FEM), the field is discretised on the vertices of the mesh
using elementwise interpolation. To refine the field discretisation, e.g. to avoid large
discretisation errors, and thus increase the accuracy of the method, the spatial discretisation has
to be refined by introducing more mesh vertices. This amounts to decreasing the typical size i of
the elements. This refinement strategy is called h-refinement. With h-refinement alone,
simulations become prohibitively expensive as the frequency increases (see Equation (4.7)).

To circumvent this, another refinement strategy called p-refinement can be applied, with p
denoting the interpolation order of the field. When applying p-refinement, the representation of
the field is enhanced within individual elements. Methods that implement field representation
enhancement are called high-order methods. The way the additional information is introduced
depends on the method. In most methods, the enhanced field interpolation does not affect the

element geometric description, thus the geometric representation remains linear.

In [9], the performance of p-refined FEM with Lobatto polynomial shape functions is tested
for fixed field order p. The relation between h, p, and accuracy is evaluated. For this, a
three-dimensional simulation of a plane wave with wavenumber k propagating in a cube of size a
is considered. A significant reduction of the memory requirements is observed as the simulation
order increases. To achieve an error of 1% for simulations with Helmholtz number ka = 50,
about 30 Gb are needed for a cubic simulation. For p = 10, the same accuracy can be achieved
with only 2 Gb of memory. The simulation runtimes show a similar improvement.

As the field interpolation order p is increased, the target accuracy can be achieved with coarser
meshes. If the mesh is finer, the solution is over resolved. The computation is slowed down and
more memory is needed. Therefore, using coarse meshes is essential to fully benefit from the

performance improvements of high-order methods.

Geometric enhancement

Along with a coarse linear geometric description comes a new source of error. Computational
domains in numerical acoustics involve often curved and complex boundaries. Such structures

are only poorly represented by coarse linear interpolation, as could be seen already for a simple
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1.3. Scope and Objectives

(a) b)

Figure 1.1: Coarse geometry discretisation of a domain with a circular boundary, discretised by 8 (a)
linear and (b) quadratic line elements. The exact boundary is shown in red.

circle in Figure 1.1(a). To alleviate this issue, the geometric interpolation order ¢ could be
enhanced as well. Comparing Figures 1.1(a) and 1.1(b), the improvement of the boundary
description from linear to quadratic interpolation can be seen. Note that even though the
approximation of the circle improves for increasing g, it will not be described exactly by the
piecewise polynomial interpolations.

The domain the simulation is typically run on differs from the one that was intended. In other
words, the solved problem is different from the problem that was posed. As the accuracy w.r.t.
the field representation is increased, the solution converges to the analytical solution of the
problem with the approximated domain. The difference between the analytical solutions of the
original problem and the actually solved problem is the error induced by the geometric

approximation, the geometry induced error (GIE).

1.3 Scope and Objectives

The aim of this PhD project is to decrease the GIE by enhancing the geometric description in
acoustic simulations. Therefore, the first part of the thesis covers methods to improve the
geometric discretisation. Based on the industrial orientation of the CRANE project, a main focus
lies on the applicability of the considered methods to real life problems. Commercial meshing
tools typically only provide geometric interpolation up to second order. This is similarly
expressed in [45]. The only exception known by the author is the recently developed high-order
mesh generation from Pointwise, Inc. [68]. Therefore, enhancement algorithms will be
considered that curve a given linear mesh to obtain a better geometric description of the
simulation domain.

Most mesh curving algorithms described in the literature rely on the knowledge of the exact
geometry, e.g. in form of a parametrisation. However, in many practical situations, the original
CAD-geometry is not accessible. In medical applications, only scanned pointwise data is
available for patient specific simulations. Similarly, manufactured parts are scanned and the
resulting pointwise geometry description is then used for simulations, as the manufacturing
process comes along with deviations from the original CAD-geometry. Another example are

simulation companies acting as subcontractors, for whom the full CAD data is not provided due

3



Chapter 1. Introduction

to confidentiality. In this case, the geometric information can be available directly in form of a
mesh. For this thesis, it is assumed that only such a fine linear target mesh is available. This could
correspond to a mesh used previously for low-order simulations which needs to be coarsened and
curved in order to apply it for high-order simulations. Four algorithms are developed that curve a
coarse linear mesh towards this refined linear geometry representation. Measures of the geometry
discretisation error (GDE) will be considered to compare and chose between the methods.

In the literature, several statements are provided about the general link between the geometric
accuracy and the accuracy of simulations. Numerical tests have been performed for the tension
on a plate with a circular or elliptic hole [54, 55] and for flow around a circular or symmetric
obstacle [6], providing mostly qualitative comparisons. The second part of the PhD targets the
influence of the geometric accuracy of the domain description onto the accuracy of acoustic
simulations. That is, the relation between the GDE and the GIE is analysed for scattering test
cases.

Finally, the curving algorithm that proves most advantageous is extended to 3D and the

developed method will be applied and tested for a more realistic geometry of a turbofan intake.

The objectives of the PhD are summarised as follows:

* Development of a mesh curving method with only partial information about the original

geometry.
» Evaluation of the effect of the GDE on the accuracy of acoustic simulations.

* Application of the method to test cases and a complex geometry.

The outline of this thesis is as follows: In Chapter 2, some background on geometry
representation and geometric enhancement methods is given. The developed 2D mesh curving
algorithms as well as a standard method from the literature are described in Section 3. An
overview is given of GDE measures. As a basis for simulations on the curved meshes, a review of
numerical acoustics is given in Chapter 4, as well as how the higher order meshes are embedded
into p-FEM, the selected numerical method. In Chapter 5, a literature review on the relation
between the GDE and the GIE in general is given. It is followed by a scattering test case on
high-order meshes to study the effect of the geometric accuracy in acoustics simulations for both
meshes curved with a standard reference approach and meshes that were curved with the
developed curving methods. Based on all the tests in the previous chapters, one of the methods is
selected and extended to 3D in Chapter 6. As a preparation for realistic geometries, feature line
treatment is added. The curving algorithm is then applied for two test cases, including a realistic
geometry case of a generic intake in Chapter 7. Chapter 8 summarises the previous chapters and

details possible future work.



Chapter 2

Review of Geometric Representation

and Enhancement

As mentioned in the Introduction, high-order methods require a coarse mesh definition to operate
efficiently (see Section 1.2). At the same time, the geometric interpolation of the mesh remains
typically linear. The resulting coarse, straight sided mesh often leads to a poor geometric
description of the computational domain.

This section provides a review of the main types of curved geometry representations. An
overview of different GDE measures is given, as well as methods to create curved boundaries.
Methods to untangle and smooth curved meshes are also reviewed.

To distinguish between the field and geometric approximation, the field interpolation order is
denoted by p, the geometric interpolation order by ¢g. The exact geometry is called Gexact, Whereas

the approximate geometry is called Gapprox-

2.1 Geometry Representation

2.1.1 Polynomial Interpolation

The standard way of discretising the computational domain and representing its geometry is by
using a mesh composed of linear, straight-sided elements. Linear mesh elements are described by
their vertices and by the linear interpolation between those vertex nodes. In this way, boundary
curves are represented by a polygon, boundary surfaces for 3D domains by a polyhedral surface.
Alternatively, e.g. high-order polynomial interpolation can be applied. Different polynomial
bases come into consideration. In the following, nodal Lagrange bases and modal Lobatto bases
will be considered. Independent of the choice of the polynomial basis, interpolations are typically

based on parametric reference mappings.

2.1.1.1 Reference Mapping

An important concept in interpolation based mesh description is the parametric mapping from a
reference element to the physical element. Thereby, the geometry and location of a single

element T of the mesh is described by a mapping F' : R% — RY, T — T with 1" a reference

5
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n F
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—1 1 ¢
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Figure 2.1: Schematic of the mapping F' from the reference element T to the physical element 7'

n n
T LT
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(a) jjl%ne (b) quuad (C) Ttlria

Figure 2.2: Linear Lagrange reference elements.

element, d. the dimensions of the element (e.g. de = 1 for line elements) and d the dimensions of

the physical space. T is called the physical element. The principle is shown in Figure 2.1.

Standard reference elements are the interval Tﬁ]n o := [—1,1] for line elements, its Cartesian
product Tc‘fu ad := [—1,1] x [=1, 1] for quadrilateral elements, and the triangle T, defined by

the nodes & = (—1,—1), & = (1,—1), and &5 = (—1, 1) for triangular elements (see Figure
2.2). Hexahedral and tetrahedral 3D reference elements are defined analogously.

2.1.1.2 Lagrange Basis Polynomials

The most common high-order interpolation technique is using a nodal interpolation with

Lagrange basis polynomials.

For a 1D interpolation
n
pn(x) = ZyzL?(x)
i=0

of order n through nodes x; = (z;,v;), the n + 1 basis functions are defined as

n
L) =] <;”_“"’;) i=0,...n,
i J

J=0
J#i
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Figure 2.3: Line Lagrange reference elements for orders ¢ = 1,...,4 and the corresponding shape
functions.

and fulfil the property [66]

1 ifi=y
Li(x5) = 055 = : 2.1

0 ifi#j
An example of a piecewise quadratic Lagrange interpolation is given in Figure 2.7(b).
In addition to the two vertices, ¢ — 1 additional nodes x; are inserted along both the reference
and the physical element. Lagrange line elements are obtained by placing the nodes in the
reference space equidistantly and using Lagrange basis polynomials for these equidistant nodes
to define the reference mapping. Examples of high-order line reference elements and the
corresponding Lagrange basis polynomials are shown in Figure 2.3. The mapping F' is defined as

a 1D polynomial interpolation in each dimension:
n
F(&) =) mL}(§).
i=1
In the context of the element mapping, the polynomials L} are called shape functions.

2.1.1.3 Higher-dimensional Lagrange Shape Functions

Analogously to the definition of the Lagrange basis polynomials, shape functions are defined for
the 2D and 3D reference elements.

High-order Lagrange quadrangular or hexahedral elements are defined by tensor products of
Lagrange line elements. Accordingly, the interpolation nodes form an equidistant 2- or
3-dimensional lattice on the reference element (see Figure 2.4). Shape functions N&i for these

elements are obtained by multiplying the corresponding 1D shape function for each dimension:
d
N&,Z-(E) = H Lg(i,k) (k) ,
k=1

with d € {2, 3}, & the kt® coordinate of &, i the node number in the reference element, and
B(i, k) the 1D node number of node number ¢ in dimension k. An example of the mapping 3 is

provided in Table 2.1 for the reference element shown in Figure 2.5.
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n n n n
1 1 1 1
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Figure 2.4: Quadrangle Lagrange reference elements for order g = 1,. .., 4.
n
7 6 5
1
8 9 4 . .
N 0 ; 2D nodeindexi || 1|23 |4]5|6]7]8]9
B(i, 1) 11233
1 5 3 B(i,2) 1112 3131212
-1
Figure 2.5: Lagrange reference
element chuad with
node numbers in Table 2.1: Example of index mapping /3, corresponding to the
blue. element shown in Figure 2.5.

Based on the construction of the shape functions, they inherit the property (2.1) for interpolation

nodes §;
Ngi(&5) = dij (2.2)

and span the space of polynomials

max 174l < 4, V4 € No

Ipm = Z ij‘”

J

with multi-index v; = (vj,1,-- -, ¥j,a.) [100].

For triangular or tetrahedral elements, a simple tensor product approach is not suitable. Instead,

a barycentric coordinate system is applied to find shape functions /N7 ; that satisfy the property
Nz ;(&5) = 6ij,

analogously to (2.1) and (2.2) for a set of interpolation nodes &; on the triangular or tetrahedral
element.

The barycentric coordinates \; for a point P with Cartesian coordinates (&, 7,) in a triangle

8
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Figure 2.6: Triangle Lagrange reference elements for orders n = 1,...,4.
with vertices (&;,7;), ¢ € {1, 2,3} are defined by the equations [100]
3 3 3
&= NP, mp=Y MNP, 1= N(P).
=1 =1 i=1

For the reference triangle Tiria they can be determined as

MEM = —5E ), MEm=5E+D), NEn =0+ @3

Analogously, barycentric coordinates for tetrahedrals can be defined in 3D.

For triangular or tetrahedral Lagrange elements of order n, nodes are placed on the reference
element at crossings of the lattice in barycentric coordinates with width % Example elements are
shown in Figure 2.6. The corresponding shape functions of order n for an interpolation node

&; = Aj can be constructed as a product of a scaling coefficient ¢; and n terms z;,()

n

NN =i [T =),
k=1

where each z; () vanishes along at least one line of the A-lattice that does not cross in the node

&, These shape functions form a basis for polynomials of order n:

P" =) e
J

de
Z’m <q, 7 €Nog,
=1

with multi-index v; = (vj,1,- - -, 7j,a.) [100].

A key parameter is the position of the interior nodes added along the edges (see Figure 2.7(b)
and Figure 2.7(c)). Interpolation based on equidistant node spacing as for the Lagrange elements
defined above is known to suffer from spurious oscillation for higher interpolation orders [52]. To
alleviate this issue, other node placings have been proposed ([85, 96, 40]). Note further that not
only the geometric accuracy should be evaluated when considering node positions. The
simulation accuracy is not only affected by the error in the geometric discretisation, but also by
highly-varying, non-smooth Jacobians of the parametric mapping. Therefore, the Jacobian should

be monitored as well, targeting for nodes that are spaced similarly as those in the reference space.
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(a) (b) (©
Figure 2.7: Examples of piecewise (a) linear and (b)-(c) quadratic interpolation (blue line) of a given

curve (black line). Black dots indicate the element vertices, blue dots the additional inter-
polation nodes. Figure (b) and (c) also show the effect of different node locations.

2.1.1.4 Lobatto Shape Functions

Modal polynomial bases provide node-free interpolations. Integrated Legendre polynomials, also

called Lobatto polynomials form such a modal basis [82]. They are defined by

1 3

k(&) ::/ Prep—i(z)dx for 2 <k, {e[-1,1],
1PLek-lly J-1

with initial polynomials

() = —= h(§):=>5—, (2.4)

and Pr. ;(§) as the i*h Legendre polynomial. The Legendre polynomials are recursively defined
by

2k —1 k—1
Pror1(€) —
2 EPrek—1(§) 2

Prer(§) == Preg—o(€) for 2 <k,

with initial polynomials
Preo(§) =1, Prea(§) =¢

Figure 2.8 illustrates the Lobatto polynomial basis functions up to order ¢ = 5. Note that the
bases are hierarchic. For the Lobatto basis 3" of order n it holds B~ C B™. Therefore, only the
additional higher-order shape function and the corresponding coefficients need to be calculated
when the order ¢ is changed, in contrast to e.g. the Lagrange polynomial bases, where a change
of order requires a recalculation of the full basis. Further it can be noticed in Figure 2.8 that the
basis polynomials can be grouped in vertex functions ly and [; that have non-zero contribution at
one of the element vertices and correspond to the linear Lagrange polynomial basis, and bubble

functions l; for ¢ > 2 that vanish at the vertices.

The Legendre polynomials are orthogonal in L?:

2

1 2
/ Pres(€)Prey(€) dg = { BT

0 else

ifi=j
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Figure 2.8: Lobatto polynomial basis functions up to order ¢ = 5.

@ ¢g b) ¢ ©) vg (d) ¢

Figure 2.9: Lobatto vertex shape functions for quadrangular elements.

Thus, the Lobatto shape functions fulfil the property

L . 1 ifi=j o
/ ll(f)lj(f) df = 5ij7 with (52']' = s for 1,] > 2. (25)
-1 0 else

As in the Lagrange case, the definition of modal shape functions for quadrilateral elements is
just the product of basis polynomials for the two coordinates.
The product of two 1D vertex functions results in vertex shape functions gpg with non-zero
contribution at one of the vertices (see Fig. 2.9). Edge shape functions g087 q Are obtained by
multiplying a 1D vertex function in one dimension with an 1D edge function in the other
dimension. The order of the 2D edge shape function corresponds to the order ¢; of the 1D edge
function. Its trace along the edge of the quadrilateral element coincides with the 1D edge
function. As for the 1D basis functions, 2D edge shape functions vanish at the vertices of the
element. Further, each one of them has only non-zero contribution at one of the element edges
and vanishes on all three other edges. The edge on which the 2D edge shape function is non-zero
is determined by the 1D vertex function (see Fig. 2.10).
The product of two 1D edge functions finally leads to bubble shape functions golé a1.qo- These
vanish all along the boundary of the element and are non-zero only in the interior of the element
(see Fig. 2.11). The order of the bubble shape functions is determined as the maximum of the 1D

edge function orders ¢; and go.

Shape functions for triangular elements are also grouped in vertex, edge, and bubble shape

functions. The linear vertex shape functions are simply defined as the corresponding barycentric
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Figure 2.10: Lobatto edge shape functions for quadrangular elements of orders ¢ = 2, 3 and edges e;
and ey4.
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Figure 2.11: Lobatto bubble shape functions for quadrangular elements of orders ¢ = 2, 3.

coordinate

o7 (&) == Ni(§).

As in the quadrilateral case, they correspond to the linear Lagrange shape functions (see Fig.
2.12).
For the definition of edge shape functions, Kernel functions ¢; are introduced. They are defined

by the decomposition

k(8) = (&)1 (§) Pr—2(&) fork > 2,

with [g and [; as defined in (2.4). Triangle edge shape functions of order k are then obtained by

7 (&) = Xi(&)Nit1 (&) dr—2 (N1 (&) — Ni(€)), i=1,...,3, (2.6)

with A4 := A;. Analogously to quadrilateral edge shape functions, they correspond to the trace of
I, on the edge e; and have zero contribution on the remaining two edges (see Fig. 2.13).

Bubble shape functions that vanish on the element boundary are defined as

O 4102 (&) = M(E)A2(E)A3(€) by —1 (A2(€) = A1(€)) brp—1 (M1 (€) — A3(8)),

with ny,no > 1 (see Fig. 2.14). The order of the bubble shape function is determined as
¢=q+q+1L

There exists a more intuitive formula, but the one introduced here was found by Solin et al. to
have better conditioning properties [82]. By renumbering the barycentric coordinates, an
orientation can be added to the element. This is needed for the definition of 3D modal shape
functions.

For more information on Lobatto polynomials and Lobatto shape functions see [82].
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Figure 2.12: Lobatto vertex shape functions for triangular elements.
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Figure 2.13: Lobatto edge shape functions for triangular elements of orders ¢ = 2, 3 and edges e; and
€3.

An alternative way to derive a hierarchic modal basis is described in [50].

2.1.1.5 Smooth Representations

The smoothness of the curve can be an important property of the approximation. Even though
polynomials are infinitely smooth, the elementwise geometric interpolation leads to a loss of
continuity at the element boundaries. With Lagrange or Lobatto polynomials, only a C°
continuous geometric approximation is obtained. For smoother curves and surfaces, Hermite
polynomials can be used.

In [18], elements are constructed that allow a G continuous surface. G* continuity is a
weakened form of C'! continuity. While the latter depends on the parametrisation of the surface,
G continuity only considers the smoothness of the manifold the surface corresponds to. In 2D, a
1D curve is C'! continuous at a point if the tangents from both sides of the point are equal. For
G continuity, the two tangents are still parallel, but of different lengths. Demkowicz et al.
illustrate the difference with an example of two parametrisations of the x3 plane: The normal

direction is constant along the plane and therefore the G continuity is obtained by default. With
Ty =m, T2 ="m+mn2, r3=0,

a C'-continuous parametrisation is provided. But the parametrisation

m+mn2  for n <0
xr1 =1, T2= , x3 =20

21 +mn2  for n1 >0

is not differentiable at 7; = 0 and therefore not C''-continuous. Note that the equations presented
here are corrected versions of those in [18]. To visualise this example, a plot of the coordinate

lines is provided in [18] and reproduced in Figure 2.15.
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(a) SObT,l,l (b) <PbT,2,1 (© SObT,l,z

Figure 2.14: Lobatto bubble shape functions for triangular elements of orders ¢ = 3, 4.

T2 T2

(a) C" continuity (b) G* continuity

Figure 2.15: Plot of the coordinate lines of the example parametrisations to visualise the difference
between C'' and G continuity. This figure is based on a figure in [18].

2.1.2 NURBS-based Interpolation

Besides polynomials, another class of basis functions, namely the Non-uniform rational B-splines
(NURBS), can be used to represent curved edges and surfaces. To represent a given geometry,
several NURBS curves (2D) or patches that are quadrangular in the parametric space (3D) are
typically required. Within one curve, the parametrisation changes at breakpoints, where the
continuity order can be decreased down to C? to allow for sharp corners within the curve.
NURBS are able to represent many geometries exactly and are a standard way to describe

geometries in CAD applications ([79, 80]).

2.2 Quantification of the Geometric Accuracy

In the literature, several measures have been proposed to quantify the geometric error,

characterised by the difference between G,pprox and Gexact.-

2.2.1 Distance-based Measures

In [2] the maximum of the radial distance between a sphere and the approximating surface is
evaluated. This pointwise evaluation provides a simple measure for the GDE, but is very specific
for the sphere case. For other geometries, the choice of corresponding points on the exact and the
approximating curve or surface becomes arbitrary, but has an effect on the resulting measure.

A more general measure of the difference between two curves is the Hausdorff distance

51 (S1, Ss) = max (SH(sl,sg),SH(sg,sl)) , with 3 (X,Y) = sup inf d(r,y),  (27)
FAS

for bounded S, So C R and a metric d(-, -) (see [3]). It is used as the minimised distance in

polygon matching [3] and as a deviation measure in simplification of meshes [37] or
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Figure 2.16: Example curves to show the difference between the Hausdorff and the Fréchet distance.
This figure is based on the figure in [72].

point-sampled surfaces [65]. It is a common measure for the distance between two sets.

For example, S} could be the set of blue houses in a city and S2 the set of green houses
respectively. All people living in a blue house are assigned the task to visit one arbitrary person
living in a green house and vice versa. Assume that all persons go to the person from the other
group that lives the closest to their own place. In the end, the Hausdorff distance between the
blue and green houses is given by the longest (one way) distance that was walked by any of the

persons to fulfil their task.

Another popular distance-based measure to compare two curves is the Fréchet distance. It is
often explained by the analogy of a man walking with his dog ([3, 94]). While the man walks
along curve C1, the dog’s path is described by curve C5, where both never walk backwards. The
dog’s leash connecting them always follows the shortest connecting line between them and in the
end has to have at least the length of the maximal distance which occurred during the walk. The
outcome depends on the relative speed and speed variation of the man and the dog w.r.t. each
other. Considering all possible walking behaviours, the Fréchet distance between the curves

corresponds to the minimal needed length of the dog’s leash. Mathematically, it is given as
dp(C1, C2) = inf (max (d (Be, (5), a(s)) |s € [0,1c,])) , with B+ [0,1¢,] — R?,

where 3¢, is the parametrisation of C'; by arc length and all possible injective parametrisations of
Cy w.r.t. the length I, of Cy are covered by 5 : [0, ¢, ] — R? [3]. There is no need to compute
the infimum over possible parametrisations of C. Recall that the needed leash length only
depends on the relative speed. If both, man and dog just walked twice as fast, the needed length
would be the same.

In [3] it is shown that for two closed, convex curves, the Hausdorff distance and the Fréchet
distance are the same. In other cases this is not necessarily true. An example is given in Figure
2.16. The Hausdorff distance between the two curves is 3¢ and thus vanishes as € — 0, where as
the Fréchet distance converges to the length of the diagonal of the square indicated by the red
curve [72]. This example also shows that the Fréchet distance is consistent with the intuitive
understanding of the difference between two curves.

In [59], an algorithm for a discrete Fréchet distance between two polygonal curves is introduced.
The bound on the error between the analytical and the discrete Fréchet distance provided in
Theorem 1 of the same paper shows a linear dependency on the distance between the curve

sampling points. Looking at applications where a high accuracy is needed and the given runtime
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of O(mymy) for m; and moy sampling points on the two curves, the Fréchet distance remains
difficult to obtain, as also discussed in [72].
Note that both, Hausdorff and Fréchet distance generally depend on the metric d(-, -). In all cases

considered here, d(-, -) is the Euclidean metric.

A variation of the Fréchet distance was introduced in [75]. Instead of taking infimum of the
maximum or supremum over the pointwise distances between the two curves, the infimum of the
L? norm of the pointwise distance is considered. The resulting measure is continuously

differentiable which is applicable in optimisation based mesh curving (see Section 2.3).

2.2.2 Area-based Measure

As an alternative to distance-based measures of the GDE, [72] considers a measure based on the
area A between Geyacr and the Gapprox. The area is calculated segmentwise, where the segments
are bounded by the intersection points of the two curves. In each segment, the curves are
approximated by polygons, using a de Casteljau subdivision scheme. The Bézier curve
representation of Gapprox i considered, because the convex hull property provides an upper limit
estimate of the accuracy of the polygonal approximation. For most CAD-based Gexact, the same
principle can be applied. Where no Bézier curve representation is available, the polygon nodes
are sampled recursively to ensure a predefined accuracy. The area between the polygonal
approximations is triangulated to evaluate as an approximation of the segment area. The sum
over all segment areas is then divided by the arithmetic mean of the length of the two bounding
polygons. Numerical tests show a relation between the two types of measures: Optimisation w.r.t.
the area based measure also leads to a decrease in the Hausdorff distance between the two curves
[72].

2.2.3 Mapping-based Measure

In [97], a measure of the GDE is constructed that takes into account not only the curve describing
the boundary I', but the whole domain (2. The paper stresses the difference between the real
physical domain €2, which is represented by Gexact, and the approximated physical domain Q) used
for the simulation. Motivated by this discrepancy, a mapping ¢ : 2 — () is constructed which
maps a point & € {2 to its position & € Q, approximated by the geometric discretisation. For the
GDE measure, the H(£2) seminorm of the function dq () := id(z) — ¢(z) is divided by the
H'(Q) seminorm of the identity function id(z) = .

Note that for this definition of the GDE, the shape of interior elements is also considered. In the
case of a sphere as in [97], a linear mapping in polar coordinates can be used to describe Gexact.
To be without contribution to the GDE, elements in the domain interior need to be described by a
linear mapping in polar coordinates. In [97], the mesh seems to be adapted to follow this
requirement. For real-life geometries, there is generally no such simple mapping which could be
used to adapt interior elements accordingly and, in standard curved meshes, interior elements are
mostly straight sided with respect to Cartesian coordinates, independently of the accuracy of the

boundary representation.
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(a) (b)

Figure 2.17: Schematics of geometries where the differences of (a) the (normalised) normals or (b)
the curvatures are zero for carefully chosen parametrisations.

2.2.4 Differential Geometry-based Measures

Differential geometric properties of Gexact and Gapprox could also be used to define measures of the
GDE. The maximal angle between the normals of the exact and the approximated surface are
considered in [2] to evaluate the accuracy of a polynomial fitting with different quadrangle
element types to the unit sphere.

In computer vision, curvatures such as the Gaussian and the mean curvature of a point on a the
surface are of special interest. They are the product or mean of the principal curvatures
respectively, which are the minimal and maximal directional curvatures of the surface at this
point [57]. In [57], the mean and standard deviation of the Gaussian curvature and the mean
curvature, as well as those of the angle between the exact and the approximated normal were
measured to compare different local geometry-fitting methods.

The normal, Gaussian and mean curvature are pointwise measures. Therefore, the described
measures are dependent on the parametrisations of the curves. A further disadvantage is that
these measures are not strictly proper, meaning that they can be zero for non-perfect fits. For the
normal, an example are two circles with different radii and parametrisations by the rotation angle
(see Figure 2.17(a)). For the curvature in 2D, two quadrangles with rounded corners can be
considered (see Figure 2.17(b)). Along the straight sided edges, the curvature is zero. The curved
corners are described by a quarter of a unit circle and therefore have a curvature of 1. The
parametrisations have to be chosen in such a way that the beginnings and ends of the rounded

corners are reached for the same parameters.

2.3 Creation of Curved Boundary Elements

Commonly, high-order curvilinear meshes are generated by applying a-posteriori curving
methods. The process begins with a straight sided linear mesh, which is then curved to match the
initial geometrical boundary Gexac. An advantage of these methods is that they benefit from the
well developed knowledge in the generation of linear meshes [96]. The choice of the method to

curve the boundary elements depends on the way Gexact is described:
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2.3.1 Full Geometry Knowledge

If full knowledge of Gexact is provided (e.g. in form of a parametrisation or a CAD definition),
nodal interpolations can be obtained by simply mapping the high-order interpolation nodes from
the straight sided mesh to Gexact. This approach is used with equidistant Lagrangian polynomials
in the free mesh generator Gmsh [36].

As mentioned in Section 2.1.1, the positions of interpolation nodes have an effect on the quality
of the geometric approximation. Elements with non equidistant nodal positions in the reference
space are proposed in [85, 96, 40].

Instead of specifying the node placing on the reference element, it can also be enforced on the
physical space. Therefore the node positions in the reference element have to be adapted based
on the mapping to the physical element. In [96], this is done for equidistant nodes and for Fekete
points. An approach for curvature dependent node placing is given in [52], where nodes are
placed to divide the element in parts of equal curvature variation. In [76], the position of
geometric high-order nodes is optimised with respect to the accuracy of the simulation results for
the field.

As enhancement of the Gmsh implementation, an a-posteriori mesh optimisation routine can be
applied that moves the vertices and nodes in the physical space [72]. One term of the objective
function thereby controls the geometric accuracy by measuring the area between the exact and
the approximating geometry. (Other terms will be described in Section 2.4.1.)

Similarly, a mesh curving approach by minimisation of a modified Fréchet distance (see Sec.
2.2.1) with respect to the nodal positions is presented in [75]. Nodes are thereby allowed to move
away from the surface, resulting in non-interpolatory approximations that were found to provide
better accuracies than interpolatory approximations.

While typically nodal Lagrange polynomial bases are used for the mesh description, Moxey et al.
apply a modal hierarchic basis in [60, 61] that is derived by Karniadakis [50]. The choice of these
bases is motivated by the possibility of varying local orders. However, both papers focus on mesh
smoothing and untangling strategies and make no further comment on the curving itself or the

geometric description.

2.3.2 Curve Reconstruction

If Gexact i not known, a surface reconstruction procedure has to be considered. These methods
reconstruct a high-order curved surface from the linear mesh with no additional information
about Gexacet (no CAD file or exact parametrisation). Typically, local polynomial fittings are

constructed for sets of neighbouring mesh vertices.

Recently, the mesh reconstruction software meshCurve was introduced by Ims et al [45, 46].
The algorithm used for the high-order reconstruction is a modification of the Weighted Averaging
of Local Fittings (WALF) algorithm introduced by Jiao and Wang in [48]. In the original method,
second order Taylor polynomials are fitted for each mesh vertex through vertices in its
neighbourhood. The value of the fit for any arbitrary point on the mesh is then obtained from a
weighting of its barycentric coordinates (see Figure 2.18 for a schematic in 2D). Ims et al.

directly fit polynomials to the faces of the mesh in order to limit the number of averaging steps.
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Figure 2.18: Schematic of the WALF algorithm in 2D. The black dashed line represents Geyac, the
blue and green line the local fittings through x; and x5, respectively. ¢; and g5 indicate
the projection of point p on the two local fittings. The weighted average of ¢; and g5 is
given by point ¢. This figure is based on a figure in [48].

The first paper [45] seemed to indicate that only quadratic elements could be generated (compare
[93]). In [46] it is clarified that geometric orders up to 6 can be achieved with meshCurve.
Anyhow, it is also emphasised that these higher orders can suffer from oscillatory behaviour. This
can not be prevented by several mitigation procedures that are included in the code. As future
work, the application of orthogonal polynomial bases is suggested to stabilise the calculations.
The software meshCurve is also equipped with mesh untangling and sharp edge detection
features.

Besides the WALF algorithm, Jiao and Wang also introduce the Continuous Moving Frames
(CMF) method [48]. It is similar to WALF, except that the fitting at a given point is not obtained
from a weighted sum over the neighbouring element vertices, but rather evaluated with respect to
a local coordinate system. Using this approach, CMF gets rid of the theoretically derived
limitation of accuracy h% for WALF. However, in numerical tests, CMF does not perform
significantly better than WALF.

In [91] and its subsequent paper [51], a multi-point Taylor function is used to construct
elementwise quadratic extrapolations of a boundary surface from a linear mesh. The Hessian of
the local extrapolation is estimated with several intermediate steps from Hessians at the edge
nodes of local linear, continuous mappings. The accuracy of the quadratic approximation is
shown to be dependent on the smoothness of Gexaer. The algorithm is only used to relocate new
nodes after mesh refinement. The resulting mesh is linear again.

Spherigon patches are used in [13] as a preprocessing step (see Section 2.3.3). To evaluate a
spherigon at a point P in the triangle, for each element vertex a circular arc is constructed that is
orthogonal to the vertex normal. By blending the arcs, the point on the spherigon corresponding
to P is found. The resulting smoothness of the resulting curve depends on the blending method
[92].

2.3.3 Surface Curving from Discrete Data

Similar to surface reconstruction algorithms are methods to obtain a curved surface from discrete
data. Thereby, a usually fine, pointwise or linear description of the geometry is provided. The
pointwise data could come e.g. from scanning or sampling processes and are assumed to lie on

the exact data. Linear interpolation of these exact data points provides the topology of the
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(a) b)

Figure 2.19: 4th order mesh with a tangled element, shown (a) in total and (b) as close-up to the
tangled element.

geometry and forms a first approximation of the geometry. In contrast to surface reconstruction
methods, this linear mesh is finer than the final curved mesh and therefore provides additional
information about the exact geometry.

Different second-order fitting methods to point-data are described and evaluated in [57]. The
methods can be grouped in three different types. The first method is based on the fitting of a
principal quadric in a rotated principal coordinate system. Then, extensions are considered, that
improve the approximation of the surface normal direction, extend the terms of the quadric, or
iterate the calculation of the surface normal and the fitted quadric. As second type, a finite
difference approach is considered and an improved version with a preprocessing smoothing step.
Last, quadratic patches are fitted to form a facet based approach. M“Ivor and Valkenburg
conclude that especially the smoothing step led to a significant improvement of the otherwise
rather bad finite difference approach. The different improvement steps for the quadric fitting
showed mixed results, some improving the resulting surface approximations, some not. The
results with the facet based approach were similar to those of the quadric fittings, with the
advantage of better computational performance.

In [13], high-order Bézier curves and patches are constructed from a coarse linear mesh and a
fine linear target mesh. The positions of inner control points are determined by the minimisation
of the sum over the pointwise squared distance between sampling points along the approximating
curve and their normal projection on the target mesh. The control points defining the element
vertices are fixed. In order to improve the results, the target mesh is enhanced by a mesh
reconstruction using spherigon patches. The method is further enhanced by incrementally adding

an optimisation with respect to curve bending and stretch energies ([12, 14]).

2.4 Smoothing and Untangling of Meshes

Mesh curving procedures typically curve only the boundary and leave interior edges or faces
straight sided. In doing so, elements at the boundary can become tangled, meaning that the
element edges (or also faces for 3D elements) are intersecting each other ([90], see Figure 2.19).

Meshes with tangled elements are invalid for most numerical simulations. The elements are not
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disjoint, which leads e.g. for FEM to the loss of the continuity property in the functional space
[17]. Furthermore, system matrices become non-computable, or at least ill-conditioned for
strongly distorted elements.

Many different methods to untangle and/or smooth meshes with invalid or highly distorted
elements are given in the literature. They can be classified as optimisation based methods

([29, 32, 33, 90, 72]), methods based on elasticity analogies ([96, 60]), topological mesh
modifications [53], or combinations of these techniques ([23, 71]).

Especially in the context of computational fluid dynamics (CFD), untangling methods are
developed (see e.g. [1, 96, 61]). For CFD simulations, special meshes with boundary layers are
needed. Boundary layer elements are thin in the normal direction of the boundary and have a
high aspect ratio. Therefore, meshes for CFD simulations constitute a challenge for untangling
methods [1].

2.4.1 Optimisation-based Untangling

Meshes can be smoothed by moving mesh nodes using an optimisation procedure. The objective
functions are based on quality or distortion measures. Often, these measures are not defined for
tangled elements, such as the condition number of the mapping from ideal to physical element for
linear elements in [29]. A pre-processing step is therefore required to untangle all invalid
elements.

In other cases, the measure exhibits a singularity between the domains containing the tangled and
untangled elements [33]. Such a distortion measure was regularised by Escobar et al. for linear
elements which removed the singularity between the domains ([24, 23]). Gargallo et al. adapted

the modified measure for curved higher order elements ([32, 33]).

On the other hand, well-placed singularities provide a guarantee that untangled elements do
not become invalid during optimisation. Toulorge et al. included a moving log-barrier method in
their objective function to generate such a singularity (see [90]). In the paper, the objective
function to untangle curved elements is built-up from two key terms. The first is an energy term
which takes into account the distance between the mesh vertices on the straight-sided mesh and
those on the curved mesh. By this term, main properties of the mesh such as the existence of a
boundary layer can be conserved.

To enforce untangled elements, a second term is needed. This term is given as a sum of the

BE (xf) 2 Be (2€) — eJS
Ff(at,e) = <l — 1) + log? <l , (2.8)
: J§ JE — eJg

function

over all Bézier coefficients B; at node x; of all elements e. J§ denotes the Jacobian of the
mapping from a straight sided reference triangle T to the straight sided triangle defined by the
vertices of e. It is used to scale the Jacobian Jp of the mapping F' from T to e. This Jacobian is a
measure for the validity and shape-regularity of e: A change of sign of Jg within the element
corresponds to tangling, values of JF close to 0 indicate a strongly distorted element. The
minimal and the maximal Bézier coefficients provide a lower and upper bound for Jg due to the
convex hull property of Bézier polynomials. Thus, optimising the Bézier coefficients also

optimises Jr and counteracts tangling.
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Jacobians with large values are penalised by the quadratic term. The logarithmic term is called
log barrier and creates a singularity at €. At the beginning, € is set to a value just below the
current minimum of the scaled Jacobian. As the mesh quality improves during optimisation and
the scaled Jacobian increases, the barrier is moved accordingly. Once a minimal Jacobian target
is reached, the optimisation procedure is stopped.

Since the barrier can also be set for a negative Jacobian value, untangling of invalid elements is
possible. However, it is also mentioned in [90] that the two given terms alone do not necessarily
work for mesh optimisation. Therefore, additional optional terms for the objective function are
given, to either preserve an element’s shape [90] or minimise the area between the mesh

boundary G,pprox and the meshed geometry Gexact [72].

2.4.2 Elasticity Analogies

For untangling based on elasticity analogies, the displacement of interior nodes is obtained by
solving an elasticity equation. A linear elasticity model is considered in [96], where the stress
tensor of the model is based on the tensor of node displacements. The displacement of the
boundary nodes to the exact, curved geometry Gexac; are enforced through Dirichlet boundary
conditions and the unknowns are the displacements of the interior nodes. This way, the curvature
of the boundary is propagated in the domain interior.

In [60], Moxey et al. expand the linear elasticity model by a term resulting from a thermal
analogy. Depending on the considered mesh quality measure, the term represents an increased or
decreased temperature, which causes the mesh elements to enlarge or tighten. Numerical results

show that the additional term can improve the mesh quality.

2.4.3 Untangling by Topological Mesh Modifications

Untangling methods most often relocate the nodes without altering the mesh structure. A
different approach is to make changes to the mesh topology by removing, recreating or swapping
edges or faces.

In [53], an algorithm is introduced which allows to determine the optimal alteration on a set of
tetrahedral elements. It relies on the representation of the mesh with Bézier curves and the
resulting convex hull property. Figure 2.20 provides a selection of the applied mesh
modifications: edge split, edge swap, edge collapse, and edge reshape. Note that the last case,
edge reshape, is not a topological mesh modification. If the mesh is not given in a Bézier
representation, criteria based on element area, angles, and edge lengths such as described in [71]
can be used to detect edges for flipping, splitting or removal.

Topological mesh modifications can be combined with other smoothing or untangling techniques
to increase their qualitative performance. The mesh modifications in [71] are applied together
with optimisation-based untangling. The whole algorithm is not relying on a representation of
Gexact- Instead it uses the WALF method [48] to reconstruct a high-order description from the
linear mesh.

In [23], the optimisation introduced in [24] is combined with a refinement step that changes the
mesh topology. The two methods are applied in an alternating way. First the mesh is optimised,

until the optimisation procedure stagnates. Then, the elements with their quality close to the
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edge to split edge to swap  edge to collapse edge to be reshaped
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new vertex new edge new edge new edge
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(a) Edge split (b) Edge swap  (c) Edge collapse (d) Edge reshape

Figure 2.20: Selection of mesh modifications that are described in [53]. This figure is based on a
figure in [53].

minimal quality are refined and the new mesh optimised again. The last two steps can be iterated
a few times. Using this approach, the minimal element quality of the mesh can be increased
further than with an optimisation-alone approach. For the presented numerical examples, each
iteration of refinement and optimisation leads to an improvement of the minimal quality.
However, note that when improving the element minimal quality, the average quality is only

marginally decreased.

2.4.4 Prevention of Tangling by Iterative Node Moving

A problem with untangling methods is that they cannot really guarantee to provide an
analysis-suitable mesh within reasonable runtime. In [45] for instance, the software meshCurve
does not guarantee that the resulting mesh does not contain tangled elements. Similarly, in some
cases, the untangling procedure in [90] can fail to produce a valid mesh. The success of the
method partly depends on reasonable choices of parameter values. Its success rate can be
increased by iterative adaption of these parameters, which also increases the runtime of the
algorithm.

Another way of posing the problem is to prevent tangled elements from appearing during the
curving process. This is typically done by iterative node movement, which only allows node

displacements that are within the bounds of an analysis-suitable mesh.

An iterative node displacement is used in [1] to create a valid mesh of curved simplices,
described by Bézier or NURBS curves. The algorithm starts form a coarse linear mesh and a
piecewise Bézier or NURBS description of the curved boundary. By subdivision, a second, finer
mesh is obtained which can be interpreted as the mesh of control points of the coarse mesh. A
linear elasticity equation is solved for the vertex displacement of the control point mesh.

Dirichlet boundary conditions are applied to enforce the boundary vertices onto the control points
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Chapter 2. Review of Geometric Representation and Enhancement

of the curved boundary description. An iterative update of the vertex positions ensures that all
elements remain untangled. The convex hull property of Bézier or NURBS curves guarantees

that a valid mesh of control points leads to a valid curved coarse mesh.

In [49], Jiao et al. apply an iterative rescaling of node displacements that were calculated in the
context of mesh smoothing for straight-sided meshes by optimisation. During the mesh update
step in the smoothing algorithm, all nodes are moved at the same time, which could result in
tangled elements. To prevent this, the displacements of the nodes are iteratively rescaled until
they can be applied without causing any tangling.

In [71], this method is applied to prevent the formation of new tangled elements during mesh
optimisation and high-order mesh reconstruction. Additionally, displacements for the mesh
update are rescaled, to lie within the 1-ring neighbourhood of the original vertex. In the case of

edge contraction, changes are also only applied if they do not result in tangled elements.

2.5 Conclusion of the Review

In this section, a review of geometric representations, of the evaluation of their accuracy and of
methods for the enhancement was provided.

Two general ways of geometric representations were described: polynomial based and NURBS
based interpolation. As it was mentioned in the Introduction, this thesis focuses on the case
where no CAD or other exact geometric description is available. Therefore, the advantages of
using NURBS can not be exploited and their more complicated structure makes them less
favourable compared to the rather simple polynomial interpolation.

For the polynomial interpolation, again two types were proposed: nodal Lagrange polynomials
and modal Lobatto polynomials. Lagrange polynomials are the standard form of polynomial
interpolation in geometry representation. Lobatto polynomials on the other hand show promising
properties. As modal polynomials, their representation does not rely on edge- or element-interior
node positions. And the hierarchical property of the bases can be used to perform changes of
interpolation orders with minimal cost. Both polynomial types will be further considered.
Polynomial bases that provide smooth representations will be discarded for lack of a simple
generalisation between 2D and 3D elements.

In between the presented measures of the GDE, no ranking of their significance for the acoustical
simulations can be specified. Therefore several of them will be applied in Chapter 5 for the study
of the dependency between the GDE and GIE, to assess their relevances. The differential
geometry-based measures will not be applied due to their described disadvantages. For the GDE
evaluation to compare the curving methods in Chapter 3, the area based method will be applied.
The review of mesh curving methods was divided into three categories. Most methods fall under
the first category of methods that rely on the full knowledge of the exact geometry. As mentioned
before and in the Introduction, this knowledge is assumed not to be given for this thesis. Curve
reconstruction methods on the other side also do not fully serve the purpose, since they consider
no additional knowledge of the original geometry besides the current coarse linear mesh. But
they could be applied to the target mesh in a preprocessing step, improving the accuracy of the

overall mesh curving process.

24



2.5. Conclusion of the Review

Such a prepocessing step was similarly applied for the last described method, which provides
surface curving from discrete data. This method corresponds closely to the problem considered in
this thesis. The main difference to the curving algorithms that will be proposed in Chapter 3 lies
in the choice of the geometric representation. In the mentioned papers, the least squares approach
shows promising results for the mesh curving, but it is not tested how appropriate the resulting
curved meshes are for simulations. Therefore, the least squares approach will be adapted for the
modal shape functions in this thesis. Further, curving routines with different minimisation
procedures and objective functions during the curving process will be considered as well, and the
resulting meshes also evaluated with acoustic simulations.

From the review of smoothing and untangling methods it became clear that this topic is already
widely explored. Therefore it was decided to refrain from the development of an additional
untangling method.

Considering the literature review in this chapter and the additional short reviews at the beginning

of Chapters 4 and 5, the major novel elements of this thesis can be summarised as

» Development of a 2D and 3D mesh curving routine with modal Lobatto shape functions on

the basis of restricted geometric knowledge.
* Comparison of nodal and modal curving methods for Helmholtz scattering simulations.

* Detection of the advantageous effect of H'-optimised mesh curving for Helmholtz

simulations.

* Quantitative study on the relation between the geometric accuracy and the geometry

induced error for Helmholtz simulations.
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Chapter 3

Generation of 2D Meshes with Curved

Boundaries

As mentioned in the Introduction and Chapter 2, the main target of this thesis is the development
of a mesh curving algorithm based only on limited knowledge of the original geometry.

In this chapter, five different curving approaches are considered. Four curving algorithms are
introduced that take only a fine linear mesh as input for the target curve. One is based on a nodal
geometry representation using Lagrange basis polynomials. The other ones use Lobatto basis
functions to obtain a modal geometry representation. An established implementation that creates
high-order Lagrange elements is used as a reference. It is based on the full knowledge of the
CAD representation. The curving methods are evaluated and compared with an area based GDE
measure. Most parts of this Chapter were published in the conference papers [77] and [98], and
the journal paper [99].

The surface meshes with curved boundaries will then be used later in Chapter 5 to analyse the

influence of the geometric accuracy on the error of acoustic simulations.

3.1 Reference Lagrange Approach

The first curving algorithm that is considered is the Lagrange approach as it is implemented in
the meshing software Gmsh. The open-source project was originally a linear mesh generator
[36]. The high-order functionality was added in the later development as an a-posteriori curving
after the linear meshing step. The approach is described in [35] and is based on reference element
mappings with equidistant nodes on the reference element as introduced in Section 2.1.1.1. Since
the curving takes place directly in the meshing environment, full knowledge of the underlying
CAD-geometry is available.

For the curving of line elements or element edges, high order nodes in the physical space are first
placed equidistantly along the linear edge. To map the points onto the target geometry, an
orthogonal projection is used. Note that only the interior edge nodes need to be mapped as the
vertex-nodes already lie on the exact geometry.

Gmsh provides high-order mesh generation up to ¢ = 10. Aditionally, Gmsh implements
optimisation algorithms that optimise the node positions [90], [72]. The objective function is

thereby a weighted sum of energy terms that were described in Sections 2.3.1 and 2.4.1.
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(a)
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Figure 3.1: Schematic of (a) the fine linear Mmesh of the boundary, (b) the coarse linear Cmesh of
the domain, and (c) the curved Cmesh.

Particularly, renewed mention deserves the area minimisation term
D(z) =) dy(z),
e

with d the area based GDE measure between an element e and the exact curve, and x the

vector of element vertices. For the tests, optimised meshes are considered.

3.2 Cmesh-Mmesh Approaches

The reference Lagrange approach described in the last section relies on the full knowledge of the
exact geometry. In applications, this knowledge is often not available. In this section, four mesh
curving algorithms are presented that rely on a fine, piecewise linear approximation of the
geometry as target curve. This fine target mesh is named model mesh or Mmesh. 1t is denoted

M = (Y, Em), with nY, mesh vertices Vg := {vpa1, o2, - - ,'UMJ%} , Upm, € R? and
nG, edges Eaq i= {6/\/1,17 e eMvnivl} that connect them.

The proposed algorithms are a-posteriori curving methods, meaning that they start off from a
coarse linear mesh obtained from a linear mesh generation. The coarse mesh is curved during the
algorithm and is named computational mesh or Cmesh. It is denoted C, with Ve, &c, ng, and ng
defined analogously to Vo, Ea, 1, and ny 4. For all described curving methods, it is assumed
that the Cmesh vertices are a subset of the Mmesh vertices. If necessary, this can be achieved in a
preprocessing step by moving the Cmesh vertices to the closest Mmesh vertices. The

Cmesh-Mmesh principle is illustrated in Figure 3.1.

3.2.1 Nodal Curving Algorithm

The first introduced curving algorithm is a nodal method. The approximation of the target curve
is based on the high-order nodes that are additionally placed on the line elements (compare the
description of Lagrange basis polynomials in Section 2.1.1.2). The Cmesh is described by an
elementwise polynomial mapping. It maps from the reference element [—1, 1] to the physical
space and corresponds to the mapping in the reference Lagrange approach. The basis of the
mapping is formed by Lagrange polynomials with equidistant nodes in the reference space (see
Section 2.1.1.2). In order to curve elementwise the Cmesh, the high-order node positions have to

be found in the physical space.
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3.2. Cmesh-Mmesh Approaches

(a) Curving step (b) Correction step

Figure 3.2: The figures illustrate the two different iteration steps that form the nodal curving algo-
rithm. The blue curve represents the target curve M. The C element at the beginning
of the iteration step is drawn in black, whereas the red curve shows the result after the
iteration step. In green, helplines and intersection points are indicated.

The algorithm starts with adding the ¢ — 1 high-order interpolation nodes to the linear Cmesh.
On each Cmesh element, they are placed equidistantly in the physical space to form the
polynomial parametrisation gy, : [—1, 1] — R? of order q. During the curving process, two
operations are applied to move the high-order nodes towards the Mmesh target curve. This is

done in a nested two-step iteration scheme:

1. In the outer loop, the nodes are moved along the local Cmesh normal direction to
successively come closer to the Mmesh. This is done in nje, iteration steps, within which
each node is treated individually. In Figure 3.2(a), an example of this curving iteration step

is illustrated.

In the kth iteration, the position of the it node is updated from p; i to p; 1. Therefore,
the normal n; ;, of the parametrisation g, at p; ; is evaluated. The target point g; ;. for p; j
on the Mmesh is evaluated as the closest intersection point between the Mmesh and p; ;.

and the line along the normal direction. The node position is then updated as

Dik+1 = Pik + 0k (@i — Dik) s (3.1

k

Niter ~

with o, =

2. The inner iteration consists of correction steps to readjust the node spacing (see Figure
3.2(b)). The spacing in the physical space is targeted to be similiar to the node spacing in
the reference space. In accordance with the equidistantly spaced nodes in the reference
space, the relocation aims therefore for approximately equidistantly spaced nodes in the
physical space. It is applied after each curving step.

‘th

For node p; ;j in the % iteration step, the midpoint of its neighbouring points is computed

Pi—1,+tPit1,5
2

asm; ;j := . This midpoint is then projected onto the tangent £; ; in p; ; to

obtain the target point mn; ; for the node update. All nodes are moved at the same time by
Pij+1 = Pij + 7 (Mij —Pij), (3.2)

where 7 = 0.4 is a scaling factor that reduces the risk to overshoot. Note that 7 can be

chosen from 7 € (0, 1]. For 7 = 1, the point would be moved directly onto the target point,
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for 7 = 0 it would not be moved at all.

As the correction step does generally not place the nodes exactly onto the Mmesh, one extra
mesh deformation step is applied with o,,;, 11 = 1 after the last iteration step.

To find the number of iterations that are needed for the method to converge, the number of
iteration steps are increased adaptively. The distance between the nodes obtained with different
iteration steps is evaluated. When the maximal distance falls below a predefined nodal tolerance
of 104, the method is declared converged. The number of iteration steps are increased for both
loops simultaneously, with that of the outer loop increasing faster. If no convergence is observed
until the number of iteration steps of the outer loop reaches the upper limit of 200 iterations, the

algorithm breaks down.

3.2.2 Modal Curving Algorithms

Besides the nodal approaches, modal curving methods are considered. They rely on a description
of the curved mesh with the hierarchic modal Lobatto polynomial basis which was introduced in
2.1.1.4. As with Lagrange basis polynomials, the curves are generally described by a linear
combination f = Z?:ql a;l;, with [; the i™ Lobatto polynomial. The main difference to the
nodal approaches is that there are no high-order nodes to define the geometry. Instead, the
coefficients c; have to be determined in the curving process.

From the polynomial approximation f (&), the linear interpolation with the first-order shape
functions is known by the Cmesh vertex positions p; = (p1,, p1,y) and p2 = (p2.z, p2,y). Thus,

only the interpolation with the higher-order shape functions (which will be called the polynomial

deflection) and the corresponding ar; with j = 2,. .., ¢ have to be determined in the curving
process.
q
N 1 1
& =5+ Dpr+ S+ Dp2 + > aili() for £ € [-1,1].
i=2

linear interpolation polynmmon

Hereafter, three a-posteriori methods are described to obtain the c; coefficients. The first is a
least squares approach. There, only the Mmesh vertices are considered to describe the target
curve. These nodes lie on the exact geometry. The other two methods are based on an
optimisation with respect to the H'-seminorm. This allows to take full advantage of the
d-property (2.5) of the Lobatto shape functions and bypasses matrix inversions. The optimisation

will be considered in two different function spaces.

3.2.2.1 Least Squares Modal Curving

The first curving method follows the standard least squares approach by minimising a squared
error. Therefore, the error is evaluated as the squared distance between the Mmesh vertices and
corresponding points on the Cmesh. As the measure is pointwise, no interpolation is necessary
between the Mmesh vertices, and only geometrically exact information is considered. In [13], a

similar approach is described that applies Bézier curves for the geometric approximation.
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3.2. Cmesh-Mmesh Approaches

A single Cmesh element is curved by approximating the n target Mmesh vertices (z;, y;) with the

polynomial f = Z?:o a;l;(§). The Mmesh arc is parametrised based on the element length with

Sioihy

&i=—-1+2=-

€[-1,1] (3.3)
corresponding to (x;, y;) and h; the length of the j-th Mmesh element on the arc. This
parametrisation allows to find the corresponding points on the Cmesh for each Mmesh vertex.

The minimisation that has to be fulfilled by the coefficients «; is then
ming Y (@i i) = flaa, ..., oq: )5
i=1

The minimisation is transformed into a system of linear equations by taking the derivatives with
respect to the individual ;s and setting the resulting equation to 0. Both the z- and y coordinates
are described independently. For each coordinate this results in an independent linear system,

with a; = (5, @ ). The derivation is shown for the z-coordinate. The subindex x is dropped

for readability.
q n n 1 n
Do > (&&= Y wile(&) = Yoy > (&)1(&)
j=2 =1 i=1 j=0  i=1
—_————
::a‘kj :Zbk
< Aa = b,
with
a2 -+ Q24 % ba
A = ) a - ) b = )
Qg2 ~++ Qggq Qq bq

where A is a generally fully-populated matrix. The system for the y-coordinate follows

analogously.

3.2.2.2 H' Modal Curving

A second modal based curving method is presented that is based on an optimisation in the
H'-seminorm. Taking advantage of the §-property (2.5) of the Lobatto shape functions, an
explicit formula can be derived for the coefficients c;. The general derivation is described in [82]
as projection based interpolation. The optimisation is considered for each coordinate
independently and accordingly, a set of a;-values is obtained for each coordinate. Here, the
derivation is outlined for the z-coordinate «;-values that approximate the target f, by fx For

simplicity, the z-index is dropped for the c;. The y-coordinate «;-values are found analogously.

The difference between the target f, and its approximation fa; shall be minimised in the
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H'-seminorm. Hence, the «; have to fulfil the optimisation problem
~ 1 ~/ 2
ming|fo — folm = mina/ (fg/c — fz)7d€.
-1

Note that this optimisation minimises the deviation of the parametrisations’ derivatives. These
are directly linked to the curves tangents and normals. The minimisation in the H'-seminorm

therefore corresponds to an optimisation of the normal approximation.

As described above, the linear interpolation of the Cmesh vertices is already defined by the
known ag and «;. Thus, the target curve is split up in the known linear part and the remaining
deflection d
fz = aolo + a1l +d
—

linear part

and the optimisation reduces to
1 q
MiNe, / (d = aulj(£))%de.
For the oy, that solve the minimisation it holds that

1 q
oo [ @ =3 aieyae =o
1=2

Oay )y

This can be reformulated to obtain an explicit formula for the coefficients

1 q

1 q
o / (@~ 3 aull(€))%de =2 / (@ — 3 el (Ol (6)de
1=2

day )4 -1 i

1
=) / d'1LdE — 20y
1

1
= Q 2/ d/lﬁcdf.
-1

Note that, as the target curve is the piecewise linear curve connecting the Mmesh vertices, d is
generally non-polynomial. Further, its formula depends on the parametrisation of the Mmesh arc
over the Cmesh element. Here, a parametrisation based on the physical lengths of the Mmesh

elements is applied. The resulting formulas for the deflection are

sy s il
di(§) = %(%H —z) | §—(=1+ ﬁ Z;hj) + @

~ (€ Dpra+ e+ )

linear part
>5oi by L
(&) = jQT(%’H — ;) + §p1,x - 51727997

with d = d; if £ € [, &41], n the number of Mmesh vertices on the Mmesh arc, h; the lengths
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3.2. Cmesh-Mmesh Approaches

Figure 3.3: Illustration of the reference-based modal method with the physical space on the left and the
reference space on the right. The M drawn in blue, C with edge e; in black, the quadrangle
spanned by e; in grey, and the bounding interval I in red. In the reference space, the blue
curve represents the local function w and the red one the polynomial interpolation w. The
reference quadrangle is indicated in grey.

of the j th Mmesh element on the Mmesh arc, and &; as defined in (3.3). The resulting formula for

the ay, is

n—1g
h]

a = Y (f?“%<xi+1—mi>z;<5>df>+(§pl,x—;p2,m,)f_11 L(©)de.

This algorithm will be referred to as H' modal curving.

3.2.2.3 Reference-based Modal Curving Algorithm

The third considered method will be called reference based modal curving. As in the H' curving
approach, it is based on an optimisation in the H*-seminorm. For this method, the Mmesh
vertices are mapped onto a reference space. Their linear interpolation is then approximated. In
the (£, n) - reference space, the linear Cmesh element is mapped onto the [—1, 1] interval on the
&-axis. The advantage of this method is that only one set of «;-values for the n-coordinate has to
be calculated. The final curve is obtained by mapping the polynomial interpolation back into the
physical space. The method is illustrated in Figure 3.3.

The main difference to the previous method lies in the mapping Fo (&, n) from the reference to
the physical space. It maps the standard [(—1, —1), (1, 1)] reference quadrangle to a straight
sided quadrangle in the physical space that is constructed around the Cmesh element. Therefore,
the Cmesh vertices are extruded in positive and negative vertex normal directions. The extrusion
length is predefined to ensure that the quadrangles are untangled, dinstinct and that the whole
Mmesh is covered by their union.

Those Mmesh vertices that lie in the bounding interval I of the quadrangle are inversely mapped
onto the reference space. As generally no closed-form expression of Fy ! is available, the
corresponding points in the reference space are obtained by minimising the objective function
9(&n) = |z — Fo(& ).

The target curve in the reference domain, defined as the linear interpolation of the mapped
Mmesh vertices, is denoted by w. Note that this linear interpolation only approximates the

inverse image of M, as Fg is generally not linear.
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Analogously to the H'! modal curving, the a;-values to approximate the target curve are defined
by an optimisation in the H'-seminorm
1
o = argmin, |w — |1 = argming, / (w—) (w—w) dE,
-1
Again, the linear interpolation is predefined by w(—1) = oy = w(1) = @; = 0and a

closed-form expression of the remaining a2 . . . oy is found as

o = / W€ A, fori=2.....q

-1

3.3 Comparison of the Methods

In this Section, the introduced curving methods are compared. They are applied to two test
geometries. Additionally, the applicability and the resulting accuracy in the geometric

approximation are analysed.

3.3.1 Circle Test Case

The first test geometry is the unit circle. It will be also applied later for simulation tests (see
Section 4.4.1).

3.3.1.1 Geometry and Meshes

For the reference Lagrange approach, the geometry is defined by four quadrants using the
Gmsh-internal command Circle. A mesh with evenly sized elements is created and then curved.
For the nodal and the modal curving approaches, the Mmesh and Cmesh are generated the same
way. Before the curving, the assumption Ve C Va4 has to be fulfilled. Therefore, each Cmesh
vertex is snapped onto the closest Mmesh vertex, where the distance is measured in Euclidean
distance. Note that this choice, instead of using the geodesic distance, could lead to an invalid
Cmesh for thin geometries. In this thesis, the Mmesh is assumed to appropriately describe the
geometry, including a high enough refinement to avoid such problems. This is achieved by a
refinement the same size as the geometry thickness, as one half of the Mmesh element size is the

maximum distance between a Cmesh vertex and its closest Mmesh vertex.

3.3.1.2 GDE Measure for the Comparison

The accuracy of the curving is evaluated using a measure based on the area A between the exact
circle and its approximating curve. A similar measure was applied in [72]. The main advantage

of area-based measures is that they are independent of the curve parametrisation, as opposed to

the described measures based on the curve normal or curvatures (see Section 2.2.4). Further, in

[72] they were found to show some correlation with the Hausdorff distance and are much easier
to compute than the latter.

For this test case, the parametrisation of the exact boundary and its inverse are known. This

knowledge can be used to calculate the area directly. First, the inverse parametrisation of the
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Figure 3.4: Sketch of the ODE-based calculation of the area between two parametrised curves.

angle based parametrisation ¢;(6) of the circle is used to find the parameter interval [f;, 65| that
corresponds to the it Cmesh element. The parametrisation ¢; () of its approximation is then
constructed over the same reference interval. Following the area formula Agyaq = % |by X bo| of a
quadrilateral with diagonals b; and b2, the increase of the area between the two curves when

travelling along the parametrisation from € to 6 + df can be evaluated as
1 R R
Ai(s+ds) — Ai(s) = B [(ci(s+ds) — éi(s)) X (ci(s) — éi(s+ ds))]

for a small step df (see Fig. 3.4).
After linear Taylor series expansions of ¢; and ¢;, the formula can be rearranged to the ordinary

differential equation

(5) = 5 (&) = a(s) x (@) + ci(s))| G4

By solving (3.4) with the initial value A.(so;) = 0, the area between the two curves is obtained.
This approach bypasses the approximation of both curves by a polygon as it is done in [72].

For the total area, the elementwise areas A; are summed up as GDE4 := A =) . A;.

3.3.1.3 Results

Figure 3.5 shows g-convergence results for nodally and for modally curved elements with
varying numbers of Mmesh elements per Cmesh element. Due to the construction of C and M,
this number is constant and can be calculated as MpC = nj/ng. The GDE 4 is plotted for the
case ne = 12. The results for the Lagrange elements are included as reference.

For all five methods, the g-convergence plots show an odd-even stepwise behaviour. This is
linked to the specific circle geometry, as it is not observed in later test cases (see Section 3.3.2).
The first intuition is that the behaviour is linked to the symmetry of the circle arcs and the
symmetry of the shape functions. For the reference-based modal curving this is confirmed by the
fact that the o values corresponding to odd order shape functions are of order 10~!3. Lobatto
basis polynomials can be split in those that are of even order and axially symmetric in £ = 0
(lax (=€) = l21(£)), and those of odd orders that are anti-symmetric with respect to the origin
(lok+1(—&) = —log+1(€)). In the reference space, the target curve is defined in one coordinate
only and over the same parameter interval as the Lobatto shape functions. Due to the circle’s
symmetry, it is further axially symmetric in & = 0, like the Lobatto polynomials of even order.

Therefore, no significant contribution is observed from the Lobatto basis polynomials of odd
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Figure 3.5: Plot of the relative area between the exact circle and the approximation curved with (a)
the nodal curving approach, (b) the reference-based modal approach, (c) the H' modal
curving or (d) the least squares approach, for ng = 12 and different ratios MpC.
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MpC \ 10 50 100 500 1000
area \1.4353.10—3 5.7419-107° 1.4355-10~° 5.7419-10~7 1.4359-10"7

Table 3.1: Area between the Mmesh and the exact circle.
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Figure 3.6: Plots showing the Mmesh vertices in black and the high-order nodes of the nodally curved
Cmesh in red. For ¢ = 5 and ¢ = 10, the Cmesh nodes coincide with geometrically exact
Mmesh vertices. This is not the case for ¢ = 7.

order. For all other methods, the stepwise behaviour is less strong and an evaluation of the
contributions of odd and even shape functions could not confirm that only the even shape
functions contribute to the approximation of the circle arc.

For the results of the nodal curving, two combined effects are observed. The curves show a
stagnating behaviour. The stagnation level decreases as MpC increases. It corresponds to the
area between the Mmesh and the exact circle (see Table 3.1). Therefore, the stagnation is
explained by the inaccuracy of M with respect to the exact circle.

For some orders g, the results deviate from this accuracy bound and fall together with the
Lagrange reference. More accurately, this happens for orders that are divisors of the MpC. In
these cases, the higher order nodes of the nodal approach fall onto M vertices. Therefore, they
are exact and the resulting curve corresponds to the standard Lagrange curve (see Fig. 3.6). Note
that this behaviour is due to the symmetry of the circle arc over each Cmesh element. If the
Mmesh is further refined, the error stagnation level becomes less significant. Then it can be
observed that also for non-divisor numbers of nodes, where the nodes do not fall onto Mmesh
vertices, the nodal approach has about the same accuracy as the reference approach (see Figure
3.7 for 4 Cmesh elements, MpC = 5000, g = 7).

For the reference based modal curving approach, the g-convergence curves stagnate. The onset of
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Figure 3.7: GDE evaluation for the unit circle, approximated by the nodal approach with 4 elements.
The high Mmesh refinement leads to a relatievly low stagnation error. The graph shows
that outside the stagnation regime, the nodal approach leads to about the same GDE as the
reference approach

the stagnation depends on the Mmesh refinement and the corresponding Mmesh accuracy. As the
polynomial approximation of the target curves improves with increasing g, the inaccuracy of M
becomes the dominating source of error. The coarser the Mmesh, the higher its inaccuracy and

the earlier the resulting error stagnation level is reached.

Further, a convergence gap can be observed between the results of the reference-based modal
curving and those of the reference Lagrange approach. This can be explained by the fact that for
the reference-based modal approach, the optimisation for the curving takes place in a restricted
function space. The mapping from the reference space to the physical reduces the number of o;
values to determine in the curving step, but it results in a non-optimal reduction of the degrees of

freedom in the optimisation.

The optimisation in the H' modal curving approach on the other hand is run in the full
polynomial function space. Its results do not suffer from the described convergence gap (see
Figure 3.5(c)) and are therefore significantly better than those of the reference based modal
curving. As for the nodal curving and the reference based modal approach, the error curves
stagnate due to the inaccuracy of the Mmesh. But in the region of convergence, they show the

same behaviour as the curves of the results with the Gmsh reference.

Figure 3.5(d) shows the results of the least squares method. For this approach, the optimisation is
performed in the physical space and only the geometrically exact Mmesh vertices are considered.
Therefore, the convergence curves follow those of the reference. Further, no stagnation is
observed as in the other three methods because the linear interpolation between the Mmesh
vertices is ignored. The method provides accurate approximations already with a relatively
coarse Mmesh, where the curves stagnate at error levels that are close to machine precision. In

this region, higher errors for finer M seem to be caused by accumulation of the numerical errors.

To evaluate the runtime of the four methods, the curving of the circle with 12 Cmesh elements is
considered (see Figure 3.8). For each setup, the curving is run ten times and the median of the
measured CPU times taken to smoothen the resulting curves. Note the different scales of the time
axis. All four methods are implemented in Matlab without focus on runtime optimisation.

Therefore, only general, significant effects are compared. As expected, the run times increase
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Figure 3.8: Plot of the CPU time for the curving with (a) the nodal curving approach, (b) the reference-
based modal approach, (c) the H! modal curving or (d) the least squares approach, for

ng = 12 and different ratios MpC.
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with the refinement of the Mmesh and for higher curving orders. The nodal and the reference
based modal approach both have a significantly longer runtime than the /! modal and the least
squares approach. For the nodal approach, this originates from the adaptivity of the iterative
process. A better choice of the parameters of the adaptivity loop might help to improve this. In
the case of the reference based modal approach, a big overhead of calculations to set up the
reference space and to transform the data points into the latter leads to the long run times. The
CPU times of the H! modal curving and the least squares approach are of similar magnitude. For
lower curving orders, the H' modal curving seems advantageous. With increasing g, this
approach takes longer, while the runtime with the least squares approach stays nearly constant
and the latter becomes favourable. In general, the run times of these two methods can be
neglected compared to the simulation runtimes, especially as the curving is run only once and the

resulting mesh can be applied for several simulations.

3.3.2 Distorted Ellipse

With this second test case, the curving approaches are compared for a more complicated
geometry. The test geometry is based on an ellipse with a high aspect ratio. Additional bumps

along the curve are introduced by a cosine term

< z(6) ) _ < (rz + hp cos(6ny)) cos(0) ) for 6 € [0, 2] (3.5)
() (ry + Iy cos(0np)) sin(6) Y

with radii r, = 0.5, ry, = 5, np = 10 the number of bumps and h;, = 0.1 their height. In Figure
3.9(a), a plot of the geometry is shown.

Mildly irregular boundary meshes are considered, as they also might occur in applications. The
meshes are generated in three steps. To obtain a mesh with NV vertices, n,, := (N"+2)/2
equidistant nodes 0; = (Z%)f € [0, 7] are defined in the reference space. In a second step, these

nodes are perturbed in the form of 8; = 9} + v;, where ~y; are uniformly distributed pseudo

1 1
3ny ? 3ny

generated in Matlab R2015b using the rand command with seed 28. Applying the curve

random values in the interval | ] and 79 = vy, = 0. The pseudo random numbers are
parametrisation (3.5) to the #; constructs the mesh vertices for the upper half of the geometry.
The other half is created by mapping 6; + 7 onto the physical space. Thereby the choice of

Yo = Yn, = 0 ensures that a closed curve is obtained. As a last step before the curving, the
Cmesh vertices are snapped onto the Mmesh vertices, as it was described for the previous test
case. An example Cmesh is plotted in Figure 3.9(b).

Figures 3.9 and 3.10 provide an example of the initial C and the final curved mesh with all

methods for ng = 10, nf, = 998, and ¢ = 4,

3.3.2.1 GDE Measure for the Comparison

As for the previous test case, an area based GDE is evaluated. Here, the area between the target
curve M and its approximation is calculated. This is motivated by the fact that no explicit inverse
of the parametrisation is available, as it was used in the GDE calculation for the circle test case.

A similar issue would be encountered for real life geometries, where we assume that only the
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Figure 3.9: (a) shows the distorted ellipse defined by (3.5) and (b) the Cmesh with ng = 10. The
4*M_order curves resulting with n%, = 998 from (c) the nodal curving approach, (d) the
reference based modal curving approach, (e) the H! modal curving approach, and (f) the
least squares curving approach are plotted in blue against the exact geometry in black.
The grey dashed boxes indicate the zoom-in area that is shown in Figure 3.10
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Figure 3.10: Close-up plots of the zoom-in regions indicated in Figure 3.9.

Mmesh is provided. Further, only the four Cmesh-Mmesh approaches are compared among each
other. The area is divided into small quadrangles Q; = (qi,b Q2: 93> 9, 1) for which the area
can be calculated with the following formula for convex quadrangles:

Aq, =

7

(@2 — ia) % (21 —is)]-

N |

The number of non-convex quadrangles is reduced by ensuring that all Mmesh vertices and all
intersections between the Cmesh and the Mmesh coincide with a quadrangle vertex. The
intersections are found with an adapted version of the interX function from [63]. Further, the
number of quadrangles is adaptively changed until a predefined accuracy of 10~ is reached in
the area calculation. A relative area measure is calculated, similar to the measure suggested in

[72]. Therefore, the sum over all quadrangles’ areas is divided by the length [ of M:
- Ag,
GDEy4, = it
Im
3.3.2.2 Results

Fixed number of Cmesh elements

First, the size of the Cmesh is fixed with n; = 20 and the target Mmesh is varied with
niy € {98,198,298,...,998,1998,2998, ...,9998} .

This corresponds to the study for the circle case in Section 3.3.1. Since the Cmesh and Mmesh

are not generated with equisized elements, the ratio %FM does not represent anymore MpC, the
C
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number of Mmesh elements for each Cmesh element, but its mean m over all Cmesh
elements. Figure 3.11 shows the corresponding g-convergence curves. Note that for the nodal
approach no data points are available for ¢ > 8. For these cases, the curving algorithm failed to
converge within the iteration boundaries mentioned above.

The general behaviour of the results correspond to those of the circle test case, with all four
methods showing the same trends.

For lower curving orders g, the curves converge, but then stagnate as ¢ increases, depending on
the Mmesh refinement. The least squares does not provide any significant advantage. Similarly,
the results with all four methods show approximately the same convergence rate and no
convergence gap is observed for the reference based method. It actually provides the best results
for some M and ¢ combinations.

The less regular geometry leads to a loss of the stepwise behaviour. Odd and even order Lobatto
shape functions seem therefore to contribute to a similar extend. The only significant outlier is
the case of ¢ = 7 for the three methods that curve the Cmesh directly in the physical space.
There, the polynomial of order ¢ = 6 seems to describe the distorted particularly well, while the
shape functions of order ¢ = 7 do not improve the approximation.

With the coarse M, one disadvantage of the least squares approach becomes visible. For the
resulting linear system to be solvable, at least ¢ + 1 Mmesh vertices are needed. With only a few
more vertices, the method is not robust, as it is observed for one case in Figure 3.11(d).
Generally, this instability for least squares with too few data points is well known in the
literature. It is explained by the Runge phenomenon for polynomial interpolation [15] and
expected to be well-conditioned from n < 21/m on, with n the polynomial order and m the
number of data points [16]. For the case of n5, = 198 and ng = 20, there are (in the mean) 9.9
Mmesh elements per Cmesh element. This correponds to m = 10.9 data points per least squares
approximation. Therefore, one expects the approach to get ill-conditioned from

n > 2v/10.9 ~ 6.6 on. This matches Figure 3.11(d). However, when evaluating the conditioning
number of the linear system solved for the least squares approximation of the detoriating cases, it
is only of order 103. With such a conditioning number one does not expect significant
detoriations of the solutions, if the deviations in the system came only from numerical errors, not
from any added noise. Thus, the instability of the least squares is not (only) explained by
ill-conditioning. But within the frame of this thesis, no other reason was found.

In Figure 3.12, the m—convergence curves are shown. As the number of Cmesh elements ng is
fixed, refining the Mmesh increases the 1\//[56 The geometric accuracy of the curving methods
generally increases as well, up to the level of accuracy that can be obtained with the curving
order q and ng. On this level, the curves stagnate. Further refinement of the Mmesh does not
result in an improvement of the curved meshes. The optimal choice of Mmesh refinement
therefore lies around the stagnation onset, in order to avoid both, an accuracy limitation as well as

an over refinement that would lead to higher computational costs.

Fixed number of Mmesh elements

In a second study, the target curve is fixed with n9, = 998. It is aimed to apply the curving
methods for n& € {6,10,...,78} and g € {1,...15}, but limitations in the methods lead to

43



Chapter 3. Generation of 2D Meshes with Curved Boundaries

1072 °
<E' | 0. -
= T
D e
O 1074
—6 L | |
10 5 4
(a)
[~ I
1072 ©
L
EJ 8 o o}
—4 | (@)
O 10 e g
—6 L
10 2 4 6
q
©

00

O 0
878

I I
6 8
o o)
O o
g o
8 10

10

1072

1076

102

1076

o’

L g
8 o
0}
[ ©
Lo I I
2 4 6
q
(b)
T
o]
@ o o o
@
O o
8
I b3
4 6 8
q
(d)

0] fo) o
Vg 3
| ,
8 10
o)
o .
o o n, =198
Qg o n, =398
nf, = 698
| o-n%, =998
10 o nfy, = 1998
nf = 7998

Figure 3.11: g-convergence for (a) the nodal method, (b) the reference based modal method, (c) the
H' modal method, and (d) the least squares modal method with fixed ng = 20.
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Figure 3.13: g-convergence for (a) the nodal method, (b) the reference based modal method, (c) the
H' modal method, and (d) the least squares modal with fixed nf, = 998.

restricted parameter sets:

For the nodal curving, convergence issues occur for higher order approximations. The curving

has to be limited to ¢ < 8.

For the reference based modal curving, the limitations lie in the construction of the quadrangles
that define the mapping from the reference to the physical space. For coarse C, it could be hard or
might not even be possible to find extrusion lengths that lead to quadrangles that are disjoint with
their union containing all Mmesh vertices. As seen before, the least squares algorithm
deteriorates for higher g if too few target points are available. Accordingly, high order
approximations were not possible for relatively coarse Mmeshes. Only the H' modal approach
can be applied to the full parameter range.

In Figure 3.13, the g-convergence curves for different n; are shown. The green square highlights
the example case from Figures 3.9(b)-3.10(d). All error curves decrease with increasing ¢ and
finally stagnate at the bound induced by the choice of M. The size of C thereby controls the
convergence rate before the onset of the stagnation. The finer the Cmesh is, the better is the

approximation already for lower ¢ values, and the sooner the accuracy bound is reached.

For the nodal curving algorithm, Legendre and Chebyshev node spacings in the reference
space were tested to see if they provide better convergence results.
Legendre points are defined as the element vertices and niy, := (¢ + 1) — 2 interior nodes located

at the roots of the ni,¢th Legendre polynomial. Similarly, interior Chebychev nodes are defined
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Figure 3.14: Legendre and Chebyshev points based nodes.
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Figure 3.15: g-convergence for the nodal method with (a) Legendre or (b) Chebyshev nodes, with
fixed nf, = 998.

as the roots

1 = os (21

2Nint

of the niyth Chebychev polynomial of the first kind
T, (t) = cos(n arccos(t)).

Both node types cluster towards the ends of the line element (see Figure 3.14) and therefore
counteract oscillatory behaviour of the interpolation [67].

Corresponding to the change of the nodal location on the reference element, p; in the relaxation

step is not defined as the midpoint between p;_1 and p; 1, but based on the ratio %

Figures 3.15 and 3.16 show the g-convergence and 74./ng-convergence curves, respectively.

There is no significant improvement of the convergence behaviour.
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Figure 3.16: 1\//If)/C-convergence for the nodal method with (a) Legendre or (b) Chebyshev nodes, with
fixed nf, = 998.
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3.4 Conclusions of this Chapter

The four curving methods were applied to two test cases, the unit circle and a distorted ellipse.
On the circle test case, the reference based method suffers from a convergence gap compared
with the other three methods. For the more general geometry, this was not observed any more.
Here, the requirements of the mapping from the reference to the physical space led to limitations
in the choice of the mesh size. Besides this, it also did not provide significantly better results than
the H' modal approach or the least squares.

For the nodal curving, the general problem lies in convergence issues within the curving process
itself that make the whole approach very unstable. Tests with alternative node spacings did not
resolve this.

All three methods that consider the full Mmesh as target encounter a stagnation of the error level
due to the Mmesh accuracy. This especially includes the H' modal curving approach. A
preprocessing step running a mesh reconstruction method for the Mmesh before the curving
could improve this, similar to what is proposed in [13]. Otherwise, the H! modal curving seems
to be quite robust and applicable to both tested geometries.

The least squares method bypasses this stagnation by using only exact points. This leads to much
better results on relatively coarse meshes in the circle test case. On the more general geometry of
the distorted ellipse, this advantage is less significant. Further, the least squares approach
becomes unstable or even incalculable for too coarse M. This effects especially those cases,
where the H! modal approach stagnates due to the inaccuracy of the Mmesh and where the least
squares approach could be the most beneficial. Note that here only a basic least squares is tested.
Modifications of the method might lead to an improved stability.

Further note that the tests performed here are designed to compare the introduced curving
methods. Besides the method comparison, only limited conclusions can be drawn. For the
scenarios that motivated the method requirements, both the Mmesh and the Cmesh might be fixed
- the Mmesh by the provided fine mesh and the Cmesh due to limitations on the mesh for
simulation runs. In this case, only the curving order q is left as degree of freedom. The results of
this chapter indicate that ¢ refinement is only meaningful up to the point of stagnation onset
which is geometry dependent and has therefore to be determined. Further, due to the stagnation,
the target accuracy for the geometric description could not be chosen arbitrarily. If the desired
accuracy lies below the stagnation level, an improvement of the Mmesh accuracy is needed, e.g.
in form of the above mentioned mesh reconstruction methods.

From the two described test cases, no clear preference can be drawn among the considered
curving methods. Both, the ! modal curving and the least squares approach look promising. In
the following chapters, further tests will be run, considering the performance of the curved

meshes in the context of acoustics simulations.
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Chapter 4

Geometric Enhancement for Acoustic

Simulations

In the previous two chapters, the description and generation of high-order meshes were
discussed. Now the application of these high-order meshes to acoustic simulations is considered.
Therefore, a short review of equations and methods in numerical acoustics is provided. The focus
lies on the finite element method (FEM) and its high-order version p-FEM. Two geometric
enhancements of the p-FEM will be described, of which the polynomial based gp-FEM will be

chosen for the application to acoustic test cases in this and the subsequent chapters.

4.1 Review of Numerical Acoustics

In this section, some concepts on how to describe acoustic problems mathematically are

summarised and how to solve them numerically.

4.1.1 Equations

Information herein is based on course notes [21]. The different equations to describe and solve
acoustic problems are derived from the conservation of mass and the conservation of momentum
by making varying assumptions, e.g. on the fluid and flow. As the acoustic perturbations are
small compared to the ambient conditions, linearisation is often applied as well. Among the
resulting equations are e.g. the Linearised Euler Equations for unsteady inhomogeneous flow in
an inviscid fluid under adiabatic conditions [38]. Under the assumption of a homogeneous,
inviscid fluid with no external flow and adiabatic conditions, and by linearisation, the linear
acoustic wave equation

2 1 &°p 0q

2 ot arn
is obtained with p the acoustic pressure field, py the ambient mass density field, q the volume
velocity source given as volume velocity per unit volume, and cg the speed of sound in the given
fluid. As mentioned in the Introduction, this thesis examines acoustic simulations in the
frequency domain. Therefore, the linear acoustic wave equation is considered for time harmonic
excitations. These are present for tonal noise components or could be analytically obtained by

Fourier tranformation. Assuming a harmonic time dependency (using e convention), the
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linear acoustic wave equation simplifies to the Helmholtz equation
V2p + k?p = —ipowq (4.1)

with the acoustic wavenumber k = «/¢, and angular frequency w.

In order to completely define a problem and to obtain a unique solution, boundary conditions
(BC) need to be introduced. The standard boundary conditions imposed on the boundary

I' =Tp UTI'y UI'R of the domain €2 and their physical meanings are the following:

¢ Pressure

Dirichlet boundary conditions

p(z) =pr,(z), forx € T'p
describe the acoustic pressure field pr,, imposed at I'p.

* Normal velocity
By Neumann boundary conditions
i Op(x)

vn(z) = 0w On

=vpry(2), forz e 'y,

the normal velocity v, 1, along the boundary is prescribed with n the outwards facing
normal of the domain 2. Homogeneous Neumann BC correspond to a rigid wall, where the

acoustic wave is completely reflected.

* Impedance
Robin boundary conditions are also called mixed boundary conditions because they relate
the field variable to its normal derivative. The relationship is described by a given normal
impedance function Zr, that describes the damping properties of the material forming the

boundary:
iZry(z) Op(x)

P(@) = Zoy(a)un(a) = o DT

, forx € I'y.

* Radiation condition
For exterior problems of dimension d € {2, 3}, additionally the Sommerfeld radiation

condition 5
. a1 (Op . B
E&TZ(&ﬂ”@>—0
with r = ||, € Q has to be fulfilled to ensure that acoustic waves propagate in free field

without any reflections [84].

4.1.2 Numerical Methods

Analytical solutions are known for some acoustic problems with simple geometries, but are

impossible to determine for complex geometries encountered in real-life applications. Instead,
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numerical simulations are used to obtain an approximate solution of the problem. As stated in the

Introduction, only mesh-based methods will be considered here.

4.1.2.1 Methods

In the boundary element method (BEM), only the domain boundary needs to be discretised. It is a
typical method to solve an exterior problem in an unbounded domain. The differential equation is
reformulated as an integral formulation which is defined on the boundary of the domain.
Accordingly, only a discretisation of the boundary is needed which simplifies the meshing
process and leads to a comparatively small number of degrees of freedom (DoFs). The resulting
linear system is complex and dense, which precludes the application of efficient solving
algorithms for sparse systems. In a post-processing step, the solution is expanded to the interior
of the domain. Due to the need of a Green’s function for the construction of the integral
formulation, the applicability of the BEM for inhomogeneous or complex domains is restricted
([88], [21]).

In these cases, or for problems on bounded domains, domain based methods are more suitable
[21]. Among these are finite difference methods (FDM). Derivatives of the field variable are
approximated by difference schemes that are obtained from Taylor expansions over stencils
around the evaluation node. The evaluation relies on structured grids and is therefore unsuitable
for complex geometries [26].

Methods on unstructured grids are typically based on the weak formulation of the problem.
Based on a weighted residual method, a weak formulation of the problem is obtained by applying
a scalar product with a test function ¢ to both sides of the differential equation. It can be proven
that solutions of the strong formulation are also solutions of the weak formulation, if the weak
formulation holds for all ¢ € V.

For the discretisation, the solution space V is first restricted to a finite-dimensional subspace V.
Then the solution is expressed as a linear combination of a suitable basis of V},. The basis
functions are also called shape functions. By substituting the ¢ with actual test functions in Vj,
the continuous problem is transformed in a discrete system of equations. Usually, the shape
functions are used as test functions.

If V}, is chosen as a subspace of continuous functions, a (continuous) Galerkin method is
obtained. For the discontinuous Galerkin method (DGM), the functions in V}, do not need to be
continuous. This method allows for functions which are only piecewise continuous, with

discontinuities along element boundaries.

4.1.2.2 Standard FEM

Finite element methods (FEMs) are continuous Galerkin methods. The common choice of the
solution space V for FEMs is the Sobolev space H!(f2), defined as

HY(Q) = {v € LQ(Q)‘(;% € I2(Q),1<i< d},
X

with €2 the domain on which the method is formulated, d the dimension of the problem, and

L?(£2), the space of functions that are square integrable over €2 [82]. For simplicity, the argument
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2 will be omitted from here on. Note the following definitions of the L?-norm || - ||z, the
H'-seminorm | - | 1, and the H'-norm || - || 1 that will be used in the remainder of this thesis:
1/2
o]l 2 1= (/ - dQ> ,
Q
vl = (Vo[ 2,
ol == o]z + [Vl 2,

where o denotes the complex conjugate of v. The corresponding scalar products of L? and H' are

(U, v) 2 1= / uv df2,
Q

(U, ) g1 = (u,v) 2 + (Vu, Vo) o .

To obtain the weak formulation, the scalar product (-, o) ;2 is applied to the problem. For the

example of the Helmholtz equation (4.1), this leads to the weak formulation
/ @V?p + k*@p dQ = / —ipowpq dQ
Q Q

@/V@-Vpdﬁ—/@apdF—kQ/cﬁde:ipow/gquQ. 4.2)
Q r on Q Q

Terms depending on both the field variable p and the test function ¢ are on the left-hand side,

whereas terms on the right-hand side only depend on .

If Neumann or Robin BC are specified, they are directly included in the second term in (4.2) over
the domain boundary I'. For homogeneous Neumann BC, the term vanishes, otherwise it
becomes dependent only on ¢ and can therefore be written on the right-hand side of the
formulation. With Robin BC, the term still depends on p and therefore remains on the left-hand
side. For simulations on unbounded domains, an artificial boundary has to be introduced. Special
techniques, such as the perfectly matched layer (PML) [11] or Robin boundary conditions called
characteristic boundary conditions [87], are available to limit spurious reflections and fulfil the

Sommerfeld radiation condition [88].

The standard FEM is obtained by choosing the space of continuous, piecewise linear functions
for Vh1 on ()

v,}:{vhev

vp, continuous, vh}gi e P, UZQZ = Q} ,

with P? the space of polynomials of order p and UZQZ the union of disjoint subsets €2; of €. The
basis and test functions are formed by piecewise linear shape functions N; with locally bounded
support. Each of these shape functions V; is associated with one vertex x; of the mesh that

triangulates (). They are defined such that

1, fori=3

Ni(z;) = o
0, fori #j.
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Since N; is piecewise linear, it follows that its support is restricted to the elements containing x;.
These shape functions are defined over the whole domain and are therefore called global shape

functions.

Using {N;};Y] as basis of Vhl, the piecewise linear approximation py ~ p with p;, € Vh1 can be

written as the linear combination
nnN nnN
ph= Y p@)Ni =D pilNi, (4.3)
i=1 i=1

where ny denotes the number of global shape functions, and p; := p(x;) coefficients that need to
be determined. Remember that Dirichlet BC were not built into the weak formulation. Instead,
they are included in the method formulation at this point. For each node x; that falls on the
domain of Dirichlet BC, the coefficient p; can be directly determined from the BC. Therefore
only ny — np of unknowns are left to be determined, with np the number of nodes covered by
the Dirichlet BC.

In (4.2), p is substituted by (4.3) and each global shape function that is associated with a node
that lies not in a Dirichlet BC domain is applied individually as test functions (. This results in

ny — np equations of the form

ny ny . ny
/ VN; Y piVA; A - k2/ Ny S piMg dq + / N; 3 piMf drg
Q i=1 Q4 Zrp Jrp i

= —ipw le/n7FN dl'y + ipow/ qu dQ
Q

I'n
ny ) ny ’L.p(]w ny
D pi [ VN VN dQ— kY pi | NijNidQ+ 2= "pi | NjNidl'g
i=1 Q i—1 Q T'r i Tr
= —ipow/ NjVTLIN dFN + ipow/ qu dQ (4.4)
Ty Q

that determine the ny — np unknowns p;. Note that the term over I" was substituted by the two
terms over I';y and I"z for Neumann and Robin BC, respectively. Due to the local support of IV,
the method results in a sparse system of linear equations, which allows for fast and memory

efficient computation.

To implement the FEM, it is favourable to assemble the system (4.4) elementwise. Thereby, the
integrations over € are split up into integrations over single elements, and the integration over I"
into integrals over single boundary elements. The use of linear parametric mappings as described
in Section 2.1.1.1 enables integrations over the straight sided physical elements 7" to be

transformed and computed on the reference element T, using the equation
[ t@da= [ sE@)r©) e @5
T T

with the mapping F' : T — T and Jp the Jacobian of F', which corresponds to the determinant
of the Jacobian matrix. If the integrand contains a gradient, this gradient also needs to be
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transformed to the reference coordinate by the substitution
Ve =Jp Ve. (4.6)

This transformation of the integration onto T further simplifies the implementation, since
quadrature rules must only be given for 7.
On the reference element 7', local shape functions Ny are considered. Each N7 is associated with

one of the reference element vertices &; and is defined such that

1, fori=3

N{(&) = .
&) 0, forizj

These local shape functions correspond to the linear Lagrange shape functions defined in Section
2.1.1.2.

In [43], an error estimate in the H '-seminorm for the Helmholtz equation solved with the

standard FEM with linear shape functions is given as
Ey < e1kh + cok®h?, 4.7)

with constants ¢; and ¢y independent of the mesh size h and the wavenumber k. The first term
expresses the error arising from the linear interpolation of the solution. It remains constant, if the
non-dimensional wavenumber kh is kept fixed. Therefore, the rule of thumb of 10 elements per
wavelength is typically applied in the literature ([20], [88]).

By the second term in (4.7), the pollution effect [7] is represented. In FEM simulation results, the
wavenumber k differs from the wavenumber % of the analytical solution. The relative difference
between k and k is called dispersion error. It leads to a phase shift between the analytical and the
numerical solution which adds up for each wavelength. It is therefore especially prominent on
long simulation domains and becomes more and more severe as the frequency increases.

In order to keep the pollution effect small for standard FEM simulations, a constant kh is not
sufficient. As k increases, the mesh must be further refined. This is computationally prohibitive
and limits the use of the standard FEM approach to the low frequency range. Several techniques
exist to avoid this issue and to increase the computable frequency range. Among these are the
stabilised Galerkin methods and the wave-based discretisation methods [88]. Increasing the field
interpolation order can also be used to reduce the pollution effect [9]. The resulting high-order
FEM is called p-FEM and will be considered from here on.

4.1.2.3 High-order p-FEM

For high-order p-FEM, the space V} is not chosen as piecewise linear functions, but instead as

the space of piecewise polynomial functions of order p:

V,f’:{vhev

vp, continuous, v |, € PP, LJQZ - Q} ,
z 7
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The error estimate in Equation (4.7) generalises to

kh\? kh\ %P
E1 <c <> + Czk <> (4.8)
2p 2p

[7, 44, 42]. Commonly, high-order Lagrange basis functions as those used for the geometric
description in Section 2.1.1.3 are used as local shape functions in T'. In this thesis, Lobatto shape

functions as defined in Section 2.1.1.4 are chosen as basis and test functions instead.

Since bubble shape functions are only non-zero in the interior of elements, static condensation
can be applied. Thereby, the contribution of internal degrees of freedom (DoFs) are removed
from the linear system. This reduces the size of the system to be solved and improves its
conditioning. The solution for the internal DoFs is locally calculated in a post-processing step
from the solution of the external DoFs of the corresponding element [82]. Further, their

hierarchical behaviour allows for efficient p-adaptivity algorithms [9].

4.2 Review on Geometry Enhanced Implementations

Both, standard FEM and high-order p-FEM are generally based on linear, straight sided meshes.
This section summarises the incorporation of enhanced geometric representations for the p-FEM.

In the literature, there are two main ways how enhanced geometric representations are included
into p-FEM implementations. The standard way is the high-order polynomial description. The
second described way is the rather recently developed NURBS based geometric description of
the NURBS-enhanced FEM (NEFEM) method.

4.2.1 High-order Polynomial Geometric Description

As mentioned in Section 4.1.2.2, parametric mappings from 7' to T are used to transform the
integration over 7' onto T'. As described in that section, they form the geometric description of
the approximation of the domain by piecewise linear elements. For higher-order geometric
descriptions of the domain, the order g of the parametric mapping has to be increased. Therefore,
the linear reference elements and linear geometric shape functions are replaced by the
corresponding higher-order reference elements and shape functions as defined in Section 2.1.1.1.
If Lagrange shape functions are used, higher-order nodes need to be included in the physical

mesh. As seen in Section 2.1.1.4, this is not necessary if Lobatto shape functions are applied.

Note that the choices of the field polynomial basis and the geometrical polynomial basis are
independent of each other. The same applies to the choices of the field interpolation order p and
the geometric interpolation order g. Therefore, this kind of methods is denoted as gp-FEM from
here on. Further note that due to the non-linearity of the mapping F' for higher-order geometric
interpolation, the Jacobian is not constant for non-straight sided elements. For integrals with
gradients this leads to non-polynomial integrands, that cannot be integrated exactly using

Gaussian quadrature.
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4.2.2 NURBS-based Geometric Description

An approach to embed a CAD-based description of the domain geometry within the known FEM
setup is given by the NURBS-enhanced FEM (NEFEM) ([79], [81]). Contrarily to isogeometric
analysis (IGA) where the whole domain and the field are described using NURBS, the NEFEM
approach uses the CAD information only to describe the boundary curves or surfaces. Interior
edges or faces of the mesh remain linear, and polynomial interpolation based on Lagrange
polynomials is used for the field representation. This way, the advantage of IGA, namely exact
representation of CAD surfaces, is combined with the computational advantages of FEM.
Integration over elements is done sectionwise, where the line or triangle element is subdivided at
breakpoints or along knot lines respectively, to also include the possibility of reduced continuity
order within elements ([78], [80]).

Similarly to the polynomial case, the integration is performed on reference elements. For interior
elements not affected by the NURBS boundary representation, the standard procedure shown in
Figure 2.1 is applied. Integration over elements with an edge along the NURBS boundary is
evaluated on a rectangular reference element. To take into account the parametrisation changes at
breakpoints, the reference element is subdivided accordingly. The quadrature is applied to each

part of the reference element separately.

Since this thesis is based on the assumption that no CAD description is available and since the
curving algorithms described in Chapter 3 provide polynomially curved meshes, this approach is

not applicable. Instead, a polynomial based geometric description is used.

4.3 Embedding Curved Elements into pFEM

For the 2-dimensional curving approaches described in Sections 3.1 and 3.2, only boundary
edges are considered. As a subsequent step, the curved edges must be embedded into the surface
mesh. Therefore, a mapping from a reference element to the element with the curved edge in the

physical space is defined. From here on, triangular meshes are considered.

4.3.1 Nodal Elements

In order to embed curved edges into nodal triangular elements, the geometric order of the latter
has to be enhanced to the order of the curved edge. Therefore, high-order nodes are added along
the domain-interior edges. For complete elements (as described in 2.1.1.3) of order ¢ > 2, further
high-order nodes have to be placed in the element interior.

In the Gmsh implementation, edge nodes are placed equidistantly. Together with the original
vertex nodes, they form serendipity (also called incomplete) elements ([86]). Element internal
nodes are then placed on the high-order interpolation with the shape functions of the serendipity

element (see [35]).

3-dimensional elements are treated analogously by first mapping the faces and then placing the

interior volume nodes based on the shape functions of the incomplete 3-dimensional element.
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4.3.2 Modal Elements, Blending Approach

In order to embed the modally curved edges into a 2-dimensional mesh, a blending approach is
proposed. It is derived from the construction of the Lobatto shape functions (see Section 2.1.1.4).

Each triangular element is represented by a mapping from the reference triangle TL. tothe

tria
physical space. Standard linear mappings F'(§,7) = Zf?:l x; o7 (€,m) that are defined by the
vertices x; are used for the straight sided elements. For elements with a curved edge, the

mapping has the form

3 3
F(&n) = aiphi(&m) + > w(Emn),
i=1 i=1
where k% corresponds to the edge e;. It is defined as

0 onej, i # j

K (&,m) = dci (gez (5,77)) one¢;

, (4.9)

with the auxiliary variable £% (£,1) = Ai1 (€,7) — X (€,1) € [—1, 1], \; the barycentric
coordinates of the triangle (see (2.3)), Ay = A1, and

dr () = Fee (€)= e ().

where F5 describes the straight sided edge and F¥* the actual, possibly curved edge.
For the H! modal mesh curving and the construction of the Lobatto shape functions it follows

that for the x-component
q
KS(Em) =D e (&) ay,
j=2

with aif i the a-coefficient of the triangle edge shape function ap% ; (see Equation (2.6)) for the
z-component of edge e;. The construction for the y-component is done analogously.

The blending approach provides more flexibility than the nodal based embedding of the curved
edges. In general, it could also be applied to edges that are curved in another way than the H'
modal curving approach introduced in Section 3.2.2.3. An assumption thereby is that £ is
continuous. In Appendix A, the blending function « for edges curved with the reference based
modal approach is derived.

As mentioned in Sections 4.1.2.2 and 4.2, the reference mappings F' of the physical mesh
elements for the elementwise integration on the reference element form the geometric
representation of the simulation domain. They enter the simulation equations in form of their
Jacobians in Equations (4.5) and (4.6).

4.4 Validation of the Embedding

In this section, the embedding process described above is validated with a scattering test case.

Results on meshes that were curved with the H' modal curving or the least squares approach (see
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Section 3.2.2) and embedded as described above are compared with the results obtained on a
reference nodal high-order mesh that was created using Gmsh. This test case is part of the paper
[99].

4.4.1 Test Case: Scattering of a Plane Wave by a Cylinder (2D)

To test the embedding process, the scattering of a plane wave by a cylinder is considered. It is a
simple 2D test case with a known analytical solution pex and therefore suitable for first tests.

The scattering test case is given as

V2p + k*p =0,
0
i -0 only,
0 0
8—2 - ;’;" 1 iwpey — iwp on Ty, (4.10)

Characteristic BC are applied on the outer boundary I',. The domain €2 with I', and scattering

boundary I'; is shown in Figure 4.1 and some exemplary meshes in Figure 4.2.

Figure 4.1: Sketch of the scattering test case.

Characteristic boundary conditions

Equation (4.10) shows the formula for the characteristic boundary conditions on the outer
boundary I',. For the calculation of V. ,pex, the exact solution in e~ convention Pox 1S
provided in [8]. The complex conjugate is taken of the resulting formula in order to match the
et convention.

Weak formulation

The weak formulation with the weighting function ¢ is

/VgandQ—k2/<pde—
Q Q
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Figure 4.2: Linear meshes (a),(d) and 4*" order meshes curved with (b), (e) the ' modal approach
and (c), (f) the least squares curving, for different C-values of the circle scattering test case
with MpC = 5000. Note that for the curved meshes, only the interior circular boundary,
the scatterer, is curved.

where I' = I'g U T, is the boundary of €2 and R the radius of [',.

For the numerical integration, a Gauss-Legendre quadrature is applied. In numerical tests, the
order of the quadrature rule was found to be sufficient with 2p + 2(q — 1) for element integrals
and p + (¢ — 1) for boundary integrals. As safeguard, the quadrature orders are set to
2p+2(q—1)+4and p+ (¢ — 1) + 4, respectively. Note that based on [5] and [22], the
integration order for curved geometries should be increased by p — 1 to preserve the exponential
convergence. For ¢ > p — 1, our chosen quadrature order lies above the theoretically derived one.
In the region of ¢ < p — 1, the geometric order is not high enough to ensure exponential
convergence anyway (see also [5], [22]). There, the error induced by the geometry is the

dominating error and the integration error can be neglected.

4.4.2 Evaluation of the Field Error

The standard error evaluation procedure for parametric FEM is the elementwise integration of the
difference between the numerical and the analytical solution. Thereby, the numerical solution is
interpolated using Gaussian quadrature with quadrature points on T. The corresponding
analytical solution is evaluated at the quadrature points mapped by geometric interpolation of the
nodes of 7". From [97] it is clear that this mapping does not map on the actual physical space 2,
but on its approximation Q. Since Q) is generally not a subset of €2, the quadrature points could be
mapped outside of {2. For the scattering test case at the cylinder, this would lead to evaluations of

the analytical solution inside of the scatterer where the analytical solution is not defined (see
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Figure 4.3: Schematic figures showing (a) the problem in the standard field error evaluation for the
scattering test case and (b) the alternative approach. The red dots in (a) are the quadrature
points that fell out of (2.

Figure 4.3(a)). To avoid this problem, an alternative approach is considered, where the field error
is evaluated as the relative L2-error along a ring in the middle of the radial direction of € (see
Figure 4.3(b)). This error measure is denoted as F> g. With this approach it is ensured that none
of the points along the line integral lie outside of the physical domain. Since the mesh elements
do not follow this interior line, the integrals are evaluated numerically with a trapezoidal rule. An
adaptive refinement of the integration points is applied until a relative accuracy of 10~® or an
absolute accuracy of 10~ is reached.

The choice of this field error measure will be confirmed in the following Chapter, where also two
other approaches are considered. Further note that the dimension reduction (when changing from
an area measure to a measure evaluated along a curve only) does not affect the expected
exponential convergence (see [5], [22], or Equ. 5.1). The formula for the convergence is

independent of the dimension.

4.4.3 Results

The simulation results are presented as p-convergence curves in Figures 4.4 - 4.6. Results on
nodally curved meshes that were obtained with Gmsh are provided as reference. The latter are
provided only up to ¢ = 4. This limitation is not based on Gmsh, but on the simulation code. As
the nodal shape functions were implemented for each order separately, this was done only up to
order 4. A better way would have been to apply the computation of Lagrange shape functions
described in [39]. It is based on Jacobi Polynomials and applicable for arbitrary polynomial
orders and nodal distributions. In general, all curves show a similar behaviour: With increasing
interpolation order p the simulation error decreases. For lower p, the curves for different g orders
collapse. One by one, the error curves stagnate, with curves corresponding to lower ¢ orders
stagnating earlier than those of higher q.

The most interesting part is the stagnation value. As further field refinement does not lead to any
improvement of the simulation result, the stagnation level indicates the error introduced by the

discretisation of the geometry. Here, this error is dominated by the geometric inaccuracy of the
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Figure 4.4: Comparing p-convergence curves for different ng-values of the circle scattering test case
with MpC = 5000 and w = 1.
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Figure 4.5: Comparing p-convergence curves for different MpC-values of the circle scattering test
case with 12 Cmesh elements and w = 1.
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Figure 4.6: Comparing p-convergence curves for different w-values of the circle scattering test case
with 12 Cmesh elements and MpC = 5000.
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domain description. The stagnation value therefore corresponds to the error level induced by the
GDE. This is confirmed by Figure 4.4 where it is shown that the stagnation values drop as the
number of Cmesh elements is increased and therefore a better representation of the domain
geometry is achieved.

For a comparison of different MpC-refinements, Figure 4.5 shows results for MpC = 100 and
MpC = 5000. Matching the results of Section 3.3, a high dependency of the ! modal approach
on the MpC-refinement can be observed. For MpC = 100, higher curving orders do not further
improve the corresponding stagnation levels, their curves fall together. In these cases, the
stagnation of the GDE due to the inaccuracy of the Mmesh results also in a stagnation of the field
error. This is overcome for the higher refinement MpC = 5000, where higher ¢ lead to lower
stagnation levels of the simulation error. Also analogously to Section 3.3, no significant
dependency on the MpC-refinement of the simulation results on meshes curved with the least
squares approach is observed.

These observations hold in general. A specific effect of the geometric inaccuracy on acoustic
simulations is shown in Figure 4.6. There, both the Cmesh size and the Mmesh size are fixed and
results for simulations with different angular frequencies w are compared. With increasing
frequency, the stagnation levels increase as well. This confirms that high-frequency simulations
are more sensitive to geometric inaccuracy than lower frequency simulations.

Figure 4.7 shows the field error for p = 10 and a highly refined Mmesh with MpC = 5000, for
the two mesh curving methods and the corresponding Gmsh result. The behaviour of the
reference and the least squares approach is similar, with slightly better results with the latter. For
low w values, the results obtained on H' modally curved meshes are generally better. The
development from g = 3 to ¢ = 4 for n; = 12 and from g = 2 to ¢ = 3 for n; = 28 also shows
that the w range increases within which this is the case. As the curving order increases (¢ = 5 for
ne = 12 and g = 4 for ng = 28), the field error stagnates on the A ! modally curved meshes.
This is caused by the stagnation of the GDE, which can be related back to the inaccuracy of the
Mmesh. Further MpC refinement is expected to overcome the stagnation and to lead to even
lower field errors. As the least squares meshes are not effected by the MpC refinement, results on
those meshes will not stagnate until the p refinement forms the bottleneck. Higher w values were
dropped as in those cases the p-convergence curves did not stagnate. The resulting error at

p = 10 does not coincide with the GIE and no conclusions can be drawn from this data about the

curving method’s effect on the field error.

4.5 Conclusions of this Chapter

In this chapter, the curved boundaries obtained in Chapter 3 are applied to an acoustic simulation.
First a short review on basic equations and typical numerical methods in numerical acoustics is
provided. This review is extended by a summary of the two mainly used implementations of
geometric enhancement in FEM. The embedding of curved boundaries into domain meshes is
described and the implementation validated with the acoustic test case of a plane wave scattering
by an infinite cylinder, corresponding to a circle in 2D. The results indicate that the accuracy of
the simulations strongly depends on the underlying geometric accuracy, with increasing

sensitivity to geometric inaccuracy with increasing frequency. Further, the GIE is reduced on
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meshes curved with the H! modal method, providing that the Mmesh refinement is fine enough.
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Chapter 5

Relation Between GDE and GIE

As observed in the previous chapter, the choice of both the geometric and the acoustic parameters
has an influence on the field error. Figure 5.1 provides an overview over the introduced
parameters and error measures and a schematic of their relations. In Chapter 3 the focus lies on
the geometry based dependence of the GDE on the selected geometric parameters, while in
Chapter 4 some acoustics theory is summarised, including a formula for the expected field error
under the assumption that the geometric discretisation is exact. This section considers the
missing link: The relation between the geometry discretisation error (GDE) and the geometry
induced error (GIE). First, a literature review is given on links that are suggested between the
field order p and the geometric order ¢, as well as on studies on the dependencies of the GIE on
the GDE in general. Afterwards, the relationship between the two is investigated in the context of
acoustic simulations by applying the gp-FEM to the Helmholtz scattering problem described in
the last Chapter.

5.1 Literature Review

5.1.1 Review on Links Between Field Order and Geometric Order

The importance of an accurate domain description in high-order methods is well documented in
the literature [79]. In [6], Bassi et al. examine the impact of the geometric description on the
performance of a discontinuous Galerkin method (DGM) simulation of flow around obstacles.
Isoparametric elements with p = g and superparametric elements with ¢ = p + 1 are compared
for p up to 3. Generally, linear geometric interpolation leads to inaccurate results, such that the
superparametric element with p = 1 and ¢ = 2 results in a large improvement. However, only
small improvements are observed when further increasing p. This indicates that the geometric
description should closely follow the field description. The impact of the normal description is
also examined and the authors conclude that an accurate description of the normal can often be
more important than the geometric description itself.

Contradicting conclusions are drawn in [89], where the effect of the boundary representation is
considered on results of DGM simulations for linearised Euler equations. Besides linear and ond
order elements, also a mixed element type is tested. It consist of a linear representation of the
element edges, but the normals of the corresponding quadratic element. The clear advantage of

the 219 order elements in terms of accuracy in the simulation results is not obtained with the
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Figure 5.1: Schematic of the error dependence. Input parameter are highlighted with red circles or
oval shapes. Coloured solid arrows stand for monotonically increasing functions, dashed
arrows for a monotonically decreasing functions. If e.g. the MpC is increased, nf, in-
creases as well, while an increase of ng leads to a decrease of the geometry discretisiation
error GDE » of the Mmesh. The colors describe where the explanations of the relations
can be found. The geometry dependence was treated in Chapter 3, the acoustics theory in
Chapter 4. Black solid arrows indicate the input and output of the max() functions. The
overall GDE is e.g. obtained as the maximum of the GDE  and the expected GDE that
would be obtained with an exact target curve.

68



5.1. Literature Review

mixed element type. The authors conclude that focusing only on the improvement of the normal
description is not beneficial in aeroacoustic simulations.

In [5] and shortly afterwards in [22], a theoretical analysis is performed on the convergence rate
of the high-order FEM for second-order elliptic boundary value problems. The exponential

p-convergence rate is given as

_ P

- e (5.1)

-]
with u the analytical solution, u("?) the approximate solution and |-||,, and ||-||,. the mt and rth
Sobolev norm, respectively. It is demonstrated that a geometric interpolation of order ¢ > p — 1
is needed to maintain this convergence rate.

This trend is confirmed by the numerical results given in [54] and [55]. Tension simulations are
performed on plates with a circular or elliptic hole, described by elements of geometric order

g € {1...4}. As the field interpolation order is increased from p = 1 to p = 10, the relative error
in energy norm exhibits first an exponential convergence, then the convergence rate decreases and

finally the error stagnates.

5.1.2 Review on Relation Between GDE and GIE

The error in the geometry of the computational domain boundary corresponds to an inexact
problem description, such that the problem actually solved differs from the initial one. By
increasing the element order p for a constant geometric description, the field representation
becomes more and more accurate. Thereby the solution converges to the analytical results of the
wrong problem, and the error level calculated with respect to the analytical solution of the exact
problem stagnates (see Figure 5.2). The observed stagnation level of the field error in energy
norm corresponds to the GIE. It is important to analyse the dependence between the GIE and the
GDE, as depending on the type of problems considered and also depending on the applied
numerical method, the geometric description may have a strong or a limited impact on the
simulation results.

In [54] and [55], Luo et al. examine the influence of the geometry approximation on results of
high-order FEM tension simulations. The effect of the geometric interpolation order ¢, and of the
smoothness of the geometric approximation on the GIE are studied for a circle and an ellipse
with a moderate aspect ratio. In both cases, an increase of ¢ leads to a strong decrease of the GIE.
In comparison, the use of a C''-continuous approximation only yields marginal improvements in
the error based on the energy norm. Results based on the maximum error are significantly
improved using the C'* boundary description. However, in these two studies, no quantitative
measure of the GDE is given.

Another analysis on the stagnation level with respect to geometric accuracy can be found in [91],
where a spherical obstacle is discretised with linear or reconstructed quadratic elements. It is
remarked that, as the size of the elements describing the sphere decreases, the stagnation level of
the error decreases as well. For linear elements, an approximately reciprocal relationship between
h? and the stagnation level is mentioned. However, this observation is based on a small number

of sampling points.
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Figure 5.2: Field error stagnation for p-convergence, comparing different ¢ values. The dashed black
line indicates the error obtained for simulations with an exact geometric description.

5.2 GDE Measures

This section lists the GDE measures that are used for the studies and how they are evaluated.
From the measures described in 2.2, those that are strictly proper, meaning that they are only zero
for perfectly matching curves, are considered here. Therefore, the differential geometry based
measures are excluded.

All examples within this section are given for the circular scattering boundary of the test case
introduced in Section 4.4.1. The high-order representations of the examples were obtained with
the Lagrange curving algorithm of the software Gmsh, applying also the untangling and
smoothing algorithm described in [90]. During the untangling process, boundary nodes are
moved. Thereby, only the mesh validity and quality are considered. These are measures that are
defined for the mesh to ensure that it contains no tangled elements and that the mesh elements are
well shaped. The accuracy of the geometric approximation is neglected. Here, only meshes with
ne = 4 and g >= 3 were tangled and therefore affected by the untangling procedure. In the case
of ¢ = 4, this leads to an increased geometry discretisation error. For ¢ = 3, boundary nodes are
only slightly moved in the untangling process. The boundaries of the tangled and the untangled
meshes are nearly equal. Thus, the tangled mesh and the untangled mesh of order ¢ = 3 have

about the same accuracy.

Hausdorff and Fréchet distances

The evaluation of the Hausdorff distance GDE g (see (2.7), Section 2.2.1) is based on two nested
optimisation problems:

The inner optimisation takes a given point F; on the approximating curve Gypprox and finds the
point Q; min On the exact curve Gexaer With the minimal distance dpin (F;) to ;. To obtain
symmetry, a minimisation is run for points (); on Gexac to find the point P; in on Gapprox With the
minimal distance dp, (Q;) to @;. The outer optimisation maximises dpi,(P;) with respect to P;

by varying the reference point on the reference interval. Analogously dpin(Q;) is maximised with
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Figure 5.3: Schematic of a (red) local maximum that could be found in the elementwise Hausdorff dis-
tance calculation. In green, the global maximum distance is shown. With a segmentwise
Hausdorff distance calculation, the global maximum is found.
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Figure 5.4: Plots comparing Hausdorff distances evaluated (a) elementwise and (b) segmentwise for
the unit circle.

respect to (); by varying the parametrising angle.

When the optimisation is computed elementwise, the outer optimisation could run into local
maxima, as it is illustrated in Figure 5.3. In order to avoid this, the optimisation is restricted on
segments between two nodes. In Figure 5.4, plots of results for both an elementwise and a
segmentwise evaluation are displayed. The comparison shows that the elementwise evaluation
leads to smaller values than segmentwise evaluation. This is especially visible for ¢ = 4. Thus
only a local maximum is found during elementwise optimisation. As the tested geometry is a
circle, the segmentwise evaluation is assumed to provide the global optima and is the method that
will be applied from here on.

To constrain the maximisation on the given element or segment .S, dpin (F;) is set to zero for

P; ¢ S, and analogously dpin (Q;) = 0 for Q; ¢ S.

As mentioned in Section 2.2, the Hausdorff distance and the Fréchet distance are equal for
closed, convex curves. For convex target curves such as the circle and the ellipse, this can be
fulfilled for ¢ € {1, 2}. But for cubic and quartic geometric order, the interpolation oscillates
around Geyxacr, Which leads to non-convex curves. Therefore, the Fréchet distance and the
Hausdorff distance are compared.

For the Fréchet distance, the algorithm given in [59] is implemented, and, for comparison, a
discrete Hausdorff distance. Therefore both curves, Gexac and Gapprox, are evaluated on ner points
p;. These points are equidistant in £ for the approximating curve and equidistant in the angle ¢

for the exact curve. The distance is computed separately for each element and then the maximum
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Figure 5.5: Plots comparing Hausdorff (left) and Fréchet distances (right) evaluated with (a), (¢) 100
refinement points and (b), (d) 1000 refinement points for the circular scattering boundary.

is taken over all elements.

In Figure 5.5 results for the discrete Fréchet and Hausdorff distance for two different refinements
of the circular scattering boundary can be seen.Within machine precision, both measures provide
the same distance values. Especially for ¢ = 2, some deviation from the results for the
optimisation-based Hausdorff distance (see Fig. 5.4(b)) can be seen as well. These deviations
decrease notably for the meshes with smaller ng as the number of refinement points 7 is
increased. Considering this, and the limit on the number of refinements due to high

computational costs, it is decided to drop the Fréchet distance as a measure of the GDE.

Area based measure

As a more intuitive measure, the area based GDE measure (3.4) introduced in Section 3.3.1.2 is

computed. In Figure 5.6, GDE 4 is shown for the circle example geometry.

Domain mapping based measure

The mapping based GDE measure introduced in [97] has to be adjusted for our 2D test case. In
order to allow an elementwise integration, dq () is transformed to the reference space and is
calculated there as the difference between the exact and the approximate geometric mapping.
For the example geometry, the exact mapping of T to a T in the mesh is obtained using a linear

Lagrange mapping in polar coordinates (r, ):
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where (73, 0;) are the polar coordinates of the i™ node of 7.

The calculation of the H'(£2) seminorm as described in [97] does not only consider the mapping
of the boundary line elements but also evaluates the mapping of the domain interior elements.
For the here considered meshes, the interior elements are in general kept straight sided with
respect to Cartesian coordinates (beside the case for n;; = 4). They are especially not optimised
to follow the linear mapping in polar coordinates.

In Figure 5.7, plots of a measure evaluated over the whole domain and one evaluated only over
the curved domain boundary are shown. Note that instead of the H'(£2) seminorm, the L?(£2)
norm is computed in both cases. The GDE based on integration over the whole physical domain
is dominated by the influence of interior elements.

For this thesis, the GDE measures are meant to measure the geometric accuracy of the
approximation of the boundary. Thus, the domain based GDE calculated with the L?(£2) norm is
dropped. Only the boundary based GDE calculated with the L?(I's) norm is kept and called
GDE),.

5.3 Field Error Measures

As described in Section 4.4.2, the standard field error evaluation procedure has to be replaced by
alternative approaches. Besides the evaluation along the ring that was described and used in the
previous chapter, two additional methods are presented here and tested for the circle scattering

test case:
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Figure 5.7: Geometry discretisation error (GDE) based on [97], using the L?-norm over (a) the phys-
ical domain and (b) the boundary describing the scatterer.
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Figure 5.8: Schematic figures showing (a) the problem in the standard field error evaluation for the
scattering test case and (b)-(c) the two additional alternative approaches. The red dots
in (a) are the quadrature points that fell out of €2 (green). In (b) and (c), blue dots mark

the quadrature points that automatically fall inside of €2, and those points on which the
analytical solution is evaluated in the cases when quadrature points fall outside of €).
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* Approach based on domain mapping (see Figure 5.8(b))
In [97] an error evaluation method based on the exact mapping is defined. Analogously to
the GDE); described in Section 2.2, the exact solution at a given point pex () in the
physical domain is not compared to the simulation result at this point. Instead, it is
compared to the simulation results p (&) = p (¢ (x)), evaluated at the point ¢ () that
approximates « in the discretised geometry (comp. Section 2.2.3). For the field error, the

H'-seminorm of pex () — p (¢ (z)) is computed and divided by the H'-seminorm of
Pex(T).
Following the arguments for the GDE measures, the field error measure based on the

H'-seminorm is adapted by considering the L?(T's) norm. Thus, the relative error is

evaluated as

. Jr. Ipex () —p (¢ (x))|* dTs
o Jr. [Pex (z)? dT's

. \/Zi wiJex [pex (2 (1)) — p (& (€:))
Ei Wi Jex |Pex (ZB (61))|2

where Je is the Jacobian of the exact mapping and w; the weights of the Gauss quadrature.

)

* Projecting method (see Figure 5.8(c))
The third method that is considered is based on an integration over the whole domain.
Using Gaussian quadrature on T, the L2-error Es p is evaluated elementwise. For
quadrature points whose corresponding points &; in 1" lie inside the scatterer, the analytical
solution is evaluated at the projection of &; along radial direction on the scattering domain.
With this approach, an evaluation of the analytical solution outside of its domain of

definition is prevented.

To compare the described measures, the scattering by the circle (see Section 4.4.1) is considered.
Polynomial higher-order meshes that were curved using the software Gmsh (see Section 3.1) are
used. For the field interpolation, Lobatto shape functions are applied. Using gp-FEM elements,
the geometric order ¢ and the field order p can be chosen separately. Figure 5.9 provides a
comparison between the three different error evaluation methods for the set of simulations with
w=1and h ~ 0.79.

All three methods show the expected general behaviour: As p is increased, the field error first
converges exponentially, then stagnates at a certain level. As the error induced by the field
interpolation is continually decreased by increasing p, the level of stagnation corresponds to the
GIE. According to [5] and [22], the stagnation is expected to begin at p* = ¢ + 1. The
corresponding points are marked in the plot with a black dot and seem, besides for ¢ = 1 to fall
together with the onset of the stagnation. In conformity with the literature ([54], [55]), the
stagnation level decreases with increasing gq.

Besides this accordance in the general behaviour, the level at which the error stagnates varies

with the evaluation method. The field error evaluated with the projecting method and the one
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Figure 5.9: Stagnating p convergence curves of the field error for simulations with w = 1 and h =
%’T ~ (.79, evaluated (a) with the projection based method, (b) along the ring » = 1.5,
and (c) with the mapping based method. The black dot indicates the expected onset of
stagnation p* = ¢ + 1.
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Figure 5.10: Stagnating p convergence curves of the field error evaluated along the ring » = 1.5 for a

fixed mesh with h = 3—1 ~ 0.26 and (a) w = 1, (b) w = 4, and (¢) w = 16.

evaluated along the ring show a similar behaviour. Their stagnation level of the second and third
order lying closer together in logarithmic scale than the levels of first and second or third and
fourth order. This follows the trend seen in GDE 4 (see Fig. 5.6) and GDEg (see Fig. 5.4). On
the other hand, the stagnation levels for the mapping based error evaluation is more consistent
with GDE,; (see Fig. 5.7).

5.4 Finding a Model of Relation between GDE and GIE

With the evaluation of the geometric and the field error in place, the GDE-GIE relation can now
be studied. Again, the scattering of a plane wave by a cylinder is considered on meshes that were
nodally curved with Gmsh. To relate the GIE to the GDE, the previously discussed stagnation
level is evaluated for simulations with frequencies w € {1,2,4,6,8,...,28,30,32,64} and mesh
sizes n& € {4,8,12,...72,76,80}. This stagnation level corresponds to the GIE and is denoted
E~2, M E27 r and EZ p, where the subindices M, R, and P refer to the mapping based, ring based,
and projection based field error evaluation method, respectively. Simulation results that did not

reach a plateau are not considered in the following evaluations.
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Figure 5.11: Stagnating p convergence curves of the field error evaluated along the ring » = 1.5 for
a fixed w = 1 and varying mesh size (a) h = %’T ~ 0.79, (b) h = %f =~ 0.39, and (c)
h = 23 ~ 0.20.

5.4.1 General Dependence on w and ng

Examples for ring evaluations are given in Figures 5.10 and 5.11, to show the influence of w and
the number ng of line elements along the circular scattering boundary I'; on the stagnation levels.
Increasing the frequency while keeping the meshes fixed leads also to an increase of the geometry
stagnation level. Thus, the higher the frequency, the more sensitive is the field computation to the
GDE. As expected, applying an h refinement by increasing the number of elements describing
the scattering boundary leads to a decrease of the GIE, since the geometry is better resolved.

These two general effects can be observed for all three field error evaluation methods.

5.4.2 Model Building

First tests show that the mapping based evaluated error EZ r and the mapping based GDEj are
related to each other, but to none of the other GDEs or field errors. This is expected from the
comparison of the plots of the different GDEs and error evaluation methods. Therefore, only the
combinations indicated in Table 5.1 are considered in the following. The corresponding data sets
can be seen in Figure 5.12.

A linear dependency can be observed between log;o(E>) and log;o(GDE) for fixed w. Thereby,
no or only a marginal dependency on q is present. The intercept of the linear relation is changed

by an offset that increases with increasing frequencies. A logarithmic dependency between this
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Plots of the data sets used for fitting the GIE E, against the GDE. They show (a) E> p

.
.

Figure 5.12

against GDEg, (b) s g against GDEp, (c) E p against GDE4, (d) EQ, Rr against

GDE 4, and (e) E~2’ m against GDE;;. Only a subset of the full data set is shown for

clarity.
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GDE),; GDE4 GDEg

E27M X - -
Es g - X X
Es p - X X

Table 5.1: Combinations of GDEs and differently evaluated field errors that are considered to study
the relation between the GDE and the GIE.

offset and w is suggested by Figure 5.12. Combining these observations, the suggested model is

of the form
logyo(E2) ~ B1 + B2logyo(GDE) + B3 logyo(w). (5.2)

A linear model fit is performed with the statistical software R [69]. Rearranging the model results
in the non-linear form
By ~ 10" GDE2w"%. (5.3)

The parameters 3; of the different models are given in Table 5.2. Remarkable is the
approximately linear dependency on the geometric accuracy for all models, as well as the
sup-linear dependency on the frequency for the models without the mapping based measures
GDE,; and EQ, - Thinking of the 1D example of a plane wave reflected at a hard wall,
geometric inaccuracy consists of a shift in the positioning of the wall. This results in a phase shift
and the corresponding field error is expected to grow linearly with the geometric inaccuracy. In
the present test case, the sup-linear dependency is assumed to arise from the more complex
scattering phenomena in 2D, such as creeping waves along the scatterer or scattering by the
normal discontinuities at element vertices.

Note that, as 31 represents the general error level, it is expected to be problem dependent.

In Table 5.2, also the values of the adjusted R? are provided. It measures the portion of the
variance in the data that is covered by the model, adjusted to the number of data and the number
of explanatory variables 3;. The closer the R? is to 1, the better is the model fit.

The definition of the R? is based on the general requirements of the linear model, namely that the
residuals are uncorrelated and identically distributed. To ensure this and therefore the validity of
the R?, plots of the residuals vs. fitted values are considered (see Fig. 5.13). Strong patterns
indicate correlated residuals and would suggest that the model is not suitable. For identically
distributed residuals, the distribution of the residuals around zero should not vary along the
x-axis. As expected for realistic data, the residuals do not perfectly fulfil these requirements. But
especially for those model fits with the field error evaluation along the ring, they look
uncorrelated and equally distributed enough to proceed with the considered model.

Plots of the fits are shown in Figure 5.14. All five models provide an excellent fit. For the model
relating EZ »m and GDEjy, this is presumably induced by the similarity in the definitions of the
mapping based error evaluation E» ps and the mapping based GDEj;. In general, these two
measures remain impractical as they need to be adjusted to each individual geometry.

Even though for the circle test case GDE 4 and GDE g are nearly equal (see Figure 5.15(a)), this
will not necessarily be the case for other geometries. Figure 5.15(b) shows a schematic example
for that, where a bump in Gexae Was not resolved by Gapprox- The GDEy would be given by the

distance from the tip of the bump to Gapprox, Which would result in a GDE that is much bigger
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S1 B2 B3 R?

E]2\/[’ GDE,; | 2.0054 1.0122 1.0105 | 0.9968
EIQ%, GDEy4 1.3846 1.0106 1.2314 | 0.9975
B2, GDEy | 15913 10456 12445 | 0.9981
E~']23, GDE 4 14117 1.0104 1.2159 | 0.9973
E]%, GDEg 1.5990 1.0437 1.2345 | 0.9978

Table 5.2: Parameter values of the fits of model (5.2) to the indicated combinations of field error
evaluation and GDE definitions, and the corresponding values of the adjusted R2.
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Figure 5.15: (a) shows that for the circle case, the Hausdorff distance GDE; and the area based GDE 4
are very similar. The black line indicates the case when both would be identical. In (b),
the red Gexaer is approximated by the black dotted curve. This provides an example to
show that GDEy and GDE 4 are generally not identical.

than in the circle test case. On the other hand, since the bump is thin, the GDE 4 should not have
increased much compared to the circle case.

For the evaluation of the field error it is decided to drop the projecting method. It leads to a
qualitatively similar behaviour as the evaluation along the ring, but introduces an extra error in

the integration due to the shifted evaluation of the integrand that is hard to control.

5.5 Model Testing with Data from Modally Curved Meshes

In the previous section, only simulations on nodally curved meshes that were created with the
software Gmsh were considered to evaluate the GDE-GIE-relationship. In this section, the
identified model is tested against more data sets that are obtained on meshes that were modally
curved with the H' modal approach (see Sec. 3.2.2.2) or the least squares approach (see Sec.
3.2.2.1). First, the test case remains the scattering by the cylinder in 2D. In a second step, also the
scattering by the distorted ellipse (see Section 3.3.2) is considered, to test the relation model with
a more complicated geometry.

The content of this section is part of the paper [99].

5.5.1 Scattering of a Plane Wave by a Cylinder (2D), Modally Curved Meshes

In Figure 5.16, the full data set is presented for the H' modal curving, as well as the

corresponding fit with model (5.2) and the residuals vs. fitted plot. In Figure 5.17, the
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Figure 5.16: Plots of the fitting of the GIE Eﬁ against the GDE for the H' modal curving with model
(5.2) and the corresponding residuals vs. fitted plot. In (a), the colour decodes the
geometric order of the mesh, while the shapes decode the w value of the simulations.
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B B2 B3 R?
nodal 1.3846 1.0106 1.2314 | 0.9975
H' modal 0.9106 1.0012 1.2287 | 0.9994
least squares modal | 0.9175 1.0594 1.3802 | 0.9965

Table 5.3: Parameter values of the fits of model (5.2) to the field error evaluation and GDE defini-
tions for simulations on H* modally curved meshes of orders ¢ € {1,2,5,6, 7,8,9,10},
for simulations on meshes curved with the modal least squares approach of orders g €
{1,2,3,...,10}, and the corresponding values of the adjusted R?. The parameter values
obtained for the nodally curved meshes with ¢ € {1, 2, 3,4} are provided as reference.

corresponding plots are displayed with the modal least squares. For the H! modal curving, some
data points catch the viewer’s eye, in both, the data plots and the residuals vs. fitted plots. These
are the data points for order ¢ = 3 and some for ¢ = 4 and will be considered separately. The
remaining data for order ¢ € {1,2,5,6,7,8,9,10} show the linear behaviour as expected. It is
separately plotted in Figure 5.18, along with a corresponding model fit and the residual vs. fitted
plot. The latter shows that without the data for ¢ = 3, 4, the considered model is suitable. The
model parameters 3; of the fit as well as the adjusted R? are presented in Table 5.3. The evaluated
influences of the GDE and w is comparable to those found for the nodally curved meshes. This is
explained by the fact that the two parameters 35 and 3 are similar in both cases. But the offset
parameter (31 is significantly smaller for the results on the H! modally curved meshes.
Neglecting the effects for ¢ = 3 and ¢ = 4, this means that for the same area-based GDE, less
simulation error is obtained on H'! modally curved meshes. As this is similar for the modal least
squares results, the effect can be related to the modal shape functions.

The effects for ¢ = 3 and ¢ = 4 are explained in the following. In Section 4.4.3, it was observed
that for the same simulation and mesh parameters, the ' modally curved meshes can lead to
better field errors than the nodally curved meshes. In Figure 5.19, the data forg = 3 and ¢ = 4 is
shown separately. To improve the clarity of the plot, only selected w values are depicted. The
colour encodes the MpC-refinement, hollow symbols correspond to the simulations with

ne = 12, solid symbols correspond to those with n; = 28.

It can be observed that for ¢ = 3, ng = 28, and varying MpC, the GDE 4 is nearly constant, while
the field error drops by more than 2 orders of magnitude from MpC = 100 to MpC = 5000. This
indicates that on one side the Mmesh is already accurate enough with MpC = 100 to allow the
expected GDE 4. On the other side, not all the information that would be needed to describe the
GIE-GDE relationship is included in this GDE measure. As the Mmesh is refined, the H 1 modal

curving further improves some geometric aspect that has a positive effect on the GIE.

In acoustics simulations, the scattering direction is determined by the normal direction of the
geometry. Further, the H' modal curving is based on the optimisation of the H'-seminorm
which corresponds to the L?-norm of the derivatives. The behaviour is not observed with
simulations on meshes that were curved with the least squares approach. All together, this
suggests that a GDE measure based on the difference of the normal direction of the exact and the
approximate geometry could improve the description of the GIE. Note that all corresponding
measures we found in the literature were parametrisation dependent and not strictly proper,
meaning they could be zero for non-matching curves (see Section 2.2.4). The development and

analysis of a differential geometry based GDE measures without these disadvantages is left for
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Figure 5.20: g-convergence curves of GDE for the circle test case curved with the H! modal curving
with (a) ng = 12 and (b) ng = 28.

future work (see Section 8.2).

For ¢ = 4, the described effect occurs only for high enough MpC-refinements, namely

MpC = 1000 for ng = 12 and MpC = 5000 for ng = 28 (see Figure 5.19(b)). For lower
refinements, the inaccuracy of the Mmesh is dominating the GDE 4 measure (see Figure 5.20).
The same applies for higher curving orders ¢ = 5 — 10. This seems to indicate that the
area-based GDE 4 is still the dominant factor. As long as the MpC-refinement leads to an
improvement of the GDE 4, the mentioned, so far unmeasured GDE component has no effect on
the GDE-GIE relationship. It is only contributing once the optimal GDE 4 is achieved.

5.5.2 Scattering of a Plane Wave by the Distorted Ellipse, /7! Modal Curving

In this section, the model for the GDE-GIE relationship is tested for the scattering of a plane
wave by a more complex geometry, namely the distorted ellipse that was also considered in
Section 3.3.2.

Figure 5.21(a) shows a sketch of the domain. For the simulations, the domain parameters are
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Figure 5.21: (a) Sketch of the domain for the scattering test case and reference solutions for (b) w = 4
and (¢) w = 16.

ry = 2 and ry, = 7. As in the previous test case, the incident plane wave with wavenumber £ is
travelling in positive z-direction and is described by p; = e~***. As no analytical solution is
available for this geometry, the characteristic boundary conditions along the outer boundary I',
are replaced by a perfectly matched layer (PML) (see [11], [10]). The reference solutions are
obtained with adaptive field order on a highly refined quadratic mesh and shown in Figures
5.21(b) and 5.21(c). Analogously to the field error evaluation in the previous test case, the field

error is evaluated as the relative L2-error along an ellipse with 7, = 1.25 and ry = 6.

| A B2 Bs | R?
H' modal | 0.85762 1.0916 13861 | 0.9783

Table 5.4: Parameter values obtained for the fitted GDE-GIE model (5.2) to the data of the scattering
by the distorted ellipse, and the corresponding value of the adjusted R2.

In Figure 5.22, the data obtained from simulations, the model fit and the corresponding residuals
vs. fitted plot are shown. The fitting parameters are summarised in Table 5.4. The fit for this test
case is markedly worse than those for the circle test cases. However, the general model trend is
still present, including the roughly linear dependency on the GDE and the sup-linear dependency
on w. From ¢ = 3 to ¢ = 4, the data drops, analogously to the drop observed for the circle test
case with modally curved meshes. Therefore, it could correspond to the previously described

limitation of the area based GDE. A lack of information in the model set-up is also suggested by
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Figure 5.22: Plot of (a) the data set of the GIE EIZ? against the GDE for the H' modal curving of
the distorted ellipse test case. The different colours represent the geometric order of the
mesh, while the different shapes represent the w value of the simulations. In (b), the
model fit and residuals are shown and in (c) the corresponding residuals vs. fitted plot.

the residuals vs. fitted plot, where a slight quadratic pattern in the residuals can be detected.

5.6 Conclusions of this Chapter

In this chapter, the relationship between the geometry discretisation error and the geometry
induced error is evaluated for an acoustic scattering problem. In the literature, no such analysis
was found. First, the nodally curved meshes are considered. Three GDE and three field error
measures are tested for their effect on the evaluation. For those combinations with a clear link, a
linear dependency of the GIE is found with the GDE and a super-linear dependency with the
frequency w. From the suggested measures, the mapping based GDE and the corresponding field
error are dropped because they are impractical for general geometries. The projection based field

error evaluation is rejected, as it does include an extra error in the calculation and does not
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provide any additional information. For the tested geometry, the area based GDE measure
showed the same behaviour as the Hausdorff distance. The latter is computationally more costly
and is therefore dropped as well.

In the second part of the Chapter, the obtained relationship model is tested on A ' modally curved
meshes and meshes curved with the least squares approach. In general, the model provides a
good fit for the modally curved meshes and the parameters imply that the same GDE leads to
smaller GIE values than on nodally curved meshes. Further, it is observed that the considered
area based GDE measure does not cover all aspects. As already seen in Chapter 4, the GIE drops
on H' modally curved meshes in some cases without any indication in the current GDE measure.
A similar sudden decrease in the GIE is observed for scattering simulations on the more complex
geometry of the distorted ellipse. It is assumed that a combination of the area based GDE
measure and a measure based on the normal direction could explain and model this behaviour.
Overall, the results of Chapter 3-5 lead to the decision that the ' modal approach is the most

advantageous of the tested curving approaches. It will be extended to 3D in the next chapter.
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Chapter 6

Extension of the /' Modal Curving
Algorithm to 3D

In this chapter, the extension of the modal curving algorithm described in Section 3.2.2.2 to 3D is
outlined. After the presentation of the theoretical background, the individual curving steps are
explained. To allow the curving of realistic geometries, the treatment of feature lines is added to
the curving method. A sphere test case and a cylinder test case are considered to validate the
implementations. Finally, the blending approach is adapted for the 3D meshes and tested with the

scattering of a plane wave by a unit sphere.

6.1 Generalisation of Modal Curving

Compared to the 2D curving routine, the curving process in 3D becomes more evolved. In 2D the
continuity between elements was enforced by default by the fixed vertices. For boundary faces in
3D, not only the continuity at the triangle vertices has to be ensured, but also along the triangle
edges. While the former is again provided by the fixed vertex positions, the latter has to be taken
care of in the setup of the element curving. As for nodally curved meshes, where the nodes along
an edge are the same for both adjacent faces, here the a-coefficients must be the same (neglecting

orientation based sign changes).

This would not be the case if the faces are curved one by one, considering the full triangular
target surface. That is because edge shape functions have non-zero contribution on the element
face. If the full triangular target surface is taken into account for the interpolation with the edge
shape functions, the shape of the face element interior would influence the calculation of the
a-coefficient. Further, this calculation would be independent of the shape of the neighbouring
elements. Similarly, in the interpolation on the other edge adjacent face, the a-coefficients for the
shape functions of the shared edge would only depend on the shape of the target triangle of this
other face. The resulting curved faces would in general not have the same a-coefficient on the

shared edge and the resulting surface would not be continuous along this edge.

In this section, the theory of the 3D curving is described and how the continuity issue is

bypassed. Further, the implementation of the curving steps is outlined.

93



Chapter 6. Extension of the H' Modal Curving Algorithm to 3D

6.1.1 Theory of the 3D Curving

The calculation of the « values for the triangular faces on the domain boundary is split up in three
steps: First the coefficients for the vertex shape functions are calculated, then those for the
triangular edge shape functions, and finally the coefficients corresponding to the triangular
bubble shape functions. The interpolant u;, of v on a triangular face is the sum of the vertex,

edge, and bubble interpolants (see [82])

up = uY + uf + ul.

Vertex Shape Functions

The vertex interpolant v} is directly defined by the triangle vertices v; and interpolates them

exactly:

U’Z(Uj) = u(vj)a j€{1,2,3}.

Edge Shape Functions

The three edges are treated separately and the edge interpolant is defined as the sum of the

individual edge interpolants

In the following, the interpolation of a single edge e; is considered.

1
Based on the theory, the H,(e;)-norm should be considered for the interpolation of e; ([82]). It
is based on the trace of H'-functions on the triangular element 7" with zero contribution on edges

ei, © # j, onto the boundary of the element, restricted to the edge e;.
1
HZ (ef) = {w\ej;w € H3(8T), & = 0on aT\ej} ,

1
where H2 (9T) is the space of traces on T from H'-functions on T'. For i € Hig(e;)), the

norm is defined as

@]l

= [|w|| g1,
i o, = 1l

with wle, = W, wle, = 0 fori # j, and Aw|r = 0. In other words, w is the expansion of @ onto
the whole triangle, whose trace on edge e; corresponds to w. The trace of w along the other two

edges is 0, and w additionally fulfils the property Aw = 0 on the whole triangle.

The coefficients to solve the minimisation

min ||& — @) — 4’ || 1
h H020(ej)
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are determined by solving the system

a—al —a’, o =0, k=2,3,...¢%
( h h,SOT’k)HO%O(@j) )y q-,

iy e 1
with @y’ =77, aiﬁbgbg{m, and (-,-) 3 the HE (e;) scalar product.

00\*=J
For a simplification of the evaluation, a weighted H{ (e;)-norm is suggested ([82]), where the

weights correspond to the inverse of the Jacobian of the mapping from there reference line
element to e;. The difference between the two norms was found to be insignificant for ¢ < 10
(p < 10) (see [19]). Due to the chosen weight, the weighted H, 3 (ej)-norm simplifies to the
standard H, 6 (Tl-me)—norm on the line reference element. For the considered shape functions gé;j i
with k = 2,3, ...¢%, this corresponds to the H! (Tline)—seminorm. It is the same that was already
considered for the « calculations in the 2D case. Therefore, analogously to the 2D derivation (see
Section 3.2.2.2), the formula to find the edge «;, value is
(u—ap — &Zj, gbg{k)Hé(j—‘line) =0
~ ~€5 ~ ~€4 ~€5 ~€5
= ('U,, SOT{IC)H(%(Tline) o (uqé’ (pjzak)H(%(Tline) o (uhj ’ (PTZ»IC)H(%(THHE) = O
~ ~€5 ~€4 ~€4
= (u7 (Pj{k‘)H(% (Tline) = O(k((pj{k’ SDTJ‘JC)H(% (j—‘line)

& = (@) g )

1
ej ~171
< —/1ulk.

Note that by curving each edge independently of the element face deflection, the continuity

between elements is ensured.

Bubble Shape Functions
The coefficients of . for the face bubble interpolant u? = 5472 ¢ =1,

e coefficients a;,, ,,, for the face bubble interpolant uj, = an:l Zm:l W o PTony o
are chosen to minimise the residual of the overall interpolation in the H 1 (T}ria) seminorm ([82]):

: v e b R _
min |u — up, — uj, — “h|H1(Tm~a) =

min [ V(u—uf —uf —ub) V(u—uj —uf —ub)de
Tiria
9 v e b v e b
Sob - V(u—up —up —up) - V(u—uy —uj —up)d§
ni,n2 Y Tiria
3}
=2/  V(u—up—uj —ulf’l)a—V(u—u}’l —uf —ub)dé
Tiria «
=2 | Vi) = )V, d€
tria
=0
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b b b
= j; ‘7(1l - QL;Q - QLEL)Y7997”J117712 (i{f = j; ‘71L]L‘7997”J117712 (1457
tria tria

with gpr’nl n, the bubble shape functions. This results in the system

Ao =b, with

_ b b
Ai,j i V‘PT,nM,nMVSOT,nLj,nQ,j d€7
jkria

b; = /T V(u —up — UZ)VQO%MJWM de.
tria

b

Note that this is not an explicit formula for the o, ,,.,

as the bubble shape functions do not fulfill
the §-property. In [83], bubble shape functions are constructed that fulfill the §-property. As all
bubble shape functions vanish at the boundary of the reference triangle, they can be

orthonormalised in the H} (Tm(z)—norm, using a modified Gram-Schmidt algorithm. With these

modified bubble shape functions gZ)é’p ny .y the calculation of the corresponding delm simplifies
to
~b ~b
anl,nz = 7 V(U - U’qul - UZ)VSOT,NLTLQ dE
tria

In this thesis, the originally introduced, non-orthonormalised bubble shape functions will be

considered.

6.1.2 Implementation of the Edge Curving

For the edge curving, each edge is treated separately. It is curved using the 2D line shape
functions and the algorithm described for the 2D boundary line elements (see Section 3.2.2.2). In
the 2D case, the target curve for the edge was defined by the linear interpolation of the vertices of
the Mmesh arc over the Cmesh element. In 3D, it is still ensured that the Cmesh vertices coincide
with Mmesh vertices. But it is generally not the case that projections of Mmesh edges are subsets
of a Cmesh edge. Instead, the target curve for each edge has to be detected as a preprocessing
step.

6.1.2.1 Edge Target Curve Detection

The edge target curve detection consists of two steps. In the first step, possible target points have
to be found that lie on the Mmesh, the general target surface. As a unique definition, all

intersections of the Mmesh with the edge normal plane

x =p1+7(p2 — p1) + sNe,

are chosen, with p; and p2 the two vertices of the Cmesh edge, n. the edge normal, and

r,s € R. The edge normal is defined as the mean of the normals of the two adjacent faces. The
normal plane is chosen as it intuitively matches the idea of dividing the space in the middle
between these two faces. An example of a set of intersection points for a single Cmesh edge and

the corresponding Mmesh edges is shown in Figure 6.1.
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N~~~ 1 15 LI . 0.5 1 15
g 05 a4 . 0
Toas 05 0 Toas A 0:3
(a) intersection points (b) intersecting edges

Figure 6.1: Mmesh with the intersection points (red crosses) considered for the Cmesh edge target
curve, and the Cmesh with the corresponding Mmesh edges (blue lines) and the approxi-
mation after edge curving (red line).

(a) (b) (© (d

Figure 6.2: The four different possible cases for the edge traversal. Already found intersection points
are marked by a orange cross. The orange line indicates the intersecting plane. Green lines
show Mmesh edges that were already considered in previous steps, black lines are Mmesh
edges without intersections, and blue lines are the remaining Mmesh edges, therefore
those on which the next intersection point lies. This next intersection point is indicated as
red dot.

This way, far too many intersection points are found. In the second step of the edge target curve
detection, the actual target points are selected with a traversal algorithm. For this algorithm, not
only the intersection points but also the corresponding Mmesh edges are considered. Starting

from one Cmesh edge vertex, a path of connected, preselected Mmesh edges is constructed.

In general, there are four possible situations that have to be considered when looking for the next
intersection point or edge (see Figure 6.2): The currently considered point can either coincide
with an Mmesh vertex or lie on the interior of an Mmesh edge. Similarly, the follow-up
intersection point can fall together with an Mmesh vertex, or simply on an Mmesh edge. The

treatment of the different cases is detailed in Appendix B.

The Mmesh edge traversal is done for all possible starting edges, until the paths either run into a
deadend or until they reach the second Cmesh edge vertex. In the end, the shortest full path is
selected. The corresponding intersection points are extracted and their linear interpolation forms

the edge target curve.
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Chapter 6. Extension of the H' Modal Curving Algorithm to 3D

6.1.3 Implementation of the Face Curving

Similar as the edge curving, the face curving follows several steps. The first step is the detection
of the face target points. Before a parametrisation of the target face can be constructed, a
triangulation of the target points has to be found. It is based on the underlying Mmesh structure.
This triangulation is then also used to ensure a piecewise exact integration over the Cmesh

element in the calculation of the a-values.

6.1.3.1 Detection of Face Target Points

As face target points, all Mmesh vertices have to be detected that lie within the boundary formed
by the Cmesh edge normal planes. This is done with a node traversal algorithm, following the
node neighbour relationship. The status of each Mmesh vertex is described by two properties s1

and s9, where

0 = vertex not tested (default)

1 = vertex lies inside 0 = neighbouring nodes

51= 16 = vertex lies on plane and s = - not checked (default)
) 1 = neighbouring nodes
defining edge target curve checked

—1 = vertex lies outside

The seemingly arbitrary choice of the number 6 to decode vertices on the curve is justified by the
subsequent decoding of resulting triangles (see Sec. 6.1.3.2).

First, the three Cmesh edge normal planes are considered. The signed distance between the three
planes and the vertices of the intersecting Mmesh edges are evaluated. This way, these vertices
can be classified as face internal vertices (s; = 1), face external vertices (s; = —1), or vertices
that fall onto one of the planes (s; = 6). The latter is especially the case for those Mmesh
vertices that collide with the Cmesh vertices. Note that the orientations of the Cmesh edges has to
be included in the calculation. Further, some vertices might be considered as “inside” from one
of the edge normal planes, but outside” from another. For this reason, each of the Mmesh
vertices in question has to be tested, even if it was already marked “’inside” with respect to a
previously tested plane. If a Mmesh vertex is detected as “outside” with respect to one of the
Cmesh edges, it is defined as “outside” for the corresponding Cmesh face.

Starting from this bounding data set, the nodes with status s; = 1 and sy = 0 are traversed. Their
neighbours in the Mmesh data structure are extracted and, if they were not tested yet (s; = 0),
are set to be an interior node. Once no more node exists with s; = 1 and so = 0, the selection
algorithm terminates. All Mmesh vertices with s; = 1 or s; = 6 are selected as face internal

target points.

6.1.3.2 Triangulation

In order to construct a parametrisation of the face target as well as a piecewise exact integration, a
triangulation of the internal target points is required. Therefore, all Mmesh faces are preselected
that have at least one vertex among the internal target points. They are classified by the sum

S = Z?:1 s1(v;) of the s; status of their vertices v;:
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All-in faces (57 = 3)

1-in-1-boundary-1-out faces (51 = 6)

¢ 2-in-1-boundary faces (57 = 8) * 2-boundary-1-out faces (S; = 11)
¢ 1-in-2-boundary faces (S; = 13) ¢ 1-in-2-out faces (51 = —1)
¢ All-boundary faces (S1 = 18) * l-boundary-2-out faces (S1 = 4)

¢ 2-in-1-out faces (S1 = 1)

Additionally to these cases, all Mmesh triangles that have no interior node but at least one
intersection with the Cmesh edge normal planes are considered.

Each of the classes is treated separately. For All-in, 2-in-1-boundary, 1-in-2-boundary, and
All-boundary faces, the Mmesh structure can be preserved. All the other classes are further split
in different cases, depending on the intersection with the edge normal planes. Non-triangular
faces are retriangulated. The detailed cases and treatment of the different classes is provided in
Appendix C.

In the end, small triangles are merged with neighbouring triangles. First, nodes with distance less
than 107! are merged and all triangles with the same vertex twice are deleted. Afterwards, all
triangles that are detected as collinear are collapsed and deleted as well. The collinearity is
evaluated using the algorithm described in [64] and a tolerance of 10714, During the entire

process, vertices on the domain boundary need to be preserved.

6.1.3.3 Construction of the Parametrisation

To find a parametrisation of the triangulation, mean value coordinates as described in [27, 28] are
used. They are length ratio and angle ratio preserving and correspond to the idea of length-based
parametrisation in 2D.

First, the reference nodes for the vertices along on the Cmesh edges are found with a
length-based parametrisation of the reference element edges. In the second step, the reference

nodes of the remaining vertices are calculated by solving the linear systems

AL = b
An = by,
where
1 if i =7
aij = § —XA;; if vertex v; is a neighbour of vertex v;
0 else,
bei= D Aijy
’UjENi?B
bpi= > Aijiy,
’UjENi’B

with weights \; ; and N; p the set of neighbouring vertices of vertex v; that lie on a Cmesh edge

(see [27]). Two vertices are defined as neighbouring vertices if they are connected by an edge of
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Uj+1

Figure 6.3: Sketch of the angles to find the weights for the mean value coordinates. This figure is
based on Figure 1 in [28].

the triangulation. The weights \; ; are calculated as

Nij =
EvkeNi Wik
- tan(%Y) +tan(ﬂ;j)
T T =l

with «; ; and (3; ; the angles at v; on both sides of the edge connecting v; and v; (see Fig. 6.3)
and N; the set of neighbouring vertices of vertex v; (see [28]).

After the parametrisation, a test for colinearity is run for the triangles in the reference domain.
Analogously to the check in the triangulation routine, colinear triangles are collapsed. The nodes

and the triangles in the physical domain are treated correspondingly.

6.1.3.4 Piecewise, Exact Integration

The triangulation of the Mmesh arc is not only used to find a parametrisation, but also to
construct an exact quadrature rule for the integration in the calculation of the c.

In general, the Mmesh arc is only piecewise linear. This makes the standard Gaussian quadrature
inapplicable for integrations. Instead, an exact integration rule can be obtained by composing
local Gaussian quadratures over each of the triangles of the arc triangulation. To obtain the
quadrature points on these subtriangles, the Gauss-Legendre points on the (—1, 1) reference
triangle are mapped using a linear Lagrangian mapping. The quadrature weights are the
corresponding Gauss-Legendre weights, scaled by %Ae, where A, is the area of the subtriangle.
Note that the additional reference mappings from the reference triangle to the subtriangles in the

reference domain have to be also considered in the calculation of the integrand.

6.1.4 GDE Measure in 3D

Analogously to the area measure in 2D, the GDE measure in 3D is defined as the volume Vpprox
between the approximation and the target surface, divided by the surface area Ayge Of the target

surface:

GDEV = Vapprox / Atarget -

100



6.1. Generalisation of Modal Curving

(a) wedge (b) subdivision

Figure 6.4: Sketch of the subdivision of a wedge into three tetrahedrons formed by the wedge nodes
1-2-3-5, 1-4-5-6, and 1-3-5-6.

In general, the Mmesh is considered as the target curve. But, as in 2D, some special cases allow

the evaluation of the GDEy, with respect to the exact geometry.

Special case: Sphere

The sphere in 3D corresponds to the circle case in 2D (see Sec. 3.3.1.2). The knowledge of the
geometry and the inverse of its parametrisation allows for a calculation of the volume between
the approximating curve and the exact sphere. The resulting measure will be denoted GDE‘S/.

In 2D, the area formula for convex quadrangles could be manipulated to obtain an ODE
describing the total area measure. In 3D, no such simple formula was found.

Instead, the idea corresponds to the more general idea that was followed in 2D for the area
between the approximation and the Mmesh. There, the area was subdivided in small quadrangles
of which the areas could be obtained by the previously mentioned formula. The quadrangles are
refined until convergence is observed (see Section 3.3.2.1).

For the 3D volume between the approximation and the sphere, the volume is subdivided in small
wedges. This is done by triangulation of the approximation based on a regular triangulation of
the reference triangle. Corresponding points on the sphere were found by radial projection. A
general formula for the volume of a wedge was not found in standard formularies. Instead, the
volume is obtained by subdividing the wedge in three tetrahedras (see Fig. 6.4) and adding the
volumes of these. This way, a formula is obtained to directly calculate the volume of the wedge.
Note that this approach is only possible if we know that the nodes of the quadrangular wedge
faces are coplanar. For the volume to sphere case, this is ensured by the way the wedges are

created.

General GDE measure

To generalise the volume to the Sphere to the volume to the Mmesh, the construction of the
wedges has to be adapted. The idea is to now rely on the triangulation of the reference triangle

from the curving step. In this triangulation, each (small) triangle corresponds to a linear surface
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on the Mmesh. No Mmesh edges are crossing them. At the same time, a parametrisation of both
the curved Cmesh and the Mmesh are available from the triangulated reference triangle.

For these general wedges, there is no guarantee that the vertices defining a quadrangle face are
coplanar. The subdivision in tetrahedra would therefore demand bookkeeping to ensure that the
faces are subdivided by the same diagonal for both adjacent wedges. Instead, the volume of a

single wedge W is calculated using the Green’s identity:

V;\pprox:/ 1dW:/ Vde
W w

= f-nd(OwW),
ow
with
) T
f= g Y
z

and n the outwards pointing unit normal of the wedge surface. Note that the norms of wedges
that cross intersections of the Cmesh and Mmesh are not continuously pointing outwards, which
makes Green’s identity invalid for these wedges. As the subdivision into wedges is refined, the

overall volume calculation is converging towards the correct volume.

6.1.5 Test Case: Curving of a Sphere

First, the 3D curving algorithm is tested for the unit sphere. Note that for 3D, the definition of the
1\7I£>/C—ratio is adapted. In 2D, the ratio was evaluated as the number of Mmesh edges per Cmesh
edge and therefore directly linked to the element length. The analogous ratio in 3D is defined as

the average number of Mmesh faces per Cmesh face
MpC = why/nf,

with nfw the number of M faces and né the number of C faces. The latter scale quadratically
with the mesh length and could not be explicitly controlled by the mesh length in the mesh
generation process. Therefore, the here considered l\//If)/C-ratios are not the same for the different
C sizes, but were selected to lie relatively close together.

In Figures 6.5 and 6.6, the results of the GDE evaluation towards the exact sphere and towards
the Mmesh are shown and compared for a coarse and a fine Cmesh. First of all, the 3D curving
implementation is validated by the expected, typical error behaviour: An exponential
convergence, ending in a stagnation, where the stagnation level decreases with increased
geometric order g and increased number of elements né .

Comparing the evaluations of the GDE measure towards the exact Sphere with the one towards
the Mmesh, it can be observed that for the coarse Cmesh the two measures differ more than for
the fine mesh. This is also consistent with the expectations, as the exact Sphere and the Mmesh

lie closer together in the latter case (see dashed lines Figures 6.5(c) and 6.6(c)).
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Figure 6.5: Comparison of the GDE evaluation to the exact Sphere and to the Mmesh for né = 32.
The dashed lines in (c) indicate the volume between the Mmesh and the exact Sphere.
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Figure 6.6: Comparison of the GDE evaluation to the exact Sphere and to the Mmesh for ng = 228.
The dashed lines in (c) indicate the volume between the Mmesh and the exact Sphere.
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But especially on the coarse Cmesh it becomes obvious that the GDE‘S} stagnates at a higher level
than the GDEy . An error component that is either not present or not significant in GDEy,
becomes the dominating factor. In the context of this thesis, no explanation for this behaviour
was found. It is observed though that the difference between the two measures deviates from the
difference between the Mmesh and the exact sphere abruptly from ¢ = 3 on. From this curving
order on, the shape functions become non-convex and triangular bubble shape functions arise.
Therefore, it is assumed that the unexplained error component is linked to at least one of these
two properties. Considering Figure 6.5(c), the difference between the GDE‘S} and GDEy is
plotted and the volume between the exact Sphere and the Mmesh indicated by the dashed lines.
Generally, one would expect that the difference between the two GDE measures corresponds to
the volume between their two target curves. For ¢ = 1, 2, this is the case, while for ¢ > 3 the
difference also remains approximately constant, but at a higher level. The jump between the two
levels takes place between ¢ = 2 and ¢ = 3, just were the mentioned non-convex higher-order
shape functions, as well as triangular bubble shape functions arise.

Note that results in Section 6.3.1 below will indicate that the GDEy evaluated towards the
Mmesh is the more reliable measure of the geometric accuracy regarding the corresponding
geometry induced field error. For this reason, it will also be considered in the validation test case

of the following section.

6.2 Feature Line Treatment

Realistic geometries do usually consist not only of one smooth surface, but are build of several
surfaces that intersect each other. These intersections typically form sharp edges, which are
called feature lines. For a reasonable geometric approximation, it is crucial to take these feature
lines into account. In order to preserve feature lines, their occurrence on the geometry has to be
known. Algorithms to detect feature lines based on e.g. the angle between neighbouring mesh
elements are available in the literature ([47]).

For this thesis, the feature line detection is simplified. Here, only geometries are considered,
where feature lines form closed loops around predefined surface patches. The knowledge which
surface element belongs to which surface patch has therefore to be additionally provided along
with the mesh. To check if an edge is on a feature line, the two adjacent surface elements are
considered. If they belong to two different surface patches, the edge is marked as falling onto a
feature line.

In the curving process, the feature lines have to be treated separately at only one point, namely
the detection of the edge target points. The added knowledge of the feature line leads to a
simplification of the detection step as it was described in Section 6.1.2.1: First of all, only
Mmesh edges that are marked as falling onto a feature line are considered. This reduces the
number of Mmesh edges that need to be tested. Secondly, the Cmesh and Mmesh are both
expected to respect all feature lines. Therefore, one knows that all intersection points of the
Mmesh and the Cmesh edge normal plane coincide with Mmesh vertices. And as feature lines
can only cross in Cmesh vertices, only one possible next Mmesh edge can be found as long as
travelling along the path into the right direction. If more than one possible next edge is detected,

these do not have to be treated, but the path is either at the end vertex or can be rejected.
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Figure 6.7: Geometry and GDEy of the cylinder test case with né = 40. The figure of the geometry

shows the curved mesh with 1\@6 = 115 and ¢ = 6. The feature lines are highlighted in
red.

Once the adjusted edge target curve detection is applied, the edge curving procedure remains the
same as for Cmesh edges that fall not onto a feature line. The curving of the element faces is not

affected by the feature line treatment.

6.2.1 Test Case: Cylinder

In order to validate the described feature line treatment, the curving of a cylinder is considered.
The curving results are presented in Figure 6.7, along with a plot of the curved mesh. The feature
lines are highlighted in red. As expected, the GDEy first converges and then stagnates with
increasing curving order ¢. The stagnation levels decrease with refinement of the target curve M.
Only for R@JC = 5965, ¢ = 4 an outlier is detected, where the GDEy, is higher than for the less
refined target curve with 1\//156 = 1122.

6.3 Blending Approach in 3D

The blending of the curved surface for the mapping of the full tetrahedral is analogous to the
blending approach for the H' modally curved meshes in 2D (see Sec. 4.3.2). Starting from the
linear interpolation of the tetrahedral vertices, the deviation of first the edges and then the faces is
considered in each coordinate separately. Similar to the 2D triangle shape functions, the 3D
tetrahedral Lobatto shape functions are constructed as vertex, edge, face and bubble shape
functions, where the vertex shape functions coincide with the linear Lagrange shape functions.
The traces of the edge and face shape functions along the corresponding edges and faces equal
the 1D and 2D Lobatto shape functions and vanish on the remaining edges and faces, respectively
(see [82]). Therefore, the tetrahedral Lobatto shape functions can be directly applied to the
a-values obtained from the curving method. The mapping has therefore the form

6 q—2q—j—1
=1

4 q 4
FEm =Y w6+ D) o Emas+> 373" ol (@ ady,
i=1 i=1 j=2

i i=1 j=1 k=1
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s
Tet?
a?, af"k are the a-coefficients for the i*" edge or face, respectively.

Note that here also internal edges and faces are allowed to deviate from the linear interpolation.

where ¢ Ot > goé"et j are the tetrahedral vertex, edge, and face shape functions, and

This is necessary, if untangling procedures are applied that protrude the curving of the surface
into the domain. Further, again analogously to the 2D blending approach, tetrahedral internal
bubble shape functions are not necessary to describe the deviation of the element shape from the
linear vertex interpolation. They might, however, be advantageous for smoothing the element

internal Jacobian after the untangling.

6.3.1 Test Case: Plane Wave Scattering by a Sphere

To validate the 3D blending, the scattering of a plane wave by a unit sphere is considered. The
computational domain is defined by the scattering unit sphere I's in the centre and a sphere of
radius r, = 2 as outer domain boundary I',. This test case is analogous to the scattering by a
cylinder from Section 4.4.1. As for the 2D test case, the Helmholtz equation is solved with rigid

boundary conditions on I's and characteristic boundary conditions on I',:

V2p + k*p =0,
Jp
— =0 onl
on o ts
0 0
% = % + IWPex - lwp on Fo.

A derivation of the exact solution pex can be found in [4]. Gauss-Legendre quadratures of order
2p + 2(q — 1) are applied for the numerical integrations.

For the field error calculation, the relative L?-error is evaluated over the whole computational
domain. The additional error, induced by evaluation points that fall outside of the computational
domain and inside the scatterer (see Section 4.4.2, Figure 4.3(a)) is neglected for simplification.
The p-convergence curves of the field error for w = 7 are shown in Figure 6.8

The curves exhibit the typical behaviour of exponential convergence for lower field orders and
stagnation for higher p, with the stagnation level depending on the geometric order q. This
validates the blending approach. Further, one can compare the plots with Figures 6.5 and 6.6.
There, the p-convergence curves and their stagnation levels correlate well with the results
obtained for the GDEy evaluation towards the Mmesh. For ng = 32 and 1\//11\:)6 = 2334 for
example, the field error stagnation levels decrease up to order ¢ = 5. This corresponds to the
GDEy in Figure 6.5 (b), where the geometry discretisation error also decreases up to ¢ = 5. The
GDE\S, in Figure 6.5 (a) on the other hand already stagnated for ¢ > 3. A similar behaviour can
be observed for all depicted cases. As already mentioned above, this indicates that the GDEy,
evaluated to the Mmesh is the more reliable measure of the geometric accuracy and justifies the

application of this measure in the cylinder test case above.

6.4 Conclusions of this Chapter

This chapter covers the extension of the /! modal curving method to 3D. First the theory of the

3D curving is provided, followed by the explanation of the implementation. The latter is divided
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Figure 6.8: p-convergence curved of the field error for the plane wave scattering by the unit sphere
with w = 7.

into the edge curving and the face curving. This separation is needed to ensure continuity
between the face elements. The edge curving corresponds to the 2D curving procedure.
Therefore, only the detection of the edge target curve has to be outlined. For the face curving,
more steps are necessary and explained individually.

The curving implementation is validated with the curving of the sphere. Two GDE measures are
applied thereby, one based on the volume to the exact sphere and the other based on the volume
to the Mmesh. While the latter behaves as expected, the measure towards the exact sphere shows
unanticipated early stagnations. This behaviour could not be explained within the frame of this
thesis.

After the general curving implementation, an adaption to allow for feature line treatment is
described. It must be noted that this modification does only treat and not detect feature lines, and
therefore relies on additional input data. The feature line preservation is verified with a cylinder
test case.

Last, the blending approach for the 3D curved mesh is explained and the implementation
validated with the scattering of a plane wave by a sphere. Comparison with the field error results
and the GDE evaluations in the previous sphere curving test case shows that the GDE evaluated
towards the Mmesh is reliable. In retrospect, this also justifies the evaluation of the cylinder test
case with this GDE.
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Chapter 7
Applications

In this chapter, two applications are provided for the H' modal curving algorithm. The first is
based on the Munt test case with a relatively simple geometry. It can be seen as the academic
generalisation of the second application, where a generic intake of a turbofan engine is
considered. The equation for the simulations is the linearised potential equation. In the case of a
low Mach number which will be considered in this thesis, it has a structure similar to the

Helmbholtz equation.

7.1 Acoustics Equations

Linearised Potential Equation

For the application of the modal curving algorithm, simulations with the linearised potential
equation are considered. It is the most widely used formula to simulate aircraft noise originating
from turbofan engines ([31]).

The equation describes the acoustic propagation in form of the velocity potential ¢ for a steady,

potential mean flow of a compressible fluid with constant and uniform entropy. It is given as

Do <1D0¢’

. / —
POy 2 D >—V (poV¢') =0,

with cg and pg the mean sound speed and density, respectively, and % = % + ug - V the
material derivative. The velocity potential ¢ is related to the acoustic parameters, such as the

acoustic velocity u and the acoustic pressure p by u = Vo and p = — po% ([31D).

Annular Duct Modes

In both applications, the acoustic field is excited by annular (or cylindrical) duct modes. Modes
are often considered in acoustic simulations for ducts with parallel walls, as they are relatively
simple solutions of the wave equation that allow for an easier understanding of the acoustic
behaviour of the whole simulation than more complicated sound waves. On the other hand, duct
modes Uy, ,(x,y) e~ =n? form a basis and any solution can be constructed as a linear
combination of them ([73]).
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Figure 7.1: Example ¥,, ,(z,y) at a duct cross section for (a), (c), (e) a cylindrical duct and (b), (d),
(f) an annular duct.

For annular and cylindrical ducts of fixed radii, the function Wy ,(z, y) is defined by the
azimuthal and the radial mode number (m,n). In Figure 7.1, examples for ¥, »(z, y) are plotted
on duct cross sections. The axial wavenumber £y, , defines the evolution of the duct mode along
the axis z and depends on the frequency w and the fluid and flow parameters. The pressure field

has an et =" dependency on the azimuthal wave number.
Here, an already available code was used to generate the duct modes. This code is based on the

derivations in [73].
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Figure 7.2: Figure (a): Schematic of the simulation domain with duct length Lp, duct radius Rp,
domain radius R, domain length Lp + L, and PML thickness Lpyg,. The shaded area
corresponds to the active Pml. The full 3D domain is obtained by rotation around the
Z-axis.

Figure (b): The blue dashed line indicates the semicircle for the field error evaluation
points.

7.2 Modes Exiting a Duct

This application is based on the Munt benchmark problem [62]. It is formed by a semi-infinite
cylindrical duct. An acoustic wave is travelling along the duct and diffracted as it exits through
the duct opening. The duct walls are infinitelly thin, acoustically impermeable and rigid.
Therefore, the boundary condition for the duct wall is a homogeneous Neumann condition for the
velocity potential. Along the domain boundary, Sommerfeld radiation condition have to be
realised.

In his thesis, Rarata [70] considers the Munt problem to evaluate the effect of varying
computational parameters on simulation results with the Discontinuous Galerkin Method.
Among these tests, one assesses the influence of the mesh refinement with geometrically linear
elements. It is found that the geometric accuracy of the duct description is of high importance for
the directivity of the simulation results. With a coarse mesh along the duct, spinning modes get
scattered at the C''-discontinuity between elements and cause high divergence from the analytical

solutions at polar angles around 0° and 180°.

7.2.1 Simulation Parameters

For this application, the elements defining the duct wall are curved using the H' modal curving
approach, presented in Section 6. The effect of the curved mesh on the accuracy of the simulation
results is considered.

A sketch of the simulation domain €2 is provided in Figure 7.2(a). The domain parameters are
defined in terms of the duct radius Rp as Lp = 2Rp, R = 3Rp, and L = 2R p. For simplicity,
the duct radius is chosen as Rp = 1. In order to fulfill the Sommerfeld radiation condition, a
PML is added to the simulation domain. Two Mmesh refinements are considered, a relatively
coarse Mmesh with l\//If)/C = 47.75 and a fine Mmesh with 1\//[56 = 2753.0.

To implement an infinitely thin, impermeable duct, it is generated as a two-layered surface. In the

mesh generation, the two layers are separated by increasing the radius of the outer layer up to
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Rp + € at the back end of the duct, with € = 0.1. At the open end, both layers come together in a
single circle at the predefined duct radius Rp. After the linear mesh generation and before the
curving, the outer layer is moved back to the duct radius Rp over the whole duct length. Working
with two layers involves the risk of intersecting mesh surfaces, but as they are treated as separate
boundary domains, this will not affect the desired impermeability property. For this application
case, only the two duct layers are curved. Afterwards, it has to be ensured that the mesh remains
continuous along the feature lines between the curved surfaces and their adjacent boundary
domains. Therefore, elements on neighbouring surfaces that are adjacent to the curved surface
are adjusted to follow the curving of the edges on those feature lines.

Circular duct modes are inserted at the back wall of the duct at z = — Lpyy, /22 + 42 < Rp.
The intersection between the PML and the duct is defined as a so-called active PML. There, only
the backtravelling component of the acoustic field is damped, while the forward moving mode is
actively prescribed [38]. Implementations of the passive and the active PML were already
available and are not newly implemented in the frame of this thesis.

Compared to [70], the problem size is reduced by considering modes with kRp = w = 4 and
kRp = w = 6. The mesh length is kept fixed for both cases and corresponds to % or % element
per wavelength, respectively.

For the simulation, an existing implementation of the adaptive high-order FEM is used [31]. The
target accuracy for the a-priori error indicator is selected as 5%, with a maximal element field
order of p = 15.

Following the test case in [70], no flow is applied on the simulation domain, as no additional

effect is expected on the geometric accuracy dependency from adding flow to the simulation.

7.2.2 Error Evaluation

For the calculation of the GDE, the volume based measure GDEy, described in Section 6.1.4 is
applied. Only the duct is curved, and therefore the GDE is only evaluated over the two layers of
the duct surface.

The simulation results are evaluated along a semicircle in the simulation domain (see Fig.7.2(b)).
Along this curve, the potential field is obtained by interpolation and then used to calculate the

corresponding pressure. The latter is transformed into the sound pressure level (SPL) by

P2
LP =10 loglo r2rns’

ref

with the root-mean-square pressure value p;ms = [PI?/2 and the standard reference pressure of
2-10"Pa (see [73]).
For this academic application case, an analytical solution is available. The derivation and

calculation are outlined in [30]. Here, the analytical solution was provided by G. Gabard.

7.2.3 Results

In Figure 7.3, the GDE development is shown for the two considered Mmesh refinements. For
both cases, there is a strong improvement of the geometric accuracy from linear to quadratic

meshes. With the latter, a significantly better geometric description is obtained with the finer
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Figure 7.3: GDE curves for the modes exiting a duct application case.

Mmesh. Further, the GDE curve for 1\//IITC = 47.75 stagnates already from ¢ = 2, while the
geometric accuracy for M}\)/C = 2753.0 improves up to order ¢ = 4. This corresponds to the
expected behaviour of a later stagnation onset on a lower stagnation level with the finer Mmesh.

It is also similar to what was observed in the previous chapters.

As mentioned above, two frequencies are considered. For w = 6, simulations with the fully
cut-on plane wave (0, 0), the intermedially cut-on mode (2, 0), and the close to cut-off mode
(4,0) are evaluated. Additionally, the simulations of the plane wave are obtained for w = 4.
Figure 7.4 depicts numerically obtained potential fields of these two cases.

The sound pressure levels of the simulation results and of the analytical solution are plotted in
Figures 7.5 and 7.6. The plots 7.5(a) and 7.5(b) for w = 6, mode (0, 0) are dominated by a strong
deviation of the simulation results from the analytical solution, close to the duct wall. Curved
meshes do not resolve or even improve this issue, but rather lead to a generally worse match
between the numerical and the analytical SPL. Within the time frame of this thesis, no
explanation was found for this behaviour. It also comes together with an effect that looks like a
strong backtravelling wave in the active PML domain (see Fig. 7.4(b)).

With increasing azimuthal mode number, the described effect diminishes (compare plots 7.5(c) -
() for modes (2, 0) and (4, 0)). It is also not significant for the plane wave at the lower frequency
w = 4. There, a clear improvement is observed when changing from a linear to a curved mesh.
Among the latter, no notable improvement can be observed between the simulation results on
meshes with different curving orders.

For the simulation with w = 6, mode (4, 0), 1\//[56 = 47.75, and ¢ = 1, a directivity error is
present at polar angles around 0° and 180°, similarly as described in [70]. On curved meshes, this
error is reduced by up to 20dB at © = 0° with order ¢ = 3, and up to 40d B in the duct interior at
© = 180°, for ¢ = 4. As the SPL is a logarithmic measure, this corresponds to a reduction of the
sound pressure by one or two orders of magnitude, respectively. The effect that the best
simulation results were not obtained with the highest tested curving order ¢ = 6 might be
explained by the fact that the curving target is relatively coarse and therefore includes some
inaccuracy itself.

However, with the more refined Mmesh, the above described directivity error is only visible in
the duct interior. An explanation for the differences in the simulation results on the two linear,

and therefore uncurved and otherwise untreated Cmeshes, lies in the preprocessing step that
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Figure 7.4: Plots of the potential field of the modes exiting a duct application case, obtained from

simulations with 1\//Ii)/C = 2753.0. The black box indicates the boundary between the
simulation domain and the PML.
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Figure 7.5: Sound pressure levels of the modes exiting a duct application case, evaluated along a
semicircle in the computational domain.
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Figure 7.6: Sound pressure levels of the modes exiting a duct application case, evaluated along a
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Figure 7.7: Cmesh triangulation of the duct cross-section at z = 0. The circumferential line describes
the duct wall. In (a), the red dots highlight the Cmesh nodes that were moved a relative
big distance in the preprocessing step to align them with Mmesh nodes.

moves the Cmesh nodes to the closest Mmesh nodes. Recall that this step is necessary in our
setup to ensure that the Cmesh nodes form a subset of the Mmesh nodes, a prerequisite we
formulated for our curving routines.

In Figure 7.7, a cross section of the linear Cmesh in the duct at the mode insertion plane is plotted
for both Mmesh refinements. With the fine Mmesh, the Cmesh is still visually equally sized. In
the other case, the Cmesh nodes had to be moved larger distances to align with nodes on the
coarse Mmesh. Therefore, the resulting linear Cmesh is not equisized anymore, but still displays
some regularity, due to the general mesh generation along the circular duct. For the simulation
results, this seems to lead to a stronger scattering of the mode along the duct wall, and overall to a

larger directivity error.

In summary, the modes exiting a duct application case comes with several overlying effects
that are only partially understood and explained here. But for the cases where the directivity error
is dominating in the linear case, curved meshes lead to an improvement of the simulation results.
In these instances, the reduction of the SPL in the critical domains is up to a similar extent as it is

obtained with mesh refinement in [70], especially in the duct interior at © = 180°. The biggest
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effect is thereby obtained when changing from linear meshes to meshes with curving order ¢ = 2.

Higher curving orders lead in some cases only to small (or no visual) improvements.

7.3 Modes Exiting a Generic Intake

The previous problem can be seen as an academic simplification for a turbofan intake. In this
application, a more realistic, generic geometry of an intake is considered. First, a 2D version is
curved and used as simulation domain. Afterwards, a 3D geometry is obtained by rotation around
the x-axis. The 3D curving algorithm is applied and the geometric accuracy is evaluated.

However, simulations can not be run on the resulting domain mesh due to tangled elements.

7.3.1 2D Geometry

Plots of the geometry and the Cmesh are shown in Figure 7.8. The generic intake is defined by an
upper and lower part of the nacelle and the spinner in the middle. It is based on the generic intake
geometry described in [31]. A PML encloses the simulation domain to ensure compliance with
the Sommerfeld radiation condition. The nacelle and the spinner are simulated as rigid walls by
applying homogeneous Neumann boundary conditions on the velocity potential.

Between the nacelle and the spinner, the lines defining the fan plane are located at x = 0. The
velocity field is excited in the form of annular duct modes at the back of the PML behind these
lines. In between the insertion and the fan line, an active PML is implemented to ensure the
propagation of the wave.

As this application is a 2D simulation, only modes with azimuthal order 0 are considered. For the
flow conditions, an approach case is considered (see Fig. 7.8(c)). An already available data set
(see [31]) is scaled to obtain a mean sound speed and a mean density of 1. Simulations are run at
w = 20 for the plane wave (0, 0), an intermediately cut-on mode (0, 2) and a nearly cut-off mode
(0,5). Varying MpC-refinements are considered, but as they do not lead to any additional
insight, only the results for MpC = 1000 are shown below.

For this geometry, there is no analytical solution available. Instead, a numerical reference
solution is obtain on a refined mesh (see Fig. 7.8(a)), nodally curved with ¢ = 2 and field order

p = 15. Plots of the reference potential fields are shown in Figure 7.9. Analogously to the modes
exiting a duct application case, the SPL is evaluated along a semicircle (see Fig. 7.8(d)). Note
that the evaluation arc is crossing the nacelle. For this reason, the resulting SPL plots below have

a gap as well.

Results

In Figure 7.10, the evolution of the GDE 4 is shown for four different MpC-refinements. With
MpC = 100, the coarsest refinement, the geometric accuracy significantly increases from g = 1
to ¢ = 2. An additional increase of ¢ improves the geometric accuracy only slightly. The curves
of the remaining refinements fall together and converge over the full curving order range

g = 1 — 6. This indicates that from MpC = 200 on, the inaccuracy of the target mesh description
is negligible for the GDE 4 calculation.
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Figure 7.8: Plots of the 2D geometry and flow data of the generic intake application case. In (a), the
mesh for the reference simulation is shown, while (b) depicts the Cmesh. The boundary
that separates the simulation domain from the PML is highlighted in red. Figure (c) depicts
the flow applied for the simulation, and the blue semicircle in Figure (d) displays the
position of the SPL evaluation points.
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(c) Mode (0,5)

Figure 7.9: Reference potential field for w = 20 of the 2D generic intake application case, obtained
by numerical simulations.
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Figure 7.10: Area-based GDE of the meshes for the 2D generic intake application case.
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Figure 7.11: Sound pressure levels of the 2D generic intake application case with w = 20 and MpC =
1000, evaluated along a semicircle in the computational domain.

The sound pressure levels of the simulation results are displayed in Figure 7.11 for the three
considered modes and simulations with MpC = 1000. Despite the alike GDE 4 results for

MpC = 200, MpC = 500, and MpC = 1000, the highest MpC-refinement is considered
because of the conclusion in Chapter 5 that the GDE 4 does not cover all significant contributions.
For all considered modes, the curving in general from ¢ = 1 to ¢ = 2 leads to an improvement of
the evaluated SPL. This is especially the case for the plane wave (0, 0), where a directional shift
in the solution on meshes with ¢ = 1 is resolved on the curved meshes. The curves for curving
orders ¢ = 2 to ¢ = 6 lie too close together to allow a visual comparison.

Similarly, the plots for mode (0, 5) with MpC = 100 and MpC = 1000 in Figures 7.12(a) and
7.12(b), respectively, do not reveal any significant difference. Therefore, the corresponding error
in the SPL is shown in Figures 7.12(c) and 7.12(d), in form of the absolute difference between
the simulation result SPL and the reference SPL. However, besides the already identified higher
error with ¢ = 1, no clear tendency is observed among the higher curving orders. Also, no
improvement can be detected when changing from MpC = 100 to MpC = 1000. The plots for

the remaining modes and MpC-refinements imply the same conclusions.

7.3.2 3D Geometry

This section is a short presentation of curving results for the 3D version of the generic intake

from the previous section.
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Figure 7.12: Sound pressure levels of the 2D generic intake application case with w = 20 and mode
(0,5), evaluated along a semicircle in the computational domain. In (c) and (d), the

absolute difference to the reference SPL is plotted.
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Figure 7.13: Plot of the (a) linear and (b) curved Cmesh of the 3D generic intake. In (c), the tangled
elements are added in red. For clarity, only the nacelle and the spinner are shown.

1072 i
>
=
o
O
- 8 3 9 9 4
o MpC = 95.9
1074 L L 1 L 1 L 1 L 1 L . , —
1 92 3 4 5 6 © MpC = 507.9
q MpC = 997.3

Figure 7.14: Area-based GDE of the meshes for the 3D generic intake application case.

The 3D generic intake geometry is obtained by rotating the upper half of the 2D geometry around
the z-axis. The 3D curving approach is applied on the spinner and the nacelle surface. In Figure
7.13, the linear Cmesh and a curved version with ¢ = 6 are shown.

Since only the nacelle and the spinner are actually curved, the GDE is also evaluated based only
on those two surfaces. It is plotted in Figure 7.14 for three different Mf)(/?-reﬁnements. For
increasing geometric order, the GDEy decreases well up to ¢ = 2, before it nearly stagnates.

As mentioned at the beginning of this Section, no simulations could be applied to the curved
geometries because of tangled elements (see Fig. 7.13(c)). An untangling routine as those
described in Section 2.4 would be needed as a postprocessing step in order to allow for reliable

simulations.

7.4 Conclusions of this Chapter

This chapter provides application cases for the H' modal curving algorithm described in the
previous chapters. The first application is based on the Munt test case. For this case, the
dependency of the solution on the geometric accuracy is known ([70]). While in [70] the
geometric description is improved by mesh refinement, a coarse mesh is maintained here.
Relative to the wavelength, the mesh refinement considered here is even coarser than the coarsest
mesh in [70].
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In the simulation results for some modes, additional effects overlay the expected geometry
dependent error. These effects are only partially understood and explained in this thesis. But for
some cases, the geometric dependent error is observed with the linear mesh. There, mesh curving
leads to improvements in the solutions up to a similar extent as in [70]. Remarkable is that the
strongest improvement from curving order ¢ = 1 to ¢ = 2, and from ¢ = 4 on, no significant
improvement is observed in any case.

This first application can be seen as the academic generalistion of the second application, an
generic intake. For this more realistic geometry, the curving of the 3D version comes with the
issue of tangled elements. In this thesis, no untangling scheme is considered, therefore only the
geometric accuracy is evaluated. It reveals a clear decrease of the GDEy from g = 1to g = 2.
Only minor improvements are obtained with higher curving orders.

A 2D version of the geometry is considered as well, which allows for simulations, as the curving
does not lead to tangled elements. There, again a visual improvement is obtained when changing
from a linear to a curved mesh with ¢ = 2. While the GDE 4 improves, dependent on the
MpC-refinement, over the whole considered range ¢ = 1 — 6, no significant improvements are
observed for the simiulation results with higher curving orders.

Overall, curved meshes in general prove advantageous for the two applications with the
linearised potential equation. However, the 2D generic intake case suggests that the positive
effect is weaker than for Helmholtz simulations, especially when increasing the curving order

q > 2. As here only meshes are considered that are curved with the H' modal approach, no
comparison with respect to other, e.g. nodally curved meshes can be made. It is observed that the
mesh curving is only meaningful up to a certain, problem dependent order, from which on only
marginal or no significant improvement of the simulation accuracy is obtained. Further, the 3D

version of the generic intake highlights the need for an untangling postprocessing step.
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Chapter 8

Conclusion and Future Work

This chapter summarises the thesis and the resulting conclusions. Open questions are identified

and possible future work outlined.

8.1 Summary and Conclusions

This thesis investigates the improvement of p-FEM simulations in numerical acoustics by
high-order geometric enhancement. It is built up of two main objectives. The first is the creation
of meshes with curved boundaries with only a fine linear target mesh as geometry description.
The second objective is the analysis of the influence of the geometric accuracy of the mesh on the

simulation results for acoustic simulations, specifically Helmholtz scattering.

In Chapter 2, a review of different topics concerning geometric enhancement is given. In the
conclusions of that chapter, the main decisions on the content of this thesis are discussed based
on the literature and the assumptions on the available geometry data.

Polynomial interpolation with the standard, nodal Lagrange polynomials and the modal Lobatto
polynomials are chosen to be further considered for the geometric representation. Available mesh
curving algorithms are classified into three groups. For the two main classes with either full
knowledge of the exact geometry, or no knowledge besides a coarse linear mesh, several methods
are available in literature. Besides quadratic fittings, one high-order curving approach was found
that belongs to the same class as the methods in this thesis. The difference between this approach
and the ones developed here lies mainly in the choice of modal shape functions for the geometric
representation.

The review on GDE measures and on untangling procedures shows that for both there is already a
range of methods or measures available. From literature alone, no preferences could be found
from the discussed measures of geometric accuracy. Therefore, several measures were selected to
be applied and tested within the thesis. It is further decided not to consider or develop any

untangling or smoothing routine.

Four mesh curving methods are developed that take a fine target mesh as geometric
description: a nodal curving algorithm, a least squares modal approach, a H' modal curving, and

a reference-based modal curving algorithm. The modal methods are built by a coupling of
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established components such as the least squares approach and in the meshing community rarely
considered modal Lobatto polynomials. For the H!-optimisation that is motivated by their
definition and structure, no reference was found in the literature on mesh curving.

The methods are described in Chapter 3 and compared with two test cases, the unit circle and a
distorted ellipse. For the circle, the nodal curving implemented in Gmsh ([36]) is considered as
reference that has the exact geometry as target curve. The geometric accuracy is evaluated with
an area-based measure, similar to that introduced in the context of the reference algorithm [72].
Based on the literature review, this is the first comparison between nodal and modal curving
methods.

Two of the four methods are dismissed at the end of Chapter 3. The nodal curving method suffers
from convergence issues within the curving steps, which is why the whole approach is found to
be too unstable. A short test with alternative node spacings was performed but did not result in
any improvement. The second method that is rejected is the reference-based modal approach.
This is justified by a weaker convergence compared with the other three methods for the circle
test case and restrictions in the choice of mesh sizes for the distorted ellipse.

Between the other approaches, no clear preference is obtained from the two test cases. The
results of the ! modal based algorithm are limited by the accuracy of the underlying linear
target mesh. This is not the case for the least squares approach, which does not rely on the
interpolated data. Instead, the method considers only geometrically exact nodes of the target
mesh. However, the least squares curving is unstable or even uncalculable for too coarse target
meshes. For both curving methods, modifications could be considered to bypass their drawbacks

(see Sec. 8.2). In this thesis, only the described basic approaches are considered.

At the beginning of Chapter 4, a short review of numerical acoustics, as well as high-order
geometric implementations in FEM is provided. For the modally curved meshes, a blending
approach is developed to embed the curved boundary elements into the simulation domain. The
resulting meshes are applied for the 2D scattering test case of a plane wave by an infinite cylinder.
The obtained simulation results show the dependency of the field error on the geometric accuracy
of the domain description. Once the field discretisation is fine enough, the geometric inaccuracy
of the simulation domain becomes the dominating factor of the field error. Further, some of the
results indicate that meshes that were curved with the /' modal algorithm can lead to a lower

field error than the corresponding meshes that were curved with the least squares approach.

Motivated by these results, the relation between the geometry discretisation error (GDE) and
the geometry induced error (GIE) is evaluated in Chapter 5. Therefore, again the scattering of a
plane wave by an infinite cylinder is considered with nodally curved meshes that were obtained
using Gmsh. While in the literature only comparative statements were found on the GDE-GIE
relation, this thesis provides a quantitative study for the Helmholtz equation. Three GDE
measures are tested, as well as three field error measures. For all reasonable combinations of
these measures, a linear dependency of the GIE with the GDE, and a super-linear dependency
with the frequency w is found.

Next, the model of the relation between the area based GDE and the GIE evaluated along a ring
in the computational domain is tested for modally curved meshes. As it already foreshadowed in
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the previous chapter, the novel H' modally curved meshes prove favourable for the acoustic
simulation, compared to the meshes curved with the least squares approach. However, the
advantageous property of the H' modally curved meshes is not explained by the considered GDE

measure. This is further discussed as future work in Section 8.2.

In Chapter 6, the H' modal curving approach is extended to 3D. To ensure continuity in
between face elements, the curving step is separated into edge and face curving. The former
coincides with the 2D curving algorithm, and only the detecion of the target curves needs to be
adapted to 3D. For the face curving, more steps are necessary to define the target of the curving.
After the detection of the target points they are triangulated and then a parametrisation is formed
to define the mapping from the reference element.

The curving is extended to also enable the treatment of feature lines. As this thesis does not cover
the detection of feature lines, they are included as an additional input along with the coarse and
the fine linear mesh, in form of boundary groups that are bounded by the feature lines. This limits
the feature lines to closed loops on the surface, or curves that devide the domain boundary in two
halfes. Other ways are possible to define feature lines, as well as the coupling with a feature line
detection algorithm as preprocessing step (see Sec. 8.2).

The extension of the blending approach to 3D is described to allow for simulations on 3D
domains with curved boundaries.

Two test cases are considered to validate the curving and the feature line treatment, the unit
sphere and a cylinder. The GDE is measured with a measure based on the volume between the
curved mesh and the target. For the sphere, an additional measure based on the volume between
the curved mesh and the exact sphere is considered. The latter measure does not show the
expected behaviour and the reasoning therefore could not be found in the scope of this thesis.
This is left for future work (see Sec. 8.2). However, the test case of a plane wave scattered by the
unit sphere confirmes that the GDE evaluated towards the Mmesh is a reliable measure. This test

case also validates the embedding of the curved boundary into the domain mesh.

In Chapter 7, two applications are described with meshes curved by the H! modal curving
algorithm, one based on the academic Munt test case, the other on a generic geometry of an
intake. For the latter, both a 2D and 3D version is considered, as the curved versions of the 3D
mesh suffer from tangled elements and therefore do not allow reliable simulations. The
applications are simulations with the linearised potential equation.

Where no other effects are superimposed, a clear increase of the simulation accuracy is obtained
with the curved meshes. In all cases, the biggest improvement is obtained when comparing the
linear mesh with curved meshes with ¢ = 2. For the 2D generic intake, higher curving orders
lead to an improvement of GDE 4, but not in the simulation results. The GDEy for the 3D
generic intake on the other hand decreases well down to ¢ = 4. For the Munt test case, the
optimal curving order is ¢ = 2, ¢ = 3, or ¢ = 4, depending on the m—reﬁnement and the
considered mode.

Thus, the general positive effect of curved meshes on the simulation accuracy is confirmed also
for LPE simulations. The 2D generic intake test case though suggest that this effect is smaller

than for the Helmholtz simulations. Also the advantageous properties of the H' modal curving
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seen in Chapter 4, where an improvement of the simulation accuracy is obtained even with
stagnating GDE 4 is not observed. Further, the 3D generic intake case reinforces the need for an

untangling routine as a postprocessing step after the curving.

8.2 Future Work

Not all possible paths could be considered within this thesis. Throughout the text, remarks were
added to indicate where further research or improvements could be applied. These open issues

are summarised and discussed in this section.

8.2.1 Improvements of Curving Methods

In this thesis, basic versions of the different curving methods are considered and compared.
Especially for the two more promising approaches, the modal least squares and the H' modal
curving, their performance could be most likely improved by some modifications or
preprocessing steps.

For the least squares approach, two ways to bypass its instabilities were suggested by one of the
reviewers of [99]. One is to relax the condition of using the exact Mmesh nodes in favor of an
optimised node distribution, similarly to what is tried for the nodal curving approach in Section
3.3.2.2. The other suggestion is to apply other polynomials for the interpolation, such as
Legendre polynomials with constraints.

The main drawback of the H' modal method lies in the dependency of the Mmesh accuracy. This
bottleneck could be avoided by improving the geometric accuracy of the Mmesh in a
preprocessing step with a surface reconstruction method. Such a preprocessing step is e.g.
applied in the algorithm described in [46]. In Section 2.3.2, a short summary is provided of
literature on surface reconstruction methods.

For the described 3D development of the chosen H' modal approach, further improvements
could be considered. First, the feature line definition applied here could be improved by directly
marking individual edges as feature lines. This also allows feature lines that are not bounding a
closed boundary domain but end in the middle of the surface. Further, a feature line detection
algorithm could be implemented as a preprocessing step to override the current requirements of
additional input information for the feature line treatment. Such algorithms are available in the
literature, e.g. [47].

High priority should be assigned to adding an untangling method as a postprocessing step of the
curving. This is necessary to apply meshes curved with the described methods to simulations
with real life 3D geometries. As mentioned in Chapter 2, there is a lot of work done on this topic.
An untangling routine that seems appropriate to combine with the H' modal curving is the one
developed by Gargallo et al. [34, 33], as it does not rely on a specific polynomial basis for the
geometric description.

Finally, the performance of the H' modal curving algorithm could be improved by taking

advantage of the hierarchic structure of the Lobatto polynomial bases. Similar to the adaptive
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choice of the field order, the curving order of each boundary element could be chosen
individually with only small constraints based on the directly neighbouring elements. In flat
regions of the geometry, the curving order would be set to ¢ = 1, while it would be increased in
regions of high curvature. Combined with the above mentioned untangling procedure, the
curving order could be reduced in regions where tangling is not resolved, until a curving order is

reached that could be tackled by the untangling method.

8.2.2 Improvements of the GDE Evaluation

The evaluation of the relation between the GDE and the GIE led to the conclusion that the area
based GDE does not suffice to explain the improvements of the GIE that were obtained with H'
modally curved meshes. It is suspected that a measure based on the mesh normal could fill this
gap. In the literature, several measures based on differential geometric aspects, such as the
normal, were found. These could be applied to the curved meshes and tested for their significance
in the modelling of the GIE. However, all these measures are not independent of the curve
parametrisation. The development of a parametrisation-independent GDE measure could be
another interesting research direction.

For the generalisation of the link between the GDE and the GIE, it would have been preferable to
consider a relative area based measure for the circle test case, similar to the measure for the
distorted ellipse and the 2D generic intake, and the corresponding volume based measures in 3D.
In [99], the reliability of different GDE measures is discussed in general, triggered by a comment
of one of the reviewers regarding the example of a distorted circle with radius R of the form

x = R’ cos(8), y = R'sin(0), with R" = R + a cos(nf). The comparison of geometries with
different values of n shows that neither an area based nor a GDE based on the normal on its own
is reasonable for all possible geometries. This further enhances the idea to combine these two

GDE measures to obtain a reliable overall measure.

8.2.3 Open Questions

An open question that was not deeper examined is the stepwise behaviour for the results of the
sphere test case when it is curved with any but the reference based curving method. For the latter,
an explanation is found and provided in Section 3.3.1.

Also not further investigated is the unexpected early stagnation of the GDEy evaluated towards

the exact sphere for the unit sphere test case in Section 6.1.5.
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Appendix A

2D Blending for Reference-based Modal

Curving

In this appendix, the blending function for the reference-based modal curving is derived. Note
that the modally curved edges are represented as a linear combination of Lobatto basis
polynomials in the reference space, but not in the physical space. For this reason, the Lobatto
shape functions cannot be applied directly.

The constraints (4.9) are analogous to the property of the modal edge shape functions gpeTi, x(&) on
the triangle. The shape function is zero on edges e;, j # 4, because the product of the two
barycentric coordinates in (2.6) is zero on those edges. Along edge e;, the argument

Ai+1(&) — A\i(€) of the kernel function evolves linearly from —1 to 1 and

lo(Ni+1(§) — Ai(§)) = i and 11 (Ai11(€) — Ai(€)) = Air1. Therefore, the trace of ¢7, (&) along
e; corresponds to .

Consequently, the function

1
lo(Ni1 — Ai)li(Niy1 — Ni)

K= AAip1d® (Aip1 — i)

fulfils the constraints (4.9), with e; the curved edge.
Since k% has only influence on edge e;, this blending approach can also be applied to elements

with two or three curved edges with independent edge curving orders.

The function d depends on the formula of the curved edge. For a reference-based modally
curved edge e with vertices v; and v, quadrangle vertices g ;, 7 = 1, ..., 4 and Lobatto

coefficients o, j = 2, ..., g, the formula is

£e(&) = F(EE)n(©))
= FES ()

=2

q q
= Ce;,1€ li(f)az) + Ce; 28 + Ce, 3 (Z li(f)%‘) + Ce; 45
i=2

1=2
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with the constants

1

Ce;,1 = 1 (q%l —qe; 2 1t qe; 3 — q€i74)
1

ez = 1 (TGt + Qo2 + Qo3 — Qi)
1

Ce;,3 = Z (_q%l —Qe;2 1+ qe; 3+ q5i74)
1

Cei,4 - Z (Qei,l + Qei,Q + q6¢,3 + QGZ'A) .

The straight sided edge is parametrised as

IAGEE R

(’02 — ’Ul).

Further, the edge vertices can be represented as

1

V1= Gei 1+ 5 (Gesa — i)

1

,02 - Qe¢,2 + §(q6¢,3 - qei,Q)a

which can be used to verify the equation

c 41
9

Cer2€ + Cepa = 1 + (v2 — 1)

All together, the formula for k% can be derived as

ei dei(§)

K' = )\1)\2+1ﬁ

lo(§)11()
.l N a . ot Con— vy — Eliy
= Nidit1 (Cei,lgz di—2(&)oi + e, 3 Z Pi—2(&)oy + Cer26 F Cerd i G Ul))
i—2 i—2

lo(§)11(8)
q
= Nidit1 (Cei,15~+ Cei,3> Z¢i—2(g)ai'
i—2
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3D Curving: Details of Edge Curving

As described in Section 6.1.2.1, the detection of the target curve is done in a traversal algorithm.
It travels from the start node to the end node by moving along intersection points between the
Cmesh normal plane and the Mmesh edges. In the implementation, intersections are associated
with the corresponding Mmesh. If an intersection coincides with an Mmesh vertex, it is therefore
associated with several Mmesh edges.

Typically, several paths are possible, belonging to different initial edges. All paths are tested until
they either reach the end node or a dead end. In the end, the shortest successful path is selected.
For a general traversal step, the next edges with intersections are detected. Thereby, the algorithm
differs for the two possible cases: The current intersection point either lies on an Mmesh vertex,

or only on an Mmesh edge.

(a) Current intersection coincides with a vertex
For the case that the current intersection point falls together with an Mmesh vertex, the
subsequent intersection point is found with the following algorithm:
1. Detect the index of the Mmesh vertex currentVertex of the current intersection point.

2. Obtain the list of all Mmesh faces connectedFaces that are connected to

currentVertex.

3. Find all edges possibleEdges that belong to any of connectedFaces and that also

contain an intersection point.

4. Remove from possibleEdges all edges that were already considered for the current
path or that are connected to currentVertex. The remaining edges are the subsequent
edges next Edges.

5. Mark all edges connected to currentVertex as considered for the current path.

6. Return the next Edges and the updated list of considered edges.

(b) Current intersection lies only on an edge

In the more general case, the current intersection point does not coincide with an Mmesh
vertex, but lies on one edge that is called currentEdge. The algorithm that was described

above simplifies to

1. Obtain the Mmesh faces connectedFaces that are connected to the currentEdge.
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. Find all edges possibleEdges that belong to any of connectedFaces and that also

contain an intersection point.

. Remove from possibleEdges all edges that were already considered for the current

path. The remaining edges are the subsequent edges nextFEdges.

Return the next Edges.

The number of edges that were returned as nextEdges decides on the further progression of the

algorithm. Based on the algorithms described above, a maximum of 2 edges can be obtained.

(a) 0 edges

A dead end is reached. The traversal algorithm breaks and the next path is tested.

(b) 1 edge

The next intersection point lies only on an edge. It is marked as such, the path data is

updated and the next traversal step is started from the new intersection point.

(c) 2 edges

The next intersection point falls together with a vertex. It is checked if this vertex is also

the end point.

(A)

(B)

The end point is reached.

One of the nextEdges is added to the path. The path data is updated and the path
marked as successful. If another, shorter path was already found before, it is
neglected. Otherwise, the path is stored as the currently shortest path and the next

path is tested.

The vertex is not the end point.

The new intersection point is marked as vertex, the path data is updated with both

edges and the next traversal step is started.

Special Treatment for the Starting Edges

At the beginning of the traversal algorithm, the “next” intersection point is in general not

uniquely defined, as the paths can run in both directions from the start point and none of the

edges is already marked as ’considered”. Therefore, this case has to be treated separately by the

following algorithm:

1. Find all nextEdges starting from the vertex that corresponds to the start point, using the

algorithm that was detailed above. They are saved as secondF’dges and marked as
notTested.

2. While not all secondEdges are marked tested, try to construct a path with the first edge in

secondEdges that is marked notT ested:

i

The current secondEdge are marked as tested.
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It is tested if the other vertex of the current second E'dge corresponds to the end
point. If so, the shortest path with two edges is found. The Mmesh is too coarse at

this point and the Cmesh edge will not be curved.

All secondEdges that are marked notT'ested and that share a vertex with the current
secondEdge are detected and called adjacent Edges. The number of
adjacent Edges determines the subsequent steps:

(a) 0 adjacentEdges
The intersection point of the current secondEdge lies on the edge (not on any
Mmesh vertex). This case is treated as described above.

(b) 1 or more adjacentEdges
A direct test is run to see if the intersection point coincides with one of the two
Mmesh vertices that define the current secondFEdge. A tolerance of

10~* x minimal length of Mmesh edges is applied.

(A) If the intersection point falls together with an Mmesh vertex, an additional
test is run to find if there is an adjacent Edge with the same intersection
point. Thereby, the same tolerance is applied as for the previous test. If such
an adjacentEdge is found, both edges, the current second Edge and the
selected adjacent Edge are then marked as tested. Note that the
adjacentEdge is in the list of secondEdges as well. Otherwise, only the
current secondFEdge is added to the path and marked as tested. The case is
further treated as an intersection on an Mmesh vertex as described above.

(B) If the intersection point does not lie on an Mmesh vertex, it is treated as

described above for intersecion points that fall onto an edge.
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3D Curving: Details of Face
Triangulation

In this appendix, the different cases are listed that were treated in the face triangulation for the 3D
face curving (see Section 6.1.3.2).

It still holds that the Cmesh vertices form a subset of the Mmesh vertices. Therefore, the Cmesh
vertices can not fall into the interior or an edge of an Mmesh element. This eliminates several
cases of intersections, as e.g. the case shown in figure C.1. Further, as the underlying Mmesh is

assumed to be well defined, cases with colinear Mmesh vertices won’t be considered.

C.1 All-in, 2-in-1-boundary, 1-in-2-boundary, and All-boundary

Faces

The four cases All-in, 2-in-1-boundary, 1-in-2-boundary, and All-boundary faces have no
intersection with a Cmesh edge normal plane. The original Mmesh triangles are not truncated

and can directly be adopted for the triangulation.

C.2 2-in-1-out Faces

For triangles that have two internal and one external node, only one possible case exists (see Fig.
C.2). The intersection of the Mmesh element and the internal domain forms a quadrangle. It is
triangulated into two triangles by selecting one intersection point and detecting the corresponding

internal node on the opposite intersecting Mmesh edge. The selection of the intersection point is

Figure C.1: Case that can not happen, as the Cmesh vertices form a subset of the Mmesh vertices.
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K

Figure C.2: Cases for 2-in-1-out faces.

(a) (b) (©)

(d)

Figure C.3: Cases for 1-in-1-boundary-1-out faces.

done arbitrarily, based on the numbering in the implementation. An additional test could be run

to detect the alternative triangulation and to chose the one with the better shaped triangles.

C.3 1-in-1-boundary-1-out Faces

When considering triangles with one vertex on the boundary of the Cmesh element domain, this
vertex can either lie on the edge or on an vertex of the domain (see Figure C.3). In the
implementation, these two cases are considered separately, but treated the same way. Below, the
case with the vertex on the domain edge is described.

If a triangle is defined by one interior node, one exterior node and one node on the boundary, two
possible cases can occur, with either one or two intersection points (see Figures C.3(c), (d)). In
the case of one intersection point, the intersection of the Mmesh triangle and the domain form a
triangle that is defined by replacing the outer vertex of the Mmesh triangle with the intersection
point. With two intersection points, the intersection is a quadrangle. It is triangulated into two

triangles, following the algorithm described for 2-in-1-out faces in Section C.2.

C.4 2-boundary-1-out Faces

For 2-boundary-1-out faces, both, one, or none of the Mmesh nodes on the boundary can fall

together with an Cmesh vertex (see Fig. C.4). Again, these cases are treated separately in the
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Figure C.4: Cases for 2-boundary-1-out faces.

implementation, but can be pooled for their description.

The treatment depends on the number of intersection points of the Mmesh edges with the domain
boundary. If there is no intersection point, the Mmesh lies outside of the domain (see Fig. C.4(a),
(d), (g)) and is therefore neglected. With one intersection point, the nodes on the boundary (or
Cmesh vertices) and the intersection point form the domain-interior triangle (see Fig. C.4(b), (e),
(h)). Two intersection points can occur if only one or none of the boundary nodes lies on a Cmesh
vertex (see Fig. C.4(c), (f)). In this case, the intersection with the domain is a quadrangle that is

triangulated into two triangles analogously to the algorithm for 2-in-1-out faces in Section C.2.

C.5 1-in-2-out Faces

Mmesh triangles with one interior and two exterior nodes have either two or four intersection
points with the domain boundary (see Fig. C.5). In the case of two intersection points, the two
exterior nodes are replaced by the intersection points to form the interior triangle. With four
intersection points, the intersection of the Mmesh triangle and the domain forms a pentagon that
has to be triangulated into three triangles. They are constructed by combining the interior node
with the two intersection points with either one of the domain boundary edges, or the two

intersection points of the Mmesh edge opposite of the interior edge (see Fig. C.5(b)).
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() (b)

Figure C.5: Cases for 1-in-2-out faces.

C.6 1-boundary-2-out Faces

As in previous cases, the boundary node can coincide with a Cmesh vertex, or fall onto an edge of
the domain. Again, these two cases are treated individually in the implementation but follow the
same algorithms and are not described separately here. Mmesh triangles with 1 boundary node
and 2 exterior nodes can have no, two, three, or four intersections with the domain boundary. The
latter does not occur when the boundary node lies on a Cmesh vertex (see Fig. C.6).

The Mmesh lies completely outside of the domain when no intersection point is detected. It is
therefore neglected. With two intersection points, the internal triangle is described by the
boundary node and these two intersections. Triangulations are necessary for Mmesh triangles
with three or four intersections. There, the intersections form a quadrangle or a pentagon and are
triangulated into two or three triangles, respectively. For triangulate the quadrangle, the boundary
node is with two intersections that lie together on either an Mmesh edge or an edge of the domain
boundary. The triangulation of the pentagon follows the algorithm described in Section C.5.
Here, the boundary node replaces the internal node as basic node that is included in all three

triangles.

C.7 All-out Faces

Even if all Mmesh nodes lie outside of the domain, there are two possible cases with non-empty
intersections. They are classified by either four or six intersection points with the domain
boundary (see Fig. C.7).

In all tests for this thesis, the latter never occured Anyway, it would be associated with a very
coarse Mmesh. It was therefore neglected in the implementation, returning an error that the
Mmesh has to be refined. The intersection would form a hexagon and a triangulation would need
four triangles.

If four intersection points are detected, the intersection is a quadrangle that is split into two
triangles. The choice of the diagonal edge is arbitrarily chosen, based on the numbering of the

intersection points, similar to Section C.2.
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Figure C.7: Cases for all-out faces.
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