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High-order simulation techniques are advantageous for acoustic simulations. To effectively apply

these methods, the domain geometry has also to be accurately described with high-order

elements. In this thesis, mesh curving algorithms are considered under the restriction that only a

fine linear target mesh is provided as input geometry. This situation can arise especially in the

industrial context, where the original CAD data is not available, e.g. with scanned data or for a

subcontracted simulation company.

Here, four mesh curving algorithms are described, one nodal method and three modal methods.

Their applicability and curving accuracy is assessed and compared on basic geometries. This

leads to a preselection of two modal methods which are then further tested for their influence on

the simulation results for Helmholtz scattering problems. A modal curving that is based on the

H1-seminorm optimisation is selected as the more beneficial approach to curve meshes for

acoustic simulations. It significantly reduces the geometrically induced field error compared to

the other curving approaches. The chosen H1 modal method is extended to 3D and applied to an

academic and a realistic test case.

The second aspect of the thesis is the evaluation of the relation between the geometry

discretisation error (GDE) and the field error that is induced by the geometric inaccuracy (GIE).

This is first studied for the 2D Helmholtz scattering by a cylinder with nodal meshes obtained

with the software Gmsh. Different measures are considered for the geometric accuracy and for

the field error. The final model is described by an area based GDE and a field error evaluation

along a ring in the simulation domain. It shows a linear relation between the GIE and GDE and a

super-linear dependency of the frequency ω. Tests with modally curved meshes on the circular

geometry and for the scattering by a distorted ellipse show that the considered GDE measure

does not fully explain the dependency of the GIE on the geometric accuracy.
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5.13 Plots of the residuals vs. the fitted data of the model (5.2). . . . . . . . . . . . . 81
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R against the GDE for the H1 modal curving with

model (5.2) and the corresponding residuals vs. fitted plot. . . . . . . . . . . . . 84

5.17 Plots of the fitting of the GIE Ẽ2
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Chapter 1

Introduction

1.1 General Context

Among the environmental effects of air traffic, the noise from landings and take-offs is the most

directly noticeable ([56]). It reduces the quality of life in neighbouring areas, leading to decreases

in rents and depreciation of houses. Based on the data from the Amsterdam Airport Schiphol in

1999 as an example, the social cost arising therefrom is estimated between e400 and e900 per

landing ([58]). But noise pollution from aircraft is not only triggering annoyance in residents

close to airports. It is also seen as a possible risk factor for hypertension ([74]), to have an

adverse impact on reading and speech perception of school children ([41]) and is also associated

with sleep disturbance and tinnitus ([95]).

Besides this community noise, airport staff is also exposed to high noise levels, which is

described as ramp noise. The main contribution to the ramp noise is emitted by the auxiliary

power unit (APU).

The increasing awareness of the negative effects of noise pollution and rise in air traffic led the

European Commission to announce an objective of a 65% decrease in aircraft noise from 2000 to

2050 ([25]). This represents a challenge for aircraft and engine manufacturers, which can only be

attained by developing breakthrough design innovations and novel acoustic treatments. A design

process including prototyping and physical testing is very time consuming and costly. Therefore,

advanced virtual prototyping tools, including CAD software to model the geometry and

numerical simulations to test the resulting acoustic properties, are required. The complexity of

the problem necessitates trade-offs between the accuracy of the solution and the runtime and

memory needed to achieve it.

The CRANE project, within which this PhD is embedded, aims at reducing this trade-off by

developing methods that improve the accuracy that can be reached within reasonable runtime and

memory bounds. The main focus thereby lies on the efficient prediction of community and ramp

noise.
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Chapter 1. Introduction

1.2 Motivation for Geometric Enhancement in Acoustical
Simulations

Numerical methods are based on the concept of discretisation. In the framework of this PhD,

these are spatial discretisation and the discretisation of the field. For computations in the

time-domain also time discretisation is needed. In the frequency-domain, the bottleneck for the

refinement of the discretisation is given by the available memory. In the time-domain,

computations are less memory-consuming and this bottleneck is not present. Therefore, time

discretisation is neglected in this thesis and it is focused on simulations in the frequency-domain.

For spatial discretisation, the computational domain can be divided into non-overlapping

elements forming a mesh. Some methods do not rely on a mesh structure, but on function

evaluations at specified points in the computational domain (the so-called collocation methods or

meshless methods). This PhD will focus on the analysis of mesh-based methods.

In the standard finite element method (FEM), the field is discretised on the vertices of the mesh

using elementwise interpolation. To refine the field discretisation, e.g. to avoid large

discretisation errors, and thus increase the accuracy of the method, the spatial discretisation has

to be refined by introducing more mesh vertices. This amounts to decreasing the typical size h of

the elements. This refinement strategy is called h-refinement. With h-refinement alone,

simulations become prohibitively expensive as the frequency increases (see Equation (4.7)).

To circumvent this, another refinement strategy called p-refinement can be applied, with p

denoting the interpolation order of the field. When applying p-refinement, the representation of

the field is enhanced within individual elements. Methods that implement field representation

enhancement are called high-order methods. The way the additional information is introduced

depends on the method. In most methods, the enhanced field interpolation does not affect the

element geometric description, thus the geometric representation remains linear.

In [9], the performance of p-refined FEM with Lobatto polynomial shape functions is tested

for fixed field order p. The relation between h, p, and accuracy is evaluated. For this, a

three-dimensional simulation of a plane wave with wavenumber k propagating in a cube of size a

is considered. A significant reduction of the memory requirements is observed as the simulation

order increases. To achieve an error of 1% for simulations with Helmholtz number ka = 50,

about 30 Gb are needed for a cubic simulation. For p = 10, the same accuracy can be achieved

with only 2 Gb of memory. The simulation runtimes show a similar improvement.

As the field interpolation order p is increased, the target accuracy can be achieved with coarser

meshes. If the mesh is finer, the solution is over resolved. The computation is slowed down and

more memory is needed. Therefore, using coarse meshes is essential to fully benefit from the

performance improvements of high-order methods.

Geometric enhancement

Along with a coarse linear geometric description comes a new source of error. Computational

domains in numerical acoustics involve often curved and complex boundaries. Such structures

are only poorly represented by coarse linear interpolation, as could be seen already for a simple

2



1.3. Scope and Objectives

(a) (b)

Figure 1.1: Coarse geometry discretisation of a domain with a circular boundary, discretised by 8 (a)
linear and (b) quadratic line elements. The exact boundary is shown in red.

circle in Figure 1.1(a). To alleviate this issue, the geometric interpolation order q could be

enhanced as well. Comparing Figures 1.1(a) and 1.1(b), the improvement of the boundary

description from linear to quadratic interpolation can be seen. Note that even though the

approximation of the circle improves for increasing q, it will not be described exactly by the

piecewise polynomial interpolations.

The domain the simulation is typically run on differs from the one that was intended. In other

words, the solved problem is different from the problem that was posed. As the accuracy w.r.t.

the field representation is increased, the solution converges to the analytical solution of the

problem with the approximated domain. The difference between the analytical solutions of the

original problem and the actually solved problem is the error induced by the geometric

approximation, the geometry induced error (GIE).

1.3 Scope and Objectives

The aim of this PhD project is to decrease the GIE by enhancing the geometric description in

acoustic simulations. Therefore, the first part of the thesis covers methods to improve the

geometric discretisation. Based on the industrial orientation of the CRANE project, a main focus

lies on the applicability of the considered methods to real life problems. Commercial meshing

tools typically only provide geometric interpolation up to second order. This is similarly

expressed in [45]. The only exception known by the author is the recently developed high-order

mesh generation from Pointwise, Inc. [68]. Therefore, enhancement algorithms will be

considered that curve a given linear mesh to obtain a better geometric description of the

simulation domain.

Most mesh curving algorithms described in the literature rely on the knowledge of the exact

geometry, e.g. in form of a parametrisation. However, in many practical situations, the original

CAD-geometry is not accessible. In medical applications, only scanned pointwise data is

available for patient specific simulations. Similarly, manufactured parts are scanned and the

resulting pointwise geometry description is then used for simulations, as the manufacturing

process comes along with deviations from the original CAD-geometry. Another example are

simulation companies acting as subcontractors, for whom the full CAD data is not provided due

3



Chapter 1. Introduction

to confidentiality. In this case, the geometric information can be available directly in form of a

mesh. For this thesis, it is assumed that only such a fine linear target mesh is available. This could

correspond to a mesh used previously for low-order simulations which needs to be coarsened and

curved in order to apply it for high-order simulations. Four algorithms are developed that curve a

coarse linear mesh towards this refined linear geometry representation. Measures of the geometry

discretisation error (GDE) will be considered to compare and chose between the methods.

In the literature, several statements are provided about the general link between the geometric

accuracy and the accuracy of simulations. Numerical tests have been performed for the tension

on a plate with a circular or elliptic hole [54, 55] and for flow around a circular or symmetric

obstacle [6], providing mostly qualitative comparisons. The second part of the PhD targets the

influence of the geometric accuracy of the domain description onto the accuracy of acoustic

simulations. That is, the relation between the GDE and the GIE is analysed for scattering test

cases.

Finally, the curving algorithm that proves most advantageous is extended to 3D and the

developed method will be applied and tested for a more realistic geometry of a turbofan intake.

The objectives of the PhD are summarised as follows:

• Development of a mesh curving method with only partial information about the original

geometry.

• Evaluation of the effect of the GDE on the accuracy of acoustic simulations.

• Application of the method to test cases and a complex geometry.

The outline of this thesis is as follows: In Chapter 2, some background on geometry

representation and geometric enhancement methods is given. The developed 2D mesh curving

algorithms as well as a standard method from the literature are described in Section 3. An

overview is given of GDE measures. As a basis for simulations on the curved meshes, a review of

numerical acoustics is given in Chapter 4, as well as how the higher order meshes are embedded

into p-FEM, the selected numerical method. In Chapter 5, a literature review on the relation

between the GDE and the GIE in general is given. It is followed by a scattering test case on

high-order meshes to study the effect of the geometric accuracy in acoustics simulations for both

meshes curved with a standard reference approach and meshes that were curved with the

developed curving methods. Based on all the tests in the previous chapters, one of the methods is

selected and extended to 3D in Chapter 6. As a preparation for realistic geometries, feature line

treatment is added. The curving algorithm is then applied for two test cases, including a realistic

geometry case of a generic intake in Chapter 7. Chapter 8 summarises the previous chapters and

details possible future work.
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Chapter 2

Review of Geometric Representation
and Enhancement

As mentioned in the Introduction, high-order methods require a coarse mesh definition to operate

efficiently (see Section 1.2). At the same time, the geometric interpolation of the mesh remains

typically linear. The resulting coarse, straight sided mesh often leads to a poor geometric

description of the computational domain.

This section provides a review of the main types of curved geometry representations. An

overview of different GDE measures is given, as well as methods to create curved boundaries.

Methods to untangle and smooth curved meshes are also reviewed.

To distinguish between the field and geometric approximation, the field interpolation order is

denoted by p, the geometric interpolation order by q. The exact geometry is called Gexact, whereas

the approximate geometry is called Gapprox.

2.1 Geometry Representation

2.1.1 Polynomial Interpolation

The standard way of discretising the computational domain and representing its geometry is by

using a mesh composed of linear, straight-sided elements. Linear mesh elements are described by

their vertices and by the linear interpolation between those vertex nodes. In this way, boundary

curves are represented by a polygon, boundary surfaces for 3D domains by a polyhedral surface.

Alternatively, e.g. high-order polynomial interpolation can be applied. Different polynomial

bases come into consideration. In the following, nodal Lagrange bases and modal Lobatto bases

will be considered. Independent of the choice of the polynomial basis, interpolations are typically

based on parametric reference mappings.

2.1.1.1 Reference Mapping

An important concept in interpolation based mesh description is the parametric mapping from a

reference element to the physical element. Thereby, the geometry and location of a single

element T of the mesh is described by a mapping F : Rde → Rd, T̂ 7→ T with T̂ a reference

5
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−1 1

1

−1

ξ

η

x

y

F

T̂

T

Figure 2.1: Schematic of the mapping F from the reference element T̂ to the physical element T .

ξ0−1 1

(a) T̂ 1
line

ξ

η

0−1 1

−1

1

(b) T̂ 1
quad

ξ

η

0−1 1

−1

1

(c) T̂ 1
tria

Figure 2.2: Linear Lagrange reference elements.

element, de the dimensions of the element (e.g. de = 1 for line elements) and d the dimensions of

the physical space. T is called the physical element. The principle is shown in Figure 2.1.

Standard reference elements are the interval T̂ qline := [−1, 1] for line elements, its Cartesian

product T̂ qquad := [−1, 1]× [−1, 1] for quadrilateral elements, and the triangle T̂ qtria defined by

the nodes ξ1 = (−1,−1), ξ2 = (1,−1), and ξ3 = (−1, 1) for triangular elements (see Figure

2.2). Hexahedral and tetrahedral 3D reference elements are defined analogously.

2.1.1.2 Lagrange Basis Polynomials

The most common high-order interpolation technique is using a nodal interpolation with

Lagrange basis polynomials.

For a 1D interpolation

pn(x) =
n∑

i=0

yiL
n
i (x)

of order n through nodes xi = (xi, yi), the n+ 1 basis functions are defined as

Lni (x) =

n∏

j=0
j 6=i

(
x− xj
xi − xj

)
, i = 0, . . . n,

6
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ξ0−1 1
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0
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(h) shape fcts. for T̂ 4
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Figure 2.3: Line Lagrange reference elements for orders q = 1, . . . , 4 and the corresponding shape
functions.

and fulfil the property [66]

Lni (xj) = δi,j =





1 if i = j

0 if i 6= j
. (2.1)

An example of a piecewise quadratic Lagrange interpolation is given in Figure 2.7(b).

In addition to the two vertices, q − 1 additional nodes xi are inserted along both the reference

and the physical element. Lagrange line elements are obtained by placing the nodes in the

reference space equidistantly and using Lagrange basis polynomials for these equidistant nodes

to define the reference mapping. Examples of high-order line reference elements and the

corresponding Lagrange basis polynomials are shown in Figure 2.3. The mapping F is defined as

a 1D polynomial interpolation in each dimension:

F (ξ) =
n∑

i=1

xiL
n
i (ξ).

In the context of the element mapping, the polynomials Lni are called shape functions.

2.1.1.3 Higher-dimensional Lagrange Shape Functions

Analogously to the definition of the Lagrange basis polynomials, shape functions are defined for

the 2D and 3D reference elements.

High-order Lagrange quadrangular or hexahedral elements are defined by tensor products of

Lagrange line elements. Accordingly, the interpolation nodes form an equidistant 2- or

3-dimensional lattice on the reference element (see Figure 2.4). Shape functions Nn
Q,i for these

elements are obtained by multiplying the corresponding 1D shape function for each dimension:

Nn
Q,i(ξ) =

d∏

k=1

Lnβ(i,k) (ξk) ,

with d ∈ {2, 3}, ξk the kth coordinate of ξ, i the node number in the reference element, and

β(i, k) the 1D node number of node number i in dimension k. An example of the mapping β is

provided in Table 2.1 for the reference element shown in Figure 2.5.
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Figure 2.4: Quadrangle Lagrange reference elements for order q = 1, . . . , 4.

ξ

η

0−1 1

−1

1
7 5

1 3

6

8

2

49

Figure 2.5: Lagrange reference
element T̂ 2

quad with
node numbers in
blue.

2D node index i 1 2 3 4 5 6 7 8 9

β(i, 1) 1 2 3 3 3 2 1 1 2

β(i, 2) 1 1 1 2 3 3 3 2 2

Table 2.1: Example of index mapping β, corresponding to the
element shown in Figure 2.5.

Based on the construction of the shape functions, they inherit the property (2.1) for interpolation

nodes ξj

Nn
Q,i(ξj) = δi,j (2.2)

and span the space of polynomials

P̃n =




∑

j

cjξ
γj

∣∣∣∣ max
i
|γj,i| ≤ q, γj,i ∈ N0





with multi-index γj = (γj,1, . . . , γj,de) [100].

For triangular or tetrahedral elements, a simple tensor product approach is not suitable. Instead,

a barycentric coordinate system is applied to find shape functions Nn
T,i that satisfy the property

Nn
T,i(ξj) = δi,j ,

analogously to (2.1) and (2.2) for a set of interpolation nodes ξi on the triangular or tetrahedral

element.

The barycentric coordinates λi for a point P with Cartesian coordinates (ξp, ηp) in a triangle

8
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Figure 2.6: Triangle Lagrange reference elements for orders n = 1, . . . , 4.

with vertices (ξi, ηi), i ∈ {1, 2, 3} are defined by the equations [100]

ξp =
3∑

i=1

λi(P )ξi, ηp =
3∑

i=1

λi(P )ηi, 1 =
3∑

i=1

λi(P ).

For the reference triangle T̂tria they can be determined as

λ1(ξ, η) = −1

2
(ξ + η), λ2(ξ, η) =

1

2
(ξ + 1), λ3(ξ, η) =

1

2
(η + 1). (2.3)

Analogously, barycentric coordinates for tetrahedrals can be defined in 3D.

For triangular or tetrahedral Lagrange elements of order n, nodes are placed on the reference

element at crossings of the lattice in barycentric coordinates with width 1
n . Example elements are

shown in Figure 2.6. The corresponding shape functions of order n for an interpolation node

ξj = λj can be constructed as a product of a scaling coefficient ci and n terms zk(λ)

Nn
T,i(λ) = ci

n∏

k=1

zk(λ),

where each zk(λ) vanishes along at least one line of the λ-lattice that does not cross in the node

ξj . These shape functions form a basis for polynomials of order n:

Pn =




∑

j

cjξ
γj

∣∣∣∣
de∑

i=1

γj,i ≤ q, γj,i ∈ N0



 ,

with multi-index γj = (γj,1, . . . , γj,de) [100].

A key parameter is the position of the interior nodes added along the edges (see Figure 2.7(b)

and Figure 2.7(c)). Interpolation based on equidistant node spacing as for the Lagrange elements

defined above is known to suffer from spurious oscillation for higher interpolation orders [52]. To

alleviate this issue, other node placings have been proposed ([85, 96, 40]). Note further that not

only the geometric accuracy should be evaluated when considering node positions. The

simulation accuracy is not only affected by the error in the geometric discretisation, but also by

highly-varying, non-smooth Jacobians of the parametric mapping. Therefore, the Jacobian should

be monitored as well, targeting for nodes that are spaced similarly as those in the reference space.
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−1 0 1

−5

0

(a)

−1 0 1

−5

0

(b)

−1 0 1

−5

0

(c)

Figure 2.7: Examples of piecewise (a) linear and (b)-(c) quadratic interpolation (blue line) of a given
curve (black line). Black dots indicate the element vertices, blue dots the additional inter-
polation nodes. Figure (b) and (c) also show the effect of different node locations.

2.1.1.4 Lobatto Shape Functions

Modal polynomial bases provide node-free interpolations. Integrated Legendre polynomials, also

called Lobatto polynomials form such a modal basis [82]. They are defined by

lk(ξ) :=
1

‖PLe,k−1‖2

∫ ξ

−1
PLe,k−1(x) dx for 2 ≤ k, ξ ∈ [−1, 1] ,

with initial polynomials

l0(ξ) :=
1− ξ

2
, l1(ξ) :=

ξ + 1

2
, (2.4)

and PLe,i(ξ) as the ith Legendre polynomial. The Legendre polynomials are recursively defined

by

PLe,k(ξ) :=
2k − 1

k
ξPLe,k−1(ξ)− k − 1

k
PLe,k−2(ξ) for 2 ≤ k,

with initial polynomials

PLe,0(ξ) := 1, PLe,1(ξ) := ξ.

Figure 2.8 illustrates the Lobatto polynomial basis functions up to order q = 5. Note that the

bases are hierarchic. For the Lobatto basis Bn of order n it holds Bn−1 ⊂ Bn. Therefore, only the

additional higher-order shape function and the corresponding coefficients need to be calculated

when the order q is changed, in contrast to e.g. the Lagrange polynomial bases, where a change

of order requires a recalculation of the full basis. Further it can be noticed in Figure 2.8 that the

basis polynomials can be grouped in vertex functions l0 and l1 that have non-zero contribution at

one of the element vertices and correspond to the linear Lagrange polynomial basis, and bubble

functions li for i ≥ 2 that vanish at the vertices.

The Legendre polynomials are orthogonal in L2:

∫ 1

−1
PLe,i(ξ)PLe,j(ξ) dξ =





2
2i+1 if i = j

0 else
.
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Figure 2.8: Lobatto polynomial basis functions up to order q = 5.

(a) ϕv1
Q (b) ϕv2

Q (c) ϕv3
Q (d) ϕv4

Q

Figure 2.9: Lobatto vertex shape functions for quadrangular elements.

Thus, the Lobatto shape functions fulfil the property

∫ 1

−1
l′i(ξ)l

′
j(ξ) dξ = δij , with δij =





1 if i = j

0 else
, for i, j ≥ 2. (2.5)

As in the Lagrange case, the definition of modal shape functions for quadrilateral elements is

just the product of basis polynomials for the two coordinates.

The product of two 1D vertex functions results in vertex shape functions ϕviQ with non-zero

contribution at one of the vertices (see Fig. 2.9). Edge shape functions ϕeiQ,q1 are obtained by

multiplying a 1D vertex function in one dimension with an 1D edge function in the other

dimension. The order of the 2D edge shape function corresponds to the order q1 of the 1D edge

function. Its trace along the edge of the quadrilateral element coincides with the 1D edge

function. As for the 1D basis functions, 2D edge shape functions vanish at the vertices of the

element. Further, each one of them has only non-zero contribution at one of the element edges

and vanishes on all three other edges. The edge on which the 2D edge shape function is non-zero

is determined by the 1D vertex function (see Fig. 2.10).

The product of two 1D edge functions finally leads to bubble shape functions ϕbQ,q1,q2 . These

vanish all along the boundary of the element and are non-zero only in the interior of the element

(see Fig. 2.11). The order of the bubble shape functions is determined as the maximum of the 1D

edge function orders q1 and q2.

Shape functions for triangular elements are also grouped in vertex, edge, and bubble shape

functions. The linear vertex shape functions are simply defined as the corresponding barycentric

11
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(a) ϕe1
Q,2 (b) ϕe1

Q,3 (c) ϕe4
Q,2 (d) ϕe4

Q,3

Figure 2.10: Lobatto edge shape functions for quadrangular elements of orders q = 2, 3 and edges e1
and e4.

(a) ϕb
Q,2,2 (b) ϕb

Q,3,2 (c) ϕb
Q,2,3 (d) ϕb

Q,3,3

Figure 2.11: Lobatto bubble shape functions for quadrangular elements of orders q = 2, 3.

coordinate

ϕviT (ξ) := λi(ξ).

As in the quadrilateral case, they correspond to the linear Lagrange shape functions (see Fig.

2.12).

For the definition of edge shape functions, Kernel functions φi are introduced. They are defined

by the decomposition

lk(ξ) = l0(ξ)l1(ξ)φk−2(ξ) for k ≥ 2,

with l0 and l1 as defined in (2.4). Triangle edge shape functions of order k are then obtained by

ϕeiT,k(ξ) := λi(ξ)λi+1(ξ)φk−2 (λi+1(ξ)− λi(ξ)) , i = 1, . . . , 3, (2.6)

with λ4 := λ1. Analogously to quadrilateral edge shape functions, they correspond to the trace of

lk on the edge ei and have zero contribution on the remaining two edges (see Fig. 2.13).

Bubble shape functions that vanish on the element boundary are defined as

ϕbT,q1,q2(ξ) := λ1(ξ)λ2(ξ)λ3(ξ)φn1−1 (λ2(ξ)− λ1(ξ))φn2−1 (λ1(ξ)− λ3(ξ)) ,

with n1, n2 ≥ 1 (see Fig. 2.14). The order of the bubble shape function is determined as

q = q1 + q2 + 1.

There exists a more intuitive formula, but the one introduced here was found by Solin et al. to

have better conditioning properties [82]. By renumbering the barycentric coordinates, an

orientation can be added to the element. This is needed for the definition of 3D modal shape

functions.

For more information on Lobatto polynomials and Lobatto shape functions see [82].
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(a) ϕv1
T (b) ϕv2

T (c) ϕv3
T

Figure 2.12: Lobatto vertex shape functions for triangular elements.

(a) ϕe1
T,2 (b) ϕe1

T,3 (c) ϕe3
T,2 (d) ϕe3

T,3

Figure 2.13: Lobatto edge shape functions for triangular elements of orders q = 2, 3 and edges e1 and
e3.

An alternative way to derive a hierarchic modal basis is described in [50].

2.1.1.5 Smooth Representations

The smoothness of the curve can be an important property of the approximation. Even though

polynomials are infinitely smooth, the elementwise geometric interpolation leads to a loss of

continuity at the element boundaries. With Lagrange or Lobatto polynomials, only a C0

continuous geometric approximation is obtained. For smoother curves and surfaces, Hermite

polynomials can be used.

In [18], elements are constructed that allow a G1 continuous surface. G1 continuity is a

weakened form of C1 continuity. While the latter depends on the parametrisation of the surface,

G1 continuity only considers the smoothness of the manifold the surface corresponds to. In 2D, a

1D curve is C1 continuous at a point if the tangents from both sides of the point are equal. For

G1 continuity, the two tangents are still parallel, but of different lengths. Demkowicz et al.

illustrate the difference with an example of two parametrisations of the x3 plane: The normal

direction is constant along the plane and therefore the G1 continuity is obtained by default. With

x1 = η1, x2 = η1 + η2, x3 = 0,

a C1-continuous parametrisation is provided. But the parametrisation

x1 = η1, x2 =




η1 + η2 for η1 ≤ 0

2η1 + η2 for η1 > 0
, x3 = 0

is not differentiable at η1 = 0 and therefore not C1-continuous. Note that the equations presented

here are corrected versions of those in [18]. To visualise this example, a plot of the coordinate

lines is provided in [18] and reproduced in Figure 2.15.

13



Chapter 2. Review of Geometric Representation and Enhancement

(a) ϕb
T,1,1 (b) ϕb

T,2,1 (c) ϕb
T,1,2

Figure 2.14: Lobatto bubble shape functions for triangular elements of orders q = 3, 4.

x1

x2

(a) C1 continuity

x1

x2

(b) G1 continuity

Figure 2.15: Plot of the coordinate lines of the example parametrisations to visualise the difference
between C1 and G1 continuity. This figure is based on a figure in [18].

2.1.2 NURBS-based Interpolation

Besides polynomials, another class of basis functions, namely the Non-uniform rational B-splines

(NURBS), can be used to represent curved edges and surfaces. To represent a given geometry,

several NURBS curves (2D) or patches that are quadrangular in the parametric space (3D) are

typically required. Within one curve, the parametrisation changes at breakpoints, where the

continuity order can be decreased down to C0 to allow for sharp corners within the curve.

NURBS are able to represent many geometries exactly and are a standard way to describe

geometries in CAD applications ([79, 80]).

2.2 Quantification of the Geometric Accuracy

In the literature, several measures have been proposed to quantify the geometric error,

characterised by the difference between Gapprox and Gexact.

2.2.1 Distance-based Measures

In [2] the maximum of the radial distance between a sphere and the approximating surface is

evaluated. This pointwise evaluation provides a simple measure for the GDE, but is very specific

for the sphere case. For other geometries, the choice of corresponding points on the exact and the

approximating curve or surface becomes arbitrary, but has an effect on the resulting measure.

A more general measure of the difference between two curves is the Hausdorff distance

δH(S1, S2) = max
(
δ̃H(S1, S2), δ̃H(S2, S1)

)
, with δ̃H(X,Y ) = sup

x∈X
inf
y∈Y

d(x, y), (2.7)

for bounded S1, S2 ⊂ R and a metric d(·, ·) (see [3]). It is used as the minimised distance in

polygon matching [3] and as a deviation measure in simplification of meshes [37] or
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ε

δH δF

Figure 2.16: Example curves to show the difference between the Hausdorff and the Fréchet distance.
This figure is based on the figure in [72].

point-sampled surfaces [65]. It is a common measure for the distance between two sets.

For example, S1 could be the set of blue houses in a city and S2 the set of green houses

respectively. All people living in a blue house are assigned the task to visit one arbitrary person

living in a green house and vice versa. Assume that all persons go to the person from the other

group that lives the closest to their own place. In the end, the Hausdorff distance between the

blue and green houses is given by the longest (one way) distance that was walked by any of the

persons to fulfil their task.

Another popular distance-based measure to compare two curves is the Fréchet distance. It is

often explained by the analogy of a man walking with his dog ([3, 94]). While the man walks

along curve C1, the dog’s path is described by curve C2, where both never walk backwards. The

dog’s leash connecting them always follows the shortest connecting line between them and in the

end has to have at least the length of the maximal distance which occurred during the walk. The

outcome depends on the relative speed and speed variation of the man and the dog w.r.t. each

other. Considering all possible walking behaviours, the Fréchet distance between the curves

corresponds to the minimal needed length of the dog’s leash. Mathematically, it is given as

δF (C1, C2) = inf
α

(max (d (βC1(s), α(s)) |s ∈ [0, lC1 ])) , with β : [0, lC1 ]→ R2,

where βC1 is the parametrisation of C1 by arc length and all possible injective parametrisations of

C2 w.r.t. the length lC1 of C1 are covered by β : [0, lC1 ]→ R2 [3]. There is no need to compute

the infimum over possible parametrisations of C1. Recall that the needed leash length only

depends on the relative speed. If both, man and dog just walked twice as fast, the needed length

would be the same.

In [3] it is shown that for two closed, convex curves, the Hausdorff distance and the Fréchet

distance are the same. In other cases this is not necessarily true. An example is given in Figure

2.16. The Hausdorff distance between the two curves is 3ε and thus vanishes as ε→ 0, where as

the Fréchet distance converges to the length of the diagonal of the square indicated by the red

curve [72]. This example also shows that the Fréchet distance is consistent with the intuitive

understanding of the difference between two curves.

In [59], an algorithm for a discrete Fréchet distance between two polygonal curves is introduced.

The bound on the error between the analytical and the discrete Fréchet distance provided in

Theorem 1 of the same paper shows a linear dependency on the distance between the curve

sampling points. Looking at applications where a high accuracy is needed and the given runtime

15



Chapter 2. Review of Geometric Representation and Enhancement

of O(m1m2) for m1 and m2 sampling points on the two curves, the Fréchet distance remains

difficult to obtain, as also discussed in [72].

Note that both, Hausdorff and Fréchet distance generally depend on the metric d(·, ·). In all cases

considered here, d(·, ·) is the Euclidean metric.

A variation of the Fréchet distance was introduced in [75]. Instead of taking infimum of the

maximum or supremum over the pointwise distances between the two curves, the infimum of the

L2 norm of the pointwise distance is considered. The resulting measure is continuously

differentiable which is applicable in optimisation based mesh curving (see Section 2.3).

2.2.2 Area-based Measure

As an alternative to distance-based measures of the GDE, [72] considers a measure based on the

area A between Gexact and the Gapprox. The area is calculated segmentwise, where the segments

are bounded by the intersection points of the two curves. In each segment, the curves are

approximated by polygons, using a de Casteljau subdivision scheme. The Bézier curve

representation of Gapprox is considered, because the convex hull property provides an upper limit

estimate of the accuracy of the polygonal approximation. For most CAD-based Gexact, the same

principle can be applied. Where no Bézier curve representation is available, the polygon nodes

are sampled recursively to ensure a predefined accuracy. The area between the polygonal

approximations is triangulated to evaluate as an approximation of the segment area. The sum

over all segment areas is then divided by the arithmetic mean of the length of the two bounding

polygons. Numerical tests show a relation between the two types of measures: Optimisation w.r.t.

the area based measure also leads to a decrease in the Hausdorff distance between the two curves

[72].

2.2.3 Mapping-based Measure

In [97], a measure of the GDE is constructed that takes into account not only the curve describing

the boundary Γ, but the whole domain Ω. The paper stresses the difference between the real

physical domain Ω, which is represented by Gexact, and the approximated physical domain Ω̂ used

for the simulation. Motivated by this discrepancy, a mapping ζ : Ω→ Ω̂ is constructed which

maps a point x ∈ Ω to its position x̂ ∈ Ω̂, approximated by the geometric discretisation. For the

GDE measure, the H1(Ω) seminorm of the function dΩ(x) := id(x)− ζ(x) is divided by the

H1(Ω) seminorm of the identity function id(x) = x.

Note that for this definition of the GDE, the shape of interior elements is also considered. In the

case of a sphere as in [97], a linear mapping in polar coordinates can be used to describe Gexact.

To be without contribution to the GDE, elements in the domain interior need to be described by a

linear mapping in polar coordinates. In [97], the mesh seems to be adapted to follow this

requirement. For real-life geometries, there is generally no such simple mapping which could be

used to adapt interior elements accordingly and, in standard curved meshes, interior elements are

mostly straight sided with respect to Cartesian coordinates, independently of the accuracy of the

boundary representation.
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Figure 2.17: Schematics of geometries where the differences of (a) the (normalised) normals or (b)
the curvatures are zero for carefully chosen parametrisations.

2.2.4 Differential Geometry-based Measures

Differential geometric properties of Gexact and Gapprox could also be used to define measures of the

GDE. The maximal angle between the normals of the exact and the approximated surface are

considered in [2] to evaluate the accuracy of a polynomial fitting with different quadrangle

element types to the unit sphere.

In computer vision, curvatures such as the Gaussian and the mean curvature of a point on a the

surface are of special interest. They are the product or mean of the principal curvatures

respectively, which are the minimal and maximal directional curvatures of the surface at this

point [57]. In [57], the mean and standard deviation of the Gaussian curvature and the mean

curvature, as well as those of the angle between the exact and the approximated normal were

measured to compare different local geometry-fitting methods.

The normal, Gaussian and mean curvature are pointwise measures. Therefore, the described

measures are dependent on the parametrisations of the curves. A further disadvantage is that

these measures are not strictly proper, meaning that they can be zero for non-perfect fits. For the

normal, an example are two circles with different radii and parametrisations by the rotation angle

(see Figure 2.17(a)). For the curvature in 2D, two quadrangles with rounded corners can be

considered (see Figure 2.17(b)). Along the straight sided edges, the curvature is zero. The curved

corners are described by a quarter of a unit circle and therefore have a curvature of 1. The

parametrisations have to be chosen in such a way that the beginnings and ends of the rounded

corners are reached for the same parameters.

2.3 Creation of Curved Boundary Elements

Commonly, high-order curvilinear meshes are generated by applying a-posteriori curving

methods. The process begins with a straight sided linear mesh, which is then curved to match the

initial geometrical boundary Gexact. An advantage of these methods is that they benefit from the

well developed knowledge in the generation of linear meshes [96]. The choice of the method to

curve the boundary elements depends on the way Gexact is described:
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2.3.1 Full Geometry Knowledge

If full knowledge of Gexact is provided (e.g. in form of a parametrisation or a CAD definition),

nodal interpolations can be obtained by simply mapping the high-order interpolation nodes from

the straight sided mesh to Gexact. This approach is used with equidistant Lagrangian polynomials

in the free mesh generator Gmsh [36].

As mentioned in Section 2.1.1, the positions of interpolation nodes have an effect on the quality

of the geometric approximation. Elements with non equidistant nodal positions in the reference

space are proposed in [85, 96, 40].

Instead of specifying the node placing on the reference element, it can also be enforced on the

physical space. Therefore the node positions in the reference element have to be adapted based

on the mapping to the physical element. In [96], this is done for equidistant nodes and for Fekete

points. An approach for curvature dependent node placing is given in [52], where nodes are

placed to divide the element in parts of equal curvature variation. In [76], the position of

geometric high-order nodes is optimised with respect to the accuracy of the simulation results for

the field.

As enhancement of the Gmsh implementation, an a-posteriori mesh optimisation routine can be

applied that moves the vertices and nodes in the physical space [72]. One term of the objective

function thereby controls the geometric accuracy by measuring the area between the exact and

the approximating geometry. (Other terms will be described in Section 2.4.1.)

Similarly, a mesh curving approach by minimisation of a modified Fréchet distance (see Sec.

2.2.1) with respect to the nodal positions is presented in [75]. Nodes are thereby allowed to move

away from the surface, resulting in non-interpolatory approximations that were found to provide

better accuracies than interpolatory approximations.

While typically nodal Lagrange polynomial bases are used for the mesh description, Moxey et al.

apply a modal hierarchic basis in [60, 61] that is derived by Karniadakis [50]. The choice of these

bases is motivated by the possibility of varying local orders. However, both papers focus on mesh

smoothing and untangling strategies and make no further comment on the curving itself or the

geometric description.

2.3.2 Curve Reconstruction

If Gexact is not known, a surface reconstruction procedure has to be considered. These methods

reconstruct a high-order curved surface from the linear mesh with no additional information

about Gexact (no CAD file or exact parametrisation). Typically, local polynomial fittings are

constructed for sets of neighbouring mesh vertices.

Recently, the mesh reconstruction software meshCurve was introduced by Ims et al [45, 46].

The algorithm used for the high-order reconstruction is a modification of the Weighted Averaging

of Local Fittings (WALF) algorithm introduced by Jiao and Wang in [48]. In the original method,

second order Taylor polynomials are fitted for each mesh vertex through vertices in its

neighbourhood. The value of the fit for any arbitrary point on the mesh is then obtained from a

weighting of its barycentric coordinates (see Figure 2.18 for a schematic in 2D). Ims et al.

directly fit polynomials to the faces of the mesh in order to limit the number of averaging steps.
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Figure 2.18: Schematic of the WALF algorithm in 2D. The black dashed line represents Gexact, the
blue and green line the local fittings through x1 and x2, respectively. q1 and q2 indicate
the projection of point p on the two local fittings. The weighted average of q1 and q2 is
given by point q. This figure is based on a figure in [48].

The first paper [45] seemed to indicate that only quadratic elements could be generated (compare

[93]). In [46] it is clarified that geometric orders up to 6 can be achieved with meshCurve.

Anyhow, it is also emphasised that these higher orders can suffer from oscillatory behaviour. This

can not be prevented by several mitigation procedures that are included in the code. As future

work, the application of orthogonal polynomial bases is suggested to stabilise the calculations.

The software meshCurve is also equipped with mesh untangling and sharp edge detection

features.

Besides the WALF algorithm, Jiao and Wang also introduce the Continuous Moving Frames

(CMF) method [48]. It is similar to WALF, except that the fitting at a given point is not obtained

from a weighted sum over the neighbouring element vertices, but rather evaluated with respect to

a local coordinate system. Using this approach, CMF gets rid of the theoretically derived

limitation of accuracy h6 for WALF. However, in numerical tests, CMF does not perform

significantly better than WALF.

In [91] and its subsequent paper [51], a multi-point Taylor function is used to construct

elementwise quadratic extrapolations of a boundary surface from a linear mesh. The Hessian of

the local extrapolation is estimated with several intermediate steps from Hessians at the edge

nodes of local linear, continuous mappings. The accuracy of the quadratic approximation is

shown to be dependent on the smoothness of Gexact. The algorithm is only used to relocate new

nodes after mesh refinement. The resulting mesh is linear again.

Spherigon patches are used in [13] as a preprocessing step (see Section 2.3.3). To evaluate a

spherigon at a point P in the triangle, for each element vertex a circular arc is constructed that is

orthogonal to the vertex normal. By blending the arcs, the point on the spherigon corresponding

to P is found. The resulting smoothness of the resulting curve depends on the blending method

[92].

2.3.3 Surface Curving from Discrete Data

Similar to surface reconstruction algorithms are methods to obtain a curved surface from discrete

data. Thereby, a usually fine, pointwise or linear description of the geometry is provided. The

pointwise data could come e.g. from scanning or sampling processes and are assumed to lie on

the exact data. Linear interpolation of these exact data points provides the topology of the
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Figure 2.19: 4th order mesh with a tangled element, shown (a) in total and (b) as close-up to the
tangled element.

geometry and forms a first approximation of the geometry. In contrast to surface reconstruction

methods, this linear mesh is finer than the final curved mesh and therefore provides additional

information about the exact geometry.

Different second-order fitting methods to point-data are described and evaluated in [57]. The

methods can be grouped in three different types. The first method is based on the fitting of a

principal quadric in a rotated principal coordinate system. Then, extensions are considered, that

improve the approximation of the surface normal direction, extend the terms of the quadric, or

iterate the calculation of the surface normal and the fitted quadric. As second type, a finite

difference approach is considered and an improved version with a preprocessing smoothing step.

Last, quadratic patches are fitted to form a facet based approach. McIvor and Valkenburg

conclude that especially the smoothing step led to a significant improvement of the otherwise

rather bad finite difference approach. The different improvement steps for the quadric fitting

showed mixed results, some improving the resulting surface approximations, some not. The

results with the facet based approach were similar to those of the quadric fittings, with the

advantage of better computational performance.

In [13], high-order Bézier curves and patches are constructed from a coarse linear mesh and a

fine linear target mesh. The positions of inner control points are determined by the minimisation

of the sum over the pointwise squared distance between sampling points along the approximating

curve and their normal projection on the target mesh. The control points defining the element

vertices are fixed. In order to improve the results, the target mesh is enhanced by a mesh

reconstruction using spherigon patches. The method is further enhanced by incrementally adding

an optimisation with respect to curve bending and stretch energies ([12, 14]).

2.4 Smoothing and Untangling of Meshes

Mesh curving procedures typically curve only the boundary and leave interior edges or faces

straight sided. In doing so, elements at the boundary can become tangled, meaning that the

element edges (or also faces for 3D elements) are intersecting each other ([90], see Figure 2.19).

Meshes with tangled elements are invalid for most numerical simulations. The elements are not
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disjoint, which leads e.g. for FEM to the loss of the continuity property in the functional space

[17]. Furthermore, system matrices become non-computable, or at least ill-conditioned for

strongly distorted elements.

Many different methods to untangle and/or smooth meshes with invalid or highly distorted

elements are given in the literature. They can be classified as optimisation based methods

([29, 32, 33, 90, 72]), methods based on elasticity analogies ([96, 60]), topological mesh

modifications [53], or combinations of these techniques ([23, 71]).

Especially in the context of computational fluid dynamics (CFD), untangling methods are

developed (see e.g. [1, 96, 61]). For CFD simulations, special meshes with boundary layers are

needed. Boundary layer elements are thin in the normal direction of the boundary and have a

high aspect ratio. Therefore, meshes for CFD simulations constitute a challenge for untangling

methods [1].

2.4.1 Optimisation-based Untangling

Meshes can be smoothed by moving mesh nodes using an optimisation procedure. The objective

functions are based on quality or distortion measures. Often, these measures are not defined for

tangled elements, such as the condition number of the mapping from ideal to physical element for

linear elements in [29]. A pre-processing step is therefore required to untangle all invalid

elements.

In other cases, the measure exhibits a singularity between the domains containing the tangled and

untangled elements [33]. Such a distortion measure was regularised by Escobar et al. for linear

elements which removed the singularity between the domains ([24, 23]). Gargallo et al. adapted

the modified measure for curved higher order elements ([32, 33]).

On the other hand, well-placed singularities provide a guarantee that untangled elements do

not become invalid during optimisation. Toulorge et al. included a moving log-barrier method in

their objective function to generate such a singularity (see [90]). In the paper, the objective

function to untangle curved elements is built-up from two key terms. The first is an energy term

which takes into account the distance between the mesh vertices on the straight-sided mesh and

those on the curved mesh. By this term, main properties of the mesh such as the existence of a

boundary layer can be conserved.

To enforce untangled elements, a second term is needed. This term is given as a sum of the

function

F el (xei , ε) =

(
Be
l (xei )

Je0
− 1

)2

+ log2

(
Be
l (xei )− εJe0
Je0 − εJe0

)
, (2.8)

over all Bézier coefficients Bl at node xi of all elements e. Je0 denotes the Jacobian of the

mapping from a straight sided reference triangle T̂ to the straight sided triangle defined by the

vertices of e. It is used to scale the Jacobian JF of the mapping F from T̂ to e. This Jacobian is a

measure for the validity and shape-regularity of e: A change of sign of JF within the element

corresponds to tangling, values of JF close to 0 indicate a strongly distorted element. The

minimal and the maximal Bézier coefficients provide a lower and upper bound for JF due to the

convex hull property of Bézier polynomials. Thus, optimising the Bézier coefficients also

optimises JF and counteracts tangling.
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Jacobians with large values are penalised by the quadratic term. The logarithmic term is called

log barrier and creates a singularity at ε. At the beginning, ε is set to a value just below the

current minimum of the scaled Jacobian. As the mesh quality improves during optimisation and

the scaled Jacobian increases, the barrier is moved accordingly. Once a minimal Jacobian target

is reached, the optimisation procedure is stopped.

Since the barrier can also be set for a negative Jacobian value, untangling of invalid elements is

possible. However, it is also mentioned in [90] that the two given terms alone do not necessarily

work for mesh optimisation. Therefore, additional optional terms for the objective function are

given, to either preserve an element’s shape [90] or minimise the area between the mesh

boundary Gapprox and the meshed geometry Gexact [72].

2.4.2 Elasticity Analogies

For untangling based on elasticity analogies, the displacement of interior nodes is obtained by

solving an elasticity equation. A linear elasticity model is considered in [96], where the stress

tensor of the model is based on the tensor of node displacements. The displacement of the

boundary nodes to the exact, curved geometry Gexact are enforced through Dirichlet boundary

conditions and the unknowns are the displacements of the interior nodes. This way, the curvature

of the boundary is propagated in the domain interior.

In [60], Moxey et al. expand the linear elasticity model by a term resulting from a thermal

analogy. Depending on the considered mesh quality measure, the term represents an increased or

decreased temperature, which causes the mesh elements to enlarge or tighten. Numerical results

show that the additional term can improve the mesh quality.

2.4.3 Untangling by Topological Mesh Modifications

Untangling methods most often relocate the nodes without altering the mesh structure. A

different approach is to make changes to the mesh topology by removing, recreating or swapping

edges or faces.

In [53], an algorithm is introduced which allows to determine the optimal alteration on a set of

tetrahedral elements. It relies on the representation of the mesh with Bézier curves and the

resulting convex hull property. Figure 2.20 provides a selection of the applied mesh

modifications: edge split, edge swap, edge collapse, and edge reshape. Note that the last case,

edge reshape, is not a topological mesh modification. If the mesh is not given in a Bézier

representation, criteria based on element area, angles, and edge lengths such as described in [71]

can be used to detect edges for flipping, splitting or removal.

Topological mesh modifications can be combined with other smoothing or untangling techniques

to increase their qualitative performance. The mesh modifications in [71] are applied together

with optimisation-based untangling. The whole algorithm is not relying on a representation of

Gexact. Instead it uses the WALF method [48] to reconstruct a high-order description from the

linear mesh.

In [23], the optimisation introduced in [24] is combined with a refinement step that changes the

mesh topology. The two methods are applied in an alternating way. First the mesh is optimised,

until the optimisation procedure stagnates. Then, the elements with their quality close to the
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Figure 2.20: Selection of mesh modifications that are described in [53]. This figure is based on a
figure in [53].

minimal quality are refined and the new mesh optimised again. The last two steps can be iterated

a few times. Using this approach, the minimal element quality of the mesh can be increased

further than with an optimisation-alone approach. For the presented numerical examples, each

iteration of refinement and optimisation leads to an improvement of the minimal quality.

However, note that when improving the element minimal quality, the average quality is only

marginally decreased.

2.4.4 Prevention of Tangling by Iterative Node Moving

A problem with untangling methods is that they cannot really guarantee to provide an

analysis-suitable mesh within reasonable runtime. In [45] for instance, the software meshCurve

does not guarantee that the resulting mesh does not contain tangled elements. Similarly, in some

cases, the untangling procedure in [90] can fail to produce a valid mesh. The success of the

method partly depends on reasonable choices of parameter values. Its success rate can be

increased by iterative adaption of these parameters, which also increases the runtime of the

algorithm.

Another way of posing the problem is to prevent tangled elements from appearing during the

curving process. This is typically done by iterative node movement, which only allows node

displacements that are within the bounds of an analysis-suitable mesh.

An iterative node displacement is used in [1] to create a valid mesh of curved simplices,

described by Bézier or NURBS curves. The algorithm starts form a coarse linear mesh and a

piecewise Bézier or NURBS description of the curved boundary. By subdivision, a second, finer

mesh is obtained which can be interpreted as the mesh of control points of the coarse mesh. A

linear elasticity equation is solved for the vertex displacement of the control point mesh.

Dirichlet boundary conditions are applied to enforce the boundary vertices onto the control points
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of the curved boundary description. An iterative update of the vertex positions ensures that all

elements remain untangled. The convex hull property of Bézier or NURBS curves guarantees

that a valid mesh of control points leads to a valid curved coarse mesh.

In [49], Jiao et al. apply an iterative rescaling of node displacements that were calculated in the

context of mesh smoothing for straight-sided meshes by optimisation. During the mesh update

step in the smoothing algorithm, all nodes are moved at the same time, which could result in

tangled elements. To prevent this, the displacements of the nodes are iteratively rescaled until

they can be applied without causing any tangling.

In [71], this method is applied to prevent the formation of new tangled elements during mesh

optimisation and high-order mesh reconstruction. Additionally, displacements for the mesh

update are rescaled, to lie within the 1-ring neighbourhood of the original vertex. In the case of

edge contraction, changes are also only applied if they do not result in tangled elements.

2.5 Conclusion of the Review

In this section, a review of geometric representations, of the evaluation of their accuracy and of

methods for the enhancement was provided.

Two general ways of geometric representations were described: polynomial based and NURBS

based interpolation. As it was mentioned in the Introduction, this thesis focuses on the case

where no CAD or other exact geometric description is available. Therefore, the advantages of

using NURBS can not be exploited and their more complicated structure makes them less

favourable compared to the rather simple polynomial interpolation.

For the polynomial interpolation, again two types were proposed: nodal Lagrange polynomials

and modal Lobatto polynomials. Lagrange polynomials are the standard form of polynomial

interpolation in geometry representation. Lobatto polynomials on the other hand show promising

properties. As modal polynomials, their representation does not rely on edge- or element-interior

node positions. And the hierarchical property of the bases can be used to perform changes of

interpolation orders with minimal cost. Both polynomial types will be further considered.

Polynomial bases that provide smooth representations will be discarded for lack of a simple

generalisation between 2D and 3D elements.

In between the presented measures of the GDE, no ranking of their significance for the acoustical

simulations can be specified. Therefore several of them will be applied in Chapter 5 for the study

of the dependency between the GDE and GIE, to assess their relevances. The differential

geometry-based measures will not be applied due to their described disadvantages. For the GDE

evaluation to compare the curving methods in Chapter 3, the area based method will be applied.

The review of mesh curving methods was divided into three categories. Most methods fall under

the first category of methods that rely on the full knowledge of the exact geometry. As mentioned

before and in the Introduction, this knowledge is assumed not to be given for this thesis. Curve

reconstruction methods on the other side also do not fully serve the purpose, since they consider

no additional knowledge of the original geometry besides the current coarse linear mesh. But

they could be applied to the target mesh in a preprocessing step, improving the accuracy of the

overall mesh curving process.
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Such a prepocessing step was similarly applied for the last described method, which provides

surface curving from discrete data. This method corresponds closely to the problem considered in

this thesis. The main difference to the curving algorithms that will be proposed in Chapter 3 lies

in the choice of the geometric representation. In the mentioned papers, the least squares approach

shows promising results for the mesh curving, but it is not tested how appropriate the resulting

curved meshes are for simulations. Therefore, the least squares approach will be adapted for the

modal shape functions in this thesis. Further, curving routines with different minimisation

procedures and objective functions during the curving process will be considered as well, and the

resulting meshes also evaluated with acoustic simulations.

From the review of smoothing and untangling methods it became clear that this topic is already

widely explored. Therefore it was decided to refrain from the development of an additional

untangling method.

Considering the literature review in this chapter and the additional short reviews at the beginning

of Chapters 4 and 5, the major novel elements of this thesis can be summarised as

• Development of a 2D and 3D mesh curving routine with modal Lobatto shape functions on

the basis of restricted geometric knowledge.

• Comparison of nodal and modal curving methods for Helmholtz scattering simulations.

• Detection of the advantageous effect of H1-optimised mesh curving for Helmholtz

simulations.

• Quantitative study on the relation between the geometric accuracy and the geometry

induced error for Helmholtz simulations.
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Chapter 3

Generation of 2D Meshes with Curved
Boundaries

As mentioned in the Introduction and Chapter 2, the main target of this thesis is the development

of a mesh curving algorithm based only on limited knowledge of the original geometry.

In this chapter, five different curving approaches are considered. Four curving algorithms are

introduced that take only a fine linear mesh as input for the target curve. One is based on a nodal

geometry representation using Lagrange basis polynomials. The other ones use Lobatto basis

functions to obtain a modal geometry representation. An established implementation that creates

high-order Lagrange elements is used as a reference. It is based on the full knowledge of the

CAD representation. The curving methods are evaluated and compared with an area based GDE

measure. Most parts of this Chapter were published in the conference papers [77] and [98], and

the journal paper [99].

The surface meshes with curved boundaries will then be used later in Chapter 5 to analyse the

influence of the geometric accuracy on the error of acoustic simulations.

3.1 Reference Lagrange Approach

The first curving algorithm that is considered is the Lagrange approach as it is implemented in

the meshing software Gmsh. The open-source project was originally a linear mesh generator

[36]. The high-order functionality was added in the later development as an a-posteriori curving

after the linear meshing step. The approach is described in [35] and is based on reference element

mappings with equidistant nodes on the reference element as introduced in Section 2.1.1.1. Since

the curving takes place directly in the meshing environment, full knowledge of the underlying

CAD-geometry is available.

For the curving of line elements or element edges, high order nodes in the physical space are first

placed equidistantly along the linear edge. To map the points onto the target geometry, an

orthogonal projection is used. Note that only the interior edge nodes need to be mapped as the

vertex-nodes already lie on the exact geometry.

Gmsh provides high-order mesh generation up to q = 10. Aditionally, Gmsh implements

optimisation algorithms that optimise the node positions [90], [72]. The objective function is

thereby a weighted sum of energy terms that were described in Sections 2.3.1 and 2.4.1.
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(a) (b) (c)

Figure 3.1: Schematic of (a) the fine linear Mmesh of the boundary, (b) the coarse linear Cmesh of
the domain, and (c) the curved Cmesh.

Particularly, renewed mention deserves the area minimisation term

D(xe) :=
∑

e

deA(xe),

with deA the area based GDE measure between an element e and the exact curve, and xe the

vector of element vertices. For the tests, optimised meshes are considered.

3.2 Cmesh-Mmesh Approaches

The reference Lagrange approach described in the last section relies on the full knowledge of the

exact geometry. In applications, this knowledge is often not available. In this section, four mesh

curving algorithms are presented that rely on a fine, piecewise linear approximation of the

geometry as target curve. This fine target mesh is named model mesh or Mmesh. It is denoted

M := (VM, EM), with nvM mesh vertices VM :=
{
vM,1,vM,2, . . . ,vM,nv

M

}
, vM,i ∈ R2 and

neM edges EM :=
{
eM,1, . . . , eM,ne

M

}
that connect them.

The proposed algorithms are a-posteriori curving methods, meaning that they start off from a

coarse linear mesh obtained from a linear mesh generation. The coarse mesh is curved during the

algorithm and is named computational mesh or Cmesh. It is denoted C, with VC , EC , neC , and nvC
defined analogously to VM, EM, neM, and nvM. For all described curving methods, it is assumed

that the Cmesh vertices are a subset of the Mmesh vertices. If necessary, this can be achieved in a

preprocessing step by moving the Cmesh vertices to the closest Mmesh vertices. The

Cmesh-Mmesh principle is illustrated in Figure 3.1.

3.2.1 Nodal Curving Algorithm

The first introduced curving algorithm is a nodal method. The approximation of the target curve

is based on the high-order nodes that are additionally placed on the line elements (compare the

description of Lagrange basis polynomials in Section 2.1.1.2). The Cmesh is described by an

elementwise polynomial mapping. It maps from the reference element [−1, 1] to the physical

space and corresponds to the mapping in the reference Lagrange approach. The basis of the

mapping is formed by Lagrange polynomials with equidistant nodes in the reference space (see

Section 2.1.1.2). In order to curve elementwise the Cmesh, the high-order node positions have to

be found in the physical space.
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Figure 3.2: The figures illustrate the two different iteration steps that form the nodal curving algo-
rithm. The blue curve represents the target curve M. The C element at the beginning
of the iteration step is drawn in black, whereas the red curve shows the result after the
iteration step. In green, helplines and intersection points are indicated.

The algorithm starts with adding the q − 1 high-order interpolation nodes to the linear Cmesh.

On each Cmesh element, they are placed equidistantly in the physical space to form the

polynomial parametrisation gk : [−1, 1]→ R2 of order q. During the curving process, two

operations are applied to move the high-order nodes towards the Mmesh target curve. This is

done in a nested two-step iteration scheme:

1. In the outer loop, the nodes are moved along the local Cmesh normal direction to

successively come closer to the Mmesh. This is done in niter iteration steps, within which

each node is treated individually. In Figure 3.2(a), an example of this curving iteration step

is illustrated.

In the kth iteration, the position of the ith node is updated from pi,k to pi,k+1. Therefore,

the normal ni,k of the parametrisation gk at pi,k is evaluated. The target point qi,k for pi,k
on the Mmesh is evaluated as the closest intersection point between the Mmesh and pi,k
and the line along the normal direction. The node position is then updated as

pi,k+1 = pi,k + σk (qi,k − pi,k) , (3.1)

with σk = k
niter

.

2. The inner iteration consists of correction steps to readjust the node spacing (see Figure

3.2(b)). The spacing in the physical space is targeted to be similiar to the node spacing in

the reference space. In accordance with the equidistantly spaced nodes in the reference

space, the relocation aims therefore for approximately equidistantly spaced nodes in the

physical space. It is applied after each curving step.

For node pi,j in the jth iteration step, the midpoint of its neighbouring points is computed

asmi,j :=
pi−1,j+pi+1,j

2 . This midpoint is then projected onto the tangent ti,j in pi,j to

obtain the target point m̃i,j for the node update. All nodes are moved at the same time by

pi,j+1 = pi,j + τ (m̃i,j − pi,j) , (3.2)

where τ = 0.4 is a scaling factor that reduces the risk to overshoot. Note that τ can be

chosen from τ ∈ (0, 1]. For τ = 1, the point would be moved directly onto the target point,
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for τ = 0 it would not be moved at all.

As the correction step does generally not place the nodes exactly onto the Mmesh, one extra

mesh deformation step is applied with σniter+1 = 1 after the last iteration step.

To find the number of iterations that are needed for the method to converge, the number of

iteration steps are increased adaptively. The distance between the nodes obtained with different

iteration steps is evaluated. When the maximal distance falls below a predefined nodal tolerance

of 10−14, the method is declared converged. The number of iteration steps are increased for both

loops simultaneously, with that of the outer loop increasing faster. If no convergence is observed

until the number of iteration steps of the outer loop reaches the upper limit of 200 iterations, the

algorithm breaks down.

3.2.2 Modal Curving Algorithms

Besides the nodal approaches, modal curving methods are considered. They rely on a description

of the curved mesh with the hierarchic modal Lobatto polynomial basis which was introduced in

2.1.1.4. As with Lagrange basis polynomials, the curves are generally described by a linear

combination f̂ =
∑nq

i=1αili, with li the ith Lobatto polynomial. The main difference to the

nodal approaches is that there are no high-order nodes to define the geometry. Instead, the

coefficients αi have to be determined in the curving process.

From the polynomial approximation f̂(ξ), the linear interpolation with the first-order shape

functions is known by the Cmesh vertex positions p1 = (p1,x, p1,y) and p2 = (p2,x, p2,y). Thus,

only the interpolation with the higher-order shape functions (which will be called the polynomial

deflection) and the corresponding αj with j = 2, . . . , q have to be determined in the curving

process.

f̂(ξ) =
1

2
(−ξ + 1)p1 +

1

2
(ξ + 1)p2

︸ ︷︷ ︸
linear interpolation

+

q∑

i=2

αili(ξ)

︸ ︷︷ ︸
polynomial deflection

for ξ ∈ [−1, 1] .

Hereafter, three a-posteriori methods are described to obtain the αi coefficients. The first is a

least squares approach. There, only the Mmesh vertices are considered to describe the target

curve. These nodes lie on the exact geometry. The other two methods are based on an

optimisation with respect to the H1-seminorm. This allows to take full advantage of the

δ-property (2.5) of the Lobatto shape functions and bypasses matrix inversions. The optimisation

will be considered in two different function spaces.

3.2.2.1 Least Squares Modal Curving

The first curving method follows the standard least squares approach by minimising a squared

error. Therefore, the error is evaluated as the squared distance between the Mmesh vertices and

corresponding points on the Cmesh. As the measure is pointwise, no interpolation is necessary

between the Mmesh vertices, and only geometrically exact information is considered. In [13], a

similar approach is described that applies Bézier curves for the geometric approximation.
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A single Cmesh element is curved by approximating the n target Mmesh vertices (xi, yi) with the

polynomial f̂ =
∑q

j=0αjlj(ξ). The Mmesh arc is parametrised based on the element length with

ξi = −1 + 2

∑i−1
j=1 hj∑n−1
j=1 hj

∈ [−1, 1] (3.3)

corresponding to (xi, yi) and hj the length of the j-th Mmesh element on the arc. This

parametrisation allows to find the corresponding points on the Cmesh for each Mmesh vertex.

The minimisation that has to be fulfilled by the coefficients αj is then

minα

n∑

i=1

‖(xi, yi)− f̂(α2, . . . ,αq; ξi)‖22.

The minimisation is transformed into a system of linear equations by taking the derivatives with

respect to the individual αjs and setting the resulting equation to 0. Both the x- and y coordinates

are described independently. For each coordinate this results in an independent linear system,

with αi = (αi,x, αi,y). The derivation is shown for the x-coordinate. The subindex x is dropped

for readability.

q∑

j=2

αj

n∑

i=1

lk(ξi)lj(ξi)

︸ ︷︷ ︸
=:akj

=
n∑

i=1

xilk(ξi)−
1∑

j=0

αj

n∑

i=1

lk(ξi)lj(ξi)

︸ ︷︷ ︸
=:bk

⇔ Aα = b,

with

A =




a2,2 · · · a2,q

...
. . .

...

aq,2 · · · aq,q


 , α =




α2

...

αq


 , b =




b2
...

bq


 ,

whereA is a generally fully-populated matrix. The system for the y-coordinate follows

analogously.

3.2.2.2 H1 Modal Curving

A second modal based curving method is presented that is based on an optimisation in the

H1-seminorm. Taking advantage of the δ-property (2.5) of the Lobatto shape functions, an

explicit formula can be derived for the coefficients αi. The general derivation is described in [82]

as projection based interpolation. The optimisation is considered for each coordinate

independently and accordingly, a set of αi-values is obtained for each coordinate. Here, the

derivation is outlined for the x-coordinate αi-values that approximate the target fx by f̂x. For

simplicity, the x-index is dropped for the αi. The y-coordinate αi-values are found analogously.

The difference between the target fx and its approximation f̂x shall be minimised in the
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H1-seminorm. Hence, the αi have to fulfil the optimisation problem

minα|fx − f̂x|H1 = minα

∫ 1

−1
(f ′x − f̂x

′
)2dξ.

Note that this optimisation minimises the deviation of the parametrisations’ derivatives. These

are directly linked to the curves tangents and normals. The minimisation in the H1-seminorm

therefore corresponds to an optimisation of the normal approximation.

As described above, the linear interpolation of the Cmesh vertices is already defined by the

known α0 and α1. Thus, the target curve is split up in the known linear part and the remaining

deflection d

fx = α0l0 + α1l1︸ ︷︷ ︸
linear part

+ d

and the optimisation reduces to

minα

∫ 1

−1
(d′ −

q∑

i=2

αil
′
i(ξ))

2dξ.

For the αk that solve the minimisation it holds that

∂

∂αk

∫ 1

−1
(d′ −

q∑

i=2

αil
′
i(ξ))

2dξ = 0.

This can be reformulated to obtain an explicit formula for the coefficients

∂

∂αk

∫ 1

−1
(d′ −

q∑

i=2

αil
′
i(ξ))

2dξ =2

∫ 1

−1
(d′ −

q∑

i=2

αil
′
i(ξ))l

′
k(ξ)dξ

(2.5)
= 2

∫ 1

−1
d′l′kdξ − 2αk

⇒ αk =

∫ 1

−1
d′l′kdξ.

Note that, as the target curve is the piecewise linear curve connecting the Mmesh vertices, d is

generally non-polynomial. Further, its formula depends on the parametrisation of the Mmesh arc

over the Cmesh element. Here, a parametrisation based on the physical lengths of the Mmesh

elements is applied. The resulting formulas for the deflection are

di(ξ) =

∑n−1
j=1 hj

2hi
(xi+1 − xi)


ξ − (−1 +

2∑n−1
j=1 hj

i−1∑

j=1

hj)


+ xi

−
(

1

2
(−ξ + 1)p1,x +

1

2
(ξ + 1)p2,x

)

︸ ︷︷ ︸
linear part

d′i(ξ) =

∑n−1
j=1 hj

2hi
(xi+1 − xi) +

1

2
p1,x −

1

2
p2,x,

with d = di if ξ ∈ [ξi, ξi+1], n the number of Mmesh vertices on the Mmesh arc, hj the lengths
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Figure 3.3: Illustration of the reference-based modal method with the physical space on the left and the
reference space on the right. TheM drawn in blue, C with edge ei in black, the quadrangle
spanned by ei in grey, and the bounding interval I in red. In the reference space, the blue
curve represents the local function w and the red one the polynomial interpolation w̃. The
reference quadrangle is indicated in grey.

of the jth Mmesh element on the Mmesh arc, and ξi as defined in (3.3). The resulting formula for

the αk is

αk =
∑n−1

i=1

(∫ ξi+1

ξi

∑n−1
j=1 hj
2hi

(xi+1 − xi)l′k(ξ)dξ
)

+
(

1
2p1,x − 1

2p2,x,
) ∫ 1
−1 l
′
k(ξ)dξ.

This algorithm will be referred to as H1 modal curving.

3.2.2.3 Reference-based Modal Curving Algorithm

The third considered method will be called reference based modal curving. As in the H1 curving

approach, it is based on an optimisation in the H1-seminorm. For this method, the Mmesh

vertices are mapped onto a reference space. Their linear interpolation is then approximated. In

the (ξ, η) - reference space, the linear Cmesh element is mapped onto the [−1, 1] interval on the

ξ-axis. The advantage of this method is that only one set of αi-values for the η-coordinate has to

be calculated. The final curve is obtained by mapping the polynomial interpolation back into the

physical space. The method is illustrated in Figure 3.3.

The main difference to the previous method lies in the mapping FQ(ξ, η) from the reference to

the physical space. It maps the standard [(−1,−1), (1, 1)] reference quadrangle to a straight

sided quadrangle in the physical space that is constructed around the Cmesh element. Therefore,

the Cmesh vertices are extruded in positive and negative vertex normal directions. The extrusion

length is predefined to ensure that the quadrangles are untangled, dinstinct and that the whole

Mmesh is covered by their union.

Those Mmesh vertices that lie in the bounding interval I of the quadrangle are inversely mapped

onto the reference space. As generally no closed-form expression of F−1
Q is available, the

corresponding points in the reference space are obtained by minimising the objective function

g(ξ, η) := |x− FQ(ξ, η)|.
The target curve in the reference domain, defined as the linear interpolation of the mapped

Mmesh vertices, is denoted by w. Note that this linear interpolation only approximates the

inverse image ofM, as FQ is generally not linear.
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Analogously to the H1 modal curving, the αi-values to approximate the target curve are defined

by an optimisation in the H1-seminorm

α := argminα |w − w̃|H1 = argminα

∫ 1

−1
(w − w̃)′ (w − w̃)′ dξ,

Again, the linear interpolation is predefined by w(−1) = α0 = w(1) = α1 = 0 and a

closed-form expression of the remaining α2 . . . αq is found as

αi =

∫ 1

−1
w′(ξ)li(ξ) dξ, for i = 2, . . . , q.

3.3 Comparison of the Methods

In this Section, the introduced curving methods are compared. They are applied to two test

geometries. Additionally, the applicability and the resulting accuracy in the geometric

approximation are analysed.

3.3.1 Circle Test Case

The first test geometry is the unit circle. It will be also applied later for simulation tests (see

Section 4.4.1).

3.3.1.1 Geometry and Meshes

For the reference Lagrange approach, the geometry is defined by four quadrants using the

Gmsh-internal command Circle. A mesh with evenly sized elements is created and then curved.

For the nodal and the modal curving approaches, the Mmesh and Cmesh are generated the same

way. Before the curving, the assumption VC ⊂ VM has to be fulfilled. Therefore, each Cmesh

vertex is snapped onto the closest Mmesh vertex, where the distance is measured in Euclidean

distance. Note that this choice, instead of using the geodesic distance, could lead to an invalid

Cmesh for thin geometries. In this thesis, the Mmesh is assumed to appropriately describe the

geometry, including a high enough refinement to avoid such problems. This is achieved by a

refinement the same size as the geometry thickness, as one half of the Mmesh element size is the

maximum distance between a Cmesh vertex and its closest Mmesh vertex.

3.3.1.2 GDE Measure for the Comparison

The accuracy of the curving is evaluated using a measure based on the area A between the exact

circle and its approximating curve. A similar measure was applied in [72]. The main advantage

of area-based measures is that they are independent of the curve parametrisation, as opposed to

the described measures based on the curve normal or curvatures (see Section 2.2.4). Further, in

[72] they were found to show some correlation with the Hausdorff distance and are much easier

to compute than the latter.

For this test case, the parametrisation of the exact boundary and its inverse are known. This

knowledge can be used to calculate the area directly. First, the inverse parametrisation of the
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Figure 3.4: Sketch of the ODE-based calculation of the area between two parametrised curves.

angle based parametrisation ci(θ) of the circle is used to find the parameter interval [θ1, θ2] that

corresponds to the ith Cmesh element. The parametrisation ĉi(θ) of its approximation is then

constructed over the same reference interval. Following the area formula Aquad = 1
2 |b1 × b2| of a

quadrilateral with diagonals b1 and b2, the increase of the area between the two curves when

travelling along the parametrisation from θ to θ + dθ can be evaluated as

Ai(s+ ds)−Ai(s) =
1

2
|(ci(s+ ds)− ĉi(s))× (ci(s)− ĉi(s+ ds))|

for a small step dθ (see Fig. 3.4).

After linear Taylor series expansions of ci and ĉi, the formula can be rearranged to the ordinary

differential equation

dAi
ds

(s) =
1

2

∣∣(ĉi(s)− ci(s))×
(
ĉ′i(s) + c′i(s)

)∣∣ . (3.4)

By solving (3.4) with the initial value Ae(s0,i) = 0, the area between the two curves is obtained.

This approach bypasses the approximation of both curves by a polygon as it is done in [72].

For the total area, the elementwise areas Ai are summed up as GDEA := A =
∑

iAi.

3.3.1.3 Results

Figure 3.5 shows q-convergence results for nodally and for modally curved elements with

varying numbers of Mmesh elements per Cmesh element. Due to the construction of C andM,

this number is constant and can be calculated as MpC = ne
M/ne

C. The GDEA is plotted for the

case neC = 12. The results for the Lagrange elements are included as reference.

For all five methods, the q-convergence plots show an odd-even stepwise behaviour. This is

linked to the specific circle geometry, as it is not observed in later test cases (see Section 3.3.2).

The first intuition is that the behaviour is linked to the symmetry of the circle arcs and the

symmetry of the shape functions. For the reference-based modal curving this is confirmed by the

fact that the α values corresponding to odd order shape functions are of order 10−13. Lobatto

basis polynomials can be split in those that are of even order and axially symmetric in ξ = 0

(l2k(−ξ) = l2k(ξ)), and those of odd orders that are anti-symmetric with respect to the origin

(l2k+1(−ξ) = −l2k+1(ξ)). In the reference space, the target curve is defined in one coordinate

only and over the same parameter interval as the Lobatto shape functions. Due to the circle’s

symmetry, it is further axially symmetric in ξ = 0, like the Lobatto polynomials of even order.

Therefore, no significant contribution is observed from the Lobatto basis polynomials of odd
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(c) H1 modal curving
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Figure 3.5: Plot of the relative area between the exact circle and the approximation curved with (a)
the nodal curving approach, (b) the reference-based modal approach, (c) the H1 modal
curving or (d) the least squares approach, for neC = 12 and different ratios MpC.
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MpC 10 50 100 500 1000

area 1.4353 · 10−3 5.7419 · 10−5 1.4355 · 10−5 5.7419 · 10−7 1.4359 · 10−7

Table 3.1: Area between the Mmesh and the exact circle.
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Figure 3.6: Plots showing the Mmesh vertices in black and the high-order nodes of the nodally curved
Cmesh in red. For q = 5 and q = 10, the Cmesh nodes coincide with geometrically exact
Mmesh vertices. This is not the case for q = 7.

order. For all other methods, the stepwise behaviour is less strong and an evaluation of the

contributions of odd and even shape functions could not confirm that only the even shape

functions contribute to the approximation of the circle arc.

For the results of the nodal curving, two combined effects are observed. The curves show a

stagnating behaviour. The stagnation level decreases as MpC increases. It corresponds to the

area between the Mmesh and the exact circle (see Table 3.1). Therefore, the stagnation is

explained by the inaccuracy ofM with respect to the exact circle.

For some orders q, the results deviate from this accuracy bound and fall together with the

Lagrange reference. More accurately, this happens for orders that are divisors of the MpC. In

these cases, the higher order nodes of the nodal approach fall ontoM vertices. Therefore, they

are exact and the resulting curve corresponds to the standard Lagrange curve (see Fig. 3.6). Note

that this behaviour is due to the symmetry of the circle arc over each Cmesh element. If the

Mmesh is further refined, the error stagnation level becomes less significant. Then it can be

observed that also for non-divisor numbers of nodes, where the nodes do not fall onto Mmesh

vertices, the nodal approach has about the same accuracy as the reference approach (see Figure

3.7 for 4 Cmesh elements, MpC = 5000, q = 7).

For the reference based modal curving approach, the q-convergence curves stagnate. The onset of
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Figure 3.7: GDE evaluation for the unit circle, approximated by the nodal approach with 4 elements.
The high Mmesh refinement leads to a relatievly low stagnation error. The graph shows
that outside the stagnation regime, the nodal approach leads to about the same GDE as the
reference approach

the stagnation depends on the Mmesh refinement and the corresponding Mmesh accuracy. As the

polynomial approximation of the target curves improves with increasing q, the inaccuracy ofM
becomes the dominating source of error. The coarser the Mmesh, the higher its inaccuracy and

the earlier the resulting error stagnation level is reached.

Further, a convergence gap can be observed between the results of the reference-based modal

curving and those of the reference Lagrange approach. This can be explained by the fact that for

the reference-based modal approach, the optimisation for the curving takes place in a restricted

function space. The mapping from the reference space to the physical reduces the number of αi
values to determine in the curving step, but it results in a non-optimal reduction of the degrees of

freedom in the optimisation.

The optimisation in the H1 modal curving approach on the other hand is run in the full

polynomial function space. Its results do not suffer from the described convergence gap (see

Figure 3.5(c)) and are therefore significantly better than those of the reference based modal

curving. As for the nodal curving and the reference based modal approach, the error curves

stagnate due to the inaccuracy of the Mmesh. But in the region of convergence, they show the

same behaviour as the curves of the results with the Gmsh reference.

Figure 3.5(d) shows the results of the least squares method. For this approach, the optimisation is

performed in the physical space and only the geometrically exact Mmesh vertices are considered.

Therefore, the convergence curves follow those of the reference. Further, no stagnation is

observed as in the other three methods because the linear interpolation between the Mmesh

vertices is ignored. The method provides accurate approximations already with a relatively

coarse Mmesh, where the curves stagnate at error levels that are close to machine precision. In

this region, higher errors for finerM seem to be caused by accumulation of the numerical errors.

To evaluate the runtime of the four methods, the curving of the circle with 12 Cmesh elements is

considered (see Figure 3.8). For each setup, the curving is run ten times and the median of the

measured CPU times taken to smoothen the resulting curves. Note the different scales of the time

axis. All four methods are implemented in Matlab without focus on runtime optimisation.

Therefore, only general, significant effects are compared. As expected, the run times increase
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Figure 3.8: Plot of the CPU time for the curving with (a) the nodal curving approach, (b) the reference-
based modal approach, (c) the H1 modal curving or (d) the least squares approach, for
neC = 12 and different ratios MpC.
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with the refinement of the Mmesh and for higher curving orders. The nodal and the reference

based modal approach both have a significantly longer runtime than the H1 modal and the least

squares approach. For the nodal approach, this originates from the adaptivity of the iterative

process. A better choice of the parameters of the adaptivity loop might help to improve this. In

the case of the reference based modal approach, a big overhead of calculations to set up the

reference space and to transform the data points into the latter leads to the long run times. The

CPU times of the H1 modal curving and the least squares approach are of similar magnitude. For

lower curving orders, the H1 modal curving seems advantageous. With increasing q, this

approach takes longer, while the runtime with the least squares approach stays nearly constant

and the latter becomes favourable. In general, the run times of these two methods can be

neglected compared to the simulation runtimes, especially as the curving is run only once and the

resulting mesh can be applied for several simulations.

3.3.2 Distorted Ellipse

With this second test case, the curving approaches are compared for a more complicated

geometry. The test geometry is based on an ellipse with a high aspect ratio. Additional bumps

along the curve are introduced by a cosine term

(
x(θ)

y(θ)

)
=

(
(rx + hb cos(θnb)) cos(θ)

(ry + hb cos(θnb)) sin(θ)

)
for θ ∈ [0, 2π] , (3.5)

with radii rx = 0.5, ry = 5, nb = 10 the number of bumps and hb = 0.1 their height. In Figure

3.9(a), a plot of the geometry is shown.

Mildly irregular boundary meshes are considered, as they also might occur in applications. The

meshes are generated in three steps. To obtain a mesh with Nv vertices, nv := (Nv+2)/2

equidistant nodes θ̃i = (i−1)π
nv−1 ∈ [0, π] are defined in the reference space. In a second step, these

nodes are perturbed in the form of θi = θ̃i + γi, where γi are uniformly distributed pseudo

random values in the interval [− 1
3nv

, 1
3nv

] and γ0 = γnv = 0. The pseudo random numbers are

generated in Matlab R2015b using the rand command with seed 28. Applying the curve

parametrisation (3.5) to the θi constructs the mesh vertices for the upper half of the geometry.

The other half is created by mapping θi + π onto the physical space. Thereby the choice of

γ0 = γnv = 0 ensures that a closed curve is obtained. As a last step before the curving, the

Cmesh vertices are snapped onto the Mmesh vertices, as it was described for the previous test

case. An example Cmesh is plotted in Figure 3.9(b).

Figures 3.9 and 3.10 provide an example of the initial C and the final curved mesh with all

methods for neC = 10, neM = 998, and q = 4,

3.3.2.1 GDE Measure for the Comparison

As for the previous test case, an area based GDE is evaluated. Here, the area between the target

curveM and its approximation is calculated. This is motivated by the fact that no explicit inverse

of the parametrisation is available, as it was used in the GDE calculation for the circle test case.

A similar issue would be encountered for real life geometries, where we assume that only the
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Figure 3.9: (a) shows the distorted ellipse defined by (3.5) and (b) the Cmesh with neC = 10. The
4th-order curves resulting with neM = 998 from (c) the nodal curving approach, (d) the
reference based modal curving approach, (e) the H1 modal curving approach, and (f) the
least squares curving approach are plotted in blue against the exact geometry in black.
The grey dashed boxes indicate the zoom-in area that is shown in Figure 3.10
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Figure 3.10: Close-up plots of the zoom-in regions indicated in Figure 3.9.

Mmesh is provided. Further, only the four Cmesh-Mmesh approaches are compared among each

other. The area is divided into small quadrangles Qi =
(
qi,1, qi,2, qi,3, qi,4

)
, for which the area

can be calculated with the following formula for convex quadrangles:

AQi =
1

2

∣∣(qi,2 − qi,4
)
×
(
qi,1 − qi,3

)∣∣ .

The number of non-convex quadrangles is reduced by ensuring that all Mmesh vertices and all

intersections between the Cmesh and the Mmesh coincide with a quadrangle vertex. The

intersections are found with an adapted version of the interX function from [63]. Further, the

number of quadrangles is adaptively changed until a predefined accuracy of 10−9 is reached in

the area calculation. A relative area measure is calculated, similar to the measure suggested in

[72]. Therefore, the sum over all quadrangles’ areas is divided by the length lM ofM:

GDEAQ :=

∑
iAQi

lM
.

3.3.2.2 Results

Fixed number of Cmesh elements

First, the size of the Cmesh is fixed with neC = 20 and the target Mmesh is varied with

neM ∈ {98, 198, 298, . . . , 998, 1998, 2998, . . . , 9998} .

This corresponds to the study for the circle case in Section 3.3.1. Since the Cmesh and Mmesh

are not generated with equisized elements, the ratio ne
M
ne
C

does not represent anymore MpC, the
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number of Mmesh elements for each Cmesh element, but its mean M̃pC over all Cmesh

elements. Figure 3.11 shows the corresponding q-convergence curves. Note that for the nodal

approach no data points are available for q > 8. For these cases, the curving algorithm failed to

converge within the iteration boundaries mentioned above.

The general behaviour of the results correspond to those of the circle test case, with all four

methods showing the same trends.

For lower curving orders q, the curves converge, but then stagnate as q increases, depending on

the Mmesh refinement. The least squares does not provide any significant advantage. Similarly,

the results with all four methods show approximately the same convergence rate and no

convergence gap is observed for the reference based method. It actually provides the best results

for someM and q combinations.

The less regular geometry leads to a loss of the stepwise behaviour. Odd and even order Lobatto

shape functions seem therefore to contribute to a similar extend. The only significant outlier is

the case of q = 7 for the three methods that curve the Cmesh directly in the physical space.

There, the polynomial of order q = 6 seems to describe the distorted particularly well, while the

shape functions of order q = 7 do not improve the approximation.

With the coarseM, one disadvantage of the least squares approach becomes visible. For the

resulting linear system to be solvable, at least q + 1 Mmesh vertices are needed. With only a few

more vertices, the method is not robust, as it is observed for one case in Figure 3.11(d).

Generally, this instability for least squares with too few data points is well known in the

literature. It is explained by the Runge phenomenon for polynomial interpolation [15] and

expected to be well-conditioned from n < 2
√
m on, with n the polynomial order and m the

number of data points [16]. For the case of neM = 198 and neC = 20, there are (in the mean) 9.9

Mmesh elements per Cmesh element. This correponds to m = 10.9 data points per least squares

approximation. Therefore, one expects the approach to get ill-conditioned from

n ≥ 2
√

10.9 ≈ 6.6 on. This matches Figure 3.11(d). However, when evaluating the conditioning

number of the linear system solved for the least squares approximation of the detoriating cases, it

is only of order 103. With such a conditioning number one does not expect significant

detoriations of the solutions, if the deviations in the system came only from numerical errors, not

from any added noise. Thus, the instability of the least squares is not (only) explained by

ill-conditioning. But within the frame of this thesis, no other reason was found.

In Figure 3.12, the M̃pC-convergence curves are shown. As the number of Cmesh elements neC is

fixed, refining the Mmesh increases the M̃pC. The geometric accuracy of the curving methods

generally increases as well, up to the level of accuracy that can be obtained with the curving

order q and neC . On this level, the curves stagnate. Further refinement of the Mmesh does not

result in an improvement of the curved meshes. The optimal choice of Mmesh refinement

therefore lies around the stagnation onset, in order to avoid both, an accuracy limitation as well as

an over refinement that would lead to higher computational costs.

Fixed number of Mmesh elements

In a second study, the target curve is fixed with neM = 998. It is aimed to apply the curving

methods for neC ∈ {6, 10, . . . , 78} and q ∈ {1, . . . 15}, but limitations in the methods lead to
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Figure 3.11: q-convergence for (a) the nodal method, (b) the reference based modal method, (c) the
H1 modal method, and (d) the least squares modal method with fixed neC = 20.
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Figure 3.12: M̃pC-convergence for (a) the nodal method, (b) the reference based modal method, (c)
the H1 modal method, and (d) the least squares modal method with fixed neC = 20
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Figure 3.13: q-convergence for (a) the nodal method, (b) the reference based modal method, (c) the
H1 modal method, and (d) the least squares modal with fixed neM = 998.

restricted parameter sets:

For the nodal curving, convergence issues occur for higher order approximations. The curving

has to be limited to q ≤ 8.

For the reference based modal curving, the limitations lie in the construction of the quadrangles

that define the mapping from the reference to the physical space. For coarse C, it could be hard or

might not even be possible to find extrusion lengths that lead to quadrangles that are disjoint with

their union containing all Mmesh vertices. As seen before, the least squares algorithm

deteriorates for higher q if too few target points are available. Accordingly, high order

approximations were not possible for relatively coarse Mmeshes. Only the H1 modal approach

can be applied to the full parameter range.

In Figure 3.13, the q-convergence curves for different neC are shown. The green square highlights

the example case from Figures 3.9(b)–3.10(d). All error curves decrease with increasing q and

finally stagnate at the bound induced by the choice ofM. The size of C thereby controls the

convergence rate before the onset of the stagnation. The finer the Cmesh is, the better is the

approximation already for lower q values, and the sooner the accuracy bound is reached.

For the nodal curving algorithm, Legendre and Chebyshev node spacings in the reference

space were tested to see if they provide better convergence results.

Legendre points are defined as the element vertices and nint := (q+ 1)− 2 interior nodes located

at the roots of the nintth Legendre polynomial. Similarly, interior Chebychev nodes are defined
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Figure 3.14: Legendre and Chebyshev points based nodes.
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Figure 3.15: q-convergence for the nodal method with (a) Legendre or (b) Chebyshev nodes, with
fixed neM = 998.

as the roots

tnint
i = cos

(
(2i− 1)π

2nint

)

of the nintth Chebychev polynomial of the first kind

Tn(t) = cos(n arccos(t)).

Both node types cluster towards the ends of the line element (see Figure 3.14) and therefore

counteract oscillatory behaviour of the interpolation [67].

Corresponding to the change of the nodal location on the reference element, p̃i in the relaxation

step is not defined as the midpoint between pi−1 and pi+1, but based on the ratio ξi−ξi−1

ξi+1−ξi .

Figures 3.15 and 3.16 show the q-convergence and ne
M/ne

C-convergence curves, respectively.

There is no significant improvement of the convergence behaviour.
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Figure 3.16: M̃pC-convergence for the nodal method with (a) Legendre or (b) Chebyshev nodes, with
fixed neM = 998.
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3.4 Conclusions of this Chapter

The four curving methods were applied to two test cases, the unit circle and a distorted ellipse.

On the circle test case, the reference based method suffers from a convergence gap compared

with the other three methods. For the more general geometry, this was not observed any more.

Here, the requirements of the mapping from the reference to the physical space led to limitations

in the choice of the mesh size. Besides this, it also did not provide significantly better results than

the H1 modal approach or the least squares.

For the nodal curving, the general problem lies in convergence issues within the curving process

itself that make the whole approach very unstable. Tests with alternative node spacings did not

resolve this.

All three methods that consider the full Mmesh as target encounter a stagnation of the error level

due to the Mmesh accuracy. This especially includes the H1 modal curving approach. A

preprocessing step running a mesh reconstruction method for the Mmesh before the curving

could improve this, similar to what is proposed in [13]. Otherwise, the H1 modal curving seems

to be quite robust and applicable to both tested geometries.

The least squares method bypasses this stagnation by using only exact points. This leads to much

better results on relatively coarse meshes in the circle test case. On the more general geometry of

the distorted ellipse, this advantage is less significant. Further, the least squares approach

becomes unstable or even incalculable for too coarseM. This effects especially those cases,

where the H1 modal approach stagnates due to the inaccuracy of the Mmesh and where the least

squares approach could be the most beneficial. Note that here only a basic least squares is tested.

Modifications of the method might lead to an improved stability.

Further note that the tests performed here are designed to compare the introduced curving

methods. Besides the method comparison, only limited conclusions can be drawn. For the

scenarios that motivated the method requirements, both the Mmesh and the Cmesh might be fixed

- the Mmesh by the provided fine mesh and the Cmesh due to limitations on the mesh for

simulation runs. In this case, only the curving order q is left as degree of freedom. The results of

this chapter indicate that q refinement is only meaningful up to the point of stagnation onset

which is geometry dependent and has therefore to be determined. Further, due to the stagnation,

the target accuracy for the geometric description could not be chosen arbitrarily. If the desired

accuracy lies below the stagnation level, an improvement of the Mmesh accuracy is needed, e.g.

in form of the above mentioned mesh reconstruction methods.

From the two described test cases, no clear preference can be drawn among the considered

curving methods. Both, the H1 modal curving and the least squares approach look promising. In

the following chapters, further tests will be run, considering the performance of the curved

meshes in the context of acoustics simulations.
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Chapter 4

Geometric Enhancement for Acoustic
Simulations

In the previous two chapters, the description and generation of high-order meshes were

discussed. Now the application of these high-order meshes to acoustic simulations is considered.

Therefore, a short review of equations and methods in numerical acoustics is provided. The focus

lies on the finite element method (FEM) and its high-order version p-FEM. Two geometric

enhancements of the p-FEM will be described, of which the polynomial based qp-FEM will be

chosen for the application to acoustic test cases in this and the subsequent chapters.

4.1 Review of Numerical Acoustics

In this section, some concepts on how to describe acoustic problems mathematically are

summarised and how to solve them numerically.

4.1.1 Equations

Information herein is based on course notes [21]. The different equations to describe and solve

acoustic problems are derived from the conservation of mass and the conservation of momentum

by making varying assumptions, e.g. on the fluid and flow. As the acoustic perturbations are

small compared to the ambient conditions, linearisation is often applied as well. Among the

resulting equations are e.g. the Linearised Euler Equations for unsteady inhomogeneous flow in

an inviscid fluid under adiabatic conditions [38]. Under the assumption of a homogeneous,

inviscid fluid with no external flow and adiabatic conditions, and by linearisation, the linear

acoustic wave equation

∇2p− 1

c2
0

∂2p

∂t2
= −ρ0

∂q

∂t

is obtained with p the acoustic pressure field, ρ0 the ambient mass density field, q the volume

velocity source given as volume velocity per unit volume, and c0 the speed of sound in the given

fluid. As mentioned in the Introduction, this thesis examines acoustic simulations in the

frequency domain. Therefore, the linear acoustic wave equation is considered for time harmonic

excitations. These are present for tonal noise components or could be analytically obtained by

Fourier tranformation. Assuming a harmonic time dependency (using e+iωt convention), the
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linear acoustic wave equation simplifies to the Helmholtz equation

∇2p + k2p = −iρ0ωq (4.1)

with the acoustic wavenumber k = ω/c0 and angular frequency ω.

In order to completely define a problem and to obtain a unique solution, boundary conditions

(BC) need to be introduced. The standard boundary conditions imposed on the boundary

Γ = ΓD ∪ ΓN ∪ ΓR of the domain Ω and their physical meanings are the following:

• Pressure
Dirichlet boundary conditions

p(x) = pΓD
(x), for x ∈ ΓD

describe the acoustic pressure field pΓD
imposed at ΓD.

• Normal velocity
By Neumann boundary conditions

νn(x) =
i

ρ0ω

∂p(x)

∂n
= νn,ΓN

(x), for x ∈ ΓN ,

the normal velocity νn,ΓN
along the boundary is prescribed with n the outwards facing

normal of the domain Ω. Homogeneous Neumann BC correspond to a rigid wall, where the

acoustic wave is completely reflected.

• Impedance
Robin boundary conditions are also called mixed boundary conditions because they relate

the field variable to its normal derivative. The relationship is described by a given normal

impedance function ZΓR
that describes the damping properties of the material forming the

boundary:

p(x) = ZΓR
(x)νn(x) =

iZΓR
(x)

ρ0ω

∂p(x)

∂n
, for x ∈ ΓR.

• Radiation condition
For exterior problems of dimension d ∈ {2, 3}, additionally the Sommerfeld radiation

condition

lim
r→∞

r
d−1
2

(
∂p

∂r
+ ikp

)
= 0

with r = |x|, x ∈ Ω has to be fulfilled to ensure that acoustic waves propagate in free field

without any reflections [84].

4.1.2 Numerical Methods

Analytical solutions are known for some acoustic problems with simple geometries, but are

impossible to determine for complex geometries encountered in real-life applications. Instead,
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numerical simulations are used to obtain an approximate solution of the problem. As stated in the

Introduction, only mesh-based methods will be considered here.

4.1.2.1 Methods

In the boundary element method (BEM), only the domain boundary needs to be discretised. It is a

typical method to solve an exterior problem in an unbounded domain. The differential equation is

reformulated as an integral formulation which is defined on the boundary of the domain.

Accordingly, only a discretisation of the boundary is needed which simplifies the meshing

process and leads to a comparatively small number of degrees of freedom (DoFs). The resulting

linear system is complex and dense, which precludes the application of efficient solving

algorithms for sparse systems. In a post-processing step, the solution is expanded to the interior

of the domain. Due to the need of a Green’s function for the construction of the integral

formulation, the applicability of the BEM for inhomogeneous or complex domains is restricted

([88], [21]).

In these cases, or for problems on bounded domains, domain based methods are more suitable

[21]. Among these are finite difference methods (FDM). Derivatives of the field variable are

approximated by difference schemes that are obtained from Taylor expansions over stencils

around the evaluation node. The evaluation relies on structured grids and is therefore unsuitable

for complex geometries [26].

Methods on unstructured grids are typically based on the weak formulation of the problem.

Based on a weighted residual method, a weak formulation of the problem is obtained by applying

a scalar product with a test function ϕ to both sides of the differential equation. It can be proven

that solutions of the strong formulation are also solutions of the weak formulation, if the weak

formulation holds for all ϕ ∈ V .

For the discretisation, the solution space V is first restricted to a finite-dimensional subspace Vh.

Then the solution is expressed as a linear combination of a suitable basis of Vh. The basis

functions are also called shape functions. By substituting the ϕ with actual test functions in Vh,

the continuous problem is transformed in a discrete system of equations. Usually, the shape

functions are used as test functions.

If Vh is chosen as a subspace of continuous functions, a (continuous) Galerkin method is

obtained. For the discontinuous Galerkin method (DGM), the functions in Vh do not need to be

continuous. This method allows for functions which are only piecewise continuous, with

discontinuities along element boundaries.

4.1.2.2 Standard FEM

Finite element methods (FEMs) are continuous Galerkin methods. The common choice of the

solution space V for FEMs is the Sobolev space H1(Ω), defined as

H1(Ω) :=

{
v ∈ L2(Ω)

∣∣∣∣
∂v

∂xi
∈ L2(Ω), 1 ≤ i ≤ d

}
,

with Ω the domain on which the method is formulated, d the dimension of the problem, and

L2(Ω), the space of functions that are square integrable over Ω [82]. For simplicity, the argument
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Ω will be omitted from here on. Note the following definitions of the L2-norm || · ||L2 , the

H1-seminorm | · |H1, and the H1-norm || · ||H1 that will be used in the remainder of this thesis:

||v||L2 :=

(∫

Ω
vv̄ dΩ

)1/2

,

|v|H1 := ||∇v||L2 ,

||v||H1 := ||v||L2 + ||∇v||L2 ,

where v̄ denotes the complex conjugate of v. The corresponding scalar products of L2 and H1 are

〈u, v〉L2 :=

∫

Ω
uv̄ dΩ,

〈u, v〉H1 := 〈u, v〉L2 + 〈∇u,∇v〉L2 .

To obtain the weak formulation, the scalar product 〈·, ϕ〉L2 is applied to the problem. For the

example of the Helmholtz equation (4.1), this leads to the weak formulation

∫

Ω
ϕ̄∇2p + k2ϕ̄p dΩ =

∫

Ω
−iρ0ωϕ̄q dΩ

⇔
∫

Ω
∇ϕ̄ · ∇p dΩ−

∫

Γ
ϕ̄
∂p

∂n
dΓ− k2

∫

Ω
ϕ̄p dΩ = iρ0ω

∫

Ω
ϕ̄q dΩ. (4.2)

Terms depending on both the field variable p and the test function ϕ are on the left-hand side,

whereas terms on the right-hand side only depend on ϕ.

If Neumann or Robin BC are specified, they are directly included in the second term in (4.2) over

the domain boundary Γ. For homogeneous Neumann BC, the term vanishes, otherwise it

becomes dependent only on ϕ and can therefore be written on the right-hand side of the

formulation. With Robin BC, the term still depends on p and therefore remains on the left-hand

side. For simulations on unbounded domains, an artificial boundary has to be introduced. Special

techniques, such as the perfectly matched layer (PML) [11] or Robin boundary conditions called

characteristic boundary conditions [87], are available to limit spurious reflections and fulfil the

Sommerfeld radiation condition [88].

The standard FEM is obtained by choosing the space of continuous, piecewise linear functions

for V 1
h on Ω

V 1
h =

{
vh ∈ V

∣∣∣∣ vh continuous, vh
∣∣
Ωi
∈ P1,

⋃̇
i
Ωi = Ω

}
,

with Pp the space of polynomials of order p and
⋃̇
iΩi the union of disjoint subsets Ωi of Ω. The

basis and test functions are formed by piecewise linear shape functions Ni with locally bounded

support. Each of these shape functions Ni is associated with one vertex xi of the mesh that

triangulates Ω. They are defined such that

Ni(xj) =





1, for i = j

0, for i 6= j.
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Since Ni is piecewise linear, it follows that its support is restricted to the elements containing xi.

These shape functions are defined over the whole domain and are therefore called global shape

functions.

Using {Ni}nN
i=1 as basis of V 1

h , the piecewise linear approximation ph ≈ p with ph ∈ V 1
h can be

written as the linear combination

ph =

nN∑

i=1

p(xi)Ni =

nN∑

i=1

piNi, (4.3)

where nN denotes the number of global shape functions, and pi := p(xi) coefficients that need to

be determined. Remember that Dirichlet BC were not built into the weak formulation. Instead,

they are included in the method formulation at this point. For each node xi that falls on the

domain of Dirichlet BC, the coefficient pi can be directly determined from the BC. Therefore

only nN − nD of unknowns are left to be determined, with nD the number of nodes covered by

the Dirichlet BC.

In (4.2), p is substituted by (4.3) and each global shape function that is associated with a node

that lies not in a Dirichlet BC domain is applied individually as test functions ϕ. This results in

nN − nD equations of the form

∫

Ω
∇Nj

nN∑

i=1

pi∇Ni dΩ− k2

∫

Ω
Nj

nN∑

i=1

piM
e
i dΩ +

iρ0ω

ZΓR

∫

ΓR

Nj

nN∑

i=1

piM
e
i dΓR

= −iρ0ω

∫

ΓN

Njνn,ΓN
dΓN + iρ0ω

∫

Ω
Njq dΩ

⇔
nN∑

i=1

pi

∫

Ω
∇Nj∇Ni dΩ− k2

nN∑

i=1

pi

∫

Ω
NjNi dΩ +

iρ0ω

ZΓR

nN∑

i=1

pi

∫

ΓR

NjNi dΓR

= −iρ0ω

∫

ΓN

Njνn,ΓN
dΓN + iρ0ω

∫

Ω
Njq dΩ (4.4)

that determine the nN − nD unknowns pi. Note that the term over Γ was substituted by the two

terms over ΓN and ΓR for Neumann and Robin BC, respectively. Due to the local support of Ni,

the method results in a sparse system of linear equations, which allows for fast and memory

efficient computation.

To implement the FEM, it is favourable to assemble the system (4.4) elementwise. Thereby, the

integrations over Ω are split up into integrations over single elements, and the integration over Γ

into integrals over single boundary elements. The use of linear parametric mappings as described

in Section 2.1.1.1 enables integrations over the straight sided physical elements T to be

transformed and computed on the reference element T̂ , using the equation

∫

T
f(x) dx =

∫

T̂
f(F (ξ))|JF (ξ)| dξ, (4.5)

with the mapping F : T̂ → T and JF the Jacobian of F , which corresponds to the determinant

of the Jacobian matrix. If the integrand contains a gradient, this gradient also needs to be
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transformed to the reference coordinate by the substitution

∇x = J−1
F ∇ξ. (4.6)

This transformation of the integration onto T̂ further simplifies the implementation, since

quadrature rules must only be given for T̂ .

On the reference element T̂ , local shape functions N e
i are considered. Each N e

i is associated with

one of the reference element vertices ξi and is defined such that

N e
i (ξj) =





1, for i = j

0, for i 6= j
.

These local shape functions correspond to the linear Lagrange shape functions defined in Section

2.1.1.2.

In [43], an error estimate in the H1-seminorm for the Helmholtz equation solved with the

standard FEM with linear shape functions is given as

E1 ≤ c1kh+ c2k
3h2, (4.7)

with constants c1 and c2 independent of the mesh size h and the wavenumber k. The first term

expresses the error arising from the linear interpolation of the solution. It remains constant, if the

non-dimensional wavenumber kh is kept fixed. Therefore, the rule of thumb of 10 elements per

wavelength is typically applied in the literature ([20], [88]).

By the second term in (4.7), the pollution effect [7] is represented. In FEM simulation results, the

wavenumber k̃ differs from the wavenumber k of the analytical solution. The relative difference

between k and k̃ is called dispersion error. It leads to a phase shift between the analytical and the

numerical solution which adds up for each wavelength. It is therefore especially prominent on

long simulation domains and becomes more and more severe as the frequency increases.

In order to keep the pollution effect small for standard FEM simulations, a constant kh is not

sufficient. As k increases, the mesh must be further refined. This is computationally prohibitive

and limits the use of the standard FEM approach to the low frequency range. Several techniques

exist to avoid this issue and to increase the computable frequency range. Among these are the

stabilised Galerkin methods and the wave-based discretisation methods [88]. Increasing the field

interpolation order can also be used to reduce the pollution effect [9]. The resulting high-order

FEM is called p-FEM and will be considered from here on.

4.1.2.3 High-order p-FEM

For high-order p-FEM, the space V p
h is not chosen as piecewise linear functions, but instead as

the space of piecewise polynomial functions of order p:

V p
h =

{
vh ∈ V

∣∣∣∣ vh continuous, vh
∣∣
Ωi
∈ Pp,

⋃̇
i
Ωi = Ω

}
.
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The error estimate in Equation (4.7) generalises to

E1 ≤ c1

(
kh

2p

)p
+ c2k

(
kh

2p

)2p

(4.8)

[7, 44, 42]. Commonly, high-order Lagrange basis functions as those used for the geometric

description in Section 2.1.1.3 are used as local shape functions in T̂ . In this thesis, Lobatto shape

functions as defined in Section 2.1.1.4 are chosen as basis and test functions instead.

Since bubble shape functions are only non-zero in the interior of elements, static condensation

can be applied. Thereby, the contribution of internal degrees of freedom (DoFs) are removed

from the linear system. This reduces the size of the system to be solved and improves its

conditioning. The solution for the internal DoFs is locally calculated in a post-processing step

from the solution of the external DoFs of the corresponding element [82]. Further, their

hierarchical behaviour allows for efficient p-adaptivity algorithms [9].

4.2 Review on Geometry Enhanced Implementations

Both, standard FEM and high-order p-FEM are generally based on linear, straight sided meshes.

This section summarises the incorporation of enhanced geometric representations for the p-FEM.

In the literature, there are two main ways how enhanced geometric representations are included

into p-FEM implementations. The standard way is the high-order polynomial description. The

second described way is the rather recently developed NURBS based geometric description of

the NURBS-enhanced FEM (NEFEM) method.

4.2.1 High-order Polynomial Geometric Description

As mentioned in Section 4.1.2.2, parametric mappings from T to T̂ are used to transform the

integration over T onto T̂ . As described in that section, they form the geometric description of

the approximation of the domain by piecewise linear elements. For higher-order geometric

descriptions of the domain, the order q of the parametric mapping has to be increased. Therefore,

the linear reference elements and linear geometric shape functions are replaced by the

corresponding higher-order reference elements and shape functions as defined in Section 2.1.1.1.

If Lagrange shape functions are used, higher-order nodes need to be included in the physical

mesh. As seen in Section 2.1.1.4, this is not necessary if Lobatto shape functions are applied.

Note that the choices of the field polynomial basis and the geometrical polynomial basis are

independent of each other. The same applies to the choices of the field interpolation order p and

the geometric interpolation order q. Therefore, this kind of methods is denoted as qp-FEM from

here on. Further note that due to the non-linearity of the mapping F for higher-order geometric

interpolation, the Jacobian is not constant for non-straight sided elements. For integrals with

gradients this leads to non-polynomial integrands, that cannot be integrated exactly using

Gaussian quadrature.
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4.2.2 NURBS-based Geometric Description

An approach to embed a CAD-based description of the domain geometry within the known FEM

setup is given by the NURBS-enhanced FEM (NEFEM) ([79], [81]). Contrarily to isogeometric

analysis (IGA) where the whole domain and the field are described using NURBS, the NEFEM

approach uses the CAD information only to describe the boundary curves or surfaces. Interior

edges or faces of the mesh remain linear, and polynomial interpolation based on Lagrange

polynomials is used for the field representation. This way, the advantage of IGA, namely exact

representation of CAD surfaces, is combined with the computational advantages of FEM.

Integration over elements is done sectionwise, where the line or triangle element is subdivided at

breakpoints or along knot lines respectively, to also include the possibility of reduced continuity

order within elements ([78], [80]).

Similarly to the polynomial case, the integration is performed on reference elements. For interior

elements not affected by the NURBS boundary representation, the standard procedure shown in

Figure 2.1 is applied. Integration over elements with an edge along the NURBS boundary is

evaluated on a rectangular reference element. To take into account the parametrisation changes at

breakpoints, the reference element is subdivided accordingly. The quadrature is applied to each

part of the reference element separately.

Since this thesis is based on the assumption that no CAD description is available and since the

curving algorithms described in Chapter 3 provide polynomially curved meshes, this approach is

not applicable. Instead, a polynomial based geometric description is used.

4.3 Embedding Curved Elements into pFEM

For the 2-dimensional curving approaches described in Sections 3.1 and 3.2, only boundary

edges are considered. As a subsequent step, the curved edges must be embedded into the surface

mesh. Therefore, a mapping from a reference element to the element with the curved edge in the

physical space is defined. From here on, triangular meshes are considered.

4.3.1 Nodal Elements

In order to embed curved edges into nodal triangular elements, the geometric order of the latter

has to be enhanced to the order of the curved edge. Therefore, high-order nodes are added along

the domain-interior edges. For complete elements (as described in 2.1.1.3) of order q > 2, further

high-order nodes have to be placed in the element interior.

In the Gmsh implementation, edge nodes are placed equidistantly. Together with the original

vertex nodes, they form serendipity (also called incomplete) elements ([86]). Element internal

nodes are then placed on the high-order interpolation with the shape functions of the serendipity

element (see [35]).

3-dimensional elements are treated analogously by first mapping the faces and then placing the

interior volume nodes based on the shape functions of the incomplete 3-dimensional element.
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4.3.2 Modal Elements, Blending Approach

In order to embed the modally curved edges into a 2-dimensional mesh, a blending approach is

proposed. It is derived from the construction of the Lobatto shape functions (see Section 2.1.1.4).

Each triangular element is represented by a mapping from the reference triangle T̂ 1
tria to the

physical space. Standard linear mappings F (ξ, η) =
∑3

i=1 xiϕ
vi
T (ξ, η) that are defined by the

vertices xi are used for the straight sided elements. For elements with a curved edge, the

mapping has the form

F (ξ, η) =
3∑

i=1

xiϕ
vi
T (ξ, η) +

3∑

i=1

κei(ξ, η),

where κei corresponds to the edge ei. It is defined as

κei (ξ, η) =




0 on ej , i 6= j

dei
(
ξ̃ei (ξ, η)

)
on ei

, (4.9)

with the auxiliary variable ξ̃ei (ξ, η) = λi+1 (ξ, η)− λi (ξ, η) ∈ [−1, 1], λi the barycentric

coordinates of the triangle (see (2.3)), λ4 = λ1, and

dei
(
ξ̃ei
)

= F ei
c

(
ξ̃ei
)
− F ei

s

(
ξ̃ei
)
,

where F ei
s describes the straight sided edge and F ei

c the actual, possibly curved edge.

For the H1 modal mesh curving and the construction of the Lobatto shape functions it follows

that for the x-component

κeix (ξ, η) =

q∑

j=2

ϕeiT,j (ξ, η)αeix,j ,

with αeix,j , the α-coefficient of the triangle edge shape function ϕeiT,j (see Equation (2.6)) for the

x-component of edge ei. The construction for the y-component is done analogously.

The blending approach provides more flexibility than the nodal based embedding of the curved

edges. In general, it could also be applied to edges that are curved in another way than the H1

modal curving approach introduced in Section 3.2.2.3. An assumption thereby is that κei is

continuous. In Appendix A, the blending function κ for edges curved with the reference based

modal approach is derived.

As mentioned in Sections 4.1.2.2 and 4.2, the reference mappings F of the physical mesh

elements for the elementwise integration on the reference element form the geometric

representation of the simulation domain. They enter the simulation equations in form of their

Jacobians in Equations (4.5) and (4.6).

4.4 Validation of the Embedding

In this section, the embedding process described above is validated with a scattering test case.

Results on meshes that were curved with the H1 modal curving or the least squares approach (see
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Section 3.2.2) and embedded as described above are compared with the results obtained on a

reference nodal high-order mesh that was created using Gmsh. This test case is part of the paper

[99].

4.4.1 Test Case: Scattering of a Plane Wave by a Cylinder (2D)

To test the embedding process, the scattering of a plane wave by a cylinder is considered. It is a

simple 2D test case with a known analytical solution pex and therefore suitable for first tests.

The scattering test case is given as

∇2p + k2p = 0,

∂p

∂n
= 0 on Γs,

∂p

∂n
=
∂pex

∂n
+ iωpex − iωp on Γo. (4.10)

Characteristic BC are applied on the outer boundary Γo. The domain Ω with Γo and scattering

boundary Γs is shown in Figure 4.1 and some exemplary meshes in Figure 4.2.

rors x

y

Ω
Γo

scatterer

Γs

Figure 4.1: Sketch of the scattering test case.

Characteristic boundary conditions

Equation (4.10) shows the formula for the characteristic boundary conditions on the outer

boundary Γo. For the calculation of∇x,ypex, the exact solution in e−iωt convention p−ex is

provided in [8]. The complex conjugate is taken of the resulting formula in order to match the

e+iωt convention.

Weak formulation

The weak formulation with the weighting function ϕ is

∫

Ω
∇ϕ̄∇p dΩ− k2

∫

Ω
ϕ̄p dΩ =

∫

Γ
ϕ̄
∂p

∂n
dΓ

=

∫

Γo

ϕ̄

(
∂pex
∂n

+ iωpex − iωp
)

dΓo,

⇒
∫

Ω
∇ϕ̄∇p dΩ− k2

∫

Ω
ϕ̄p dΩ + iω

∫

Γo

ϕ̄p dΓo =

∫

Γo

ϕ̄

(
∂pex
∂n

+ iωpex

)
dΓo,

58



4.4. Validation of the Embedding

−2 −1 0 1 2
−2

−1

0

1

2

x

y

(a) ne
C = 12, q = 1

−2 −1 0 1 2
−2

−1

0

1

2

x

y

(b) ne
C = 12, q = 4

−2 −1 0 1 2
−2

−1

0

1

2

x

y

(c) ne
C = 12, q = 4

−2 −1 0 1 2
−2

−1

0

1

2

x

y

(d) ne
C = 28, q = 1

−2 −1 0 1 2
−2

−1

0

1

2

x

y

(e) ne
C = 28 q = 4

−2 −1 0 1 2
−2

−1

0

1

2

x

y

(f) ne
C = 28, q = 4

Figure 4.2: Linear meshes (a),(d) and 4th order meshes curved with (b), (e) the H1 modal approach
and (c), (f) the least squares curving, for different C-values of the circle scattering test case
with MpC = 5000. Note that for the curved meshes, only the interior circular boundary,
the scatterer, is curved.

where Γ = Γs ∪ Γo is the boundary of Ω and R the radius of Γo.

For the numerical integration, a Gauss-Legendre quadrature is applied. In numerical tests, the

order of the quadrature rule was found to be sufficient with 2p+ 2(q − 1) for element integrals

and p+ (q − 1) for boundary integrals. As safeguard, the quadrature orders are set to

2p+ 2(q − 1) + 4 and p+ (q − 1) + 4, respectively. Note that based on [5] and [22], the

integration order for curved geometries should be increased by p− 1 to preserve the exponential

convergence. For q ≥ p− 1, our chosen quadrature order lies above the theoretically derived one.

In the region of q < p− 1, the geometric order is not high enough to ensure exponential

convergence anyway (see also [5], [22]). There, the error induced by the geometry is the

dominating error and the integration error can be neglected.

4.4.2 Evaluation of the Field Error

The standard error evaluation procedure for parametric FEM is the elementwise integration of the

difference between the numerical and the analytical solution. Thereby, the numerical solution is

interpolated using Gaussian quadrature with quadrature points on T̂ . The corresponding

analytical solution is evaluated at the quadrature points mapped by geometric interpolation of the

nodes of T . From [97] it is clear that this mapping does not map on the actual physical space Ω,

but on its approximation Ω̂. Since Ω̂ is generally not a subset of Ω, the quadrature points could be

mapped outside of Ω. For the scattering test case at the cylinder, this would lead to evaluations of

the analytical solution inside of the scatterer where the analytical solution is not defined (see
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(a) (b)

Figure 4.3: Schematic figures showing (a) the problem in the standard field error evaluation for the
scattering test case and (b) the alternative approach. The red dots in (a) are the quadrature
points that fell out of Ω.

Figure 4.3(a)). To avoid this problem, an alternative approach is considered, where the field error

is evaluated as the relative L2-error along a ring in the middle of the radial direction of Ω (see

Figure 4.3(b)). This error measure is denoted as E2,R. With this approach it is ensured that none

of the points along the line integral lie outside of the physical domain. Since the mesh elements

do not follow this interior line, the integrals are evaluated numerically with a trapezoidal rule. An

adaptive refinement of the integration points is applied until a relative accuracy of 10−8 or an

absolute accuracy of 10−15 is reached.

The choice of this field error measure will be confirmed in the following Chapter, where also two

other approaches are considered. Further note that the dimension reduction (when changing from

an area measure to a measure evaluated along a curve only) does not affect the expected

exponential convergence (see [5], [22], or Equ. 5.1). The formula for the convergence is

independent of the dimension.

4.4.3 Results

The simulation results are presented as p-convergence curves in Figures 4.4 - 4.6. Results on

nodally curved meshes that were obtained with Gmsh are provided as reference. The latter are

provided only up to q = 4. This limitation is not based on Gmsh, but on the simulation code. As

the nodal shape functions were implemented for each order separately, this was done only up to

order 4. A better way would have been to apply the computation of Lagrange shape functions

described in [39]. It is based on Jacobi Polynomials and applicable for arbitrary polynomial

orders and nodal distributions. In general, all curves show a similar behaviour: With increasing

interpolation order p the simulation error decreases. For lower p, the curves for different q orders

collapse. One by one, the error curves stagnate, with curves corresponding to lower q orders

stagnating earlier than those of higher q.

The most interesting part is the stagnation value. As further field refinement does not lead to any

improvement of the simulation result, the stagnation level indicates the error introduced by the

discretisation of the geometry. Here, this error is dominated by the geometric inaccuracy of the
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Figure 4.4: Comparing p-convergence curves for different neC-values of the circle scattering test case
with MpC = 5000 and ω = 1.
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(a) MpC = 100, H1 modal approach
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(b) MpC = 5000, H1 modal approach
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(c) MpC = 100, least squares
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(d) MpC = 5000, least squares
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Figure 4.5: Comparing p-convergence curves for different MpC-values of the circle scattering test
case with 12 Cmesh elements and ω = 1.
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(a) ω = 1, H1 modal approach
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(b) ω = 8, H1 modal approach
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(c) ω = 1, least squares
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(d) ω = 8, least squares
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(e) ω = 1, nodal reference
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Figure 4.6: Comparing p-convergence curves for different ω-values of the circle scattering test case
with 12 Cmesh elements and MpC = 5000.
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domain description. The stagnation value therefore corresponds to the error level induced by the

GDE. This is confirmed by Figure 4.4 where it is shown that the stagnation values drop as the

number of Cmesh elements is increased and therefore a better representation of the domain

geometry is achieved.

For a comparison of different MpC-refinements, Figure 4.5 shows results for MpC = 100 and

MpC = 5000. Matching the results of Section 3.3, a high dependency of the H1 modal approach

on the MpC-refinement can be observed. For MpC = 100, higher curving orders do not further

improve the corresponding stagnation levels, their curves fall together. In these cases, the

stagnation of the GDE due to the inaccuracy of the Mmesh results also in a stagnation of the field

error. This is overcome for the higher refinement MpC = 5000, where higher q lead to lower

stagnation levels of the simulation error. Also analogously to Section 3.3, no significant

dependency on the MpC-refinement of the simulation results on meshes curved with the least

squares approach is observed.

These observations hold in general. A specific effect of the geometric inaccuracy on acoustic

simulations is shown in Figure 4.6. There, both the Cmesh size and the Mmesh size are fixed and

results for simulations with different angular frequencies ω are compared. With increasing

frequency, the stagnation levels increase as well. This confirms that high-frequency simulations

are more sensitive to geometric inaccuracy than lower frequency simulations.

Figure 4.7 shows the field error for p = 10 and a highly refined Mmesh with MpC = 5000, for

the two mesh curving methods and the corresponding Gmsh result. The behaviour of the

reference and the least squares approach is similar, with slightly better results with the latter. For

low ω values, the results obtained on H1 modally curved meshes are generally better. The

development from q = 3 to q = 4 for neC = 12 and from q = 2 to q = 3 for neC = 28 also shows

that the ω range increases within which this is the case. As the curving order increases (q = 5 for

neC = 12 and q = 4 for neC = 28), the field error stagnates on the H1 modally curved meshes.

This is caused by the stagnation of the GDE, which can be related back to the inaccuracy of the

Mmesh. Further MpC refinement is expected to overcome the stagnation and to lead to even

lower field errors. As the least squares meshes are not effected by the MpC refinement, results on

those meshes will not stagnate until the p refinement forms the bottleneck. Higher ω values were

dropped as in those cases the p-convergence curves did not stagnate. The resulting error at

p = 10 does not coincide with the GIE and no conclusions can be drawn from this data about the

curving method’s effect on the field error.

4.5 Conclusions of this Chapter

In this chapter, the curved boundaries obtained in Chapter 3 are applied to an acoustic simulation.

First a short review on basic equations and typical numerical methods in numerical acoustics is

provided. This review is extended by a summary of the two mainly used implementations of

geometric enhancement in FEM. The embedding of curved boundaries into domain meshes is

described and the implementation validated with the acoustic test case of a plane wave scattering

by an infinite cylinder, corresponding to a circle in 2D. The results indicate that the accuracy of

the simulations strongly depends on the underlying geometric accuracy, with increasing

sensitivity to geometric inaccuracy with increasing frequency. Further, the GIE is reduced on
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Figure 4.7: Plot of simulation results at p = 10 for q = 1, . . . , 5 and ω = 1, 2, 4, 6, 8 for (a) neC = 12
and (b) neC = 28. The results from the H1 modal approach are plotted in blue stars, those
from the least squares curving in red circles, and the reference is plotted in black plus
signs.
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meshes curved with the H1 modal method, providing that the Mmesh refinement is fine enough.
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Chapter 5

Relation Between GDE and GIE

As observed in the previous chapter, the choice of both the geometric and the acoustic parameters

has an influence on the field error. Figure 5.1 provides an overview over the introduced

parameters and error measures and a schematic of their relations. In Chapter 3 the focus lies on

the geometry based dependence of the GDE on the selected geometric parameters, while in

Chapter 4 some acoustics theory is summarised, including a formula for the expected field error

under the assumption that the geometric discretisation is exact. This section considers the

missing link: The relation between the geometry discretisation error (GDE) and the geometry

induced error (GIE). First, a literature review is given on links that are suggested between the

field order p and the geometric order q, as well as on studies on the dependencies of the GIE on

the GDE in general. Afterwards, the relationship between the two is investigated in the context of

acoustic simulations by applying the qp-FEM to the Helmholtz scattering problem described in

the last Chapter.

5.1 Literature Review

5.1.1 Review on Links Between Field Order and Geometric Order

The importance of an accurate domain description in high-order methods is well documented in

the literature [79]. In [6], Bassi et al. examine the impact of the geometric description on the

performance of a discontinuous Galerkin method (DGM) simulation of flow around obstacles.

Isoparametric elements with p = q and superparametric elements with q = p+ 1 are compared

for p up to 3. Generally, linear geometric interpolation leads to inaccurate results, such that the

superparametric element with p = 1 and q = 2 results in a large improvement. However, only

small improvements are observed when further increasing p. This indicates that the geometric

description should closely follow the field description. The impact of the normal description is

also examined and the authors conclude that an accurate description of the normal can often be

more important than the geometric description itself.

Contradicting conclusions are drawn in [89], where the effect of the boundary representation is

considered on results of DGM simulations for linearised Euler equations. Besides linear and 2nd

order elements, also a mixed element type is tested. It consist of a linear representation of the

element edges, but the normals of the corresponding quadratic element. The clear advantage of

the 2nd order elements in terms of accuracy in the simulation results is not obtained with the
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Figure 5.1: Schematic of the error dependence. Input parameter are highlighted with red circles or
oval shapes. Coloured solid arrows stand for monotonically increasing functions, dashed
arrows for a monotonically decreasing functions. If e.g. the MpC is increased, neM in-
creases as well, while an increase of neC leads to a decrease of the geometry discretisiation
error GDEM of the Mmesh. The colors describe where the explanations of the relations
can be found. The geometry dependence was treated in Chapter 3, the acoustics theory in
Chapter 4. Black solid arrows indicate the input and output of the max() functions. The
overall GDE is e.g. obtained as the maximum of the GDEM and the expected GDE that
would be obtained with an exact target curve.
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mixed element type. The authors conclude that focusing only on the improvement of the normal

description is not beneficial in aeroacoustic simulations.

In [5] and shortly afterwards in [22], a theoretical analysis is performed on the convergence rate

of the high-order FEM for second-order elliptic boundary value problems. The exponential

p-convergence rate is given as

∥∥∥u− u(h,p)
∥∥∥
m
≤ chp+1−m ‖u‖r

pr−1
, (5.1)

with u the analytical solution, u(h,p) the approximate solution and ‖·‖m and ‖·‖r the mth and rth

Sobolev norm, respectively. It is demonstrated that a geometric interpolation of order q ≥ p− 1

is needed to maintain this convergence rate.

This trend is confirmed by the numerical results given in [54] and [55]. Tension simulations are

performed on plates with a circular or elliptic hole, described by elements of geometric order

q ∈ {1 . . . 4}. As the field interpolation order is increased from p = 1 to p = 10, the relative error

in energy norm exhibits first an exponential convergence, then the convergence rate decreases and

finally the error stagnates.

5.1.2 Review on Relation Between GDE and GIE

The error in the geometry of the computational domain boundary corresponds to an inexact

problem description, such that the problem actually solved differs from the initial one. By

increasing the element order p for a constant geometric description, the field representation

becomes more and more accurate. Thereby the solution converges to the analytical results of the

wrong problem, and the error level calculated with respect to the analytical solution of the exact

problem stagnates (see Figure 5.2). The observed stagnation level of the field error in energy

norm corresponds to the GIE. It is important to analyse the dependence between the GIE and the

GDE, as depending on the type of problems considered and also depending on the applied

numerical method, the geometric description may have a strong or a limited impact on the

simulation results.

In [54] and [55], Luo et al. examine the influence of the geometry approximation on results of

high-order FEM tension simulations. The effect of the geometric interpolation order q, and of the

smoothness of the geometric approximation on the GIE are studied for a circle and an ellipse

with a moderate aspect ratio. In both cases, an increase of q leads to a strong decrease of the GIE.

In comparison, the use of a C1-continuous approximation only yields marginal improvements in

the error based on the energy norm. Results based on the maximum error are significantly

improved using the C1 boundary description. However, in these two studies, no quantitative

measure of the GDE is given.

Another analysis on the stagnation level with respect to geometric accuracy can be found in [91],

where a spherical obstacle is discretised with linear or reconstructed quadratic elements. It is

remarked that, as the size of the elements describing the sphere decreases, the stagnation level of

the error decreases as well. For linear elements, an approximately reciprocal relationship between

h2 and the stagnation level is mentioned. However, this observation is based on a small number

of sampling points.
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Figure 5.2: Field error stagnation for p-convergence, comparing different q values. The dashed black
line indicates the error obtained for simulations with an exact geometric description.

5.2 GDE Measures

This section lists the GDE measures that are used for the studies and how they are evaluated.

From the measures described in 2.2, those that are strictly proper, meaning that they are only zero

for perfectly matching curves, are considered here. Therefore, the differential geometry based

measures are excluded.

All examples within this section are given for the circular scattering boundary of the test case

introduced in Section 4.4.1. The high-order representations of the examples were obtained with

the Lagrange curving algorithm of the software Gmsh, applying also the untangling and

smoothing algorithm described in [90]. During the untangling process, boundary nodes are

moved. Thereby, only the mesh validity and quality are considered. These are measures that are

defined for the mesh to ensure that it contains no tangled elements and that the mesh elements are

well shaped. The accuracy of the geometric approximation is neglected. Here, only meshes with

neC = 4 and q >= 3 were tangled and therefore affected by the untangling procedure. In the case

of q = 4, this leads to an increased geometry discretisation error. For q = 3, boundary nodes are

only slightly moved in the untangling process. The boundaries of the tangled and the untangled

meshes are nearly equal. Thus, the tangled mesh and the untangled mesh of order q = 3 have

about the same accuracy.

Hausdorff and Fréchet distances

The evaluation of the Hausdorff distance GDEH (see (2.7), Section 2.2.1) is based on two nested

optimisation problems:

The inner optimisation takes a given point Pi on the approximating curve Gapprox and finds the

point Qi,min on the exact curve Gexact with the minimal distance dmin(Pi) to Pi. To obtain

symmetry, a minimisation is run for points Qi on Gexact to find the point Pi,min on Gapprox with the

minimal distance dmin(Qi) to Qi. The outer optimisation maximises dmin(Pi) with respect to Pi
by varying the reference point on the reference interval. Analogously dmin(Qi) is maximised with
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tance calculation. In green, the global maximum distance is shown. With a segmentwise
Hausdorff distance calculation, the global maximum is found.
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Figure 5.4: Plots comparing Hausdorff distances evaluated (a) elementwise and (b) segmentwise for
the unit circle.

respect to Qi by varying the parametrising angle.

When the optimisation is computed elementwise, the outer optimisation could run into local

maxima, as it is illustrated in Figure 5.3. In order to avoid this, the optimisation is restricted on

segments between two nodes. In Figure 5.4, plots of results for both an elementwise and a

segmentwise evaluation are displayed. The comparison shows that the elementwise evaluation

leads to smaller values than segmentwise evaluation. This is especially visible for q = 4. Thus

only a local maximum is found during elementwise optimisation. As the tested geometry is a

circle, the segmentwise evaluation is assumed to provide the global optima and is the method that

will be applied from here on.

To constrain the maximisation on the given element or segment S, dmin(Pi) is set to zero for

Pi /∈ S, and analogously dmin(Qi) = 0 for Qi /∈ S.

As mentioned in Section 2.2, the Hausdorff distance and the Fréchet distance are equal for

closed, convex curves. For convex target curves such as the circle and the ellipse, this can be

fulfilled for q ∈ {1, 2}. But for cubic and quartic geometric order, the interpolation oscillates

around Gexact, which leads to non-convex curves. Therefore, the Fréchet distance and the

Hausdorff distance are compared.

For the Fréchet distance, the algorithm given in [59] is implemented, and, for comparison, a

discrete Hausdorff distance. Therefore both curves, Gexact and Gapprox, are evaluated on nref points

pi. These points are equidistant in ξ for the approximating curve and equidistant in the angle θ

for the exact curve. The distance is computed separately for each element and then the maximum
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Figure 5.5: Plots comparing Hausdorff (left) and Fréchet distances (right) evaluated with (a), (c) 100
refinement points and (b), (d) 1000 refinement points for the circular scattering boundary.

is taken over all elements.

In Figure 5.5 results for the discrete Fréchet and Hausdorff distance for two different refinements

of the circular scattering boundary can be seen.Within machine precision, both measures provide

the same distance values. Especially for q = 2, some deviation from the results for the

optimisation-based Hausdorff distance (see Fig. 5.4(b)) can be seen as well. These deviations

decrease notably for the meshes with smaller neC as the number of refinement points nref is

increased. Considering this, and the limit on the number of refinements due to high

computational costs, it is decided to drop the Fréchet distance as a measure of the GDE.

Area based measure

As a more intuitive measure, the area based GDE measure (3.4) introduced in Section 3.3.1.2 is

computed. In Figure 5.6, GDEA is shown for the circle example geometry.

Domain mapping based measure

The mapping based GDE measure introduced in [97] has to be adjusted for our 2D test case. In

order to allow an elementwise integration, dΩ(x) is transformed to the reference space and is

calculated there as the difference between the exact and the approximate geometric mapping.

For the example geometry, the exact mapping of T̂ to a T in the mesh is obtained using a linear

Lagrange mapping in polar coordinates (r, θ):
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Figure 5.6: Plot showing the relative area GDEA between the circle and its approximating surface.
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where (ri, θi) are the polar coordinates of the ith node of T .

The calculation of the H1(Ω) seminorm as described in [97] does not only consider the mapping

of the boundary line elements but also evaluates the mapping of the domain interior elements.

For the here considered meshes, the interior elements are in general kept straight sided with

respect to Cartesian coordinates (beside the case for neC = 4). They are especially not optimised

to follow the linear mapping in polar coordinates.

In Figure 5.7, plots of a measure evaluated over the whole domain and one evaluated only over

the curved domain boundary are shown. Note that instead of the H1(Ω) seminorm, the L2(Ω)

norm is computed in both cases. The GDE based on integration over the whole physical domain

is dominated by the influence of interior elements.

For this thesis, the GDE measures are meant to measure the geometric accuracy of the

approximation of the boundary. Thus, the domain based GDE calculated with the L2(Ω) norm is

dropped. Only the boundary based GDE calculated with the L2(Γs) norm is kept and called

GDEM .

5.3 Field Error Measures

As described in Section 4.4.2, the standard field error evaluation procedure has to be replaced by

alternative approaches. Besides the evaluation along the ring that was described and used in the

previous chapter, two additional methods are presented here and tested for the circle scattering

test case:
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Figure 5.7: Geometry discretisation error (GDE) based on [97], using the L2-norm over (a) the phys-
ical domain and (b) the boundary describing the scatterer.

(a) (b) (c)

Figure 5.8: Schematic figures showing (a) the problem in the standard field error evaluation for the
scattering test case and (b)-(c) the two additional alternative approaches. The red dots
in (a) are the quadrature points that fell out of Ω (green). In (b) and (c), blue dots mark
the quadrature points that automatically fall inside of Ω, and those points on which the
analytical solution is evaluated in the cases when quadrature points fall outside of Ω.
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• Approach based on domain mapping (see Figure 5.8(b))

In [97] an error evaluation method based on the exact mapping is defined. Analogously to

the GDEM described in Section 2.2, the exact solution at a given point pex(x) in the

physical domain is not compared to the simulation result at this point. Instead, it is

compared to the simulation results p (x̂) = p (ζ (x)), evaluated at the point ζ (x) that

approximates x in the discretised geometry (comp. Section 2.2.3). For the field error, the

H1-seminorm of pex(x)− p (ζ (x)) is computed and divided by the H1-seminorm of

pex(x).

Following the arguments for the GDE measures, the field error measure based on the

H1-seminorm is adapted by considering the L2(Γs) norm. Thus, the relative error is

evaluated as

E2,M :=

√√√√
∫

Γs
|pex (x)− p (ζ (x))|2 dΓs∫

Γs
|pex (x)|2 dΓs

≈
√∑

iwiJex |pex (x (ξi))− p (x̂ (ξi))|2∑
iwiJex |pex (x (ξi))|2

,

where Jex is the Jacobian of the exact mapping and wi the weights of the Gauss quadrature.

• Projecting method (see Figure 5.8(c))

The third method that is considered is based on an integration over the whole domain.

Using Gaussian quadrature on T̂ , the L2-error E2,P is evaluated elementwise. For

quadrature points whose corresponding points x̂i in T lie inside the scatterer, the analytical

solution is evaluated at the projection of x̂i along radial direction on the scattering domain.

With this approach, an evaluation of the analytical solution outside of its domain of

definition is prevented.

To compare the described measures, the scattering by the circle (see Section 4.4.1) is considered.

Polynomial higher-order meshes that were curved using the software Gmsh (see Section 3.1) are

used. For the field interpolation, Lobatto shape functions are applied. Using qp-FEM elements,

the geometric order q and the field order p can be chosen separately. Figure 5.9 provides a

comparison between the three different error evaluation methods for the set of simulations with

ω = 1 and h ≈ 0.79.

All three methods show the expected general behaviour: As p is increased, the field error first

converges exponentially, then stagnates at a certain level. As the error induced by the field

interpolation is continually decreased by increasing p, the level of stagnation corresponds to the

GIE. According to [5] and [22], the stagnation is expected to begin at p∗ = q + 1. The

corresponding points are marked in the plot with a black dot and seem, besides for q = 1 to fall

together with the onset of the stagnation. In conformity with the literature ([54], [55]), the

stagnation level decreases with increasing q.

Besides this accordance in the general behaviour, the level at which the error stagnates varies

with the evaluation method. The field error evaluated with the projecting method and the one
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Figure 5.9: Stagnating p convergence curves of the field error for simulations with ω = 1 and h =
2π
8 ≈ 0.79, evaluated (a) with the projection based method, (b) along the ring r = 1.5,

and (c) with the mapping based method. The black dot indicates the expected onset of
stagnation p∗ = q + 1.
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Figure 5.10: Stagnating p convergence curves of the field error evaluated along the ring r = 1.5 for a
fixed mesh with h = 2π

24 ≈ 0.26 and (a) ω = 1, (b) ω = 4, and (c) ω = 16.

evaluated along the ring show a similar behaviour. Their stagnation level of the second and third

order lying closer together in logarithmic scale than the levels of first and second or third and

fourth order. This follows the trend seen in GDEA (see Fig. 5.6) and GDEH (see Fig. 5.4). On

the other hand, the stagnation levels for the mapping based error evaluation is more consistent

with GDEM (see Fig. 5.7).

5.4 Finding a Model of Relation between GDE and GIE

With the evaluation of the geometric and the field error in place, the GDE-GIE relation can now

be studied. Again, the scattering of a plane wave by a cylinder is considered on meshes that were

nodally curved with Gmsh. To relate the GIE to the GDE, the previously discussed stagnation

level is evaluated for simulations with frequencies ω ∈ {1, 2, 4, 6, 8, . . . , 28, 30, 32, 64} and mesh

sizes neC ∈ {4, 8, 12, . . . 72, 76, 80}. This stagnation level corresponds to the GIE and is denoted

Ẽ2,M , Ẽ2,R and Ẽ2,P , where the subindices M , R, and P refer to the mapping based, ring based,

and projection based field error evaluation method, respectively. Simulation results that did not

reach a plateau are not considered in the following evaluations.
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Figure 5.11: Stagnating p convergence curves of the field error evaluated along the ring r = 1.5 for
a fixed ω = 1 and varying mesh size (a) h = 2π

8 ≈ 0.79, (b) h = 2π
16 ≈ 0.39, and (c)

h = 2π
32 ≈ 0.20.

5.4.1 General Dependence on ω and neC

Examples for ring evaluations are given in Figures 5.10 and 5.11, to show the influence of ω and

the number neC of line elements along the circular scattering boundary Γs on the stagnation levels.

Increasing the frequency while keeping the meshes fixed leads also to an increase of the geometry

stagnation level. Thus, the higher the frequency, the more sensitive is the field computation to the

GDE. As expected, applying an h refinement by increasing the number of elements describing

the scattering boundary leads to a decrease of the GIE, since the geometry is better resolved.

These two general effects can be observed for all three field error evaluation methods.

5.4.2 Model Building

First tests show that the mapping based evaluated error Ẽ2,M and the mapping based GDEM are

related to each other, but to none of the other GDEs or field errors. This is expected from the

comparison of the plots of the different GDEs and error evaluation methods. Therefore, only the

combinations indicated in Table 5.1 are considered in the following. The corresponding data sets

can be seen in Figure 5.12.

A linear dependency can be observed between log10(Ẽ2) and log10(GDE) for fixed ω. Thereby,

no or only a marginal dependency on q is present. The intercept of the linear relation is changed

by an offset that increases with increasing frequencies. A logarithmic dependency between this
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Figure 5.12: Plots of the data sets used for fitting the GIE Ẽ2 against the GDE. They show (a) Ẽ2,P

against GDEH , (b) Ẽ2,R against GDEH , (c) Ẽ2,P against GDEA, (d) Ẽ2,R against
GDEA, and (e) Ẽ2,M against GDEM . Only a subset of the full data set is shown for
clarity.
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Chapter 5. Relation Between GDE and GIE

GDEM GDEA GDEH
Ẽ2,M X - -
Ẽ2,R - X X
Ẽ2,P - X X

Table 5.1: Combinations of GDEs and differently evaluated field errors that are considered to study
the relation between the GDE and the GIE.

offset and ω is suggested by Figure 5.12. Combining these observations, the suggested model is

of the form

log10(Ẽ2) ∼ β1 + β2 log10(GDE) + β3 log10(ω). (5.2)

A linear model fit is performed with the statistical software R [69]. Rearranging the model results

in the non-linear form

Ẽ2 ∼ 10β1GDEβ2ωβ3 . (5.3)

The parameters βi of the different models are given in Table 5.2. Remarkable is the

approximately linear dependency on the geometric accuracy for all models, as well as the

sup-linear dependency on the frequency for the models without the mapping based measures

GDEM and Ẽ2,M . Thinking of the 1D example of a plane wave reflected at a hard wall,

geometric inaccuracy consists of a shift in the positioning of the wall. This results in a phase shift

and the corresponding field error is expected to grow linearly with the geometric inaccuracy. In

the present test case, the sup-linear dependency is assumed to arise from the more complex

scattering phenomena in 2D, such as creeping waves along the scatterer or scattering by the

normal discontinuities at element vertices.

Note that, as β1 represents the general error level, it is expected to be problem dependent.

In Table 5.2, also the values of the adjusted R2 are provided. It measures the portion of the

variance in the data that is covered by the model, adjusted to the number of data and the number

of explanatory variables βi. The closer the R2 is to 1, the better is the model fit.

The definition of the R2 is based on the general requirements of the linear model, namely that the

residuals are uncorrelated and identically distributed. To ensure this and therefore the validity of

the R2, plots of the residuals vs. fitted values are considered (see Fig. 5.13). Strong patterns

indicate correlated residuals and would suggest that the model is not suitable. For identically

distributed residuals, the distribution of the residuals around zero should not vary along the

x-axis. As expected for realistic data, the residuals do not perfectly fulfil these requirements. But

especially for those model fits with the field error evaluation along the ring, they look

uncorrelated and equally distributed enough to proceed with the considered model.

Plots of the fits are shown in Figure 5.14. All five models provide an excellent fit. For the model

relating Ẽ2,M and GDEM , this is presumably induced by the similarity in the definitions of the

mapping based error evaluation E2,M and the mapping based GDEM . In general, these two

measures remain impractical as they need to be adjusted to each individual geometry.

Even though for the circle test case GDEA and GDEH are nearly equal (see Figure 5.15(a)), this

will not necessarily be the case for other geometries. Figure 5.15(b) shows a schematic example

for that, where a bump in Gexact was not resolved by Gapprox. The GDEH would be given by the

distance from the tip of the bump to Gapprox, which would result in a GDEH that is much bigger
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5.4. Finding a Model of Relation between GDE and GIE
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Figure 5.13: Plots of the residuals vs. the fitted data with model (5.2) with (a) Ẽ2,P against GDEH ,
(b) Ẽ2,R against GDEH , (c) Ẽ2,P against GDEA, (d) Ẽ2,R against GDEA, and (e) Ẽ2,M

against GDEM .
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Chapter 5. Relation Between GDE and GIE
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Figure 5.14: Plots of the fitting of the GIE Ẽ2 against the GDE with model (5.2). They show (a)
Ẽ2,P against GDEH , (b) Ẽ2,R against GDEH , (c) Ẽ2,P against GDEA, (d) Ẽ2,R against
GDEA, and (e) Ẽ2,M against GDEM . Only a subset of the full data set is shown for
clarity.

82



5.5. Model Testing with Data from Modally Curved Meshes

β1 β2 β3 R̃2

Ẽ2
M , GDEM 2.0054 1.0122 1.0105 0.9968

Ẽ2
R, GDEA 1.3846 1.0106 1.2314 0.9975

Ẽ2
R, GDEH 1.5913 1.0456 1.2445 0.9981

Ẽ2
P , GDEA 1.4117 1.0104 1.2159 0.9973

Ẽ2
P , GDEH 1.5990 1.0437 1.2345 0.9978

Table 5.2: Parameter values of the fits of model (5.2) to the indicated combinations of field error
evaluation and GDE definitions, and the corresponding values of the adjusted R2.
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D
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(a)

q = 1
q = 2
q = 3
q = 4

(b)

Figure 5.15: (a) shows that for the circle case, the Hausdorff distance GDEH and the area based GDEA
are very similar. The black line indicates the case when both would be identical. In (b),
the red Gexact is approximated by the black dotted curve. This provides an example to
show that GDEH and GDEA are generally not identical.

than in the circle test case. On the other hand, since the bump is thin, the GDEA should not have

increased much compared to the circle case.

For the evaluation of the field error it is decided to drop the projecting method. It leads to a

qualitatively similar behaviour as the evaluation along the ring, but introduces an extra error in

the integration due to the shifted evaluation of the integrand that is hard to control.

5.5 Model Testing with Data from Modally Curved Meshes

In the previous section, only simulations on nodally curved meshes that were created with the

software Gmsh were considered to evaluate the GDE-GIE-relationship. In this section, the

identified model is tested against more data sets that are obtained on meshes that were modally

curved with the H1 modal approach (see Sec. 3.2.2.2) or the least squares approach (see Sec.

3.2.2.1). First, the test case remains the scattering by the cylinder in 2D. In a second step, also the

scattering by the distorted ellipse (see Section 3.3.2) is considered, to test the relation model with

a more complicated geometry.

The content of this section is part of the paper [99].

5.5.1 Scattering of a Plane Wave by a Cylinder (2D), Modally Curved Meshes

In Figure 5.16, the full data set is presented for the H1 modal curving, as well as the

corresponding fit with model (5.2) and the residuals vs. fitted plot. In Figure 5.17, the
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Figure 5.16: Plots of the fitting of the GIE Ẽ2
R against the GDE for the H1 modal curving with model

(5.2) and the corresponding residuals vs. fitted plot. In (a), the colour decodes the
geometric order of the mesh, while the shapes decode the ω value of the simulations.
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Figure 5.17: Plots of the fitting of the GIE Ẽ2
R against the GDE with model (5.2) for data obtained on

least squares meshes and the corresponding residuals vs. fitted plot.
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β1 β2 β3 R̃2

nodal 1.3846 1.0106 1.2314 0.9975
H1 modal 0.9106 1.0012 1.2287 0.9994
least squares modal 0.9175 1.0594 1.3802 0.9965

Table 5.3: Parameter values of the fits of model (5.2) to the field error evaluation and GDE defini-
tions for simulations on H1 modally curved meshes of orders q ∈ {1, 2, 5, 6, 7, 8, 9, 10},
for simulations on meshes curved with the modal least squares approach of orders q ∈
{1, 2, 3, . . . , 10}, and the corresponding values of the adjusted R2. The parameter values
obtained for the nodally curved meshes with q ∈ {1, 2, 3, 4} are provided as reference.

corresponding plots are displayed with the modal least squares. For the H1 modal curving, some

data points catch the viewer’s eye, in both, the data plots and the residuals vs. fitted plots. These

are the data points for order q = 3 and some for q = 4 and will be considered separately. The

remaining data for order q ∈ {1, 2, 5, 6, 7, 8, 9, 10} show the linear behaviour as expected. It is

separately plotted in Figure 5.18, along with a corresponding model fit and the residual vs. fitted

plot. The latter shows that without the data for q = 3, 4, the considered model is suitable. The

model parameters βi of the fit as well as the adjusted R2 are presented in Table 5.3. The evaluated

influences of the GDE and ω is comparable to those found for the nodally curved meshes. This is

explained by the fact that the two parameters β2 and β3 are similar in both cases. But the offset

parameter β1 is significantly smaller for the results on the H1 modally curved meshes.

Neglecting the effects for q = 3 and q = 4, this means that for the same area-based GDE, less

simulation error is obtained on H1 modally curved meshes. As this is similar for the modal least

squares results, the effect can be related to the modal shape functions.

The effects for q = 3 and q = 4 are explained in the following. In Section 4.4.3, it was observed

that for the same simulation and mesh parameters, the H1 modally curved meshes can lead to

better field errors than the nodally curved meshes. In Figure 5.19, the data for q = 3 and q = 4 is

shown separately. To improve the clarity of the plot, only selected ω values are depicted. The

colour encodes the MpC-refinement, hollow symbols correspond to the simulations with

neC = 12, solid symbols correspond to those with neC = 28.

It can be observed that for q = 3, neC = 28, and varying MpC, the GDEA is nearly constant, while

the field error drops by more than 2 orders of magnitude from MpC = 100 to MpC = 5000. This

indicates that on one side the Mmesh is already accurate enough with MpC = 100 to allow the

expected GDEA. On the other side, not all the information that would be needed to describe the

GIE-GDE relationship is included in this GDE measure. As the Mmesh is refined, the H1 modal

curving further improves some geometric aspect that has a positive effect on the GIE.

In acoustics simulations, the scattering direction is determined by the normal direction of the

geometry. Further, the H1 modal curving is based on the optimisation of the H1-seminorm

which corresponds to the L2-norm of the derivatives. The behaviour is not observed with

simulations on meshes that were curved with the least squares approach. All together, this

suggests that a GDE measure based on the difference of the normal direction of the exact and the

approximate geometry could improve the description of the GIE. Note that all corresponding

measures we found in the literature were parametrisation dependent and not strictly proper,

meaning they could be zero for non-matching curves (see Section 2.2.4). The development and

analysis of a differential geometry based GDE measures without these disadvantages is left for
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(c) fitted, without q = 3, 4

Figure 5.18: Plots of the fitting of the GIE Ẽ2
R against the GDE for H1 modal curving, without data

for q = 3, 4 with model (5.2). In (a), the colour decodes the geometric order of the mesh,
while the shapes decode the ω value of the simulations.
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Figure 5.19: Data for q = 3 and q = 4 of the GIE and GDE of the H1 modally curved meshes. The
colour decodes the MpC-refinement, the shapes decode the frequency ω. Filled symbols
correspond to neC = 12, hollow symbols correspond to neC = 28.
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Figure 5.20: q-convergence curves of GDE for the circle test case curved with the H1 modal curving
with (a) neC = 12 and (b) neC = 28.

future work (see Section 8.2).

For q = 4, the described effect occurs only for high enough MpC-refinements, namely

MpC = 1000 for neC = 12 and MpC = 5000 for neC = 28 (see Figure 5.19(b)). For lower

refinements, the inaccuracy of the Mmesh is dominating the GDEA measure (see Figure 5.20).

The same applies for higher curving orders q = 5− 10. This seems to indicate that the

area-based GDEA is still the dominant factor. As long as the MpC-refinement leads to an

improvement of the GDEA, the mentioned, so far unmeasured GDE component has no effect on

the GDE-GIE relationship. It is only contributing once the optimal GDEA is achieved.

5.5.2 Scattering of a Plane Wave by the Distorted Ellipse, H1 Modal Curving

In this section, the model for the GDE-GIE relationship is tested for the scattering of a plane

wave by a more complex geometry, namely the distorted ellipse that was also considered in

Section 3.3.2.

Figure 5.21(a) shows a sketch of the domain. For the simulations, the domain parameters are
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(a) (b) ω = 4 (c) ω = 16

Figure 5.21: (a) Sketch of the domain for the scattering test case and reference solutions for (b) ω = 4
and (c) ω = 16.

rx = 2 and ry = 7. As in the previous test case, the incident plane wave with wavenumber k is

travelling in positive x-direction and is described by pi = e−ikx. As no analytical solution is

available for this geometry, the characteristic boundary conditions along the outer boundary Γo

are replaced by a perfectly matched layer (PML) (see [11], [10]). The reference solutions are

obtained with adaptive field order on a highly refined quadratic mesh and shown in Figures

5.21(b) and 5.21(c). Analogously to the field error evaluation in the previous test case, the field

error is evaluated as the relative L2-error along an ellipse with rx = 1.25 and ry = 6.

β1 β2 β3 R̃2

H1 modal 0.85762 1.0916 1.3861 0.9783

Table 5.4: Parameter values obtained for the fitted GDE-GIE model (5.2) to the data of the scattering
by the distorted ellipse, and the corresponding value of the adjusted R2.

In Figure 5.22, the data obtained from simulations, the model fit and the corresponding residuals

vs. fitted plot are shown. The fitting parameters are summarised in Table 5.4. The fit for this test

case is markedly worse than those for the circle test cases. However, the general model trend is

still present, including the roughly linear dependency on the GDE and the sup-linear dependency

on ω. From q = 3 to q = 4, the data drops, analogously to the drop observed for the circle test

case with modally curved meshes. Therefore, it could correspond to the previously described

limitation of the area based GDE. A lack of information in the model set-up is also suggested by
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Figure 5.22: Plot of (a) the data set of the GIE Ẽ2
R against the GDE for the H1 modal curving of

the distorted ellipse test case. The different colours represent the geometric order of the
mesh, while the different shapes represent the ω value of the simulations. In (b), the
model fit and residuals are shown and in (c) the corresponding residuals vs. fitted plot.

the residuals vs. fitted plot, where a slight quadratic pattern in the residuals can be detected.

5.6 Conclusions of this Chapter

In this chapter, the relationship between the geometry discretisation error and the geometry

induced error is evaluated for an acoustic scattering problem. In the literature, no such analysis

was found. First, the nodally curved meshes are considered. Three GDE and three field error

measures are tested for their effect on the evaluation. For those combinations with a clear link, a

linear dependency of the GIE is found with the GDE and a super-linear dependency with the

frequency ω. From the suggested measures, the mapping based GDE and the corresponding field

error are dropped because they are impractical for general geometries. The projection based field

error evaluation is rejected, as it does include an extra error in the calculation and does not
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provide any additional information. For the tested geometry, the area based GDE measure

showed the same behaviour as the Hausdorff distance. The latter is computationally more costly

and is therefore dropped as well.

In the second part of the Chapter, the obtained relationship model is tested on H1 modally curved

meshes and meshes curved with the least squares approach. In general, the model provides a

good fit for the modally curved meshes and the parameters imply that the same GDE leads to

smaller GIE values than on nodally curved meshes. Further, it is observed that the considered

area based GDE measure does not cover all aspects. As already seen in Chapter 4, the GIE drops

on H1 modally curved meshes in some cases without any indication in the current GDE measure.

A similar sudden decrease in the GIE is observed for scattering simulations on the more complex

geometry of the distorted ellipse. It is assumed that a combination of the area based GDE

measure and a measure based on the normal direction could explain and model this behaviour.

Overall, the results of Chapter 3-5 lead to the decision that the H1 modal approach is the most

advantageous of the tested curving approaches. It will be extended to 3D in the next chapter.
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Chapter 6

Extension of the H1 Modal Curving
Algorithm to 3D

In this chapter, the extension of the modal curving algorithm described in Section 3.2.2.2 to 3D is

outlined. After the presentation of the theoretical background, the individual curving steps are

explained. To allow the curving of realistic geometries, the treatment of feature lines is added to

the curving method. A sphere test case and a cylinder test case are considered to validate the

implementations. Finally, the blending approach is adapted for the 3D meshes and tested with the

scattering of a plane wave by a unit sphere.

6.1 Generalisation of Modal Curving

Compared to the 2D curving routine, the curving process in 3D becomes more evolved. In 2D the

continuity between elements was enforced by default by the fixed vertices. For boundary faces in

3D, not only the continuity at the triangle vertices has to be ensured, but also along the triangle

edges. While the former is again provided by the fixed vertex positions, the latter has to be taken

care of in the setup of the element curving. As for nodally curved meshes, where the nodes along

an edge are the same for both adjacent faces, here the α-coefficients must be the same (neglecting

orientation based sign changes).

This would not be the case if the faces are curved one by one, considering the full triangular

target surface. That is because edge shape functions have non-zero contribution on the element

face. If the full triangular target surface is taken into account for the interpolation with the edge

shape functions, the shape of the face element interior would influence the calculation of the

α-coefficient. Further, this calculation would be independent of the shape of the neighbouring

elements. Similarly, in the interpolation on the other edge adjacent face, the α-coefficients for the

shape functions of the shared edge would only depend on the shape of the target triangle of this

other face. The resulting curved faces would in general not have the same α-coefficient on the

shared edge and the resulting surface would not be continuous along this edge.

In this section, the theory of the 3D curving is described and how the continuity issue is

bypassed. Further, the implementation of the curving steps is outlined.
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6.1.1 Theory of the 3D Curving

The calculation of the α values for the triangular faces on the domain boundary is split up in three

steps: First the coefficients for the vertex shape functions are calculated, then those for the

triangular edge shape functions, and finally the coefficients corresponding to the triangular

bubble shape functions. The interpolant uh of u on a triangular face is the sum of the vertex,

edge, and bubble interpolants (see [82])

uh = uvh + ueh + ubh.

Vertex Shape Functions

The vertex interpolant uvh is directly defined by the triangle vertices vj and interpolates them

exactly:

uvh(vj) = u(vj), j ∈ {1, 2, 3} .

Edge Shape Functions

The three edges are treated separately and the edge interpolant is defined as the sum of the

individual edge interpolants

ueh =

3∑

j=1

u
ej
h .

In the following, the interpolation of a single edge ej is considered.

Based on the theory, the H
1
2
00(ej)-norm should be considered for the interpolation of ej ([82]). It

is based on the trace of H1-functions on the triangular element T with zero contribution on edges

ei, i 6= j, onto the boundary of the element, restricted to the edge ej .

H
1
2
00(ej) =

{
w̃|ej ; w̃ ∈ H

1
2 (∂T ), w̃ ≡ 0 on ∂T \ ej

}
,

where H
1
2 (∂T ) is the space of traces on ∂T from H1-functions on T . For w̃ ∈ H

1
2
00(ej), the

norm is defined as

‖w̃‖
H

1
2
00(ej)

= ‖w‖H1(T ),

with w|ej ≡ w̃, w|ei ≡ 0 for i 6= j, and ∆w|T = 0. In other words, w is the expansion of w̃ onto

the whole triangle, whose trace on edge ej corresponds to w̃. The trace of w along the other two

edges is 0, and w additionally fulfils the property ∆w = 0 on the whole triangle.

The coefficients to solve the minimisation

min ‖ũ− ũvh − ũ
ej
h ‖

H
1
2
00(ej)
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are determined by solving the system

(ũ− ũvh − ũ
ej
h , ϕ̃

ej
T,k)

H
1
2
00(ej)

= 0, k = 2, 3, . . . qej ,

with ũejh =
∑qej

m=2 α
ej
mϕ̃

ej
T,m, and (·, ·)

H
1
2
00(ej)

the H
1
2
00(ej) scalar product.

For a simplification of the evaluation, a weighted H1
0 (ej)-norm is suggested ([82]), where the

weights correspond to the inverse of the Jacobian of the mapping from there reference line

element to ej . The difference between the two norms was found to be insignificant for q < 10

(p < 10) (see [19]). Due to the chosen weight, the weighted H1
0 (ej)-norm simplifies to the

standard H1
0 (T̂line)-norm on the line reference element. For the considered shape functions ϕ̃ejT,k

with k = 2, 3, . . . qej , this corresponds to the H1(T̂line)-seminorm. It is the same that was already

considered for the α calculations in the 2D case. Therefore, analogously to the 2D derivation (see

Section 3.2.2.2), the formula to find the edge αk value is

(ũ− ũvh − ũ
ej
h , ϕ̃

ej
T,k)H1

0 (T̂line) = 0

⇔ (ũ, ϕ̃
ej
T,k)H1

0 (T̂line) − (ũvh, ϕ̃
ej
T,k)H1

0 (T̂line) − (ũ
ej
h , ϕ̃

ej
T,k)H1

0 (T̂line) = 0

⇔ (ũ, ϕ̃
ej
T,k)H1

0 (T̂line) = αk(ϕ̃
ej
T,k, ϕ̃

ej
T,k)H1

0 (T̂line)

⇔ αk = (ũ, lk)H1
0 (T̂line)

⇔ α
ej
k =

∫ 1

−1
ũ′l′k.

Note that by curving each edge independently of the element face deflection, the continuity

between elements is ensured.

Bubble Shape Functions

The coefficients αbn1,n2
for the face bubble interpolant ubh =

∑qb−2
n1=1

∑qb−n1−1
n2=1 αbn1,n2

ϕbT,n1,n2

are chosen to minimise the residual of the overall interpolation in the H1(T̂tria) seminorm ([82]):

min |u− uvh − ueh − ubh|H1(T̂tria) =

min

∫

T̂tria

∇(u− uvh − ueh − ubh) · ∇(u− uvh − ueh − ubh) dξ

⇒ ∂

∂αbn1,n2

∫

T̂tria

∇(u− uvh − ueh − ubh) · ∇(u− uvh − ueh − ubh) dξ

= 2

∫

T̂tria

∇(u− uvh − ueh − ubh)
∂

∂α
∇(u− uvh − ueh − ubh) dξ

= 2

∫

T̂tria

∇(u− uvh − ueh − ubh)∇ϕbT,n1,n2
dξ

= 0
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⇒
∫

T̂tria

∇(u− uvh − ueh)∇ϕbT,n1,n2
dξ =

∫

T̂tria

∇ubh∇ϕbT,n1,n2
dξ,

with ϕbT,n1n2
the bubble shape functions. This results in the system

Aα = b, with

Ai,j =

∫

T̂tria

∇ϕbT,n1,i,n2,i
∇ϕbT,n1,j ,n2,j

dξ,

bi =

∫

T̂tria

∇(u− uvh − ueh)∇ϕbT,n1,i,n2,i
dξ.

Note that this is not an explicit formula for the αbn1n2
, as the bubble shape functions do not fulfill

the δ-property. In [83], bubble shape functions are constructed that fulfill the δ-property. As all

bubble shape functions vanish at the boundary of the reference triangle, they can be

orthonormalised in the H1
0 (T̂tria)-norm, using a modified Gram-Schmidt algorithm. With these

modified bubble shape functions ϕ̃bT,n1,n2
, the calculation of the corresponding α̃bn1n2

simplifies

to

α̃bn1,n2
=

∫

T̂tria

∇(u− uvh − ueh)∇ϕ̃bT,n1,n2
dξ.

In this thesis, the originally introduced, non-orthonormalised bubble shape functions will be

considered.

6.1.2 Implementation of the Edge Curving

For the edge curving, each edge is treated separately. It is curved using the 2D line shape

functions and the algorithm described for the 2D boundary line elements (see Section 3.2.2.2). In

the 2D case, the target curve for the edge was defined by the linear interpolation of the vertices of

the Mmesh arc over the Cmesh element. In 3D, it is still ensured that the Cmesh vertices coincide

with Mmesh vertices. But it is generally not the case that projections of Mmesh edges are subsets

of a Cmesh edge. Instead, the target curve for each edge has to be detected as a preprocessing

step.

6.1.2.1 Edge Target Curve Detection

The edge target curve detection consists of two steps. In the first step, possible target points have

to be found that lie on the Mmesh, the general target surface. As a unique definition, all

intersections of the Mmesh with the edge normal plane

x = p1 + r(p2 − p1) + sne,

are chosen, with p1 and p2 the two vertices of the Cmesh edge, ne the edge normal, and

r, s ∈ R. The edge normal is defined as the mean of the normals of the two adjacent faces. The

normal plane is chosen as it intuitively matches the idea of dividing the space in the middle

between these two faces. An example of a set of intersection points for a single Cmesh edge and

the corresponding Mmesh edges is shown in Figure 6.1.
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(a) intersection points (b) intersecting edges

Figure 6.1: Mmesh with the intersection points (red crosses) considered for the Cmesh edge target
curve, and the Cmesh with the corresponding Mmesh edges (blue lines) and the approxi-
mation after edge curving (red line).
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Figure 6.2: The four different possible cases for the edge traversal. Already found intersection points
are marked by a orange cross. The orange line indicates the intersecting plane. Green lines
show Mmesh edges that were already considered in previous steps, black lines are Mmesh
edges without intersections, and blue lines are the remaining Mmesh edges, therefore
those on which the next intersection point lies. This next intersection point is indicated as
red dot.

This way, far too many intersection points are found. In the second step of the edge target curve

detection, the actual target points are selected with a traversal algorithm. For this algorithm, not

only the intersection points but also the corresponding Mmesh edges are considered. Starting

from one Cmesh edge vertex, a path of connected, preselected Mmesh edges is constructed.

In general, there are four possible situations that have to be considered when looking for the next

intersection point or edge (see Figure 6.2): The currently considered point can either coincide

with an Mmesh vertex or lie on the interior of an Mmesh edge. Similarly, the follow-up

intersection point can fall together with an Mmesh vertex, or simply on an Mmesh edge. The

treatment of the different cases is detailed in Appendix B.

The Mmesh edge traversal is done for all possible starting edges, until the paths either run into a

deadend or until they reach the second Cmesh edge vertex. In the end, the shortest full path is

selected. The corresponding intersection points are extracted and their linear interpolation forms

the edge target curve.
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6.1.3 Implementation of the Face Curving

Similar as the edge curving, the face curving follows several steps. The first step is the detection

of the face target points. Before a parametrisation of the target face can be constructed, a

triangulation of the target points has to be found. It is based on the underlying Mmesh structure.

This triangulation is then also used to ensure a piecewise exact integration over the Cmesh

element in the calculation of the α-values.

6.1.3.1 Detection of Face Target Points

As face target points, all Mmesh vertices have to be detected that lie within the boundary formed

by the Cmesh edge normal planes. This is done with a node traversal algorithm, following the

node neighbour relationship. The status of each Mmesh vertex is described by two properties s1

and s2, where

s1 =





0 =̂ vertex not tested (default)

1 =̂ vertex lies inside

6 =̂ vertex lies on plane

defining edge target curve
−1 =̂ vertex lies outside

and s2 =





0 =̂ neighbouring nodes

not checked (default)
1 =̂ neighbouring nodes

checked

.

The seemingly arbitrary choice of the number 6 to decode vertices on the curve is justified by the

subsequent decoding of resulting triangles (see Sec. 6.1.3.2).

First, the three Cmesh edge normal planes are considered. The signed distance between the three

planes and the vertices of the intersecting Mmesh edges are evaluated. This way, these vertices

can be classified as face internal vertices (s1 = 1), face external vertices (s1 = −1), or vertices

that fall onto one of the planes (s1 = 6). The latter is especially the case for those Mmesh

vertices that collide with the Cmesh vertices. Note that the orientations of the Cmesh edges has to

be included in the calculation. Further, some vertices might be considered as ”inside” from one

of the edge normal planes, but ”outside” from another. For this reason, each of the Mmesh

vertices in question has to be tested, even if it was already marked ”inside” with respect to a

previously tested plane. If a Mmesh vertex is detected as ”outside” with respect to one of the

Cmesh edges, it is defined as ”outside” for the corresponding Cmesh face.

Starting from this bounding data set, the nodes with status s1 = 1 and s2 = 0 are traversed. Their

neighbours in the Mmesh data structure are extracted and, if they were not tested yet (s1 = 0),

are set to be an interior node. Once no more node exists with s1 = 1 and s2 = 0, the selection

algorithm terminates. All Mmesh vertices with s1 = 1 or s1 = 6 are selected as face internal

target points.

6.1.3.2 Triangulation

In order to construct a parametrisation of the face target as well as a piecewise exact integration, a

triangulation of the internal target points is required. Therefore, all Mmesh faces are preselected

that have at least one vertex among the internal target points. They are classified by the sum

S1 =
∑3

i=1 s1(vi) of the s1 status of their vertices vi:
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• All-in faces (S1 = 3)

• 2-in-1-boundary faces (S1 = 8)

• 1-in-2-boundary faces (S1 = 13)

• All-boundary faces (S1 = 18)

• 2-in-1-out faces (S1 = 1)

• 1-in-1-boundary-1-out faces (S1 = 6)

• 2-boundary-1-out faces (S1 = 11)

• 1-in-2-out faces (S1 = −1)

• 1-boundary-2-out faces (S1 = 4)

Additionally to these cases, all Mmesh triangles that have no interior node but at least one

intersection with the Cmesh edge normal planes are considered.

Each of the classes is treated separately. For All-in, 2-in-1-boundary, 1-in-2-boundary, and

All-boundary faces, the Mmesh structure can be preserved. All the other classes are further split

in different cases, depending on the intersection with the edge normal planes. Non-triangular

faces are retriangulated. The detailed cases and treatment of the different classes is provided in

Appendix C.

In the end, small triangles are merged with neighbouring triangles. First, nodes with distance less

than 10−11 are merged and all triangles with the same vertex twice are deleted. Afterwards, all

triangles that are detected as collinear are collapsed and deleted as well. The collinearity is

evaluated using the algorithm described in [64] and a tolerance of 10−14. During the entire

process, vertices on the domain boundary need to be preserved.

6.1.3.3 Construction of the Parametrisation

To find a parametrisation of the triangulation, mean value coordinates as described in [27, 28] are

used. They are length ratio and angle ratio preserving and correspond to the idea of length-based

parametrisation in 2D.

First, the reference nodes for the vertices along on the Cmesh edges are found with a

length-based parametrisation of the reference element edges. In the second step, the reference

nodes of the remaining vertices are calculated by solving the linear systems

Aξ = bξ

Aη = bη,

where

ai,j =





1 if i = j

−λi,j if vertex vj is a neighbour of vertex vi

0 else,

bξ,i =
∑

vj∈Ni,B

λi,jξvj

bη,i =
∑

vj∈Ni,B

λi,jηvj

with weights λi,j and Ni,B the set of neighbouring vertices of vertex vi that lie on a Cmesh edge

(see [27]). Two vertices are defined as neighbouring vertices if they are connected by an edge of
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Figure 6.3: Sketch of the angles to find the weights for the mean value coordinates. This figure is
based on Figure 1 in [28].

the triangulation. The weights λi,j are calculated as

λi,j =
ωi,j∑

vk∈Ni
ωi,k

ωi,j =
tan(

αi,j

2 ) + tan(
βi,j
2 )

||vj − vi||

with αi,j and βi,j the angles at vi on both sides of the edge connecting vi and vj (see Fig. 6.3)

and Ni the set of neighbouring vertices of vertex vi (see [28]).

After the parametrisation, a test for colinearity is run for the triangles in the reference domain.

Analogously to the check in the triangulation routine, colinear triangles are collapsed. The nodes

and the triangles in the physical domain are treated correspondingly.

6.1.3.4 Piecewise, Exact Integration

The triangulation of the Mmesh arc is not only used to find a parametrisation, but also to

construct an exact quadrature rule for the integration in the calculation of the α.

In general, the Mmesh arc is only piecewise linear. This makes the standard Gaussian quadrature

inapplicable for integrations. Instead, an exact integration rule can be obtained by composing

local Gaussian quadratures over each of the triangles of the arc triangulation. To obtain the

quadrature points on these subtriangles, the Gauss-Legendre points on the (−1, 1) reference

triangle are mapped using a linear Lagrangian mapping. The quadrature weights are the

corresponding Gauss-Legendre weights, scaled by 1
2Ae, where Ae is the area of the subtriangle.

Note that the additional reference mappings from the reference triangle to the subtriangles in the

reference domain have to be also considered in the calculation of the integrand.

6.1.4 GDE Measure in 3D

Analogously to the area measure in 2D, the GDE measure in 3D is defined as the volume Vapprox

between the approximation and the target surface, divided by the surface area Atarget of the target

surface:

GDEV = Vapprox/Atarget.
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Figure 6.4: Sketch of the subdivision of a wedge into three tetrahedrons formed by the wedge nodes
1-2-3-5, 1-4-5-6, and 1-3-5-6.

In general, the Mmesh is considered as the target curve. But, as in 2D, some special cases allow

the evaluation of the GDEV with respect to the exact geometry.

Special case: Sphere

The sphere in 3D corresponds to the circle case in 2D (see Sec. 3.3.1.2). The knowledge of the

geometry and the inverse of its parametrisation allows for a calculation of the volume between

the approximating curve and the exact sphere. The resulting measure will be denoted GDESV .

In 2D, the area formula for convex quadrangles could be manipulated to obtain an ODE

describing the total area measure. In 3D, no such simple formula was found.

Instead, the idea corresponds to the more general idea that was followed in 2D for the area

between the approximation and the Mmesh. There, the area was subdivided in small quadrangles

of which the areas could be obtained by the previously mentioned formula. The quadrangles are

refined until convergence is observed (see Section 3.3.2.1).

For the 3D volume between the approximation and the sphere, the volume is subdivided in small

wedges. This is done by triangulation of the approximation based on a regular triangulation of

the reference triangle. Corresponding points on the sphere were found by radial projection. A

general formula for the volume of a wedge was not found in standard formularies. Instead, the

volume is obtained by subdividing the wedge in three tetrahedras (see Fig. 6.4) and adding the

volumes of these. This way, a formula is obtained to directly calculate the volume of the wedge.

Note that this approach is only possible if we know that the nodes of the quadrangular wedge

faces are coplanar. For the volume to sphere case, this is ensured by the way the wedges are

created.

General GDE measure

To generalise the volume to the Sphere to the volume to the Mmesh, the construction of the

wedges has to be adapted. The idea is to now rely on the triangulation of the reference triangle

from the curving step. In this triangulation, each (small) triangle corresponds to a linear surface
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on the Mmesh. No Mmesh edges are crossing them. At the same time, a parametrisation of both

the curved Cmesh and the Mmesh are available from the triangulated reference triangle.

For these general wedges, there is no guarantee that the vertices defining a quadrangle face are

coplanar. The subdivision in tetrahedra would therefore demand bookkeeping to ensure that the

faces are subdivided by the same diagonal for both adjacent wedges. Instead, the volume of a

single wedge W is calculated using the Green’s identity:

Vapprox =

∫

W
1 dW =

∫

W
∇ · f dW

=

∫

∂W
f · nd(∂W ),

with

f =
1

3




x

y

z




and n the outwards pointing unit normal of the wedge surface. Note that the norms of wedges

that cross intersections of the Cmesh and Mmesh are not continuously pointing outwards, which

makes Green’s identity invalid for these wedges. As the subdivision into wedges is refined, the

overall volume calculation is converging towards the correct volume.

6.1.5 Test Case: Curving of a Sphere

First, the 3D curving algorithm is tested for the unit sphere. Note that for 3D, the definition of the

M̃pC-ratio is adapted. In 2D, the ratio was evaluated as the number of Mmesh edges per Cmesh

edge and therefore directly linked to the element length. The analogous ratio in 3D is defined as

the average number of Mmesh faces per Cmesh face

M̃pC = nf
M/nf

C,

with nfM the number ofM faces and nfC the number of C faces. The latter scale quadratically

with the mesh length and could not be explicitly controlled by the mesh length in the mesh

generation process. Therefore, the here considered M̃pC-ratios are not the same for the different

C sizes, but were selected to lie relatively close together.

In Figures 6.5 and 6.6, the results of the GDE evaluation towards the exact sphere and towards

the Mmesh are shown and compared for a coarse and a fine Cmesh. First of all, the 3D curving

implementation is validated by the expected, typical error behaviour: An exponential

convergence, ending in a stagnation, where the stagnation level decreases with increased

geometric order q and increased number of elements nfC .

Comparing the evaluations of the GDE measure towards the exact Sphere with the one towards

the Mmesh, it can be observed that for the coarse Cmesh the two measures differ more than for

the fine mesh. This is also consistent with the expectations, as the exact Sphere and the Mmesh

lie closer together in the latter case (see dashed lines Figures 6.5(c) and 6.6(c)).
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Figure 6.5: Comparison of the GDE evaluation to the exact Sphere and to the Mmesh for nfC = 32.
The dashed lines in (c) indicate the volume between the Mmesh and the exact Sphere.
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Figure 6.6: Comparison of the GDE evaluation to the exact Sphere and to the Mmesh for nfC = 228.
The dashed lines in (c) indicate the volume between the Mmesh and the exact Sphere.
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But especially on the coarse Cmesh it becomes obvious that the GDESV stagnates at a higher level

than the GDEV . An error component that is either not present or not significant in GDEV
becomes the dominating factor. In the context of this thesis, no explanation for this behaviour

was found. It is observed though that the difference between the two measures deviates from the

difference between the Mmesh and the exact sphere abruptly from q = 3 on. From this curving

order on, the shape functions become non-convex and triangular bubble shape functions arise.

Therefore, it is assumed that the unexplained error component is linked to at least one of these

two properties. Considering Figure 6.5(c), the difference between the GDESV and GDEV is

plotted and the volume between the exact Sphere and the Mmesh indicated by the dashed lines.

Generally, one would expect that the difference between the two GDE measures corresponds to

the volume between their two target curves. For q = 1, 2, this is the case, while for q ≥ 3 the

difference also remains approximately constant, but at a higher level. The jump between the two

levels takes place between q = 2 and q = 3, just were the mentioned non-convex higher-order

shape functions, as well as triangular bubble shape functions arise.

Note that results in Section 6.3.1 below will indicate that the GDEV evaluated towards the

Mmesh is the more reliable measure of the geometric accuracy regarding the corresponding

geometry induced field error. For this reason, it will also be considered in the validation test case

of the following section.

6.2 Feature Line Treatment

Realistic geometries do usually consist not only of one smooth surface, but are build of several

surfaces that intersect each other. These intersections typically form sharp edges, which are

called feature lines. For a reasonable geometric approximation, it is crucial to take these feature

lines into account. In order to preserve feature lines, their occurrence on the geometry has to be

known. Algorithms to detect feature lines based on e.g. the angle between neighbouring mesh

elements are available in the literature ([47]).

For this thesis, the feature line detection is simplified. Here, only geometries are considered,

where feature lines form closed loops around predefined surface patches. The knowledge which

surface element belongs to which surface patch has therefore to be additionally provided along

with the mesh. To check if an edge is on a feature line, the two adjacent surface elements are

considered. If they belong to two different surface patches, the edge is marked as falling onto a

feature line.

In the curving process, the feature lines have to be treated separately at only one point, namely

the detection of the edge target points. The added knowledge of the feature line leads to a

simplification of the detection step as it was described in Section 6.1.2.1: First of all, only

Mmesh edges that are marked as falling onto a feature line are considered. This reduces the

number of Mmesh edges that need to be tested. Secondly, the Cmesh and Mmesh are both

expected to respect all feature lines. Therefore, one knows that all intersection points of the

Mmesh and the Cmesh edge normal plane coincide with Mmesh vertices. And as feature lines

can only cross in Cmesh vertices, only one possible next Mmesh edge can be found as long as

travelling along the path into the right direction. If more than one possible next edge is detected,

these do not have to be treated, but the path is either at the end vertex or can be rejected.
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Figure 6.7: Geometry and GDEV of the cylinder test case with nfC = 40. The figure of the geometry
shows the curved mesh with M̃pC = 115 and q = 6. The feature lines are highlighted in
red.

Once the adjusted edge target curve detection is applied, the edge curving procedure remains the

same as for Cmesh edges that fall not onto a feature line. The curving of the element faces is not

affected by the feature line treatment.

6.2.1 Test Case: Cylinder

In order to validate the described feature line treatment, the curving of a cylinder is considered.

The curving results are presented in Figure 6.7, along with a plot of the curved mesh. The feature

lines are highlighted in red. As expected, the GDEV first converges and then stagnates with

increasing curving order q. The stagnation levels decrease with refinement of the target curveM.

Only for M̃pC = 5965, q = 4 an outlier is detected, where the GDEV is higher than for the less

refined target curve with M̃pC = 1122.

6.3 Blending Approach in 3D

The blending of the curved surface for the mapping of the full tetrahedral is analogous to the

blending approach for the H1 modally curved meshes in 2D (see Sec. 4.3.2). Starting from the

linear interpolation of the tetrahedral vertices, the deviation of first the edges and then the faces is

considered in each coordinate separately. Similar to the 2D triangle shape functions, the 3D

tetrahedral Lobatto shape functions are constructed as vertex, edge, face and bubble shape

functions, where the vertex shape functions coincide with the linear Lagrange shape functions.

The traces of the edge and face shape functions along the corresponding edges and faces equal

the 1D and 2D Lobatto shape functions and vanish on the remaining edges and faces, respectively

(see [82]). Therefore, the tetrahedral Lobatto shape functions can be directly applied to the

α-values obtained from the curving method. The mapping has therefore the form

f(ξ, η) =

4∑

i=1

xiϕ
vi
Tet(ξ, η) +

6∑

i=1

q∑

j=2

ϕeiTet,j (ξ, η)αeij +

4∑

i=1

q−2∑

j=1

q−j−1∑

k=1

ϕfiTet,j,k (ξ, η)αfij,k,
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where ϕviTet, ϕ
ei
Tet,j , ϕ

fi
Tet,j,k are the tetrahedral vertex, edge, and face shape functions, and

αeij , α
fi
j,k are the α-coefficients for the ith edge or face, respectively.

Note that here also internal edges and faces are allowed to deviate from the linear interpolation.

This is necessary, if untangling procedures are applied that protrude the curving of the surface

into the domain. Further, again analogously to the 2D blending approach, tetrahedral internal

bubble shape functions are not necessary to describe the deviation of the element shape from the

linear vertex interpolation. They might, however, be advantageous for smoothing the element

internal Jacobian after the untangling.

6.3.1 Test Case: Plane Wave Scattering by a Sphere

To validate the 3D blending, the scattering of a plane wave by a unit sphere is considered. The

computational domain is defined by the scattering unit sphere Γs in the centre and a sphere of

radius ro = 2 as outer domain boundary Γo. This test case is analogous to the scattering by a

cylinder from Section 4.4.1. As for the 2D test case, the Helmholtz equation is solved with rigid

boundary conditions on Γs and characteristic boundary conditions on Γo:

∇2p + k2p = 0,

∂p

∂n
= 0 on Γs,

∂p

∂n
=
∂pex

∂n
+ iωpex − iωp on Γo.

A derivation of the exact solution pex can be found in [4]. Gauss-Legendre quadratures of order

2p+ 2(q − 1) are applied for the numerical integrations.

For the field error calculation, the relative L2-error is evaluated over the whole computational

domain. The additional error, induced by evaluation points that fall outside of the computational

domain and inside the scatterer (see Section 4.4.2, Figure 4.3(a)) is neglected for simplification.

The p-convergence curves of the field error for ω = π are shown in Figure 6.8

The curves exhibit the typical behaviour of exponential convergence for lower field orders and

stagnation for higher p, with the stagnation level depending on the geometric order q. This

validates the blending approach. Further, one can compare the plots with Figures 6.5 and 6.6.

There, the p-convergence curves and their stagnation levels correlate well with the results

obtained for the GDEV evaluation towards the Mmesh. For nfC = 32 and M̃pC = 2334 for

example, the field error stagnation levels decrease up to order q = 5. This corresponds to the

GDEV in Figure 6.5 (b), where the geometry discretisation error also decreases up to q = 5. The

GDESV in Figure 6.5 (a) on the other hand already stagnated for q ≥ 3. A similar behaviour can

be observed for all depicted cases. As already mentioned above, this indicates that the GDEV
evaluated to the Mmesh is the more reliable measure of the geometric accuracy and justifies the

application of this measure in the cylinder test case above.

6.4 Conclusions of this Chapter

This chapter covers the extension of the H1 modal curving method to 3D. First the theory of the

3D curving is provided, followed by the explanation of the implementation. The latter is divided
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Figure 6.8: p-convergence curved of the field error for the plane wave scattering by the unit sphere
with ω = π.

into the edge curving and the face curving. This separation is needed to ensure continuity

between the face elements. The edge curving corresponds to the 2D curving procedure.

Therefore, only the detection of the edge target curve has to be outlined. For the face curving,

more steps are necessary and explained individually.

The curving implementation is validated with the curving of the sphere. Two GDE measures are

applied thereby, one based on the volume to the exact sphere and the other based on the volume

to the Mmesh. While the latter behaves as expected, the measure towards the exact sphere shows

unanticipated early stagnations. This behaviour could not be explained within the frame of this

thesis.

After the general curving implementation, an adaption to allow for feature line treatment is

described. It must be noted that this modification does only treat and not detect feature lines, and

therefore relies on additional input data. The feature line preservation is verified with a cylinder

test case.

Last, the blending approach for the 3D curved mesh is explained and the implementation

validated with the scattering of a plane wave by a sphere. Comparison with the field error results

and the GDE evaluations in the previous sphere curving test case shows that the GDE evaluated

towards the Mmesh is reliable. In retrospect, this also justifies the evaluation of the cylinder test

case with this GDE.
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Applications

In this chapter, two applications are provided for the H1 modal curving algorithm. The first is

based on the Munt test case with a relatively simple geometry. It can be seen as the academic

generalisation of the second application, where a generic intake of a turbofan engine is

considered. The equation for the simulations is the linearised potential equation. In the case of a

low Mach number which will be considered in this thesis, it has a structure similar to the

Helmholtz equation.

7.1 Acoustics Equations

Linearised Potential Equation

For the application of the modal curving algorithm, simulations with the linearised potential

equation are considered. It is the most widely used formula to simulate aircraft noise originating

from turbofan engines ([31]).

The equation describes the acoustic propagation in form of the velocity potential φ for a steady,

potential mean flow of a compressible fluid with constant and uniform entropy. It is given as

ρ0
D0

Dt

(
1

c2
0

D0φ
′

Dt

)
−∇ ·

(
ρ0∇φ′

)
= 0,

with c0 and ρ0 the mean sound speed and density, respectively, and D0
Dt = ∂

∂t + u0 · ∇ the

material derivative. The velocity potential φ is related to the acoustic parameters, such as the

acoustic velocity u and the acoustic pressure p by u = ∇φ and p = −ρ0
D0φ
Dt ([31]).

Annular Duct Modes

In both applications, the acoustic field is excited by annular (or cylindrical) duct modes. Modes

are often considered in acoustic simulations for ducts with parallel walls, as they are relatively

simple solutions of the wave equation that allow for an easier understanding of the acoustic

behaviour of the whole simulation than more complicated sound waves. On the other hand, duct

modes Ψm,n(x, y) e−ikm,nz form a basis and any solution can be constructed as a linear

combination of them ([73]).
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(a) Mode (5,0) (b) Mode (5,0)

(c) Mode (0,2) (d) Mode (0,2)

(e) Mode (5,2) (f) Mode (5,2)

Figure 7.1: Example Ψm,n(x, y) at a duct cross section for (a), (c), (e) a cylindrical duct and (b), (d),
(f) an annular duct.

For annular and cylindrical ducts of fixed radii, the function Ψm,n(x, y) is defined by the

azimuthal and the radial mode number (m,n). In Figure 7.1, examples for Ψm,n(x, y) are plotted

on duct cross sections. The axial wavenumber km,n defines the evolution of the duct mode along

the axis z and depends on the frequency ω and the fluid and flow parameters. The pressure field

has an e+iωt−imθ dependency on the azimuthal wave number.

Here, an already available code was used to generate the duct modes. This code is based on the

derivations in [73].

110



7.2. Modes Exiting a Duct

z

y

x

0−LPML LD LD + L

RD

R
PML

Ω

...

(a)

z

y

x

0 LD
1
4LD 1 3

4LD

...

(b)

Figure 7.2: Figure (a): Schematic of the simulation domain with duct length LD, duct radius RD,
domain radius R, domain length LD + L, and PML thickness LPML. The shaded area
corresponds to the active Pml. The full 3D domain is obtained by rotation around the
z-axis.
Figure (b): The blue dashed line indicates the semicircle for the field error evaluation
points.

7.2 Modes Exiting a Duct

This application is based on the Munt benchmark problem [62]. It is formed by a semi-infinite

cylindrical duct. An acoustic wave is travelling along the duct and diffracted as it exits through

the duct opening. The duct walls are infinitelly thin, acoustically impermeable and rigid.

Therefore, the boundary condition for the duct wall is a homogeneous Neumann condition for the

velocity potential. Along the domain boundary, Sommerfeld radiation condition have to be

realised.

In his thesis, Rarata [70] considers the Munt problem to evaluate the effect of varying

computational parameters on simulation results with the Discontinuous Galerkin Method.

Among these tests, one assesses the influence of the mesh refinement with geometrically linear

elements. It is found that the geometric accuracy of the duct description is of high importance for

the directivity of the simulation results. With a coarse mesh along the duct, spinning modes get

scattered at the C1-discontinuity between elements and cause high divergence from the analytical

solutions at polar angles around 0◦ and 180◦.

7.2.1 Simulation Parameters

For this application, the elements defining the duct wall are curved using the H1 modal curving

approach, presented in Section 6. The effect of the curved mesh on the accuracy of the simulation

results is considered.

A sketch of the simulation domain Ω is provided in Figure 7.2(a). The domain parameters are

defined in terms of the duct radius RD as LD = 2RD, R = 3RD, and L = 2RD. For simplicity,

the duct radius is chosen as RD = 1. In order to fulfill the Sommerfeld radiation condition, a

PML is added to the simulation domain. Two Mmesh refinements are considered, a relatively

coarse Mmesh with M̃pC = 47.75 and a fine Mmesh with M̃pC = 2753.0.

To implement an infinitely thin, impermeable duct, it is generated as a two-layered surface. In the

mesh generation, the two layers are separated by increasing the radius of the outer layer up to
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RD + ε at the back end of the duct, with ε = 0.1. At the open end, both layers come together in a

single circle at the predefined duct radius RD. After the linear mesh generation and before the

curving, the outer layer is moved back to the duct radius RD over the whole duct length. Working

with two layers involves the risk of intersecting mesh surfaces, but as they are treated as separate

boundary domains, this will not affect the desired impermeability property. For this application

case, only the two duct layers are curved. Afterwards, it has to be ensured that the mesh remains

continuous along the feature lines between the curved surfaces and their adjacent boundary

domains. Therefore, elements on neighbouring surfaces that are adjacent to the curved surface

are adjusted to follow the curving of the edges on those feature lines.

Circular duct modes are inserted at the back wall of the duct at z = −LPML,
√
x2 + y2 ≤ RD.

The intersection between the PML and the duct is defined as a so-called active PML. There, only

the backtravelling component of the acoustic field is damped, while the forward moving mode is

actively prescribed [38]. Implementations of the passive and the active PML were already

available and are not newly implemented in the frame of this thesis.

Compared to [70], the problem size is reduced by considering modes with kRD = ω = 4 and

kRD = ω = 6. The mesh length is kept fixed for both cases and corresponds to 1
2 or 1

3 element

per wavelength, respectively.

For the simulation, an existing implementation of the adaptive high-order FEM is used [31]. The

target accuracy for the a-priori error indicator is selected as 5%, with a maximal element field

order of p = 15.

Following the test case in [70], no flow is applied on the simulation domain, as no additional

effect is expected on the geometric accuracy dependency from adding flow to the simulation.

7.2.2 Error Evaluation

For the calculation of the GDE, the volume based measure GDEV described in Section 6.1.4 is

applied. Only the duct is curved, and therefore the GDE is only evaluated over the two layers of

the duct surface.

The simulation results are evaluated along a semicircle in the simulation domain (see Fig.7.2(b)).

Along this curve, the potential field is obtained by interpolation and then used to calculate the

corresponding pressure. The latter is transformed into the sound pressure level (SPL) by

Lp = 10 log10

p2
rms

p2
ref

,

with the root-mean-square pressure value prms = |p|2/2 and the standard reference pressure of

2 · 10−5Pa (see [73]).

For this academic application case, an analytical solution is available. The derivation and

calculation are outlined in [30]. Here, the analytical solution was provided by G. Gabard.

7.2.3 Results

In Figure 7.3, the GDE development is shown for the two considered Mmesh refinements. For

both cases, there is a strong improvement of the geometric accuracy from linear to quadratic

meshes. With the latter, a significantly better geometric description is obtained with the finer
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Figure 7.3: GDE curves for the modes exiting a duct application case.

Mmesh. Further, the GDE curve for M̃pC = 47.75 stagnates already from q = 2, while the

geometric accuracy for M̃pC = 2753.0 improves up to order q = 4. This corresponds to the

expected behaviour of a later stagnation onset on a lower stagnation level with the finer Mmesh.

It is also similar to what was observed in the previous chapters.

As mentioned above, two frequencies are considered. For ω = 6, simulations with the fully

cut-on plane wave (0, 0), the intermedially cut-on mode (2, 0), and the close to cut-off mode

(4, 0) are evaluated. Additionally, the simulations of the plane wave are obtained for ω = 4.

Figure 7.4 depicts numerically obtained potential fields of these two cases.

The sound pressure levels of the simulation results and of the analytical solution are plotted in

Figures 7.5 and 7.6. The plots 7.5(a) and 7.5(b) for ω = 6, mode (0, 0) are dominated by a strong

deviation of the simulation results from the analytical solution, close to the duct wall. Curved

meshes do not resolve or even improve this issue, but rather lead to a generally worse match

between the numerical and the analytical SPL. Within the time frame of this thesis, no

explanation was found for this behaviour. It also comes together with an effect that looks like a

strong backtravelling wave in the active PML domain (see Fig. 7.4(b)).

With increasing azimuthal mode number, the described effect diminishes (compare plots 7.5(c) -

(f) for modes (2, 0) and (4, 0)). It is also not significant for the plane wave at the lower frequency

ω = 4. There, a clear improvement is observed when changing from a linear to a curved mesh.

Among the latter, no notable improvement can be observed between the simulation results on

meshes with different curving orders.

For the simulation with ω = 6, mode (4, 0), M̃pC = 47.75, and q = 1, a directivity error is

present at polar angles around 0◦ and 180◦, similarly as described in [70]. On curved meshes, this

error is reduced by up to 20dB at Θ = 0◦ with order q = 3, and up to 40dB in the duct interior at

Θ = 180◦, for q = 4. As the SPL is a logarithmic measure, this corresponds to a reduction of the

sound pressure by one or two orders of magnitude, respectively. The effect that the best

simulation results were not obtained with the highest tested curving order q = 6 might be

explained by the fact that the curving target is relatively coarse and therefore includes some

inaccuracy itself.

However, with the more refined Mmesh, the above described directivity error is only visible in

the duct interior. An explanation for the differences in the simulation results on the two linear,

and therefore uncurved and otherwise untreated Cmeshes, lies in the preprocessing step that
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(a) ω = 4, mode (0, 0) (b) ω = 6, mode (0, 0)

(c) ω = 6, mode (2, 0) (d) ω = 6, mode (4, 0)

Figure 7.4: Plots of the potential field of the modes exiting a duct application case, obtained from
simulations with M̃pC = 2753.0. The black box indicates the boundary between the
simulation domain and the PML.
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(b) ω = 6, mode (0, 0), M̃pC = 2753.0
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(d) ω = 6, mode (2, 0), M̃pC = 2753.0

0 50 100 150
0

20

40

60

80

100

Θ[deg]

SP
L[

dB
]

(e) ω = 6, mode (4, 0), M̃pC = 47.75
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(f) ω = 6, mode (4, 0), M̃pC = 2753.0
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Figure 7.5: Sound pressure levels of the modes exiting a duct application case, evaluated along a
semicircle in the computational domain.
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Figure 7.6: Sound pressure levels of the modes exiting a duct application case, evaluated along a
semicircle in the computational domain.

(a) M̃pC = 47.75 (b) M̃pC = 2753.0

Figure 7.7: Cmesh triangulation of the duct cross-section at z = 0. The circumferential line describes
the duct wall. In (a), the red dots highlight the Cmesh nodes that were moved a relative
big distance in the preprocessing step to align them with Mmesh nodes.

moves the Cmesh nodes to the closest Mmesh nodes. Recall that this step is necessary in our

setup to ensure that the Cmesh nodes form a subset of the Mmesh nodes, a prerequisite we

formulated for our curving routines.

In Figure 7.7, a cross section of the linear Cmesh in the duct at the mode insertion plane is plotted

for both Mmesh refinements. With the fine Mmesh, the Cmesh is still visually equally sized. In

the other case, the Cmesh nodes had to be moved larger distances to align with nodes on the

coarse Mmesh. Therefore, the resulting linear Cmesh is not equisized anymore, but still displays

some regularity, due to the general mesh generation along the circular duct. For the simulation

results, this seems to lead to a stronger scattering of the mode along the duct wall, and overall to a

larger directivity error.

In summary, the modes exiting a duct application case comes with several overlying effects

that are only partially understood and explained here. But for the cases where the directivity error

is dominating in the linear case, curved meshes lead to an improvement of the simulation results.

In these instances, the reduction of the SPL in the critical domains is up to a similar extent as it is

obtained with mesh refinement in [70], especially in the duct interior at Θ = 180◦. The biggest
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effect is thereby obtained when changing from linear meshes to meshes with curving order q = 2.

Higher curving orders lead in some cases only to small (or no visual) improvements.

7.3 Modes Exiting a Generic Intake

The previous problem can be seen as an academic simplification for a turbofan intake. In this

application, a more realistic, generic geometry of an intake is considered. First, a 2D version is

curved and used as simulation domain. Afterwards, a 3D geometry is obtained by rotation around

the x-axis. The 3D curving algorithm is applied and the geometric accuracy is evaluated.

However, simulations can not be run on the resulting domain mesh due to tangled elements.

7.3.1 2D Geometry

Plots of the geometry and the Cmesh are shown in Figure 7.8. The generic intake is defined by an

upper and lower part of the nacelle and the spinner in the middle. It is based on the generic intake

geometry described in [31]. A PML encloses the simulation domain to ensure compliance with

the Sommerfeld radiation condition. The nacelle and the spinner are simulated as rigid walls by

applying homogeneous Neumann boundary conditions on the velocity potential.

Between the nacelle and the spinner, the lines defining the fan plane are located at x = 0. The

velocity field is excited in the form of annular duct modes at the back of the PML behind these

lines. In between the insertion and the fan line, an active PML is implemented to ensure the

propagation of the wave.

As this application is a 2D simulation, only modes with azimuthal order 0 are considered. For the

flow conditions, an approach case is considered (see Fig. 7.8(c)). An already available data set

(see [31]) is scaled to obtain a mean sound speed and a mean density of 1. Simulations are run at

ω = 20 for the plane wave (0, 0), an intermediately cut-on mode (0, 2) and a nearly cut-off mode

(0, 5). Varying MpC-refinements are considered, but as they do not lead to any additional

insight, only the results for MpC = 1000 are shown below.

For this geometry, there is no analytical solution available. Instead, a numerical reference

solution is obtain on a refined mesh (see Fig. 7.8(a)), nodally curved with q = 2 and field order

p = 15. Plots of the reference potential fields are shown in Figure 7.9. Analogously to the modes

exiting a duct application case, the SPL is evaluated along a semicircle (see Fig. 7.8(d)). Note

that the evaluation arc is crossing the nacelle. For this reason, the resulting SPL plots below have

a gap as well.

Results

In Figure 7.10, the evolution of the GDEA is shown for four different MpC-refinements. With

MpC = 100, the coarsest refinement, the geometric accuracy significantly increases from q = 1

to q = 2. An additional increase of q improves the geometric accuracy only slightly. The curves

of the remaining refinements fall together and converge over the full curving order range

q = 1− 6. This indicates that from MpC = 200 on, the inaccuracy of the target mesh description

is negligible for the GDEA calculation.
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(a) Reference mesh (b) Cmesh

(c) Flow data (d) Evaluation points

Figure 7.8: Plots of the 2D geometry and flow data of the generic intake application case. In (a), the
mesh for the reference simulation is shown, while (b) depicts the Cmesh. The boundary
that separates the simulation domain from the PML is highlighted in red. Figure (c) depicts
the flow applied for the simulation, and the blue semicircle in Figure (d) displays the
position of the SPL evaluation points.
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(a) Mode (0,0) (b) Mode (0,2)

(c) Mode (0,5)

Figure 7.9: Reference potential field for ω = 20 of the 2D generic intake application case, obtained
by numerical simulations.
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Figure 7.10: Area-based GDE of the meshes for the 2D generic intake application case.
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Figure 7.11: Sound pressure levels of the 2D generic intake application case with ω = 20 and MpC =
1000, evaluated along a semicircle in the computational domain.

The sound pressure levels of the simulation results are displayed in Figure 7.11 for the three

considered modes and simulations with MpC = 1000. Despite the alike GDEA results for

MpC = 200, MpC = 500, and MpC = 1000, the highest MpC-refinement is considered

because of the conclusion in Chapter 5 that the GDEA does not cover all significant contributions.

For all considered modes, the curving in general from q = 1 to q = 2 leads to an improvement of

the evaluated SPL. This is especially the case for the plane wave (0, 0), where a directional shift

in the solution on meshes with q = 1 is resolved on the curved meshes. The curves for curving

orders q = 2 to q = 6 lie too close together to allow a visual comparison.

Similarly, the plots for mode (0, 5) with MpC = 100 and MpC = 1000 in Figures 7.12(a) and

7.12(b), respectively, do not reveal any significant difference. Therefore, the corresponding error

in the SPL is shown in Figures 7.12(c) and 7.12(d), in form of the absolute difference between

the simulation result SPL and the reference SPL. However, besides the already identified higher

error with q = 1, no clear tendency is observed among the higher curving orders. Also, no

improvement can be detected when changing from MpC = 100 to MpC = 1000. The plots for

the remaining modes and MpC-refinements imply the same conclusions.

7.3.2 3D Geometry

This section is a short presentation of curving results for the 3D version of the generic intake

from the previous section.
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Figure 7.12: Sound pressure levels of the 2D generic intake application case with ω = 20 and mode
(0, 5), evaluated along a semicircle in the computational domain. In (c) and (d), the
absolute difference to the reference SPL is plotted.
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(a) q = 1 (b) q = 6 (c) q = 6, tangled elements

Figure 7.13: Plot of the (a) linear and (b) curved Cmesh of the 3D generic intake. In (c), the tangled
elements are added in red. For clarity, only the nacelle and the spinner are shown.
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Figure 7.14: Area-based GDE of the meshes for the 3D generic intake application case.

The 3D generic intake geometry is obtained by rotating the upper half of the 2D geometry around

the z-axis. The 3D curving approach is applied on the spinner and the nacelle surface. In Figure

7.13, the linear Cmesh and a curved version with q = 6 are shown.

Since only the nacelle and the spinner are actually curved, the GDE is also evaluated based only

on those two surfaces. It is plotted in Figure 7.14 for three different M̃pC-refinements. For

increasing geometric order, the GDEV decreases well up to q = 2, before it nearly stagnates.

As mentioned at the beginning of this Section, no simulations could be applied to the curved

geometries because of tangled elements (see Fig. 7.13(c)). An untangling routine as those

described in Section 2.4 would be needed as a postprocessing step in order to allow for reliable

simulations.

7.4 Conclusions of this Chapter

This chapter provides application cases for the H1 modal curving algorithm described in the

previous chapters. The first application is based on the Munt test case. For this case, the

dependency of the solution on the geometric accuracy is known ([70]). While in [70] the

geometric description is improved by mesh refinement, a coarse mesh is maintained here.

Relative to the wavelength, the mesh refinement considered here is even coarser than the coarsest

mesh in [70].
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In the simulation results for some modes, additional effects overlay the expected geometry

dependent error. These effects are only partially understood and explained in this thesis. But for

some cases, the geometric dependent error is observed with the linear mesh. There, mesh curving

leads to improvements in the solutions up to a similar extent as in [70]. Remarkable is that the

strongest improvement from curving order q = 1 to q = 2, and from q = 4 on, no significant

improvement is observed in any case.

This first application can be seen as the academic generalistion of the second application, an

generic intake. For this more realistic geometry, the curving of the 3D version comes with the

issue of tangled elements. In this thesis, no untangling scheme is considered, therefore only the

geometric accuracy is evaluated. It reveals a clear decrease of the GDEV from q = 1 to q = 2.

Only minor improvements are obtained with higher curving orders.

A 2D version of the geometry is considered as well, which allows for simulations, as the curving

does not lead to tangled elements. There, again a visual improvement is obtained when changing

from a linear to a curved mesh with q = 2. While the GDEA improves, dependent on the

MpC-refinement, over the whole considered range q = 1− 6, no significant improvements are

observed for the simiulation results with higher curving orders.

Overall, curved meshes in general prove advantageous for the two applications with the

linearised potential equation. However, the 2D generic intake case suggests that the positive

effect is weaker than for Helmholtz simulations, especially when increasing the curving order

q > 2. As here only meshes are considered that are curved with the H1 modal approach, no

comparison with respect to other, e.g. nodally curved meshes can be made. It is observed that the

mesh curving is only meaningful up to a certain, problem dependent order, from which on only

marginal or no significant improvement of the simulation accuracy is obtained. Further, the 3D

version of the generic intake highlights the need for an untangling postprocessing step.
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Chapter 8

Conclusion and Future Work

This chapter summarises the thesis and the resulting conclusions. Open questions are identified

and possible future work outlined.

8.1 Summary and Conclusions

This thesis investigates the improvement of p-FEM simulations in numerical acoustics by

high-order geometric enhancement. It is built up of two main objectives. The first is the creation

of meshes with curved boundaries with only a fine linear target mesh as geometry description.

The second objective is the analysis of the influence of the geometric accuracy of the mesh on the

simulation results for acoustic simulations, specifically Helmholtz scattering.

In Chapter 2, a review of different topics concerning geometric enhancement is given. In the

conclusions of that chapter, the main decisions on the content of this thesis are discussed based

on the literature and the assumptions on the available geometry data.

Polynomial interpolation with the standard, nodal Lagrange polynomials and the modal Lobatto

polynomials are chosen to be further considered for the geometric representation. Available mesh

curving algorithms are classified into three groups. For the two main classes with either full

knowledge of the exact geometry, or no knowledge besides a coarse linear mesh, several methods

are available in literature. Besides quadratic fittings, one high-order curving approach was found

that belongs to the same class as the methods in this thesis. The difference between this approach

and the ones developed here lies mainly in the choice of modal shape functions for the geometric

representation.

The review on GDE measures and on untangling procedures shows that for both there is already a

range of methods or measures available. From literature alone, no preferences could be found

from the discussed measures of geometric accuracy. Therefore, several measures were selected to

be applied and tested within the thesis. It is further decided not to consider or develop any

untangling or smoothing routine.

Four mesh curving methods are developed that take a fine target mesh as geometric

description: a nodal curving algorithm, a least squares modal approach, a H1 modal curving, and

a reference-based modal curving algorithm. The modal methods are built by a coupling of
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established components such as the least squares approach and in the meshing community rarely

considered modal Lobatto polynomials. For the H1-optimisation that is motivated by their

definition and structure, no reference was found in the literature on mesh curving.

The methods are described in Chapter 3 and compared with two test cases, the unit circle and a

distorted ellipse. For the circle, the nodal curving implemented in Gmsh ([36]) is considered as

reference that has the exact geometry as target curve. The geometric accuracy is evaluated with

an area-based measure, similar to that introduced in the context of the reference algorithm [72].

Based on the literature review, this is the first comparison between nodal and modal curving

methods.

Two of the four methods are dismissed at the end of Chapter 3. The nodal curving method suffers

from convergence issues within the curving steps, which is why the whole approach is found to

be too unstable. A short test with alternative node spacings was performed but did not result in

any improvement. The second method that is rejected is the reference-based modal approach.

This is justified by a weaker convergence compared with the other three methods for the circle

test case and restrictions in the choice of mesh sizes for the distorted ellipse.

Between the other approaches, no clear preference is obtained from the two test cases. The

results of the H1 modal based algorithm are limited by the accuracy of the underlying linear

target mesh. This is not the case for the least squares approach, which does not rely on the

interpolated data. Instead, the method considers only geometrically exact nodes of the target

mesh. However, the least squares curving is unstable or even uncalculable for too coarse target

meshes. For both curving methods, modifications could be considered to bypass their drawbacks

(see Sec. 8.2). In this thesis, only the described basic approaches are considered.

At the beginning of Chapter 4, a short review of numerical acoustics, as well as high-order

geometric implementations in FEM is provided. For the modally curved meshes, a blending

approach is developed to embed the curved boundary elements into the simulation domain. The

resulting meshes are applied for the 2D scattering test case of a plane wave by an infinite cylinder.

The obtained simulation results show the dependency of the field error on the geometric accuracy

of the domain description. Once the field discretisation is fine enough, the geometric inaccuracy

of the simulation domain becomes the dominating factor of the field error. Further, some of the

results indicate that meshes that were curved with the H1 modal algorithm can lead to a lower

field error than the corresponding meshes that were curved with the least squares approach.

Motivated by these results, the relation between the geometry discretisation error (GDE) and

the geometry induced error (GIE) is evaluated in Chapter 5. Therefore, again the scattering of a

plane wave by an infinite cylinder is considered with nodally curved meshes that were obtained

using Gmsh. While in the literature only comparative statements were found on the GDE-GIE

relation, this thesis provides a quantitative study for the Helmholtz equation. Three GDE

measures are tested, as well as three field error measures. For all reasonable combinations of

these measures, a linear dependency of the GIE with the GDE, and a super-linear dependency

with the frequency ω is found.

Next, the model of the relation between the area based GDE and the GIE evaluated along a ring

in the computational domain is tested for modally curved meshes. As it already foreshadowed in
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the previous chapter, the novel H1 modally curved meshes prove favourable for the acoustic

simulation, compared to the meshes curved with the least squares approach. However, the

advantageous property of the H1 modally curved meshes is not explained by the considered GDE

measure. This is further discussed as future work in Section 8.2.

In Chapter 6, the H1 modal curving approach is extended to 3D. To ensure continuity in

between face elements, the curving step is separated into edge and face curving. The former

coincides with the 2D curving algorithm, and only the detecion of the target curves needs to be

adapted to 3D. For the face curving, more steps are necessary to define the target of the curving.

After the detection of the target points they are triangulated and then a parametrisation is formed

to define the mapping from the reference element.

The curving is extended to also enable the treatment of feature lines. As this thesis does not cover

the detection of feature lines, they are included as an additional input along with the coarse and

the fine linear mesh, in form of boundary groups that are bounded by the feature lines. This limits

the feature lines to closed loops on the surface, or curves that devide the domain boundary in two

halfes. Other ways are possible to define feature lines, as well as the coupling with a feature line

detection algorithm as preprocessing step (see Sec. 8.2).

The extension of the blending approach to 3D is described to allow for simulations on 3D

domains with curved boundaries.

Two test cases are considered to validate the curving and the feature line treatment, the unit

sphere and a cylinder. The GDE is measured with a measure based on the volume between the

curved mesh and the target. For the sphere, an additional measure based on the volume between

the curved mesh and the exact sphere is considered. The latter measure does not show the

expected behaviour and the reasoning therefore could not be found in the scope of this thesis.

This is left for future work (see Sec. 8.2). However, the test case of a plane wave scattered by the

unit sphere confirmes that the GDE evaluated towards the Mmesh is a reliable measure. This test

case also validates the embedding of the curved boundary into the domain mesh.

In Chapter 7, two applications are described with meshes curved by the H1 modal curving

algorithm, one based on the academic Munt test case, the other on a generic geometry of an

intake. For the latter, both a 2D and 3D version is considered, as the curved versions of the 3D

mesh suffer from tangled elements and therefore do not allow reliable simulations. The

applications are simulations with the linearised potential equation.

Where no other effects are superimposed, a clear increase of the simulation accuracy is obtained

with the curved meshes. In all cases, the biggest improvement is obtained when comparing the

linear mesh with curved meshes with q = 2. For the 2D generic intake, higher curving orders

lead to an improvement of GDEA, but not in the simulation results. The GDEV for the 3D

generic intake on the other hand decreases well down to q = 4. For the Munt test case, the

optimal curving order is q = 2, q = 3, or q = 4, depending on the M̃pC-refinement and the

considered mode.

Thus, the general positive effect of curved meshes on the simulation accuracy is confirmed also

for LPE simulations. The 2D generic intake test case though suggest that this effect is smaller

than for the Helmholtz simulations. Also the advantageous properties of the H1 modal curving
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seen in Chapter 4, where an improvement of the simulation accuracy is obtained even with

stagnating GDEA is not observed. Further, the 3D generic intake case reinforces the need for an

untangling routine as a postprocessing step after the curving.

8.2 Future Work

Not all possible paths could be considered within this thesis. Throughout the text, remarks were

added to indicate where further research or improvements could be applied. These open issues

are summarised and discussed in this section.

8.2.1 Improvements of Curving Methods

In this thesis, basic versions of the different curving methods are considered and compared.

Especially for the two more promising approaches, the modal least squares and the H1 modal

curving, their performance could be most likely improved by some modifications or

preprocessing steps.

For the least squares approach, two ways to bypass its instabilities were suggested by one of the

reviewers of [99]. One is to relax the condition of using the exact Mmesh nodes in favor of an

optimised node distribution, similarly to what is tried for the nodal curving approach in Section

3.3.2.2. The other suggestion is to apply other polynomials for the interpolation, such as

Legendre polynomials with constraints.

The main drawback of the H1 modal method lies in the dependency of the Mmesh accuracy. This

bottleneck could be avoided by improving the geometric accuracy of the Mmesh in a

preprocessing step with a surface reconstruction method. Such a preprocessing step is e.g.

applied in the algorithm described in [46]. In Section 2.3.2, a short summary is provided of

literature on surface reconstruction methods.

For the described 3D development of the chosen H1 modal approach, further improvements

could be considered. First, the feature line definition applied here could be improved by directly

marking individual edges as feature lines. This also allows feature lines that are not bounding a

closed boundary domain but end in the middle of the surface. Further, a feature line detection

algorithm could be implemented as a preprocessing step to override the current requirements of

additional input information for the feature line treatment. Such algorithms are available in the

literature, e.g. [47].

High priority should be assigned to adding an untangling method as a postprocessing step of the

curving. This is necessary to apply meshes curved with the described methods to simulations

with real life 3D geometries. As mentioned in Chapter 2, there is a lot of work done on this topic.

An untangling routine that seems appropriate to combine with the H1 modal curving is the one

developed by Gargallo et al. [34, 33], as it does not rely on a specific polynomial basis for the

geometric description.

Finally, the performance of the H1 modal curving algorithm could be improved by taking

advantage of the hierarchic structure of the Lobatto polynomial bases. Similar to the adaptive
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choice of the field order, the curving order of each boundary element could be chosen

individually with only small constraints based on the directly neighbouring elements. In flat

regions of the geometry, the curving order would be set to q = 1, while it would be increased in

regions of high curvature. Combined with the above mentioned untangling procedure, the

curving order could be reduced in regions where tangling is not resolved, until a curving order is

reached that could be tackled by the untangling method.

8.2.2 Improvements of the GDE Evaluation

The evaluation of the relation between the GDE and the GIE led to the conclusion that the area

based GDE does not suffice to explain the improvements of the GIE that were obtained with H1

modally curved meshes. It is suspected that a measure based on the mesh normal could fill this

gap. In the literature, several measures based on differential geometric aspects, such as the

normal, were found. These could be applied to the curved meshes and tested for their significance

in the modelling of the GIE. However, all these measures are not independent of the curve

parametrisation. The development of a parametrisation-independent GDE measure could be

another interesting research direction.

For the generalisation of the link between the GDE and the GIE, it would have been preferable to

consider a relative area based measure for the circle test case, similar to the measure for the

distorted ellipse and the 2D generic intake, and the corresponding volume based measures in 3D.

In [99], the reliability of different GDE measures is discussed in general, triggered by a comment

of one of the reviewers regarding the example of a distorted circle with radius R of the form

x = R′ cos(θ), y = R′ sin(θ), with R′ = R+ a cos(nθ). The comparison of geometries with

different values of n shows that neither an area based nor a GDE based on the normal on its own

is reasonable for all possible geometries. This further enhances the idea to combine these two

GDE measures to obtain a reliable overall measure.

8.2.3 Open Questions

An open question that was not deeper examined is the stepwise behaviour for the results of the

sphere test case when it is curved with any but the reference based curving method. For the latter,

an explanation is found and provided in Section 3.3.1.

Also not further investigated is the unexpected early stagnation of the GDEV evaluated towards

the exact sphere for the unit sphere test case in Section 6.1.5.
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Appendix A

2D Blending for Reference-based Modal
Curving

In this appendix, the blending function for the reference-based modal curving is derived. Note

that the modally curved edges are represented as a linear combination of Lobatto basis

polynomials in the reference space, but not in the physical space. For this reason, the Lobatto

shape functions cannot be applied directly.

The constraints (4.9) are analogous to the property of the modal edge shape functions ϕeiT,k(ξ) on

the triangle. The shape function is zero on edges ej , j 6= i, because the product of the two

barycentric coordinates in (2.6) is zero on those edges. Along edge ei, the argument

λi+1(ξ)− λi(ξ) of the kernel function evolves linearly from −1 to 1 and

l0(λi+1(ξ)− λi(ξ)) = λi and l1(λi+1(ξ)− λi(ξ)) = λi+1. Therefore, the trace of ϕeiT,k(ξ) along

ei corresponds to lk.

Consequently, the function

κei = λiλi+1d
ei(λi+1 − λi)

1

l0(λi+1 − λi)l1(λi+1 − λi)

fulfils the constraints (4.9), with ei the curved edge.

Since κei has only influence on edge ei, this blending approach can also be applied to elements

with two or three curved edges with independent edge curving orders.

The function d depends on the formula of the curved edge. For a reference-based modally

curved edge e with vertices v1 and v2, quadrangle vertices qe,i, i = 1, . . . , 4 and Lobatto

coefficients αj , j = 2, . . . , q, the formula is

fc(ξ̃) = F (ξ(ξ̃), η(ξ̃))

= F (ξ̃,

q∑

i=2

li(ξ̃)αi)

= cei,1ξ̃

(
q∑

i=2

li(ξ̃)αi

)
+ cei,2ξ̃ + cei,3

(
q∑

i=2

li(ξ̃)αi

)
+ cei,4,
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with the constants

cei,1 =
1

4
(qei,1 − qei,2 + qei,3 − qei,4)

cei,2 =
1

4
(−qei,1 + qei,2 + qei,3 − qei,4)

cei,3 =
1

4
(−qei,1 − qei,2 + qei,3 + qei,4)

cei,4 =
1

4
(qei,1 + qei,2 + qei,3 + qei,4) .

The straight sided edge is parametrised as

fs(ξ̃) = v1 +
ξ̃ + 1

2
(v2 − v1).

Further, the edge vertices can be represented as

v1 = qei,1 +
1

2
(qei,4 − qei,1)

v2 = qei,2 +
1

2
(qei,3 − qei,2),

which can be used to verify the equation

cei,2ξ̃ + cei,4 = v1 +
ξ̃ + 1

2
(v2 − v1).

All together, the formula for κei can be derived as

κei = λiλi+1
dei(ξ̃)

l0(ξ̃)l1(ξ̃)

= λiλi+1

(
cei,1ξ̃

q∑

i=2

φi−2(ξ̃)αi + cei,3

q∑

i=2

φi−2(ξ̃)αi +
cei,2ξ̃ + cei,4 − v1 − ξ̃+1

2 (v2 − v1)

l0(ξ̃)l1(ξ̃)

)

= λiλi+1

(
cei,1ξ̃ + cei,3

) q∑

i=2

φi−2(ξ̃)αi.
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3D Curving: Details of Edge Curving

As described in Section 6.1.2.1, the detection of the target curve is done in a traversal algorithm.

It travels from the start node to the end node by moving along intersection points between the

Cmesh normal plane and the Mmesh edges. In the implementation, intersections are associated

with the corresponding Mmesh. If an intersection coincides with an Mmesh vertex, it is therefore

associated with several Mmesh edges.

Typically, several paths are possible, belonging to different initial edges. All paths are tested until

they either reach the end node or a dead end. In the end, the shortest successful path is selected.

For a general traversal step, the next edges with intersections are detected. Thereby, the algorithm

differs for the two possible cases: The current intersection point either lies on an Mmesh vertex,

or only on an Mmesh edge.

(a) Current intersection coincides with a vertex

For the case that the current intersection point falls together with an Mmesh vertex, the

subsequent intersection point is found with the following algorithm:

1. Detect the index of the Mmesh vertex currentVertex of the current intersection point.

2. Obtain the list of all Mmesh faces connectedFaces that are connected to

currentVertex.

3. Find all edges possibleEdges that belong to any of connectedFaces and that also

contain an intersection point.

4. Remove from possibleEdges all edges that were already considered for the current

path or that are connected to currentVertex. The remaining edges are the subsequent

edges nextEdges.

5. Mark all edges connected to currentVertex as considered for the current path.

6. Return the nextEdges and the updated list of considered edges.

(b) Current intersection lies only on an edge

In the more general case, the current intersection point does not coincide with an Mmesh

vertex, but lies on one edge that is called currentEdge. The algorithm that was described

above simplifies to

1. Obtain the Mmesh faces connectedFaces that are connected to the currentEdge.
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2. Find all edges possibleEdges that belong to any of connectedFaces and that also

contain an intersection point.

3. Remove from possibleEdges all edges that were already considered for the current

path. The remaining edges are the subsequent edges nextEdges.

4. Return the nextEdges.

The number of edges that were returned as nextEdges decides on the further progression of the

algorithm. Based on the algorithms described above, a maximum of 2 edges can be obtained.

(a) 0 edges

A dead end is reached. The traversal algorithm breaks and the next path is tested.

(b) 1 edge

The next intersection point lies only on an edge. It is marked as such, the path data is

updated and the next traversal step is started from the new intersection point.

(c) 2 edges

The next intersection point falls together with a vertex. It is checked if this vertex is also

the end point.

(A) The end point is reached.

One of the nextEdges is added to the path. The path data is updated and the path

marked as successful. If another, shorter path was already found before, it is

neglected. Otherwise, the path is stored as the currently shortest path and the next

path is tested.

(B) The vertex is not the end point.

The new intersection point is marked as vertex, the path data is updated with both

edges and the next traversal step is started.

Special Treatment for the Starting Edges

At the beginning of the traversal algorithm, the ”next” intersection point is in general not

uniquely defined, as the paths can run in both directions from the start point and none of the

edges is already marked as ”considered”. Therefore, this case has to be treated separately by the

following algorithm:

1. Find all nextEdges starting from the vertex that corresponds to the start point, using the

algorithm that was detailed above. They are saved as secondEdges and marked as

notTested.

2. While not all secondEdges are marked tested, try to construct a path with the first edge in

secondEdges that is marked notTested:

i. The current secondEdge are marked as tested.
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ii. It is tested if the other vertex of the current secondEdge corresponds to the end

point. If so, the shortest path with two edges is found. The Mmesh is too coarse at

this point and the Cmesh edge will not be curved.

iii. All secondEdges that are marked notTested and that share a vertex with the current

secondEdge are detected and called adjacentEdges. The number of

adjacentEdges determines the subsequent steps:

(a) 0 adjacentEdges
The intersection point of the current secondEdge lies on the edge (not on any

Mmesh vertex). This case is treated as described above.

(b) 1 or more adjacentEdges
A direct test is run to see if the intersection point coincides with one of the two

Mmesh vertices that define the current secondEdge. A tolerance of

10−4 ×minimal length of Mmesh edges is applied.

(A) If the intersection point falls together with an Mmesh vertex, an additional

test is run to find if there is an adjacentEdge with the same intersection

point. Thereby, the same tolerance is applied as for the previous test. If such

an adjacentEdge is found, both edges, the current secondEdge and the

selected adjacentEdge are then marked as tested. Note that the

adjacentEdge is in the list of secondEdges as well. Otherwise, only the

current secondEdge is added to the path and marked as tested. The case is

further treated as an intersection on an Mmesh vertex as described above.

(B) If the intersection point does not lie on an Mmesh vertex, it is treated as

described above for intersecion points that fall onto an edge.
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Appendix C

3D Curving: Details of Face
Triangulation

In this appendix, the different cases are listed that were treated in the face triangulation for the 3D

face curving (see Section 6.1.3.2).

It still holds that the Cmesh vertices form a subset of the Mmesh vertices. Therefore, the Cmesh

vertices can not fall into the interior or an edge of an Mmesh element. This eliminates several

cases of intersections, as e.g. the case shown in figure C.1. Further, as the underlying Mmesh is

assumed to be well defined, cases with colinear Mmesh vertices won’t be considered.

C.1 All-in, 2-in-1-boundary, 1-in-2-boundary, and All-boundary
Faces

The four cases All-in, 2-in-1-boundary, 1-in-2-boundary, and All-boundary faces have no

intersection with a Cmesh edge normal plane. The original Mmesh triangles are not truncated

and can directly be adopted for the triangulation.

C.2 2-in-1-out Faces

For triangles that have two internal and one external node, only one possible case exists (see Fig.

C.2). The intersection of the Mmesh element and the internal domain forms a quadrangle. It is

triangulated into two triangles by selecting one intersection point and detecting the corresponding

internal node on the opposite intersecting Mmesh edge. The selection of the intersection point is

b b

b

b

b

b

Figure C.1: Case that can not happen, as the Cmesh vertices form a subset of the Mmesh vertices.

137



Appendix C. 3D Curving: Details of Face Triangulation

b b

b

b

b

b

×

×

Figure C.2: Cases for 2-in-1-out faces.
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Figure C.3: Cases for 1-in-1-boundary-1-out faces.

done arbitrarily, based on the numbering in the implementation. An additional test could be run

to detect the alternative triangulation and to chose the one with the better shaped triangles.

C.3 1-in-1-boundary-1-out Faces

When considering triangles with one vertex on the boundary of the Cmesh element domain, this

vertex can either lie on the edge or on an vertex of the domain (see Figure C.3). In the

implementation, these two cases are considered separately, but treated the same way. Below, the

case with the vertex on the domain edge is described.

If a triangle is defined by one interior node, one exterior node and one node on the boundary, two

possible cases can occur, with either one or two intersection points (see Figures C.3(c), (d)). In

the case of one intersection point, the intersection of the Mmesh triangle and the domain form a

triangle that is defined by replacing the outer vertex of the Mmesh triangle with the intersection

point. With two intersection points, the intersection is a quadrangle. It is triangulated into two

triangles, following the algorithm described for 2-in-1-out faces in Section C.2.

C.4 2-boundary-1-out Faces

For 2-boundary-1-out faces, both, one, or none of the Mmesh nodes on the boundary can fall

together with an Cmesh vertex (see Fig. C.4). Again, these cases are treated separately in the
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Figure C.4: Cases for 2-boundary-1-out faces.

implementation, but can be pooled for their description.

The treatment depends on the number of intersection points of the Mmesh edges with the domain

boundary. If there is no intersection point, the Mmesh lies outside of the domain (see Fig. C.4(a),

(d), (g)) and is therefore neglected. With one intersection point, the nodes on the boundary (or

Cmesh vertices) and the intersection point form the domain-interior triangle (see Fig. C.4(b), (e),

(h)). Two intersection points can occur if only one or none of the boundary nodes lies on a Cmesh

vertex (see Fig. C.4(c), (f)). In this case, the intersection with the domain is a quadrangle that is

triangulated into two triangles analogously to the algorithm for 2-in-1-out faces in Section C.2.

C.5 1-in-2-out Faces

Mmesh triangles with one interior and two exterior nodes have either two or four intersection

points with the domain boundary (see Fig. C.5). In the case of two intersection points, the two

exterior nodes are replaced by the intersection points to form the interior triangle. With four

intersection points, the intersection of the Mmesh triangle and the domain forms a pentagon that

has to be triangulated into three triangles. They are constructed by combining the interior node

with the two intersection points with either one of the domain boundary edges, or the two

intersection points of the Mmesh edge opposite of the interior edge (see Fig. C.5(b)).
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Figure C.5: Cases for 1-in-2-out faces.

C.6 1-boundary-2-out Faces

As in previous cases, the boundary node can coincide with a Cmesh vertex, or fall onto an edge of

the domain. Again, these two cases are treated individually in the implementation but follow the

same algorithms and are not described separately here. Mmesh triangles with 1 boundary node

and 2 exterior nodes can have no, two, three, or four intersections with the domain boundary. The

latter does not occur when the boundary node lies on a Cmesh vertex (see Fig. C.6).

The Mmesh lies completely outside of the domain when no intersection point is detected. It is

therefore neglected. With two intersection points, the internal triangle is described by the

boundary node and these two intersections. Triangulations are necessary for Mmesh triangles

with three or four intersections. There, the intersections form a quadrangle or a pentagon and are

triangulated into two or three triangles, respectively. For triangulate the quadrangle, the boundary

node is with two intersections that lie together on either an Mmesh edge or an edge of the domain

boundary. The triangulation of the pentagon follows the algorithm described in Section C.5.

Here, the boundary node replaces the internal node as basic node that is included in all three

triangles.

C.7 All-out Faces

Even if all Mmesh nodes lie outside of the domain, there are two possible cases with non-empty

intersections. They are classified by either four or six intersection points with the domain

boundary (see Fig. C.7).

In all tests for this thesis, the latter never occured Anyway, it would be associated with a very

coarse Mmesh. It was therefore neglected in the implementation, returning an error that the

Mmesh has to be refined. The intersection would form a hexagon and a triangulation would need

four triangles.

If four intersection points are detected, the intersection is a quadrangle that is split into two

triangles. The choice of the diagonal edge is arbitrarily chosen, based on the numbering of the

intersection points, similar to Section C.2.
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Figure C.6: Cases for 1-boundary-2-out faces.

b b

b

b

b

b

×

×

×

×

(a)

b b

b

b

b

b

×

××

×

×

×

(b)

Figure C.7: Cases for all-out faces.
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[34] A. Gargallo-Peiró, X. Roca, and J. Sarrate. A surface mesh smoothing and untangling

method independent of the CAD parameterization. Computational Mechanics, 53(4):587–

609, 2014.

[35] C. Geuzaine, A. Johnen, J. Lambrechts, J.-F. Remacle, and T. Toulorge. The generation

of valid curvilinear meshes. In IDIHOM: Industrialization of High-Order Methods-A Top-

Down Approach, pages 15–39. Springer, 2015.

[36] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-D finite element mesh generator with built-in

pre-and post-processing facilities. International Journal for Numerical Methods in Engi-

neering, 79(11):1309–1331, 2009.

[37] M. Guthe, P. Borodin, and R. Klein. Fast and accurate Hausdorff distance calculation

between meshes. 2005.

[38] K. Hamiche, G. Gabard, and H. Bériot. A high-order finite element method for the lin-

earised Euler equations. Acta Acustica united with Acustica, 102(5):813–823, 2016.

[39] J. Hesthaven and T. Warburton. High-order/spectral Methods on Unstructured Grids.

NASA Langley Research Center. Institute for Computer Applications in Science , 2001.

[40] J. S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods: algorithms,

analysis, and applications. Springer Science & Business Media, 2007.

145



Bibliography

[41] S. Hygge, G. W. Evans, and M. Bullinger. A prospective study of some effects of aircraft

noise on cognitive performance in schoolchildren. Psychological Science, 13(5):469–474,

2002.
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