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Abstract—The concept of massive spatial modulation
(SM) assisted vertical bell labs space-time (V-BLAST)
(SM-VBLAST) system [1] is proposed, where SM sym-
bols (instead of conventional constellation symbols) are
mapped onto the VBLAST structure. We show that the
proposed SM-VBLAST is a promising massive multiple
input multiple output (MIMO) candidate owing to its
high throughput and low number of radio frequency
(RF) chains used at the transmitter. For the gener-
alized massive SM-VBLAST systems, we first derive
both the upper bounds of the average bit error prob-
ability (ABEP) and the lower bounds of the ergodic
capacity. Then, we develop an efficient error correction
mechanism (ECM) assisted compressive sensing (CS)
detector whose performance tends to achieve that of
the maximum likelihood (ML) detector. Our simula-
tions indicate that the proposed ECM-CS detector is
suitable both for massive SM-MIMO based point-to-
point and for uplink communications at the cost of a
slightly higher complexity than that of the compressive
sampling matching pursuit (CoSaMP) based detector
in the high SNR region.

Index Terms—Spatial modulation (SM), Multiple-
Input Multiple-Output (MIMO), Vertical Bell Labs
Space-Time (VBLAST), Compressive Sensing (CS),
Average Bit Error Probability (ABEP), Capacity anal-
ysis.

I. Introduction
A. Background

L. Xiao, P. Xiao, W. Yu, are with University of Surrey 5GIC.
Z. Liu is with the School of Computer Science and Electronic

Engineering, University of Essex, UK, CO4 3SQ
L. Hanzo are with the school of Electronics and Computer Science,

University of Southampton, Southampton SO17 1BJ, U.K. (email:
lh@ecs.soton.ac.uk).

H. Hass is with Electronics and Electrical Engineering, University
of Edinburgh.

This work was supported by the U.K. Engineering and Physical
Sciences Research Council under Grant EP/N020391/1. The authors
also would like to acknowledge the support of the University of Surrey
5GIC (http://www.surrey.ac.uk/5gic) members for this work.

The work of Z. Liu was supported in part by the EPSRC Project:
New Air Interface Techniques for Future Massive Machine Commu-
nications under Grant EP/P03456X/1, in part by the H2020 EU-
Taiwan Project: Converged Wireless Access for Reliable 5G MTC
for Factories of Future -Clear5G (61745), and in part by the National
Natural Science Foundation of China through the Research Fund for
International Young Scientists under Grant 61750110527.

L. Hanzo would like to acknowledge the financial support of the
ERC Advanced Fellow Grant Quantcom.

THE massive multiple-input multiple-output (MIMO)
transmission technique [2]-[3], which employs a mul-

tiplicity transmit/receive antennas has been considered to
be one of the key techniques for future wireless communi-
cations. Three popular classes of massive MIMO commu-
nication scenarios have attracted attention [2]: point-to-
point (P2P) communication, where both the transmitter
and receiver employ numerous antennas, as well as uplink
(UL) and downlink (DL) communications, where many
more antennas are employed by the base station (BS) than
by the individual users. Conventional MIMO solutions,
e.g., VBLAST and space-time block codes (STBC) [4] [6],
tend to require a large number of radio frequency (RF)
chains, hence imposing a substantial implementation cost
and signal processing complexity in massive MIMO chan-
nels. In contrast, spatial modulation (SM) based MIMO
systems [6]-[9], which employs the indices of the activated
antennas as an additional means of implicitly conveying
information, is a promising low-cost massive MIMO can-
didate for next generation wireless communications [10]-
[35].

The existing state-of-the-art of massive SM-MIMO sys-
tems is mainly focused on UL communications [11]-[25],
where each user invokes SM to convey information and the
BS employs multi-user detection to recover the transmit
messages. Specifically, in [11]-[16], the advantages of mas-
sive SM-MIMO systems have been demonstrated in terms
of their spectral-, energy- and cost-efficiencies. Message
passing (MP) algorithms based multiuser detectors have
been conceived [17]-[20] for massive SM-MIMO system-
s communicating both over narrowband and broadband
channels. Furthermore, low-complexity compressive sens-
ing (CS) detectors have been developed in [21]-[22], which
exhibited a modest performance erosion. Recently, the
performance of massive SM-MIMO systems have also been
studied in the context of visible light [23], non-orthogonal
multiple access (NOMA) [24] and physical layer encryption
communication scenarios [25].

Massive SM-MIMO systems designed both for DL and
P2P communication scenarios have been studied in [26]-
[35]. However, these systems are mainly designed for ac-
tivating only a few antennas. Naturally, the number of
transmit antenna combinations (TACs) is determined by
the number of antennas Nu activated during each symbol
slot. When both Nu and the number of transmit antennas
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(TA) Nt increases, finding an efficient bit-to-symbol map-
ping and demapping may not be easy for a high number
of TACs [36]. To circumvent this issue, antenna group
based massive SM-MIMO schemes have been developed
independently in [1] and [35], where the TAs are divided
into multiple small groups and SM is employed in each
group. In this treatise we refer to the scheme of [1] as
SM-VBLAST. In an SM-VBLAST system, the information
bits are conveyed by Nu sub-indices (instead of a single
activated index), hence the complexity of mapping and
demapping is comparable to that of the conventional SM
scheme. It has been shown in [1] that SM-VBLAST is
capable of providing substantial performance gains over
both the conventional generalized SM (GSM) [8] and the
VBLAST systems at an identical number of RF chains.
This compelling benefit equips the SM-VBLAST system
with the unique ability to support massive MIMO based
P2P, UL and DL communications.

B. Motivations and Contributions of This Work
Theoretical analysis of Average Bit Error Probability

(ABEP) for massive SM-VBLAST is more complex than
that for its small-scale counterpart. The ABEP upper
bound of massive SM-VBLAST forM = 1, where log2(M)
refers to the number of information bits sent by each
SM symbol (in addition to that conveyed by the indices
of the activated TAs), has been derived in [1]. In this
case, each SM-VBLAST symbol is consisted of Nu Space
Shift Keying (SSK) symbols. When M > 1, however, the
derivation approach in [1] for the ABEP upper bound
may not be applicable. The upper bound of the ABEP for
small-scale GSM associated with M > 1 has been derived
in [7], but the complexity of the ABEP calculation is in the
order of 2B , where B denotes the transmit rate of the GSM
system. For massive SM-VBLAST, for example, the value
of B may be as high as 320 bits per channel use (bpcu)
for the settings of Nt = 320, Nu = 80 and M = 4, which
makes the ABEP calculation prohibitively challenging.

To the best of our knowledge, the closed-forms of the
Average Bit Error Probability (ABEP) expressions and the
capacity of UL massive MIMOs relying on a large number
of users have not been investigated. Although the ABEP of
massive SM-MIMO supporting a low number of users has
been studied in [17], it may not be straightforward to ex-
tend it to a large number of users and/or receiver antennas
(RAs). In conventional GSM systems, the ergodic capacity
performances have been studied in [37]-[38] for small-scale
SM-MIMO only, but these approaches may not be suitable
for the capacity analysis of massive SM-VBLAST.

Additionally, designing low-complexity CS capable of
approaching the optimal performance at an acceptable
complexity is still a challenging open issue [39]. It is worth
pointing out that massive SM-VBLAST transmit signals
exhibit inherent sparsity, which can be efficiently exploited
by CS algorithms. The existing CS algorithms designed
for massive SM-MIMO, such as Orthogonal Matching Pur-
suit (OMP) [40], Compressive Sampling Matching Pursuit

(CoSaMP) [21] and MP [17]-[20] fail to strike an attractive
performance vs. complexity trade-off. This motivates us
to design an enhanced CS algorithm for massive SM-
VBLAST systems.

Against the above background, the contributions of this
paper are summarized as follows:

1) We analyze the ABEP of a massive SM-VBLAST
system for generalized amplitude phase modulation
(APM) schemes and derive a closed form ABEP
upper bound for SM-VBLAST using low-order APM
schemes, such as BPSK and QPSK.

2) We derive a lower bound of the ergodic capacity
of massive SM-VBLAST systems and validate it
through Monte Carlo simulations. Both our theoret-
ical and simulation results indicate that the capacity
of the massive SM-VBLAST system is significantly
higher than that of the conventional VBLAST sys-
tems with an identical number of RF chains.

3) We develop an efficient Error Correction Mecha-
nism (ECM) assisted CS detector for massive SM-
VBLAST systems having large Nt and Nu. Our
proposed ECM assisted CS detectors are capable
of approaching the error rate performance of the
maximum likelihood (ML) detector by efficiently
identifying and correcting the errors of the transmit
indices encountered in the conventional CS detector
at a low complexity.

4) We show that the closed-form ABEP expression de-
rived and the ergodic capacity, as well as the ECM-
CS detector are also applicable for UL massive SM-
MIMO systems. We present the ABEPs of massive
UL SM-MIMO systems having Nu = 40, Nr = 128
and Nu = 80, Nr = 256, where Nu and Nr are the
number of users and the number of antennas in the
BS, respectively. It is shown that the performance
of our proposed ECM assisted CS detector approach
that of the ML detector in these UL setups, despite
only imposing a slightly higher complexity than that
of the CoSaMP based detector.

5) We reveal that for a P2P communication system, the
throughput of ECM-assisted massive SM-VBLAST
can be hundreds or thousands bpcu but at a reduced
number RF chains and a reduced complexity.

Notations: ‖·‖2 denotes the Frobenious norms of a
matrix, while |·| represents the magnitude of a complex
quantity; (·)T and (·)H stand for the transpose and the
Hermitian transpose of a vector/matrix, respectively. A\B
denotes removing the set B from the set A and A ∪ B
denotes adding the set B into the set A.

II. Massive SM-VBLAST System
A. System model of P2P communication

The system model of the P2P SM-VBLAST system is
shown in Fig. 1 (a). According to [1], the information

bits of B =
Nu∑
l=1

Bl are partitioned into Nu (1 ≤ Nu ≤

Nt/2) groups. The l-th block of information bits Bl =
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Fig. 1. Proposed compressive sensing based massive SM-VBLAST systems: a) Massive P2P communication; b) Massive UL communication.

log2(N l
sm) + log2(Ml) can be mapped into a SM symbol

having Ml-PSK symbols and N l
sm TAs as

xl = [0, ..., 0︸ ︷︷ ︸
ql−1

, sl, 0, ..., 0︸ ︷︷ ︸
N lsm−ql

]T , (1)

where ql is the antenna index of the l-th SM symbol. Then,
the transmitted signal can be expressed as

x = [xT1 ,xT2 , ...,xTNu ]T
= [0, ..., 0︸ ︷︷ ︸

q1−1

, s1, 0, ..., 0︸ ︷︷ ︸
N1
sm−q1

, ...., 0, ..., 0︸ ︷︷ ︸
qNu−1

, sNu , 0, ..., 0︸ ︷︷ ︸
NNusm−qNu

]T . (2)

The relationship between the l-th activated index kl in x
and ql is expressed as

kl=
l−1∑
j=1

N j
sm + ql. (3)

Let H ∈ CNr×Nt and n ∈ CNr×1 be the MIMO channel
matrix and noise matrix, whose entries have complex-
valued Gaussian distributions of CN (0, 1) and CN (0, σ2),
respectively. The received signal y ∈ CNr×1 is written as

y = Hx + n = HAs + n, (4)
where HA = (hk1 ,hk2 , ...,hkNu ) is the sub-matrix of H
with Nu columns, and s = (s1, ..., sNu)T is the transmit
symbol vector corresponding to the TAC A = (k1, ..., kNu).
According to [1], the optimal ML detector is formulated

as
(Î , ŝ)ML = arg min

A∈A,s∈S
‖y−HAs‖2 , (5)

where A is a TAC set having a size of N=
Nu∏
l=1

N l
sm, and S

is the set of Nu-element symbol vectors.

B. System model of UL communication
The system model of the UL SM-VBLAST system is

shown in Fig. 1 (b). In UL communication, Nu denotes the

number of users and N l
sm represents the number of TAs

of the l-th user. Each user employs SM transmission using
N l
sm TAs and Ml-PSK modulation. At the base station,

the signal received by r-th (r = 1, ..., Nr) RA is expressed
as

yr =
Nu∑
l=1

hr,lxl + nr, (6)

where hr,l ∈ C1×N lsm can be considered as a subset of H
of (4). The received signal of the base station in UL com-
munication is Y = [y1, ..., yNr ], which is the same as (4).
Therefore, the ABEP analysis and signal detection in this
paper are suitable for both P2P and UL communication.
In order to make the system models more explicit, the
notations of P2P and UL communication are concluded in
Table I.

III. Generalized ABEP Analysis of Massive
SM-VBLAST Systems

In this section, the ABEP of massive SM-VBLAST
associated with Ml > 1 1 is formulated as

Pb = 1
B2B

2B∑
i=1

2B∑
j 6=i

d(xi,xj)P (xi → xj)

≈ 1
B

2B∑
j=2

d(x1,xj)P (x1 → xj),
(7)

where P (x1 → xj) denotes the Pairwise Error Probability
(PEP), d(x1,xj) is the Hamming Distance (HD) associat-
ed with the corresponding PEP event. Specifically, we have
x1 = [(x1

1)T , ..., (x1
Nu

)T ]T and xj = [(xj1)T , ..., (xjNu)T ]T ,
j = (1, ..., 2B), which are associated with information bits

1Eq. (7) holds for BPSK, QPSK, as well as for gray coding aided
Ml-PSK modulation. Hence, the ABEP analysis of this paper mainly
aims for characterizing Ml-APM satisfying Eq. (7).
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TABLE I
Notations for P2P and UL communication.

Parameter P2P communication UL communication

Nt The number of TAs The number of TAs of
all the users

Nu The number of RF chains The number of users
N l
sm The number of TAs of l-th level The number of TAs of the l-th user

kl The index of the l-th activated TA The activated TA index of the l-th user
xl The SM symbol of the l-th level The transmit SM symbol of the l-th user
Nr The number of RAs

as
b1 =[0, ..., 0︸ ︷︷ ︸

b1
1

,· · ·, 0, ..., 0︸ ︷︷ ︸
b1
Nu

]→x1,

bj=[c11, ..., c
B1
1︸ ︷︷ ︸

bj1

,· · ·, c1Nu ,...,c
BNu
Nu︸ ︷︷ ︸

bjNu

]→ xj . (8)

According to [1], the PEP event can be defined as

P (x1 → xj) = F (ζ̄) =γ(ζ̄)Nr
Nr−1∑
k=0

(
Nr − 1 + k

k

)[
1−γ

(
ζ̄
)]k

,

(9)
where γ

(
ζ̄
)

= 1
2

(
1−

√
ζ̄/2

1+ζ̄/2

)
, and ζ̄ is the mean value

of ζ = ‖H(x1 − xj)‖2/2σ2 associated with Nr = 1 as
ζ̄ = E{H(x1 − xj)2/2σ2|Nr = 1} = ‖x1 − xj‖2/2σ2.

(10)
According to (8), there are only T different values of ζ̄ in
(10) which are named as ζ̄1,...,ζ̄T . Hence, Eq. (7) can be
simplified to

Pb = D(ς̄1)F (ς̄1) +D(ς̄2)F (ς̄2) + · · ·+D(ς̄T )F (ς̄T ),
(11)

where D(ς̄t) denotes the Average HD (AHD) associated
with ς̄t. Since the values of F (ζ̄1),...,F (ζ̄T ) are easy to
calculate from (9), the calculation of D(ς̄1), ..., D(ς̄T ) is
the key issue in the ABEP evaluation.

A. Generalized ABEP Analysis

According to (8), The HD between xjl and x1
l l =

(1, ..., Nu) can be expressed as
dpll = setdiff(bjl ,b1

l ) ∈ [0, 1, ..., Bl] , (12)
where setdiff(x,y) is a function returning the difference
between x and y, while pl = ‖x1

l − xjl ‖
2
is expressed as

pl =
{
φMl

, if q1
l = qjl

2, else , l = 1, · · ·Nu, (13)

where φMl
denotes the Euclidean Distance (ED) between

any two Ml-APM symbols. Upon considering BPSK and
QPSK for example, φMl

is expressed as

φMl
=
{

(0, 4), BPSK,
(0, 2, 4), QPSK, (14)

Then the mean value of ζ and AHD are formulated as

ς̄t = ‖x1 − xj‖2/(2σ2) =
Nu∑
l=1

pl/(2σ2) = t/σ2,

D(ς̄t) = 1
B

[ ∑
∀(p1+···+pNu=2t)

(dp1
1 +dp2

2 +· · · dpNuNu
)
]
.

(15)

Hence, how to find the common values of ς̄t and their
corresponding HDs become the key issue in the calculation
of D(ς̄t). According to (14) and (15), there are some
common values of pl in each level. Assuming that Npl

l is
the number of common values pl, (l = 1, 2..., Nu), (15) can
be represented as

D(ς̄t)=

∑
∀(p1+···+pNu=2t)

N
p1
1∑

i1=1
· · ·

N
pNu
Nu∑

iNu=1

(
dp1,i1

1 +· · ·+dpNu ,iNuNu

)
B

,

(16)
with
N
p1
1∑

i1=1
· · ·

N
pNu
Nu∑

iNu=1

(
dp1,i1

1 + · · ·+ d
pNu ,iNu
Nu

)
=
Nu∏
l=2

Npl
l

N
p1
1∑

i1=1
dp1,i1

1 +
Nu∏

l=1,l 6=2
Npl
l

N
p2
2∑

i2=1
dp2,i2

2 +

Nu∏
l=1,l 6=3

Npl
l

N
p3
3∑

i3=1
dp3,i3

3 + · · ·+
Nu−1∏
l=1

Npl
l

N
pNu
Nu∑

iNu=1
d
pNu ,iNu
Nu

=
Nu∏
l=2

Npl
l D

p1
1 +

Nu∏
l=1,l 6=2

Npl
l D

p2
2 + · · ·+

Nu−1∏
l=1

Npl
l D

pNu
Nu

,

(17)
where Dpl

l denotes the total HDs associated with pl as

Dpl
l =

N
pl
l∑

il=1
dpl,ill . As a result, the values of Npl

l and Dpl
l be-

come important for calculating (16), which are associated
with specific antenna configurations. Considering BPSK
and QPSK for example, we have pl = [0, 2, 4]. The values
of Npl

l and Dpl
l can be obtained by

BPSK→


N0
l = 1, D0

l = 0,

N2
l = 2(N l

sm − 1), D2
l =

Bl∑
b=1

bCbBl − 1,

N4
l = 1, D4

l = 1,

QPSK→


N0
l = 1, D0

l = 0,

N2
l = 4(N l

sm − 1) + 2, D2
l =

Bl∑
b=1

bCbBl − 2

N4
l = 1, D4

l = 2.
(18)

Based on the values of Npl
l and Dpl

l , the ABEP of the
massive SM-VBLAST system using Ml > 1 is presented
in Algorithm 1, where unique(·), find(·) and length(·) are
the standard MATLAB functions.

In summary, for any Ml-APM symbol based massive
SM-VBLAST system, the value of Npl

l and Dpl
l can be

obtained by (18). According to (9), (11), (16) and (17),
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Algorithm 1 ABEP of the large-scale SM-VBLAST sys-
tem with M > 1

Input: B =
Nu∑
l=1

Bl, Pb = 0 ς̄ = φ, Dς̄ = φ;
Output: Pb;
1: for p1 ∈ φM1 ∪ {2} do
2: Obtain Npl

1 and Dpl
1 according to (18);

3: for p2 ∈ φM2 ∪ {2} do
4: Obtain Np2

2 and Dp2
2 according to (18);

5: ...
6: for pNu ∈ φMNu

∪ {2} do
7: Obtain NpNu

Nu
and DpNu

Nu
according to (18);

8: E = (p1 + p2 + p3 + · · ·+ pNu)/2σ2;
9: Calculate the AHD value D by (16) and (17).
10: ς̄ = {ς̄} ∪ {E};
11: Dς = {Dς} ∪ {D};
12: end for
13: ...
14: end for
15: end for
16: C = unique(ς̄);
17: T = length(C);
18: for t ∈ (1, T ) do
19: ς̄t = C(t)
20: tindex = find(ς̄ = C(t));
21: D(ς̄t) =

∑
i∈tindex

Dς(i);

22: Obtain F (ς̄t) by (9).
23: Pb = Pb + F (ς̄t) ∗D(ς̄t).
24: end for

the generalized ABEP of any Ml-APM symbols can be
calculated by Algorithm 1. Based on Algorithm 1, as-
suming that NφMl is the size of φMl

, the complexity order
of the ABEP calculation is O(NNu

φMl
), which is independent

of Nt. As NφMl and Nu increase, the complexity of ABEP
calculation still becomes excessive. Next, a closed form of
the ABEP of massive SM-VBLAST associated with low-
order APM symbols is derived.

B. Low-Complexity ABEP Analysis
In this section, the closed form of the ABEP upper

bound is derived for massive SM-VBLAST using Ml = 2
and Ml = 4. For the cases of Ml > 4, the closed form of
the upper bound becomes more complex and will be con-
sidered as our future work. Since φMl

= [0, 2, 4] holds true
for Ml = 2 and Ml = 4, the value of t ∈ [1, ..., 2Nu] in (15)
is dominated by the number of 0, 2, 4 in (p1, p2, ..., pNu).
Assuming that κ0, κ2 and κ4 are the total number of 0, 2, 4
in (p1, p2, ..., pNu), the relationship among them can be
presented by

2t =
Nu∑
l=1

pl = 0× κ0 + 2× κ2 + 4× κ4, κ0+κ2+κ4=Nu,

(19)
hence we have κ2 = t − 2κ4, κ0 = Nu − t + κ4. For
a certain combination of κ2 and κ4, there is a total of
Cκ2
Nu
Cκ4
Nu−κ2

Cκ0
κ0

scenarios that satisfy (19). Considering

Nu = 4, κ2 = 2 and κ4 = 1 for example, there are 12
scenarios having p1 + p2 + p3 + p4 = 8, which are

p1=p2=2, p3=4, p4=0; p1=p2=2, p3=0, p4=2;
p1=p3=2, p2=4, p4=0; p1=p3=2, p2=0, p4=4;
p1=p4=2, p2=4, p3=0; p1=p4=2, p2=0, p3=4;
p2=p3=2, p1=4, p4=0; p2=p3=2, p1=0, p4=4;
p2=p4=2, p1=4, p3=0; p2=p4=2, p1=0, p3=4;
p3=p4=2, p1=4, p2=0; p3=p4=2, p1=0, p2=4.

(20)

Assuming that pl1 = · · ·= plκ2
= 2, plκ2+1 = · · · = plκ2+κ4

=
4, according to (16)-(17), the HDs of one of the cases are
expressed as

H(κ2,κ4) =
N2
l1∑

i1=1
· · ·

N2
lκ2∑

iκ2 =1

N4
lκ2+1∑

iκ2+1=1
· · ·

N4
lκ2+κ4∑

iκ2+κ4 =1

(
d2,i1
l1

+ · · ·+

d
2,iκ2
lκ2

+ d
4,iκ2+1
lκ2+1

+ · · ·+ d
4,iκ2+κ4
lκ2+κ4

)
=

κ2∏
u=2

N2
lu

κ2+κ4∏
v=κ2+1

N4
lv
D2
l1

+ · · ·
κ2−1∏
u=1

N2
lu

κ2+κ4∏
v=κ2+1

N4
lv
D2
lκ2

+ · · ·+
κ2∏
u=1

N2
lu

κ2+κ4−1∏
v=κ2+1

N4
lv
D4
lκ2+κ4

.

(21)
Since there are Cκ2

Nu
Cκ4
Nu−κ2

scenarios for this case, the

total HDs associated with
Nu∑
l=1

pl = 2κ2 + 4κ4 can be
expressed as
Hall

(κ2,κ4) =
∑

(l1···lκ2 )∈Iκ2
Nu

∑
(lκ2+1···lκ2+κ4 )∈Ĩκ4

Nu−κ2

H(κ2,κ4),

(22)
where Iκ2

Nu
denotes the Index Combination Set (ICS) that

consists of choosing κ2 indices from (1, 2, ..., Nu), while
Ĩκ4
Nu−κ2

represents the ICS consisting of choosing κ4 indices
from {(1, 2, ..., Nu)\Iκ2

Nu
}. Taking Nu = 4, κ2 = 2 and κ4 =

1 for example, the sets Iκ2
Nu

and Ĩκ4
Nu−κ2

are expressed as
Iκ2
4 ={ (1, 2)︸ ︷︷ ︸

Ĩ
κ4
2 ={3,4}

, (1, 3)︸ ︷︷ ︸
Ĩ
κ4
2 ={2,4}

, (1, 4)︸ ︷︷ ︸
Ĩ
κ4
2 ={2,3}

, (2, 3)︸ ︷︷ ︸
Ĩ
κ4
2 ={1,4}

, (2, 4)︸ ︷︷ ︸
Ĩ
κ4
2 ={1,3}

, (3, 4)︸ ︷︷ ︸
Ĩ
κ4
2 ={1,2}

}.

(23)
The above HD analysis is based on a certain combination
of κ2 and κ4. However, according to (19), different values
of κ2 and κ4 can result in a common value of t. Hence,
the calculation of AHD D(ς̄t) associated with the event
Nu∑
l=1

pl = 2t will be determined by all the different combi-
nations of κ2 and κ4. Next, how to obtain the combinations
of κ2 and κ4 for different values of t will be discussed in
four cases: 1) t is even with t ≤ Nu; 2) t is odd with
t ≤ Nu; 3) t is even with t > Nu and 4) t is odd with
t > Nu.

Case 1 - t is even with t ≤ Nu: For this case, the

values of (pl1 , ..., plNu ) satisfying
Nu∑
l=1

pl = 2t are given by

{pl1 , · · · , plt︸ ︷︷ ︸
2→κ2=t

, plt+1 , · · · , plNu︸ ︷︷ ︸
0→κ0=Nu−t

},

...
{pl1 , · · · , plt/2︸ ︷︷ ︸

4→κ4=t/2

, plt/2+1 , · · · , plNu︸ ︷︷ ︸
0→κ0=Nu−t/2

},
(24)

where l1, ..., lNu ∈ (1, Nu). Observe from (24) that the
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BD(ς̄event≤Nu) =
t/2∑
κ4=0

Ct−2κ4
Nu

Cκ4
Nu−(t−2κ4)[(t− 2κ4)(N2

l )t−2κ4−1(N4
l )κ4D2

l + κ4(N2
l )t−2κ4(N4

l )κ4−1
D4
l ],

BD(ς̄oddt≤Nu) =
(t−1)/2∑
κ4=0

Ct−2κ4
Nu

Cκ4
Nu−(t−2κ4)[(t− 2κ4)(N2

l )t−2κ4−1(N4
l )κ4D2

l + κ4(N2
l )t−2κ4(N4

l )κ4−1
D4
l ],

BD(ς̄event>Nu
) =

t/2∑
κ4=t−Nu

Ct−2κ4
Nu

Cκ4
Nu−(t−2κ4)[(t− 2κ4)(N2

l )t−2κ4−1(N4
l )κ4D2

l + κ4(N2
l )t−2κ4(N4

l )κ4−1
D4
l ]

BD(ς̄oddt>Nu
) =

(t−1)/2∑
κ4=t−Nu

Ct−2κ4
Nu

Cκ4
Nu−(t−2κ4)[(t− 2κ4)(N2

l )t−2κ4−1(N4
l )κ4D2

l + κ4(N2
l )t−2κ4(N4

l )κ4−1
D4
l ].

(32)

value of κ4 ranges from zero to t/2. According to (19),
(21), (22), the AHD of Case 1 is calculated by

D(ς̄event≤Nu) = 1
B

t/2∑
κ4=0

Hall
(κ2,κ4). (25)

Case 2 - t is odd with t ≤ Nu: For this case, the

values of (pl1 , ..., plNu ) satisfying
Nu∑
l=1

pl = 2t are given by

{pl1 , · · · , plt︸ ︷︷ ︸
2→κ2=t

, plt+1 , · · · , plNu︸ ︷︷ ︸
0→κ0=Nu−t

},

...
{ pl1︸︷︷︸

2→κ2=1

, pl2 , · · · , pl(t+1)/2︸ ︷︷ ︸
4→κ4=(t−1)/2

, pl(t+3)/2 , · · · , plNu︸ ︷︷ ︸
0→κ0=Nu−(t+1)/2

}.
(26)

Observe from (26) that the value of κ4 ranges from zero to
(t− 1)/2. According to (19), (21), (22), the AHD of Case
2 is calculated by

D(ς̄oddt≤Nu) = 1
B

(t−1)/2∑
κ4=0

Hall
(κ2,κ4). (27)

Case 3 - t is even with t > Nu: For this case, the

values of (pl1 , ..., plNu ) satisfying
Nu∑
l=1

pl = 2t are given by

{pl1 , · · · , plt/2︸ ︷︷ ︸
4→κ4=t/2

, plt+1 , · · · , plNu︸ ︷︷ ︸
0→κ0=Nu−t/2

},

...
{ pl1 , · · · , plt−Nu︸ ︷︷ ︸

4→κ4=t/2−(Nu−t/2)

, pl(t−Nu+1) , · · · , plNu︸ ︷︷ ︸
2→κ2=2Nu−t

}.
(28)

Observe from (28) that the value of κ4 ranges from t−Nu
to t/2. According to (19), (21), (22), the AHD of Case 3
is calculated by

D(ς̄event>Nu) = 1
B

t/2∑
κ4=t−Nu

Hall
(κ2,κ4). (29)

Case 4 - t is odd with t > Nu: For this case, the

values of (pl1 , ..., plNu ) satisfying
Nu∑
l=1

pl = 2t are given by

{pl1 , · · · , pl(t−1)/2︸ ︷︷ ︸
4→κ4=(t−1)/2

, pl(t+1)/2︸ ︷︷ ︸
2→κ2=1

plt+1 , · · · , plNu︸ ︷︷ ︸
0→κ0=Nu−(t+1)/2

},

...
{pl1 , · · · , pl(t−Nu)︸ ︷︷ ︸

4→κ4=t−Nu

, pl(t−Nu+1)
, · · · , plNu︸ ︷︷ ︸

2→κ2=2Nu−t

}.
(30)

Observe from (30) that the value of κ4 ranges from t−Nu

to (t − 1)/2. According to (19), (21), (22), the AHD of
Case 4 is calculated by

D(ς̄oddt>Nu) = 1
B

(t−1)/2∑
κ4=t−Nu

Hall
(κ2,κ4). (31)

Furthermore, assuming that N1
sm = N2

sm = · · · = NNu
sm

and M1 = M2 = · · · = MNu , (25), (27), (29) and (31) can
be further simplified as (32). According to (32), the closed
form of the ABEP upper bound is given by (11).

IV. Capacity Analysis of Massive SM-VBLAST
System

A. Capacity analysis of conventional VBLAST system
The receiver signal Yv ∈ CNr×1 of a VBLAST system

having Nt TAs and Nr RAs can be expressed as
Yv = Hxv + n, (33)

where xv ∈ CNt×1 denotes the transmit signal, while H
and n have the same definition in (4). The capacity of
VBLAST can be formulated as

C = I(xv,yv) = E{log2[det(INr + ρ

Nt
HHH)]}, (34)

where ρ = 10SNR/10. According to [47], the lower bound
of C is expressed as

C ≥ µlog2

1 + ρ

Nu
exp

 1
µ

µ∑
j=1

K−j∑
p=1

1
p
− γ

 , (35)

where we have µ = min(Nt, Nr),K = max(Nt, Nr) and
γ ≈ 0.5772.

B. Capacity analysis of proposed massive SM-VBLAST
system

In this section, the capacity of the massive SM-VBLAST
system is analyzed. According to [37]-[38], the Mutual
Information (MI) between the input and output signal
spaces can be expressed as

I(x, A,y) = E{log2[det(INr + ρ

Nu
HAHH

A )]}︸ ︷︷ ︸
I(x;y|A)

+

1
N

N∑
i=1

Ey

[
log2

p(y|Ai)
p(y)

]
︸ ︷︷ ︸

I(A;y)

,
(36)

with

p(y|A) = 1
(πN0)Nu

exp
(
−‖y−HAs‖2

N0

)
(37)
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p(y) = 1
N

N∑
i=1

p(y|Ai). (38)

Moreover, the lower bound of I(x; y|A) can be obtained by
(35), where we have µ = min(Nu, Nr),K = max(Nu, Nr)
and γ ≈ 0.5772. In order to get the lower bound of (36),
the lower bound of I(A; y) has to be derived. According
to [35], the lower bound of I(A; y) is expressed as

I(A; y)≥I(A; Â)=
N∑
i=1

N∑
k=1

P (Ai)P (Âk|Ai)log2
P (Âk|Ai)
P (Âk)

,

(39)

with N =
Nu∏
i=1

N i
sm and

P (Ai) = 1
N ;P (Âk|Ai) = P (xi → xk|M = 1),

P (Âk) =
N∑
n=1

P (Âk|An)P (An) = 1
N

N∑
n=1

P (xn → xk|M = 1),
(40)

where P (xi → xk|M = 1) denotes the PEP between xi
and xk with M = 1, which can be computed by (9) also
relying on [1]. As a result, the lower bound is expressed as
ILB(x; y|A) ≥ log2

[
det(INr + γHAHH

A )
]

+1
N

N∑
i=1

N∑
k=1

P (xi → xk|M=1)log2
P (xi→xk|M=1)

1
N

N∑
n=1

P (xn→xk|M=1)
,

(41)
where

P (xn → xn|M=1)=1−
N∑

k=1,n6=k
P (xn → xk|M=1), (42)

with
P (xn → xk|M = 1) = F (ζ̄M=1). (43)

For a massive SM-VBLAST system, the value of N is
extremely large, hence the computational complexity of
Eq. (41) becomes impractical. According to [1], there are
some common values of P (xn → xk|M = 1) for different
n and k, so that (41) can be further simplified, which is
introduced as follows.

For the case of M = 1, the activated TAC transmits all
symbols ′1′, so that we have

‖xnl − xkl ‖2 = pl =
{

0, if xnl = xkl
2, if xnl 6= xkl

, l = 1, · · ·Nu.
(44)

The number of pl = 0 and pl = 2 can be expressed as
N0
l = 1, N2

l = 2Bl − 1, l = (1, ..., Nu). (45)
According to (15), the value of ζ̄t|M=1 is expressed as

ζ̄t|M=1 =
∥∥xn − xk

∥∥2

2σ2 = t

σ2 , (46)
where t is the number of nonzero elements in
(p1, p2, p3, ..., pNu) for this case. As a result, there
are a total of Nu different values of F (ζ̄M=1) as
F (ζ̄1|M=1), F (ζ̄2|M=1), ..., F (ζ̄t|M=1), ..., F (ζ̄Nu|M=1). For
each value of F (ζ̄t|M=1), the t nonzero values can be
expressed as (pl1 = ... = plt = 2). More specifically, we
have (l1, l2, ..., lt) ∈ ItNu , which indicates that the ICS
consists of t indices selected from (1, 2, ..., Nu). For a
certain combination of (l1, l2, ..., lt), there are a total of

t∏
i=1

N2
li

cases to satisfy (pl1 = ... = plt = 2). As a result,

for a given value of xn, the total number ϕt of xk having
the value of ζ̄t|M=1 is expressed as

ϕt =


CtNu

(
2B1 − 1

)t
, ifB1 = · · · = BNu∑

(l1,...,lt)∈ItNu

t∏
i=1

N2
li

=
∑

(l1,...,lt)∈ItNu

t∏
i=1

(
2Bli − 1

)
.else

(47)
Since (47) satisfies
Nu∑
t=1

ϕt =
Nu∑
t=1

∑
(l1,...,lt)∈ItNu

t∏
i=1

(
2Bli−1) = N − 1, (48)

which is proved in Appendix, the value of
N∑

k=1,k 6=m
P (xm → xk|M = 1) is expressed as

N∑
k=1,k 6=m

P (xm → xk|M = 1) =
Nu∑
t=1

ϕtF

(
t

σ2

)
, (49)

and the value of P (xm → xm|M = 1) is expressed as

P (xm → xm|M = 1) = 1−
Nu∑
t=1

ϕtF

(
t

σ2

)
. (50)

As a result, the lower bound of I(A; y) is simplified as
1
N

N∑
i=1

N∑
k=1

P (xi → xk|M = 1)log2
P (xi→xk|M=1)

1
N

N∑
m=1

P (xm→xk|M=1)

= 1
N

N∑
i=1

{∑
k 6=i

P (xi→xk|M=1)log2
[
NP (xi→xk|M=1)

]
+
∑
k=i

P (xi → xk|M = 1)log2
[
NP (xi → xk|M = 1)

]}
= 1

N

N∑
i=1

{
Nu∑
t=1

ϕtF ( t
σ2 )log2

[
NF ( t

σ2 )
]

+ [1−
Nu∑
t=1

ϕtF ( t
σ2 )]log2{N [1−

Nu∑
t=1

ϕtF ( t
σ2 )]}

}
=

Nu∑
t=1

ϕtF ( t
σ2 )log2

[
NF ( t

σ2 )
]

+[1−
Nu∑
t=1

ϕtF ( t
σ2 )]log2{N [1−

Nu∑
t=1

ϕtF ( t
σ2 )]}.

(51)
According to (36), (39), (41) and (51), the closed form

of the massive SM-VBLAST system capacity lower bound
becomes

ILB(x; y|A) ≥ µlog2[1 + ρ
Nu

exp( 1
µ

µ∑
j=1

K−j∑
p=1

1
p − γ)]

+[1−
Nu∑
t=1

ϕtF ( t
σ2 )]log2{N [1−

Nu∑
t=1

ϕtF ( t
σ2 )]}

+
Nu∑
t=1

ϕtF ( t
σ2 )log2[NF ( t

σ2 )].
(52)

where ϕt and F ( t
σ2 ) can obtained by (47) and (9), respec-

tively.

V. Efficient ECM assisted Compressive Sensing
Detector for Massive SM-VBLAST System

In this section, an efficient ECM assisted CS detector
is designed for massive SM-VBLAST systems, which is
shown in Fig. 2. A threshold is designed to judge whether



8

Algorithm 2 The proposed ECM-CS detector for the
Massive SM-VBLAST system
Input: ŷ, Ĥ;
Output: xo.
1: Obtain x̂0 by conventional CS algorithm and get the

initial R0 =
∥∥y−Hx̂0

∥∥2.
2: if R0 ≤ Vth then
3: xo = x̂0, return;
4: else
5: for t ∈ (1, Niter) do
6: x̂t=x̂t−1,Rt = Rt−1,R̃t = φ;
7: for l ∈ (1, Nu) do
8: Remove the l-th symbol from x̂t as

x̂l,t = (x̂t1, · · · , x̂tl−1,ON lsm
, x̂tl+1 · · · , x̂tNu)T ;

9: Get the residual vector Rl,t by (54);
10: [Lo, v] = arg sort(|HHRl,t|,′ desender′);
11: Get the first m indices as Im = Lo(1 : m);
12: Re-estimate the l-th symbol x̃tl as

(k̃l, s̃l) = arg min
kl∈Im,sl∈S

∥∥Rl,t − hklsl
∥∥2;

13: Obtain the estimated signal x̃l,t =
(x̂t1, · · · , x̂tl−1, x̃tl , x̂tl+1 · · · , x̂tNu)T ;

14: Update the l-th residual vector as R̃l,t = y −
Hx̃l,t = Rl,t − hk̃l s̃l;

15: if ‖R̃l,t‖2 ≤ Vth then
16: xo = x̃l,t, return;
17: else
18: R̃t = [R̃t, R̃l,t];
19: end if
20: end for
21: ‖R̃t

min‖2 = min
∀l

(‖R̃l,t‖2) and get its correspond-
ing estimated signal x̃lmin,t;

22: if ‖R̃t
min‖2 = ‖Rt‖2 then

23: xo = x̃lmin,t, return;
24: else
25: Update the signal and residual vector as x̂t =

x̃lmin,t, Rt = R̃t
min;

26: end if
27: end for
28: xo = x̃lmin,Niter .
29: end if

the initial signal estimated by the conventional CS al-
gorithm is reliable or unreliable. If it is judged to be
unreliable, our ECM means is invoked to further test
the estimated signal’s reliability. We will show that this
ECM technique is also capable of correcting the erroneous
indices.

A. Proposed Detector

Step 1: As shown in Fig. 2(a), we first obtain the
initial transmit signal x̂0 = (x̂0

1, · · · , x̂0
l , · · · , x̂0

Nu
)T via the

conventional CS algorithm.
Step 2: Determine wether the estimated signal is reli-

able or unreliable. If the ED of the estimated signal (Λ, s)

Initial CS estimated signal
0
x̂

For t=1,2, ,Niter

 get the  residual vector R
t

2

th- £y Hx V

Start

  Re-estimated signal 

by ECM as 

ˆ
t
x

End

1t t-
=R R

Yes

For any estimated signal ˆ tx

For l=1,2, ,Nu
 remove the  l-th SM symbol as

 

Start

      New residual vector

 

End

No

Yes

No

ˆ
t t
= -R y Hx

,

1 1 1
ˆ ˆ ˆ ˆ ˆ( , , , , , )l t t t t t T

l l l NuNsm
- +

=x x x O x x1 1 1 )1 1 11 1 1

t t t TT
ˆ ˆ ˆ ))ˆ ˆ ˆ
l l l N1 1 1, ,1 1 1l l l1 1 11 1 11 1 11 1 1 uNNN
l l ll l l

smN
1 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 1

ˆ ˆ ˆ, ,1 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 1

, ,
ˆ

l t l t
= -R y Hx

 Re-estimated the  l-th SM symbol 

using R
l, t

 and update  residual vector 

 
, ,l t l t
= -R y Hx

and update  
l t l, ,, ,l t ll t l, ,, ,, ,
= -= -

, ,, ,, ,
residu

, ,l t ll t ll t ll t l t, ,, ,
Hx

, ,, ,l t ll t ll t ll t ll t l, ,, ,

2
,

min arg min l t

l

l
"

= R
2

,l t,
R

1
ˆ ˆ
t t-
=x x

,minˆ
l tt

=x x

gnal
,minl t,minx x

,minˆ
l tt

=x x
,minl t,minx x

(a) The process of ECM-CS detector (b) The process of ECM algorithm

Fig. 2. The process of our proposed ECM-CS detector and ECM
algorithm.

satisfies ∥∥y−Hx̂0∥∥2 ≤ Vth, (53)
where Vth = βNrσ

2, then (Λ, s) is deemed to be the final
detection result with β being a constant. The choice of β
is analyzed in the threshold design part of Section V-B.

Step 3: Otherwise, the result x̂0 will be further judged
to be either reliable or unreliable by our proposed ECM
scheme. For the reliable result x̂0, it will be judged as the
final result by calculating about NumM EDs, where m is
a preset number to strike a performance vs. complexity
trade-off. By contrast, for the unreliable result x̂0, it will
be corrected by calculating about neNumM EDs, where ne
represents the number of errors that our ECM can correct.

B. Proposed ECM Scheme
In the proposed ECM scheme, the l-th symbol l =

(1, ..., Nu) x̂0
l of the initial result x̂0 will be further judged

to be either reliable or unreliable in the sequel. The
total number of checking iterations is dominated by the
value of ne. Assuming that the t-th iteration result is
x̂t = (x̂t1, · · · , x̂tl , · · · , x̂tNu)T associated with TAC index
Λ̂ = (k̂1, ..., k̂Nu) and symbol vector ŝ = (ŝ1, ..., ŝNu), the
ECM operates as follows.

Step 1: As shown in Fig. 2(b), we first remove
the l-th symbol x̂l from x̂t as x̂l,t = x̂t\x̂tl =
(x̂t1, · · · , x̂tl−1,ON lsm

, x̂tl+1 · · · , x̂tNu)T , where ON lsm
de-
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notes N l
sm zeros. Assuming that Λ = (k1, ..., kNu), s =

(s1, ..., sNu) are the accurate TAC index and symbol vec-
tor, two residual vectors in the t-th iteration are defined
as
Rt=y−Hx̂t = Rt

1 + . . .Rt
l−1 + Rt

l+Rt
l+1+· · ·+Rt

Nu
,

Rl,t=y−Hx̂l,t=Rt
1+. . .Rt

l−1+hklsl+Rt
l+1+· · ·+Rt

Nu
,

(54)
where Rt

l = hklsl − hk̂l ŝl.
Step 2: Re-estimate the l-th symbol as x̃tl based on

the Multipath Matching Pursuit (MMP) algorithm [44].
Specifically, the new index k̃l and symbol s̃l of the signal
x̃tl can be estimated by

(k̃l, s̃l) = arg min
kl∈Im,sl∈S

∥∥Rl,t − hklsl
∥∥2
, (55)

where S is the set of APM symbols and Im denotes the
m-th possible candidates, which is obtained by

[Lo, v] = arg sort(|HH
[N lsm]R

l,t|,′ desender′),
Im = Lo(1 : m). (56)

where HH
[N lsm] denotes the N

l
sm rows of HH corresponding

to the l-th symbol xl.
Step 3: Update the estimated symbol as x̃l,t =

(x̂t1, · · · , x̂tl−1, x̃tl , x̂tl+1 · · · , x̂tNu)T .
Step 4: Update the residual vector based on the esti-

mated result x̃l,t as
R̃l,t = y−Hx̃l,t = Rl,t − hk̃l s̃l. (57)

Step 5: Repeat Steps 1-4 and obtainNu residual vectors
R̃t = [R̃1,t, ..., R̃l,t, ..., R̃Nu,t]. Then find the minimum
value of ‖R̃t‖2 as ‖R̃t

min‖2.
Step 6: Judge the estimated result x̂t to be reliable or

unreliable using R̃t
min. Specifically, if we have
‖R̃t

min‖2 = ‖Rt‖2, (58)
it implies that there is no erroneous result in x̂t and it will
be considered as the final result. If we have

‖R̃t
min‖2 < Rt and ‖R̃t

min‖2 < Vth, (59)
it means that there is only one erroneous result in x̂t and it
will be corrected in this step. Then the updated transmit
signal x̃lmin,t having the ED of ‖R̃t

min‖2 is considered as
the final result. Otherwise, there may be more than one
erroneous result in x̂t and the checking process will be
continued. The updated transmit signal x̃lmin,t will be
considered as the initial result of the (t+ 1)-th iteration.

In conclusion, the proposed detector is summarized at
a glance in Algorithm 2, where Niter means the number
of iteration, which is usually smaller than Nu.

C. Complexity Analysis

In this subsection, the complexity of the proposed de-
tector designed for the massive SM-VBLAST system is
analyzed in terms of the number of real-valued multiplica-
tions and additions [40]. For specific matrices A ∈ Cm×n,
B ∈ Cn×p, c ∈ Cn×1 and d ∈ Cn×1, the operations of
AB, ‖c‖2F and c±d require 8mnp− 2mp, 4n− 1, and 2n
flops, respectively. According to (54)-(57), the complexity

of the proposed detector can be expressed as

CP = CCS + 8NuNr(Nu − 1)︸ ︷︷ ︸
Complexity of (54)

Ne
avg +Ne

avg

Nu∑
l=1

8NtN l
sm︸ ︷︷ ︸

Complexity of (56)

+

10NuNrmMNe
avg︸ ︷︷ ︸

Complexity of (55)

+ 10NuNrNe
avg︸ ︷︷ ︸

Complexity of (57)

,

(60)
where CCS denotes the complexity of the conventional CS
detector and Ne

avg denotes the average number of errors
the ECM has corrected, which is smaller than Nu. In order
to strike a performance vs. complexity trade-off, we opted
for low complexity CS algorithms such as CoSaMP and
OMP in the first step, whose complexity is expressed as:

CCosamp = (12Nr − 1 + 8NrNt + 2Nt + 4K3+
12NrK2 + 7K2 + 6NrK)ωCo,
COMP = Nu(8NrNt + 10NrN l

smM).
(61)

where K = 3Nu and ωCo denote the average iterations in
the CosaMP algorithm.

D. Performance Analysis for Our Proposed ECM assisted
CS Detector

In this section, the performance of the proposed detector
is analyzed. According to Algorithm 2, the BER perfor-
mance of the proposed detector can be characterized as
P pro.
e ≈ 1− (1− P (ρe ≤ Vth))︸ ︷︷ ︸

Eq.(53)

(1− PECM
e )︸ ︷︷ ︸

Eq.(55)

(1− PML
e )︸ ︷︷ ︸

Eq.(59)

,

(62)
where PML

e , P (ρe ≤ Vth) and PECM
e denote the error

probability estimated by the ML detector of (59), by the
threshold based decision of (53) and by the ECM detector
of (55). For a given antenna configuration, the values
of PML

e are fixed. As a result, the performance of the
proposed detector is mainly dominated by P (ρe ≤ Vth)
and PECM

e , which will be analyzed in detail as follows.
1) Threshold Design

According to [40], the ED between the estimated signal
x̂ and the receiver signal is expressed as{

ρ=‖y−Hx̂‖2 = ‖n‖2, if x̂ = x,
ρe=‖y−Hx̂‖2 = ‖H(x− x̂) + n‖2, if x̂ 6= x.

(63)

According to [40], both 2ρ
σ2 and 2ρe

σ2+||x−x̂||2 follow the Chi-
square distribution with degree 2Nr as

2ρ
σ2 ∼ χ

2(2Nr),
2ρe

σ2 + ||x− x̂||2 ∼ χ
2(2Nr), (64)

whose Probability Density Function (PDF) is given by

fχ2(2Nr)(x) =


1

2NrΓ(Nr)
e−x/2xNr−1, x > 0

0, x 6 0
. (65)

As a result, the values of P (ρ ≤ Vth) and P (ρe ≤ Vth)
can be obtained by

P (ρ ≤ Vth) =
∫ 2Vth

σ2
0 fχ2(2Nr)(x)dx, (66)

P (ρe ≤ Vth) =
∫ 2Vth

σ2+||x−x̂||2

0
fχ2(2Nr)(x)dx. (67)
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calculated by (65).

TABLE II
Vth design for specific setups.

(Nt, Nu, Nr,M) Vth
(128, 16, 64, 4) Nrσ

2

(128, 16, 128, 4) 0.925Nrσ2

(120, 30, 128, 4) 0.91Nrσ2

(160, 40, 128, 4) 0.91Nrσ2

(240, 60, 256, 4) 0.89Nrσ2

(320, 80, 256, 4) 0.89Nrσ2

Assuming that ρnee represents the ED with ne errors
in the estimated signal x̂, Fig. 3 portrays the PDF of ρ
and ρe associated with different setups at 6 dB and 8
dB, respectively. It is clear that the PDFs of ρ and ρe are
associated with specific setups and SNRs. If the threshold
Vth is set too small, even the most reliable signal will be
judged to be unreliable, which may impose extra search
complexity. By contrast, if the threshold Vth is set too
high, even an unreliable signal having one or two errors will
also be judged to be reliable, which may result in erroneous
detection. In this paper, the thresholds are set based on the
ABEP, where the value of ρe is close to the theoretical ML
detector’s performance. Based on this design principle, the
thresholds for the specific setups are presented in Table II.

2) Error Correction Mechanism

In this section, the performance of the ECM scheme has
been analyzed.

Case 1 - ne = 0: If the ED of the signal that was deemed
reliable does not satisfy (53), then it will be judged to be
reliable by the ECM of (58). Specifically, after removing
the l-th symbol x̂l, the residual vector in (54) can be
updated as R̃l,t = hklsl + n. Assuming that no errors
are encountered by (55), the new estimated index and
symbol are k̂l = kl and ŝl = sl. Then we will have
R̃1,t = ... = R̃l,t = ... = R̃Nu,t. As a result, the estimated
signal will ultimately be judged to be reliable by (58).

Case 2 - ne = 1: Assuming that only the l-th index and
symbol are estimated inaccurately as k̂l and ŝl, according
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Fig. 4. The value of Pe(ρne−1
e ≤ ρne

e ) with different setups obtained
by simulation results.

to (63), the ED ρ1
e is expressed as

ρ1
e =

∥∥∥hklskl − hkk̂l ŝl + n
∥∥∥2
. (68)

For the l-th step, after removing the l-th symbol x̂l, the
residual vector is updated as R̃l,t = hklsl + n. Assuming
that no errors are encountered by (55), kl and skl can be
estimated accurately and the ED is updated as ‖R̃t

min‖2 =
ρ = ‖n‖2. If ‖R̃t

min‖2 < ρ1
e, this erroneous index can be

corrected by this ECM. Otherwise, the error probability
is the same as that of the ML detector.

Case 3 - ne ≥ 1: Assuming that the unreliable indices
are k̂l1 , ..., k̂lne , the ED between the estimated signal and
the received signal is expressed as
ρ2
e = ‖hkl1 skl1 − hk̂l1 ŝkl1 + hkl2 skl2 − hk̂l2 ŝkl2 ‖

2,

...
ρnee =‖hkl1 skl1 − hk̂l1 ŝkl1 + · · ·hklne sklne − hk̂lne ŝklne ‖

2.

(69)
If ρne−1

e < ρnee holds true, the ECM becomes capa-
ble of correcting the erroneous indices. Fig. 4 portrays
the erroneous decision probabilities Pe(ρne−1

e < ρnee ) of
ρne−1
e < ρnee in conjunction with Nr = 128 and 256

antennas. Fig. 4 shows that Pe(ρ ≤ ρ1
e) < Pe(ρ1

e ≤ ρ2
e) <

Pe(ρ2
e ≤ ρ3

e) < Pe(ρ3
e ≤ ρ4

e) holds true for these setups.
Moreover, these values monotonically decrease both with
Nr and the SNR. This implies that the proposed ECM
works better for larger values of Nr in the high SNR
regions. However, when the MMP detector of (55) encoun-
ters estimation errors, the proposed ECM may suffer from
error propagation.

VI. Simulation Results

In this section, the capacity, the BER performance and
complexity of the massive SM-VBLAST system are ana-
lyzed in conjunction with different antenna configurations.
For P2P communication, the Largest Number First (LNF)
principle of [1] is employed2. For UL communication, the
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notations can be found in Table I.

A. Capacity Analysis Results
Figs. 5-6 portray the maximum achievable rate of the

SM-VBLAST systems having different number of RAs.
In order to achieve the maximum attainable rate, Nu =
Nt/2 is employed in SM-VBLAST. The capacity of the
classic VBLAST systems having the same number of
RF chains and TAs are added as benchmarkers. In or-
der to evaluate our analytical lower bound, the capac-
ity of SM-VBLAST is calculated by Monte-Carlo sim-
ulation and analytical result are compared using small-
scale MIMO setups in Fig. 5. Specifically, (Nt, Nu, Nr) =
(8, 4, 4), (8, 4, 8) are employed for SM-VBLAST, while
(Nt, Nr) = (8, 4), (4, 4), (8, 8), (4, 8) are used for VBLAST

2LNF based Principle: In the t-th t ∈ (2, ..., Nu-1) step, the
largest number NL

t−1 in the (t − 1)-th set Nt−1 is decomposed into
two equal numbers as (NL

t−1/2, NL
t−1/2), where N1 = [Nt]. As a

result, the decomposed set in the t-th step can be expressed as Nt =
(Nt−1\NL

t−1, N
L
t−1/2, NL

t−1/2). These processes continue, until we
get Nu values as N1

sm, ...., N
Nu
sm .
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Fig. 7. Performance comparison with different CS detectors for SM-
VBLAST systems at 80 bpcu. a) Nt = 128, Nu = 16, Nr = 64,
M = 4; b) Nt = 128, Nu = 16, Nr = 128, M = 4. These systems
can also be considered as UL systems with 16 users. Each user is
equipped with 8 antennas.
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Fig. 8. Performance comparison with different CS detectors for SM-
VBLAST systems. a) Nt = 120, Nu = 30, Nr = 128, M = 4 at 120
bpcu; b) Nt = 160, Nu = 40, Nr = 128, M = 4 at 160 bpcu. These
systems can also be considered as UL systems with 30 and 40 users.
Each user is equipped with 4 antennas.

system. Observe from Fig. 5 that the Monte-Carlo results
closely approach the analytical lower bound upon increas-
ing the SNR values.

Furthermore, in the massive setups of Fig. 6, the ca-
pacity calculation based on the Monte-Carlo simulation
of (36) becomes impractical, hence only the analytical
lower bound of (52) is included for comparison. Observe
from Figs.5-6 that since the antenna indices are activat-
ed for conveying extra information, the capacity of the
SM-VBLAST system is always higher than that of the
VBLAST system having the same number of RF chains
and RAs. When comparing it to the VBLAST system
having the same values of Nt, Nr, the proposed SM-
VBLAST is capable of approaching the MIMO capacity
in the context of the under-determined antenna config-
uration, while it is still far from the MIMO capacity in
the context of the over-determined antenna configuration.
This implies that an enhanced SM-VBLAST system can
be developed for approaching the MIMO capacity for the
balanced antenna setup, which will be considered in our
future work.
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TABLE III
Complexity comparison of the proposed ECM-OMP, ECM-CoSaMP and MP detectors.

(Nt, Nu, Nr,M)
SNR scheme Ne

avg
Complexity normalized
by the MP detector

(128, 16, 64, 4)
10 dB

Pro.ECM-OMP m = 4 11.8 3.1%
Pro.ECM-CoSaMP m = 4 1.1 4.7%

(128, 16, 128, 4)
6 dB

Pro.ECM-OMP m = 4 8.6 1.25%
Pro.ECM-CoSaMP m = 4 1.02 2.44%

(120, 30, 128, 4)
8 dB

Pro.ECM-OMP m = 4 18.7 4.55%
Pro.ECM-CoSaMP m = 4 1.4 8.36%

(160, 40, 128, 4)
10 dB

Pro.ECM-OMP m = 4 29.6 7.64%
Pro.ECM-CoSaMP m = 4 1.94 10.85%

(240, 60, 256, 4)
8 dB

Pro.ECM-OMP m = 4 36.5 6.54%
Pro.ECM-CoSaMP m = 4 1.95 8.25%

(320, 80, 256, 4)
8 dB

Pro.ECM-OMP m = 4 58.4 11.65%
Pro.ECM-CoSaMP m = 4 8.84 11.92%
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Fig. 9. Performance comparison with different CS detectors for SM-
VBLAST systems. a) Nt = 240, Nu = 60, Nr = 256, M = 4 at 240
bpcu; b) Nt = 320, Nu = 80, Nr = 256, M = 4 at 320 bpcu. These
systems can also be considered as UL systems with 60 and 80 users.
Each user is equipped with 4 antennas.

B. BER Performance Results
In this section, the BERs of different CS SM-VBLAST

detectors are compared for different antenna configura-
tions. The optimal thresholds are selected based on Table
II. The theoretical ABEPs of ML detectors are calculated
by (32). Moreover, both the OMP and CoSaMP detectors
have been employed in our proposed detector for com-
parison, called ECM-OMP and ECM-CoSaMP detectors,
respectively. QPSK is employed for massive SM-VBLAST
in these simulation results.
Fig. 7 compares the performances of different

detectors for massive SM-VBLAST systems having
(Nt, Nu, Nr)=(128,16,64) and (128,16,128), respectively.
Observe from Fig. 7 that the performances of the proposed
ECM-CoSaMP and ECM-OMP detectors are improved

3According to Figs. 6-8, it becomes clear that the analytical upper
bound of ABEP only becomes tight at high SNRs. This is because the
value of PEP in (9) may be inaccurate at low SNRs, hence resulting

in the value of
2B∑
j=2

P (x1 → xj) being much higher than 1.

as m increases and they outperform the conventional
OMP as well as CosaMP and MMSE detectors. The
proposed ECM-OMP detector exhibits an error-floor for
the case of Nr = 64 in Fig. 7 (a). This is because when
too many errors are encountered by the OMP detector,
our ECM assisted OMP detector fails to correct all the
erroneous messages for the case of Nr = 64. Fortunately,
by increasing Nr, the error correction capability of our
ECM assisted CS detector is improved. Observe from
Fig. 7 (b) that the performance of both the proposed
ECM-OMP and ECM-CoSaMP detectors approach that
of the MP detector and the theoretical ML limit at high
SNRs 3 for the case of Nu = 16, Nr = 128.

Next, Fig. 8 compares the performances of differen-
t detectors for massive SM-VBLAST systems having
(Nt, Nu, Nr)=(120,30,64) and (160,40,128), respectively.
The performances of the VBLAST systems having Nt =
30, Nr = 128,M = 16 and Nt = 40, Nr = 128,M = 16
are added as benchmarkers. Observe from Fig. 8 (a)
that both the proposed ECM-OMP and ECM-CoSaMP
detectors approach the MP and ML detectors for the
case of Nu = 30, Nr = 128. However, for the case of
Nu = 40, Nr = 128 we observe in Fig. 8 (b) that the
proposed ECM-CoSaMP detector still approaches the ML
detector’s performance and outperforms the conventional
MP, CoSaMP, MMSE and OMP detectors. Since the Nu
is very large, the proposed ECM-OMP detector exhibits
an error-floor.

To provide further insights, Fig. 9 compares the perfor-
mance of different detectors for the massive SM-VBLAST
systems having (Nt, Nu, Nr)=(240,60,256) and (320,80,
256), respectively. The performance of the VBLAST sys-
tems having Nt = 60, Nr = 256,M = 16 and Nt =
80, Nr = 256,M = 16 are added as benchmarkers. Observe
from Fig. 9 that our ECM scheme works efficiently for
the case of Nr = 256. Specifically, the performance of
the proposed ECM-CoSaMP detector is always capable
of approaching that of the MP and ML detectors. More
importantly, the performance of the proposed ECM-OMP
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Fig. 10. Performance comparisons of the SM-VBLAST relying on
the proposed detectors and of VBLAST systems relying on the MP
based detectors at different channel estimation errors. The setups are
the same as those of Fig. 9.

has only about 2 dB performance loss over the MP and
ML detectors for the case of Nu = 80, Nr = 256.

Fig. 10 compares the performance of SM-VBLAST sys-
tems relying on the proposed detectors and the classic
VBLAST systems relying on the MP based detector at
different channel estimation errors. The setups are the
same as that of Fig. 9. According to [28] of the revised
manuscript, the estimated channel having errors can be
modeled as

H̃ = H + He (70)
where He ∈ CNr×Nt denotes the error matrices,
whose elements follow the complex Gaussian distributions
CN

(
0, σ2

e

)
.

Fig. 10 compares the performance of SM-VBLAST sys-
tem based on the proposed detectors and the MP detector
based classic VBLAST system at different channel esti-
mation errors. The setups are identical to those of Fig.
9. Observe from Fig. 10 that SM-VBLAST systems based
on the proposed ECM-CoSaMP and ECM-OMP detectors
are more robust to channel estimation errors than the
classic VBLAST systems relying on MP based detectors in
massive MIMO setups. More specifically, the performance
of the proposed ECM-CoSaMP detector is still capable
of approaching that of the ML detector at the channel
estimation error variance of σ2

e = 0.01, while it only suffers
from around 2 dB performance loss over the ML detector
at the channel error variance of σ2

e = 0.04. Additionally,
the proposed ECM-CoSaMP detector provides significan-
t performance gains over conventional VBLAST having
the same channel error variance. This may be because
the channel orthogonality between any two columns of a
massive MIMO channel matrix is more resilient to channel
estimation errors than that of a small-scale MIMO setups,
which is helpful for our proposed ECM-CS detectors in
terms of mitigating with channel estimation errors.

Table III presents the complexity of the proposed de-
tectors for the aforementioned setups, which is mainly
dominated by the average number of error Ne

avg that our
ECM scheme is capable of correcting. Observe from Table

III that our ECM scheme corrects at least 18 and 58
erroneous indices for the case of Nr = 128 and Nr = 256,
respectively. It is also shown that both the proposed
ECM-CoSaMP and ECM-OMP detectors are capable of
reducing the complexity to about 3.1% ∼ 11.92% of that
of the MP detector. Furthermore, observe in Figs. 7-8
and Table II that our ECM-CS assisted massive SM-
MIMO is capable of providing 6 dB performance gains
over MP aided massive VBLAST at a significantly reduced
complexity.

VII. Conclusions
In this paper, both the ABEP and the capacity of

the massive SM-VBLAST system have been analyzed.
An efficient ECM assisted CS detector has been designed
for massive SM-VBLAST systems. Our simulation results
have demonstrated that the proposed ECM assisted CS
detector approaches the performance of the ML detector
as a benefit of identifying and correcting the erroneous
indices for large Nr.

VIII. Appendix

Proof of (47):
Nu∑
t=1

ϕt = N − 1 with N = 2
Nu∑
l=1

Bl
.

1) Nu = 1,N1 = 2B1 , we have
Nu∑
t=1

ϕt = 2B1−1 = N1−1;

2) If Nu = K, NK = 2
K∑
l=1

Bl
, we have

K∑
t=1

ϕt = NK − 1.
Then, for the case of Nu = K + 1, we have NK+1 =

2
K+1∑
l=1

Bl
, and the value of

K+1∑
t=1

ϕt is expressed as

K+1∑
t=1

ϕt =
K+1∑
t=1

∑
(l1,...,lt)∈ItK+1

t∏
i=1

(2Bli − 1)

=
K∑
t=1

∑
(l1,...,lt)∈ItK+1

t∏
i=1

N2
li

+
∑

(l1,...,lK+1)∈IK+1
K+1

K+1∏
i=1

N2
li

=
K∑
t=1

[ ∑
(l1,...,lt)∈ItK

t∏
i=1
N2
li

+N2
lK+1

∑
(l1,...,lt−1)∈It−1

K

t−1∏
i=1
N2
li

]
+
K+1∏
i=1

N2
li

=
K∑
t=1

∑
(l1,...,lt)∈ItK

t∏
i=1
N2
li

+N2
lK+1

K∑
t=1

∑
(l1,...,lt−1)∈It−1

K

t∏
i=1
N2
li

+
K+1∏
i=1

N2
li

=
K∑
t=1

ϕt +N2
lK+1

K∑
t=1

ϕt−1 +
K+1∏
i=1

N2
li

=
K∑
t=1

ϕt +N2
lK+1

[
K∑
t=1

ϕt + ϕ0 − ϕK
]

+
K+1∏
i=1

N2
li

= (N2
lK+1

+ 1)
K∑
t=1

ϕt +N2
lK+1

−
K+1∏
i=1

N2
li

+
K+1∏
i=1

N2
li

= 2BlK+1 (2
K∑
l=1

Bl
− 1) + (2BlK+1 − 1)

= NK+1 − 1
(71)

3) Based on the analysis of 1) and 2), it is concluded
that (47) holds true for any number of Nu.
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