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Abstract The hypothesis that equilibrium beach profiles under nonbreaking waves minimize wave
energy dissipation was considered by Larson et al. (1999 Coast. Eng. 36 59-85). Larson et al. approached the
hypothesis as a variational problem, assuming a priori that the solution (the extremal profile) followed a
power law with a freely tunable exponent, which was varied so as to extremize the relevant functional.
Here, we revisit this hypothesis and solve the associated variational problem approximately via analytical
means, without a priori assumptions on the mathematical structure of the solution. We remark that for the
solution to be realistic, the problem formulation must consider additional constraints; for example, the bed
slope angle must not exceed the sediment's angle of repose. Incidentally, the solution we derive recovers
the power law prescribed by Larson et al., which is in turn backed by a large body of empirical evidence.
However, the exponent of the power in our solution is not an arbitrarily free parameter; it depends on the
parametrization of the bed shear stress (the main mechanism by which nonbreaking waves dissipate
energy), and predicted values of the exponent are supported by previous research. The power law curve
derived here agrees well with empirical data from field and laboratory, suggesting that a principle of energy
economy may indeed underpin the particular shape adopted by beach profiles under nonbreaking waves.
This theoretical study aims at promoting and aiding further tests of this hypothesis.

Plain Language Summary Beach profiles describe the sea's depth as a function of the distance
from the shore. Waves sculpt the beach profile as they propagate, dissipating energy in the process;
nonbreaking waves do so almost exclusively via friction with the seabed. From decades of data collection,
it is well known that in equilibrium profiles the depth varies with the distance offshore according to
a power law, but the reason for this is much less understood. In this paper, we revisit and advance
previous research in order to prove theoretically that the reason may lie behind a principle of energy
economy (found ubiquitously throughout nature). In particular, nonbreaking waves appear to sculpt
beach profiles into equilibrium shapes that tend to minimize the energy being thereafter dissipated by the
waves themselves.

1. Introduction
Beach profiles describe the variation of the water depth, h, with cross-shore distance, x (see Figure 1). Due
to their central role in determining the hydro-morphodynamics of coastal areas, equilibrium beach profiles
(EBPs) represent key concepts commonly employed by Earth scientists and coastal engineers, particularly
when utilizing reduced-order models. For example, researchers and engineers may prescribe theoretical
EBPs to models employed to design beach nourishments (Dean, 2003); predict the evolution of the shoreline
(Jara et al., 2015), including its response to sea level rise (Dean & Houston, 2016) and the emergence of
large-scale coastline forms (Ashton & Murray, 2006; Falqués & Calvete, 2005); or assess the coastal protection
provided by vegetation (Guannel et al., 2015). It is common to treat the relation between h and x as one
obeying a power law, that is, h ∼ xmp , where the exponent mp is usually obtained either via curve fits to
empirical data, some physics-based considerations, or a combination of both. Good reviews on EBPs, along
with discussions on the underlying assumptions of different approaches, can be found in, for example, Dean
(1991), Inman et al. (1993), and Larson et al. (1999). Since we are solely concerned with beach profiles in
equilibrium state, understood as those which are attained after the seabed has been subject to steady (e.g.,
monochromatic) wave forcing for a sufficiently long time, the word “equilibrium” may be here dropped for
convenience.
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Figure 1. Sketch of the problem illustrating a typical beach profile where two distinct regions can be identified,
separated by the wave breaking point/bar. We are concerned with the outer part of the profile subject to shoaling,
nonbreaking waves (highlighted in gray).

Our focus is on the energy-dissipation-based theories used to explain the specific shape, or function h(x),
that EBPs adopt. For mass-balance-based approaches, such as that by Bowen (1980), see the reviews rec-
ommended above; for a nonphysics-based derivation, see, for example, Dong (2008), who uses information
theory. Probably the best-known energy-dissipation-based approach is that followed by Dean (1977), build-
ing on Brunn (1954), who considered two cases, namely, that the rate of wave energy dissipation is uniform
(along x) either when previously divided per i) unit volume of water or ii) unit bed area. In both cases, the
power law is recovered, obtaining values of the exponents of mp = 2∕3 and mp = 2∕5, respectively. Perhaps
a less-known energy-dissipation-based assumption adopted to explain EBPs is that by Larson et al. (1999),
who posed the hypothesis that in EBPs under nonbreaking waves, the total rate of wave energy dissipation
per unit beach width and time attains a minimum. In other words, that the beach attains an equilibirum
shape such that the waves propagating across the shoaling part of the profile minimize the energy they
lose due to bed friction. Following a variational approach, Larson et al. (1999) use linear wave theory to
formulate a functional associated with energy dissipation J[h(x)], for which a minimum is sought. Larson
et al. (1999) then assume, based on empirically derived knowledge, that the extremal function h(x) follows
a power law relation h ∼ xmp , thus bypassing the solution to the associated Euler-Lagrange equation (which
must be satisfied if J is to attain an extremum at h) and varying mp so as to extremize J[h], subject to two
given boundary conditions (i.e., the depths at two given locations in the profile). Following a similar, albeit
ultimately opposed, line of reasoning, Jenkins and Inman (2006) invoke the maximum entropy production
formulation of the second law of thermodynamics and treat the shorezone system as one that maximizes the
waves' energy dissipation (the exact opposite of Larson et al., 1999). Then, Jenkins and Inman (2006) claim
that an EBP described by an elliptic cycloid satisfies this condition. However, in the appendix paper (Mal-
donado & Uchasara, 2019), we argue that the solution proposed by Jenkins and Inman (2006) ought to be
scrutinized further, a proposition that has recently been supported by Faraoni (2019), based in turn on the
work by Chen et al. (2015).

In this paper, we revisit the hypothesis posed by Larson et al. (1999) regarding the minimization of energy
dissipation in profiles under nonbreaking waves. The main motivation to do so is that, unlike the assump-
tions adopted by Dean (1977) and Brunn (1954), extremization of physical quantities such as energy is a
principle that holds certain universality (indeed, variational principles underpin Lagrangian and Hamil-
tonian mechanics, which are in turn foundational for both classical and modern physics). If shown to be
correct, the energy minimization hypothesis may in future be tested for other geomorphological features
besides beach profiles. Instead of assuming a form of the extremal function a priori (i.e., that h ∼ xmp , as
do Larson et al., 1999), we attempt to solve the variational problem directly. We show that the problem for-
mulation must state additional constraints grounded on evidence-based considerations for the solution to
be realistic. The analytical solution we propose to the constrained variational problem is approximate, but
its satisfactory validation against empirical data backs the argument that EBPs do tend to minimize the
dissipation of energy of nonbreaking waves. Some derivations presented here may be considered textbook
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knowledge or repetitions of those found in referenced works, but one objective of this manuscript is to com-
plement the derivations in previous publications on this topic for the sake of straightforward reproducibility
and further testing of this theory. The study neglects the nearshore part of the profile (or surf zone) because
the morphology of this region is well described by the h ∼ x2/3 profile (Brunn, 1954; Dean, 1977; Fredsøe &
Deigaard, 1992; Larson et al., 1999), and its underlying assumption of uniform energy dissipation per unit
volume of water is justifiable (Fredsøe & Deigaard, 1992; Wang & Kraus, 2005).

The manuscript is structured as follows. The problem is formulated in section 2, and a preliminary (uncon-
strained) solution is derived in section 3. In section 4, the constraints are incorporated into the preliminary
solution, which is then further analyzed based on its physical meaningfulness and compared against empir-
ical data. The main strengths and limitations of the present work are discussed in section 5, and some final
remarks are presented in section 6.

2. Problem Formulation
We seek a theoretical beach profile, or function h(x), that minimizes the rate of energy dissipation of
nonbreaking waves, subject to known boundary conditions, namely, the positions and values of two given
depths: h(x0) = h0 and h(x1) = h1 (see Figure 1). Additionally, for any solution to be physically meaningful,
the following features common to natural beach profiles must be reproduced:

a. The local bed slope angle cannot exceed the sediment's angle of repose, 𝜙, that is, |h′(x)| ≤ tan𝜙 for all
x ∈ [x0, x1], where h′(x) ≡ dh(x)∕dx.

b. The water depth increases monotonically with cross-shore distance, that is, h(x) is a strictly increasing
function.

c. The increase of h with x is “smooth.” For our purposes, it is sufficient to require that the second derivative
of h (i.e., h

′ ′
) is small everywhere in the interval x ∈ [x0, x1].

d. The beach profile is concave upward near the wave breaking point and tends to a smaller, constant value
offshore, that is, |h′(x1)| < |h′(x0)| and h

′ ′
(x → x1) → 0 (the concave nature of h near x0 may be verified

qualitatively).

Furthermore, the following assumptions pertaining to the study area are invoked:

1. Straight shoreline with normally incident, monochromatic waves of small, constant amplitude.
2. The shallow water approximation of linear wave theory is assumed valid.
3. The analysis is limited to shoaling (nonbreaking) waves.
4. Variations of the local water depth due to long-period oscillations such as tides are neglected.
5. The beach is composed of uniform, erodible, impermeable sediment.

A 1D profile is considered (see Figure 1), where h varies exclusively with x, measured from some conve-
niently chosen origin. Note that h is measured positively downwards from a given datum (e.g., the mean
sea level), which is time independent as per Assumption 4. Since we consider nonbreaking, inviscid waves,
energy dissipation must occur exclusively at the bottom boundary layer. Our first objective is to express this
energy dissipation, averaged over a wave period, as a function of h, as described next.

The instantaneous rate of energy dissipation of a column of water, under the influence of surface waves,
per unit bed area, 𝜖(t) (where t is time), may be expressed as the product of the bed shear stress, 𝜏b(t), and
the near-bed flow velocity, ub(t), that is, 𝜖(t) = 𝜏b(t)ub(t). The magnitude of the bed shear stress is typically
parameterized according to |𝜏b| ∝ u2

b, such that the rate of energy dissipation averaged over a wave period
(denoted by the overbar) per unit bed area follows the trend 𝜖 ∼ u3

bo (see, e.g., Svendsen, 2006), where
ubo is the amplitude or maximum value of ub(t). However, the proportionality coefficient in |𝜏b| ∝ u2

b may
ultimately depend (via the friction coefficient) on ub in some complex manner, for example, as an empirically
derived function of the wave Reynolds number (see Appendix A). Since we seek to establish an expression
of the form 𝜖(h), and noting that linear wave theory allows us to write ubo in terms of h (see Appendix B),
we further assume (as do, e.g., Jenkins & Inman, 2006) that there is some real, positive constant n𝜏 , such
that the bed shear stress may be cast in the form |𝜏b| = K𝜏 |ub|n𝜏 , where K𝜏 must be independent of both ub
and h. Consequently, the rate of energy dissipation, 𝜖, goes like u(n𝜏+1)

bo , with n𝜏 expected to lie in the range
1 ≤ n𝜏 ≤ 2 (Appendix A).

From the theory of linear waves in shallow water, we know (Appendix B) that ubo ∼ H(x)h−1/2, where
H(x) is the local wave height, which in the absence of refraction (Assumption 1 but see section 5),
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varies across the profile due to shoaling as H ∼ h−1/4, leading to ubo ∼ h−3/4. Therefore, the local
wave-period-average dissipation rate per unit area of bed varies as

𝜖 ∼ u(n𝜏+1)
bo ∼ h− 3

4 (n𝜏+1)
. (1)

To simplify future treatment, we collect all relevant terms that are independent of h into a term K𝜖 and define
n𝜖 ≡ 3

4
(n𝜏 + 1), such that

𝜖 = K𝜖h−n𝜖 . (2)

Turning now to the study region (the shoaling part of the profile), consider a water volume V of arbitrary
thickness B in the longshore direction, delimited in the vertical by the free surface and the seabed and in
the cross-shore direction by the planes x = x0 and x = x1 (see Figure 1). Recalling that 𝜖 is expressed per
unit bed area and noting that a small strip of bed area at the boundary of the volume of interest is given
by Bd𝜉 = B

√
dx2 + dh2 = B

√
1 + (dh∕dx)2dx, the total rate of energy dissipation (per wave period) in the

volume considered is

 = BK𝜖 ∫
x1

x0

h−n𝜖

√
1 +

(
dh
dx

)2

dx. (3)

Thus, as in Larson et al. (1999), the problem reduces to finding the function h(x) that minimizes the above
integral, subject to known boundary conditions. But unlike Larson et al. (1999), we further require that h(x)
satisfies conditions a–d discussed at the beginning of this section.

3. Preliminary (Unconstrained) Solution
From equation (3), the functional to be extremized is

J[h(x)] = ∫
x1

x0

h−n𝜖

√
1 + (h′)2dx. (4)

However, for convenience and on account of h(x) being a monotonic function (condition b in section 2), we
will find the inverse function x(h) and rewrite the functional for which we seek a minimum as

J[x(h)] = ∫
h1

h0

L
[
x(h), x′(h); h

]
dh, (5)

where x′ ≡ dx∕dh and L
[
x(h), x′(h); h

]
= h−n𝜖

√
1 + (x′)2. A necessary condition for J[x] to attain an

extremum, which we presume to be a minimum, at x(h) is that the Euler-Lagrange equation,

d
dh

𝜕L
𝜕x′

− 𝜕L
𝜕x

= 0, (6)

be satisfied. Noting that 𝜕L∕𝜕x = 0, a first integration with respect to h yields 𝜕L∕𝜕x′ = h−n𝜖 [1 + (x′)2]−1∕2x′ =
const., which can be rearranged to give dx∕dh =

√
𝛼h2n𝜖∕(1 − 𝛼h2n𝜖 ), where 𝛼 is a constant associated with

the integration. Separation of variables prior to a second integration then yields

x = ∫
√

𝛼hm

1 − 𝛼hm dh + 𝛽′, (7)

where 𝛽′ is a second integration constant and m ≡ 2n𝜖 . It should be noted that equation (7) is essentially the
same expression to which both Jenkins and Inman (2006) and Larson et al. (1999) arrive in their respective
derivations. However, as discussed in section 1, the latter ultimately ignore it (i.e., they assume instead that
h(x) follows a power law), whereas the former propose a solution that invites further scrutiny (Maldonado
& Uchasara, 2019).

Solution to the integral in equation (7) for otherwise arbitrary positive values of m can be found with the aid
of Wolfram Mathematica in terms of the Gaussian hypergeometric function 2F1, namely,

∫
√

𝛼hm

1 − 𝛼hm dh = 2h
√
𝛼hm

2 + m 2
F1

(1
2
,

1
2
+ 1

m
; 3

2
+ 1

m
; 𝛼hm

)
+ 𝛽, (8)
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Figure 2. Increasing the order (i.e., retaining more terms in the series, in this case up to seven) of the preliminary
solution (11) tends to minimize J[x] (equation 5) by increasing h in general (for all x), at the cost of unrealistically steep
bed slopes near x0. Left: An illustration of the profiles predicted by equation (11) as the order of the solution increases;
a linear profile (dotted line) is added for reference. Right (left y-axis): Normalized functional Ĵ[x(h)], defined as the
ratio J[x(h)]∕J[linear profile], yielded by equation (11) as a function of the number of terms retained in the series. Right
(right y-axis): Maximum local bed slope for the predicted profile (always attained at x0) as a function of the number of
terms retained in equation (11). The measured profile is J&I b.

where 𝛽 is an integration constant and the hypergeometric function 2F1(a, b; c; z) is given by the series
expansion

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
, (9)

where the (rising) Pochhammer symbol (q)n is defined as

(q)n =
{

1 n = 0
q(q + 1) … (q + n + 1) n > 0.

(10)

As an illustration, we write below the solution to equation (7) by retaining solely the first four terms of the
series:

x(h) = 2h
√
𝛼hm

2 + m

⎡⎢⎢⎢⎣1 +

(
1
2

)
1

(
1
2
+ 1

m

)
1(

3
2
+ 1

m

)
1

𝛼hm +

(
1
2

)
2

(
1
2
+ 1

m

)
2(

3
2
+ 1

m

)
2

𝛼2h2m

2

+

(
1
2

)
3

(
1
2
+ 1

m

)
3(

3
2
+ 1

m

)
3

𝛼3h3m

6
+ …

⎤⎥⎥⎥⎦ + 𝛽,

(11)

where the constants 𝛼 and 𝛽 are obtained from the boundary conditions.

The integral in equation (7) may also be solved via Taylor series expansion of the integrand. However, this
alternative presents some limitations when compared to equation (11), as discussed in Appendix C.

3.1. Boundary Conditions
Incorporation of the boundary conditions x(h = h0) = x0 and x(h = h1) = x1 into the preliminary solution
(11) yields, for a finite number of terms retained, a system of two nonlinear equations for the two unknowns,
𝛼 and 𝛽. Solutions are found numerically. For selection of the shoreward boundary (x0, h0) in a given beach
profile, we look for the wave breaking point, identified as a point of abrupt change in the bed slope in the
direction of the propagating waves. There is little ambiguity in the selection of this point (see, e.g., Figures 1,
2, or 3). However, the same cannot be said about the seaward boundary (x1, h1), as also pointed out by Larson
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Figure 3. Comparison between the highest-order solution that complies with the constraint |h′(x)| ≤ tan𝜙 for all
x ∈ [x0, x1] (see subplot) and the next higher-order solution that violates this constraint. The former (latter) is referred
to as “low order” (“high order”) solution. An unrealistic profile (red dotted line) is added for future reference in the text
(section 5). The measured profile is J&I e, which is representative of all other profiles considered.

et al. (1999). Typical profiles tend to a uniform bed slope away from the shore (condition d; see any figure in
this paper) up to a point where waves stop interacting, from a morphodynamic perspective, with the seabed
(sometimes referred to as the closure depth). In principle, any point along this constant-slope part of the
profile could be used as seaward boundary condition. In section 4.4 we explore the solution's sensitivity to
the selection of (x1, h1). Also, in section 5 we discuss an alternative boundary condition, based on h′ at x = x0,
that was tested unsuccessfully.

4. The Solution and Results
In this section, we incorporate constraints a–d into the preliminary solution prior to comparing it against
field and laboratory data (described in section 4.1). Sensitivity of the constraints-complying solution to the
selection of the seaward boundary condition and the physical parameter n𝜏 is analyzed in sections 4.4 and
4.5, respectively. The predictive performance of the proposed solution is contrasted against that of best-fit
power law curves in section 4.6.

4.1. Data Employed for Comparison
In order to test the energy minimization hypothesis, the theoretical profile derived from variational consid-
erations is compared against data from both laboratory and field. For field data, we select the six profiles
shown in Figure 8 of Jenkins and Inman (2006) (labeled here J&I a, J&I b, … , J&I f), which were measured
during a 6-year period near Oceanside, California. These profiles have been selected because the analytical
treatment carried out by Jenkins and Inman (2006), who used these profiles for validation, builds on similar
assumptions to those adopted here, and because in all of these profiles the limit of the surf zone (point x0)
can be readily identified. For laboratory profiles, we employ a subset of those reported in Wang and Kraus
(2005), which were measured in a large tank specifically designed to minimize scale-related distortions and
focus on beach response to cross-shore sediment transport, thus complying with the 1D assumption under-
pinning the analysis presented here. Solely final profiles (described in Table 1 and shown in Figure 1 of
Wang & Kraus, 2005) with “Run ID” ending in 209, 270, and 559 (we label these profiles W&K 209, W&K
270, and W&K 559) are utilized based on the amplitude of the waves employed during their corresponding
experiments; we have selected the smallest amplitudes, in keeping with Assumption 1 in section 2.

4.2. Incorporation of Constraints
A posteriori, it is observed (see below) that the unconstrained solution (11) complies naturally with con-
ditions b–d, but not necessarily with condition a (i.e., the “angle of repose” constraint: |h′(x)| ≤ tan𝜙), to
which we therefore devote our attention here. To the best of the author's knowledge, a variational problem
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Table 1
Ratio of the Functional J[x(h)] (Equation 5) Obtained by Each Solution (Left Column) to That Arising From a Linear
Profile (i.e., The Normalized Functional Ĵ[x] Shown in Figure 2)

Jenkins and Inman Wang and Kraus
a b c d e f 209 279 559

equation 11 low order 0.53 0.63 0.58 0.42 0.65 0.49 0.66 0.71 0.52
equation 11 high order 0.32 0.41 0.36 0.24 0.43 0.29 0.45 0.51 0.34

Note. The “high order” solution yields smaller values of J[x] than its “low order” counterpart. Both solutions yield
smaller values of J[x] than a linear profile.

with such a subsidiary condition (i.e., an inequality) cannot be solved exactly via standard analytical meth-
ods (see, e.g., Bronshtein et al., 2007; Cline, 2017; Courant & Hilbert, 1953, and section 5 for a discussion
on this). Hence, a simple approach based on a posteriori knowledge on the behavior of the unconstrained
solution is adopted, as discussed next.

Figure 2 shows that the effect of higher-order terms in the unconstrained solution is to increase the overall
water depth h in the domain, which in turn tends to minimize the energy dissipation rate (or functional J; see
Figure 2 right). This translates into steeper bed slopes near the boundary x0, with the steepness of the slope
also increasing with the order of the solutions. However, some of these bed slopes are physically unrealistic
(> tan𝜙). Thus, we adopt a simple, heuristic approach to incorporate the angle of repose constraint, whereby
highest-order terms in the solution are discarded one at a time until the condition |h′(x)| ≤ tan𝜙 is satisfied
for all x ∈ [x0, x1]. We use a standard value for sand of 𝜙 = 32◦ ⇒ tan𝜙 = 0.625 (Soulsby, 1997). Unless
otherwise stated, n𝜏 = 2 is assumed (i.e., |𝜏b| = K𝜏u2

b), such that n𝜖 = 2.25 ⇒ m = 4.5, but sensitivity to this
parameter is explored in section 4.5.

Figure 3 compares, for a given profile, the highest-order solution that complies with |h′(x)| ≤ tan𝜙 (referred
to as “low order”) against the next higher-order solution which violates this condition (labeled “high order”).
Thus, the “high order” solution arising from equation (11) refers to that retaining the first two terms of the
series, while the “low order” solution retains only the first term. The subplot in Figure 3 shows that the
“high order” solution exceeds the angle of repose near the point x0, while the “low order” solution complies
with |h′(x)| ≤ tan𝜙 for all x ∈ [x0, x1]. This is in agreement with Figure 2 (right). Both solutions predict a
continuous, smooth bed slope (condition c) attaining a maximum at x = x0 and asymptotically decreasing
toward their value at x1 (conditions b and d). For all the profiles considered in this study, the “high order”
solution tends to minimize the value of the target functional at the cost of unrealistically steep bed slopes
near x0, as illustrated in Tables 1 and 2, which we discuss next.

Table 1 shows the value of the functional J[x(h)] (equation 5) for each solution (estimated numerically),
rendered nondimensional via division by J[x(h) = linear profile] (i.e., the normalized functional Ĵ[x] shown
in Figure 2). This table highlights two facts: i) the “high order” solution tends to minimize the functional
for all profiles considered, as may be expected from inspection of Figure 2 and ii) all values are < 1, which
means that an arbitrarily neighboring (but realistic) function x(h) (in this case, a line) yields a larger value of
J[x]. These two points, in combination with Figure 2, suggest that the stationary value to which the solution
tends (as its order, and thus accuracy, increases) is indeed a minimum (or at the very least, cannot be a
maximum; see section 5). Table 2 illustrates that in all cases considered, the “high order” solution violates the
angle of repose constraint, while, conversely, the “low order” solution always complies with |h′(x)| ≤ 0.625.

Table 2
Maximum Local Bed Slope Encountered at Some Point in the Profile Predicted by Each Solution; This Point is Always x0

Jenkins and Inman Wang and Kraus
a b c d e f 209 279 559

equation 11 low order 0.09 0.06 0.07 0.15 0.05 0.10 0.23 0.17 0.35
equation 11 high order 1.67 0.90 1.28 3.21 0.81 2.11 1.73 1.13 3.12

Note. The slope of repose (tan 32◦ = 0.625) is exceeded in all cases by the “high order” solution but never by its “low
order” counterpart. For reference, J&I (W&K) measured profiles present maximum local bed slopes of approximately
0.03 to 0.05 (0.2 to 0.4).
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Figure 4. The proposed profile (equation 13) is compared against three profiles measured by Jenkins and Inman (2006)
(left) and those by Wang and Kraus (2005) (right). Profiles by Jenkins and Inman (2006) not shown here can be found
in other figures throughout the manuscript. Note that equation (13) is the same as “equation (11) low order” discussed
in other parts of the paper. Equation C1 (dashed line) is discussed in Appendix C.

Moreover, the “low order” solution yields values of the maximum bed slopes which are comparable to those
observed in the measured profiles.

Based on this analysis, we revisit the unconstrained solution derived in section 3 and propose a theoretical
EBP that tends to minimize energy dissipation while complying with conditions a–d stated in section 2. This
profile arises by retaining solely the first term of the series, namely,

x(h) =
2
√
𝛼

2 + m
h

2+m
2 + 𝛽, (12)

which may be cast in the familiar power law form:

h(x) = 𝛼̄(x − 𝛽)
4

3n𝜏+7 , (13)

where 𝛼̄ = (2 + m)
2

2+m (2
√
𝛼)−

2
2+m ; recall that m = 2n𝜖 =

3
2
(n𝜏 + 1). As before, 𝛼̄ and 𝛽 may be obtained from

the boundary conditions h(x0) = h0 and h(x1) = h1.

Interestingly, by exploring mathematical analogies between beach profiles and relativistic cosmology—and
assuming “deep water” (defined as h ≫ x, that is, not in terms of wavelength)—Faraoni (2019) has recently
derived a similar expression to equation (13), that is, with the exact same exponent.
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Table 3
Ratio of the Functional J[h(x)] Obtained by Equation (13) and a Linear Profile to That Obtained From the Measured
Profiles, That is, Ratio of J[h(x) = Profile Shown in Left Column] to J[h(x) = Measured Profile]

Jenkins and Inman Wang and Kraus
a b c d e f 209 279 559

equation 13 0.89 1.06 0.89 0.75 1.01 0.86 1.05 0.99 0.80
linear profile 1.67 1.68 1.54 1.79 1.56 1.75 1.60 1.40 1.55

Note. Note that in all cases J[linear profile] > J[measured profile].

4.3. Comparison Against Field and Laboratory Data
In Figure 4, a good qualitative agreement is observed between equation (13) and six of the profiles employed
for comparison; equation (13) replicates correctly the concave section near the breaking bar and the ten-
dency toward a milder, uniform slope offshore. This good agreement is verified quantitatively for all profiles
in Table 3, which gives the ratio of the functional J[h(x)] (equation 4) yielded by the proposed profile to the
functional obtained via the measured profile, that is, the ratio of J[h(x) = equation 13] to J[h(x) = measured
profile]. A linear profile is also included for reference. Note that in average a linear profile yields a functional
(energy dissipation) approximately 40% larger than that of the measured profiles, whereas the functionals
obtained from the proposed EBP formulation generally falls within about ± 10% of the latter.

4.4. The Influence of the Seaward Boundary
Strictly speaking, the seaward boundary of the profile (x1, h1) should be given by the point beyond which
there is no morphodynamic interaction between the surface waves and the seabed, that is, the depth of clo-
sure. However, this depth is difficult to determine without a priori knowledge on the approaching waves
(wave height and period) and sediment (see, e.g., Hallermeier, 1981;Kraus et al., 1998), and a significant
degree of empiricism is typically involved in its identification. Therefore, for the purposes of this study, the
seaward boundary could in principle be any point along the constant-slope, seaward part of the profile (i.e.,
where h

′ ′
vanishes). Nevertheless, different selections of the point (x1, h1) will naturally lead to different val-

ues of the constants 𝛼̄ and 𝛽 in equation (13) (see section 3.1) and thus strictly different profiles. Figure 5
(left) explores the sensitivity of equation (13) to the selection of the boundary (x1, h1) for one profile, repre-
sentative of all others. The effect of the seaward boundary is negligible in the vicinity of x0 but becomes more
evident as x → x1. In general, sensitivity to the seaward boundary is reduced for larger values of x1, and so a
“sufficiently far” seaward boundary should be selected, so long as the point lies on the constant-slope part
of the profile. An alternative to this boundary condition (based on the value of h′ at x = x0) was also tested,
with unsuccessful results, as discussed in section 5.

Figure 5. Left: Influence of the selection of the seaward boundary (x1, h1) on the profile predicted by equation (13) (for
n𝜏 = 2). Right: Effect of n𝜏 (from |𝜏b| = K𝜏un𝜏

b ) on the profile predicted by equation (13). The measured profiles are J&I
b and J&I a, respectively, which are representative of all other profiles considered.

MALDONADO 9 of 16



Journal of Geophysical Research: Oceans 10.1029/2019JC015876

Figure 6. The theoretical profile proposed here (equation 13, using n𝜏 = 1.5) is compared against a measured profile
(in this case J&I c) and a best-fit power law curve of the form h ∼ xnb𝑓 , where nbf is one of the fitting parameters. The
Dean profile (h ∼ x2/3) is added for reference.

4.5. The Influence of n
𝝉

Up to this point we have adopted n𝜏 = 2 (i.e., |𝜏b| = K𝜏u2
b). In Appendix A we look into the potential

values that may be expected of n𝜏 in practice and conclude that this parameter should approximately lie
in the range 1 ≤ n𝜏 ≤ 2, with the lower and upper limits corresponding to laminar and rough turbulent
boundary layers, respectively. Note that the expected values of n𝜏 lead to the two limit cases h ∼ x2/5 and
h ∼ x4/13. Figure 5 (right) illustrates the effect of n𝜏 on the profile predicted by equation (13) within the range
1 ≤ n𝜏 ≤ 2. As may be expected from inspection of the mathematical structure of equation (13), the effect
of n𝜏 on the proposed profile is substancial since this parameter is part of the exponent to which h is raised.
Moreover, the observed behavior of the proposed EBP for increaasing n𝜏 backs the energy minimization
argument underpinning this work, namely, for larger values of n𝜏 , a profile tending to minimize energy
dissipation will develop a more concave shape in order to increase h, which then reduces 𝜏b and hence 𝜖

(see equation 1).

4.6. Comparison Against Best-Fit Power Law Curves
Power law curves of the form h(x) = Ab𝑓 (x − bb𝑓 )nb𝑓 , where the subscript “bf ” denotes best-fitting param-
eters, have been fitted to each of the nine profiles considered. The values of nbf obtained from the best fits
fall in the range [0.28, 0.38] ([0.25, 0.41]) for the J&I (W&K) profiles, confirming previous observations (e.g.,
Inman et al., 1993; Larson et al., 1999) that highlight the fact that the exponent in the power law curve, when
applied to the shoaling part of the profile, is typically smaller than (the popular value) 2∕3. In agreement
with these insights, the two limit cases of the profile proposed here (h ∼ x2/5 and h ∼ x4/13) yield exponents
in the range [0.31, 0.40]. Figure 6 illustrates the remarkably good agreement between the best fits (to pro-
file J&I c) and the proposed theoretical profile (equation 13) for n𝜏 = 1.5. The Dean profile (i.e., h ∼ x2/3)
is included in Figure 6 just for reference, noting that its relatively poor predictive performance beyond the
surf zone is well documented (see, e.g., Fredsøe & Deigaard, 1992; Larson et al., 1999).

5. Discussion
The theoretical EBP described by equation (13) represents an approximate solution to the problem of find-
ing a function h(x) that extremizes the functional in equation (4), subject to known boundary conditions
h(x0) and h(x1), and the evidence-based conditions a–d described in section 2. It has been shown that this
theoretical profile
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1. agrees well with beach profiles measured in field and laboratory, particularly from a qualitative perspec-
tive: the predicted profile is concave near the wave breaking point and the bed slope tends to a smaller,
constant value offshore (see Figures 2 to 6);

2. yields values of the functional J[h(x)] (an indicator of the wave-average energy dissipation rate) which
are close (generally within ± 10%) to those estimated from the measured profiles (see Table 3); and

3. recovers the popular power law relation between h and x, in turn, based on a large body of empirical
observations, but where it is worth remarking that the predicted exponent (i.e., 4∕[3n𝜏 + 7]) is not an
arbitrarily free parameter. The exponent relates to the bed shear stress (which is responsible for the energy
dissipation of nonbreaking, inviscid waves) via n𝜏 in |𝜏b| = K𝜏 |ub|n𝜏 , for which realistic values (1 ≤ n𝜏 ≤
2; see Appendix A) have been employed throughout this study. These values lead to the limit cases h ∼ x2/5

and h ∼ x4/13, in agreement with previous observations of profiles under nonbreaking waves (e.g., Inman
et al., 1993).

The above remarks suggest that a principle of energy extremization may indeed underpin the particular
shape adopted by equilibrium beach profiles under nonbreaking waves. However, next, we identify and
discuss the main limitations of the mathematical treatment presented here, followed by further comments
on other relevant aspects of this work.

A. All but one of the five key assumptions (1–5) invoked in section 2 refer to the geophysical properties of
the site considered (all but Assumption 2; see below). These assumptions are rather restrictive and do
not represent the complexity of real beach profiles, particularly those in field.

B. Assumption 2 in section 2 refers to the validity of linear wave theory. Although the robustness of this
theory is well known, its validity is certainly questionable near the wave breaking point, where nonlinear
effects become important (Thornton & Guza, 1983). Assumption 2 may also fail at deeper waters (near
x1), but this is expected to be less important since energy dissipation there is negligible.

C. The mathematical treatment presented here hinges on our ability to formulate the energy dissipation
rate as some explicit function of the local water depth; in this case, 𝜖 = K𝜖h−n𝜖 (equation 2). However,
this is in general unlikely given that the friction factor ff , embedded in K𝜖 , is typically defined so that
it fits the curve |𝜏b| ∝ u2

b, with the consequence that empirically derived expressions for ff are usu-
ally reported as intricate implicit equations (see Appendix A), the adoption of which would hinder the
analytical procedures adopted throughout this work.

D. The assumptions referred to in Point (A) may be restrictive but not physically unrealistic. Nevertheless,
in order to be able to express 𝜖 as 𝜖 = K𝜖h−n𝜖 , it was further stated that due to simple shoaling, the
cross-shore variation of the wave height follows H ∼ h−1/4. But this prediction is based on the conserva-
tion of the wave energy flux (see, e.g., Svendsen, 2006), which then contradicts the foundational proviso
that energy is being dissipated. However, this apparently crucial contradiction may be partially remedied
by invoking the supposition that energy dissipation across the profile is vanishingly small, which aligns
with our purpose of finding a profile that minimizes this quantity. Moreover, the H ∼ h−1/4 assumption
has been shown to predict well the wave height variation due to shoaling both in field and laboratory
(Guza & Thornton, 1980; Thornton & Guza, 1983). This may explain why comparison between the theo-
retical and measured profiles generally yields a good agreement despite this fundamental inconsistency
in the theory, but also why largest disagreements are to be found near the shoreward boundary x0, where
energy dissipation is larger than further offshore (and where the validity of linear wave theory becomes
particularly questionable, as discussed above).

On the waves irregularity: The assumption of monochromatic waves of constant amplitude has been invoked
to simplify derivations, but this proviso could potentially be relaxed provided all adequate modifications
are made (e.g., use of Hrms rather than H as in Thornton & Guza, 1983 or Larson et al., 1999), without an
anticipated major impact on the key predictions and conclusions here discussed. The latter statement is
supported by the good agreement observed between the theory and field and laboratory data, despite the
fact that in most of these measured profiles (with the exception of profile W&K 559) irregular waves were
present. Note that irregular waves will not brake at a single point but rather within a region near x0; but
again, the theory presented here is expected to be particularly limited when x → x0, as discussed in points
(B) and (D) above.
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On the constraints imposed: Whereas the bed slope constraint (discussed below) is an uncontroversial
requirement, constraints b–d discussed in section 2 may seem overrestrictive. These constraints are how-
ever necessary to ensure an adequate formulation of the problem leading to a realistic solution. For instance,
bypassing the Euler-Lagrange equation, a solution to the variational problem may be proposed (by inspec-
tion of Figure 2) that complies with conditions a, b, and d, but not c, as shown in Figure 3 (red dotted line).
However, this solution would have a very large second derivative where the slope changes and would exhibit
an unrealistically high sensitivity to the selection of the seaward boundary (unlike the proposed profile).
Constraint c is hence necessary (similar arguments may be made for the other constraints). EBPs in nature
may not be strictly monotonic (see W&K 279 in Figure 4), which may be caused by complex phenomena
not accounted for in this treatment (see Point (A) above); however, the smooth monotonic increase of depth
is arguably a reasonable description of the shoaling part of most beach profiles (see any other figure in this
paper).

On the incorporation of the bed slope constraint: The method employed to ensure compliance with the bed
slope constraint (see section 4.2) is one of two alternatives tested by the author. Based on the a posteri-
ori knowledge that maximum values of h′ predicted by the solution are always found at x = x0 (see, e.g.,
Figure 3), the other alternative (the unsuccessful results of which are not shown) consisted in imposing
the boundary condition h′(x = x0) = some value ≤ tan𝜙, which would then ensure that h′(x) ≤ tan𝜙 for
all x ∈ [x0, x1]. However, removing the seaward boundary condition h(x1) = h1 had the consequence of
promoting a curve that would attain unrealistically large values of h in the domain in order to minimize
the target functional (removing instead h(x0) = h0 led to similarly unrealistic results). This would in turn
violate the implicit restriction that predicted values of h(x) must be sufficiently small so that interaction
between the surface waves and the bed is guaranteed. Note that this condition is naturally met by imposing
the data-based boundary conditions h(x0) = h0 and h(x1) = h1. As discussed in section 4.2, the author is
unaware of any methods to solve exactly the variational problem considered here via analytical means due to
the nature of the angle of repose constraint (i.e., an inequality), but some ideas for future analytical or semi-
analytical treatments may include the use of finite differences and minimizing sequences as in Courant and
Hilbert (1953).

On the use of the derived EBP for practical purposes: As discussed in section 1, theoretical EBPs are often
employed in reduced-order models with different predictive aims. However, it must be noted that the goal of
this manuscript is not per se to derive and promote a predictive engineering tool (another EBP formulation)
but rather to investigate the energy economy principle discussed throughout the manuscript. Therefore,
a thorough validation of the expression derived (equation 13) against a large number of measured beach
profiles is not a priority of this work. This, of course, does not preclude others from testing the predicitve
capabilities of equation (13) in field and laboratory. To that end, however, it is reminded that (i) equation (13)
is only valid for nonbreaking waves and (ii) suitable boundary conditions must be selected, for which it is
anticipated that a certain degree of empiricism will be involved (see sections 3.1 and 4.4).

On the minimum versus maximum controversy: Whereas from a mathematical perspective there is little dif-
ference between the minima and maxima of a functional (they are both extrema), this is not true from a
physical viewpoint. Thus, it is somewhat disturbing that different authors who arrive at equation (7) formu-
late the diametrically opposed claims that solution to this integral leads to minimization (this paper; Larson
et al., 1999) or maximization (Jenkins & Inman, 2006) of wave energy dissipation  (equation 3). We argue
that there is now sufficient evidence to state that the stationary value to which solution of equation (7) leads
cannot be a maximum. This is succinctly illustrated in Figure 2 (right). What is more, that a linear profile
(dotted line in Figure 2 left) always yields a larger value of the functional J[h] than any measured profile (see
Table 3 but also Maldonado & Uchasara, 2019) is further evidence that beach profiles do not tend to shapes
that thereafter maximize the rate of energy dissipation; indeed, experiments on EBPs often set a linear pro-
file, or plane beach, as the initial state from which the profile departs toward its typical concave shape (see,
e.g., Dean, 1991). A mathematically rigorous proof of the above claim would involve estimation of the sec-
ond variation of J, which is beyond the scope of the present work, and may not at all be possible: Faraoni
(2019) shows that equation (7) may only be analytically extremized for physically meaningless (in the con-
text of beach profiles) values of n𝜏 , such as n𝜏 < 0. In short, EPBs under nonbreaking waves may or not tend
to a form that strictly minimizes energy dissipation (see paragraph below), but at least we can be certain
that they do not morph into equilibrium shapes that seek to thereafter maximize .
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This paper represents a more comprehensive attempt (compared to previous works) at testing the hypothe-
sis of EBPs under nonbreaking waves as systems that minimize energy dissipation, with results indicating
that the hypothesis may be correct. However, as discussed in this section, significant simplifications have
been made in the conceptualization of the problem, and the analytical solution to the constrained variational
problem is only approximate. In future, more thorough tests of this hypothesis might include computational
approaches to the optimization problem, semianalytical treatments, and ad hoc experiments. A future vari-
ational approach to this problem may include, not only the equilibrium (final) state of the profile, but also
its initial configuration and all intermediate profiles, and account not only for the dissipation of wave energy
but also the work required to reshape the profile and/or the potential energy contained in the sediment
grains making up the shoreface (all subject to a realistic morphodynamic interaction, e.g., that respects the
constraint imposed by the sediment threshold of motion). An approach of this sort might even reconcile the
energy minimization hypothesis discussed here with the maximum entropy production viewpoint adopted
by Jenkins and Inman (2006). It is hoped that this theory may also motivate similar investigations into other
geomorphological features besides beach profiles.

6. Conclusions
After Larson et al. (1999), we enquire whether beach profiles under nonbreaking waves tend to an equi-
librium shape that thereafter minimizes the rate of wave energy dissipation due to bed friction. Employing
linear wave theory, a variational problem is formulated, which (unlike Larson et al., 1999) we attempt to
solve directly via analytical means without a priori assumptions on the mathematical structure of the solu-
tion. We remark that for the solution to be realistic, the problem must consider additional constraints (e.g.,
related to the limitation imposed by the sediment's angle of repose). These constraints lead us to adopt an
analytical solution to the optimization problem that is only approximate. Thus, the profile derived here (i.e.,
h ∼ x4∕(3n𝜏+7); see equation 13) may be understood as one that tends to minimize the energy dissipation of
linear, nonbreaking waves while retaining realistic features. The profile recovers the well-known, empiri-
cal data-based power law relation between depth and cross-shore distance. However, it must be noted that
the exponent in the power law function derived is not an arbitrarily free parameter (as in Larson et al.,
1999); it depends on the degree of nonlinearity in the relation between the near-bed orbital velocity and
the bed shear stress (the latter being the main mechanism by which nonbreaking waves dissipate energy),
leading to the limit cases h ∼ x2/5 and h ∼ x4/13 for laminar and rough turbulent boundary layers, respec-
tively. These limit cases (in particular, the values of the exponents) confirm insights from previous studies on
beach profiles under nonbreaking waves. The good agreement between the theoretical profile proposed here
and equilibrium beach profiles measured in field (Jenkins & Inman, 2006) and laboratory (Wang & Kraus,
2005) suggests that the energy minimization hypothesis posed by Larson et al. (1999) is correct. However,
given the conceptual and methodological limitations of this work (discussed in section 5), this hypothesis
requires further tests before definite conclusions can be drawn, perhaps employing both computational and
experimental tools. We hope that the theory presented here will be useful to that end.

Appendix A: Expected Values ofn
𝝉

The objective of this appendix is to estimate a range of expected values of n𝜏 in |𝜏b| = K𝜏 |ub|n𝜏 , where K𝜏

must be independent of both h and ub.

The wave friction factor, ff , is conventionally defined so that it fits the expression 𝜏bo = K𝜏2
u2

bo (see, e.g.,
Svendsen, 2006), where ff is embedded in K𝜏2

, and 𝜏bo is the amplitude or maximum value of 𝜏b(t). This
definition of ff is in practice also extended to include the instantaneous bed shear stress 𝜏b(t) = K𝜏2

ub(t)2,
retaining K𝜏2

as a constant (Svendsen, 2006); thus, K𝜏2
= K𝜏 . The friction factor ff may be empirically

obtained as a function of the wave Reynolds number, Re, and relative roughness, re (see, e.g., Jonsson, 1967;
Jonsson & Carlsen, 1976; Kamphuis, 1975), in turn defined as

Re ≡ ubo𝜁b

𝜈
and re ≡ ke

𝜁b
, (A1)

where 𝜁b is the wave horizontal excursion at the bed, 𝜈 is the water's kinematic viscosity, and ke is a length
characterizing the bed roughness. Let us now consider the two limit flow regimes: laminar and rough tur-
bulent flows. Under the former (latter), ff solely depends on Re (re), whereas in general ff = f(Re, re). Based
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on the defining expression for ff , namely, 𝜏bo = K𝜏2
u2

bo, it can be shown (Dean & Dalrymple, 1991) that
𝑓𝑓 ∼ Re−1∕2 in a laminar boundary layer. Moreover, we know that for shallow linear waves, ubo ∼ h−3/4 and
𝜁b ∼ h−3/4 (see Appendix B), such that Re ∼ h−3/2, which yields

𝜏bo ∼ Re−
1
2 u2

bo ∼ h− 3
2

(
− 1

2

)
h− 3

4 (2) ⇒ 𝜏bo ∼ h− 3
4 . (A2)

Thus, from |𝜏b| = K𝜏 |ub|n𝜏 ∼ h− 3
4 n𝜏 (see section 2), we get n𝜏 = 1 for laminar flow. In rough turbulence, the

relation ff = ff (re) is found empirically. For instance, Kamphuis (1975) proposes 𝑓𝑓 ∼ r0.75
e , while Soulsby

(1997) suggests that 𝑓𝑓 ∼ r0.52
e , and for Swart (1974) ff is a constant (i.e., 𝑓𝑓 ∼ r0

e ). Since re ∼ 𝜁−1
b ∼ h3∕4,

the aforementioned works yield, respectively, ff ∼ h0.56, ff ∼ h0.39, and ff ∼ h0, which imply, according to
𝜏bo = K𝜏2

u2
bo ∼ 𝑓𝑓h−3∕2, that 𝜏bo ∼ h−0.94, 𝜏bo ∼ h−1.11, and 𝜏bo ∼ h−1.5, and thus, n𝜏 = 1.25, n𝜏 = 1.48, and

n𝜏 = 2 for each of the works discussed. We can then expect n𝜏 , as defined in this work, to lie in the range
1 ≤ n𝜏 ≤ 2.

The above estimates of n𝜏 represent a crude approximation; in general, the empirically determined function
ff = f(Re, re) (often an implicit equation) may not allow ff (and thus 𝜏b) to be expressed as a power law
function of h, particularly not one with a constant exponent (see section 5).

Appendix B: Relations From Linear Wave Theory
For convenience, this appendix derives well-known relations used throughout the manuscript between rel-
evant variables (ubo, H, 𝜁b) and h, based on the shallow water approximation of linear wave theory (see, e.g.,
Dean & Dalrymple, 1991; Svendsen, 2006). Variables not defined here are defined elsewhere in the paper.
Near the bed (z → −h), the magnitude of the horizontal particle velocity and displacement predicted by
linear wave theory are ubo = (H∕2)𝜔(1∕ sinh kh) and 𝜁b = (H∕2)(1∕ sinh kh), respectively, where 𝜔 is the
angular frequency, k = 2𝜋∕𝜆 is the wavenumber, and 𝜆 is the wavelength. The shallow water approximation,
valid when 𝜆 ≫ h, implies that sinh kh → kh and 𝜔∕k →

√
gh (where g is the gravitational acceleration),

thus leading to kh = 𝜔
√

h∕
√

g and hence

ubo = H
2

√
g
h

and 𝜁b = H
2𝜔

√
g
h
. (B1)

Incorporation of simple shoaling, in shallow water, gives the variation of H across the profile as the ratio to
the approach wave height in deep water, H∞, namely,

H
H∞

= 1√
2𝜔

( g
h

) 1
4

⇒ H ∼ h−1∕4. (B2)

The above equation can then be used in equation (B1) to yield:

ubo = 1
2

(
H∞√

2𝜔

)( g
h

) 3
4

⇒ ubo ∼ h− 3
4 (B3)

and

𝜁b = 1
2𝜔

(
H∞√

2𝜔

)( g
h

) 3
4

⇒ 𝜁b ∼ h− 3
4 . (B4)

Appendix C: Alternative Solution by Series Expansion
The integral in equation (7) may also be solved by first expanding the integrand in Taylor series. It is pertinent
to do so around h0, given that most energy dissipation takes place in shallow regions of the profile. The
solution thus obtained presents a similar behavior to equation (11), and as expected, both solutions agree
for increasing order of the expressions (although the series expansion solution converges significantly more
slowly), as illustrated in Figure C1 (left). The procedure described in section 4.2 may then be applied to
this alternative solution, namely, highest-order terms can be discarded until the condition |h′(x)| ≤ tan𝜙
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Figure C1. Left: Behavior of the solution to the integral in equation (7) by series expansion for increasing degree of the
polynomial (black lines); curves are shown for Degrees 2, 3, 4, 5, and 11. The polynomial of Degree 11 agrees well with
equation (11) with four terms retained (red line). For all curves n𝜏 = 2. Right: Influence of n𝜏 on the profile predicted
by equation (C1). The measured profiles are J&I b (left) and J&I a (right).

is satisfied for all x ∈ [x0, x1]. The polynomial that complies with the bed slope constraint is quadratic in h,
namely,

x(h) =

√
𝛼̂hm

0

1 − 𝛼̂hm
0

h +
m
√
𝛼̂hm

0

4h0(1 − 𝛼̂hm
0 )3∕2 (h − h0)2 + 𝛽, (C1)

where as with equation (13), values of 𝛼̂ and 𝛽 are determined from the boundary conditions via solution of
the associated system of two nonlinear equations (but note that 𝛼̂ and 𝛽 need not evaluate to the same values
as 𝛼̄ and 𝛽 in equation 13 for the same boundary conditions). Equation (C1) also yields a good qualitative
agreement when compared against field and laboratory data (see Figure 4). Values of the functional J yielded
by equation (C1) are similar to those arising from equation (13) (see supporting information), and just as the
latter, equation (C1) is relatively insensitive to the somewhat arbitrary selection of the seaward boundary
(x1, h1) (not shown here). However, equation (C1) is virtually insensitive to n𝜏 , as shown in Figure C1 (right).
This rigidity in the solution is a consequence of the mathematical structure of the Taylor series and is a
weakness of the expression from the perspective of physical meaningfulness: Equation (C1) predicts that
both turbulent and laminar boundary layers lead to essentially the same profile. For this reason we relegate
equation (C1) to this appendix as another approximate solution to the variational problem considered here,
which has been tested and shown to be inferior to equation (13).
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Zielińska for repeated proofreading
and helpful feedback; Dr J. Arriaga for
flagging a paper that would eventually
lead to this publication and two
anonymous reviewers and the
associate editor, whose insightful
comments have led to a significantly
improved version of this manuscript.
Codes employed in this paper as well
as the supporting information can be
downloaded from https://doi.org/10.
5281/zenodo.3725621 and https://doi.
org/10.5281/zenodo.3725639,
respectively. This research was not
funded.

MALDONADO 15 of 16

https://doi.org/10.1029/2005JF000422
https://doi.org/10.5281/zenodo.3725621
https://doi.org/10.5281/zenodo.3725621
https://doi.org/10.5281/zenodo.3725639
https://doi.org/10.5281/zenodo.3725639


Journal of Geophysical Research: Oceans 10.1029/2019JC015876

Falqués, A., & Calvete, D. (2005). Large-scale dynamics of sandy coastlines: Diffusivity and instability. Journal of Geophysical Research,
110, C03007. https://doi.org/10.1029/2004JC002587

Faraoni, V. (2019). Analogy between equilibrium beach profiles and closed universes. Physical Review Research, 1(3), 33002.
Fredsøe, J., & Deigaard, R. (1992). Mechanics of coastal sediment transport, Advanced series on ocean engineering (Vol. 3). Singapore: World

Scientific.
Guannel, G., Ruggiero, P., Faries, J., Arkema, K., Pinsky, M., Gelfenbaum, G., et al. (2015). Integrated modeling framework to quantify

the coastal protection services supplied by vegetation. Journal of Geophysical Research: Oceans, 120, 324–345. https://doi.org/10.1002/
2014JC009821

Guza, R., & Thornton, E. B. (1980). Local and shoaled comparisons of sea surface elevations, pressures, and velocities. Journal of Geophysical
Research, 85(C3), 1524–1530.

Hallermeier, R. J. (1981). A profile zonation for seasonal sand beaches from wave climate. Coastal Engineering, 4, 253–277.
Inman, D. L., Elwany, M. H. S., & Jenkins, S. A. (1993). Shorerise and bar-berm profiles on ocean beaches. Journal of Geophysical Research,

98(C10), 18181.
Jara, M., González, M., & Medina, R. (2015). Shoreline evolution model from a dynamic equilibrium beach profile. Coastal Engineering,

99, 1–14.
Jenkins, S. A., & Inman, D. L. (2006). Thermodynamic solutions for equilibrium beach profiles. Journal of Geophysical Research, 111,

C02003. https://doi.org/10.1029/2005JC002899
Jonsson, I. G. (1967). Wave boundary layers and friction factors. In Coastal engineering 1966 (pp. 127–148). Tokyo, Japan: American Society

of Civil Engineers in New York, N.Y.
Jonsson, I. G., & Carlsen, N. A. (1976). Experimental and theoretical investigations in an oscillatory turbulent boundary layer. Journal of

Hydraulic Research, 14(1), 45–60.
Kamphuis, J. W. (1975). Friction factor under oscillatory waves. Journal of the Waterways, Harbors and Coastal Engineering Division, 101(2),

135–144.
Kraus, N. C., Larson, M., & Wise, R. A. (1998). Depth of closure in beach-fill design (Technical note No. ADA578584). Vicksburg,

Mississippi: US army engineer waterways experiment station, coastal and hydraulics laboratory.
Larson, M., Kraus, N. C., & Wise, R. A. (1999). Equilibrium beach profiles under breaking and non-breaking waves. Coastal Engineering,

36(1), 59–85.
Maldonado, S., & Uchasara, M. (2019). On the thermodynamics-based equilibrium beach profile derived by Jenkins and Inman.

(arXiv:1908.07825[physics.geo-ph]).
Soulsby, R. (1997). Dynamics of marine sands: A manual for practical applications. London: Thomas Telford.
Svendsen, I. A. (2006). Introduction to nearshore hydrodynamics (Vol. 24). Singapore: World Scientific.
Swart, D. H. (1974). Offshore sediment transport and equilibrium beach profiles (Tech. Rep. No. 131). Delft Hydraulics Laboratory.
Thornton, E. B., & Guza, R. T. (1983). Transformation of wave height distribution. Journal of Geophysical Research, 88(C10), 5925.
Wang, P., & Kraus, N. C. (2005). Beach profile equilibrium and patterns of wave decay and energy dissipation across the surf zone elucidated

in a large-scale laboratory experiment. Journal of Coastal Research, 21, 522–534.

MALDONADO 16 of 16

https://doi.org/10.1029/2004JC002587
https://doi.org/10.1002/2014JC009821
https://doi.org/10.1002/2014JC009821
https://doi.org/10.1029/2005JC002899

	Abstract
	Plain Language Summary


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <>
    /CHT <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


