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Abstract. Sparse optimization has seen an evolutionary advance in the past decade with ex-
tensive applications ranging from image and signal processing, statistics to machine learning. As a
tractable approach, regularization is frequently used, leading to a regularized optimization where `0
norm or its continuous approximations that characterize the sparsity are punished in its objective.
From the continuity of approximations to the discreteness of `0 norm, the most challenging model
is the `0-regularized optimization. To conquer its hardness, numerous numerically effective methods
have been proposed. However, most of them only enjoy that the (sub)sequence converges to a sta-
tionary point from the deterministic optimization perspective or the distance between each iterate
and any given sparse reference point is bounded by an error bound in the sense of probability. We
design a method SNL0: subspace Newton method for the `0-regularized optimization, and prove
that its generated sequence converges to a stationary point globally under the strong smoothness
condition. In addition, it is also quadratic convergent with the help of locally strong convexity, well
explaining that our method, as a second order method, is able to converge very fast. Moreover, a
novel mechanism to effectively update the penalty parameter is created, which allows us to get rid
of the tedious parameter tuning task that is suffered by most regularized optimization methods.
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1. Introduction. Over the last decade, sparsity has been thoroughly investi-
gated due to its extensive applications ranging from compressed sensing [24, 15, 16],
signal and image processing [26, 25, 17, 8], machine learning [51, 56] to neural networks
[7, 36, 22] lately. Sparsity is frequently characterized by `0 norm and its penalized
problem is commonly phrased as `0-regularized optimization, taking the form of

(1.1) min
x∈Rn

f(x) + λ‖x‖0,

where f : Rn → R is twice continuously differentiable and bounded from below,
λ > 0 is the penalty parameter and ‖x‖0 is `0 norm of x, counting the number of
non-zero elements of x. Differing from the regularized optimization, another category
of sparsity involved problems that have been well studied is the so-called sparsity
constrained optimization:

(1.2) min
x∈Rn

f(x), s.t. ‖x‖0 ≤ s,

where s ≤ n is a given positive integer. Based on the two optimizations, large numbers
of state-of-the-art methods have been proposed in the last decade. In particular, many
of them are designed for a special application, compressed sensing (CS), where the
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2 S. ZHOU, L. PAN AND N. XIU

least squares are taken into account, namely

f(x) := fcs(x) ≡ ‖Ax− y‖2.(1.3)

Here, A ∈ Rm×n is the sensing matrix and y ∈ Rm is the measurement.

1.1. Selective Literature Review. Since the varieties of kinds of methods are
beyond our scope of reviewing, we only cite a small portion which should be enough
to clarify our motivations of this paper.

(a) Methods for (1.2) are known as greedy ones. For the case of CS, one can refer
to orthogonal matching [44, 50, OMP], gradient pursuit [12, GP], compressive sam-
ple matching pursuit [41, CoSaMP], subspace pursuit [20, SP], normalized iterative
hard-thresholding [14, NIHT], hard-thresholding pursuit [31, HTP] and accelerated
iterative hard-thresholding [11, AIHT]. Methods for the general model (1.2) include
the gradient support pursuit [2, GraSP], iterative hard-thresholding [4, IHT], New-
ton gradient pursuit [55, NTGP], conjugate gradient iterative hard-thresholding [10,
CGIHT], gradient hard-thresholding pursuit [54, GraHTP], improved iterate hard-
thresholding [43, IIHT] and Newton hard-thresholding pursuit [59, NHTP].

To derive the convergence results, most methods enjoy the theory that the dis-
tance between each iterate to any given reference (sparse) point is bounded by an
error through statistic analysis. By contrast, methods like IHT, IIHT and NHTP
have been proved to converge to a stationary point globally in the sense of the deter-
ministic way. Moreover, if Newton directions are interpolated into some methods, for
example, CoSaMP, SP, GraSP, NTGP and GraHTP, then their demonstrated empir-
ical performances are extraordinary in terms of super fast computational speed and
high order of accuracy, but without deterministic theoretical guarantees for a long
time. Until recently, authors in [59] first proved that their proposed NHTP has global
and quadratic convergence properties, which unravel the reason why these methods
behave exceptionally well.

(b) Methods for (1.1) aiming at addressing CS problem via the model (1.1)
include iterative hard-thresholding algorithm [13, IHT], continuous exact `0 penalty
[47, CEL0], two methods: continuation single best replacement and `0-regularization
path descent in [48, CSBR, L0BD], forward-backward splitting [1, FBS], extrapolated
proximal iterative hard-thresholding algorithm [3, EPIHT] and mixed integer opti-
mization method [6, MIO], to name just a few. While for the general problem (1.1),
one can see penalty decomposition [39, PD] where equality and inequality constraints
are also considered, iterative hard-thresholding [38, see] where the box and convex
cone are taken into account, proximal gradient method and coordinate-wise support
optimality method [5, PG, CowS] where sparse solutions are sought from a sym-
metric set, random proximal alternating minimization method [45, RPA], active set
Barzilar-Borwein [18, ABB] and a very recently smoothing proximal gradient method
[9, SPG]. Note that these methods can be regarded as the first order methods since
they only benefit from the first order information such as gradients or function values.
Then second order methods have attracted much attention lately, including primal
dual active set [33, PDAS], primal dual active set with continuation [34, PDASC] and
support detection and root finding [32, SDAR].

As for convergence results, either error bounds are achieved for methods such
as IHT, EPIHT, PDASC and SDAR, or a subsequence converges to a stationary
point (which is a local convergence property) for methods like PD, PG and ABB.
It is worth mentioning that authors in [1] prove that FBS converges to a critical
point globally and authors [9, SPG] also show the global convergence to a relaxation
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problem of (1.1). Apart from that, no better deterministic theoretical guarantees
(like quadratic convergence) have been established on algorithms for solving (1.1).
Therefore, a natural question is: can we develop an algorithm based on `0-regularized
optimization that enjoys the global and quadratic convergence?

1.2. Contributions. In order to answer the above question, we begin with in-
troducing a τ -stationary point, an optimality condition of (1.1), and then reveal its
relationship with local/global minimizers by Theorem 2.3. It is known that a τ -
stationary point is a necessary optimality condition by [5, Theorem 4.10]. However,
we show that it is also a sufficient condition under the assumption of strong convexity.

Following the idea of the τ -stationary point, we perform Newton step only on
chosen subspaces decided by the support sets. The proposed method is dubbed as
SNL0, an abbreviation for subspace Newton method for `0-regularized optimization
(1.1). Differing from methods PDAS or SDAR, where similar algorithmic schemes
are used, the Armijo line search is adopted to ensure sufficient descent for each step.
This successfully extends the classical convergence result of Newton’s method to `0-
regularization. Namely, the proposed method enjoys the global and quadratic conver-
gence properties under standard assumptions (see Theorem 3.9). As far as we know,
it is the first paper that establishes both for an algorithm aiming at solving (1.1).

Parameter tuning is always a tedious but crucial task for penalty problems with
(1.1) as a special case. We design a novel mechanism (see PSS in Algorithm 3.1)
interpolated into SNL0 to update the parameter λ adaptively, which enables the
method to identify the support set eventually. Numerical experiments demonstrate
that this mechanism is very effective.

Finally, extensive numerical experiments illustrate that SNL0 is very competitive
when benchmarked against other methods for solving problems such as compressed
sensing and sparse complementarity problems. In a nutshell, it is capable of generating
desirably sparse solutions by consuming significantly short time.

It is worth mentioning that to find the subspace, PDASC and SDAR also make use
of the idea of the τ -stationary point but always with τ = 1, while SNL0 benefits from
more choices of τ > 0. In addition, gradient direction is exploited as an alternative
of Newton direction if the latter does not guarantee sufficient decline of f in some
steps. However, PDASC and SDAR always take advantage of full Newton directions.
Comparing with the method NHTP in [59] for the model (1.2), where the sparsity
level s is required and decides the quality of its final solutions, SNL0 is able to find a
sparse solution only with a rough input instead of a rigorous sparsity level s.

1.3. Organization and Notation. The rest of the paper is organized as fol-
lows. Next section establishes the optimality conditions of (1.1) with the help of the
τ -stationary point whose relationship with the local/global minimizers of (1.1) by
Theorem 2.3 is also given. In Section 3, we design the subspace Newton method for
the `0-regularized optimization (SNL0). Particularly, a novel strategy (PSS in Algo-
rithm 3.1) is proposed to update the penalty parameter λ and the support set in each
step of the algorithm, followed by the main convergence results including the support
set identification, global and quadratic convergence properties under some standard
assumptions. Extensive numerical experiments are presented in Section 4, where the
implementation of SNL0 as well as its comparisons with some other excellent solvers
for solving problems, such as compressed sensing and sparse complementarity prob-
lems, are provided. Concluding remarks are made in the last section.

We end this section with some notation to be employed throughout the pa-
per. Let Nn := {1, 2, · · · , n}. Given a vector x, let |x| := (|x1, |x2|, · · · , |xn|)>,

This manuscript is for review purposes only.



4 S. ZHOU, L. PAN AND N. XIU

‖x‖ :=
√∑

i |xi|2 and ‖x‖1 :=
∑
i |xi| be its `2 and `1 norm, respectively. More-

over, denote ‖x‖[i] as the ith largest element |x|. For example, ‖x‖[2] = ‖x‖[3] = 2 if

x = (3, 2, 1,−2)>. The support set of x is supp(x) consisting of indices of its non-zero
elements. Given a set T ⊆ Nn, |T | and T are the cardinality and the complementary
set. The sub vector of x containing elements indexed on T is denoted by xT ∈ R|T |.
Now, for a matrix A ∈ Rm×n, let ‖A‖2 represent its spectral norm, i.e., its maximum
singular value. Write AT,J is the submatrix containing rows indexed on T and columns
indexed on J . In particular, denote A:J = ANm,J , AT : = AT,Nn

, the sub-gradient and
the sub-Hessians by

∇T f(x) := (∇f(x))T , ∇2
T,Jf(x) := (∇2f(x))T,J , ∇2

T f(x) := (∇2f(x))T,T .

Finally, dae stands for the smallest integer that is no less than a.

2. Optimality. Some necessary optimality conditions of (1.1) have been studied.
These include ones in [39, Theorem 2.1] and [5, Theorem 4.10]. Here, inspired by the
latter, we introduce a τ -stationary point (this is the same as the L-stationarity in [5]).

2.1. τ-stationary point. A vector x ∈ Rn is called a τ -stationary point of (1.1)
if there is a τ > 0 such that

x ∈ Proxτλ‖·‖0 (x− τ∇f(x)) := argmin
z∈Rn

1

2
‖z− (x− τ∇f(x))‖2 + τλ‖z‖0.(2.1)

It follows from [1] that the operator Proxτλ‖·‖0(z) takes a closed form as

[
Proxτλ‖·‖0 (z)

]
i

=


zi, |zi| >

√
2τλ,

{zi, 0}, |zi| =
√

2τλ,

0, |zi| <
√

2τλ.

(2.2)

This allows us to characterize a τ -stationary point by conditions below equivalently,
see [49, Theorem 24] and [13, Lemma 2].

Lemma 2.1. A point x is a τ -stationary point with τ > 0 of (1.1) if and only if{
∇if(x) = 0 and |xi| ≥

√
2τλ, i ∈ supp(x),

|∇if(x)| ≤
√

2λ/τ, i /∈ supp(x).
(2.3)

From Lemma 2.1, for any 0 < τ1 ≤ τ , a τ -stationary point x is also a τ1-stationary
point due to 2τλ ≥ 2τ1λ and 2λ/τ ≤ 2λ/τ1. Our next major result needs the strong
smoothness and convexity of f .

Definition 2.2. A function f is strongly smooth with a constant L > 0 if

(2.4) f(z) ≤ f(x) + 〈∇f(x), z− x〉+
L

2
‖z− x‖2, ∀ x, z ∈ Rn.

A function f is strongly convex with a constant ` > 0 if

(2.5) f(z) ≥ f(x) + 〈∇f(x), z− x〉+
`

2
‖z− x‖2, ∀ x, z ∈ Rn.

We say a function f is locally strongly convex with a constant ` > 0 around x if (2.5)
holds for any points z in the neighbourhood of x.

Something needs emphasize here is that when the function is locally strongly convex,
the constant ` depends on the point x. We drop the dependence for simplicity since
it would not cause confusion in the context. The strong convexity and smoothness
respectively indicate that, for any x, z ∈ Rn

`‖z− x‖ ≤ ‖∇f(z)−∇f(x)‖ ≤ L‖z− x‖.(2.6)

This manuscript is for review purposes only.



SUBSPACE NEWTON METHOD FOR `0-REGULARIZED OPTIMIZATION 5

2.2. First order optimality conditions. Our next major result is to establish
the relationships between a τ -stationary point and a local/global minimizer of (1.1).

Theorem 2.3. For problem (1.1), the following results hold.
1) (Necessity) A global minimizer x∗ is also a τ -stationary point for some

0 < τ < 1/L if f is strongly smooth with L > 0. Moreover,

(2.7) x∗ = Proxτλ‖·‖0 (x∗ − τ∇f(x∗)) .

2) (Sufficiency) A τ -stationary point x∗ is a local minimizer if f is convex. A
τ -stationary point x∗ with τ(>) ≥ 1/` is also a (unique) global minimizer if
f is strongly convex with ` > 0.

Proof. 1) Denote P := Proxτλ‖·‖0 (x∗ − τ∇f(x∗)) and µ := L − 1/τ < 0 due to
0 < τ < 1/L. Let x∗ be a global minimizer and consider any point z ∈ P. Then we
have the following chain of inequality

f(z) + λ‖z‖0
(a)

≤ f(x∗) + 〈∇f(x∗), z− x∗〉+
L

2
‖z− x∗‖2 + λ‖z‖0

= f(x∗) + 〈∇f(x∗), z− x∗〉+
1

2τ
‖z− x∗‖2 +

µ

2
‖z− x∗‖2 + λ‖z‖0

= f(x∗) +
1

2τ
‖z− (x∗ − τ∇f(x∗))‖2 − τ

2
‖∇f(x∗)‖2 + λ‖z‖0 +

µ

2
‖z− x∗‖2

(b)

≤ f(x∗) +
1

2τ
‖x∗ − (x∗ − τ∇f(x∗))‖2 + λ‖x∗‖0 −

τ

2
‖∇f(x∗)‖2 +

µ

2
‖z− x∗‖2

= f(x∗) + λ‖x∗‖0 +
µ

2
‖z− x∗‖2

(c)

≤ f(z) + λ‖z‖0 +
µ

2
‖z− x∗‖2,

where (a), (b) and (c) hold respectively from facts that f being strongly smooth,
z ∈ P and x∗ being the global minimizer of (1.1). This together with µ < 0 leads to
0 ≤ (µ/2)‖z− x∗‖2 < 0, which yields z = x∗. Therefore, x∗ is a τ -stationary point of
(1.1). Since z is arbitrary in P and z = x∗, P is a singleton only containing x∗.

2) Let x∗ be a τ -stationary point with τ > 0 with T∗ := supp(x∗) and ε :=
mini∈T∗ |x∗|. Consider a neighbour region of x∗ as

N(x∗) =

{
x ∈ Rn : ‖x− x∗‖1 <

{
min{ε,

√
0.5τλ}, x∗ 6= 0√

0.5τλ, x∗ = 0

}
.

For any point x ∈ N(x∗), we conclude T∗ ⊆ supp(x). In fact, this is true when x∗ = 0.
When x∗ 6= 0, if there is a j such that j ∈ T∗ but j /∈ supp(x), then we derive a
contradiction:

ε ≤ |x∗j | = |x∗j − xj | ≤ ‖x− x∗‖1 < min{ε,
√

0.5τλ} ≤ ε.

Therefore, we have T∗ ⊆ supp(x). The convexity of f suffices to

f(x) ≥ f(x∗) + 〈∇f(x∗), x− x∗〉
= f(x∗) + 〈∇T∗f(x∗), (x− x∗)T∗〉+ 〈∇T∗

f(x∗), (x− x∗)T∗
〉

(2.3)
= f(x∗) + 〈∇T∗

f(x∗), xT∗
〉 =: f(x∗) + φ.(2.8)
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If T∗ = supp(x), then we have φ = 0 due to xT∗
= 0 and ‖x∗‖0 = ‖x‖0. These allow

us to derive that

f(x) + λ‖x‖0
(2.8)

≥ f(x∗) + φ+ λ‖x‖0 = f(x∗) + λ‖x∗‖0.

If T∗ ⊆ (6=)supp(x), then ‖x‖0 − 1 ≥ ‖x∗‖0. In addition,

φ = 〈∇T∗
f(x∗), xT∗

〉
(2.3)

≥ −
√

2λ/τ
∑
i∈T∗

|xi| = −
√

2λ/τ
∑
i∈T∗

|xi − x∗i |

≥ −
√

2λ/τ‖x− x∗‖1 > −
√

2λ/τ
√

0.5τλ = −λ.

These facts enable us to derive that

f(x) + λ‖x‖0
(2.8)

≥ f(x∗) + φ+ λ‖x‖0 > f(x∗) + λ(‖x‖0 − 1) ≥ f(x∗) + λ‖x∗‖0.

Both cases show the local optimality of x∗ in the region N(x∗). Again, it follows from
x∗ being a τ -stationary point with τ > 0 that

1

2
‖x− (x∗ − τ∇f(x∗))‖2 + τλ‖x‖0 ≥

1

2
‖x∗ − (x∗ − τ∇f(x∗))‖2 + τλ‖x∗‖0,

for any x ∈ Rn, which suffices to

(2.9) 〈∇f(x∗), x− x∗〉+ λ‖x‖0 ≥ −
1

2τ
‖x− x∗‖2 + λ‖x∗‖0.

Since f is strongly convex, for any x 6= x∗, we have

f(x) + λ‖x‖0
(2.5)

≥ f(x∗) + 〈∇f(x∗), x− x∗〉+
`

2
‖x− x∗‖2 + λ‖x‖0

(2.9)

≥ f(x∗) +
`− 1/τ

2
‖x− x∗‖2 + λ‖x∗‖0 ≥ f(x∗) + λ‖x∗‖0,

where the last inequality is from τ ≥ 1/`. Clearly, if τ > 1/`, then the last inequality
holds strictly, which means x∗ is a unique global minimizer.

Let us consider an example to illustrate the above theorem.

Example 2.1. Let a = (t 1 1)>, λ > 8 and f be given by

(2.10) f(x) :=
1

2
(x− a)>

 2 0 0
0 3 1
0 1 3

 (x− a).

It is easy to verify that f is strongly smooth with L = 2 and also strongly convex with
` = 1. Consider a point x∗ = (t 0 0)> with t ≥ λ/2. We can conclude that x∗ is a global
minimizer of (1.1). In fact, ∇f(x∗) = (0 − 4 − 4)> and x∗ − τ∇f(x∗) = (t 4τ 4τ)>.
This and (2.3) show that x∗ is a τ -stationary point for some τ ∈ (1, λ/8] due to

∇1f(x∗) = 0 and |x1| = t ≥ λ/2 =
√

2λλ/8 ≥
√

2λτ,

|∇2f(x∗)| = |∇3f(x∗)| = 4 =
√

2× 8 ≤
√

2λ/τ.

Then it follows from Theorem 2.3 1) and τ > 1 = 1/` that x∗ is a unique global
minimizer of the problem (1.1). Moreover, Theorem 2.3 2) concludes that a global
minimizer (which is x∗) is also a τ1-stationary point with τ1 ∈ (0, 1/L) = (0, 1/2).
This is not conflicted with x∗ being a τ -stationary point with some τ ∈ (1, λ/8].
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2.3. Stationary Equation. To well express the solution of (2.1), define

T := Tτ (x, λ) :=
{
i ∈ Nn : |xi − τ∇if(x)| ≥

√
2τλ

}
.(2.11)

Based on above set, we introduce the following stationary equation

Fτ (x;T ) :=

[
∇T f(x)

xT

]
= 0.(2.12)

The relationship between (2.1) and (2.12) is revealed by the following theorem.

Theorem 2.4. For any x ∈ Rn, by letting z := x− τ∇f(x), we have

x = Proxτλ‖·‖0 (z) =⇒ Fτ (x;T ) = 0 =⇒ x ∈ Proxτλ‖·‖0 (z) .

Proof. If we have x = Proxτλ‖·‖0 (z), namely, Proxτλ‖·‖0 (z) is a singleton, then

there is no index i ∈ T such that |zi| =
√

2τλ by (2.2). This and (2.2) give rise to
(Proxτλ‖·‖0 (z))T = zT . As a consequence,

0 = x− Proxτλ‖·‖0(z)
(2.2)
=

[
xT
xT

]
−
[

zT
0

]
=

[
τ∇T f(x)

xT

]
,

which suffices to Fτ (x;T ) = 0. We now prove the second claim. For any i ∈ T , we
have ∇if(x) = 0 from (2.12) and thus |xi| ≥

√
2τλ from (2.11). For any i ∈ T , we

have xi = 0 from (2.12) and |τ∇if(x)| = |xi − τ∇if(x)| <
√

2τλ from (2.11). Those
together with Lemma 2.1 claim the conclusion immediately.

Above theorem states that a point satisfying the stationary equation is a stronger
condition than being a τ -stationary point. The advantage of this equation is that it
allows us to design an efficient Newton-type algorithm based on its simple form.

3. Subspace Newton Method. This section casts a Newton-type method to
solve the stationary equation (2.12). Hereafter, for notational simplicity, we denote

gk := ∇f(xk).

3.1. Algorithmic Design. If the current xk is computed, we need to find Tk
by (2.11). The first issue confronted us is how to guarantee a non-empty Tk. To do
that, we introduce the following scheme to update λ and set a proper Tk adaptively.
Given parameters ε > 0, c ≥ 1 and an integer K ≥ 1, let xk ∈ Rn, Tk−1 ⊆ Nn and
sk−1 ∈ Nn be computed for the current step. Then Tk is updated by

Tk = PSS(xk, Tk−1, sk−1),(3.1)

which is presented in Algorithm 3.1.
Note that the skth largest element of |xk−τgk|might be multiple, so the difference

between Tk from (3.4) and Tτ (xk, λk) from (2.11) is that |Tk| = sk ≤ |Tτ (xk, λk)|. We
choose to update Tk by (3.4) rather than by (2.11) since it is easier to control the
cardinality of Tk and consequently, easier to control the support set of the iterate in
each step. Moreover, setting Tk by (3.4) still preserves the property of (2.11), which
together with other several useful properties are given in the following lemma.

Lemma 3.1. If s−1 > 0, then for any k ≥ 0, Tk is non-empty and |Tk| = sk ≤
sk+1 = |Tk+1|. Furthermore,

|xki − τgki | ≥
√

2τλk ≥ |xkj − τgkj |, ∀ i ∈ Tk, ∀ j ∈ T k.(3.5)
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Algorithm 3.1 Penalty and subspace selection (PSS(xk, Tk−1, sk−1))

Tuning the sparsity level sk by

sk =

{
max {sk−1, dc|Tk−1|e} , if k/K = dk/Ke and ‖gkTk−1

‖ ≥ ε,
sk−1, otherwise.

(3.2)

Setting the penalty λk by

λk =
1

2τ
‖xk − τgk‖2[sk].(3.3)

Selecting the subspace Tk by

Tk = Γk ∪Υk, where(3.4)

Γk = {i ∈ Nn : |xki − τgki | >
√

2τλk},
Υk ⊆ {i ∈ Nn : |xki − τgki | =

√
2τλk}, with |Υk| = sk − |Γk|.

return T

The proof is quite straightforward by the fact 0 < s−1 ≤ s1 ≤ s2 ≤ · · · , so we
omit it here. One can discern that Tk actually coincides with the indices of a point
which is one of the solutions of the problem Πsk(zk) ∈ argmin‖z‖0≤sk‖z− zk‖, where

zk := xk− τgk. Here, Πs is also known as the Hard-Thresholding operator that keeps
s largest (in modulus) components of a vector and sets the other ones to zeros [31].
Now Tk is well defined. For the equation (2.12) with such fixed set Tk, the classical
Newton direction dk is a solution of the following equation:

(3.6) ∇Fτ (xk;Tk)d = −Fτ (xk;Tk).

The explicit formula of Fτ (xk;Tk) from (2.12) implies that dk satisfies

∇2
Tk
f(xk)dkTk

= ∇2
Tk,Tk

f(xk)xk
Tk
− gkTk

,(3.7)

dk
Tk

= −xk
Tk
.

Now let us take a look at the above formulas. The second part of dk can be derived
directly without any difficult computations. To find dk, one needs to solve a linear
equation with sk equations and sk variables since |Tk| = sk by Lemma 3.1. If a full
Newton direction is taken, then next iterate xk+1 = xk+dk = [(xkTk

+dkTk
)> 0]>. This

means the support set of the next iterate will be located within Tk. Based on this
idea, we modify the standard rule associated with Amijio line search xk+1 = xk +αdk

as xk+1 = xk(α), where

xk(α) :=

[
xkTk

+ αdkTk

xk
Tk

+ dk
Tk

]
=

[
xkTk

+ αdkTk

0

]
.(3.8)

In this way, the updated iterate is sparser than sk. We summarize the framework
of the algorithm in Algorithm 3.2 entitled with subspace Newton method for the
`0-regularized optimization, where some notation are defined by

Jk := Tk−1\Tk, Hk := ∇2
Tk
f(xk), Gk := ∇2

Tk,Jk
f(xk).(3.9)
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Algorithm 3.2 Subspace Newton method for the `0-regularized optimization (SNL0)

Initialize x0 and choose τ > 0, δ > 0, σ ∈ (0, 1/2), c ≥ 1,K ≥ 1, ε > 0, β ∈ (0, 1)
Set s−1 > 0, T−1 = ∅ and k ⇐ 0
while The halting conditions do not meet do

Step 1. Select Tk = PSS(xk, Tk−1, sk−1) in Algorithm 3.1
Step 2. If (3.7) is solvable and its solution dk satisfies

〈gkTk
,dkTk
〉 ≤ −δ‖dk‖2 + ‖xk

Tk
‖2/(4τ),(3.10)

then update dk by solving (3.7), namely by Newton direction,

HkdkTk
= GkxkJk − g

k
Tk
, dk

Tk
= −xk

Tk
.(3.11)

Otherwise, update dk by Gradient direction

dkTk
= −gkTk

, dk
Tk

= −xk
Tk
.(3.12)

Step 3. Find the smallest non-negative integer mk such that

f(xk(βmk)) ≤ f(xk) + σβmk〈gk,dk〉.(3.13)

Step 4. Set αk = βmk , xk+1 = xk(αk) and k ⇐ k + 1.
end while
return xk

From our proposed algorithm in Algorithm 3.2, we have the following facts:

supp(xk+1) ⊆ Tk,

−dk
Tk

= xk
Tk

=

[
xk
Tk−1∩Tk

0

]
=

[
xkTk−1\Tk

0

]
(3.9)
=

[
xkJk
0

]
,

∇2f(xk) =

[
∇2
Tk∪Jkf(xk) 0

0 0

]
, ∇2

Tk∪Jkf(xk) =

[
Hk Gk
G>k ∇2

Jk
f(xk)

]
.

(3.14)

We emphasize that Jk captures all nonzero elements in xk
Tk

. This and (3.14) also

allow us to explain that (3.7) is rewritten as (3.11). Therefore, we will see more Jk
instead of T k being used in convergence analysis.

Remark 3.2. With regard to the proposed algorithm, we have some comments.
i) The purpose of initializing s−1 > 0 is to guarantee a non-empty Tk in each

step and |Tk| = sk. To update xk+1
Tk

, one needs to solve a linear equation

(3.11) to derive dkTk
with sk equations and sk variables. The complexity of

solving this equation is at most O(|sk|3).
ii) As stated in [57], a general subspace approach requires

xk+1 − xk ∈ Sk,

where Sk is a subspace in Rn with the good feature that the dimension of Sk
being much less than n, which allows large scale computation possible [42, 23].
Let RnT := span{ei, i ∈ T} be a subspace of Rn spanned by ei, i ∈ T , where
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ei has i-th element one and zero elements for the rest. The updating rule
(3.8) leads to supp(xk+1) ⊆ Tk and thus yields xk+1− xk ∈ RnTk∪Tk−1

. This is
the reason why our method in Algorithm 3.2 is entitled as subspace Newton
method. We will show that when k is sufficiently large, Tk ∪ Tk−1 = Tk has
a small cardinality comparing with n.

Lemma 3.3. If dk is from (3.11), then we have

2〈gkTk
,dkTk
〉 + 〈dkTk

, HkdkTk
〉(3.15)

= −〈dkTk∪Jk ,∇
2
Tk∪Jkf(xk)dkTk∪Jk〉+ 〈dkJk ,∇

2
Jk
f(xk)dkJk〉.

Proof. If dk is from (3.11), then we have the following chain of equations,

〈dkTk∪Jk ,∇
2
Tk∪Jkf(xk)dkTk∪Jk〉

(3.14)
=

[
dkTk

dkJk

]> [
Hk Gk
G>k ∇2

Jk
f(xk)

] [
dkTk

dkJk

]
=

[
dkTk

dkJk

]> [
HkdkTk

+GkdkJk
G>k dkTk

+∇2
Jk
f(xk)dkJk

]
(3.14)

= 〈dkTk
, HkdkTk

−GkxkJk〉 − 〈x
k
Jk
, G>k dkTk

〉+ 〈dkJk ,∇
2
Jk
f(xk)dkJk〉

= 2〈dkTk
, HkdkTk

−GkxkJk〉 − 〈HkdkTk
,dkTk
〉+ 〈dkJk ,∇

2
Jk
f(xk)dkJk〉

(3.11)
= −2〈gkTk

,dkTk
〉 − 〈dkTk

, HkdkTk
〉+ 〈dkJk ,∇

2
Jk
f(xk)dkJk〉,

which conclude our claim immediately.

Lemma 3.3 indicates that if ∇2
Tk∪Jkf(xk) has a positive lower and upper bound, so is

Hk bounded from below and ∇2
Jk
f(xk) bounded from above, then (3.10) is satisfied

in each step under some properly chosen δ and τ . This allows the Newton direction
to be always imposed. Apparently, ∇2

Tk∪Jkf(xk) being bounded from below can be
guaranteed by some assumptions, such as the strong convexity of f , which, however,
is a strong assumption. To overcome this, the gradient direction compensates the case
when the condition (3.10) is violated.

3.2. Convergence Analysis. Before our main results, we would like to define
some parameters. Denote

α := min

{
1− 2σ

L/δ − σ
,

2(1− σ)δ

L
, 1

}
,

τ := min

{
2αδβ

L2
, αβ,

1

4L

}
, ρ := min

{
2δ − τL2

2
,

2− τ
2

}
.

Our first result shows that the direction in each step of SNL0 is a descent one with a
decent declining rate, no matter it is taken from the Newton or the gradient direction.

Lemma 3.4 (Descent property). Let f be strongly smooth with L > 0 and τ , ρ
be defined as (3.16). Then for any τ ∈ (0, τ), it holds ρ > 0 and

〈gk,dk〉 ≤ −ρ‖dk‖2 − τ

2
‖gkTk−1

‖2.(3.16)

Proof. It follows from (3.16) that αβ < 1 and hence τ ≤ min
{

2δ/L2, 2
}
, which

immediately shows ρ > 0 if τ ∈ (0, τ). In addition, if dk is updated by (3.11), then

‖gkTk
‖ (3.11)

= ‖HkdkTk
−GkxkJk‖

(3.14)
= ‖[Hk Gk]dkTk∪Jk‖

(3.14)

≤ L‖dk‖,(3.17)
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where the inequality holds because of ‖[Hk Gk]‖2 ≤ ‖∇2
Tk∪Jkf(xk)‖2 ≤ L due to

strong smoothness of f with the constant L. We now take two cases: Case i)
Sk := Tk \ Tk−1 = ∅ and Case ii) Sk 6= ∅ into consideration.

Case i) Sk = ∅. Lemma 3.1 1) that |Tk| ≥ |Tk−1| results in Tk = Tk−1. Conse-
quently, Jk = Tk−1 \ Tk = ∅ and dk

Tk
= −xk

Tk
= 0 from (3.14). If dk is updated by

(3.11), the following chain of inequalities holds

2〈gk,dk〉 = 2〈gkTk
,dkTk
〉 − 2〈gk

Tk
, xk
Tk
〉 = 2〈gkTk

,dkTk
〉

(3.10)

≤ −2δ‖dk‖2 + ‖xk
Tk
‖2/(2τ) = − 2δ‖dk‖2 + τ‖gkTk

‖2 − τ‖gkTk
‖2

(3.17)

≤ −[2δ − τL2]‖dk‖2 − τ‖gkTk
‖2

(3.16)

≤ −2ρ‖dk‖2 − τ‖gkTk−1
‖2,(3.18)

where the last inequality holds due to Tk = Tk−1. If dk is updated by (3.12), then it
follows from dkTk

= −gkTk
= −gkTk−1

that

2〈gk,dk〉 (3.18)= 2〈gkTk
,dkTk
〉 = − 2‖dkTk

‖2 = − (2− τ)‖dkTk
‖2 − τ‖dkTk

‖2

= −(2− τ)‖dk‖2 − τ‖gkTk−1
‖2

(3.16)

≤ −2ρ‖dk‖2 − τ‖gkTk−1
‖2.(3.19)

Case ii) Sk 6= ∅. For any i ∈ Sk = Tk \ Tk−1, we have xki = 0 because of supp(xk) ⊆
Tk−1 by (3.14). Then (3.5) in Lemma 3.1 gives rise to

∀i ∈ Sk, |τgki |2 = |xki − τgki |2 ≥ 2τλk ≥ |xkj − τgkj |2, ∀j ∈ Jk.(3.20)

Again |Tk| ≥ |Tk−1| drives that |Sk| = |Tk|− |Tk ∩Tk−1| ≥ |Tk−1|− |Tk ∩Tk−1| = |Jk|.
This suffices to

τ2
[
‖gkTk
‖2 − ‖gkTk∩Tk−1

‖2
]

= τ2‖gkSk
‖2

(3.20)

≥ |Sk|2τλk ≥ |Jk|2τλk =
∑
j∈Jk

2τλk
(3.20)

≥
∑
j∈Jk

|xkj − τgkj |2 = ‖xkJk − τg
k
Jk
‖2

= ‖xkJk‖
2 − 2τ〈xkJk , g

k
Jk
〉+ τ2‖gkJk‖

2 (3.14)
= ‖xk

Tk
‖2 − 2τ〈xkJk , g

k
Jk
〉+ τ2‖gkJk‖

2

= ‖xk
Tk
‖2 − 2τ〈xkJk , g

k
Jk
〉+ τ2

[
‖gkTk−1

‖2 − ‖gkTk∩Tk−1
‖2
]

and thus results in our first fact

−2〈xkJk , g
k
Jk
〉 ≤ τ‖gkTk

‖2 − τ‖gkTk−1
‖2 − ‖xk

Tk
‖2/τ(3.21)

(3.17)

≤ τL2‖dk‖2 − τ‖gkTk−1
‖2 − ‖xk

Tk
‖2/τ.(3.22)

Now we are ready to establish our claim. If dk is updated by (3.11), then

2〈gkTk
,dkTk
〉
(3.10)

≤ −2δ‖dk‖2 + ‖xk
Tk
‖2/(2τ).(3.23)

The direct calculation yields the following chain of inequalities,

2〈gk,dk〉 = 2〈gkTk
,dkTk
〉 − 2〈gk

Tk
, xk
Tk
〉 (3.14)= 2〈gkTk

,dkTk
〉 − 2〈gkJk , x

k
Jk
〉

(3.23),(3.22)

≤ −[2δ − τL2]‖dk‖2 − ‖xk
Tk
‖2/(2τ)− τ‖gkTk−1

‖2

(3.16)

≤ −2ρ‖dk‖2 − τ‖gkTk−1
‖2.
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If dk is updated by (3.12), then dkTk
= −gkTk

yields that

2〈gk,dk〉 = 2〈gkTk
,dkTk
〉 − 2〈gk

Tk
, xk
Tk
〉 = −2‖dkTk

‖2 − 2〈gkJk , x
k
Jk
〉

(3.21)

≤ −2‖dkTk
‖2 + τ‖gkTk

‖2 − ‖xk
Tk
‖2/τ − τ‖gkTk−1

‖2

(3.14)
= −(2− τ)‖dkTk

‖2 − ‖dk
Tk
‖2/τ − τ‖gkTk−1

‖2

≤ −(2− τ)(‖dkTk
‖2 + ‖dk

Tk
‖2)− τ‖gkTk−1

‖2
(3.16)

≤ −2ρ‖dk‖2 − τ‖gkTk−1
‖2,

where the second inequality is from −1/τ ≤ τ − 2 for any τ > 0.

Our next result shows that αk exists and is bound away from zero. This means the
step length to update next point is well defined and would not be too small, which is
expected to speed up the convergence.

Lemma 3.5 (Existence and boundedness of αk). Let f be strongly smooth with
L > 0 and α, τ be defined as (3.16). Then

f(xk(α)) ≤ f(xk) + σα〈gk,dk〉(3.24)

holds for any k ≥ 0 and any parameters

0 < α ≤ α, 0 < δ ≤ min{1, 2L}, 0 < τ ≤ min
{
αδ/L2, α, 1/(4L)

}
.

Moreover, for any τ ∈ (0, τ), we have infk≥0{αk} ≥ βα > 0.

Proof. If 0 < α ≤ α and 0 < δ ≤ min{1, 2L}, we have

α ≤ 2(1− σ)δ

L
, α ≤ 1− 2σ

L/δ − σ
and α ≤ 1− 2σ

L− σ
.

Since f is strongly smooth, we obtain that

2f(xk(α))− 2f(xk)− 2ασ〈gk,dk〉
(2.4)

≤ 2〈gk, xk(α)− xk〉+ L‖xk(α)− xk‖2 − 2ασ〈gk,dk〉
(3.8)
= α(1− σ)2〈gkTk

,dkTk
〉 − (1− ασ)2〈gk

Tk
, xk
Tk
〉+ L

[
α2‖dkTk

‖2 + ‖xk
Tk
‖2
]

(3.14)
= α(1− σ)2〈gkTk

,dkTk
〉 − (1− ασ)2〈gkJk , x

k
Jk
〉+ L

[
α2‖dkTk

‖2 + ‖xk
Tk
‖2
]

=: ψ.

To conclude the conclusion, one needs to show ψ ≤ 0. Similar to the proof of Lemma
(3.4), we consider two cases: Case i) Sk = Tk \ Tk−1 = ∅ and Case ii) Sk 6= ∅.

Case i) Sk = ∅. This case indicates Jk = ∅ from the proof of Lemma (3.4). If dk

is updated by (3.11), then we obtain

ψ = α(1− σ)2〈gkTk
,dkTk
〉+ Lα2‖dkTk

‖2
(3.10)

≤ −2α(1− σ)δ‖dk‖2 + Lα2‖dkTk
‖2, if dk is from (3.11)

(3.12)
= −2α(1− σ)‖dkTk

‖2 + Lα2‖dkTk
‖2, if dk is from (3.12)

≤ −2α(1− σ)δ‖dk‖2 + Lα2‖dk‖2 = α[Lα− 2(1− σ)δ]‖dk‖2,(3.25)

where the third inequality is due to −1 ≤ −δ, ‖dk‖2 = ‖dkTk
‖2. This suffices to ψ ≤ 0

since α ≤ 2(1− σ)δ/L.
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Case ii) Sk 6= ∅. If dk is from (3.11), then we have

ψ
(3.23),(3.22)

≤ α(1− σ)[−2δ‖dk‖2 +
1

2τ
‖xk
Tk
‖2] + Lα2‖dkTk

‖2

+ (1− ασ)[τL2‖dk‖2 − τ‖gkTk−1
‖2 − 1

τ
‖xk
Tk
‖2] + L‖xk

Tk
‖2

≤ c1‖dk‖2 + c2‖xkTk
‖2 − (1− ασ)τ‖gkTk−1

‖2 ≤ c1‖dk‖2 + c2‖xkTk
‖2,

where 1− ασ > 0 due to 0 < α < 1, 0 < σ ≤ 1/2 and c1 and c2 are given by

c1 := −α(1− σ)2δ + (1− ασ)τL2 + Lα2,

≤ −α(1− σ)2δ + (1− ασ)δα+ Lα2 because of α ≤ 1, σ ≤ 1

2
, τ ≤ αδ

L2

= α [(L− σδ)α− (1− 2σ)δ] ≤ 0, because of σδ ≤ L,α ≤ 1− 2σ

L/δ − σ
c2 := α(1− σ)/(2τ)− (1− ασ)/τ + L

≤ (1− ασ)/(2τ)− (1− ασ)/τ + L because of α ≤ 1

≤ −(1− ασ)/(2τ) + L ≤ 0. because of α ≤ 1, σ ≤ 1

2
, τ ≤ 1

4L

If dk is updated by (3.12), namely dkTk
= −gkTk

, then

ψ
(3.12),(3.21)

≤ −2α(1− σ)‖dkTk
‖2 + Lα2‖dkTk

‖2

+ (1− ασ)[τ‖gkTk
‖2 − τ‖gkTk−1

‖2 − 1

τ
‖xk
Tk
‖2] + L‖xk

Tk
‖2

(3.12)

≤ c3‖dkTk
‖2 + c4‖xkTk

‖2 − (1− ασ)τ‖gkTk−1
‖2 ≤ c3‖dkTk

‖2 + c4‖xkTk
‖2,

where c3 and c4 are given by

c3 := −2α(1− σ) + (1− ασ)τ + Lα2

≤ α [(L− σ)α− (1− 2σ)] ≤ 0 because of α ≤ 1, σ ≤ 1

2
, τ ≤ α, α ≤ 1− 2σ

L− σ
c4 := −(1− ασ)/τ + L

≤ −1/(2τ) + L ≤ 0, because of α ≤ 1, σ ≤ 1

2
, τ ≤ 1

4L

which finishes the proof of the first claim. If further τ ∈ (0, τ) where τ is defined as
(3.16), then for any βα ≤ α ≤ α, we have

0 < τ < min
{
αδβ/L2, αβ, 1/(4L)

}
≤ min

{
αδ/L2, α, 1/(4L)

}
.

This together with (3.24) shows

f(xk(α))− f(xk) ≤ σα〈gk,dk〉.(3.26)

Finally, the Armijo-type step size rule means that {αk} is bounded from below by a
positive constant, that is,

(3.27) inf
k≥0
{αk} ≥ βα > 0.

The whole proof is completed.
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Remark 3.6. Regarding to the proof of above lemma, we can easily see that if
for some iterations k such that Jk = ∅, namely Tk = Tk−1, then (3.25) shows that if
0 < α ≤ 2(1− σ)δ/L, then (3.24) holds. This means there is no restriction on τ > 0
by an upper bound τ which is related to δ.

Lemma 3.5 allows us to conclude that the objective f is strictly decreasing for each
step, and the difference of two consecutive iterates and the entries of the stationary
equation will vanish.

Lemma 3.7. Let f be strongly smooth with L > 0 and τ be defined as (3.16). Let
{xk} be the sequence generated by SNL0 with τ ∈ (0, τ) and δ ∈ (0,min{1, 2L}). Then
{f(xk)} is a strictly nonincreasing sequence and

lim
k→∞

max
{
‖Fτ (xk;Tk)‖, ‖xk+1 − xk‖, ‖gkTk−1

‖, ‖gkTk
‖
}

= 0.

Proof. By (3.26), (3.16) and denoting c0 := σαβρ, we have

f(xk+1)− f(xk) ≤ σαk〈gk,dk〉
(3.16)

≤ −σαkρ‖dk‖2 −
τ

2
‖gkTk−1

‖2

(3.27)

≤ −c0‖dk‖2 −
τ

2
‖gkTk−1

‖2.

Then it follows from the above inequality that

∞∑
k=0

[
c0‖dk‖2 +

τ

2
‖gkTk−1

‖2
]
≤
∞∑
k=0

[
f(xk)− f(xk+1)

]
= f(x0)− lim

k→+∞
f(xk) < +∞,

where the last inequality is due to f being bounded from below. Hence limk→∞‖dk‖ =
limk→∞‖gkTk−1

‖ = 0, which suffices to limk→∞ ‖xk+1 − xk‖ = 0 because of

‖xk+1 − xk‖2 (3.8)
= α2

k‖dkTk
‖2 + ‖xk

Tk
‖2 ≤ ‖dkTk

‖2 + ‖dk
Tk
‖2 = ‖dk‖2.

In addition, if dk is taken from (3.11), then ‖gkTk
‖ ≤ L‖dk‖ by (3.17). If it is taken

from (3.12) then ‖gkTk
‖ = ‖dkTk

‖. Those together with (2.12) that ‖Fτ (xk;Tk)‖2 =

‖gkTk
‖2 + ‖xk

Tk
‖2 ≤ (L2 + 1)‖dk‖2 → 0. The whole proof is completed.

We are ready to conclude from Lemma 3.7 that the support set of {xk} can be iden-
tified within finite steps and the sequence converges to a τ -stationary point or a local
minimizer globally, which are presented by the following theorem.

Theorem 3.8 (Convergence and support sets identification). Let f be strongly
smooth with L > 0 and τ be defined as (3.16). Let {xk} be the sequence generated by
SNL0 with τ ∈ (0, τ) and δ ∈ (0,min{1, 2L}). Then the following results hold.

1) The whole sequence {sk} converges (to s∗).
2) Any accumulating point (say x∗) of the sequence {xk} is a τ -stationary point

of the following problem with λ∗ := ‖x∗‖2[s∗]/(2τ),

(3.28) min
x

f(x) + λ∗‖x‖0.

Furthermore, x∗ is a local minimizer of the above model if f is convex.
3) If x∗ is isolated, then the whole sequence converges to x∗. Moreover, for any

sufficiently large k,
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a) if ‖x∗‖0 = s∗, then ∇supp(x∗)f(x∗) = 0 and supp(xk) ≡ Tk ≡ supp(x∗).

b) if ‖x∗‖0 < s∗, then ∇f(x∗) = 0 and supp(x∗) ⊆ (supp(xk) ∩ Tk).

Proof. 1) We already proved in Lemma 3.7 that

limk→∞g
k
Tk−1

= limk→∞g
k
Tk

= limk→∞g
k+1
Tk

= 0.(3.29)

This yields ‖gkTk−1
‖ < ε for sufficiently large k, and thus sk = sk−1 from (3.2). Namely,

{sk} converges to s∗, which and Lemma 3.1 indicate that, for sufficiently large k,

|Tk| = sk = sk+1 = |Tk+1| = · · · = s∗.(3.30)

2) Lemma 3.1 states that Tk is non-empty and

|xki − τgki | ≥
√

2τλk ≥ |xkj − τgkj |, ∀ i ∈ Tk,∀ j ∈ T k,(3.31)

Let {xkt} be the convergent subsequence of {xk} that converges to x∗. Since {Tkt} ⊆
Nn and Nn has finite elements, it must have a subsequence {Tkt}kt∈I , where I ⊆
{k1, k2, · · · } satisfying that Tkt ≡ T∞,∀kt ∈ I for sufficiently large kt. Then we
consider the subsequence {xkt}kt∈I . Therefore, for notational convenience, without
loss of any generality, we focus on {xkt} itself and assume

Tkt ≡ Tkt+1 ≡ · · · ≡: T∗ with s∗
(3.30)

= |T∗|(3.32)

for sufficiently large kt. Since xkt → x∗ and ‖xk+1 − xk‖ → 0 from Lemma 3.7, we
have xkt+1 → x∗ and thus supp(x∗) ⊆ supp(xkt+1) (see the proof of [59, Theorem 8]).
Then it follows from supp(xkt+1) ⊆ Tkt ≡ T∗ by (3.14) that

(3.33) supp(x∗) ⊆ supp(xkt+1) ⊆ T∗,

which indicates

∇T∗f(x∗)
(3.32)

= ∇Tkt
f(x∗) = lim

kt→∞
∇Tkt

f(xkt) = lim
kt→∞

gktTkt

(3.29)
= 0.(3.34)

In addition,

lim
kt→∞

λkt
(3.3)
= lim

kt→∞

1

2τ
‖xkt − τgkt‖2[skt ]

(3.4)
= lim

kt→∞

1

2τ
‖xktTkt

− τgktTkt
‖2[skt ]

(3.29)
=

1

2τ
‖x∗T∗
‖2[s∗]

(3.33)
=

1

2τ
‖x∗‖2[s∗] = λ∗.(3.35)

Now for any i ∈ Tkt
(3.32)

= T∗, j ∈ T kt
(3.32)

= T ∗, we have

|x∗i |
(3.34)

= |x∗i − τ∇if(x∗)| = lim
kt→∞

|xkti − τg
kt
i |

(3.31)

≥ lim
kt→∞

√
2τλkt

(3.35)
=
√

2τλ∗

(3.31)

≥ lim
kt→∞

|xktj − τg
kt
j | = |x

∗
j − τ∇jf(x∗)| (3.33)= τ |∇jf(x∗)|,

which leads to

|x∗i | ≥
√

2τλ∗ and |∇jf(x∗)| ≤
√

2λ∗/τ .(3.36)
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If ‖x∗‖0 = s∗, then we must have supp(x∗) = T∗ from (3.33) and (3.32). This together
with (3.36), (3.34) that∇T∗f(x∗) = 0 and Lemma (2.1) show x∗ is a τ -stationary point
of the problem (3.28). If ‖x∗‖0 < s∗, then λ∗ = 1

2τ ‖x
∗‖2[s∗] = 0 from (3.35) and hence

∇jf(x∗) = 0,∀j ∈ T ∗. Recall (3.34) that ∇T∗f(x∗) = 0, giving ∇f(x∗) = 0 and thus
showing (2.3), a τ -stationary point. Finally, a τ -stationary point is a local minimizer
if f is convex by Theorem 2.3.

3) The whole sequence converges because of x∗ being isolated, [40, Lemma 4.10]
and ‖xk+1−xk‖ → 0 from Lemma 3.7. Since xk → x∗, we must have T∗ := supp(x∗) ⊆
supp(xk) ⊆ Tk−1(see the proof of [59, Theorem 8]). If ‖x∗‖0 = s∗, then

s∗ = |T∗| ≤ |supp(xk)| ≤ |Tk−1|
(3.30)

= s∗,

which yields |supp(xk)| = s∗. Therefore we have supp(xk) = Tk−1 = T∗ by T∗ ⊆
supp(xk) ⊆ Tk−1. Similar reasons allow us to show supp(xk+1) = Tk = T∗. Overall,
supp(xk) = Tk = T∗. If ‖x∗‖0 < s∗, then T∗ ⊆ supp(xk+1) ⊆ Tk. This together with
T∗ ⊆ supp(xk) brings out T∗ ⊆ (supp(xk) ∩ Tk). The whole proof is finished.

Finally, we would like to see how fast our proposed method SNL0 converges. To
proceed that, we need the locally Lipschitz continuity. We say the Hessian of f is
locally Lipschitz continuous around x with constant M > 0 if for any points z in the
neighbourhood of x, it has

‖∇2f(z)−∇2f(x)‖2 ≤M‖z− x‖.

In addition, we also need that f is locally strongly convex with a constant ` > 0
around x. As we mentioned before, the constants M and ` depend on the point x.
Now we are able to establish the following results.

Theorem 3.9 (Global and quadratic convergence). Let {xk} be the sequence
generated by SNL0 and x∗ be one of its accumulating points. Suppose f is strongly
smooth with constant L > 0 and locally strongly convex with ` > 0 around x∗. Choose
τ ∈ (0, τ) and δ ∈ (0,min{1, `}). Then the following results hold.

1) The whole sequence converges to x∗, namely, x∗ is the limit point.
2) The Newton direction is always accepted for sufficiently large k.
3) Furthermore, if the Hessian of f is locally Lipschitz continuous around x∗

with constant M > 0. Then for sufficiently large k,

‖xk+1 − x∗‖ ≤M/(2`)‖xk − x∗‖2,(3.37)

‖Fτ (xk+1;Tk+1)‖ ≤ M
√
L2 + 1

min{`3, `}
‖Fτ (xk;Tk)‖2.(3.38)

Proof. 1) Denote T∗ := supp(x∗). Theorem 3.8 shows that sk → s∗, ∇T∗f(x∗) = 0
if ‖x∗‖0 = s∗ and ∇f(x∗) = 0 if ‖x∗‖0 < s∗. Consider a local region N(x∗) := {x ∈
Rn : supp(x) ⊆ T∗} if ‖x∗‖0 = s∗ and N(x∗) = Rn if ‖x∗‖0 < s∗. Then these facts
together with f being locally strongly convex with ` > 0 around x∗ derive that, for
any x( 6= x∗) ∈ N(x∗),

f(x)− f(x∗) ≥ 〈∇f(x∗), x− x∗〉+ (`/2)‖x− x∗‖2

> 〈∇T∗f(x∗), (x− x∗)T∗〉+ 〈∇T∗
f(x∗), (x− x∗)T∗

〉

= 〈∇T∗
f(x∗), xT∗

〉 =

{
〈∇T∗

f(x∗), 0〉, ‖x∗‖0 = s∗
〈0, xT∗

〉, ‖x∗‖0 < s∗.
= 0.
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This means x∗ is a strictly local minimizer of (3.28) and also shows x∗ is isolated.
Therefore, the whole sequence tends to x∗ by Theorem 3.8 2).

2) We first verify Hk is nonsingular when k is sufficiently large and

〈gkTk
,dkTk
〉 ≤ −δ‖dk‖2 + ‖xk

Tk
‖2/(4τ).

Let In be the identity matrix with order n. Since f is strongly smooth with L and
locally strongly convex with ` in a neighbourhood of x∗, we have

` ≤ λi(∇2
Tk∪Jkf(xk)), λi(Hk), λi(∇2

Jk
f(xk)) ≤ L,(3.39)

where λi(A) is the ith largest eigenvalue of A. Now by (3.15), we have

2〈gkTk
,dkTk
〉 = −〈dkTk∪Jk ,∇

2
Tk∪Jkf(xk)dkTk∪Jk〉

−〈HkdkTk
,dkTk
〉+ 〈dkJk ,∇

2
Jk
f(xk)dkJk〉

(3.39)

≤ −`
[
‖dkTk∪Jk‖

2 + ‖dkTk
‖2
]

+ L‖xk
Tk
‖2

= −`
[
‖dkTk∪Jk‖

2 + ‖dkTk
‖2 + ‖dkJk‖

2 − ‖dkJk‖
2
]

+ L‖xk
Tk
‖2

= −2`‖dkTk∪Jk‖
2 + `‖dkJk‖

2 + L‖xk
Tk
‖2 (3.14)

= −2`‖dk‖2 + (`+ L)‖xk
Tk
‖2

≤ −2`‖dk‖2 + 2L‖xk
Tk
‖2 ≤ −2δ‖dk‖2 + ‖xk

Tk
‖2/(2τ),

where the last inequality is owing to δ ≤ ` and τ < τ ≤ 1/(4L). This proves that dk

from (3.11) is always admitted for sufficiently large k.
3) By Theorem 3.8 3), for sufficiently large k, supp(x∗) ⊆ Tk and ∇Tk

f(x∗) =
∇T∗f(x∗) = 0 if ‖x∗‖0 = s∗ and ∇f(x∗) = 0 if ‖x∗‖0 < s∗. These suffice to

x∗
Tk

= 0, ∇Tk
f(x∗) = 0.(3.40)

For any 0 ≤ t ≤ 1, by letting x(t) := x∗ + t(xk − x∗). the Hessian of f being locally
Lipschitz continuous at x∗ derives

‖∇2
Tk:
f(xk)−∇2

Tk:
f(x(t))‖2 ≤M‖xk − x(t)‖ = (1− t)M‖xk − x∗‖.(3.41)

Moreover, by Taylor expansion, one has

∇f(xk)−∇f(x∗) =

∫ 1

0

∇2f(x(t))(xk − x∗)dt.(3.42)

Now, we have the following chain of inequalities

‖xk+1 − x∗‖2 = ‖xk+1
Tk
− x∗Tk

‖2 + ‖xk+1

Tk
− x∗

Tk
‖2

(3.8,3.40)
= ‖xk+1

Tk
− x∗Tk

‖2 (3.8)
= ‖xkTk

− x∗Tk
+ αkdkTk

‖2

= ‖(1− αk)(xkTk
− x∗Tk

) + αk(xkTk
− x∗Tk

+ dkTk
)‖2

≤ (1− αk)‖xkTk
− x∗Tk

‖2 + αk‖xkTk
− x∗Tk

+ dkTk
‖2(3.43)

(3.27)

≤ (1− αβ)‖xk − x∗‖2 + α‖xkTk
− x∗Tk

+ dkTk
‖2,(3.44)

where (3.43) is due to ‖ · ‖2 is a convex function. From 2), dk is always updated by
(3.11) for sufficiently large k. Therefore, we have

`‖xkTk
− x∗Tk

+ dkTk
‖ (3.7)

= `‖H−1k (∇2
TkTk

f(xk)xk
Tk
− gkTk

) + xkTk
− x∗Tk

‖
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18 S. ZHOU, L. PAN AND N. XIU

≤ ‖∇2
Tk:
f(xk)xk − gkTk

−Hkx∗Tk
‖

(3.40)
= ‖∇2

Tk:
f(xk)xk − gkTk

−∇2
Tk:
f(xk)x∗ +∇Tk

f(x∗)‖
(3.42)

= ‖∇2
Tk:
f(xk)(xk − x∗)−

∫ 1

0

∇2
Tk:
f(x(t))(xk − x)dt‖

= ‖
∫ 1

0

[∇2
Tk:
f(xk)−∇2

Tk:
f(x(t))](xk − x∗)dt‖

≤
∫ 1

0

‖∇2
Tk:
f(xk)−∇2

Tk:
f(x(t))‖2‖xk − x∗‖dt

(3.41)

≤ M‖xk − x∗‖2
∫ 1

0

(1− t)dt ≤ 0.5M‖xk − x∗‖2.(3.45)

In addition, it follows from dk
Tk

= −xk
Tk

and (3.40) that ‖xk + dk − x∗‖ = ‖xkTk
+

dkTk
− x∗Tk

‖ and thus

‖xk + dk − x∗‖
‖xk − x∗‖

=
‖xkTk

+ dkTk
− x∗Tk

‖
‖xk − x∗‖

(3.45)

≤ (0.5M/`)‖xk − x∗‖2

‖xk − x∗‖
→ 0.(3.46)

Now we have three facts: (3.46), xk → x∗ from 1), and 〈∇f(xk),dk〉 ≤ −ρ‖dk‖2 from
Lemma 3.4, which together with [27, Theorem 3.3] allow us to claim that eventually
the step size αk determined by the Armijo rule is 1, namely αk = 1. Then it follows
from (3.43) that

‖xk+1 − x∗‖2
(3.43)

≤ (1− αk)‖xkTk
− x∗Tk

‖2 + αk‖xkTk
− x∗Tk

+ dkTk
‖2

= ‖xkTk
− x∗Tk

+ dkTk
‖2

(3.45)

≤ (0.5M/`)2‖xk − x∗‖4.(3.47)

Namely, the sequence converges quadratically. Finally, for sufficiently large k,

‖Fτ (xk+1;Tk+1)‖2 (2.12)
= ‖gk+1

Tk+1
‖2 + ‖xk+1

Tk+1
‖2

(3.40)
= ‖gk+1

Tk+1
−∇Tk+1

f(x∗)‖2 + ‖xk+1

Tk+1
− x∗

Tk+1
‖2

(2.6)

≤ (L2 + 1)‖xk+1 − x∗‖2
(3.47)

≤ (L2 + 1)(0.5M/`)2‖xk − x∗‖4.(3.48)

Since f is strongly convex in a neighbour of x∗, then f(x) is also strongly convex in
a neighborhood of xk due to xk being in neighborhood of x∗ for sufficiently large k.
Because of this, we have ∇2

Tk
f(x∗) � `I, which yields

σmin(∇Fτ (x∗;Tk)) = σmin

([ ∇2
Tk
f(x∗) ∇2

Tk,T c
k
f(x∗)

0 I

])
� min{`, 1}.

where σmin(A) in the minimum singular value of A. Now we have the following Taylor
expansion for a fixed Tk,

‖Fτ (xk;Tk)‖ ≥ ‖Fτ (x∗;Tk) +∇Fτ (x∗;Tk)(xk − x∗)‖ − o(‖xk − x∗‖)
= ‖∇Fτ (x∗;Tk)(xk − x∗)‖ − o(‖xk − x∗‖),
≥ (1/

√
2)‖∇Fτ (x∗;Tk)(xk − x∗)‖ ≥ (min{`, 1}/

√
2)‖xk − x∗‖,
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where the first equation holds due to Fη(x∗;Tk) = 0 by (3.40). Finally,

‖Fτ (xk;Tk)‖2 ≥ min{`2, 1}
2

‖xk − x∗‖2
(3.48)

≥ min{`3, `}
M
√
L2 + 1

‖Fτ (xk+1;Tk+1)‖,

which completes the whole proof.

4. Numerical Experiments. In this part, we will conduct extensive numerical
experiments of our algorithm SNL0 by using MATLAB (R2019a) on a laptop of 32GB
memory and Inter(R) Core(TM) i9-9880H 2.3Ghz CPU.

4.1. Implementation of SNL0. We initialize SNL0 with x0 = 0. Parame-
ters are set as σ = 5 × 10−5 and β = 0.5, c = 1.05, ε = 10−5 and K = 50. As
for s−1, an upper bound can be taken as O(n/ln(n)) suggested by [29] in Com-
pressed sensing problems. Following this idea, we set s−1 = drn/ln(n)e with r =
max{0.05, |logn(‖∇f(0)‖)|} for all experiments if there is no extra explanations.

4.1.1. Tuning δ and τ . Note that conditions in Theorem 3.8 and Theorem 3.9
are sufficient but not necessary. Therefore, there is no need to set parameters strictly
meeting them in practice. More precisely, Theorem 3.9 states any positive δ ∈
(0,min{1, `}) is acceptable, but in practice to guarantee more steps with Newton
directions, it is suggested to be relatively small [21, 28]. While Theorem 3.8 requires
0 < τ < τ ≤ 2αδβ/L2 from (3.16), which means τ should be small enough if δ is
chosen to be small. However, Tk would not vary too much in Step 1 if a sufficiently
small τ is set at the beginning. This potentially causes SNL0 to fall in a local area all
the time, which clearly degrades the performance of the algorithm. Therefore, we set

δ := δk =

{
10−10, if Tk = Tk−1,
10−4, if Tk 6= Tk−1.

This can be explained by Remark 3.6. If Tk = Tk−1, there is no restriction on τ by δ,
which means τ is not necessary to be sufficiently small. Otherwise, δk = 10−4 would
not result in a small τ , which benefits for finding the support set Tk.

In spite of that Theorem 3.8 has given us a clue to set 0 < τ < τ , it is still difficult
to fix a proper one since L is not easy to compute in general. Overall, we choose to
update τ adaptively. Typically, we use the following rule: starting τ with a fixed
scalar τ0 (e.g., 5 if no extra explanations are given) and then update it as,

τk+1 =

 τk/1.05, if k/10 = dk/10e and ‖Fτk(xk;Tk)‖ > k−2,
τk1.25, if k/10 = dk/10e and ‖Fτk(xk;Tk)‖ ≤ k−2,
τk, otherwise.

4.1.2. Halting conditions. We terminate SNL0 at kth step if it meets one of
following conditions: 1) k reaches the maximum number (e.g., 2000) of iterations or
2) Tolτk(xk; Tk) ≤ 10−6, where

(4.1) Tolτk(xk; Tk) := ‖Fτk(xk;Tk)‖+ max
i∈Tk

{|∇if(xk)| − ‖xk‖[s]/τk, 0}.

In fact, if a point xk satisfies that Tolτk(xk; Tk) = 0, then both terms on the right-hand
side of (4.1) are zeros, which imply that ∇Tk

fr(x
k) = 0, xkT c

k
= 0 and |∇if(xk)| ≤

‖xk‖[s]/τk. Hence supp(xk) ⊆ Tk. If ‖xk‖0 = sk, then ∇Tk
fr(x

k) = 0, |xki | ≥√
2λkτk, i ∈ Tk and |∇if(xk)| ≤

√
2λk/τk, i ∈ T k with λk = ‖xk‖2[s]/(2τk). If ‖xk‖0 <

sk, ∇fr(xk) = 0. Namely, xk is kind of a stationary point.
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4.2. Compressed sensing. CS has seen revolutionary advances both in theory
and algorithm over the past decade. Ground-breaking papers that pioneered the
advances are [24, 15, 16]. We will focus on two types of data: the randomly generated
data and the 2-dimensional image data. For the first data, we consider the exact
recovery y = Ax, where the sensing matrix A chosen as in [53, 60]. While for the
image data, we consider the inexact recovery y = Ax + ξ, where ξ is the noise and A
will be described in Example 4.2.

Example 4.1 (Random data). Let A ∈ Rm×n be a random Gaussian matrix
with each column Aj , j ∈ Nn being identically and independently generated from the
standard normal distribution. We then normalize each column such that ‖Aj‖ =
1. Finally, the ‘ground truth’ signal x∗ and the measurement y are produced by the
following pseudo Matlab codes:

x∗ = zeros(n, 1), Γ = randperm(n),(4.2)

x∗(Γ(1 : s∗)) = randn(s∗, 1), y = Ax∗.

where s∗ is the sparsity level of the signal x∗. Let x be the solution produced by a
method. We say the recovery of this method is successful if

‖x− x∗‖ < 0.01‖x∗‖.

Example 4.2 (2-D image data). Some images are naturally not sparse them-
selves but could be sparse under some wavelet transforms. Here, we take advantage
of the Daubechies wavelet 1, denoted as W (·). Then images under this transform
(i.e., x∗ := W (ω)) is sparse, ω be the vectorized intensity of an input image. Be-
cause of this, the explicit form of the sampling matrix may not be available. We
consider a sampling matrix taking the form A = FW−1, where F is the partial fast
Fourier transform (FFT) and W−1 is the inverse of W . Finally, the added noise ξ
has each element ξi ∼ nf · N with N being the standard normal distribution and nf

being the noise factor. Three typical choices of nf are taken into account, namely
nf ∈ {0.01, 0.05, 0.1}. For this experiment, we compute two images.
Img1: A gray image (see the original image in Figure 4) with size 512 × 512 (i.e.

n = 5122 = 262144). The sampling size is m = 20033 and 29729.
Img2: A color image (see the original image in Figure 5) with size 256 × 256 × 3

(i.e. n = 2562 = 65536). The sampling size is m = 3767 and 6213.

4.2.1. Effectiveness of PSS. First of all, we would like to see the effectiveness
of PSS in Algorithm 3.1. We compute two instances from Example 4.1 with n =
100,m = 25. One has the solution being 6-sparse and another is 8-sparse. As shown
in Figure 1, where points on lines are correct indices, SNL0 is able to identify the true
support within a few iterations. Actually, as long as the true support set is found, it
stops very quickly, usually with a couple of steps (2 steps for both instances). Note
that, for example in Fig 1a, at step 1, index 11 is a false one since 11 does not belong
to the true support set {18, 35, 67, 70, 81, 96}. This means SNL0 is able to correct Tk.

4.2.2. Comparisons for random data. Since a large number of state-of-the-
art methods have been proposed to solve the CS problems, it is far beyond of our scope
to compare all of them. To make comparisons fair, we only focus on those algorithms
(often referred as regularized methods) which aim at solving (1.1) or its relaxations,
where `0 norm is replaced by some approximations such as `q(0 < q ≤ 1) [35] or `1−`2
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Fig. 1: Tk at kth iteration for Example 4.1 with n = 100,m = 25.

[37]. Note that greedy methods mentioned in Subsection 1.1, for the model (1.2) with
s being given, have been famous for the super fast computational speed and the high
order of accuracy when s is relatively small to n. However, we will not compare them
with SNL0 since we would like to consider the scenario when s is unknown. We select
MIRL1 [60], AWL1 [37, ADMM for weighted `1−2] which is a faster approximation of
the method proposed in [53], IRSLQ [35] (we choose q = 1/2) and PDASC [34]. All
parameters are set as default except for setting the maximum iteration number as 100
and removing the final refinement step for MRIL1 and del=1e-8 for PDASC. Note
that PDASC and SNL0 are the second order methods and the other three belong to
the category of the first order methods.

We begin with running 500 independent trials with fixind n = 256,m = dn/4e and
then report the corresponding success rates (which is defined by the percentage of the
number of successful recoveries over all trails) at sparsity levels s∗ from 10 to 36. From
Figure 2a, one can observe that MIRL1, SNL0 and IRSLQ basically generate similar
results for each sparsity level, but all outperform AWL12 and PDASC. Moreover, all
lines decline along with the rising of s∗, which indicates that the CS problems become
more difficult to get recovered successfully. Our next experiment is to see how sample
size m affects the performance of those methods. We run 500 independent trials
with fixing n = 256, s = 13 but varying m = drne where r ∈ {0.1, 0.12, · · · , 0.3}.
Obviously, the larger m is, the easier the problem is to be solved, which is illustrated
by Figure 2b. Again MIRL1, SNL0 and IRSLQ behave better than the other two.

To see the accuracy of the solutions and the speed of these five methods, we now
run 50 trials with higher dimensions n increasing from 10000 to 30000 and keeping
m = d0.25ne, s∗ = d0.01ne, and record average results in Figure 3. As shown in
Figure 3a, SNL0 always generates the smallest ‖x− x∗‖, the most accurate recovery,
with accuracy order at least 10−14, followed by PDSAC. By contrast, the other three
methods get accuracy with the order being above 10−5. This phenomenon well testifies
that the second order methods have their advantages in producing a higher order of
accuracy. When it comes to the computational speed, it can be clearly seen from
Figure 3b that SNL0 always runs the fastest, with only consuming about 2 seconds
when n = 30000. PDSAC is the runner up. This shows that, for problems in higher
dimensions, SNL0 and PDSAC are able to run faster than the first order methods.
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Fig. 2: Success rates of five methods for solving Example 4.1 with n = 256.
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Fig. 3: Average recovery error and time of five methods for solving Example 4.1.

4.2.3. Comparisons for 2-D image data. In Example 4.2, data size n is
relatively large, which possibly makes most regularized methods suffer extremely slow
computation. Hence, we select three greedy methods CSMP (denoted for CoSaMP)
[41], HTP [31] and AIHT [11] as well as PDSCA. As suggested in package PDSCA,
we set another rule to stop each method if at kth iteration it satisfies ‖Axk − y‖ ≤
‖Ax∗ − y‖ to speed up the termination. Moreover, to make comparisons fair, we fist
run PDSCA, which has a strong ability to obtain a solution with good sparsity level
sP . Then we set s for CSMP, HTP and AIHT since they need such prior information,
but only set s−1 = d0.75sP e for our method to accelerate it. Let x be a solution
produced by a method. Apart from reporting the sparsity level ‖x‖0 and the CPU
time of a method, we also compute the peak signal to noise ratio (PSNR) defined by

PSNR := 10 log10(n‖x− x∗‖−2)

to measure the performance of the method. Note that the larger PSNR is, the much
closer x approaches to the true image x∗, namely the better performance of a method
yields. Results for Img1 are presented in Table 1 and Figure 4, where SPDSA offers the
biggest PSNR when nf= 0.01, whilst SNL0 produces the biggest ones when nf= 0.05
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Original Image PDASC: PSNR = 19.60

SNL0: PSNR = 21.10

AIHT: PSNR = 20.26

HTP: PSNR = 20.57 CSMP: PSNR = 16.35

Fig. 4: Recovery results for Img1 in Example 4.2 with m = 20033 and nf= 0.1.

Table 1: Performance of five methods for Img1 in Example 4.2.

nf= 0.01 nf= 0.05 nf= 0.1
Algs. PSNR Time ‖x‖0 PSNR Time ‖x‖0 PSNR Time ‖x‖0

m = 20033, n = 262144,m/n = 0.076
SPDSA 21.62 15.53 9716 20.11 8.45 5982 19.60 5.72 2969
AIHT 19.81 148.5 9716 20.15 2.23 5982 20.26 19.25 2969
HTP 19.66 19.15 9716 20.27 3.40 5982 20.57 3.41 2969
SCMP 12.49 51.54 9716 8.44 63.09 5982 16.35 14.83 2969
SNL0 20.74 10.17 9639 21.01 2.62 4487 21.10 2.58 2227

m = 29729, n = 262144,m/n = 0.113
SPDSA 35.37 11.54 9902 25.07 6.58 5002 22.61 5.44 3513
AIHT 32.21 71.42 9902 24.78 9.52 5002 23.07 9.16 3513
HTP 34.89 14.38 9902 25.14 4.57 5002 23.19 2.02 3513
SCMP 21.48 39.79 9902 23.00 9.94 5002 20.73 2.26 3513
SNL0 33.80 9.68 9824 25.35 3.06 3752 23.44 1.30 2635

and nf= 0.1, which means our method is more robust to the noise. In addition, SNL0
runs the fastest and renders the sparsest representations for all cases. Finally, for
color image Img2, we repeat the recovery for three (rgb) channels and report the total

results of three channels. For example, we report the PSNR=
∑3
i=1PSNRi, where

PSNRi is the peak signal to noise ratio obtained by one method for solving channel
i. As demonstrated in Figure 5, the quality of the image recovered by SNL0 clearly
is better than others. More detailed results are reported in Table 2, where similar
observations to Table 1 can be seen.

4.3. Sparse Linear Complementarity Problem. Sparse linear complemen-
tarity problems (SLCP) have been applied to deal with real-world applications such
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Original Image PDASA: PSNR = 59.82 AIHT: PSNR = 65.43

HTP: PSNR = 64.20 CSMP: PSNR = 48.65 SNL0: PSNR = 66.00

Fig. 5: Recovery results for Img2 in Example 4.2 with m = 3767 and nf= 0.1.

Table 2: Performance of five methods for Img2 in Example 4.2.

nf= 0.01 nf= 0.05 nf= 0.1
Algs. PSNR Time ‖x‖0 PSNR Time ‖x‖0 PSNR Time ‖x‖0

m = 3767, n = 65536,m/n = 0.057
SPDSA 64.26 9.78 4885 62.44 5.52 2474 59.82 4.08 1585
AIHT 66.35 21.94 4885 67.08 5.69 2474 65.43 1.57 1585
HTP 64.15 12.65 4885 66.32 2.75 2474 64.20 1.40 1585
SCMP 52.74 42.47 4885 43.86 30.58 2474 48.65 13.9 1585
SNL0 67.42 5.97 4458 67.56 2.41 1857 66.00 1.40 1190

m = 6213, n = 65536,m/n = 0.095
SPDSA 79.10 8.68 6851 73.49 4.74 3487 69.85 3.54 2203
AIHT 86.25 19.47 6851 81.30 1.12 3487 77.18 2.44 2203
HTP 86.45 6.14 6851 81.06 1.30 3487 76.88 1.24 2203
SCMP 62.62 33.89 6851 65.01 10.80 3487 65.59 4.85 2203
SNL0 87.41 5.92 6563 81.44 1.63 2616 76.16 0.84 1653

as bimatrix games and portfolio selection problems [19, 52, 46]. The problem aims at
finding a sparse vector x ∈ Rn from

{x ∈ Rn : x ≥ 0, Qx + q ≥ 0, 〈x, Qx + q〉 = 0},(4.3)

where Q ∈ Rn×n and q ∈ Rn. A point x from (4.3) is equivalent to

f(x) :=

n∑
i=1

φ(xi, Qix + qi) = 0,(4.4)

where φ is the so-called NCP function, which is defined by φ(a, b) = 0 ⇔ a ≥ 0, b ≥
0, ab = 0. We benefit from two NCP functions: the Fischer-Burmeister (FB) function
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Fig. 6: Performance of SNL0 effected by s−1 for solving Example 4.3.

φFB(a, b) =
√
a2 + b2 − a − b [30] and the one φmax(a, b) = a2+b

2
+ + (−a)2+ + (−b)2+

introduced in [58], where a+ := max{a, 0}, with corresponding merit functions f :

fFB(x) = 0.5
[
‖x‖2 + ‖y‖2 + ‖x + y‖2 − 2〈

√
x ◦ x + y ◦ y, x + y〉

]
,

fmax(x) = 0.5
[
‖(x+) ◦ (y+)‖2 + ‖(−x)+‖2 + ‖(−y)+‖2

]
,

where y := Qx + q,
√

z := (
√
z1, · · · ,

√
zn)>, z+ := ((z1)+, · · · , (zn)+)> and x ◦ z :=

(x1z1, · · · , xnzn)>. Note that fFB has unbounded Hessian at (0, 0). Therefore, to
make use of SNL0, we add a small scalar ε (e.g. 10−10) to smooth

√
z, namely,

replacing
√
z by

√
z + ε in fFB . The following testing example is from [58].

Example 4.3. Let Q = ZZ> with Z ∈ Rn×m whose elements are generated from
the standard normal distribution, where m ≤ n (e.g. m = n/2). Then, the ‘ground
truth’ sparse solution x∗ is produced same as (4.2) and q is obtained by qi = −(Qx∗)i
if x∗i > 0 and qi = |(Qx∗)i| otherwise.

We first run an experiment with n = 500 and s∗ = 10 to see how initial guess s−1
would affect the performance of SNL0. Results are presented in Figure 6. It seems
that if s−1 is chosen to be higher than s∗, then SNL0 gets better results for both
models. More precisely, the number of iterations declines when s−1 increases from 4
to 10 and then stabilizes when s−1 ≥ 10 = s∗. A similar phenomenon can be seen for
CPU time. Note that ‖x− x∗‖ is in order of 10−7 and 10−11 for the model (1.1) with
f = fFB and f = fmax respectively, which means SNL0 achieves global solutions (i.e.
x∗) for both models. In addition, this experiment illustrates that (1.1) with f = fmax

allows SNL0 to perform better results than (1.1) with f = fFB , since it solves the
former model faster and more accurate.

Next we run 50 trials with higher dimensions n rising from 10000 to 30000 and
keeping s∗ = d0.01ne. To make fair comparisons of SNL0 for solving two models:
(1.1) with f = fmax and (1.1) with f = fFB , we set s−1 = d0.1n/ln(n)e. Average
results are displayed in Figure 7, where a clear conclusion which can be made is that
SNL0 addresses SLCP more effectively through the model with f = fmax, with fewer
iterations, much shorter CPU time and more accurate recovery.

5. Conclusion. Many methods only make use of the first order information of
the involved functions. Because of this, they are able to run fast but suffer from slow
convergence. When Newton steps only performed on chosen subspaces are integrated
into some of these methods, then much more rapid convergence can be achieved.
To the best of our knowledge, theoretic guarantees include two groups: either the
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Fig. 7: Performance of SNL0 effected by n for solving Example 4.3.

(sub)sequence converges to a stationary point of `0-regularized optimization or the
distance between each iterate and any given sparse reference point is bounded by
an error bound in the sense of probability. However, those are still not enough to
unravel the reasons why those methods with Newton steps perform very well. In this
paper, we designed a subspace Newton method equipped with an effective mechanism
adaptively updating the penalty parameter for the `0-regularized optimization. Theo-
retically, we proved that the sequence generated by our proposed method converges to
a stationary point globally and quadratically, well explaining our method possessing
an extraordinary performance. Numerically, the method is capable of running very
fast and rendering extremely high order of accuracy, being competitive to against
some other excellent solvers.
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[40] J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM Journal on Scientific
and Statistical Computing, 4 (1983), pp. 553–572.

This manuscript is for review purposes only.



28 S. ZHOU, L. PAN AND N. XIU

[41] D. Needell and J. A. Tropp, Cosamp: Iterative signal recovery from incomplete and inac-
curate samples, Applied and cComputational Harmonic Analysis, 26 (2009), pp. 301–321.

[42] Q. Ni and Y. Yuan, A subspace limited memory quasi-newton algorithm for large-scale non-
linear bound constrained optimization, Mathematics of Computation, 66 (1997), pp. 1509–
1520.

[43] L. Pan, S. Zhou, N. Xiu, and H.-D. Qi, A convergent iterative hard thresholding for nonneg-
ative sparsity optimization, Pacific Journal of Optimization, 13 (2017), pp. 325–353.

[44] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, Orthogonal matching pursuit: Recursive
function approximation with applications to wavelet decomposition, in Signals, Systems and
Computers, 1993. 1993 Conference Record of The Twenty-Seventh Asilomar Conference on,
IEEE, 1993, pp. 40–44.

[45] A. Patrascu, I. Necoara, and P. Patrinos, A proximal alternating minimization method
for `0-regularized nonlinear optimization problems: Application to state estimation, Pro-
ceedings of the IEEE Conference on Decision and Control, 2015 (2015), pp. 4254–4259.

[46] M. Shang, C. Zhang, and N. Xiu, Minimal zero norm solutions of linear complementarity
problems, Journal of Optimization Theory and Applications, 163 (2014), pp. 795–814.
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