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Abstract. Solutions to the linear complementarity problem (LCP) are naturally sparse in many
applications such as bimatrix games and portfolio section problems. Despite that it gives rise to the
hardness, sparsity makes optimization faster and enables relatively large scale computation. Moti-
vated by this, we take the sparse LCP into consideration, investigating the existence and boundedness
of its solution set as well as introducing a new merit function, which allows us to convert the problem
into a sparsity constrained optimization. The function turns out to be continuously differentiable and
twice continuously differentiable for some chosen parameters. Interestingly, it is also convex if the
involved matrix is positive semidefinite. We then explore the relationship between the solution set
to the sparse LCP and stationary points of the sparsity constrained optimization. Finally, Newton
hard thresholding pursuit is adopted to solve the sparsity constrained model. Numerical experiments
demonstrate that the problem can be efficiently solved through the new merit function.
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1. Introduction. The linear complementarity problem (LCP) aims at finding a
vector x ∈ Rn such that

x ∈ sol(M, q) := {x ∈ Rn : x ≥ 0, Mx+ q ≥ 0, 〈x,Mx+ q〉 = 0},(1.1)

where M ∈ Rn×n and q ∈ Rn. Here, x ≥ 0 means that each element of x is nonnega-
tive. Linear complementarity problems have extensive applications in economics and
engineering such as Nash equilibrium problems, traffic equilibrium problems, contact
mechanics problems and option pricing, to name a few. More applications can be
found in [5, 6, 7] and the references therein. Among them, there is an important class
trying to seek for a solution where most of its elements are zeros, namely, a sparse
solution. For example, players in bimatrix games are willing to choose a small por-
tion of reasonable strategies from a set of pure strategies to save their computational
time. In the portfolio selection problem, most investors are only interested in a ‘small’
portfolio from a group of assets, see more details in [5, 38, 34]. Mathematically, these
examples can be characterized as the following sparse LCP

x ∈ sol(M, q) ∩ S with S := {x ∈ Rn : ‖x‖0 ≤ s},(1.2)

where ‖x‖0 is the zero norm of x, which counts the number of nonzero elements of
x, and s � n is a positive integer. Note that ‖ · ‖0 is not a norm in the sense of the
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standard definition. In order to address the LCP, a commonly used approach is to
convert the problem into an unconstrained minimization problem through the NCP
(nonlinear complementarity problem) functions. A function ψ : R × R → R is called
an NCP function if it satisfies

ψ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.(1.3)

In this paper, we introduce a new function φr : R× R→ R defined by

φr(a, b) :=
1

r

[
ar+b

r
+ + (−a)r+ + (−b)r+

]
:=

1

r

[
ar+b

r
+ + |a−|r + |b−|r

]
.(1.4)

where r > 0 is a given parameter, a+ := max{a, 0} and a− := min{a, 0}. It is easy
to see that φr is indeed an NCP function for any given r > 0. However, through
this paper, we only focus on choices of r ≥ 2. Because this new function is proven
to be continuously differentiable everywhere for any r ≥ 2 and twice continuously
differentiable for any r > 2, see Proposition 2.2. When it comes to model (1.1), we
construct a new merit function fr through φr as

fr(x) :=

n∑
i=1

φr(xi,Mix+ qi)(1.5)

=
1

r

[ 〈
xr+, (Mx+ q)r+

〉
+ ‖x−‖rr + ‖(Mx+ q)−‖rr

]
,

where ‖x‖rr :=
∑
i |xi|r (particularly, write ‖ · ‖ := ‖ · ‖2), Mi is the ith row of M and

xr+ and x− are defined by (1.7). Clearly, fr(x) ≥ 0 for any x ∈ Rn. Based on this
function, to solve the sparse LCP (1.2) for a given s ∈ N and s� n, we will deal with
the following sparsity constrained optimization throughout this paper

min
x

fr(x), s.t. x ∈ S.(1.6)

1.1. NCP functions. There are numerous NCP functions that have been pro-
posed. One of the most well-known functions is the Fischer-Burmeister (FB) function.
It was first introduced by Fischer in [9] and widely used in designing semismooth
Newton type methods for solving mathematical programming with complementarity
conditions. Then many variants have been investigated, see [18, 20] and [3] for more
information. All those functions share a similar mathematical formula and hence
enjoy similar properties. They are continuously differentiable everywhere except at
the origin where their Hessians are unbounded. In [2], the authors took advantage
of the natural residual (namely, minimum function) to construct an NCP function,
with a simple structure but offering little of the second order information. It is con-
tinuously differentiable everywhere as well but nondifferentiable at the origin and
along a line. The authors in [1] cast an NCP function through the convex combi-
nation of the FB-function and the maximum function. The function is continuously
differentiable everywhere except at the solution set (1.1). In [23], a continuously dif-
ferentiable implicit Lagrangian, an NCP function, was explored. Another interesting
class of functions have been studied by authors in [19]. They are able to be twice con-
tinuously differentiable if their involved parameters are chosen properly. Functions
mentioned above have drawn much attention and have been shown to enjoy many
favourable properties [23, 10, 39, 12, 13, 17, 26, 19, 21, 36, 29].
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1.2. Contributions. Contributions of this paper are summarized below.
i) We propose a new type of NCP function φr, which allows us to construct

a new merit function fr to deal with the LCP. It turns out that fr is con-
tinuously differentiable everywhere for any r ≥ 2 and twice continuously
differentiable for any r > 2, see Lemma 3.1. Moreover, if the matrix M
is positive semidefinite, then fr is convex. This means, in order to solve the
LCP, one could address an unconstrained convex optimization that minimizes
fr, namely, find a stationary point of fr which by the convexity is a solution
to minxfr(x). We then reveal the relationship between a solution to the LCP
and a stationary point, see Theorem 3.2.

ii) Not only do we prove the existence and the boundedness of the solution set
to the sparse LCP, and the boundedness of the level set of fr over S, but we
also establish the relationship between a solution to the sparse LCP and a
stationary point to the sparsity constrained optimization (1.6).

iii) To process the sparsity constrained optimization (1.6), we take advantage of
the Newton hard thresholding pursuit (NHTP) method proposed in [41], whose
convergence results are well established in Section 5. Numerical experiments
demonstrate that the adopted method has excellent performance to solve
the sparse LCP in terms of the fast computational speed and high order of
accuracy. What is more, we apply the method to deal with (1.6), where the
merit objectives are constructed from three existing famous NCP functions.
Numerical comparisons show that NHTP performs much better on solving the
model with fr than solving models with the other merit functions. In a
nutshell, the sparse LCP can be solved more effectively by converting it into
the sparsity constrained optimization with the help of our new merit function.

1.3. Organization. The rest of the paper is organized as follows. In the next
section, we introduce some basic concepts including subdifferential, the generalized
Hessian and P-matrix. Section 3 presents the calculations of the gradient and gener-
alized Hessian of the merit function fr and also establishes the relationship between
a solution to the LCP and a stationary point of fr. We prove several properties of
the sparse LCP (1.2) via the sparsity constrained optimization (1.6) in Section 4,
including the existence and the boundedness of the solution set to the sparse LCP,
the boundedness of the level set of fr over S as well as the relationship between a
solution to the sparse LCP and a stationary point of its sparsity constrained model.
In Section 5, we recall the method NHTP and establish its convergence results. Ex-
tensive numerical experiments of NHTP solving sparsity constrained models and some
concluding remarks are given in the last two sections.

1.4. Notation. We end this section with some notation to be employed through-
out the paper. Let Diag(x) be the diagonal matrix with diagonal elements being from
x. Given two vectors x, z ∈ Rn, we have the following notation

N := {1, 2, · · · , n}, supp(x) := {i ∈ N : xi 6= 0}
|x| := (|x1|, · · · , |xn|)>, x ◦ z := (x1z1, · · · , xnzn)>,

x− := [(x1)−, · · · , (xn)−]
>
, xr+ := [((x1)+)r, · · · , ((xn)+)r]

>
.

(1.7)

Note that xr+ = (x+)r. For a set T , its complementary set is T c and cardinality is
|T |. Denote MT as the sub-matrix containing the columns of M indexed on T and
xT as the sub-vector containing elements of x indexed on T . However, Mi represents
the ith row of M . In addition, let ei be the vector with ith element being one and
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remaining elements being zeros and e be the vector with all elements being ones.
Furthermore, write MT1,T2

as the sub-matrix containing the rows of M indexed on T1

and columns of M indexed on T2. Write M>T := (MT )> and M>T1,T2
:= (MT1,T2

)>,
the transpose of MT and MT1,T2 , respectively. In particular, ∇T f(x) := (∇f(x))T
and ∇2

TT f(x) := (∇2f(x))TT , where ∇f(x) and ∇2f(x) are the gradient and Hessian
of f(x). Given a matrix M , rank(M) is the rank and M � 0 (resp. M � 0) means it
is positive semidefinite (resp. definite). Particularly, we write A � B if A − B � 0.
Finally, define a set Ξ(·, ·) by

Ξ(a, b) :=

 {b2+}, a > 0,
co{1, b2+}, a = 0,

{1}, a < 0,
(1.8)

where coΩ is the convex hull of Ω. Note that Ξ(a, b) 6= Ξ(b, a) generally.

2. Preliminaries. In order to analyse functions φr and fr, we first introduce
the concept of lower semi-continuity [25, Definition 4.2]. An extended-real-valued
function ϕ : Rn → R ∪ {+∞} is lower semi-continuous (l.s.c.) at x ∈ Rn if for every
ε ∈ R with ϕ(x) > ε, there is δ > 0 such that

ϕ(x) > ε for all x ∈ U(x, δ) := {x ∈ Rn : ‖x− x‖ < δ}.

We simply say that ϕ is lower semi-continuous if it is l.s.c. at every point of Rn.
From [31, Definition 8.3], for a proper and l.s.c. function ϕ : Rn → R, the regular
subdifferential and the limiting subdifferential are respectively defined as

∂̂ϕ(x) =

{
v ∈ Rn : liminf

z(6=x)→x

ϕ(z)− ϕ(x)− 〈v, z − x〉
‖z − x‖

≥ 0

}
,

∂ϕ(x) = lim sup
z

ϕ→x
∂̂ϕ(z) =

{
v ∈ Rn : ∃ z ϕ→ x, vj ∈ ∂̂ϕ(zj) with vj → v

}
,

where z
ϕ→ x means both z → x and ϕ(z) → ϕ(x). If ϕ is convex, then the limiting

subdifferential is also known to be a subgradient. If it is continuously differentiable,
then the limiting subdifferential is also known as the gradient, i.e., ∂ϕ(x) = {∇ϕ(x)}.

The next concept is the (Clarke) generalized Jacobian or the generalized Hessian.
Consider a locally Lipschitz function F : Rn → Rm and fix x ∈ Rn. The generalized
Jacobian [4] of F at x is the following set of m× n matrices:

∂F (x) = co
{

lim∇F (xk) : xk → x, xk ∈ DF

}
,(2.1)

where ∇F (xk) stands for the classical Jacobian matrix of F at xk and DF denotes the
set of all the points where F is differentiable. The generalized Hessian [16, Definition
2.1] of a continuously differentiable function ϕ at x is defined by

∂2ϕ(x) := ∂(∇ϕ(x)).

As stated in [16, Example 2.2], ϕ is convex on Ω if and only if ∂2ϕ(x) is positive
semidefinite for all x ∈ Ω. Here, ∂2ϕ(x) is positive semidefinite at x if all elements
in ∂2ϕ(x) are positive semidefinite. Now we are ready to give our first result with
regard to the first and second order information of functions ar+ and |a−|r.

Proposition 2.1. The following results hold for functions ar+ and |a−|r.
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1) For any r > 2, both ar+ and |a−|r are twice continuously differentiable and

∇(ar+) = rar−1
+ , ∇2(ar+) = r(r − 1)ar−2

+ ,
∇(|a−|r) = −r|a−|r−1, ∇2(|a−|r) = r(r − 1)|a−|r−2.

2) For r = 2, both a2
+ and |a−|2 are continuously differentiable and

∇(a2
+) = 2a+, ∂2(a2

+) =

{
{2a+/a}, a 6= 0,
[0, 2] , a = 0,

∇(|a−|2) = 2a−, ∂2(|a−|2) =

{
{2a−/a}, a 6= 0,
[0, 2] , a = 0.

Based on above results, we have the following properties of φr.

Proposition 2.2. The following results hold for φr defined by (1.4).
1) For any r ≥ 2, φr is continuously differentiable on R× R with

∇φr(a, b) =

[
ar−1

+ br+ − |a−|r−1

ar+b
r−1
+ − |b−|r−1

]
.

In addition, ∇φr(a, b) = 0 if and only if φr(a, b) = 0.
2) For any r > 2, φr is twice continuously differentiable on R× R with

∇2φr(a, b) =

[
(r − 1)(ar−2

+ br+ + |a−|r−2) rar−1
+ br−1

+

rar−1
+ br−1

+ (r − 1)(ar+b
r−2
+ + |b−|r−2)

]
.

3) For r = 2, the generalized Hessian of φ2(a, b) at (a, b) ∈ R× R has the form

∂∇φr(a, b) ⊆
{[

u 2a+b+
2a+b+ v

]
: u ∈ Ξ(a, b), v ∈ Ξ(b, a)

}
,

where Ξ(·, ·) is defined as (1.8).

The proofs of the above two propositions are omitted since they are quite simple.
Now, we compare φr with some other famous NCP functions.

Remark 2.3. We summarize several types of NCP functions as follows.
i) FB-type functions:

φFB(a, b) :=
[
a2 + b2

]1/2 − a− b,
φνFB(a, b) :=

[
(a− b)2 + νab

]1/2 − a− b, ν ∈ (0, 4),

φθFB(a, b) :=
[
θ(a− b)2 + (1− θ)(a+ b)2

]1/2 − a− b, θ ∈ [0, 1],

φκFB(a, b) := [aκ + bκ]
1/κ − a− b, κ > 1.

More details of the above functions can be found in [9, 18, 20] and [3], respec-
tively. The most well-known function among them is the Fischer-Burmeister
function φFB . It was first introduced by Fischer in [9] and widely used in
designing semismooth Newton-type methods for solving mathematical pro-
gramming with complementarity conditions. All those functions share a sim-
ilar mathematical formula and hence enjoy similar properties. At the origin,
they are nondifferentiable and have unbounded Hessian.

ii) Natural residual (minimum function) [2]:

φmin(a, b) := 2 min{a, b} = a+ b− [(a− b)2]1/2.

This function is simple but contains little of the second order information. It
is differentiable everywhere except at the origin and along the line a = b.
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iii) A convex combination function [1]:

φλ(a, b) := λφFB(a, b) + (1− λ)a+b+

with λ ∈ (0, 1). It is nondifferentiable at {(a, b) : a ≥ 0, b ≥ 0, ab = 0}.
iv) A function proposed in [23]:

φα(a, b) := (ab)2 + αmax{0,−a,−b}2,

where α > 0. It is continuously differentiable everywhere.
v) A class of functions proposed in [19],

φpI(a, b) := (ab)p+ + [|a−|+ |b−|]p ,

φpII(a, b) := (ab)p+ +
[
|a−|2 + |b−|2

]p/2
,

φpFB(a, b) := (ab)p+ + [φFB(−a,−b)]p+ ,
φpmax(a, b) := (ab)p+ + max{0,−a,−b}p,

where p > 1, which is continuously differentiable up to (p− 1)th order.
When these functions in i)-iv) are applied to deal with the linear/nonlinear com-
plementarity problems, their squared version φ2 are used and thus are continuously
differentiable everywhere but not twice continuously differentiable. Compared with
those functions, φr defined as (1.4) is also continuously differentiable for any r ≥ 2
as well as twice continuously differentiable everywhere for any r > 2. Moreover, it
has bounded Hessian near the origin. Compared with those functions in v), φr has a
different first term ar+b

r
+ and removes the crossed term |a−||b−|. This allows calcu-

lations of first and second order derivatives of φr easier. Note that the crossed term
can be gotten rid of in φpII only when p = 2 and in φpI , φ

p
max only when p = 1. More

interestingly, when the linear mapping M is positive semi-definite, φr enables fr to
be convex, see 4) in Lemma 3.1, which means minx fr(x) is an unconstrained convex
optimization with the objective function being continuously differentiable.

In addition, similar to (1.6) with merit function fr being created by φr, we can
derive different sparsity constrained models with merit functions being constructed by
different NCP functions. However, numerical experiments (see Subsection 6.6) show
that the model with our new merit function fr outperforms the others.

To end this section, we recall the concepts of the P-matrix, Ps-matrix and Z-
matrix, which play an essential role in subsequent analysis.

Definition 2.4. Let s ≤ n be a given integer. A matrix A ∈ Rn×n is
1) a P-matrix if all of its principal minors are positive [8].
2) a Ps-matrix if all of its principal minor of order up to s are positive.
3) a Z-matrix if its off-diagonal elements are non-positive [5].

If A is a P-matrix, then so are each of its principal sub-matrices and their transpose.
Also, a P-matrix must be a Ps-matrix, but not vice versa. The equivalent expression
of P/Ps-matrix is stated below.

Proposition 2.5. Let s ≤ n be a given integer. A matrix A ∈ Rn×n is
1) a P-matrix if and only if, for each nonzero x ∈ Rn, there is an index i such

that xi(Ax)i > 0.
2) a Ps-matrix if and only if, for each nonzero x ∈ Rn with ‖x‖0 ≤ s, there is

an index i such that xi(Ax)i > 0.
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3. Variational analysis. The first issue that we confront is the differentiability
of fr, therefore, we start with calculating its gradient and (generalized) Hessian.

3.1. Subdifferentials’ calculation. Proposition 2.1 and Proposition 2.2 enable
us to claim the following proposition regarding the first and second order information
of fr in (1.5). Hereafter, for notational simplicity, we denote y := Mx+ q.

Lemma 3.1. For fr as in (1.5), the following results hold.
1) For any r ≥ 2, fr(x) is continuously differentiable with

∇fr(x) = xr−1
+ ◦ yr+ − |x−|r−1 +M>

[
xr+ ◦ yr−1

+ − |y−|r−1
]
.(3.1)

2) For any r > 2, fr(x) is twice continuously differentiable with

∇2fr(x) = r
[
Diag(xr−1

+ ◦ yr−1
+ )M +M>Diag(xr−1

+ ◦ yr−1
+ )

]
(3.2)

+ (r − 1)Diag
(
xr−2

+ ◦ yr+ + |x−|r−2
)

+ (r − 1)M>Diag
(
xr+ ◦ yr−2

+ + |y−|r−2
)
M.

3) For r = 2, the generalized Hessian ∂2f2(x) takes the form

∂2f2(x) ⊆
{

2
[
Diag(x+ ◦ y+)M +M>Diag(x+ ◦ y+)

]
+(3.3)

Diag(ξ) +M>Diag(ζ)M : ξ ∈ Ωξ(x), ζ ∈ Ωζ(x)
}
,

where Ωξ(x) and Ωζ(x) are given by

Ωξ(x) := {ξ ∈ Rn : ξi ∈ Ξ(xi, yi)} ,(3.4)

Ωζ(x) := {ζ ∈ Rn : ζi ∈ Ξ(yi, xi)} ,(3.5)

where Ξ(·, ·) is defined as (1.8).
4) For any r ≥ 2, fr(x) is convex if M is positive semidefinite.

3.2. Stationary points. This subsection reveals relationship between the solu-
tions to the LCP and the stationary points of fr. We say a point x∗ is a stationary
point of fr if it satisfies

x∗ ∈ {x ∈ Rn : ∇fr(x) = 0} =: Gf .(3.6)

Moreover, we say the LCP is feasible if

fea(M, q) := {x ∈ Rn : x ≥ 0, Mx+ q ≥ 0} 6= ∅.(3.7)

Based on [5, Proposition 3.1.5], the LCP is feasible for all q ∈ Rn if and only if there is
an x such that x > 0,Mx > 0. According to [5, Definition 3.1.4], the matrix satisfying
such condition is called S-matrix. One could easily derive that if sol(M, q) 6= ∅, then

sol(M, q) = argminx fr(x).(3.8)

Because of this, it is obvious that sol(M, q) ⊆ Gf since an optimal solution is also
a stationary point, while the converse is not true in general. However, under some
assumptions, we can claim that these two sets coincide.

Theorem 3.2. For any given q ∈ Rn, we have the following results.
1) If M is positive semidefinite and fea(M, q) is nonempty, then sol(M, q) =
Gf is nonempty as well.

2) If M is a P-matrix, then sol(M, q) = Gf = {x∗}, where x∗ is the unique
solution to sol(M, q).
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4. Sparse LCP. Now we center on the sparse LCP (1.2) and its corresponding
sparsity constrained optimization (1.6) through the proposed merit function fr. We
start studying the existence and boundedness of the solution set to the sparse LCP.
Hereafter, we say the sparse LCP is feasible if

feas(M, q) := fea(M, q) ∩ S = {x ∈ Rn : x ≥ 0, Mx+ q ≥ 0, ‖x‖0 ≤ s}(4.1)

is nonempty. One can see that, for example, if M is a matrix with all entries being
positive, then the sparse LCP is feasible for any q ∈ Rn. In fact, for any x ≥ 0
with ‖x‖0 ≤ s, one can find a proper large δ such that M(δx) + q ≥ 0, which means
δx ∈ feas(M, q). Some other types of matrices may also guarantee the feasibility of
the sparse LCP. However, we will not explore them in this paper and simply assume
that feas(M, q) is nonempty in the sequel.

Lemma 4.1. If feas(M, q) is nonempty, then so is

Qs(M, q) := argminx 〈x,Mx+ q〉, s.t. x ∈ feas(M, q).(4.2)

4.1. Existence and boundedness. Our first result is about the existence of
solutions to the sparse LCP under some assumptions. Note that if q ≥ 0, then
0 ∈ sol(M, q), a trivial solution. In other words, if there is an i such that qi < 0,
then 0 /∈ sol(M, q). For a point x, denote two sets

T := supp(x), Γ := {i ∈ N : Mix+ qi = 0}.(4.3)

Here, T and Γ are depended on x. We drop their dependence for notational simplicity.
Now, we give the results about the existence of a solution to the sparse LCP.

Theorem 4.2. Assume feas(M, q) is nonempty, which means there exists an
x ∈ Qs(M, q). Then x ∈ sol(M, q) ∩ S if one of the following conditions holds

1) ‖x‖0 = s, M is a symmetric Z-matrix with rank(MT ) = |T | and qT ≤ 0.
2) ‖x‖0 < s, M is a symmetric Z-matrix with rank(MTΓ) = |Γ| and qT ≤ 0.
3) ‖x‖0 < s, M is positive semidefinite with rank(MTΓ) = |Γ|.

It is worth mentioning that in Theorem 4.2 2), T ⊆ Γ from the proof of 2) in Ap-
pendix A.5, while the assumption that MTΓ has full column rank requires |T | ≥ |Γ|.
Therefore, there is T = Γ. Next result exhibits another sufficient condition to guar-
antee the existence of a solution to the sparse LCP.

Theorem 4.3. Assume M is a Ps-matrix with all entries being nonnegative. If
|θ| ≤ s, where θ := {i ∈ N : qi < 0}, then sol(M, q) ∩ S is nonempty and contains a
unique x∗ such that supp(x∗) ⊆ θ.

We now have the boundedness of the following level set. This suffices to show the
boundedness of the solution set (sol(M, q) ∩ S) to (1.2).

Theorem 4.4. If M is a Ps matrix, then the level set

Ls(fr, γ) := {x ∈ S : fr(x) ≤ γ}(4.4)

is bounded for any γ ≥ 0. Moreover, (sol(M, q)∩S) ⊆ argmin
x∈S

fr(x) are both bounded.

4.2. Optimality Conditions. Theorem 4.4 indicates an optimal solution of
(1.6) must exist if M is a Ps matrix. In addition, it follows from [28, Theorem 2.8]
that an optimal solution x∗ ∈ S of (1.6) satisfies

−∇fr(x∗) ∈ NS(x∗),(4.5)

This manuscript is for review purposes only.
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where NS(x∗) is the Bouligand normal cone of S at x∗. Hereafter, let

T∗ := supp(x∗)(4.6)

for notational convenience. From [28, Table 1], the condition (4.5) is equivalent to

∇ifr(x∗)
{

= 0, i ∈ T∗,
∈ R, i /∈ T∗,

if ‖x∗‖0 = s and ∇fr(x∗) = 0 if ‖x∗‖0 < s.(4.7)

We call a point a stationary point of (1.6) if it satisfies (4.7). The next theorem reveals
the relationship between a stationary point and a solution to (1.2).

Theorem 4.5. A solution to (1.2) is also a stationary point of (1.6). Conversely,
assume that M is a Z-matrix. Then a stationary point x of (1.6) is also a solution
to (1.2) if there is a nonzero vector v ∈ R|T+| such that MΓc

+T+v ≥ 0 and MT+T+ is

positive semidefinite, where T+ := {i ∈ N : xi > 0} and Γ+ := {i ∈ N : Mix+qi > 0}.
Remark 4.6. With regard to the above theorem, some comments can be made.

i) If Γc+ ⊆ T+ in Theorem 4.5, then MT+T+ being positive semidefinite indicates

that there always exists a nonzero vector v ∈ R|T+| such that MΓc
+T+v ≥ 0.

ii) We give some explanations about T, T+,Γ+ and Γ. Let

T− := {i ∈ N : xi < 0}, Γ− := {i ∈ N : Mix+ qi < 0}.

Then T+ and T− capture the indices of positive and negative elements of x,
and hence T+ ∪ T− = T by (4.3). While Γ+ and Γ− contain the indices of
positive and negative elements of Mx+ q, and hence Γ+ ∪ Γ− = Γc by (4.3).

iii) If a stationary point x of (1.6) satisfies Mx + q ≥ 0, then Γ− = ∅. This
together with (A.8), (i.e., |xT− |r−1 = 0 leading to x ≥ 0) suffices to show
that x is also a solution to (1.2) if MT+T+

is positive semidefinite. As a
consequence, the other assumptions can be neglected.

We end this section with establishing the relationship between a stationary point and
a local/global solution to (1.6) by the following theorem.

Theorem 4.7. Assume that M is positive semidefinite. Consider a point x∗ ∈ S.
1) If ‖x∗‖0 < s, then it is a stationary point if and only if it is a globally optimal

solution to (1.6). If we further assume that fea(M, q) is nonempty, then the
stationary point satisfies x∗ ∈ (sol(M, q) ∩ S).

2) If ‖x∗‖0 = s, then it is a stationary point if and only if it is a locally optimal
solution to (1.6). If we further assume that MT∗T∗ is nonsingular, then the
stationary point x∗ is a unique optimal solution to (1.6) with r = 2 on RT∗ :=
{x ∈ Rn : supp(x) ⊆ T∗}.

5. Newton Hard-Thresholding Pursuit. We now turn our attention to the
solution method, Newton Hard-Thresholding Pursuit (NHTP), for (1.6). The method
is adopted from [41]. To implement the method, we first define some notation.

T (x, η) :=

{
T ⊆ N :

T contains the indices of s largest elements of |z|
|T | = s, where z := x− η∇fr(x)

}
,(5.1)

where η > 0. Note that T may not be unique since the sth largest element of |z|
might be multiple. For any given T ∈ T (x; η), we define a nonlinear equation:

Fη(x;T ) :=

[
∇T fr(x)
xT c

]
= 0.(5.2)

This manuscript is for review purposes only.
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One advantage of defining the function Fη(x;T ) is that if a point x satisfies Fη(x;T ) =
0 for a given T then it satisfies (4.7), a stationary point. In addition, this is an equation
system that allows us to perform the Newton method.

5.1. Framework of NHTP. Suppose xk is the current approximation to a solu-
tion of (5.2) and Tk is chosen from T (xk; η). Then Newton’s method for the equation
(5.2) takes the following form to get the direction dk:

(5.3) ∇Fη(xk;Tk)dk = −Fη(xk;Tk),

where ∇Fη(xk;Tk) is the Jacobian of Fη(x;Tk) at xk and admits the following form:

(5.4) ∇Fη(xk;Tk) =

[
∇2
TkTk

fr(x
k) ∇2

TkT c
k
fr(x

k)

0 In−s

]
,

and ∇2fr(x) is the Hessian of fr(x) when r > 2 and a matrix from the generalized
Hessian ∂2f2(x) when r = 2. It is worth mentioning that the choice of ∇2f2(xk)
does not affect the method proposed in Algorithm 5.1 and its convergence results.
Substituting (5.4) into (5.3) yields{

∇2
TkTk

fr(x
k)dkTk

= ∇2
TkT c

k
fr(x

k)xkT c
k
−∇Tk

fr(x
k),

dkT c
k

= −xkT c
k
.

(5.5)

After we get the direction, in order to guarantee the next point xk+1 to be feasible,
namely, xk+1 ∈ S, we update it by using the following scheme:

(5.6) xk(α) :=

[
xkTk

+ αdkTk

0

]
for some α ∈ (0, 1]. Now we summarize the whole framework of NHTP in Algorithm 5.1.

Algorithm 5.1 NHTP: Newton Hard-Thresholding Pursuit

Initialize x0. Choose η, γ > 0, σ ∈ (0, 0.5), β ∈ (0, 1) and K. Set k ⇐ 0.
while The halting condition does not hold and k ≤ K do

Hard-Thresholding Pursuit: Choose Tk ∈ T (xk, η) in (5.1).
Descent Direction Search: Update dk by solving (5.5) if it is solvable and

(5.7) 〈∇Tk
fr(x

k), dkTk
〉 ≤ −γ‖dk‖2 + ‖xkT c

k
‖2/(4η).

Otherwise, update dk by

(5.8) dkTk
= −∇Tk

fr(x
k), dkT c

k
= −xkT c

k
.

Step Size Search: Find the smallest integer t = 0, 1, . . . such that

(5.9) fr(x
k(βt)) ≤ fr(xk) + σβt〈∇fr(xk), dk〉.

Set αk = βt and update xk+1 = xk(αk) by (5.6).
end while
return the solution xk.
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Some comments can be made based on Algorithm 5.1. Note that, because of
(5.6), namely, xk+1 = xk(αk), we always have

(5.10) supp(xk+1) ⊆ Tk.

(a) Computational complexity. In Hard-Thresholding Pursuit step, we only
pick s indices of s largest elements of |xk−η∇fr(xk)| to form Tk, which allows us to use
mink function in MATLAB (2017b or later version) whose computational complexity
is O(n+ s log s). In Descent Direction Search step, from supp(xk) ⊆ Tk−1 by (5.10),
the first equation of (5.5) can be rewritten as

∇2
TkTk

fr(x
k)dkTk

= ∇2
TkJk

fr(x
k)xkJk −∇Tk

fr(x
k),(5.11)

where Jk := Tk−1∩T ck and thus |Jk| ≤ |Tk−1| = s. So we need to calculate ∇Tk
fr(x

k),
∇2
TkJk

fr(x
k)xkJk and a sub-Hessian ∇2

Tk,Tk
fr(x

k). It follows from (3.1), (3.2) or (3.3)
that the most computational expensive calculations in these three terms are

M>Tk
|(MTk−1

xkTk−1
+ q)−|r−1, M>Tk

Diag(zk)(MJkx
k
Jk

), M>Tk
Diag(zk)MTk

,

where z := (xk)r+ ◦ (yk)r−2
+ + |(yk)−|r−2 or z ∈ Ωζ(x

k). Their computational complex-
ities are O(ns),O(ns) and O(ns2), respectively. Moreover, to update dkTk

, we also
need to solve the linear equation (5.11) with s equations and s variables, which has
computational complexity about O(sκ), where κ ∈ (2, 3). Let t̄ be the smallest inte-
ger satisfying (5.9) and it often takes the value 1. Overall, the whole computational
complexity of each step in Algorithm 5.1 is O(ns2 + sκ + t̄ns).

(b) Halting condition. A halting condition used in [41] is to calculate

(5.12) Tolη(xk; Tk) := ‖Fη(xk;Tk)‖+ max
i∈T c

k

(
|∇ifr(xk)| − xk(s)/η, 0

)
+
,

where xk(s) is the sth largest element of |xk|. If a point xk satisfies that Tolη(xk; Tk) =

0, then both terms on the right-hand side of (5.12) are zeros, which imply that
∇Tk

fr(x
k) = 0, xkT c

k
= 0 and ‖∇T c

k
fr(x

k)‖∞ ≤ xk(s)/η. Hence supp(xk) ⊆ Tk. These

derive the first condition in (4.7) if ‖xk‖0 = s and ∇fr(xk) = 0 in (4.7) if ‖xk‖0 < s
since xk(s) = 0 under such case. Namely, xk is a stationary point of (1.6). Therefore,

we will terminate NHTP if Tolη(xk; Tk) < tol in our numerical experiments, where
tol is a tolerance (e.g. 10−6).

5.2. Convergence analysis. As shown in [41, Theorem 8], to establish the
convergence results, the assumptions are relating to the boundedness of Hessian and
existence of the inverse of the Hessian at the limiting point. We first define a parameter
to bound the Hessian under mild condition

C := sup
x∈Ls(fr,fr(0))

σmax(∇2fr(x)),(5.13)

where Ls(fr, fr(0)) is the level set given as (4.4) and σmax(A) is the maximum singular
value of A. The following result shows that such C is bounded if M is a Ps matrix.

Lemma 5.1. If M is a Ps matrix, then C < +∞.

Denote a parametric point µ := (η, γ, σ, β) where η > 0, γ > 0, σ ∈ (0, 0.5), β ∈ (0, 1).
Based on the above lemma, we have the following convergence results.

This manuscript is for review purposes only.
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Theorem 5.2. Suppose M is a Ps matrix and also positive semidefinite. Choose
x0 ∈ Ls(fr, fr(0)) with fr(x

0) ≤ fr(0). Then there exist some µ such that the follow-
ing results hold.

1) {fr(xk)} is non-increasing and {xk} is bounded.
2) Any accumulating point, say x∗, of the sequence {xk} is a stationary point of

(1.6) and thus a local minimizer by Theorem 4.7.
3) If further assume that ∇2

T∞T∞
fr(x

∗) is invertible for any T∞ ⊇ supp(x∗) and
|T∞| = s, then the whole sequence converges to x∗ and the Newton direction
is always admitted for sufficiently large k.

Remark 5.3. We give some explanations about the conditions in Theorem 5.2.
i) If x∗ is a solution to the sparse LCP, then ∇2fr(x

∗) = 0 for any r > 2 by
(3.2) and ∇2

T∞T∞
f2(x∗) � M>T∞Diag(ς)MT∞ for r = 2 by (3.3). Therefore,

the assumption that ∇2
T∞T∞

fr(x
∗) being invertible for any T∞ ⊇ supp(x∗)

and |T∞| = s does not hold for r > 2 but holds for r = 2 most likely. This
might be a reason that the sparsity constrained model with f2 outperforms
the other models with fr for r > 2, see Subsection 6.2.

ii) The choice of x0 ∈ Ls(fr, fr(0)) with fr(x
0) ≤ fr(0) in Theorem 5.2 is easy

to be satisfied. One could choose x0 = 0 for simplicity. This choice also gives
us an initial point when we implement Algorithm 5.1 in the next section.

iii) The choices of µ can be found in [41]. More precisely, σ ∈ (0, 1/2), β ∈ (0, 1),

0 < γ ≤ min{1, 2C}, 0 < η ≤ min
{
γcβ/C2, cβ, 1/(4C)

}
,

where C is given by (5.13) and c := min{1, γ(1 − 2σ)/(C − σγ)}. Note that
those parameters are dependent on the objective function fr and x0 (inde-
pendent of the iterates xk, k ≥ 1 and its limit x∗). Moreover, the conditions
of those parameters are sufficient but not necessary to guarantee the con-
vergence property. Therefore, there is no need to set them to strictly meet
those conditions in practice, not to mention c or C being difficult to calculate.
When it comes to the numerical computation, some of them are suggested to
be updated iteratively, such as γk = 10−10 if xkT c

k
= 0 and 10−4 otherwise.

6. Numerical Experiments. In this part, we implement NHTP1 described in
Algorithm 5.1 to solve the sparsity constrained complementarity problem (1.2). All
experiments were conducted by using MATLAB (R2018a) on a desktop of 8GB mem-
ory and Inter(R) Core(TM) i5-4570 3.2Ghz CPU. We terminate the proposed method
at the kth step if it meets one of the following conditions: 1) Tolη(xk; Tk) ≤ 10−6,
where Tolη(xk; Tk) is defined as (5.12); 2) |fr(xk+1) − fr(xk)| < 10−6(1 + |fr(xk)|)
and 3) k reaches the maximum number (e.g., 2000) of iterations. For parameters in
NHTP, we keep all default ones except for pars.eta, which is set as pars.eta = 5 if
n ≤ 1000 and pars.eta = 1 otherwise for all numerical experiments.

The rest of this section is organized as follows. We first give four examples to be
tested throughout the whole simulations. Since fr and S in the sparsity constrained
model (1.6) involve parameters r and s, we then run NHTP to see the performance
under different choices of r and s. Next, we provide two strategies to select a proper
s in model (1.6) in case the sparsity level s is unknown. Followed are the numerical
comparisons of NHTP and two other solvers: half thresholding projection (HTP) [35]
and extra-gradient thresholding algorithm (ETA) [33]. In conclusion, NHTP is capable

1available at https://github.com/ShenglongZhou/NHTPver2
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of producing high quality solutions with fast computational speed when benchmarked
against other methods. Finally, to testify the advantage of our new merit function fr,
we also apply NHTP to deal with the sparsity constrained model (1.6) with other merit
functions constructed by three existing famous NCP functions: φFB , φmin and φ2

II ,
see Remark 2.3. Numerical comparisons demonstrated that the sparsity constrained
model with the new merit function enables NHTP to run the fastest due to the lowest
computational complexity and produce the most accurate solutions.

6.1. Test examples. Four sparse LCP examples are taken into consideration.
The first three examples have the given ‘ground truth’ sparse solutions x∗, while for the
last one, the ‘ground truth’ sparse solutions x∗ are unknown. It is worth mentioning
there are many nonlinear complementarity problems from [24, 14, 37, 15, 40, 35], which
could be converted to the sparsity constrained optimization through φr. We had also
applied NHTP to solve those problems and got the excellent numerical performance.
However, we omit the related results to shorten the paper here.

Example 6.1 (Z-matrix). Let M and q in (1.2) be given by

M = In − ee>/n and q = e/n− e1,

where In is the identity matrix of order n. Such M is a so-called positive semidefinite
Z-matrix and widely used in statistics, which allows that (1.2) admits a unique sparse
solution x∗ = e1 [34].

Example 6.2 (SDP Matrices). In (1.2), a positive semidefinite matrix M and
q are given as follows. Let M = ZZ> with Z ∈ Rn×m whose elements are generated
from the standard normal distribution, where m ≤ n (e.g. m = n/2). Then, the
‘ground truth’ sparse solution x∗ is produced by the following pseudo Matlab codes:

x∗ = zeros(n, 1), Γ = randperm(n), x∗(Γ(1 : s)) = 0.1 + |randn(s∗, 1)|,

where s∗ is the sparsity level of the solution. We add 0.1 to generate x∗, avoiding
elements with a tiny scale. Finally, q is obtained by

qi =

{
−(Mx∗)i, x∗i > 0,
|(Mx∗)i|, x∗i = 0.

Example 6.3 (Nonnegative SDP Matrices). As stated in Theorem 4.3, we con-
sider M and q in (1.2) as follows. Let M = ZZ> with Z ∈ Rn×m whose elements are
generated from the uniform distribution between [0, 1], where m ≤ n (e.g. m = n/2).
Then, x∗ is produced as in Example 6.2 and q is obtained by

qi =

{
−(Mx∗)i, x∗i > 0,
rand(1), x∗i = 0.

Example 6.4 (Nonnegative SDP Matrices without x∗). This example is similar
to Example 6.3 but without given the ‘ground truth’ solution. Here M is generated as
in Example 6.3 but with m = n/4. Let Γ = randperm(n) and T = Γ(1 : s∗). Then, q
is obtained by

qi =

{
−rand(1), i ∈ T,
rand(1), i /∈ T.

This manuscript is for review purposes only.
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6.2. Effect of r with fixing s = s∗. The objective function fr involves a
parameter r. To see the effect of r on (1.2), we first compare NHTP solving (1.2) under
different choices of r but with fixing s = s∗ in S. Thus, for a given r, we write NHTP

as NHTPr. Let x be the solution produced by a method. We say a recovery of this
method is successful if

‖x− x∗‖ < 0.01‖x∗‖.
For each example, each instance has two deciding factors: (n, s∗). We begin with

solving Example 6.2 and Example 6.3 with fixed n = 200 but with increasing sparsity
level s∗ from 2 to 44. For each (n, s∗), we run 500 independent trials and record
the corresponding success rates which is defined by the percentage of the number of
successful recoveries over all trials.

Results for Example 6.2 are presented in Figure 1 (a), where r is set as r =
2, 2.5, 3, 3.5, 4. It can be clearly seen that success rates decrease along with r ascend-
ing. We also test other choices of r = 2.1, 2.2, 2.3, 2.4 and their results are between
the red and blue lines with similar declined trends. For Example 6.3, we show suc-
cess rates in Figure 1 (b) generated by NHTPr with r = 2, 2.1, 2.2, 2.3, 2.4. We also
tested NHTPr with r > 2.4 and corresponding success rates are smaller than the case
of r = 2.4. Again, NHTP2.0 performs much better than the others. For each s = s∗,
success rates decrease when r ascends. In conclusion, for fixed s, the smaller r is (or
for fixed r, the smaller s is), the better recovery ability of NHTPr has.
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Fig. 1: Success rates of NHTPr. n = 200, s ∈ {2, 5, · · · , 44}.

Table 1: Comparison of NHTPr with different r.

‖x − x∗‖/‖x∗‖ Time (seconds)
Example 6.1

n 5000 10000 15000 20000 25000 5000 10000 15000 20000 25000

NHTP2.0 0.00e-0 0.00e-0 0.00e-0 0.00e-0 0.00e-0 0.004 0.005 0.007 0.009 0.014
NHTP2.5 5.65e-6 5.65e-6 5.65e-6 5.65e-6 5.65e-6 0.011 0.031 0.021 0.027 0.038
NHTP3.0 2.44e-4 2.44e-4 2.44e-4 2.44e-4 2.44e-4 0.011 0.021 0.025 0.029 0.038
NHTP3.5 7.84e-4 7.84e-4 7.84e-4 7.84e-4 7.84e-4 0.014 0.022 0.028 0.039 0.045
NHTP4.0 2.28e-3 2.28e-3 2.28e-3 2.28e-3 2.28e-3 0.018 0.062 0.031 0.040 0.047

Example 6.2

NHTP2.0 5.8e-12 6.4e-10 1.1e-12 1.4e-11 1.1e-10 0.064 0.188 0.394 0.699 1.021
NHTP2.5 3.61e-5 1.63e-6 9.88e-7 4.03e-6 3.07e-5 0.113 0.381 0.788 1.567 2.431
NHTP3.0 1.17e-2 9.03e-3 1.15e-2 4.12e-3 5.49e-3 0.173 0.540 1.169 2.423 4.075
NHTP3.5 3.10e-2 1.37e-2 1.57e-2 1.13e-2 7.82e-3 0.203 0.684 1.958 3.649 6.031
NHTP4.0 4.47e-2 2.25e-2 2.43e-2 4.92e-2 3.18e-2 0.227 0.800 2.563 5.150 7.179

To see the accuracy of the solutions and the speed of NHTPr, we now test on two
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examples with higher dimensions n. For Example 6.1, we increase n from 5000 to
25000 and fix s∗ = 1. Results are presented in Table 1. Whilst for Example 6.2,
we run independent 20 trials for each (n, s∗) with n ranging from 2000 to 10000 and
fixing s∗ = 0.01n. Average results over 20 trials are presented in Table 1. Clearly,
for both examples, NHTP2 gets the most accurate solutions and runs the fastest for all
cases. In a nutshell, the smaller r is, the better NHTP performs.

6.3. Effect of s with fixing r = 2. To make results comparable, we fix r = 2.
In S, there is a parameter s that should be given in advance. However, it is difficult
to set an exact value for s in practice. To see how the choices of s affect the solution
to (1.2), we apply NHTP to address three examples with different

s ∈ {s∗, d1.25s∗e, d1.5s∗e, d1.75s∗e, 2s∗},

where dae returns the smallest integer that is no less than a. To see the recovery
ability, we first apply them to solve Example 6.2 and Example 6.3 with fixing n = 200
but with increasing sparsity level s∗ from 12 to 80. For each (n, s∗), we run 500
independent trials and record the corresponding success rates in Figure 2, where data
show that NHTP2 with s > s∗ generates better success rates than s = s∗. More
detailed, the larger s is, the higher success rates are produced by NHTP2. In addition,
it seems to be more difficult for NHTPr to solve Example 6.2 than Example 6.3. For
instance, when s = 40, NHTP2 is able to recover 80% trials for Example 6.3 while only
get 5% trials for Example 6.2.
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Fig. 2: Success rates of NHTP2. n = 200, s ∈ {12, 16, · · · , 80}.

Table 2: Comparison of NHTP2 with different s.

‖x − x∗‖/‖x∗‖ Time (seconds)
Example 6.1

s \ n 5000 10000 15000 20000 25000 5000 10000 15000 20000 25000

d1.00s∗e 0.0e-0 0.0e-0 0.0e-0 0.0e-0 0.0e-0 0.007 0.009 0.010 0.012 0.012
d1.25s∗e 0.0e-0 1.1e-16 0.0e-0 3.4e-21 0.0e-0 0.009 0.013 0.013 0.016 0.016
d1.50s∗e 0.0e-0 1.1e-16 0.0e-0 3.4e-21 0.0e-0 0.008 0.014 0.013 0.016 0.016
d1.75s∗e 0.0e-0 1.1e-16 0.0e-0 3.4e-21 0.0e-0 0.009 0.013 0.014 0.015 0.016
d2.00s∗e 0.0e-0 1.1e-16 0.0e-0 3.4e-21 0.0e-0 0.008 0.015 0.014 0.016 0.017

Example 6.2

d1.00s∗e 6.6e-13 4.8e-11 5.5e-12 7.3e-13 9.2e-11 0.05 0.19 0.38 0.68 1.10
d1.25s∗e 5.4e-13 1.6e-10 1.1e-16 1.0e-13 3.9e-15 0.06 0.19 0.41 0.70 1.10
d1.50s∗e 1.5e-14 9.2e-11 1.8e-14 5.4e-14 8.7e-16 0.06 0.19 0.42 0.71 1.13
d1.75s∗e 4.6e-11 1.2e-10 2.3e-16 6.5e-14 9.3e-16 0.06 0.21 0.43 0.74 1.16
d2.00s∗e 4.7e-11 1.2e-10 3.4e-14 2.2e-14 2.1e-15 0.06 0.21 0.45 0.77 1.21
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We now increase n from 5000 to 25000 and fix s∗ = 1 for Example 6.1. Related
results are presented in Table 2. While for Example 6.2, we again run independent
20 trials for each (n, s∗) with n ranging from 2000 to 10000 and keeping s∗ = 0.01n.
Average results over 20 trials are presented in Table 2. For both tables, it can be
clearly seen that accuracies obtained by NHTP2 under different s are similar. As
expected, smaller s enables NHTP2 to run slightly faster than larger s.

6.4. Strategies to select s. Assume the sparse LCP (1.2) admits a sparsest
solution x∗ with sparsity level s∗. As long as s∗ � n (e.g. s∗ ≤ d0.1ne), numerical
experiments in Subsection 6.3 demonstrate that NHTP achieves the sparsest solutions
with a very high possibility if we set s ≥ s∗, see Figure 2 for instance. Therefore, a
possible way to tune a proper s is designed as Algorithm 6.1, where parameter can
be set as s0 = dn/5000e, % = max{2, log10(n)} and ε = 10−8. In this way, if (1.2)
admits a solution x∗ with s∗ � n, then the worst case to achieve s ≥ s∗ is running
NHTP dlog%(s

∗/s0)e times, after which NHTP will possibly achieve the solution.

Algorithm 6.1 NHTPT: NHTP with sparsity level tuning

Initialize a small integer s0 ∈ N, % > 1, ε > 0 and x0 = 0. Set `⇐ 0.
while fr(x

`) ≥ ε do
Set s = s` and run NHTP in Algorithm 5.1 to generate a solution x`+1

Set s` = d%s`e and `⇐ `+ 1.
end while
return the solution x`.

An alternative takes advantage of other methods that do not need the prior in-
formation s, for example, Lemke’s (Lemke 2) algorithm, a well-known high standard
method to solve the LCP. Therefore, we could first run Lemke to obtain a solution
xlem and then set s = ‖xlem‖0 for NHTP. Note that ‖xlem‖0 actually provides an upper
bound of s. However, we test that this upper bound sometimes is good enough.

Now we would like to see the performance of Lemke, NHTP with the help of s =
‖xlem‖0 and NHTPT in Algorithm 6.1. We fix r = 2 in fr for the latter two methods.
Average results over 20 trials are presented in Table 3, where all methods achieve
solutions to LCP for all cases since the objective values fr are close to zeros. For
Example 6.2, where the ‘ground truth’ solutions are given and s∗ is set as d0.01ne,
three methods render solutions with sparsity levels being identical to s∗. NHTP runs
the fastest, followed by NHTPT. While Lemke consumes too much time, e.g., 78.27
seconds v.s. 7.3 seconds by NHTP when n = 25000. For Example 6.4, the ‘ground
truth’ solutions are unknown and s∗ is set as d0.5ne. Note that this large s∗ for such
example is not the sparsity level of a solution, but can be an upper bound of s. As
shown in Table 3, three methods succeed in finding very sparse solutions since the
sparsity levels ‖x‖0 are relatively small to the large s∗. In addition, NHTPT runs the
fastest and also produces the sparsest solutions, followed by NHTP.

The performance of NHTPT solving the above two examples illustrates that the
strategy in Algorithm 6.1 allows NHTP to find a proper s iteratively. However, in the
sequel, we still focus on NHTP itself instead of NHTPT for the sake of simplicity.

6.5. Numerical comparisons. Since there are very few methods that have
been proposed to process the sparse LCP, we compare NHTPr only with half thresh-
olding projection (HTP) method [35] and extra-gradient thresholding algorithm (ETA)

2available at http://ftp.cs.wisc.edu/math-prog/matlab/lemke.m
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Table 3: Comparison of Lemke, NHTP and NHTPT.

f2 Time (seconds) ‖x‖0
n Lemke NHTP NHTPT Lemke NHTP NHTPT Lemke NHTP NHTPT

Example 6.2

5000 6.63e-30 5.22e-15 3.78e-14 0.63 0.27 0.61 50 50 50
10000 1.32e-29 2.25e-14 9.35e-15 3.81 0.95 2.05 100 100 100
15000 3.09e-29 7.36e-15 3.68e-15 12.1 2.03 4.41 150 150 150
20000 4.93e-29 6.77e-15 5.39e-15 27.6 3.55 7.90 200 200 200
25000 1.09e-28 4.82e-14 3.23e-16 78.3 7.30 12.7 250 250 250

Example 6.4

5000 3.63e-09 1.50e-12 2.45e-11 0.43 0.28 0.16 25.7 25.7 1.0
10000 1.23e-08 8.35e-11 7.25e-12 1.29 0.62 0.48 21.4 21.4 2.0
15000 4.44e-09 5.44e-12 2.64e-12 2.90 1.16 1.10 10.8 10.8 2.9
20000 9.87e-09 1.12e-12 2.04e-12 5.21 1.88 1.79 6.3 6.3 4.0
25000 1.65e-08 2.14e-12 1.20e-12 30.2 4.90 2.76 5.9 5.9 4.9

[33]. We use all their default parameters and terminate both of them when ‖xk−zk‖ <
10−5 max{1, ‖xk‖} or the maximum number of iterations reach 2000. Note that both
methods make use of the first order information of the involved functions and thus
belong to the class of the first order methods. NHTP uses the origin as its default
starting point. However, as a second order method, it is suggested to start from a
local area around a solution. Therefore, we take advantage of the solution obtained by
HTP as the starting point of NHTP. Under such circumstance, write NHTPr as HNHTPr.
We thus compare NHTP2, HNHTP2, HNHTP2.5, HNHTP3, HTP and ETA. For the former four
NHTP-related methods, we choose s = s∗ in S for Example 6.1, Example 6.2 and
Example 6.3 since the sparsity of the ‘ground truth’ solution is s∗ and choose

s = min{‖xHTP‖0, ‖xETA‖0, s∗}.

for Example 6.4 since the ‘ground truth’ solution is unknown, where xHTP and xETA are
solutions produced by HTP and ETA, respectively. In such a way, NHTP could always
get solutions that are sparser than solutions produced by the last two methods.
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Fig. 3: Success rates of NHTP, HTP and ETA. n = 200, s ∈ {2, 5, · · · , 71}.

(a) Recovery ability. Similarly, to see the recovery ability, we first apply them
to solve Example 6.2 and Example 6.3 with fixing n = 200 but with increasing sparsity
level s∗ from 2 to 71. For each (n, s∗), we run 500 independent trials and record the
corresponding success rates in Figure 3, where data in subfigure (a) show that HNHTP2,
HNHTP2.5, HNHTP3 generate similar results and obtain the highest success rates, followed
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by NHTP2. While HTP and ETA come the last. When those methods are applied to
solve Example 6.3, the results in subfigure (b) present a big different picture. HNHTP2

outperforms the other five methods, followed by NHTP2, HNHTP2.5. In contrast, HNHTP3

HTP and ETA basically fail to recover solutions for cases of s ≥ 5. Overall, one could
conclude that HTP itself does not produce accurate solutions but could offer good
starting points, from which HNHTP2, HNHTP2.5, HNHTP3 benefit significantly.

(b) Accuracy and speed in the higher dimensional setting. To see the
performance of six methods on solving larger size problems, we now increase n from
5000 to 25000 and fix s∗ = 1 for Example 6.1. Related results are presented in
Table 4. For Example 6.2, we again run independent 20 trials for each (n, s∗) with
n ranging from 2000 to 10000 and keeping s∗ = 0.01n. Average results over 20 trials
are presented in Table 4. It can be clearly seen that HNHTP2 and NHTP2 get the most
accurate solutions, followed by HNHTP2.5 and HNHTP3, HTP comes the last. For the
computational time, all NHTP methods run much faster than HTP and ETA.

Table 4: Comparison of NHTPr, HTP and ETA.

‖x − x∗‖/‖x∗‖ Time (seconds)
Example 6.1

n 5000 10000 15000 20000 25000 5000 10000 15000 20000 25000

NHTP2.0 0.00e-0 0.00e-0 0.00e-0 0.00e-0 0.00e-0 0.004 0.006 0.008 0.007 0.009
HNHTP2.0 0.00e-0 0.00e-0 0.00e-0 0.00e-0 0.00e-0 0.003 0.005 0.007 0.006 0.009
HNHTP2.5 3.89e-6 3.89e-6 3.89e-6 3.89e-6 3.89e-6 0.006 0.010 0.014 0.020 0.017
HNHTP3.0 7.88e-5 7.87e-5 7.87e-5 7.87e-5 7.87e-5 0.004 0.006 0.007 0.012 0.010
HTP 3.15e-4 3.15e-4 3.15e-4 3.15e-4 3.15e-4 0.037 0.086 0.132 0.163 0.171
ETA 2.93e-4 2.93e-4 2.93e-4 2.93e-4 2.93e-4 0.077 0.193 0.282 0.498 0.378

Example 6.2

NHTP2.0 2.0e-12 2.5e-11 1.3e-12 1.0e-13 1.5e-13 0.08 0.21 0.40 0.73 1.02
HNHTP2.0 6.7e-12 1.3e-10 1.7e-11 1.0e-11 4.2e-11 0.05 0.18 0.35 0.62 0.98
HNHTP2.5 1.76e-7 8.51e-8 7.98e-8 7.95e-8 1.41e-7 0.10 0.33 0.66 1.18 1.90
HNHTP3.0 4.41e-6 1.61e-6 1.51e-6 2.71e-6 4.48e-6 0.09 0.30 0.60 1.04 1.70
HTP 2.38e-4 3.17e-4 2.94e-4 2.85e-4 4.21e-4 1.61 6.96 13.7 24.6 41.8
ETA 2.01e-4 1.76e-4 1.73e-4 1.69e-4 2.71e-4 3.07 15.1 30.9 56.6 88.4

Table 5: Comparison of NHTPr, HTP and ETA.

f2(x) Time (seconds)
n 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000

NHTP2.0 9.65e-8 1.25e-7 3.08e-8 1.22e-7 1.10e-7 0.04 0.04 0.07 0.12 0.16
HNHTP2.0 7.63e-6 1.79e-8 1.41e-8 1.29e-7 4.52e-8 0.07 0.04 0.05 0.07 0.11
HNHTP2.5 6.08e-5 2.66e-5 1.13e-8 1.69e-8 1.63e-8 0.02 0.04 0.06 0.09 0.12
HNHTP3.0 8.72e-5 3.33e-4 5.34e-4 7.07e-4 7.65e-4 0.01 0.02 0.02 0.04 0.05
HTP 9.66e-5 1.89e-4 2.86e-4 3.68e-4 4.50e-4 0.03 0.03 0.04 0.04 0.05
ETA 1.84e-4 1.94e-4 2.39e-4 2.50e-4 3.09e-4 0.27 1.51 3.65 7.24 12.2

‖∇f2(x)‖ ‖x‖0
NHTP2.0 1.14e-4 2.05e-5 1.37e-5 3.30e-5 2.60e-5 9.2 15.0 19.3 24.3 30.5
HNHTP2.0 1.93e-4 1.70e-5 2.39e-5 7.26e-5 3.67e-5 9.0 14.8 19.3 24.3 30.5
HNHTP2.5 1.86e-3 3.02e-3 3.90e-3 5.86e-3 7.58e-3 9.2 15.0 19.3 24.3 30.5
HNHTP3.0 4.85e-2 1.20e-2 7.24e-2 1.92e-1 2.74e-1 9.2 15.0 19.3 24.3 30.5
HTP 2.12e-3 4.77e-3 7.45e-3 1.04e-2 1.30e-2 11.3 27.1 44.8 64.8 81.7
ETA 3.30e-3 4.87e-3 6.68e-3 8.11e-3 1.02e-2 9.2 15.0 19.3 24.3 30.5

(c) Performance on solving examples without known solutions. Now
we compare those methods on solving Example 6.4, where solutions are unknown.
Nevertheless, they possibly admit some sparse solutions by Theorem 4.3. We run
independent 20 trials for each (n, s∗) with n ranging from 2000 to 10000 and keeping
s∗ = 0.01n. Average results are presented in Table 5. Note that since the objective
functions fr is different with different r, to make comparison reasonable, we calculate
f2(x), where x is generated by one of six methods. For Example 6.4, all NHTP-related
methods get the smallest objective function values and ‖∇f2(x)‖ with the sparsest
solutions, which means they outperform HTP and ETA in terms of the quality of so-
lutions. In addition, HTP always obtains solutions that are least sparse, but it and
HNHTP3.0 run the fastest. ETA is the slowest one again.
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6.6. Comparison of different NCP functions. For the sake of illustrating
the advantage of φr, we make use of NHTP to address the problem (1.6) with different
objective functions constructed by three NCP functions φFB , φmin and φ2

II from
Remark 2.3. The corresponding merit functions are

fFB(x) = 0.5
∑

(φFB(xi, yi))
2

= 0.5
[
‖x‖2 + ‖y‖2 + ‖x+ y‖2 − 2〈

√
x ◦ x+ y ◦ y, x+ y〉

]
,

fmin(x) = 0.5
∑

(φmin(xi, yi))
2

= 0.5[‖x+ y‖2 + ‖x− y‖2 − 2〈
√

(x− y) ◦ (x− y), x+ y〉],
fII(x) = 0.5

∑
(φ2
II(xi, yi))

2 = 0.5
[
‖(x ◦ y)+‖2 + ‖x−‖2 + ‖y−‖2

]
,

where
√
z = (

√
z1, · · · ,

√
zn)> and y = Mx+ q.

Remark 6.1. We have some comments about the above merit functions and f2.
i) Note that fFB and fmin have unbounded Hessian at (0, 0) and x = y, respec-

tively. Therefore, to make use of NHTP, we add a small scalar ε (e.g. 10−10)
to smooth

√
z, namely, replacing

√
z by

√
z + ε in fFB and fmin. Then their

gradients and Hessian are able to be derived. In addition, similar rules to
calculate ∂2f2(x) in (3.3) also lead to the generalized Hessian of fII .

ii) As shown in [41], to derive the Newton direction, each step in NHTP calculates
a submatrix ∇2

TT f(x) of the Hessian of f . It is easy to see that the Hessians
of fFB and fmin have a term M>M . Therefore, we need to compute M>T MT

and the computational complexity is about O(ns2). While for fII and f2,
the most expensive computation is M>T Diag(ζ)MT . When the point is close
to a solution to the LCP, then y ≥ 0, which together with (3.5) indicates

M>T Diag(ζ)MT = M>supp(x)TDiag(ζsupp(x))Msupp(x)T .

This means the computational complexity is about O(s3). Therefore, we
expect that fFB and fmin take longer time to do computations than fII and
f2 in each step, which is testified by the numerical experiments in the sequel.

Now we apply NHTP with fixing s = s∗ = 0.01n to process the sparsity constrained
model (1.6) with four merit functions fFB , fmin, fII and f2. To see the decline of
objective function values in each step at the beginning of the method, we report
f2(x) to make results comparable, where x is generated by NHTP solving sparsity
constrained model with one of there merit functions. For example, we record the
iterates x1, x2, · · · generated by NHTP under fFB and then calculate f2(x1), f2(x2), · · · .
Results are presented in Figure 4. It is worth mentioning that all merit functions make
NHTP get the global solutions eventually, while we only report results at first 22 or
50 iterations. The prominent feature of the four sub-figures is that the lines of f2

drop dramatically for all examples. It only takes less than five steps to reduce the
objective almost to zero. By contrast, when NHTP addresses the model with fII , much
more steps are required and the objective function values decline relatively slowly.
This phenomenon also appears for Example 6.4, where NHTP seems not to prefer the
sparsity constrained models with fFB , fmin and fII .
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Fig. 4: Objective function values f2 at first 20 or 50 iterations. n = 200, s = 2.

2000 4000 6000 8000 10000

n

10-40

10-30

10-20

10-10

f
FB

f
min

f
II

f
2

(a) Example 6.1: f2(x)

2000 4000 6000 8000 10000

n

10-3

10-2

10-1

100

101

f
FB

f
min

f
II

f
2

(b) Example 6.1: Time

2000 4000 6000 8000 10000

n

0

5

10

15

20

25

f
FB

f
min

f
II

f
2

(c) Example 6.1: Iteration

2000 4000 6000 8000 10000

n

10-18

10-16

10-14

10-12

10-10

f
FB

f
min

f
II

f
2

(d) Example 6.2: f2(x)

2000 4000 6000 8000 10000

n

10-2

10-1

100

101

102

f
FB

f
min

f
II

f
2

(e) Example 6.2: Time

2000 4000 6000 8000 10000
n

0

20

40

60

80

100

120

140

f
FB

f
min

f
II

f
2

(f) Example 6.2: Iteration

Fig. 5: Comparison of NHTP solving the sparsity constrained model with four functions.
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We now solve the sparsity constrained model with higher dimensions n, and only
present results of Example 6.1 and Example 6.2 in Figure 5, since the results of the
rest examples are similar. In terms of accuracy, f2 outperforms the others since it
obtains smallest objective function values, with the order of 10−17 from f2 v.s. 10−12

from fII in sub-figure (d). For the computational speed, it can be clearly seen that
f2 allows NHTP to run the fastest. By contrast, fFB and fmin run the slowest for
Example 6.1 and Example 6.2, respectively. More detailed, as expected, fFB and f2

for Example 6.2 in (f) (or fmin and f2 for Example 6.1 in (c)) need similar number
of iterations. However, the model with f2 makes the method take much shorter CPU
time, which means the computational complexity in each step is much lower. Finally,
again fII leads to NHTP using more iterations and thus consuming longer total time
than that from f2. In summary, among these merit functions, the sparsity constrained
model with f2 allows NHTP to run the fastest to get the most desirable solutions.

7. Conclusion. A new merit function fr has been introduced to convert the
sparse LCP into a sparsity constrained optimization, enjoying many properties, such
as being continuously differentiable for any r ≥ 2, twice continuously differentiable
for any r > 2, and convex if the matrix is positive semidefinite. The relationship
between the stationary points to the sparsity constrained optimization and solutions
to the sparse LCP has been well revealed. Numerical experiments demonstrated that
the adopted method NHTP has excellent performance to solve the sparsity constrained
optimization. Most importantly, comparing the merit functions constructed from
other existing famous NCP functions, the optimization with our merit function fr
enables NHTP to possess the lowest computational complexity, fastest convergent speed
and most desirable accuracy. As a result, through converting the sparse LCP into the
sparsity constrained optimization with the help of fr, it can be effectively solved by
NHTP. In addition, we feel that the new proposed NCP function φr might be able to
deal with the sparse nonlinear complementarity problem. We will explore more on
this topic in future.

Appendix A. Proof of theorems in Section 2 - Section 5.

A.1. Proof of Proposition 2.5. The result 1) is taken from [5, Theorem 3.3.4].
We prove the second claim. If A is a Ps-matrix, then for each nonzero x ∈ Rn with
T := supp(x) and |T | = ‖x‖0 ≤ s, ATT is a P matrix by the definition of Ps-matrix.
This implies there is an i ∈ T such that xi(Ax)i = xi(ATTxT )i > 0. Conversely, if
for each nonzero x ∈ Rn with T = supp(x) and |T | ≤ s, then there is an i such that
xi(Ax)i > 0. Clearly, such i ∈ T . Since (Ax)T = ATTxT , this statement is equivalent
to that for each given T with |T | ≤ s, for each nonzero z ∈ R|T |, there is a j such
that zj(ATT z)j > 0. Therefore, ATT is a P-matrix. Moreover, T can be any subset
of N with |T | ≤ s, so any ATT is a P-matrix, which means A is a Ps matrix.

A.2. Proof of Lemma 3.1. 1) It follows from Proposition 2.1 that φr(a, b) is
continuously differentiable. This together with xi = 〈ei, x〉 and yi = Mix + qi both
being continuously differentiable leads to φr(xi, yi) being also continuously differen-
tiable. Then the ∇fr(x) is derived by the addition and chain rules, namely,

∇fr(x) =
∑

[∂1φr(xi, yi)∇xi + ∂2φr(xi, yi)∇yi]

=
∑[(

(xi)
r−1
+ (yi)

r
+ − |(xi)−|r−1

)
ei +

(
(xi)

r
+(yi)

r−1
+ − |(yi)−|r−1

)
M>i

]
= xr−1

+ ◦ yr+ − |x−|r−1 +M>
[
xr+ ◦ yr−1

+ − |y−|r−1
]
.
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2) For r > 2, ∇fr(x) is continuously differentiable because all involved functions in
∇fr(x) are continuously differentiable. We omitted the detailed calculations here
since the addition and chain rules enable us to derive ∇2fr(x) directly.

3) When r = 2, it follows

∇f2(x) = x+◦y2
+−|x−|+M>

[
x2

+ ◦ y+ − |y−|
]

= x+ ◦ y2
+ + x−︸ ︷︷ ︸

=:g(x)

+M>
[
x2

+ ◦ y+ + y−
]︸ ︷︷ ︸

=:h(x)

.

Then from [4, Proposition 1.12] or [16, Example 2.6], we have

∂2f2(x) = ∂(∇f2(x)) ⊆ ∂g(x) + ∂h(x).

Therefore, the next step is to calculate ∂g(x) and ∂h(x). For each gi(x), we have

gi(x) =
(
x+ ◦ y2

+ + x−
)
i

=

{
xi(yi)

2
+, xi > 0,

xi, xi ≤ 0.

It is easy to obtain that the generalized Jacobian of gi(x) by

∂gi(x) =


{

2xi(yi)+M
>
i + (yi)

2
+ei
}
, xi > 0,

co
{
ei, (yi)

2
+ei
}
, xi = 0,

{ei} , xi < 0,

which implies that

∂g(x) = { 2Diag(x+ ◦ y+)M + Diag(ξ) : ξ ∈ Ωξ(x) },

where Ωξ(x) is given by (3.4). Similar reasoning also allows us to derive

∂h(x) = { 2M>Diag(x+ ◦ y+) +M>Diag(ζ)M : ζ ∈ Ωζ(x) },

where Ωζ(x) is given by (3.5). Those prove the claim.
4) For any r ≥ 2, it follows from (3.2) and (3.3) that ∇2fr(x) and any element in

∂2f2(x) are positive semidefinite if M � 0 and thus fr(x) is convex.

A.3. Proof of Theorem 3.2. 1) If M is positive semidefinite and fea(M,q)
is nonempty, it follows from [5, Theorem 3.1.2] that sol(M,q) is nonempty. Then
sol(M, q) = argminx fr(x) by (3.8). Again M being positive semidefinite results
in the convexity of fr from Lemma 3.1 4), which means a point x∗ is a solution to
minx fr(x) if and only if ∇fr(x∗) = 0, namely, a stationary point.

2) If M is a P-matrix, we can conclude from [19, Theorem 5.1, Lemma 5.2] that
a point is a solution to (1.1) if and only if it is a stationary point. Thus we have
sol(M,q)= Gf . Then by [5, Theorem 3.3.7] or [32, Theorem 1.4], (1.1) has a unique
solution for all q ∈ Rn if and only if M is a P-matrix.

A.4. Proof of Lemma 4.1. The problem (4.2) is equivalent to

min
T⊆N,|T |≤s

{
min
x
〈x,Mx+ q〉, s.t. xT ≥ 0, xT c = 0,Mx+ q ≥ 0

}
.(A.1)

Since feas(M, q) is nonempty, there are some T with T ⊆ N, |T | ≤ s such that
the inner program of (A.1) is feasible. This together with the Frank-Wolfe theorem
[11] implies that the inner program admits an optimal solution x(T ) because it is a
quadratic program being bounded from below over the feasible region. Clearly, the
optimal function value denoted as γT is unique. As the choices of T are finitely many,
e.g., T ∈ {T1, · · · , TN}, there are finitely many γT . To derive the optimal solution of
(4.2), we can pick one Ti from {T1, · · · , TN} such that the objective function value
γTi

is the smallest. Then x(Ti) is an optimal solution of (4.2), namely, Qs(M, q) is
nonempty.
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A.5. Proof of Theorem 4.2. 1) Since M is symmetric, MT having full column
rank means that {M>i : i ∈ T} are linearly independent. Then it follows from this
fact and [27, Corollary 2.8, Theorem 3.6], a global optimal solution x with ‖x‖0 = s
satisfies the following first order optimality conditions, for some u ∈ Rn, MTTxT + qT +MTTxT −MTΓuΓ = 0,

xT > 0, xT c = 0, uΓ ≥ 0, uΓc = 0,
MΓTxT + qΓ = 0, MΓcTxT + qΓc > 0.

(A.2)

where T and Γ are defined in (4.3). We now prove that T ⊆ Γ. In fact, if there
is an j ∈ T but j /∈ Γ, we have MjTxT + qj > 0 from the last inequality in (A.2),
which derives that MjTxT > −qj ≥ 0 by assumption qT ≤ 0. Now consider the first
equation in (A.2),

0 = MjTxT + qj +MjTxT −MjΓuΓ > −MjΓuΓ ≥ 0

due to M being a Z-matrix, j /∈ Γ and uΓ ≥ 0. Clearly, this is a contradiction.
Therefore, we have T ⊆ Γ, namely, MTTxT +qT = 0, which gives rise to 〈x,Mx+q〉 =
〈xT ,MTTxT + qT 〉 = 0. Thus x ∈ sol(M, q), showing x ∈ sol(M, q) ∩ S.

2) Since M is symmetric, MTΓ having full column rank means that {M>iT : i ∈ T}
are linearly independent. From this and [27, Corollary 2.8, Theorem 3.6], a global op-
timal solution x with ‖x‖0 < s satisfies the following first order optimality conditions,
for some u, v ∈ Rn,  Mx+ q +Mx− v −Mu = 0,

x ≥ 0, v ≥ 0, 〈x, v〉 = 0,
u ≥ 0, Mx+ q ≥ 0, 〈u,Mx+ q〉 = 0.

(A.3)

In addition, vT = 0 by xT > 0 and 〈x, v〉 = 0. This and the above conditions suffice
to (A.2). Then the rest of proof is the same as that of proving 1).

3) Since M is symmetric, MTΓ having full column rank means that {M>iT : i ∈ T}
are linearly independent. By 2), we obtain (A.3) which can be rewritten as the
conditions that are identical to ones presented in [2, Lemma 3.1.1]. Then M being
positive semidefinite and [2, Theorem 3.1.2] allow us to conclude the result.

A.6. Proof of Theorem 4.3. If |θ|=0, then q ≥ 0, which results in x∗ = 0
being a solution to (1.2), and thus the conclusion holds immediately. Now consider
0 < |θ| ≤ s. Clearly, Mθθ is a P matrix since M is a Ps matrix. This and Theorem 3.2
2) allow us to conclude that there is a unique solution u satisfying

u ≥ 0, Mθθu+ qθ ≥ 0, 〈u,Mθθu+ qθ〉 = 0.(A.4)

Since M ≥ 0 and qθc ≥ 0 because of 0 < |θ| ≤ s, we have Mθcθu + qθc ≥ 0. Finally,
by letting x∗θ = u and x∗θc = 0, we have x∗ ∈ (sol(M, q) ∩ S). To see the uniqueness,
assume there is another point z ∈ (sol(M, q) ∩ S) with supp(z) ⊆ θ. Clearly, zθ
satisfies (A.4). However, (A.4) only admits one solution u. Therefore, zθ = u = xθ.

A.7. Proof of Theorem 4.4. Suppose there is an unbounded subsequence of
{xk}k∈K ⊆ Ls(fr, γ) for some γ ≥ 0, where K is a subset of {1, 2, · · · }. Let the index
set J := {i ∈ N : {xki } is unbounded}, which is nonempty due to {xk}k∈K being
unbounded. Now define a bounded sequence {zk} by

zki =

{
0, i ∈ J,
xki , i /∈ J.
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Clearly, we have zk ∈ S and xk − zk ∈ S due to xk ∈ S. Now since M is a Ps matrix
(see Proposition 2.5), then there exists a τ > 0 such that maxj(zjMjz) ≥ τ‖z‖2 for
each nonzero z ∈ S. In fact, if for any τ > 0, there is a nonzero z ∈ S such that
maxj(zjMjz) < τ‖z‖2, then we have z>Mz =

∑
j zjMjz < nτ‖z‖2, which leads to

τ >
z>Mz

n‖z‖2
=
z>TMTT zT
n‖zT ‖2

≥ σmin(MTT )

n
> 0,

where σmin(MTT ) is positive due to MTT being a P matrix from M being a Ps matrix,
which is a contradiction if τ is sufficiently small. So, the above assertion indicates

τ
∑
i∈J

(xki )2 = τ‖xk − zk‖2 ≤ max
j

(xkj − zkj )Mj(x
k − zk)

= max
j∈J

(Mjx
k −Mjz

k)(xkj − zkj ) = (Mj0x
k −Mj0z

k)xkj0

≤ (|Mj0x
k|+ |Mj0z

k|)|xkj0 |,

where the first inequality comes from xk − zk ∈ S and j0 is one of the indices for
which the max is attained. This inequality divided by |xkj0 | on both sides derives that

τ |xkj0 | ≤ τ |x
k
j0 |+ τ

∑
i(6=j0)∈J

(xki )2/|xkj0 | ≤ |Mj0x
k|+ |Mj0z

k|.

Since {zk} is bounded and Mx + q is continuous, |Mj0z
k| is bounded. Because of

this, the above inequalities suffice to |Mj0x
k| → ∞ as k(∈ K)→∞. Thus, |xkj0 | and

|Mj0x
k| both tend to infinity, leading to fr(x

k) → ∞. Clearly, this contradicts the
definition of the level set that f(xk) ≤ γ.

Moreover, Os := argminx∈Sfr(x) ⊆ Ls(fr, fr(0)) is bounded as the level set is
bounded. If (sol(M, q)∩S) = ∅, then the conclusion holds readily. If (sol(M, q)∩S)
is nonempty, then for any x∗ ∈ (sol(M, q) ∩ S) it follows fr(x

∗) = 0, which means
x∗ ∈ Os due to fr(x) ≥ 0. Namely, (sol(M, q) ∩ S) ⊆ Os.

A.8. Proof of Theorem 4.5. It follows from (3.1) that

∇fr(x) = xr−1
+ ◦ yr+ − |x−|r−1 +M>

[
xr+ ◦ yr−1

+ − |y−|r−1
]
,(A.5)

where y := Mx + q. If x is a solution to (1.2), namely, x ≥ 0, y ≥ 0, 〈x, y〉 = 0 and
‖x‖0 ≤ s, then x is a stationary point due to ∇fr(x) = 0 satisfying (4.7). We now
prove the second part. For any x with T = supp(x) such that (4.7) holds, besides T+

and Γ+, let

T− := {i ∈ N : xi < 0}, Γ− := {i ∈ N : yi < 0},
α := T+ ∩ Γ+ = {i ∈ N : xi > 0, yi > 0},
β := T+ \ α = {i ∈ N : xi > 0, yi ≤ 0}.

(A.6)

Clearly, T = T−∪α∪β. From (4.7), x is a stationary point, then ∇T fr(x) = 0. Based
on the above notation, (A.5) allows us to write ∇αfr(x) as

0 = ∇αfr(x) = (xα)r−1
+ ◦ (yα)r+ − |(xα)−|r−1 +M>α [xr+ ◦ yr−1

+ − |y−|r−1],

= xr−1
α ◦ yrα +M>αα(xrα ◦ yr−1

α )−M>Γ−α|yΓ− |r−1

≥ xr−1
α ◦ yrα +M>αα(xrα ◦ yr−1

α )

=
(
Diag(yα) +M>ααDiag(xα)

)
(xr−1
α ◦ yr−1

α ) =: A(xr−1
α ◦ yr−1

α ),(A.7)
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where the inequality holds due to Γ− ∩ α 6= ∅ and −M>Γ−α|yΓ− |r−1 ≥ 0 by M being

a Z matrix. If α 6= ∅, then xα > 0, yα > 0 and A � 0 due to MTT � 0 and α ⊆ T+.
Multiplying both sides of (A.7) by ν := (xr−1

α ◦ yr−1
α )> derives 0 ≥ ν>Aν > 0, which

clearly is a contradiction. Thus α = ∅, giving rise to x+ ◦ y+ = 0 and T+ = β. Now,
T = T− ∪ T+ and ∇T fr(x) = 0 leading to

0 =

[
M>Γ−β |yΓ− |r−1

|xT− |r−1 +M>Γ−T− |yΓ− |r−1

]
=

[
0 M>Γ−T+

I M>Γ−T−

] [
|xT− |r−1

|yΓ− |r−1

]
=: Bz.(A.8)

Clearly, z > 0 from the definitions of Γ− and T−. Stiemke Theorem (see [30, Theorem
13] or [22, Theorem 7]) states that Bz = 0, z > 0 has no solution if B>u ≥ 0, u 6= 0
has a solution. By assumption, there is a nonzero v ∈ R|T+| such that MΓc

+T+
v ≥ 0,

which indicates MΓ−T+v ≥ 0 due to Γ− ⊆ Γc+. Let u = [v> 0]> 6= 0, then we have
B>u = [0 (MΓ−T+

v)>]> ≥ 0. Thus Bz = 0, z > 0 has no solution, which implies
that z = 0 and hence Γ− = T− = ∅. Those together with α = 0 enable us to obtain
x ≥ 0, y ≥ 0, x ◦ y = 0. Finally, it follows from x ∈ S owing to x satisfying (4.7) that
x ∈ sol(M, q) ∩ S.

A.9. Proof of Theorem 4.7. 1) The sufficiency is derived by (4.5) and (4.7)
easily. We now prove the necessity. Since M is positive semidefinite, fr is a convex
function from Lemma 3.1 4). As x∗ is a stationary point (4.7) with ‖x∗‖0 < s,
∇fr(x∗) = 0. Then for any x ∈ Rn, it holds

fr(x) ≥ fr(x∗) + 〈∇fr(x∗), x− x∗〉 = fr(x
∗),(A.9)

which shows the global optimality of x∗. If further fea(M, q) is nonempty, then
sol(M, q) is nonempty from Theorem 3.2 1). Now replacing x by any z ∈ sol(M, q)
in (A.9) yields 0 = fr(z) ≥ fr(x

∗) ≥ 0, which means x∗ ∈ sol(M, q) and hence
x∗ ∈ (sol(M, q) ∩ S).

2) The sufficiency is obvious by (4.5) and (4.7). By (4.7), x∗ being a stationary
point with ‖x∗‖0 = s leads to ∇T∗fr(x∗) = 0. Then for any x ∈ RT∗ , we have

fr(x) ≥ fr(x∗) + 〈∇fr(x∗), x− x∗〉 = fr(x
∗) + 〈∇T∗fr(x∗), xT∗ − x∗T∗〉 = fr(x

∗).

This proves the local optimality of x∗. If MT∗T∗ is nonsingular, then (3.5) yields

∇2
T∗T∗

f2(x∗) �MT∗T∗Diag(ζT∗)MT∗T∗ with ζi ∈ Ξ(yi, xi).

Clearly, ζT∗ > 0 due to xi 6= 0, i ∈ T∗ and hence ∇2
T∗T∗

f2(x∗) � λI, where λ is the
smallest eigenvalue of (MT∗T∗Diag(ζT∗)MT∗T∗). Then for any x ∈ RT∗ , it holds

f2(x) ≥ f2(x∗) + 〈∇f2(x∗), x− x∗〉+ (λ/2)‖x− x∗‖2 > f2(x∗),

which shows the global optimality of x∗ on RT∗ .

A.10. Proof of Lemma 5.1. Since M is a Ps matrix, then Ls(fr, fr(0)) is
bounded from Theorem 4.4 and thus x is bounded, which suffices to the boundedness
of y := Mx + q. By (3.2) we conclude that ∇2fr(x) is bounded for any r > 2. For
r = 2, from (3.3), any point in ∂2f2(x) is bounded since both Ωξ(x) and Ωζ(x) are
bounded. Namely, ∇2f2(x) is bounded as well. Therefore, there exists C < +∞ such
that σmax(∇2fr(x)) < C for any x ∈ Ls(fr, fr(0)).
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A.11. Proof of Theorem 5.2. 1) Choice of x0 ∈ Ls(fr, fr(0)) indicates that
∇2fr(x

0) � CIn by Lemma 5.1. This together with the reasoning to prove Lemma 5
in [41], in which we set T−1 ⊇ supp(x0) with |T−1| = s and replace M2s by C, derives

(A.10) 〈d0,∇fr(x0)〉 ≤ −ρ‖d0‖2 − (η/2)‖∇T−1
fr(x

0)‖2,

where ρ > 0 is a constant associated with µ and C. Then the same reasoning to proof
Lemma 7 in [41] derive that

(A.11) fr(x
1)− fr(x0) ≤ −ρ1‖d0‖2 − (η1/2)‖∇T−1fr(x

0)‖2 ≤ 0,

where ρ1 > 0, η1 > 0 are two constants associated with µ and C. So, fr(x
1) ≤

fr(x
0) ≤ fr(0), which means x1 ∈ Ls(fr, fr(0)) and because of this, ∇2fr(x

1) � CIn.
In addition, T0 ⊇ supp(x1) with |T0| = s from Algorithm 5.1. By the induction, we
can conclude that

(A.12) fr(x
k+1)− fr(xk) ≤ −ρ1‖dk‖2 − (η1/2)‖∇Tk−1

fr(x
k)‖2 ≤ 0,

for any k = 0, 1, 2, . . . . This displays the non-increasing property of {fr(xk)} and
derives fr(x

k) ≤ fr(x
0) ≤ fr(0). Consequently, xk ∈ Ls(fr, fr(0)) and it is bounded.

The proofs of 2) and 3) are the same as those of proving Lemma 7, Theorem 8 and
Theorem 9 in [41]. We omit them here.
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