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Robust Joint Hybrid Analog-Digital Transceiver

Design for Full-Duplex mmWave Multicell Systems
Ming-Min Zhao, Yunlong Cai, Min-Jian Zhao, Ying Xu, and Lajos Hanzo

Abstract—In this work, we investigate a full-duplex (FD)
millimeter wave (mmWave) multicell system, where the BS of
each cell receives signals from uplink (UL) users and transmits
signals to downlink (DL) users at the same time, over the same
frequency band. We maximize the sum rate lower bound of
the FD multicell system by jointly optimizing the digital and
analog beamforming matrices at the base station (BS) and the
transmit power levels of the UL users under total transmit power
constraints and unit-modulus constraints (due to the analog
beamforming matrices), in the presence of imperfect channel state
information (CSI). The problem under study is very challenging
due to the highly non-convexity of the objective function and
constraints. We transform this problem into an equivalent but
more tractable form and propose a novel iterative algorithm
based on the penalty dual decomposition (PDD) to solve it.
The proposed algorithm is guaranteed to converge to the set of
Karush-Kuhn-Tucker (KKT) solutions of the original problem.
Moreover, we also extend our proposed algorithm to the structure
of subarray. Simulation results validate the effectiveness of the
proposed algorithm as compared with conventional nonrobust
and half-duplex (HD) algorithms.

Index Terms—Full-duplex, mmWave communications, multi-
cell, robust transceiver design.

I. INTRODUCTION

Millimeter wave (mmWave) transmission with large-scale

antenna arrays has been regarded as a promising solution

to mitigate the severe spectrum shortage and support the

ever-increasing data traffic for the next generation wireless

communication systems [1]–[5]. However, the large number of

antennas in such a system poses two major challenges, i.e., (1)

many radio-frequency (RF) chains are needed, which increases

hardware cost and power consumption; (2) acquisition of

large-dimensional channel state information (CSI) is required,

which often incurs severe CSI errors. One promising solution
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to resolve these problems is to utilize hybrid analog-digital

(AD) beamforming architectures, i.e., combining the digital

beamformers in the baseband and the analog beamformers

in the RF domain. As a result, the hybrid beamforming

techniques have been widely investigated in the literature [6]–

[8].

Some pioneering investigations have been conducted in

[6], [9]–[15] for hybrid transmit and receive beamforming

optimization. Specifically, the authors of [9] exploited the spa-

tial structure of mmWave channels, the hybrid beamforming

problem was formulated as a sparse reconstruction problem

and a modified orthogonal matching pursuit (OMP) algorithm

was developed to solve it. In [10], the authors formulated the

hybrid transceiver design problem as a nonlinear least-square

problem and solved it iteratively in a greedy manner, where

in each step one-dimensional search with the Nelder-Mead

simplex method is employed. The work of [6] treated the

hybrid beamforming design as a matrix factorization problem

and developed an alternating minimization algorithm based

on the manifold optimization. In [11], the authors decoupled

the matrix factorization problem into a series of convex sub-

problems and also solved it via alternating optimization. In

[12], a heuristic algorithm was proposed, where the ana-

log beamformer is designed independently and then, given

the analog precoder, the other transceiver parameters are

sequentially designed. The simulation results showed that a

near fully digital beamforming performance can be obtained.

Besides, codebook-based hybrid beamforming designs were

studied in [13], [14]. Furthermore, the studies in [7], [16]–[18]

investigated the hybrid transceiver design problem in multiuser

mmWave systems.

As another promising technique for the next-generation

wireless communication systems, the full-duplex (FD) trans-

mission is able to enhance the utilization of existing spectrum

resources by enabling transmission and reception of user

signals in the same time/frequency resource block [19]–[22].

By integrating FD with mmWave communications, it can

potentially harvest the benefits of these two emerging tech-

niques to further improve spectral efficiency [23]–[25]. Due

to the presence of self-interference (SI), FD communications

was conventionally believed to be infeasible. In recent years,

a number of breakthroughs in hardware design have been

achieved to show that SI can be canceled with an acceptable

level of residual SI [26], [27], which enables the feasibility

of FD transmissions. However, in order to fully exploit the

potential performance gain of FD communications, the impact

of the interference that is caused by FD operations should

be taken into consideration. Therefore, more sophisticated
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interference management techniques need to be carefully de-

veloped. Recently, a number of studies have been proposed

to handle interference and enable the FD-based mmWave

communications [28]–[33]. To be specific, in [28], the authors

developed adaptive self-interference cancellation and transmit

power adaptation algorithms to enhance the energy efficiency

of FD mmWave relaying systems. The study of [29] proposed

the use of FD relays in mmWave communication for wireless

backhaul links between the cells. The authors of [30] studied

FD relay selection and power allocation schemes for mmWave

device-to-device communications. In order to enlarge the

range of mmWave transmissions, the work of [31] employed

multiple FD buffered relays and analyzed the overall network

performance. In [32], a quality-of-service (QoS)-aware FD

concurrent scheduling algorithm was proposed to maximize

the number of flows under the QoS requirements. In addition,

the authors of [33] investigated the joint design of hybrid AD

beamformers in FD mmWave communications.

Most of the aforementioned studies are based on perfect

CSI, however, this condition can hardly to be true in prac-

tice due to various factors such as estimation/quantization

errors, pilot contamination, feedback delays, etc. Therefore,

developing robust hybrid AD transceivers for FD mmWave

systems has attracted great attention recently [34]–[36]. In

[34], the authors designed the transceivers based on imperfect

CSI in a mmWave amplify-and-forward (AF) relay system.

In particular, they derived an approximation of the average

received signal-to-noise-ratio (SNR) as the objective func-

tion, and developed an OMP-based algorithm. The work of

[35] considered the imperfection of loopback self-interference

knowledge and proposed a sparse approximation technique

to reduce the hardware complexity. In [36], a robust joint

transceiver algorithm was proposed for a FD mmWave MIMO

relay system in the presence of stochastic CSI errors.

However, to the best of our knowledge, the robust designs

for FD mmWave multicell systems with imperfect CSI have

not been reported yet. To fill this gap, in this work, we study

the robust joint hybrid transceiver design problem in such an

important system with serious interference and CSI errors.

Specifically, we assume that the base station (BS) of each

cell in the system enables transmission and reception of user

signals in the same time/frequency resource block. To proceed,

we first derive the worst-case sum rate expression for the con-

sidered mmWave multicell system, and then jointly optimize

the hybrid transmit and receive beamforming matrices of the

BSs and the transmit power levels of the uplink (UL) users,

in order to maximize the worst-case sum rate under transmit

power constraints and the unit-modulus constraints on the ele-

ments of analog beamforming matrices. This problem is very

challenging due to the highly non-convex objective function

and constraints, and we propose to transform this problem into

an equivalent but more tractable form by introducing auxiliary

variables and utilizing the weighted minimum mean squared

error (WMMSE) method [37]. Then, this resultant problem is

tackled by a novel penalty dual decomposition (PDD)-based

algorithm, which consists of two loops. The inner loop of the

proposed algorithm solves the augmented Lagrangian (AL)

problem of the converted problem to some accuracy via a

block successive upper-bound minimization (BSUM) method

[38], while the outer loop deals with the updating of the

dual variables and a certain penalty parameter. We show that

closed-form solutions can be obtained in each step of the

proposed algorithm and the convergence to the set of Karush-

Kuhn-Tucker (KKT) solutions of the original problem can be

guaranteed. Moreover, we extend the proposed algorithm to the

subarray structure. Simulation results validate the effectiveness

of the proposed algorithm, compared to the conventional half-

duplex (HD) algorithms.

The main contributions of this work can be summarized as

follows:

(1) We propose a novel FD mmWave multicell system and

formulate an important hybrid transceiver design problem in

the presence of imperfect CSI.

(2) To address this challenging problem, we propose a

PDD-based algorithm, which is guaranteed to converge to

the set of KKT solutions of the original problem. To derive

the proposed algorithm, we introduce a method to handle

the nontrivial unit-modulus constraints caused by the hybrid

beamforming structure and to facilitate distributed updating of

the optimization variables by properly introducing auxiliary

variables.

(3) Extension of the proposed algorithm to the subarray

structure is also provided together with a detailed complexity

analysis. Furthermore, elaborated simulations are conducted

to show the advantages of the proposed algorithms over the

conventional schemes.

The rest of this paper is organized as follows. In Sections

II, we present the investigated system model and formulate

the problem of interest. In Section III, we first provide a brief

introduction of the PDD optimization framework, and then

introduce our PDD-based robust joint transceiver algorithm,

together with detailed complexity analysis. In Section IV, we

extend the proposed algorithm to the subarray structure. Sec-

tion V presents numerical results to evaluate the performance

of the proposed algorithm and Section VI concludes the paper.

Notations: E{·} denotes the expectation operator. Scalars,

vectors and matrices are respectively denoted by lower case,

boldface lower case and boldface upper case letters. Tr(A),
AT , A∗, AH , A−1 and A† represent the trace, transpose, con-

jugate, conjugate transpose, inverse and pseudo-inverse of ma-

trix A, respectively. A(a, :) (A(:, b)) denotes a vector obtained

by selecting the a-th row (b-th column) of A and A(a, b)
represents the element on the a-th row and b-th column. Aa:b

denotes the collection of variables with subscripts a to b. The

operators diag{a1, · · · , aM} and blkdiag{a1, · · · ,aM} de-

note diagonal matrices with {a1, · · · , aM} and {a1, · · · ,aM}
denoting the diagonal elements and vectors. The operator

vec(·) stacks the elements of a matrix in one long column

vector. By I and 0, we denote the identity and zero matrices

with appropriate dimensions. ‖ · ‖, | · | and det(·) denote

the Euclidean norm of a complex vector/matrix, the absolute

value of a complex scalar and the determinant of a matrix.

C
m×n(Rm×n) denotes the space of m × n complex (real)

matrices. ℜ{·} and ℑ{·} respectively denote the real part and

imaginary part of their arguments. The set difference is defined

as A\B , {x|x ∈ A, x /∈ B}. The operator PΩ{A} ,
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min
B∈Ω

‖A−B‖ denotes the projection of a point A onto a set

Ω, if the set Ω is a sphere of radius r centered at the origin,

i.e., Ω = {A|‖A‖ ≤ r}, then PΩ{A} = r A

‖A‖+max(0,r−‖A‖) .

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we provide the system model and formulate

the considered worst-case sum rate maximization problem.

A. System Model

Let us consider a FD mmWave multiuser multicell system,

which consists of N cells and each cell contains one FD BS, K
downlink (DL) users and J UL users, as shown in Fig. 1. The

BS is equipped with Nt transmit antennas, Nr receive antennas

and NRF (NRF ≤ min{Nt, Nr}) RF chains for the transmit

and receive processing, respectively. Each user operates in the

HD mode and is equipped with a single antenna. To reserve

enough degrees of freedom for signal detection, we assume

that max{K,J} ≤ NRF is satisfied. Furthermore, in order

to reduce hardware complexity, we consider a hybrid AD

beamforming architecture for the BSs [12].

…
BS 1 BS N

DL k,1 UL j,1 DL k,N UL j,N

… …

Downlink desired signal

Uplink desired signal

Interference

Fig. 1: Millimeter wave FD multicell system

Let x(n) = [x
(n)
1 , · · · , x(n)

K ]T ∈ C
K×1 represent the

transmit symbol vector at BS n, n ∈ N , {1, · · · , N},

whose elements are statistically independent with zero mean

and E{|x(n)
k |2} = 1, k ∈ K , {1, · · · ,K}. Then, the

transmit signal vector at the BS in cell n, can be written

as x
(n)
B = V

(n)
RF V

(n)
BB x(n), where V

(n)
BB ∈ C

NRF×K and

V
(n)
RF ∈ C

Nt×NRF represent the digital and analog transmit

beamforming matrices at BS n, respectively. Similarly, let

s(n) = [s
(n)
1 , · · · , s(n)J ]T represent the J × 1 transmit symbol

vector of the UL users in cell n, whose elements are also

statistically independent with zero mean and E{|s(n)j |2} =

1, j ∈ J , {1, · · · , J}. The transmit signal at the j-th UL

user in cell n can be written as y
(n)
j =

√

P
(n)
j s

(n)
j , where

P
(n)
j denotes the transmit power of the j-th UL user.

The received signal at the k-th DL user in cell n can be

written as

y
(n)
k =

∑

m∈N

h
(n,m)H
k V

(m)
RF V

(m)
BB x(m)

︸ ︷︷ ︸

received signal from the BSs

+
∑

m∈N

∑

j∈J

c
(n,m)
k,j

∗
√

P
(m)
j s

(m)
j

︸ ︷︷ ︸

the UL-to-DL interference

+n
(n)
k ,

(1)

where h
(n,m)
k ∈ C

Nt×1 represents the channel vector between

BS m and the k-th DL user in cell n, c
(n,m)
k,j ∈ C

1×1 denotes

the channel coefficient between the j-th UL user in cell m
and the k-th DL user in cell n, and n

(n)
k is the channel noise

at user k with zero mean and variance E{|n(n)
k |2} = σ2

k.

The received signal at BS n can be written as

y
(n)
BS =

∑

m∈N

∑

j∈J

g
(n,m)
j

√

P
(m)
j s

(m)
j

+
∑

m∈N

F(n,m)V
(m)
RF V

(m)
BB x(m) + n

(n)
b ,

(2)

where g
(n,m)
j ∈ C

Nr×1 denotes the channel vector between

the j-th UL user in cell m and BS n, F(n,m) ∈ C
Nr×Nt

is the channel matrix between BS m and BS n, and n
(n)
b

represents the complex circular Gaussian noise vector at BS n

with zero mean and covariance E{n(n)
b n

(n)H
b } = σ2

BSI. Based

on certain interference cancellation techniques, we assume that

the intracell self-interference of the BSs can be eliminated

[39]. As a result, the processed signal at BS n can be written

as

r
(n)
BS =U

(n)H
BB U

(n)H
RF

(
∑

m∈N

G(n,m)
√

P(m)s(m)

︸ ︷︷ ︸

received signal form the UL users

+
∑

m∈N\n

F(n,m)V
(m)
RF V

(m)
BB x(m)

︸ ︷︷ ︸

the DL-to-UL interference

+n
(n)
b

)

,

(3)

where U
(n)
RF ∈ C

Nr×NRF represents the analog receive beam-

forming matrix at BS n, U
(n)
BB ∈ C

NRF×J represents the

digital receive beamforming matrix, and we have G(n,m) =

[g
(n,m)
1 , · · · ,g(n,m)

J ] and P(m) = diag{P (m)
1 , · · · , P (m)

J }.

By taking the CSI errors into consideration, the channel

matrix between BS m and the DL users in cell n, i.e.,

H(n,m) = [h
(n,m)
1 , · · · ,h(n,m)

K ], can be expressed as

H(n,m) = Ĥ(n,m) +∆H(n,m), (4)

where Ĥ(n,m) = [ĥ
(n,m)
1 , · · · , ĥ(n,m)

K ]H denotes the estimated

channel matrix and ∆H(n,m) = [∆h
n,m
1 , · · · ,∆h

(n,m)
K ]H

represents the corresponding channel error matrix.1 In this

work, ∆H(n,m) is assumed to be independent of Ĥ(n,m)

and satisfies ∆H(n,m) ∼ CN (0, σ2
hI), where σ2

h denotes the

variance of CSI errors. Similarly, the channel matrices between

the BSs {F(n,m)}, the channel matrices between the BSs and

the UL users {G(n,m)}, as well as the channel coefficients

between the UL users and the DL users {c(n,m)
k,j } can be

modeled as follows:

F(n,m) = F̂(n,m) +∆F(n,m), ∆F(n,m) ∼ CN (0, σ2
fI), (5)

G(n,m) = Ĝ(n,m) +∆G(n,m), ∆G(n,m) ∼ CN (0, σ2
gI),

(6)

1In practice, the CSI of mmWave communication systems can be obtained
by employing certain compressed sensing channel estimation algorithms, such
as those in [40], [41], and the resulting CSI errors obey a multivariate Gaussian
distribution under the case of additional Gaussian noise.
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c
(n,m)
k,j = ĉ

(n,m)
k,j +∆c

(n,m)
k,j , ∆c

(n,m)
k,j ∼ CN (0, σ2

c ). (7)

Furthermore, in this work, we primarily focus on the so called

coordinated beamforming scheme, where a central processing

(CP) node collects all the estimated CSI, computes the re-

quired variables and then distributes them to the respective

nodes. This is accomplished by exchanging the CSI informa-

tion between the nodes through backhaul links [21], [42], [43].

B. Problem Formulation

Let us first derive the deterministic lower bound (DLB)

of the sum rate at the user side. By expanding the mutual

information [44], [45] of user k into differential entropy, we

obtain

I(x(n)
k ; y

(n)
k |Ĥ(n), Ĉ(n)) =H(x

(n)
k |Ĥ(n), Ĉ(n))

−H(x
(n)
k |y(n)k , Ĥ(n), Ĉ(n)),

(8)

where Ĥ(n) , {Ĥ(n,1), · · · , Ĥ(n,N)} and Ĉ(n) ,

{c(n,m)
k,j }∀k,j,m. It can be seen that H(x

(n)
k |Ĥ(n), Ĉ(n)) be-

comes log(πe) [46], in order to obtain an upper bound for

H(x
(n)
k |y(n)k , Ĥ(n), Ĉ(n)), we can rewrite (1) as follows:

y
(n)
k =

∑

m∈N

ĥ
(n,m)H
k V

(m)
RF V

(m)
BB x(m)

+
∑

m∈N

∑

j∈J

ĉ
(n,m)∗
k,j

√

P
(m)
j s

(m)
j

+
∑

m∈N

∆h
(n,m)H
k V

(m)
RF V

(m)
BB x(m)

+
∑

m∈N

∑

j∈J

∆c
(n,m)∗
k,j

√

P
(m)
j s

(m)
j + n

(n)
k .

(9)

Using the fact that the entropy of a random variable

with given variance is upper-bounded by the entropy of

a Gaussian random variable with the same variance [46],

H(x
(n)
k |y(n)k , Ĥ(n), Ĉ(n)) can be upper bounded by the en-

tropy of a Gaussian random variable with variance be-

ing E
{x

(n)
k

,n
(n)
k

,∆H(n,m),∆c
(n,m)
k,j

}

(
(x

(n)
k − u

(n)∗
k y

(n)
k )(x

(n)
k −

u
(n)∗
k y

(n)
k )∗|Ĥ(n), Ĉ(n)

)
, where u

(n)∗
k y

(n)
k is the (linear)

MMSE estimation of x
(n)
k . Then, it can be observed that the

following inequality holds:

H(x
(n)
k |y(n)k , Ĥ, Ĉ)

≤ log

(

πe

(

1−
|ĥ(n,n)H

k V
(n)
RF V

(n)
BB,k|2

|ĥ(n,n)H
k V

(n)
RF V

(n)
BB,k|2 +Υ

(n)
k

))

,
(10)

where

Υ
(n)
k ,

∑

m∈N\n

∑

i∈K

|ĥ(n,m)H
k V

(m)
RF V

(m)
BB,i|2

+
∑

m∈N

∑

i∈K

σ2
hTr(V

(m)
RF V

(m)
BB,iV

(m)H
BB,i V

(m)H
RF )

+
∑

k′∈K\k

|ĥ(n,n)H
k V

(n)
RF V

(n)

BB,k′ |2

+
∑

m∈N

∑

j∈J

|ĉ(n,m)
k,j |2P (m)

j +
∑

m∈N

∑

j∈J

σ2
cP

(m)
j

︸ ︷︷ ︸

average UL-to-DL interference power

+σ2
k.

(11)

Hence, by plugging (10) into (8), we can obtain the DLB of

mutual information for user k as follows:

I(x(n)
k ; y

(n)
k |Ĥ,Ĉ) ≥ R̃

(n,k)
DLB ({V(n)

RF ,V
(n)
BB ,P(n)})

, log

(

1 +
|ĥ(n,n)H

k V
(n)
RF V

(n)
BB,k|2

Υ
(n)
k

)

.
(12)

By following a similar procedure, we can have the DLB of

the sum rate at BS n, which can be expressed as

R̄
(n)
DLB({U

(n)
RF ,P(n)})

, log det
(

I+U
(n)H
RF Ĝ

(n,n)
P(n)Ĝ(n,n)HU

(n)
RF (Υ

(n)
BS )−1

)

,

(13)

where

Υ
(n)
BS , U

(n)H
RF

(
∑

m∈N\n

Ĝ(n,m)P(m)Ĝ(n,m)H

+
∑

m∈N\n

F̂(n,m)V
(m)
RF V

(m)
BB V

(m)H
BB V

(m)H
RF F̂(n,m)H

︸ ︷︷ ︸

(a)

+
∑

m∈N\n

σ2
fTr
(
V

(m)
RF V

(m)
BB V

(m)H
BB V

(m)H
RF

)
I

︸ ︷︷ ︸

(b)

+
∑

m∈N
σ2
gTr(P

(m))I+ σ2
BSI
)

U
(n)
RF ,

(14)

and (a)+(b) denotes the average DL-to-UL interference power.

In this work, we aim to maximize the sum of the lower

bounds of the mutual information over all users and cells

by optimizing the hybrid AD beamforming matrices at the

BSs and the transmit power levels of the UL users, where the

optimization problem can be formulated as follows:

max
{χ(n)\U

(n)
BB

}

∑

n∈N

∑

k∈K

R̃
(n,k)
DLB +

∑

n∈N

R̄
(n)
DLB (15a)

s.t. P
(n)
j ≤ Pu, ∀j, n, (15b)

‖V(n)
RF V

(n)
BB ‖2 ≤ PB, ∀n, (15c)

|V(n)
RF (i, j)| = 1, |U(n)

RF (i, j)| = 1, ∀i, j, n, (15d)

where χ(n) , {V(n)
RF ,V

(n)
BB ,U

(n)
RF ,U

(n)
BB ,P(n)}, (15b) and

(15c) denote the power constraints of the UL users and the

BSs, and Pu and PB denote the power budgets. (15d) are

unit-modulus constraints that are due to the practical imple-

mentations of the analog transmit and receive beamformers,

i.e., using low-cost phase-shifters. Note that problem (15)

is extremely difficult to solve due to the coupling of the

AD beamformers, the unit-modulus constraints and the highly

non-convex objective function. In the following, by utilizing

the PDD optimization framework [47]–[49], we propose an

efficient robust joint transceiver algorithm to address this

problem.

III. PROPOSED ROBUST JOINT DESIGN BASED ON THE

PDD FRAMEWORK

In this section, we propose to develop a PDD-based robust

hybrid AD transceiver algorithm based on solving problem

(15). To tackle the difficulty arising from the non-convex

objective function, i.e., the DLBs of mutual information for the
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users and BSs, containing the log(·) and log det(·) terms, we

first transform it into an equivalent but simpler form and then

handle the resultant problem with the aid of the PDD method.

Note that the PDD method is a recently proposed optimiza-

tion framework [47], in which particular designs need to be

developed for a given problem. Hence, our robust transceiver

algorithm based on the PDD framework is nontrivial.

A. A Brief Introduction to the PDD Optimization Framework

In this subsection, we introduce the PDD framework in

order to expose its intrinsic idea. In general, the PDD

method can be applied to solve a family of non-convex non-

smooth optimization problems subject to non-convex coupling

constraints. More specifically, consider the following block-

structured optimization problem:

min
x∈X

f(x)

s.t. h(x) = 0,

gi(xi) ≤ 0, i = {1, 2, · · · , q},
(16)

where the optimization variable x ∈ R
Q can be decomposed

as x = (x1,x2, · · · ,xq), the feasible set X is the Cartesian

product of q closed convex sets, i.e., X ,
∏q

i=1 Xi with

Xi ∈ R
qi×1,

q∑

i=1

qi = Q and xi ∈ Xi. The objective

function f(x) is a scalar continuously differentiable function,

h(x) ∈ R
p×1 is a vector of p continuously differentiable

functions and gi(xi) ∈ R
qi×1 is a vector of qi continuously

differentiable functions. The detailed steps of the PDD method

are presented in Algorithm 1, where Step 3 employs the

BSUM method to update the primal variables, the control

parameter ηr determines how often the AL method and the

penalty method are carried out, the parameter ǫr > 0 controls

the accuracy of the BSUM method, ρr denotes the penalty

parameter and c is a fraction which should be appropriately

chosen to control the decreasing speed of the penalty param-

eter. The BSUM method invokes an iterative process to solve

the AL problem P(ρr,λr) to some accuracy ǫr starting from

x0. P(ρr,λr) is defined as follows:

min
{xi∈X̃i}

{

Lr(x) , f(x)+ (λr)Th(x)+
1

2ρr
‖h(x)‖2

}

, (17)

where X̃i , {xi|gi(xi) ≤ 0,xi ∈ Xi}. As can be seen,

the inner loop of the PDD method aims to optimize the non-

convex AL problem via the BSUM method, while in the outer

loop, the dual variables and a penalty parameter are updated.

Furthermore, if P(ρr,λr) can be solved to some accuracy ǫr

with ǫr → 0 as r → ∞, it can be proved that the limit point

of the PDD algorithm is a stationary solution to problem (16)

under a suitable constraint qualification condition. Interested

readers may refer to [47], [50] for further details.

B. Problem Transformation

In order to transform problem (15), we first resort to the

WMMSE method [37] and it can be shown that maximizing

Algorithm 1 PDD-based Algorithm for Problem (16)

1: Initialize x0, ρ0, λ0, set 0 < c < 1, r = 1.
2: repeat
3: xr = optimize(P(ρr,λr),xr−1, ǫr);
4: if ‖h(xr)‖∞ ≤ ηr then

5: λr+1 = λr + 1
ρr

h(xr), ρr+1 = ρr ,

6: else
7: λr+1 = λr , ρr+1 = cρr ,
8: end if
9: r = r + 1

10: until some termination criterion is met.

R̃
(n,k)
DLB and R̄

(n)
DLB is equivalent to minimizing the following

weighted mean squared errors (MSEs):

h(n,k)(u
(n)
k , w

(n)
k ,χ(n)) , w

(n)
k e

(n)
k − log(w

(n)
k ), (18)

g(n)(W
(n)
b ,χ(n)) , Tr(W

(n)
b E

(n)
b )− log det(W

(n)
b ), (19)

where u
(n)
k and w

(n)
k > 0 denote the virtual receive coef-

ficient and the weight factor for the k-th DL user in cell n,

respectively, and W
(n)
b ∈ C

J×J is the weight matrix for BS n.

Note that {u(n)
k }, {w(n)

k } and {W(n)
b } are introduced auxiliary

variables. e
(n)
k and E

(n)
b represent the MSEs of the k-th DL

user in cell n and BS n, respectively, which are given by

e
(n)
k , E

[

|u(n)
k y

(n)
k − s

(n)
k |2

]

= |u(n)
k |2

(
∑

m∈N
‖ĥ(n,m)H

k V
(m)
RF V

(m)
BB ‖2

+
∑

m∈N

∑

j∈K
|ĉ(n,m)

k,j |2P (m)
j +

∑

m∈N
σ2
h‖V

(m)
RF V

(m)
BB ‖2

+
∑

m∈N

∑

j∈K
σ2
cP

(m)
j + σ2

k

)

−2ℜ
(

u
(n)∗
k ĥ

(n,n)H
k V

(n)
RF V

(n)
BB ak

)

+ 1

(20)

and (21) (shown at the top of the next page), where ak =
[0k×1, 1,0(K−k)×1]

T represents a selection vector. Then, we

have the following proposition:

Proposition III.1. Problem (15) is equivalent to

min
{χ(n),u

(n)
k

,w
(n)
k

,W
(n)
b

}

∑

n∈N

∑

k∈K

h(n,k)(u
(n)
k , w

(n)
k ,χ(n))

+
∑

n∈N

g(n)(W
(n)
b ,χ(n))

s.t. (15b), (15c) and (15d),

(22)

in the sense that they have the same global optimal solution.

h(n,k)(u
(n)
k , w

(n)
k ,χ(n)) is a convex function for each set of the

variables V
(n)
RF , V

(n)
BB , P(n), u

(n)
k and w

(n)
k when the others are

given, while g(n)(W
(n)
b ,χ(n)) is a convex function for V

(n)
RF ,

V
(n)
BB , U

(n)
RF U

(n)
BB , P(n) and W

(n)
b , respectively. Moreover, if

{χ(n), u
(n)
k , w

(n)
k ,W

(n)
b } is a KKT point of problem (22), then

{χ(n)} is a KKT point of problem (15).

Proof. Please refer to Appendix A.

Since the terms of log det(·) and log(·) are replaced by the

MSE functions, which are convex in each block of variables,

the investigated problem becomes more tractable. Moreover,

according to Proposition III.1, the KKT solutions of problem

(15) can be obtained by resorting to problem (22). However,
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E
(n)
b , E

[(
U

(n)H
BB U

(n)H
RF y

(n)
BS − s(n)

)(
U

(n)H
BB U

(n)H
RF y

(n)
BS − s(n)

)H
]

= U
(n)H
BB U

(n)H
RF

( ∑

m∈N

Ĝ
(n,m)

P(m)Ĝ(n,m)H +
∑

m∈N\n

σ2
fTr
(
V

(m)
RF V

(m)
BB V

(m)H
BB V

(m)H
RF

)
I

+
∑

m∈N\n

F̂(n,m)V
(m)
RF V

(m)
BB V

(m)H
BB V

(m)H
RF F̂(n,m)H +

∑

m∈N

σ2
gTr(P

(m))I+ σ2
BSI
)

U
(n)
RF U

(n)
BB

−U
(n)H
BB U

(n)H
RF G(n,n)P(n) 1

2 −P(n) 1
2G(n,n)HU

(n)
RF U

(n)
BB + I,

(21)

it is also important to mention that the variable coupling

issue in the objective function and constraints of problem

(22) still remains. In order to decompose problem (22) and

cope with the coupling issue, we propose to introduce a set of

auxiliary variables V(n), U(n), Ṽ(n), Ṽ
(n)
RF and Ũ

(n)
RF which

satisfy V(n) = Ṽ
(n)
RF V

(n)
BB , U(n) = Ũ

(n)
RF U

(n)
BB , Ṽ(n) = V(n),

V
(n)
RF = Ṽ

(n)
RF and U

(n)
RF = Ũ

(n)
RF , respectively, then problem

(22) can be equivalently converted to

min
{ϕ(n),u

(n)
k

,w
(n)
k

,W
(n)
b

}

∑

n∈N

∑

k∈K

h̃(n,k)(u
(n)
k , w

(n)
k ,ϕ(n))

+
∑

n∈N

g̃(n)(W
(n)
b ,ϕ(n)) (23a)

s.t. P
(n)
j ≤ Pu, ∀j, n, (23b)

‖Ṽ(n)‖2 ≤ PB, ∀n, (23c)

V(n) = Ṽ
(n)
RF V

(n)
BB , U(n) = Ũ

(n)
RF U

(n)
BB ,

V(n) = Ṽ(n), V
(n)
RF = Ṽ

(n)
RF , U

(n)
RF = Ũ

(n)
RF , ∀n, (23d)

|V(n)
RF (i, j)| = 1, |U(n)

RF (i, j)| = 1, ∀i, j, n, (23e)

where ϕ(n) , {χ(n),V(n),U(n), Ṽ(n), Ṽ
(n)
RF , Ũ

(n)
RF },

h̃(n,k)(u
(n)
k , w

(n)
k ,ϕ(n)) and g̃(n)(W

(n)
b ,ϕ(n)) are obtained

by replacing the terms in h(n,k)(u
(n)
k , w

(n)
k ,χ(n)) and

g(n)(W
(n)
b ,χ(n)) involving V

(n)
RF V

(n)
BB and U

(n)
RF U

(n)
BB with

V(n) and U(n), respectively. Note that in (23d), the auxiliary

variables {V(n)} and {U(n)} denote the hybrid transmit

and receive beamforming matrices, and {Ṽ(n), Ṽ
(n)
RF , Ũ

(n)
RF }

represent the introduced redundancy copies of the variables

{V(n),V
(n)
RF ,U

(n)
RF }. The purposes of introducing these

auxiliary variables are two folds: 1) to resolve the coupling

issue such that the resulting constraints do not contain

coupling terms (except for the introduced equality constraints

(23d)); 2) to decompose the optimization variables into

different blocks such that the variables which appear in the

same constraint can be jointly optimized in one block and

the resulting subproblems can be easily solved in parallel.

The necessity and benefits of these auxiliary variables will be

introduced more clearly in the next subsection. To this end, it

can be seen that problem (23) is now in the form of problem

(16). Hence, in the following, we address problem (23) by

designing the PDD-based algorithm.

C. PDD-based Algorithm for Solving Problem (23)

It is important to mention that the key and also the main

difficulty in the PDD-based algorithm is to develop an efficient

BSUM method (in our case, it reduces to a block coordinate

descent (BCD) algorithm since no approximation is needed)

for solving the AL problem in the inner loop. Hence, the main

efforts of this subsection are devoted to developing a BCD

method to efficiently solve the AL problem associated with

problem (23), which is defined as

min
{ϕ(n),u

(n)
k

,w
(n)
k

,W
(n)
b

}

∑

n∈N

∑

k∈K
h̃(n,k)(u

(n)
k , w

(n)
k ,ϕ(n))

+
∑

n∈N
g̃(n)(W

(n)
b ,ϕ(n))

+ 1
2ρ

∑

n∈N

(

+ ‖V(n) − Ṽ
(n)
RF V

(n)
BB + ρλ

(n)
2 ‖2

+‖U(n) − Ũ
(n)
RF U

(n)
BB + ρλ

(n)
3 ‖2 + ‖V(n) − Ṽ(n) + ρλ

(n)
1 ‖2

+‖V(n)
RF − Ṽ

(n)
RF + ρλ

(n)
4 ‖2 + ‖U(n)

RF − Ũ
(n)
RF + ρλ

(n)
5 ‖2

)

s.t. (23b), (23c) and (23e),
(24)

where {λ(n)
i }, i ∈ {1, . . . , 5}, denote the Lagrange multipliers

associated with constraint (23d), and ρ denotes a penalty

parameter. In problem (24), we have dualized and penalized

the equality constraints in (23d), and then added some

constant terms to obtain the square terms. Note that the

added constants will not effect the optimality of the AL

problem. By transforming problem (23) into problem (24),

we are able to effectively tackle the equality constraints

in (23d) by properly adjusting ρ and {λ(n)
i }, while the

other constraints, i.e., (23b), (23c) and (23e), can be

addressed by directly optimizing problem (24). It can

be readily seen that the constraints of problem (24) are

separable among the design variables. Hence, we propose

to use a BCD-type algorithm to solve problem (24), where

the original optimization variables are divided into the

following three blocks: B1 = {u(n)
k ,U(n),V

(n)
BB ,V

(n)
RF , Ṽ(n)},

B2 = {V(n),P(n),U
(n)
BB ,U

(n)
RF } and B3 =

{w(n)
k , Ũ

(n)
RF , Ṽ

(n)
RF ,W

(n)
b }. Note that the variables that

are independent of each other can be categorized into one

block and optimized together with simple solutions, and the

variables that are coupled in the objective function must be

divided into different blocks. Therefore, the optimization

variables are divided into these three blocks, and we are able

to optimize one block of variables among them in each time

while keeping the others fixed. This leads to the following

three steps in each BCD iteration and as will be shown, in

each step closed-form solutions of the associated optimization

sub-problems can be obtained.

Step 1: we optimize the variables in B1 by fixing B2 and

B3. We note that problem (24) can be decomposed into five

subproblems in this case and each subproblem can be solved

independently and in parallel.
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u
(n)
k =

ĥ
(n,n)H
k V(n)ak

∑

m∈N
‖ĥ(n,m)H

k V(m)‖2 + ∑

m∈N

∑

j∈K
|ĉ(n,m)

k,j |2P (m)
j +

∑

m∈N
σ2
h‖V(m)‖2 + ∑

m∈N

∑

j∈K
σ2
cP

(m)
j + σ2

k

. (25)

(1.1) The subproblem of u
(n)
k : it can be easily seen that this

subproblem is an unconstrained quadratic program (QP). By

resorting to its first order optimality condition, we can obtain

(25), shown at the top of this page.

(1.2) The subproblem of U(n): the variable U(n) is opti-

mized by solving the following problem:

min
{U(n)}

∑

n∈N

{Tr(W(n)
b (U(n)HR(n)U(n)

−U(n)HG(n,n)P(n) 1
2 −P(n) 1

2G(n,n)HU(n)))}

+
1

2ρ

∑

n∈N

(
‖U(n) − Ũ

(n)
RF U

(n)
BB + ρλ

(n)
3 ‖2

)
,

(26)

where

R(n) ,
∑

m∈N

Ĝ
(n,m)

P(m)Ĝ(n,m)H +
∑

m∈N

σ2
gTr(P

(m))I

+
∑

m∈N\n

F̂(n,m)V(m)V(m)HF̂(n,m)H

+
∑

m∈N\n

σ2
fTr(V

(m)V(m)H)I+ σ2
BSI.

(27)

It can be observed that the above problem is fully decoupled

for each n, and it is also an unconstrained QP which can be

easily solved. By vectorizing U(n) and then checking the first

order optimality condition, the optimal solution of problem

(26) can be obtained as follows:

vec(U(n)) =
(

W
(n)T
b ⊗R(n) + 1

2ρI
)−1

(

vec(Ĝ
(n,m)

P(n) 1
2W

(n)
b ) + 1

2ρvec(Ũ
(n)
RF U

(n)
BB − ρλ

(n)
3 )
)

.

(28)

(1.3) The subproblem of V
(n)
BB : similarly, the optimal V

(n)
BB

can be obtained in parallel by

V
(n)
BB = arg min

V
(n)
BB

‖V(n) − Ṽ
(n)
RF V

(n)
BB + ρλ

(n)
2 ‖2

=
(
Ṽ

(n)H
RF Ṽ

(n)
RF

)†
(

Ṽ
(n)H
RF

(
V(n) + ρλ

(n)
2

))

.

(29)

(1.4) The subproblem of V
(n)
RF : we have the following

optimization problem:

min
{V

(n)
RF

}

∑

n∈N

‖V(n)
RF − Ṽ

(n)
RF + ρλ

(n)
4 ‖2

s.t. |V(n)
RF (i, j)| = 1, ∀i, j, n.

(30)

As can be seen, through the introduction of Ṽ
(n)
RF , problem

(30) is made fully separable for different i, j and n, i.e., in

this subproblem, all the entries in {V(n)
RF } can be updated

simultaneously. Let us express Ṽ
(n)
RF (i, j) − ρλ

(n)
4 (i, j) =

r(n)(i, j)ejφ
(n)(i,j), then the optimal solution of problem (30)

can be simply obtained as V
(n)
RF (i, j) = ejφ

(n)(i,j). In other

words, the phases of V
(n)
RF should be aligned with those of

Ṽ
(n)
RF − ρλ

(n)
4 in element-wise.

(1.5) The subproblem of Ṽ(n): the variable Ṽ(n) can be

updated by solving

min
Ṽ(n)

‖V(n) − Ṽ(n) + ρλ
(n)
1 ‖2

s.t. ‖Ṽ(n)‖2 ≤ PB.
(31)

Note that solving (31) is to find a point on a sphere centered

at the origin that minimizes the distance to the point V(n) +

ρλ
(n)
1 . Thus, its optimal solution can be obtained based on

projection, which is the following closed-from solution:

Ṽ(n) = PΩ1
{V(n) + ρλ

(n)
1 }, (32)

where Ω1 , {Ṽ(n)|‖Ṽ(n)‖2 ≤ PB}.

Step 2: in this step, we consider the optimization of B2

when all the other variables are fixed. Similar to Step 1, in

this case, problem (24) can be divided into four independent

subproblems and each subproblem can be efficiently solved as

will be shown below.

(2.1) The subproblem of V(n): the variable V(n) can be

obtained by solving the following unconstrained QP:

min
V(n)

∑

m∈N

∑

k∈K
w

(m)
k |u(m)

k |2
(

‖ĥ(m,n)H
k V(n)‖2 + σ2

h‖V(n)‖2
)

− ∑

k∈K
2w

(n)
k ℜ

(
u
(n)∗
k ĥ

(n,n)H
k V(n)ak

)

+
∑

m∈N\n

Tr
(
W

(m)
b U(m)H(F̂(m,n)V(n)V(n)HF̂(m,n)H

+σ2
fTr(V

(n)V(n)H)I)U(m)
)
+ 1

2ρ

(
‖V(n) − Ṽ(n) + ρλ

(n)
1 ‖2

+‖V(n) − Ṽ
(n)
RF V

(n)
BB + ρλ

(n)
2 ‖2

)
,

(33)

whose optimal solution is given by (by resorting to the first-

order optimality condition)

V(n) =(Z(n))−1
(

w
(n)
k u

(n)
k ĥ

(n,n)
k aTk

+
1

2ρ

(
Ṽ(n) − ρλ

(n)
1 + Ṽ

(n)
RF V

(n)
BB − ρλ

(n)
2

))

,
(34)

and

Z(n) =
∑

m∈N

∑

k∈K

w
(m)
k |u(m)

k |2(ĥ(m,n)
k ĥ

(m,n)H
k + σ2

hI)

+
∑

m∈N\n

F̂(m,n)HU(m)W
(m)
b U(m)HF̂(m,n)

+
∑

m∈N\n

σ2
fTr(U

(m)W
(m)
b U(m)H)I+

1

ρ
I.

(35)

(2.2) The subproblem of P(n): extracting the terms in

problem (24) involving P(n) results to problem (36), shown

at the top of the next page. By making the following variable
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min
{P(n)}

∑

n∈N

∑

k∈K

(

w
(n)
k (|u(n)

k |2
( ∑

m∈N

∑

j∈K

|ĉ(n,m)
k,j |2P (m)

j +
∑

m∈N

∑

j∈K

σ2
cP

(m)
j

))

+
∑

n∈N

(

Tr
(

W
(n)
b

(

U(n)H
( ∑

m∈N

Ĝ
(n,m)

P(m)Ĝ(n,m)H +
∑

m∈N

σ2
gTr(P

(m))I
)

U(n)

−U(n)HG(n,n)P(n) 1
2 −P(n) 1

2G(n,n)HU(n)
))
)

s.t. P
(n)
j ≤ Pu, ∀j, n.

(36)

substitution, i.e., q
(n)
j ,

√

P
(n)
j , it leads to an equivalent

problem given by:

min
q
(n)
j

q
(n)
d,j q

(n)2
j + [W

(n)
b U(n)HĜ

(n,n)

+ Ĝ(n,n)HU(n)W
(n)
b ]jjq

(n)
j

s.t. q
(n)2
j ≤ Pu,

(37)

where q
(n)
d,j ,

∑

m∈N

∑

k∈K w
(m)
k |u(m)

k |2(|ĉ(m,n)
k,j |2 +

σ2
c ) +

∑

m∈N [Ĝ(m,n)HU(m)W
(m)
b U(m)HĜ

(m,n)
]
jj

+
∑

m∈N Tr(U(m)W
(m)
b U(m)H)σ2

g and this problem is

naturally decoupled among different j and n. Problem (37)

is a quadratic constrained quadratic programming (QCQP)

problem with only one constraint, whose optimal solution

can be obtained in closed-form. The details are relegated to

Appendix B.

(2.3) The subproblem of U
(n)
BB : similar to subproblem (1.3),

we have the following problem:

min
U

(n)
BB

‖U(n) − Ũ
(n)
RF U

(n)
BB + ρλ

(n)
3 ‖2, (38)

and the optimal solution can be obtained accordingly, which

can be expressed as

U
(n)
BB =

(
Ũ

(n)H
RF Ũ

(n)
RF

)† (

Ũ
(n)H
RF

(
U(n) + ρλ

(n)
3

))

. (39)

(2.4) The U
(n)
RF subproblem: this subproblem can be simi-

larly addressed by following the derivation in (1.4), therefore

the details are omitted here for brevity.

Step 3: we introduce the optimization of B3 by fixing

the other variables. Accordingly, we have the following two

subproblems:

(3.1) The subproblems of w
(n)
k and W

(n)
b : we can see that

the objective function in (23) is convex w.r.t. w
(n)
k and W

(n)
b

by keeping the other variables fixed. As a result, by checking

the corresponding first order optimality conditions, we obtain

w
(n)
k =

1

ẽ
(n)
k

, W
(n)
b = (Ẽ

(n)
b )−1, (40)

where ẽ
(n)
k and Ẽ

(n)
b are obtained by replacing V

(n)
RF V

(n)
BB and

U
(n)
RF U

(n)
BB with V(n) and U(n) in (20) and (21), respectively.

(3.2) The subproblems of Ũ
(n)
RF and Ṽ

(n)
RF : since the opti-

mization subproblems of Ũ
(n)
RF and Ṽ

(n)
RF have similar struc-

tures, we focus on the update of Ũ
(n)
RF and the solution of Ṽ

(n)
RF

can be obtained similarly. The subproblem of Ũ
(n)
RF is given

by

min
Ũ

(n)
RF

‖U(n) − Ũ
(n)
RF U

(n)
BB + ρλ

(n)
3 ‖2

+ ‖U(n)
RF − Ũ

(n)
RF + ρλ

(n)
5 ‖2,

(41)

whose optimal solution is Ũ
(n)
RF = (U(n)U

(n)H
BB + U

(n)
RF −

ρλ
(n)
3 U

(n)H
BB − ρλ

(n)
5 )(U

(n)
BB U

(n)H
BB + I)−1.

To sum up, the above three updating steps are successively

performed in each iteration of the BCD method, according to

the block structure of the optimization variables. Therefore,

the inner loop of the proposed PDD-based algorithm (i.e.,

the proposed BCD method) is summarized in Algorithm

2. In the outer loop, after running Algorithm 2, we up-

date the dual variables {λi}, i ∈ {1, · · · , 5} or the penalty

parameter ρ according to the following constraint violation

(CV) condition: max
n∈N

{max{‖V(n) − Ṽ
(n)
RF V

(n)
BB ‖∞, ‖U(n) −

Ũ
(n)
RF U

(n)
BB ‖∞, ‖Ṽ(n) − V(n)‖∞, ‖V(n)

RF − Ṽ
(n)
RF ‖∞, ‖U(n)

RF −
Ũ

(n)
RF ‖∞}} ≤ ηr (see Step 4 in Algorithm 1). Specifically,

the dual variables are updated according to

λ
(n)
1,m+1 = λ

(n)
1,m + 1

ρ

(
V(n) − Ṽ(n)

)
, ∀n,

λ
(n)
2,m+1 = λ

(n)
2,m + 1

ρ

(
V(n) − Ṽ

(n)
RF V

(n)
BB

)
, ∀n,

λ
(n)
3,m+1 = λ

(n)
3,m + 1

ρ

(
U(n) − Ũ

(n)
RF U

(n)
BB

)
, ∀n,

λ
(n)
4,m+1 = λ

(n)
4,m + 1

ρ

(
V

(n)
RF − Ṽ

(n)
RF

)
, ∀n,

λ
(n)
5,m+1 = λ

(n)
5,m + 1

ρ

(
U

(n)
RF − Ũ

(n)
RF

)
, ∀n,

(42)

if the CV condition is satisfied, otherwise, we decrease the

penalty parameter by Step 7 in Algorithm 1, where 0 < c < 1
is a parameter which controls the decreasing speed of ρr. Note

that when ρr is sufficiently small, it will force the penalized

constraints to be satisfied with equality after solving problem

(24). In other words, as the iteration of the proposed PDD-

based algorithm increases, a feasible solution to problem (23)

can be obtained. Moreover, we have the following proposition

for problem (23):

Proposition III.2. Mangasarian-Fromovitz constraint qualifi-

cation (MFCQ) condition is satisfied for problem (23) at any

feasible point ∆ϕ(n) .

Proof. The detailed proof is relegated to Appendix C.

Therefore, using Proposition III.2 and following Theorem

3.1 in [47], it can be proved that the proposed PDD-based

algorithm is able to converge to a KKT solution of problem

(23). Furthermore, due to Proposition III.1, we can conclude
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that the proposed algorithm also converges to the set of KKT

solutions of problem (15).

Algorithm 2 Proposed BCD method for problem (24)

1: Define the maximum iteration number Lmax and the tolerance of accu-
racy ǫ. Initialize with a feasible point and set the iteration number l = 0.

2: repeat
3: Update B1, B2 and B3 successively in Steps 1-3.
4: l = l+ 1.
5: until The fractional difference of the objective value is less than ǫ or the

maximum number of iterations is reached, i.e., l ≥ Lmax.

D. Complexity Analysis

In this subsection, we aim to analyze the computational

complexity of the proposed PDD-based algorithm. Specifi-

cally, the computational complexity of the subproblems in

Steps 1-3 of the inner BCD method is listed in Table I,

where solving subproblem (1.2) is the most costly step in

terms of complexity order which requires O(N(NrJ)
3). On

this basis, we are able to analyze the asymptotic complexity

of the proposed algorithm when Nt, Nr, K, J , NRF and N
are close to infinity. Under this condition, one can verify that

the complexity of the proposed algorithm is on the order of

O(I1I2NN3
r J

3), where I1 and I2 denote the total number of

outer and inner iterations needed by the proposed algorithm.

TABLE I: Complexity analysis

Subproblem Complexity

Step 1

u
(n)
k

O(N2NtK)

U(n) O(N(NrJ)3)

V
(n)
BB O(N(N3

RF +N2
RFNt))

V
(n)
RF O(NNtNRF)

Ṽ(n) O(NNtK)

Step 2

V(n) O(NN3
t )

P(n) O(NN2
r J)

U
(n)
BB O(N(N2

RFNr +N3
RF))

U
(n)
RF O(NNrNRF)

Step 3

w
(n)
k

O(N2N2
t K)

W
(n)
b

O(N(N2
rK + J3))

Ũ
(n)
RF O(NN3

RF)

Ṽ
(n)
RF O(NN3

RF)

IV. EXTENSION TO THE SUBARRAY STRUCTURE

In the previous section, we investigate the robust joint

transceiver algorithm based on a fully-connected hybrid AD

processing structure, i.e., each RF chain is connected to

all the antennas. Such hybrid beamforming scheme exhibits

lower hardware complexity compared to that of a fully digital

structure. However, its complexity can be further reduced

by connecting each RF chain to a subset of antennas [1].

Thus, this subarray structure offers a potential tradeoff between

implementation cost and performance for large-scale antenna

arrays and therefore serves as a promising solution for future

mmWave cellular communications [1], [51]. In this section,

we extend the proposed PDD-based algorithm to the subarray

structure, and show that the proposed design methodology ex-

hibits high flexibility for different hybrid processing structures.

In the subarray structure, the FD BS in each cell contains

NRF RF chains for transmit and receive processing, respec-

tively, and each transmit (receive) RF chain is connected to

LV , Nt

NRF
(LU , Nr

NRF
) antennas.2 As a result, the transmit and

receive analog beamforming matrix V
(n)
RF ∈ C

NRFLV ×NRF and

U
(n)
RF ∈ C

NRFLU×NRF shows a block diagonal structure, which

can be expressed as V
(n)
RF = blkdiag{v(n)

RF,1, · · · ,v
(n)
RF,NRF

} and

U
(n)
RF = blkdiag{u(n)

RF,1, · · · ,u
(n)
RF,NRF

}, where v
(n)
RF,i ∈ C

LV ×1

and u
(n)
RF,i ∈ C

LU×1 are the analog beamforming vectors, the

entries of which follow

|v(n)
RF,i(lv)| = 1, ∀i ∈ {1, · · · , NRF}, lv ∈ {1, · · · , LV } (43)

and

|u(n)
RF,i(lu)| = 1, ∀i ∈ {1, · · · , NRF}, lu ∈ {1, · · · , LU},

(44)

respectively. Consequently, the corresponding AL problem can

be formulated as

min
{ϕ(n),u

(n)
k

,w
(n)
k

,W
(n)
b

}

∑

n∈N

∑

k∈K
h̃(n,k)(u

(n)
k , w

(n)
k ,ϕ(n))

+
∑

n∈N
g̃(n)(W

(n)
b ,ϕ(n))

+ 1
2ρ

∑

n∈N

(

+ ‖V(n) − Ṽ
(n)
RF V

(n)
BB + ρλ

(n)
2 ‖2

+‖U(n) − Ũ
(n)
RF U

(n)
BB + ρλ

(n)
3 ‖2 + ‖V(n) − Ṽ(n) + ρλ

(n)
1 ‖2

+‖V(n)
RF − Ṽ

(n)
RF + ρλ

(n)
4 ‖2 + ‖U(n)

RF − Ũ
(n)
RF + ρλ

(n)
5 ‖2

)

s.t. (23b), (23c), (43) and (44).
(45)

Note that when develop a BCD method for solving problem

(45) in the inner loop of the PDD-based algorithm, the updat-

ing rules of most of the steps are similar to the fully-connected

case. The main difference lies in solving the subproblems of

U
(n)
RF and V

(n)
RF . For illustration, we only consider the updating

of U
(n)
RF in the following, and the updating of V

(n)
RF can be

addressed similarly. The subproblem of U
(n)
RF can be expressed

as

min
U

(n)
RF

NRF∑

i=1

‖u(n)
RF,i − ũ

(n)
RF,i + ρλ

(n)
5,i ‖2

s.t. |u(n)
RF,i(lu)| = 1, ∀i, lu,

(46)

where ũ
(n)
RF,i and λ

(n)
5,i are LU × 1 vectors that are taken from

the ((i − 1)LU + 1)-th to the (iLU )-th rows and the i-th

column of the matrices Ũ
(n)
RF and λ

(n)
5 , respectively. By using a

similar technique as that in subproblem (1.4) of Section III, we

can observe that problem (46) can be globally solved and the

details are omitted here for conciseness. In this subproblem,

only NRFLU elements in U
(n)
RF need to be optimized, and the

remaining elements can be directly set to zeros.

Furthermore, similar to the complexity analysis in Sec-

tion III-D, the asymptotic complexity of the proposed PDD-

based algorithm in the subarray structure can be written

2For simplicity, we assume that Nt and Nr are divisible by NRF.
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as O
(

I1I2N (LUNRFJ)
3
)

. Note that although the proposed

algorithm in the fully-connected and subarray structures ex-

hibit the same complexity order, utilizing the subarray struc-

ture would be much simpler in practice since the variables

{V(n)
RF ,U

(n)
RF , Ṽ

(n)
RF , Ũ

(n)
RF } admit a sparse structure.

V. SIMULATION RESULTS

In this section, we present numerical results to evaluate

the performance of the proposed PDD-based robust joint

hybrid transceiver algorithm. We employ a geometric channel

model of L = 15 paths with uniform linear array antenna

configurations, which is widely used in mmWave [9], [12],

[16]. To be specific, the channel matrices between the BSs in

different cells are expressed as

F(n,m) =

√

NtNr

L

L∑

l=1

α
(n,m)
l

a(n,m)
r (φ

(n,m)
l )a

(n,m)
t (ϕ

(n,m)
l )H , ∀n,m,

(47)

where α
(n,m)
l ∼ CN (0, 1) is the complex gain of the l-th path,

φ
(n,m)
l ∈ [0, 2π) and ϕ

(n,m)
l ∈ [0, 2π) are uniformly and ran-

domly generated. Further, a
(n,m)
r (φ

(n,m)
l ) and a

(n,m)
t (ϕ

(n,m)
l )

are the normalized array response vectors at the transmitter

and receiver, respectively, which are given by

a(θ) =
1

N
[1, ejπ sin(θ), · · · , ej(N−1)π sin(θ)]T . (48)

The channel matrices H(n,m) and G(n,m) are generated in a

similar way, and the channel coefficients {c(n,m)
k,j } between the

users are assumed to follow Rayleigh fading.

We assume that there are N = 2 cells in the system, each

cell contains K = 4 DL users and J = 3 UL users, each BS

is equipped with Nt = Nr = 48 transmit/receive antennas

and NRF = 12 RF chains unless otherwise specified. For

simplicity, the noise parameters are set as σ2
k = σ2

BS = 0.01
and we let σ2

e = σ2
g = σ2

h = σ2
f = σ2

c . For the proposed

PDD-based algorithm, the initial penalty parameter ρ0 is set

to 5 and the corresponding control parameter c is set to 0.95.

Furthermore, we set ηr =
√
ςr, ς0 = 0.01 and ςr+1 = 0.8ςr.

Moreover, for practical implementation, we set the maximum

inner iteration number to 50 and the maximum outer iteration

number to 300. Note that when we already have enough

constraint violation accuracy, the convergence of the inner

loop algorithm might become slow due to a small penalty

parameter. Thus, by setting a maximum iteration number,

we can save computational resources without sacrificing any

performance based on our experience. For a given SNR value,

the power budgets of the UL users and the BS are set to

Pu = 10SNR/10σ2
k and PB = 10SNR/10Kσ2

k. For comparison,

we provide the performance of the fully digital transceiver

scheme as a benchmark. Moreover, a separate design scheme

is simulated where the analog beamforming matrices are ran-

domly generated (or by the singular vectors of the channel ma-

trices through singular value decomposition (SVD)), while the

digital beamforming matrices are optimized using the PDD-

based algorithm. The considered separate design algorithm

with the aforementioned two different analog beamforming

design strategies are referred to as Random FD and SVD FD

in the following, respectively. The computational complexity

orders of the fully digital and separate design schemes are on

the order of O(I1I2NN3
r J

3), since they are also dominated

by the procedure of updating U(n).

(a) (b)

Fig. 2: (a) Sum rate and (b) CV versus the iteration number

for the proposed PDD-based algorithm with SNR = 10 dB

and σ2
e = 0.04.

(a) (b)

Fig. 3: (a) Sum rate and (b) CV versus the iteration number

for the PDD-based algorithm in the subarray structure with

SNR = 10 dB and σ2
e = 0.04.

In Fig. 2 and Fig. 3, we illustrate the convergence behaviors

of the proposed PDD-based robust joint hybrid transceiver

algorithm under the fully-connected and subarray structures.

It can be observed from the plots that the proposed PDD-

based algorithm can converge well within a few hundreds

of iterations for both structures. Since it is not a monotonic

convergent iterative algorithm, fluctuations of the objective

value in the initial few iterations are expected. As the number

of iterations increases, the objective value tends to be con-

vergent, as can be seen from Fig. 2 (a) and Fig. 3 (a). This

phenomenon can be interpreted as follows: since the initial

penalty parameter is relatively large, thereby the solutions

obtained are not feasible solutions yet and this results in the

oscillatory behavior. Furthermore, from Fig. 2 (b) and Fig. 3
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(b), we can see that the CV tends to be retained at relatively

high values at first, when the penalty parameter gradually

decreases (i.e., the penalty 1
2ρ increases) and reaches a proper

value, the CV would drop to a practically acceptable level

rapidly, e.g., below 10−5.

Fig. 4 shows the average sum rate performance versus

different SNR levels with various numbers of RF chains, where

we set the CSI error variance to σ2
e = 0.04. We can observe

from this figure that the performance of the proposed PDD-

based algorithm with FD BSs is much better than that of its

HD counterpart with HD BSs, and the sum rate gain becomes

larger for higher SNR levels. For both FD and HD schemes,

their performance improves with the increasing of RF chains

and SNR levels. However, there is generally a performance

limit with a given number of RF chains, e.g., the sum rate

performance of the FD scheme is near saturation when the

SNR level is above 20 dB with NRF = 4. Moreover, the

FD scheme with NRF = 10 is able to achieve a very similar

performance compared with the benchmark.

Fig. 4: Sum rate performance comparison between the FD and

HD schemes with σ2
e = 0.04.

Next, we compare the performance of the robust and non-

robust designs, in terms of the average achievable sum rate.

The results are presented in Fig. 5, where the performance is

compared with different CSI error variances, i.e., σ2
e . We can

observe that the performance of the proposed robust PDD-

based algorithm and its nonrobust counterpart become closer

to that of the perfect CSI case as σ2
e decreases. However, the

robust design algorithm significantly outperforms its nonrobust

counterpart. Specifically, around 9 bits per channel use perfor-

mance gain can be achieved at σ2
e = 0.04. Furthermore, this

performance gain gets larger with the increasing of σ2
e , which

shows the superiority of the proposed PDD-based algorithm.

In Fig. 6 and Fig. 7, we investigate the sum rate performance

of the proposed algorithm versus different numbers of RF

chains and cells. One can observe from Fig. 6 that when

NRF ≥ 20, the performance of the proposed algorithm would

be near optimal, which significantly outperforms the separate

design algorithm since the latter generally requires NRF ≈
(Nt = Nr) in order to obtain near optimal performance.

Moreover, from Fig. 7 we can observe that the average sum

rate performance improves with the increasing of the number

Fig. 5: Sum rate performance comparison between the robust

and nonrobust designs with NRF = 10.

of cells. The performance gaps between PDD and the separate

design algorithms enlarge with more cells, however, the sum

rate growth rate gradually decreases due to the fact that more

cells potentially bring more interference.

Fig. 6: Sum rate performance versus the number of RF chains

for the proposed PDD-based algorithm and the separate design

algorithm with SNR = 20 dB and σ2
e = 0.04.

In Fig. 8, we demonstrate the sum rate performance

achieved by the proposed algorithm with both fully-connected

and subarray structures in the finite resolution phase-shifter

case. It can be observed that, the sum rate performance of

the proposed algorithm improves when more bits are used for

phase quantization, and this improvement shrinks as the quan-

tization level increases (i.e., with the increasing of quantization

bits B). Particularly, with the fully-connected structure, we

can almost achieve the performance of B = ∞ using eight

bits quantization. Four bits quantization is practically enough

for achieving most of the performance gain in this considered

example. While for the case of subarray structure, the number

of quantization bits can be reduced to four in order to achieve

negligible performance loss.

Finally, in Fig. 9, we investigate the rate performance of

the UL and DL achieved by the proposed algorithm versus
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Fig. 7: Sum rate performance versus the number of cells for

the proposed PDD-based algorithm and the separate design

algorithm with SNR = 20 dB, NRF = 10 and σ2
e = 0.04.

Fig. 8: Sum rate performance comparison between the fully-

connected and subarray structures with SNR = 20 dB, NRF =
12 and σ2

e = 0.04.

the UL power budget Pu. As can be seen, when Pu is small

(e.g. Pu = 0.05 × 10SNR/10σ2
k), the average sum rates of

the UL and DL are similar, however, when Pu increases

(e.g. Pu = 10SNR/10σ2
k), the average sum rate of the UL

becomes noticeably larger than that of the DL. This is mainly

due to the fact that for the DL, the UL-to-DL interference

in (1) is positively related to Pu and cannot be effectively

canceled since the DL users are only equipped with a single

antenna. However, for the UL, the impact of the DL-to-UL

interference in (3) can be compensated by properly designing

{V(n)
RF ,V

(n)
BB ,U

(n)
RF ,U

(n)
BB } and the useful signal power gets

larger with the increasing of Pu.

VI. CONCLUSION

In this paper, we considered the robust joint hybrid

transceiver design problem for a FD mmWave multicell system

with imperfect CSI. To mitigate the incurred complex inter-

ference, we formulated a worst-case sum rate maximization

problem by taking stochastic CSI errors into consideration. To

address this difficult problem, we proposed to first transform

Fig. 9: Sum rate performance comparison between the UL and

DL with SNR = 15 dB, NRF = 4 and σ2
e = 0.04.

it into an equivalent but more tractable form by properly intro-

ducing some auxiliary variables and employing the WMMSE

method. Then, a PDD-based algorithm was developed to iter-

atively solve this equivalent problem. Especially, we showed

that each subproblem in the proposed algorithm can be solved

in closed-form and it can be shown that the convergence to the

set of KKT solutions is guaranteed. Furthermore, we provided

a detailed complexity analysis of the proposed algorithm along

with its extension to the subarray structure. The simulation

results validated the effectiveness of the proposed PDD-based

algorithm and the necessity of using a robust formalism in the

presence of imperfect CSI.

APPENDIX

A. Proof of Equivalence Between Problem (15) and Problem

(22)

Since {u(n)
k }, {w(n)

k }, {U(n)
BB } and {W(n)

b } only appear

in the objective function of problem (22), therefore, we can

see that problem (22) is equivalent to problem (49), shown at

the top of the next page. As a result, by sequentially solving

problem (49) w.r.t {u(n)
k , w

(n)
k } and {U(n)

BB ,W
(n)
b }, we will

obtain an equivalent problem which is only associated with

{χ(n)\U(n)
BB }. Specifically, solving the innermost minimiza-

tion problem for {U(n)
BB ,W

(n)
b }, we can obtain

U
(n)
BB = (A(n))−1B(n), (50)

W
(n)
b = (E

(n)
b )−1, (51)

where A(n) ,
(
Υ

(n)
BS +U

(n)H
RF Ĝ

(n,n)
P(n)Ĝ(n,n)HU

(n)
RF

)
and

B(n) , U
(n)H
RF G(n,n)P(n) 1

2 . Similarly, we can obtain the

optimal solutions of {u(n)
k , w

(n)
k } by

u
(n)
k =

ĥ
(n,n)H
k V

(n)
RF V

(n)
BB,k

Υ
(n)
k + |ĥ(n,n)H

k V
(n)
RF V

(n)
BB,k|2

, (52)

w
(n)
k = (e

(n)
k )−1. (53)
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min
{χ(n)\U

(n)
BB

}

(

min
{u

(n)
k

,w
(n)
k

}

(

min
{U

(n)
BB

,W
(n)
b

}

(
∑

n∈N

∑

k∈K

h(n,k)(u
(n)
k , w

(n)
k ,χ(n)) +

∑

n∈N

g(n)(W
(n)
b ,χ(n))

)))

s.t. (15b), (15c) and (15d).

(49)

By substituting (50)-(53) back into (49), it yields the following

equivalent problem:

max
{χ(n)\U

(n)
BB

}

∑

n∈N

∑

k∈K
log

(

1− |ĥ
(n,n)H
k

V
(n)
RF

V
(n)
BB,k

|2

|ĥ
(n,n)H
k

V
(n)
RF

V
(n)
BB,k

|2+Υ
(n)
k

)−1

+
∑

n∈N
log det |(I−B(n)H(A(n))−1B(n))−1|

s.t. (15b), (15c) and (15d).
(54)

Then, by resorting to the Woodbury identity and det(I +
A1A2) = det(I+A2A1), it can be seen that (54) is equivalent

to (15), therefore, it follows that (22) and (15) are equivalent

in the sense that they have the same global optimal solution.

Furthermore, by following [37, Theorem 3] and [52, Lemma

4.1], it can be readily proved that if {χ(n), u
(n)
k , w

(n)
k ,W

(n)
b }

is a KKT point of problem (22), then {χ(n)} is a KKT point

of problem (15). This completes the proof.

B. Optimal Solution to Problem (37)

In order to simplify the notations, we define a , q
(n)
d,j , b ,

[W
(n)
b U(n)HĜ

(n,n)
+ Ĝ(n,n)HU(n)W

(n)
b ]

jj
, x , q

(n)
j and

the subscript (superscript) j (n) is neglected here without loss

of generality. Then, problem (37) can be rewritten as

min
x

ax2 + bx

s.t. x2 ≤ Pu.
(55)

The Lagrangian function of problem (55) can be expressed as

L(x, λ) = ax2 + bx+ λ(x2 − Pu), (56)

where λ denotes the dual variable. Resorting to the first-

order optimality condition ∇xL((x, λ)) = 0, we have xopt =
−0.5(b + λ)/a. According to the complimentary slackness

condition [53], we have (b+ λopt)2 = 4a2Pu, therefore, the

optimal solution can be obtained by

xopt =

{

− b
2a , if b2

4a2 ≤ Pu,

− b+λopt

2a , otherwise,
(57)

where λopt = −b+
√

Pu

4a2 .

C. MFCQ Verification for Problem (23)

According to [47], the MFCQ for problem (16) is equivalent

to verify that the following two conditions are satisfied for

any feasible solution x̂: 1) the equality constraint gradients

are linearly independent; 2) there exists a vector d such that

∇h(x̂)d = 0,∇gi,j(x̂i)
Td < 0, ∀i, ∀j ∈ A(x̂i) are satisfied,

where ∇h(x̂) is the Jacobian matrix of h(x), ∇gi,j(x̂i)
denotes the gradient of gi,j(xi) and gi,j(xi) denotes the j-th

component of gi(xi), A(x̂i) is the set that contains the indices

of active inequality constraints. In the following, we show that

they are satisfied for problem (23).

The equality constraints of problem (23) are written as

follows:
Θ

(n)
1 , V(n) − Ṽ

(n)
RF V

(n)
BB = 0,

Θ
(n)
2 , U(n) − Ũ

(n)
RF U

(n)
BB = 0,

Θ
(n)
3 , V(n) − Ṽ(n) = 0,

Θ
(n)
4 , V

(n)
RF − Ṽ

(n)
RF = 0,

Θ
(n)
5 , U

(n)
RF − Ũ

(n)
RF = 0.

(58)

Since constraints Θ
(n)
1 and Θ

(n)
2 do not contain variable

Ṽ(n) while constraint Θ
(n)
3 does, thus the gradient of the

components of Θ
(n)
3 is independent with the other equality

constraints. By a similar argument, we can see that {Θ(n)
i }, i ∈

{1, · · · , 5} are linearly independent with each other since they

all contain variables that the others do not have. Therefore, we

can conclude that the equality constraint gradients of problem

(23) are linearly independent.

Then, we are left to show that there exists

{∆
V

(n)
RF

,∆
Ṽ

(n)
RF

,∆
V

(n)
BB

,∆
U

(n)
RF

,∆
Ũ

(n)
RF

,∆
U

(n)
BB

,∆P(n) ,

∆V(n) ,∆U(n) ,∆
Ṽ(n)}, such that the following conditions

are satisfied [47, Remark C.1]:

∆
P

(n)
j

< 0, ∀j, n, (59a)

ℜ{Tr(Ṽ(n)∆H
Ṽ(n))} < 0, ∀n, (59b)

∆V(n) −∆
Ṽ

(n)
RF

V
(n)
BB − Ṽ

(n)
RF ∆

V
(n)
BB

= 0, ∀n, (59c)

∆U(n) −∆
Ũ

(n)
RF

U
(n)
BB − Ũ

(n)
RF ∆

U
(n)
BB

= 0, ∀n, (59d)

∆V(n) −∆
Ṽ(n) = 0, ∀n, (59e)

∆
V

(n)
RF

−∆
Ṽ

(n)
RF

= 0, ∀n, (59f)

∆
U

(n)
RF

−∆
Ũ

(n)
RF

= 0, ∀n, (59g)

where (59c)-(59g) are obtained by using the first-order approx-

imations of the equality constraints. By choosing ∆
V

(n)
RF

=

∆
Ṽ

(n)
RF

= −V
(n)
RF ,∆

V
(n)
BB

= −V
(n)
BB ,∆

U
(n)
RF

= ∆
Ũ

(n)
RF

=

−U
(n)
RF ,∆

U
(n)
BB

= −U
(n)
BB ,∆P(n) = −P(n),∆V(n) =

−2V(n),∆U(n) = −2U(n),∆
Ṽ(n) = −2V(n), (59) is sat-

isfied with P(n) 6= 0 and V(n) 6= 0, ∀n. Note that we here

consider only the case when (23b) and (23c) are all active.

Other cases can be similarly treated, thus we omit the details

here. This completes the verification.
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