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Abstract The use of surrogate modeling techniques to efficiently solve a single
objective optimization (SOO) problem has proven its worth in the optimization
community. However, industrial problems are often characterized by multiple con-
flicting and constrained objectives. Recently, a number of infill criteria have been
formulated to solve multi-objective optimization (MOO) problems using surro-
gates and to determine the Pareto front. Nonetheless, to accurately resolve the
front, a multitude of optimal points must be determined, making MOO problems
by nature far more expensive than their SOO counterparts. As of yet, even though
access to of high performance computing (HPC) is widely available, little impor-
tance has been attributed to batch optimization and asynchronous infill method-
ologies, which can further decrease the wall-clock time required to determine the
Pareto front with a given resolution. In this paper a novel infill criterion is de-
veloped for Generalized Asynchronous Multi-objective constrained Optimization
(GAMO), which allows multiple points to be selected for evaluation in an asyn-
chronous manner while the balance between design space exploration and objective
exploitation is adapted during the optimization process in a simulated annealing
like manner and the constraints are taken into account. The method relies on a
formulation of the expected improvement for multi-objective optimization, where
the improvement is formulated as the Euclidean distance from the Pareto front
taken to a higher power. The infill criterion is tested on a series of test cases and
proves the effectiveness of the novel scheme.
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1 Introduction

With the advent of high performance computing (HPC) it is nowadays possi-
ble to model complex systems, such as unmanned aerial vehicles (UAV), turbine
cascades and wind farms, using computationally costly simulation codes, such as
computational fluid dynamics (CFD). These complex systems are often character-
ized by the absence of a closed form: the problem is given as a black-box which
provides an output for a given input. Even though modeling has become feasible,
performing the entire design process or even carrying out an optimization on such
a system might be an unfeasible problem without the use of a proper framework,
even with access to HPC. An established method to handle this kind of prob-
lems is the introduction of an intermediate level in the form of a surrogate model,
which is constructed using a few well selected evaluations and on which the opti-
mization is performed. A well-known surrogate modeling technique is Kriging [11],
building forth on the concepts of Gaussian processes and the theorem of Bayes.
The stochastic nature of the aforementioned allows the definition of the expected
improvement, which can serve as criterion for the selection of the next point to
evaluate by balancing design space exploration and objective exploitation [11].
Control over the exploration-to-exploitation ratio during the optimization process
can be obtained through the Generalized Expected Improvement [36].

An example of a computationally challenging problem is the optimization of
UAVs (or drones). The widespread use of UAVs has become clear over recent
years. Within the extensive range of UAVs that exists nowadays, of particular
interest are those that operate at a chord-based Reynolds numbers (Rec) below
5 × 105, the condition which is referred to as low Reynolds number flow [29].
During landing, the UAV is characterized by high angles of attack and by the
appearance of a large range of frequencies in the flow. This implies that both a
small time step size and a large number of time steps is required to correctly
resolve the flow and obtain an averaged value of the quantities of interest. As
the time steps are solved sequentially, the speed-up by parallelization cannot be
increased beyond a certain limit. Optimal use of available computing power is thus
obtained by calculating multiple infill points at once. In an attempt to accelerate
the optimization procedure by reducing the number of iterations and making full
use of parallelized computational power, a multitude of infill points is selected.
This can be done in a synchronous manner [32], but with a different convergence
rate of the problem in each infill point, a part of the available computing power
might be idle, which makes an asynchronous manner more desirable.

Different methodologies exist that tackle the asynchronous selection of mul-
tiple design points, which in this case translates itself in finding multiple local
optima of infill criteria [36]. Gradient-based optimizers in combination with a
multi-start or sequential global optimization with the addition of a penalty func-
tion in the ‘global’ optimum [35] serve the purpose, but lack the elegance that
Gaussian processes have to offer. To complicate matters further, design problems
rarely see themselves translated as a single objective optimization (SOO) prob-
lem, but rather as a multitude of conflicting demands and thus a multi-objective
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optimization (MOO). Since the turn of the century a number of multi-objective
formulations of the expected improvement have been formulated which allows a
surrogate-based global multi-objective optimization [23,41,18,22,32,3].

In this paper we bring together three different concepts: the formulation of
the expected improvement for multi-objective optimization, the generalized for-
mulation of the expected improvement which allows control over the importance
of exploration and exploitation, and the ability to calculate the expected improve-
ment in an asynchronous manner. In §2 we present the concept of Kriging followed
by an overview of existing infill criteria in §3 and development of novel updating
schemes in §4. The concepts are compared and tested on a series of test cases in
§5.

2 Surrogate Modeling: Kriging

Confronted with the staggering computational cost of a single evaluation in certain
optimizations, an efficient methodology is sought to find the optimal set of design
parameters x = [xi, i = 1, ..., d]. An established methodology to answer the prob-
lem at hand is found in the field of surrogate modeling. This implies that, after
defining the objective function y(x) and the design space, a design of experiments
(DoE) is set up to select n samples in the design space, for which the objective
function is subsequently calculated and of which a surrogate is defined. This cheap
to evaluate surrogate or meta-model can thereafter be sampled to define the entire
characteristics in function of the geometric design variables and can be updated
with additional data during the optimization.

The surrogate model used in this work is Kriging, which can be seen as the sum
of a trend function and Gaussian process: Y(x) = f(x)Tβ + Z(x) with f(x) =
[fi(x), i = 1, ...,m] the vector of basis functions, β the vector of coefficients and
Z(x) a Gaussian process GP(0, cov(y(i),y(j))), with zero mean and fully described
by the covariance function cov(y(i),y(j)) = σ2cor(y(i),y(j)), where σ is the process
variance and cor(y(i),y(j)) is the correlation function between two designs and is
noted for being a function of their inputs and typically written as ψ(x(i),x(j)). Here
the Matérn covariance function is used with ν = 3/2. The trend is typically the
solution of a regression problem and the Gaussian process captures the variation
on this trend to exactly interpolate the evaluated data.

In order to determine the parameters of the covariance function, typically
referred to as hyperparameters, we maximize the likelihood L that the afore-
mentioned surrogate can reproduce the evaluated data. Solving the maximum
likelihood estimation (MLE) problem, we can define the Best Linear Unbiased
Prediction (BLUP), which allows the prediction of unsampled locations x with
respectively the predicted mean and predicted variance:

Y(x) = f(x)Tβ + ψ(x)TΨ−1(y− Fβ) (1)

s2(x) = σ2
(

1− ψ(x)TΨ−1ψ(x)

+
(
FTΨ−1ψ(x)− f(x)

)T (
FTΨ−1F

)−1 (
FTΨ−1ψ(x)− f(x)

))
(2)
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with F the n × m model matrix: Fi,j = fi(x
(j)) and Ψ the n × n correla-

tion matrix: Ψi,j = ψ(x(i),x(j)), ψ(x) = [ψ(x(1),x), .., ψ(x(n),x)] and the MLE
of the coefficient vector and the process variance respectively defined by β =
(FΨ−1F)−1FTΨ−1y and σ2 = 1

n (y− Fβ)TΨ−1(y− Fβ).
The construction of the Kriging model is performed using an open source tool-

box ooDACE (object-orientated Design and Analysis of Computer Experiments)
[4]. The maximization of the concentrated ln-likelihood function is performed
through a multi-start sequential quadratic programming (SQP) methodology.

3 Infill Criteria

3.1 Single Objective

The improvement of a predicted point on the current best evaluated point, ymin =
min(Y(X)) with X the set of all samples, is defined as (following Janusevskis et
al.’s notation [17]): I(x) = (ymin − Y (x) | Y (X) = y(X))+ with (·)+ = max(·, 0).
The stochastic nature of Kriging allows the assessment of the uncertainty in the
prediction. This can be used to define the expected improvement E[I(x)] = EI(x)
[27]:

EI(x) =

∫ ∞
−∞

I(Y)φ(Y,x)dY

=

∫ ymin

−∞
(ymin − Y)

1

s(x)
√

2π
exp

[
− (Y −Y(x))2

2s2(x)

]
dY. (3)

This leads to the well-known formula of the expected improvement, of which the
proof is given in Appendix A,

EI(x) =

{
(ymin −Y(x))Φ (u(x)) + s(x)φ (u(x)) if s > 0

0 otherwise
(4)

with Φ and φ respectively the standard normal cumulative and probability den-
sity function, φ the one-dimensional Gaussian probability density function and
u(x) = (ymin − Y(x))/s(x). Note that the first term drives the minimization of
the objective (exploitation), while the second term drives the minimization of the
uncertainty of the prediction (exploration). Alternatively, the expected improve-
ment can be formulated as

EI(x) = yminΦ (u(x))−
∫ ymin

−∞
Yφ (Y,x) dY

=

(
ymin −

∫ ymin

−∞ Yφ (Y,x) dY
Φ (u(x))

)
Φ (u(x))

=
(
ymin − CP[(x)]

)
P [(x)] . (5)

This allows a geometrical interpretation of the expected improvement: the product
of the area under the probability density function cut off by the best evaluation
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(P[I(x)]) and the distance between the centroid of the aforementioned area and
the best evaluation |ymin,CP[I(x)]| (figure 1) [40].

|ymin,CP[I(x)]|

Fig. 1: Graphical interpretation of the expected improvement, corresponding to the
product of the probability of improvenent P[I(x)] and the distance of its centroid
to the current best evaluation |ymin,CP[I(x)]|. Reproduced from Forrester et al.
[11]

Algorithm 1 Efficient Global Optimization (EGO) [20]

Require: Evaluated sampling plan (X, y(X))
Ensure: The best observation (xmin, ymin)
1: while stopping criteria are not met do
2: Estimate hyperparameters . Section 2
3: xnew = arg maxx EI(x) . Equation 4
4: X← X ∪ xnew
5: ymin ← minx(y(X))
6: xmin ← arg minx (y(X))

This infill criterion forms the basis of the well known efficient global optimiza-
tion (EGO) algorithm by Jones et al. [20] (see Algorithm 1). However, based on
the observation that Kriging is prone to an underestimation of the prediction er-
ror s caused by the assumption of a fully known parameter and hyperparameter
set, the expected improvement is prone to higher emphasis on the estimated value
[36]. Especially at earlier stages of the optimization, this may lead to the infill cri-
terion getting stuck in a possibly local optimum and overemphasizing the region
before exploring the parameter space further. To counter this phenomenon, Schon-
lau et al. [36] proposed a generalized formulation of the improvement by taking
it to a higher power, effectively deriving the generalized expected improvement
E[Ig(x)] = GEIg(x)
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GEIg(x) = sg
g∑
k=0

(−1)k
(
g

k

)
u(x)g−kTk (6)

with Tk a recursive function given by Tk = −uk−1φ(u)+(k−1)Tk−2 with T0 = Φ(u)
and T1 = −φ(u) and u = (ymin − Y(x))/s(x). Sasena et al. proposed to have g
decrease in a ‘Simulated Annealing’-like manner with the objective of attributing
more importance to objective space exploration early in the optimization and more
importance to objective exploitation later on [34]. Table 1 shows the value of g
during the optimization as proposed by Sasena et al.

Table 1: Sasena et al.’s cooling scheme [34]

Iteration 1-4 5-9 10-19 20-24 25-34 ≥ 35
g-value 20 10 5 2 1 0

In case that more computing nodes are available than the number of nodes
over which a single evaluation of the objective function can be spread, it becomes
worthwhile to determine multiple infill points at once in a synchronous or asyn-
chronous manner.

Examples of existing synchronous methods are amongst others the Clustered
Multiple Generalized Expected Improvement (CMGEI), which uses the generalized
formulation of the expected improvement and was proposed by Ponweiser et al.
[32]. In their work they cluster based on the Mahalanobis distance to select a
multitude of points to be evaluated simultaneously. A similar approach is brought
forward by Sóbester et al. [35], which relies on a multitude of local optima of the
EI criterion. Ginsbourger et al. [14] came up with the q-steps EI, in which the
design space is enhanced q-fold such that the q-steps EI optimum corresponds
to q optimal points to be filled in simultaneously. An analytical expression was
formulated by Chevalier [1] relying on Tallis’ formula. An expression of the gradient
was subsequently derived by Marmin et al. [25].

In case of an asynchronous setting, a straightforward approach is the use of
penalty functions. Schonlau et al. [36] proposed a sequential design in stages where
the global optimum of the expected improvement is sought and subsequently the
model’s prediction is added to the training set. After retraining the model, the
variance reduces locally to zero and repeating the procedure ensures that the
next infill point moves away from previously added samples. While use is made of
the stochastic nature of the surrogate model, this method relies on the assumption
that the predictor is accurate enough. Ginsbourger et al. referred to this method as
Kriging Believer (KB) and alternatively proposed a Constant Liar (CL) approach
[14]. Furthermore, the addition of an infill point and the accompanied retraining
of the model can be computationally costly. More accurate is the calculation of the
expectation of the EI (EEI [13]). However, since there is no tractable analytical
expression of the aforementioned, this is typically calculated using Monte Carlo
Integration (MCI), maintaining its expensive nature. All of the aforementioned
methods have a sequential approach and are thus in essence asynchronous updating
methods. This may become prohibitive, up to the point that not all the computing
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nodes get filled up because the calculation of a new infill point might exceed its
evaluation.

Janusevskis et al. [16,17] defined the asynchronous multi-points expected im-
provement EI(µ,λ) when µ computing nodes are evaluating the objective and λ
computing nodes are available to be filled, allowing the aforementioned methods
to be grouped:

EI(µ,λ)(Xλ) = E [min(Y(X ∪ Xµ))−min(Y(Xλ)) | Y(X) = y] (7)

with Xµ = x
(1)
b , ...,x

(µ)
b the set of parameter combinations that is currently being

evaluated and Xλ = x
(1)
a , ...,x

(λ)
a the set of parameter combinations that is to be

determined for evaluation. If µ = 0 and λ = 1 we obtain the well known EI. In case
that µ = 0 and λ ≥ 2 we obtain the earlier described q-steps EI. Janusevskis et
al.’s [16,17] proposed a mixed strategy to determine the most promising batch by
combining MCI with bounds to allow ranking of candidate points, thus reducing
the number of samples required. Here, we present a reformulation of the MCI of
q−EI (as introduced in [14]) for EI(µ,λ) (see algorithm 2). The method relies on
the numerical integration of the multivariate distribution of the µ + λ unknown
responses conditional on the observations Y(Xµ+λ) ∼ N (Y (Xµ+λ),Ψµ+λ) with
Xµ+λ = [Xµ,Xλ]T and

Ψ
(i,j)
µ+λ = ψ(X(i)

µ+λ,X
(j)
µ+λ | Y (X) = y) where i, j = 1, ..., µ+ λ. (8)

Consequently, the law of large numbers (LLN) gives us

I
(µ,λ)
sim (i) = [min(y,Mµ(i))−min(Mλ(i))]+ (9)

EI(µ,λ)(Xλ) = lim
nsim→∞

1

nsim

nsim∑
i=1

I
(µ,λ)
sim (i) (10)

with nsim the number of random sampling sets, Mµ+λ(i) = [Mµ(i),Mλ(i)]T a
(µ + λ) × 1 vector and a random sampling of Y(Xµ+λ) obtained through Kaiser
& Dickman’s method, which is a straightforward procedure relying on the con-
cepts of Principal Component Analysis (PCA) [21]. PCA states that a sample
matrix Z from a multivariate normal distribution specified by the correlation
matrix Ψµ+λ can be obtained from a linear transformation of a set of indepen-
dent, identically distributed univariates N ∼ N (0µ+λ, Iµ+λ) through Z = L ·N
with L the Cholesky decomposition of the covariance matrix L = chol(Ψµ+λ),
such that Ψµ+λ = L · LT . This leads to the following results for the sampling:
Mµ+λ = Y (Xµ+λ) +L ·N . A more extensive overview of the sampling of a mul-
tivariate normal distribution using a decomposition of its covariance matrix and
alternative methods is given in [12].

3.2 Multi-Objective

When dealing with a design problem, engineers are often confronted with conflict-
ing objectives. This issue can be resolved by creating a single objective function
which is made up out of a weighted sum of the different objectives. However, this
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Algorithm 2 Asynchronous Multi-Points Expected Improvement (EI
(µ,λ)
MC )

1: Construct Ψµ+λ . Equation 8
2: L = chol(Ψµ+λ) . Cholesky decomposition of covariance matrix
3: for i← 1, nsim do . Loop over simulation size
4: N(i) ∼ N (0µ+λ, Iµ+λ) . Sample from i.i.d. univarites
5: Mµ+λ(i) = Y (Xµ+λ) + L ·N(i) . Kaiser & Dickman’s method

6: [Mµ(i),Mλ(i)]T = Mµ+λ(i)

7: I
(µ,λ)
sim (i) = [min(y,Mµ(i))−min(Mλ(i))]+ . Equation 9

8: EI
(µ,λ)
MC = 1

nsim

∑nsim
i=1 I

(µ,λ)
sim (i) . Equation 10

only moves the problem further downstream: what weight is attributed to which
objective? An alternative is to determine the (hyper-)surface of non-dominated ob-
jectives for which we cannot improve on one without deteriorating on the other(s).
This surface is typically referred to as the Pareto front [9]. During the 90s a num-
ber of multi-objective evolutionary algorithms (MOEAs) were proposed to solve
this issue, amongst others Fonseca and Flemings’s MOGA [8], Srinivas and Deb’s
NSGA [37], Horn et al.’s NPGA [15], Zitzler and Thiele’s SPEA [44], Knowles and
Corne’s PAES [24] and at its pinnacle Deb et al.’s NSGA-II [5], to name but a
few. While many of these algorithms have proven their abilities, their stochastic
nature leads to a very high computational cost if the objectives are expensive to
evaluate.

A solution of the aforementioned is the introduction of an intermediate sur-
rogate to overcome the prohibitive computational cost of MOEAs [39]. Inspired
by the EGO algorithm, the turn of the century has seen the birth of a series of
multi-objective reformulations of the expected improvement. One of the earlier
approaches, ParEGO [23], reformulates the multi-objective problem as a single
objective problem using an augmented Tchebycheff function. A generalization of
this approach, MOEA/D (Multi Objective Evolutionary Algorithm based on De-
composition) was presented by Zhang et al. [41] and allows a level of parallelization
through the formulation of a series of single-objective optimization subproblems.
The generation of the Pareto front is in these approaches subjected to the weighting
function. Especially in case of nonconvex Pareto fronts this may lead to clustering
of evaluations in the extremes of the front and a poor resolution and spread of
the region in between. Jeong & Obayashi’s Multi-EGO [18] uses a multi-objective
genetic algorithm to determine the Pareto front of the EIs of both objectives and
selects three points on the front (both extremes and a point in the middle) as infills
for the next iteration, thus enforcing a level on parallelization in the algorithm.
Keane [22] presented a formulation of the expected improvement for two objectives
based on the geometrical interpretation of the EI (Wagner et al. refer to this as
the Euclid-EI [40]). Emmerich et al.’s SExI (S-metric Expected Improvement) al-
gorithm [7], Ponweiser et al.’s SMS (S-Metric Selecting)-EGO algorithm [32] and
Couckuyt et al.’s EMO (Efficient Multi-objective Optimization) algorithm [3] use
the hypervolume (HV) or S-metric, which corresponds to the Lebesque measure
of the hyperspace dominated by the Pareto front. A strong theoretical assessment
of the aforementioned can be found in Wagner et al. [40].

In this paper we start from Keane’s formulation, which we briefly summarize
here. For a SOO problem, the EI can be understood as the product of the area
under the tail of the prediction cut off by the best evaluation and the distance
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between the centroid of the aforementioned area and the best evaluation [40]. For
two objectives Keane reformulates this as the product of the probability that a
prediction is found outside the Pareto front, P [I(x)], with the Euclidean distance

of the nearest point on the Pareto front, y∗1,2 = {[y∗(1)1 , y
∗(1)
2 ], ..., [y

∗(m)
1 , y

∗(m)
2 ]},

with m the number of points on the Pareto front, to the centroid of the area
outside the Pareto front, (Ȳ1(x), Ȳ2(x)):

E[I(x)] = P [I(x)]

√(
Ȳ1(x)− y∗1

)2
+
(
Ȳ2(x)− y∗2

)2
(11)

In this work, building forth on the assumption of uncorrelated objectives, a two-
dimensional Gaussian probability density function φ(Y1,Y2,x) for the predicted
responses is constructed

φ(Y1,Y2,x) =
1

s1(x)
√

2π
exp

[
− (Y1 −Y1(x))2

2s21(x)

]
· 1

s2(x)
√

2π
exp

[
− (Y2 −Y2(x))2

2s22(x)

]
(12)

By integrating this two dimensional Gaussian probability density function over
the region outside the Pareto front1 we obtain the multi-objective probability of
improvement P [I(x)] = P [Y1(x) < y∗1 ∩ Y2(x) < y∗2].

P [I(x)] =

∫ y
∗(1)
1

−∞

∫ ∞
−∞

φ(Y1,Y2,x)dY2dY1

+

m−1∑
i=1

∫ y
∗(i+1)
1

y
∗(i)
1

∫ y
∗(i+1)
2

−∞
φ(Y1,Y2,x)dY2dY1

+

∫ ∞
y
∗(m)
1

∫ y
∗(m)
2

−∞
φ(Y1,Y2,x)dY2dY1 (13)

The first, second and third term in equation 13 correspond to respectively the
series of blocks I, II and III as presented in figure 2. The calculation of the centroid
Ȳ1(x) is performed by determining the first moment of area and dividing it by the
multi-objective probability of improvement:

Ȳ1(x) =

[∫ y
∗(1)
1

−∞

∫ ∞
−∞
Y1φ(Y1,Y2,x)dY2dY1

+

m−1∑
i=1

∫ y
∗(i+1)
1

y
∗(i)
1

∫ y
∗(i+1)
2

−∞
Y1φ(Y1,Y2,x)dY2dY1

+

∫ ∞
y
∗(m)
1

∫ y
∗(m)
2

−∞
Y1φ(Y1,Y2,x)dY2dY1

]
· 1

P [I(x)]
(14)

1 Depending on whether it is the intent to improve upon the existing Pareto front (figure 2,
hatched area) or refine the existing front (figure 2, gray area), the limits of the integrals are
slightly different. Here, improvement upon the Pareto is presented. For further details on this
matter, see [22].
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Ȳ2(x) is calculated in an analogous way.

y1(x)

y2(x)

I II II II III

(y
∗(1)
1 , y

∗(1)
2 )

(y
∗(2)
1 , y

∗(2)
2 )

(y
∗(...)
1 , y

∗(...)
2 )

(y
∗(m)
1 , y

∗(m)
2 )

• (Ȳ1(x), Ȳ2(x))

Fig. 2: Schematic representation of the partitioning of the area outside of the
Pareto front of two contesting objectives. The hatched area corresponds to the
area where the Pareto front can be improved. The grey area corresponds to the
area where the Pareto front can be refined. Reproduced from Keane [22].

4 New Infill Criterion

A limitation of Keane’s EI is the absence of a clear formulation of the improve-
ment [40]. This is related to the geometric origin of the way by which it is
built up and the intrinsic difficulty of the multidimensional untractable integral
that comes with it. Therefore we formulate the improvement as the distance
from the Pareto front taken to a power g: Ig(x) = [|Pareto(Y(X)),Y(x)|g]+min.
Here |Pareto(Y(X)),Y(x)| is defined as the distance measured from the Pareto
front to Y(x) and [·]+min is defined as the smallest value evaluated outside of
the Pareto front. To facilitate the expanation, the equations will be limited to
two objectives in the following step. For two objectives2, this corresponds with
Ig(x) = [(

√
(y∗1 − Y1(x))2 + (y∗2 − Y2(x))2)g]+min. If g is an even number (with

h = g/2), the formulation simplifies due to the disappearance of the square root.
This leads to a tractable definition of the expected improvement E[Ig(x)], to
which we refer as the generalized Euclidean/Multi-objective Expected Improve-
ment (GMOEI). By making use of the binomial theorem3, we obtain

2 Theoretically the method can be rewritten for any number of objectives. However this
method, as any other, is subjected to the curse of dimensionality (no-free-lunch theorem).
In practice, defining the computational domain outside the Pareto front for more than two
objectives can be become cumbersome [4] and is for most methods the limiting factor in their
applicability.

3 For a higher number of objectives, the multinomial theorem leads to the desired solution.
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E[Ig(x)] = E

[
h∑
k=0

(
h

k

)
(y∗1 − Y1(x))2k(y∗2 − Y2(x))2(h−k)

]
. (15)

This can be rewritten under the assumption that the objectives are uncorrelated.

E[Ig(x)] = E
[
(y∗1 − Y1(x))2n

]
+

h−1∑
k=1

(
h

k

)
E
[
(y∗1 − Y1(x))2k

]
· E
[
(y∗2 − Y2(x))2(h−k)

]
+ E

[
(y∗2 − Y2(x))2n

]
(16)

By partitioning the integrand space in boxes as was done by Keane and is presented
in figure 2, E

[
(y∗1 − Y1(x))2k

]
can be rewritten as

E
[
(y∗1 − Y1(x))2k

]
=

∫ y
∗(1)
1

−∞

∫ ∞
−∞

(y
∗(1)
1 − Y1(x))2kφ(Y1,Y2,x)dY2dY1

+

m−1∑
i=1

∫ y
∗(i+1)
1

y
∗(i)
1

∫ y
∗(i+1)
2

−∞
(y
∗(i)
1 − Y1(x))2kφ(Y1,Y2,x)dY2dY1

+

∫ ∞
y
∗(m)
1

∫ y
∗(m)
2

−∞
(y
∗(m)
1 − Y1(x))2kφ(Y1,Y2,x)dY2dY1.

(17)

Analogously for E
[
(y∗2 − Y2(x))2k

]
. The result of equation 17 is given by

E
[
(y∗1 − Y1(x))2k

]
= E

[
(y
∗(1)
1 − Y1(x))2k

]
+

m−1∑
i=1

(
E
[
(y
∗(i+1)
1 − Y1(x))2k

]
− E

[
(y
∗(i)
1 − Y1(x))2k

])
Φ

(
y
∗(i+1)
2 − Y2(x)

s2(x)

)

+ E
[
(y
∗(m)
1 − Y1(x))2k

]
Φ

(
y
∗(m)
2 − Y2(x)

s2(x)

)
(18)

where E[(y
∗(i)
1 −Y1(x))2k] can be calculated using equation 6. With a higher value

of g, a larger size of the current Pareto front and a larger number of infills, the
recursive formulation can become cumbersome, up to the point that a simple
Monte Carlo approach can become more feasible.

In a similar manner to the single objective case, the asynchronous multi-points
GMOEI can be formulated.

GMOEI(g,µ,λ)(Xλ) = E [|Pareto(Y(X ∪ Xµ)),Y(Xλ) | Y(X) = y|g]+min (19)

However, as its SOO variant, the analytical expression becomes challenging,
leading us to again resort to numerical multivariate integral approximation tech-
niques in the form of Monte Carlo Integration (MCI).
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I
(g,µ,λ)
sim (i) = |Pareto(y,Mobj,µ(i)),Mobj,λ(i)|gmin (20)

GMOEI
(g,µ,λ)
MC (Xλ) =

1

nsim

nsim∑
i=1

I
(g,µ,λ)
sim (i) (21)

The multivariate sampling of each objective {M (j)
λ+µ(i)}j=1...nobj (with nobj the

number of objectives) is performed as in algorithm 2 using Kaiser & Dickman’s
method.

If (g, µ, λ) corresponds to (1, 0, 1) we obtain a variant4 of Keane’s EI. When
(g, µ, λ) corresponds to (1, 0, 2) we obtain a multi-objective formulation of the
q− steps EI. In the case of a single variable problem, the latter can be visualized
as in figure 3. It can be seen that the figure is symmetric around its diagonal,
which corresponds to (1, 0, 1)5 with local minima at 0, 0.25, 0.5, 0.75 and 1, where
the function has been evaluated and local maxima in between these points. Com-
bination of these local optima on the diagonal create the global hot spots. While
the local maxima on the diagonal are near equal in value, the hot spots become
brighter when moving towards the top left (or bottom right), which indicates that
distance between the sampled points is taken into account. Methods relying on lo-
cal optima for batch optimization will fail when only one optimum exists. However,
this method will select a multitude of points around the optimum at a distance
from each other [14].

4 Keane’s formulation is characterized by the absence of a definition of the improvement, but
the presence of an analytical form of the expected improvement, which relies on the calculation
of the centroid of the prediction outside the Pareto front and determining the distance to the
nearest point on the front. Here the improvement is analytically defined as the Euclidean
distance from the front. However, this leads to the absence of an analytical formulation of the
expected improvement, unless the improvement is taken to an even power, as seen above. The
calculation of the improvement relies on MCI where the distance of each sample is taken to
the nearest point on the front.

5 The addition of a point leads to a reduction of the improvement that can be made at
the point to zero, thus GMOEI(1,0,2)(x1,x2) = GMOEI(1,0,1)(x1) = GMOEI(1,0,1)(x2) if
x1 = x2.
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Fig. 3: Contour plot colored by GMOEI(1,0,2) as a function of two infill points
(x1, x2) for a simple one variable problem (min y1(x) = (10x− 10)2 and y2(x) =
(10x− 12)2) after five equally spaced fill-ins, namely x = 0, 0.25, 0.50, 0.75 and 1.

When dealing with a constrained optimization problem, EI should decrease to
zero when the constraint is violated. This can be obtained through an extended ex-
pected improvement [36] or a penalty function, such as the Augmented Lagrangian
function [2]. Here, the former is used: given the surrogate of the constraint G with
G(X) = g, we can calculate the probability of the prediction not violating the con-
straint limit gmin, i.e. the probability that the constraint is met, P [F (x)], where
F is the measure of feasibility G(x)−gmin. Under the assumption of uncorrelated
objectives and constraints, it is easy to reformulate the expected improvement such
that it accounts for the probability of feasibility E[I(x)∩F (x)] = E[I(x)]P [F (x)].
This implies that at a given point in the design space, while the predicted con-
straints might be violated, the predicted errors in the constraint models are dif-
ferent from zero and as such the expectation of feasible improvement will be low,
but not zero, since there is a finite possibility that a full evaluation of the con-
straints may actually reveal a feasible design. This allows design space exploration
in the early stages of the optimization methodology, but ensures convergence to
the exact constrained optimum [11]. Nevertheless, Parr et al. remark that if the
constraints are approximated inaccurately early on, the algorithm may discard
optimal solutions [31].

The inclusion of the probability of feasibility of the constraint(s) in a sampling-
based evaluation of the expected improvement corresponds to the multiplication
of the aforementioned with the numerical integration (through sampling) of the
heaviside function evaluation H of these samples drawn from the multivariate dis-
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tribution of the constraints G−gmin. It is further on assumed that G is formulated
such that gmin = 0.

F
(k)
sim(i) =

λ∏
l=1

H
(
{M (k)

con,λ(i)}l
)

(22)

GMOEI
(g,µ,λ)
c,MC =

1

nsim

nsim∑
i=1

I
(g,µ,λ)
sim (i)

ncon∏
k=1

(
1

nsim

nsim∑
i=1

F
(k)
sim(i)

)
(23)

The multivariate sampling of each objective {M (j)
obj,λ+µ(i)}j=1...nobj and each con-

straint {M (k)
con,λ+µ(i)}k=1...ncon

(with ncon the number of constraints) is again
performed as in algorithm 2 using Kaiser & Dickman’s method. The feasibility of
each constraint corresponds to the product of the Heaviside evaluations of each
element of the sampling of the multivariate distribution of the available computing
nodes to be filled.

Algorithm 3 Generalized Asynchronous Constrained Multi-Objective Expected

Improvement GMOEI
(g,µ,λ)
c,MC

1: for j ← 1, nobj do . Loop over objectives

2: L
(j)
obj = chol(Ψj [Xµ+λ | Yj(X) ≡ yj ])

3: for k ← 1, ncon do . Loop over constraints

4: L
(k)
con = chol(Ψk[Xµ+λ | Gk(X) ≡ gk])

5: for i← 1, nsim do . Loop over simulation size
6: N(i) ∼ N (0µ+λ, Iµ+λ) . Sample from i.i.d. univarites
7: for j ← 1, nobj do

8: M
(j)
obj,µ+λ(i) = Yj(Xµ+λ) + L

(j)
obj ·N(i) . Kaiser & Dickman’s method

9: I
(g,µ,λ)
sim (i) = |Pareto(y,Mobj,µ(i)),Mobj,λ(i)|gmin . Equation 20

10: for k ← 1, ncon do

11: M
(k)
con,µ+λ(i) = Gk(Xµ+λ) + L

(k)
con ·N(i) . Kaiser & Dickman’s method

12: F
(k)
sim(i) =

∏λ
l=1H({M (k)

con,λ}l(i)) . Equation 22

13: GMOEI
(g,µ,λ)
c,MC (Xλ) = 1

nsim

∑nsim
i=1 I

(g,µ,λ)
sim (i)·∏ncon

k=1 ( 1
nsim

∑nsim
i=1 F

(k)
sim(i)) . Equation 23

5 Results

A comparative study is set up from the perspective that we have a fixed compu-
tational budget and a large number of computation nodes, but are limited in the
parallelization of each computer experiment and therefore must resort to batch op-
timization to make full use of the computational power available. Furthermore, it
is assumed that the generation of the next infill is negligible compared to the com-
putational cost of its evaluation. The GAMO algorithm (algorithm 4) is used em-
ploying six different settings of (g, µ, λ), namely (1, 0, 1), which resembles Keane’s
EI, (1, 0, 2), which resembles a multi-objective formulation of the q − steps EI,
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(1, 1, 1), which resembles an asynchronous formulation of Keane’s EI, and a gen-
eralized formulation of the three aforementioned with g decreasing in a simulated
annealing way as will be explained further, so g = f(l), with l the current iteration
number. For the DoE we use a Latin-Hypercube Sampling (LHS) approach [26]
and Morris and Mitchell’s maximin-criterion to quantify the space-filling property
by maximizing in ascending order the distance between pairs of points and simul-
taneously minimizing the number of corresponding pairs [28]. The stopping criteria
used corresponds to a maximum of 100 function evaluations after the DoE or if the
normalized expected improvement drops below 0.1%. This means (1, 0, 2), (f, 0, 2)
perform a maximum of 50 iterations, while the other infill criteria stop after a max-
imum 100 iterations. Alternatively, the wall clock time could be set as a stopping
criterion, in which case, under the assumptions above, (1, 0, 2), (f, 0, 2), (1, 1, 1)
and (f, 1, 1) would be able to evaluate twice as much simulations as (1, 0, 1) and
(f, 0, 1). Both criteria are probable to occur in industry, but here we have chosen
the former because it allows the assessment of the performance of the infill criteria
for a near similar number of evaluations. Furthermore, the selection of a new infill
point, especially later in the optimization process at which point the generation of
the surrogate model and the sampling of the surrogate become computationally
more demanding, can become non-negligible in comparison to the evaluation of
a sample. At this point, the asynchronous approaches (1, 1, 1) and (f, 1, 1) will
outperform the synchronous approaches (1, 0, 2) and (f, 0, 2).

Algorithm 4 Generalized Asynchronous Multi-objective Optimization (GAMO)

Require: Evaluated sampling plan (X,y(X))
Ensure: The Pareto front (x∗,y∗1,2)
1: while stopping criteria are not met do

2: λ ≡ n({completed(Y(X(i)
µ )}i=1...µ) . Determine number of available nodes

3: Xc ← Xµ : {completed(Y(X(i)
µ )}i=1...µ

4: X← X ∪ Xc
5: Estimate hyperparameters for every objective/constraint . Section 2
6: y∗1,2 ← Pareto(y(X))

7: x∗ ← argPareto(y(X))
8: Xµ ← Xµ\Xc
9: µ ≡ n(Xµ) . Determine number of calculating nodes

10: Xλ = argmaxx GMOEI
(g(l),µ,λ)
c,MC (x) . Algorithm 3

11: Xµ ← Xλ ∪ Xµ
12: µ ≡ n(Xµ)
13: l← l + 1 . Update iteration counter (table 2)

We adopt here a different cooling function than Sasena et al. [34] (table 2)
based on the observation that decreasing the power of the improvement to zero,
which corresponds to the multi-objective probability of improvement, can lead
to a stagnation of the optimization process in the form of clustering. Therefore,
we spread out the change of power over a larger number of iterations and let it
decrease to 1, which corresponds to the first case. By no means can it be expected
that the cooling scheme proves to be effective in every case, nor can it be stated
that it corresponds to the best performing scheme on a broader average sense, but
we expect that placing the emphasis on exploration rather than exploitation early
on in the optimization algorithm can accelerate its convergence.
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Table 2: Modified cooling scheme based on Sasena et al. [34]

Iteration 1-4 5-9 10-24 25-49 ≥ 50
g-value 20 10 5 2 1

The methodology is tested on a total of six test functions. The first five test
functions are taken from Zitzler et al. [42] (referred to as ZDT1, ZDT2, ZDT3,
ZDT4 and ZDT6) and have a particular feature that causes convergence issues for
MOO: convexity, non-convexity, discrete Pareto front, multimodality and biased
search spaces. All of these have been rewritten in the appendix for six parameters
to ensure a certain level of complexity, without using the surrogate outside of its
typical application: Kriging is known to have performance issues when dealing
with more than 15 parameters or 500 infills [22]. The sixth test function, Osyczka
& Kundu’s constrained test problem [30] (abbreviated as OSY), has six param-
eters and six constraints, all of which are active on different parts of the Pareto
front. The solutions and formulas of the aforementioned are given in the appendix.
Conform Jones et al’s suggestion, a DoE-size of 65 samples is selected [20].

In their theoretical assessment of performance metrics for multi-objective opti-
mization Zitzler et al. [43] state that performance refers to both quality of outcome
and the computational resources needed to generate that outcome. Where the per-
formance of a SOO solving algorithm can be assessed by measuring the difference
between the exact minimum and the predicted minimum in function of number
of iterations, the MOO case is more complex due to its competing nature: on the
one hand we want to assess the closeness to the optimal front solutions and on
the other hand we want to assess the coverage of the front. Furthermore, we want
both to be obtained with the smallest computational budget possible. However,
coverage of the front can only improve further with additional computational re-
sources. Therefore, performance of MOO algorithms cannot be measured with a
single metric as pointed out by Van Veldhuizen & Lamont [38]. Riquelme et al.
[33] report over 50 metrics used to assess the performance of evolutionary multi-
objective optimization (EMO) algorithms of which the hypervolume metric is the
most used. Deb et al. [5] presented two metrics to assess the performance: the
convergence metric γ, which measures the mean distance of the evaluated Pareto
front to the exact one,

γ̄ =
1

m

m∑
i=1

γi (24)

γi = min

√(
yp1 − y

∗(i)
1

)2
+
(
yp2 − y

∗(i)
2

)2
(25)
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with (yp1,y
p
2) the exact Pareto front, and the diversity metric ∆, defined as

∆ =
df + dl +

∑m−1
i=1 | di − d̄ |

df + dl + (m− 1)d̄
(26)

di =

√(
y
∗(i)
1 − y∗(i+1)

1

)2
+
(
y
∗(i)
2 − y∗(i+1)

2

)2
(27)

df =

√(
ymin1 − y∗(1)1

)2
+
(
y2(x|y1(x) = ymin1 )− y∗(1)2

)2
(28)

dl =

√(
y1(x|y2(x) = ymin2 )− y∗(m)

1

)2
+
(
ymin2 − y∗(m)

2

)2
(29)

d̄ =
1

m− 1

m−1∑
i=1

di (30)

where m is the number of points on the front, di is the Euclidean distance between
two consecutive points on the front and d̄ its average. Furthermore, df and dl rep-
resent the Euclidean distances between the extreme solutions and the boundary
solutions of the obtained non-dominated set. The convergence metric is reformu-
lated to determine the correctness of the surrogate around the Pareto front. Even
when we run out of computational resources, the cheap to evaluate surrogate can
be sampled to refine the regions of the Pareto front which are of particular interest.
The convergence metric is defined here as the mean distance between 100 points
on the exact Pareto front and their corresponding predicted points. This metric is
normalized by dividing it by the largest distance in the objective space. As such
γ̄norm = 0 corresponds with a perfectly predicted Pareto front. Furthermore, γ̄
(the subscript will from now on be omitted for clarity) can be bigger than 1, when
the predicted objective space is larger than the exact objective space. Similarly,
∆ = 0 corresponds to a perfectly spread evaluated Pareto front where the extrem-
ities of the front are found. Again, ∆ can be larger than 1. It can be noted that
with as little as three points ∆ can be zero (the extremities and a point exactly in
the middle) and with γ̄norm equal to zero, the surrogate predicts the Pareto front
perfectly. However, this is by no means an optimal solution. Therefore, the hyper-
volume of the non-dominated objective space is added as another metric with its
reference point at the border of the objective space and normalized by dividing it
by the area of the entire objective space.
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y1(x)

y2(x)
Pareto front 1st run

Pareto front 2nd run

Pareto front 3rd run

Pareto front 4th run

Pareto front 5th run
best summary attainment surface

median summary attainment surface

worst summary attainment surface

Fig. 4: Schematic representation of the Pareto fronts of five independent runs of an
optimizer with three diagonal lines intersecting the aforementioned fronts which
allow the formation of the p-summary attainment surfaces, with the 1st, 3rd and
5th summary attainment surfaces respectively corresponding to the best, median
and worst surfaces. Reproduced from Knowles [23].

The stochastic nature of the optimization caused by the randomly generated
DoE can lead to a varying performance. To take this aspect into account, the
optimization is repeated 10 times and the average and variance of γ̄norm and ∆ are
determined. Furthermore, the p-summary attainment surfaces are determined, of
which the best, median and worst hypervolumes are calculated following Knowles
in his analysis of the ParEGO algorithm [23]. Given n runs of the algorithm, the
obtained attainment surfaces/Pareto fronts6 can be plotted on top of each other. If
a diagonal, running in the direction of the improvement in all objectives, is drawn
through this set of fronts, it can be stated that the intersections, n in total, lie
on their respective summary attainment surface. The best summary attainment
surface thus corresponds to the attainment surface formed by the Pareto optimal
points on the intersecting diagonals. If we then remove the points that make up
the best summary attainment surface and select the Pareto optimal set of the
remaining points, we obtain the 2nd-summary surface and so on. We emphasize
three of these summary attainment surfaces from a statistical point of view: the
best, which corresponds to the best front the algorithm can hope to produce, the
worst, which corresponds to the best attainable surface that will be dominated
during every run of the algorithm, and the median, which corresponds to the
performance that can be expected half of the time. The concept is visualized
in figure 4. The hypervolume of the three aforementioned summary attainment
surfaces Sp is calculated as the final metric to assess convergence and the reference
point is placed at the border of the objective space. This metric is rewritten such

6 The attainment surface was formally defined by Fonseca & Fleming and corresponds to
the Pareto front [10]. Both terms are interchangeably used in the optimization community, but
in the context of metrics the former is preferred.
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Table 3: Results of GAMO for different infill settings and different test functions.

Problem Metric
Infill settings

(1, 0, 1) (f, 0, 1) (1, 0, 2) (f, 0, 2) (1, 1, 1) (f, 1, 1)

ZDT1

γ̄
mean 0.0038 0.0046 0.0624 0.0279 0.0146 0.0077
var 4e− 6 1e− 6 0.0024 8e− 4 5e− 5 2e− 5

∆
mean 0.8768 0.8910 0.8568 1.0816 1.3281 0.9983
var 0.0300 0.0021 0.0099 0.1107 0.0242 0.0106

AS

best 0.0249 0.0188 0.0313 0.0166 0.0195 0.0137
median 0.1018 0.1035 0.1787 0.1267 0.2995 0.1192
worst 0.5708 0.4574 0.6432 0.9452 0.6377 0.3365

ZDT2

γ̄
mean 0.0162 0.0163 0.0068 0.0094 0.0239 0.0134
var 2e− 4 1e− 4 5e− 5 9e− 5 2e− 4 2e− 4

∆
mean 1.3444 1.0576 1.1747 1.2369 1.1490 1.1055
var 0.2011 0.1220 0.1372 0.2952 0.1102 0.1547

AS

best 0.0337 0.0297 0.0165 0.0246 0.0211 0.0277
median 0.0349 0.0856 0.0349 0.0359 0.1924 0.0792
worst 0.7150 0.3884 0.1950 0.1692 0.9911 0.1544

ZDT3

γ̄
mean 0.1394 0.0686 0.1167 0.1671 0.1594 0.0891
var 0.0075 0.0013 0.0057 0.0297 0.0079 0.0037

∆
mean 0.9293 1.0589 0.8872 1.0154 1.0364 1.0395
var 0.0054 0.0286 0.0038 0.0214 0.0078 0.0179

AS

best 0.0660 0.0345 0.0761 0.0806 0.0451 0.0634
median 0.1459 0.0757 0.1672 0.1161 0.1530 0.1213
worst 0.1994 0.2095 0.2090 0.1812 0.1928 0.2051

ZDT4

γ̄
mean 0.5829 0.6287 0.6072 0.5599 0.4482 0.4558
var 0.0034 0.0102 0.0013 0.0087 2e− 4 4e− 4

∆
mean 1.0175 1.0140 0.9683 1.0152 1.0372 1.0363
var 0.0068 0.0081 7e− 4 6e− 4 0.0077 0.0032

AS

best 0.1309 0.1012 0.1725 0.1326 0.1298 0.1458
median 0.2188 0.2170 0.2667 0.2687 0.1809 0.2080
worst 0.3241 0.3043 0.3804 0.4067 0.2096 0.2381

ZDT6

γ̄
mean 0.7514 0.7257 0.6653 0.6642 0.6830 0.6613
var 0.0072 0.0102 0.0114 0.0238 0.0363 0.0151

∆
mean 0.9897 0.9916 1.0102 1.0014 1.0209 1.0273
var 0.0017 4e− 4 0.0029 0.0014 0.0065 0.0055

AS

best 0.6089 0.6183 0.5705 0.5846 0.2558 0.2512
median 0.7524 0.7338 0.6748 0.7023 0.7347 0.6750
worst 0.7956 0.7809 0.7347 0.7923 0.8415 0.7129

OSY

γ̄
mean 0.0062 0.0058 0.0034 0.0028 0.0147 0.0147
var 1e− 5 4e− 6 1e− 6 1e− 6 3e− 5 2e− 5

∆
mean 1.0734 1.0907 1.1277 1.0604 1.0661 1.0690
var 0.0151 0.0073 0.0206 0.0249 0.0069 0.0084

AS

best 0.3278 0.4586 0.3074 0.6182 0.4838 0.4963
median 0.8588 0.8525 0.7442 0.7265 0.7430 0.7939
worst 0.9489 0.9065 0.8073 0.8448 0.8871 0.9382

that AS ∈ [0, 1] with AS = 0 the perfect solution. This is done by calculating the
hypervolume of the exact solution Se and defining the metric as AS = (Se−Sp)/Se.
The use of the median and best/worst instead of mean and variance is preferred
due to the heavy-tailed distribution of the metric. The results are presented in
table 3.

The definition of the improvement is for every infill the geometric distance away
from the Pareto front taken to a higher power, which implies that the difference in
performance between the different test functions can be linked to this definition.
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ZDT2, noted by its non-convex Pareto front, is prone to clustering, which can be
seen from a higher value of ∆. ZDT4, characterized by the multi-modality of the
objective space, and ZDT6, noted by its strong non-uniformity of the objective
space, are both subjected to a higher value of γ̄, which implies that the surrogate
is not reproducing the exact Pareto front well. The origin of this higher value of
γ̄ can be found in the calculation of the GMOEI, which, when using MCI, can be
discontinuous and hard to optimize. This feature was also laid bare by Wagner
et al. in their assessment of improvement formulations [40]. Possible remedies
of this issue would be to improve on the convergence rate of the MCI, using a
higher number of samples and thus smoothing the objective or using an alternative
optimizer more suited for the problem such as the DIRECT method by Jones [19].

OSY , characterized by a set of constraints, has a very good predicted Pareto
front, but a very poor attainment surface performance. This implies that the for-
mulation of the expected improvement as the product of the unconstrained ex-
pected improvement with the probability of feasibility still leads to the selection
of points that do not meet the constraints by augmenting the unconstrained Pareto
front later on in the optimization process. Using an alternative formulation of the
constraints, for example using a Augmented Lagrangian formulation, or artificially
altering the variance on the prediction of the surrogates of the constraints, similar
to the generalized formulation of the expected improvement, might bring solace in
this matter.

It is expected that (∗, 0, 1) will outperform the other settings since at all times
it selects the next infill point with the maximum available information. Preferably
the performance of the other settings (synchronous and asynchronous) would be
not too strongly inferior to the sequential setting such that the gain that can be
obtained in wall clock time, would not be lost due to the need for additional func-
tion evaluations to obtain the same evaluated Pareto front. However, comparison
of the infill settings for every test function shows varying results. In the case of
ZDT2, the synchronous settings (∗, 0, 2) clearly outperform both sequential and
asynchronous infill. This is caused by the fact that the conditional vector enforces
a spread of the infill points, which counters to some extent the clustering which
is prone to occur on a non-convex Pareto front. The synchronous settings (∗, 1, 1)
outperform the sequential approach in ZDT4 and ZDT6, but is outperformed in
OSY . The observation that (∗, 0, 1) does not unambiguously outperform the other
settings implies that a undeniable speed-up in wall clock time can be obtained
through asynchronous optimization.

When examining the generalized formulation (f, ∗, ∗) against the standard for-
mulation (1, ∗, ∗), again the results vary: in case of ZDT2, the generalized formu-
lation leads to a smaller variation in the attainment surfaces for all three infill
strategies: sequential, synchronous and asynchronous. This illustrates that the
early emphasis on exploration can provide a better assurance on global optimiza-
tion. For the other test function, the results vary, but the generalized formulations
never performs significantly worse than the standard formulation.
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(a) GAMO using GMOEIf,0,1MC on ZDT1 (b) GAMO using GMOEIf,0,2MC on ZDT2

(c) GAMO using GMOEI1,0,1MC on ZDT3 (d) GAMO using GMOEI1,1,1MC on ZDT4

(e) GAMO using GMOEIf,1,1MC on ZDT6 (f) GAMO using GMOEI1,0,2MC on OSY

Fig. 5: Attainment surfaces (best, worst and median) when the stopping criteria
are met for the different test functions

6 Conclusion

In this paper a novel infill criterion was formulated: the Generalized Multi-Objective
Expected Improvement (GMOEI) for Generalized Asynchronous Multi-objective
Optimization (GAMO). The fundamental strength of the method lies in its ability
to control exploration and exploitation adaptively and fill the available computa-
tional nodes at all times, leading to possibly significant speed-up. The criterion
was derived analytically for the sequential infill approach and an algorithm that
allows the GMOEI to be calculated for the synchronous/parallel/batch and asyn-
chronous approach. This algorithm relies on Monte Carlo Integration (MCI) and
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the calculation of a conditional vector using the Cholesky decomposition. The
novel strategy was tested on six test functions showing a varying success of the
formulation of the improvement, but nonetheless proves the significant reduction
of wall clock time that can be obtained.

The analytical derivation presented in this paper was limited to two objectives.
However, by making use of the multinomial theorem, a multiple of objectives can
be evaluated. Finding multiple infills simultaneous, while theoretically perfectly
feasible, might become impracticable due to the scaling of the dimensionality of
the problem. Here a multi-start SQP methodology was followed. However, alterna-
tive approaches, such as SIMPLEX, might prove more successful. While effective,
the integrated formulation of the constraints in the expected improvement might
lead to a loss of optimal solutions early in the optimization. Alternative formula-
tions of the constraints, for example through the Augmented Lagrangian, should be
investigated. The theoretical assessment of Wagner et al. [40] showed very promis-
ing results for the HV definition of the improvement. Formulation of the former
in an asynchronous multi-point manner, as was done in this paper, might push
the capabilities of asynchronous surrogate-based multi-objective optimization even
further.
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Appendix A: Proof of equation 4

EI(x) =

∫ ∞
−∞

I(Y)φ(Y,x)dY

=

∫ ymin

−∞
(ymin − Y)

1

s(x)
√

2π
exp

[
− (Y −Y(x))2

2s2(x)

]
dY

=

∫ u(x)

−∞
(ymin −Y(x)− s(x)ε)φ(ε)dε

= (ymin −Y(x))Φ(u(x))− s(x)

∫ u(x)

−∞
εφ(ε)dε

= (ymin −Y(x))Φ(u(x)) +
s(x)√

2π

∫ u(x)

−∞
(−ε)exp

(
− ε

2

2

)
dε

= (ymin −Y(x))Φ(u(x)) +
s(x)√

2π
exp

(
− ε

2

2

)∣∣∣∣u(x)
−∞

= (ymin −Y(x))Φ(u(x)) + s(x) (φ(u(x))− 0) (31)
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Appendix B: Test functions

– Zitzler et al.’s first test function (ZDT1), F1, has a convex optimal front with
m = 6 and xi ∈ [0, 1]. The front is formed with g(x) = 1 [42].

f1(x1) = x1

g(x2, ..., xm) = 1 + 9 ·
m∑
i=2

xi/(m− 1)

h(f1, g) = 1−
√
f1/g

f2(x) = g · h (32)

– Zitzler et al.’s second test function (ZDT2), F2, has a non-convex optimal front
with m = 6 and xi ∈ [0, 1]. The front is formed with g(x) = 1 [42].

f1(x1) = x1

f2(x) = g · h

g(x2, ..., xm) = 1 + 9 ·
m∑
i=2

xi/(m− 1)

h(f1, g) = 1− (f1/g)2 (33)

– Zitzler et al.’s third test function (ZDT3), F3, has a non-continuous convex
front caused by the introduction of the sine function in h(x) with m = 6 and
xi ∈ [0, 1]. The front is formed with g(x) = 1 [42].

f1(x1) = x1

f2(x) = g · h

g(x2, ..., xm) = 1 + 9 ·
m∑
i=2

xi/(m− 1)

h(f1, g) = 1−
√
f1/g − (f1/g)sin(10πf1) (34)

– Zitzler et al.’s fourth test function (ZDT4), F4, has a convex front with m = 6
and xi ∈ [0, 1]. There is a multitude of local fronts formed with g(x) = 1.25
and a global one with g(x) = 1 [42].

f1(x1) = x1

f2(x) = g · h

g(x2, ..., xm) = 1 + 10(m− 1) +
m∑
i=2

((10xi − 5)2 − 10cos(4π(10xi − 5)))

h(f1, g) = 1−
√
f1/g (35)



24 Jolan Wauters et al.

– Zitzler et al.’s sixt test function (ZDT6), F6, has a strong non-uniformity of
the search space with the Pareto front found in the lowest density region with
m = 6 and xi ∈ [0, 1]. The global front is formed with g(x) = 1 [42].

f1(x1) = 1− exp(−4x1)sin6(6πx1)

f2(x) = g · h

g(x2, ..., xm) = 1 + 9 · (
m∑
i=2

xi/(m− 1))0.25

h(f1, g) = 1− (f1/g)2 (36)

– Osyczka & Kundu constrained test problem [30] (OSY). The Pareto front is
made up out of 5 sections with different constraints active. The parameter
combinations are given in table 4.

f1(x) =
−(10x1 − 2)2

60
− (10x2 − 2)2

300
− 4x23

75
− (3x4 − 2)2

150
− 4x25

75
+ 1

f2(x) =
5x21
9

+
5x22
9

+
(4x3 + 1)2

300
+
x24
5

+
5x25
36

+
5x26
9

g1(x) = 10x1 + 10x2 − 2 ≥ 0

g2(x) = 6− 10x1 − 10x2 ≥ 0

g3(x) = 2 + 10x1 − 10x2 ≥ 0

g4(x) = 2− 10x1 + 30x2 ≥ 0

g5(x) = 4− (4x3 − 2)2 − 6x4 ≥ 0

g6(x) = (4x5 − 2)2 + 10x6 − 4 ≥ 0 (37)

Table 4: Solution of the Osyczka & Kundu constrained test problem [30] taken
from Deb et al. [6]

Region x1 x2 x3 x4 x5 x6 Constraints
AB 5 1 (1,...,5) 0 5 0 2,4,6
BC 5 1 (1,...,5) 0 1 0 2,4,6
CD (4.056,...,5) (x1-2)/3 1 0 1 0 4,5,6
DE 0 2 (1,...,3.732) 0 1 0 1,3,6
EF (0,...,1) 2-x1 1 0 1 0 1,5,6
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