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Computational methods, including crystal structure and property prediction, have the potential to
DOI:00.0000/000000000x accelerate the materials discovery process by enabling structure prediction and screening of possible
molecular building blocks prior to their synthesis. However, the discovery of new functional molecular
materials is still limited by the need to identify promising molecules from a vast chemical space.
We describe an evolutionary method which explores a user specified region of chemical space to
identify promising molecules, which are subsequently evaluated using crystal structure prediction. We
demonstrate the methods for the exploration of aza-substituted pentacenes with the aim of finding
small molecule organic semiconductors with high charge carrier mobility, where the space of possible
substitution patterns is too large to exhaustively search using a high throughput approach. The
method efficiently explores this large space, typically requiring calculations on only ~1% of molecules
during a search. The results reveal two promising structural motifs: aza-substituted naphtho[1,2-
a]anthracenes with reorganisation energies as low as pentacene and a series of pyridazine-based

molecules having both low reorganisation energies and high electron affinities.

1 Introduction

The field of crystal engineering aims to design new materials with
targeted properties from an understanding of how intermolec-
ular interactions govern their crystal structures. The field has
mainly developed empirically, through systematic studies of ob-
served crystal structures, enabled by their collection in crystal-
lographic databases. T2 A complementary approach is ab initio
crystal structure prediction (CSP), based on exploring the crystal
packing space available to a molecule. 24

Once promising molecules have been identified, either by
chemical intuition or other methods, the CSP approach can be
a powerful tool, especially when combined with property predic-
tion of the predicted crystal structures. The result is an energy-
structure-function (ESF) map for each molecule, describing the
likely crystal structures, their energetic stability and properties.E]
As an example of their utility, ESF maps have guided the discovery
of a set of unprecedentedly low density molecular crystals with
high methane storage capacity. In the field of organic semicon-
ductors, ESF maps have been used to investigate the effect of crys-
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tal packing types on calculated carrier mobility within families
of azapentacene and pyrrole-based azaphenacene molecules.”8
Others have used ESF maps to understand the influence of chiral
composition on carrier mobilities for the predicted crystal struc-
tures of a [6]helicene molecule.?

One of the major limitations for the use of computational
screening in functional materials discovery is the need to identify
which molecules to study from the vast chemical space of possible
targets. A high-throughput approach is restricted by the relatively
high computational cost of CSP compared to single molecule cal-
culations; CSP is currently usually applied to the detailed study of
a single molecule, and occasionally to relatively small families of
molecules. One strategy that avoids the need for CSP, which has
been applied successfully to identify a high carrier mobility or-
ganic crystal, is to assess molecules using the assumption that
their crystal packing will be analogous to known, related exper-
imental structures. The risk with this approach is to miss new
materials whose promising properties result from an unexpected
crystal packing motif. An alternative approach is to screen crys-
tallographic databases of known materials, X which can be par-
ticularly efficient because the crystal structures are known and
the targeted molecules are likely to be commercially available or
synthetically accessible.

The goal of the present work is the implementation of an evo-
lutionary framework for exploration of chemical space to be used
to feed into a CSP process for molecular evaluation. Our vision
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Fig. 1 High-level flow diagram of the evolutionary algorithm optimisation process.

is that, instead of deciding on a single molecule or small fam-
ily of molecules for investigation through synthesis, crystallisa-
tion and characterisation, the researcher must only decide on a
broadly defined region of chemical space and uses computational
methods to identify the most promising candidate molecules. We
therefore occupy an intermediate searching regime between the
high throughput database processing of candidates and molecu-
lar design by chemical intuition methods. This approach has the
advantage of discovering new molecules and crystal structures
not included within a given database, searching through many
more molecules than chemical design strategies, whilst maintain-
ing some aspects of chemical intuition through the specification of
chemical space. We illustrate the method by targeting the discov-
ery of small molecule organic semiconductors with high electron
mobilities.

One crucial property for organic semiconductors is the reorgan-
isation energy, which determines the activation barrier for carrier
hopping between sites in hopping models of charge transport and
should be minimised to increase carrier mobility in a molecular
semiconductor. 12 Carrier mobilities can also be improved by op-
timising 77 stacking between molecular units, leading to larger
intermolecular electronic coupling and higher charge carrier hop-
ping rates. For organic field effect transistors (OFET) devices,
a Schottky barrier®! for carrier injection exists at the metal-
semiconductor interface, due to a mismatch between the Fermi
level of the electrode and conduction (for electron injection) or
valence (for hole injection) band edge of the semiconductor. A
decrease in this barrier corresponds to a increase in the injected
charge current density from the metal to the semiconductor and
therefore an overall increase in the efficiency of the OFET. The
Schottky barrier therefore controls the n-type, p-type or ambipo-
lar behavior of an OFET device, depending on the height of the
Schottky barrier for electron or hole injection. 1

Therefore, to find the optimum organic semiconductor mate-
rial for an n-type OFET device requires the maximisation of the
electronic couplings and minimisation of both the reorganisation
energies and Schottky barriers for electron transport. These are
all dependent on the crystal structures of the semiconductor, but
both reorganisation energy and the Schottky barrier can be es-
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timated from properties of the isolated molecule. In the initial,
evolutionary optimisation stage we focus on optimising molecular
properties from isolated molecule calculations. The best perform-
ing molecules from an evolutionary optimisation are passed to a
second stage of evaluation, where CSP and electronic couplings
calculations are used to generate ESF maps of electron mobilities,
from which we identify the most promising molecules.

We restrict this initial study to a chemical space containing aza-
substituted pentacenes and related polyaromatic hydrocarbons
(PAHs). Nitrogen substitution has been proposed as an effective
means of modifying the electronic properties of molecules,* as
well as influencing the crystal packing of PAHs through the for-
mation of polar intermolecular interactions.”

2 Methods

The overall workflow is outlined in Fig. [1| A brief description of
methods is provided here, with full details in the ESI'.

2.1 Evolutionary Search Algorithm

A flexible evolutionary search algorithm was developed for the
global optimisation of a molecule’s chemical structure for a given
calculated fitness function. The region of chemical space to be
searched by the algorithm and the possible moves that can be
made across chemical space are defined by three input variables
and four transformation operations.

The three input variables—smiles, smarts and molsize—
define molecular fragments that can be used by the algorithm
to build or modify molecules. smiles contains a list of SMILES
strings1®17 representing molecules or fragments, acting as the
primary building blocks for the creation of larger molecules.
smarts is a list of SMARTS strings%? which are used for frag-
ment matching and mutations. molsize defines the limits on the
size of molecules that can be created where, for this work, we
define size by the number of rings contained in a molecule.

The four transformation operations—Addition, Crossover,
Recombination and Mutation—act by modifying one or more
molecules (Fig.[2). Addition transforms a molecule into a larger
molecule by the attachment of a new fragment, by first randomly
selecting a possible bonding position, then orientation, for attach-
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Fig. 2 Examples of the four transformation operations implemented in
the evolutionary algorithm. a) The Addition operation, illustrated with
three possibilities for the addition of a pyridine fragment to a pyridine
molecule, forming a naphthyridine type molecule; b) Crossover between
two aza-napthalene molecules showing one crossover possibility for the
example parent molecules. Additional possibilities can occur due to free-
doms in the orientation of the fragments when combined together and
the possible pairings of each fragment. c) The Recombination transfor-
mation of an aza-anthracene molecule, creating an isomer of the initial
molecule. Additional possibilities can occur due to freedom in the frag-
mentation positions, fragmentation position moves and the orientation of
the fragments when combined together. d) The Mutation transformation
on the pyridine molecule with a nitrogen atom fragment, showing three
possible mutations forming either a pyridazine, pyrimidine or pyrazine
molecule.

ment. The molecule and fragment are then added together to cre-
ate a larger molecule (Fig.[2h). Crossover fragments two parent
molecules, each into two parts at a random position. Two child
molecules are generated by combining two fragments (one from
each parent) together (Fig.[2b). Recombination fragments a sin-
gle molecule at a random position. The fragments are recombined
after moving the fragmented positions, generating an isomer of
the initial molecule (Fig. ). In Mutation, a position on the
molecule that is matched by any SMARTS string from the smarts
list variable is randomly selected and replaced by a different frag-
ment randomly selected from the same list (Fig. ). In this work,
the Addition and Mutation operations were used for the gener-
ation of an initial population whilst Crossover, Recombination
and Mutation were used for the generation of a new populations.

The initial population consisted of 100 randomly generated
molecules for each run of the evolutionary algorithm using the in-
put variables and transformation operations. Each molecule was
created by randomly selecting one of the base molecules from the
smiles list, to which the Addition operation was applied using a
second, randomly selected fragment from the same list. Further
application of the Addition operation with further fragments was
carried out until a randomly selected size within the limits given
by molsize was reached. In this study, we have restricted the
minimum and maximum sizes to be 5. A large number (500) of
Mutation operations using the smarts variable were then applied

to the molecule.

The fitness of each molecule in the population was evaluated
based on its calculated properties (see below). New generations
of molecules were created using an elitism rate of 10%: the new
population is made from the top 10% best performing molecules
from the previous population. The remaining 90% is made us-
ing child molecules created based on Crossover between parent
molecules selected by 2-way tournament selections. Each child
molecule then has a probability of 5% to undergo Mutation and
a probability of 5% to undergo Recombination.

Newer generations are created continually until a desired num-
ber of generations or a convergence criteria is reached. Here, we
ran all searches for a total of 30 generations. Since the selection
and replication for the creation of new molecules in the next gen-
eration favour fitter molecules, the search algorithm is driven to
a global minimum or maximum.

2.2 Chemical Search Space

In this study, we explore the region of chemical space of all aza-
substituted isomers of pentacene, allowing any number of nitro-
gen atom substitutions and all connectivities of five 6-membered
aromatic rings. The exception is that, in this work, addition of
fragments to cove, bay and fjord regions?? was not allowed, so
that the formation of pyrene-like ring arrangements is excluded.
The total chemical space searched was determined to contain
68064 unique molecules. Three randomly generated molecules
from this space are shown in Fig.
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Fig. 3 Chemical diagrams of three randomly generated molecules from
the chemical space considered in this study.

2.3 Fitness Function

The evolutionary search algorithm was run ten times for each of
two different fitness functions. The first fitness function,

Fu=\_ 1)

— where A_ is the reorganisation energy for electron transport
calculated for the isolated molecule — was used to search for
molecules with the best likelihood of forming crystal structures
with high electron mobilities. The reorganisation energy A_ for
electron transport between two molecules approximated using

the four-point scheme using isolated molecule energies. 12

A= = [B-(Ro)~ Bo(Ro)| + [Bo(Ro) - B-(R0)] - @

E_ and Ey are the energies of the anion and neutral molecules,
respectively, calculated at the optimised geometries of the anion
(R-) and neutral (Ry) molecule. We also used F'4 to evaluate the
performance and reproducibility of the evolutionary algorithm.
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The second fitness function,

W —As As<W
Fg=X_+@ o= 3
0 As>W

is a simple attempt at multi-objective optimisation, aiming to
minimise both the barrier for injection of an electron into the
semiconductor and the barrier for hopping across the semicon-
ductor in hopping transport models. The penalty function added
to A_ corresponds to the Schottky barrier (» = W — Ag) from
the Schottky-Mott rule for the injection of an electron from an
electrode with a work function W into the semiconductor mate-
rial with a solid-state electron affinity As, %" but is only applied
where the electron affinity lies below the target work function.
This is designed to favour higher electron affinities, to match the
semiconductor to less reactive, higher work function metals. In
this work, we use W = 4.1 €V to match metals such as Ag, Cu and
Au, with work functions of 4.26, 4.65 and 5.1 €V respectively.

Both fitness functions were evaluated for each molecule gen-
erated by the evolutionary algorithm using calculations at the
B3LYP/6-311+G** level of theory using GAUSSIAN09.2!' Solid-
state electron affinities were approximated from calculated gas
phase adiabatic electron affinities by taking advantage of the
known linear correlation between the two quantities.“%%> The
relationship was calibrated for 12 molecules against experimen-
tal low-energy inverse photoemission spectroscopy (LEIPS) val-
ues for thin-films organic semiconductors; see ESI' for details.

2.4 Crystal Structure Prediction

CSP was carried out for the most promising molecules identified
from the evolutionary search, using the Global Lattice Energy Ex-
plorer (GLEE) program.?# The searches used a low-discrepancy,
quasi-random sampling of crystal packing variables to uniformly
sample the lattice energy surface of each molecule in the most fre-
quently observed space groups for organic molecules. Local en-
ergy minimisation was applied to all trial crystal structures using
an empirically parameterised atom-atom force field with electro-
static interactions described by an atomic multipole electrostatic
model based on the calculated molecular charge densities.

2.5 Electron Mobility Calculations

Electron mobility calculations were performed on all predicted
crystal structures that are within 7 kJ/mol of that molecule’s
global lattice energy minimum. This energy window is chosen
to include most experimentally observable structures, based on
the distribution of calculated energy differences between known
polymorphs.?> Mobility calculations used a hopping transport
model with charge carriers localised to a single molecule cen-
tered at the molecular centroid. Hopping rates were calculated
using Marcus theory, 2o

_Val® [ 7 (_ A )
Fab = =5\ Moo P\~ T )
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where electron reorganisation energies were evaluated during
the evolutionary optimisation. Electronic couplings, |V,;|, be-
tween molecules were determined using the FODFT approach
with PBE/TZ2P, as implemented in the ADF program.2748 A]] cal-
culated electronic couplings were scaled by 1.325 to bring FODFT
values in-line with high-level ab initio calculations.?30

A hopping transport network was generated by first designat-
ing each molecule in the unit cell with a site label. Hopping rates
were calculated for all dimers with at least one atom-atom dis-
tance shorter than the sum of each van der Waals radii plus 1.5 A
from each site. The total number of dimer evaluations required
was reduced within a crystal structure by finding identical dimers
using the Kabsch algorithm®! with a RMSD threshold of 0.001 A
and only evaluating them once. The hopping rates are deter-
mined for a given site to the same site in an adjacent unit cell
or a different site in the same or adjacent unit cell. A hopping
transport network therefore includes details of the hopping rate,
displacement vector and its start and end sites.

Using the generated hopping transport network, kinetic Monte
Carlo simulations with the rejection-free procedure® were car-
ried out using in-house developed code to determine the diffusion
tensor. Diffusion tensor elements were averaged over 100,000
trajectories with 1,000 iterations per trajectory. The mobility
tensor elements were then obtained with the Einstein relation
Map = qDop/ksT. A temperature of 300 K was used in all rate
and mobility calculations.

Marcus theory is not not expected to provide a quantitative
assessment of carrier mobilities for small molecule semiconduc-
tor materials.123%3% The intention here is to use charge mo-
bilities obtained using Marcus theory as an inexpensive descrip-
tor to favour crystal structures with low reorganisation energies,
large electronic couplings and sufficiently connected pathways
for charge transport through the crystal structure. Using Mar-
cus theory in this manner is similar to other recent high through-
put methods which have evaluated structures using these types
of properties.™' As an assessment of its predictive power against
a more complete description of charge transport, we carried
out comparisons of Marcus theory against mobilities from non-
adiabatic molecular dynamics=®*! (see Table S2 and Figure S4,
ESI' for details) for a series of functionalised tetracenes.*! These
results indicate a good correlation for the majority of structures
across the range of mobilities, but occasional outliers where Mar-
cus theory predictions are poor. Our intention here is to present
the framework of the evolutionary material discovery approach
within which the simple charge transport model can be replaced
when new methods become available at an affordable computa-
tional cost.

3 Results and Discussion

3.1 Minimisation of the Electron Reorganisation Energy

Ten runs of the evolutionary algorithm were performed with the
target of minimising the electron reorganisation energy (fitness
function F4). We expected the global minimum of F4 within
the chemical space considered to correspond to pentacene—any
aza-substitution or non-linearity of arrangement of rings was ex-



pected to disrupt delocalisation of the excess electron, leading to
an increase in the reorganisation energy. This was confirmed by
the results, in which no molecules could be located with lower
F4 than pentacene after extensive searches. The known global
minimum aided the analysis of performance of the search, which
was used in developing the algorithm: testing of population sizes,
types of transformations and their probabilities.
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Fig. 4 Progress of the ten runs of the evolutionary algorithm, each
displayed as a different colour: a) mean reorganisation energy of the
population; b) minimum reorganisation energy; ¢) mean number of ni-
trogen atoms per molecule; d) number of non-linear molecules in the
population. The population size was 100 in all runs.

Run Number of Molecules Proportion of Chemical
Generations Sampled Space Sampled
1 9 642 0.94%
2 11 745 1.09%
3 9 672 0.99%
4 11 778 1.14%
5 15 1035 1.52%
6 8 572 0.84%
7 17 1110 1.63%
8 6 420 0.62%
9 7 513 0.75%
10 9 631 0.93%

Table 1 Numbers of evolutionary generations and unique molecules sam-
pled before locating pentacene, the global minimum in electron reorgan-
isation energy. The total chemical space includes 68064 molecules.

The mean reorganisation energy of the population of molecules
decreased steadily during the initial generations and at a similar
rate in each of the ten runs (Fig. ). Nine of the ten runs con-
verge to a similar mean by 20-25 generations. Progress towards
the global minimum was quicker: the minimum reorganisation
energy within the population was observed to decrease rapidly
(Fig.[@b), finding the same global minimum—pentacene—in each
run. The location of pentacene required between 6 to 17 gener-
ations (Table[I). This variation between runs is expected due to
the inherent randomness in the search algorithm and of the initial
population of molecules. However, the number of molecules sam-
pled until the global minimum was located showed less variation
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2A: 0.1351

5A: 0.1374

N
A
4000®

7A: 0.1386

9A: 0.1394

10A: 0.1399

Fig. 5 Chemical diagrams of the top 10 best performing molecules from
the combined 10 runs of the evolutionary search for the minimisation of
the electron reorganisation energy (fitness function F4). Name labels
and F4 fitness values (in €V) are given below each chemical diagram.

(Table and, in the worst case, involved calculations on 1.6%
of molecules in the chemical space considered here. This demon-
strates large efficiency gains for the evolutionary search over a
random search of molecules from the chemical space.

Figures[dc and [4d show how the chemistry of the population of
molecules evolves during the search. The randomisation process
produces an initial population with a large number of nitrogen
atoms per molecule and over 90% of molecules in the initial pop-
ulation are non-linear. As expected, the fitness function that only
considers the reorganisation energy favours less nitrogen substi-
tution: the populations converge to almost completely unsubsti-
tuted PAHs (Fig. [4c). Non-linearity of the fused ring system (as
defined in the ESIY) is also generally disfavoured and decreases
through each run, but with greater variability between runs and
some periods where the number of non-linear molecules increases
for several generations (Fig. [4d). This behaviour is indicative of
having found favourable non-linear configurations. Some runs
keep a large proportion of non-linear molecules in the population
until well past the point where the minimum has been located. In
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fact, we find that most of the molecules just above pentacene in
reorganisation energy contain the same angularly fused core ring
structure - see Fig.[5]

This naphtho[1,2-a]Janthracene motif was unanticipated, but
dominates the low reorganisation energy region of chemical
space. 8 of the best 10 molecules located by the 10 combined
searches contain the same core structure. These molecules dif-
fer in their level and pattern of aza-substitution, but all have the
same nitrogen in the inner curved, bay region of the molecule.
The resulting N---H—C interaction stabilises the planar molecu-
lar structure, which is presumably favourable for delocalisation of
the excess electron.

The identification of this structural motif with reorganisation
energies almost as low as pentacene demonstrates the usefulness
of the evolutionary search for suggesting previously unexplored
molecules as promising synthetic targets. The low sensitivity of
A_ to the placement of additional nitrogens (molecules 2A - 6A
and 8A to 10A, Fig.|5)) suggests that molecules with this core can
be functionalised to control their crystal packing without sacrific-
ing their inherent low reorganisation energy.

Reorganisation energies of the top 10 molecules identified over
all 10 evolutionary searches (labelled 1A-10A, Fig.[5) show a neg-
ligibly small variation, ranging from 0.1346 to 0.1399 eV. There-
fore, differences in electron mobilities within the crystal struc-
tures of the best molecules located by the search will be en-
tirely determined by the electron coupling between molecules,
due to their crystal packing. Charge carrier transport in pen-
tacene is known to be limited by its herringbone crystal pack-
ing, with molecules arranged edge-to-face. Aza-substitution
has been shown to modify the preferred packin by introducing
weak hydrogen bonding. Combined with their shape difference,
this should lead to different crystal packing preferences within
the other top-10 molecules.

3.2 Property Maps of Chemical Space

The distribution of all sampled molecules (including evolution-
ary searches minimising fitness function F4 and those minimis-
ing Fpg, discussed below) is shown in Fig. |6l This reorganisation
energy-electron affinity map of the chemical space highlights a
competing trend between minimisation of the reorganisation en-
ergy for electron transport and the need for a high electron affin-
ity for an n-type semiconductor. The best molecules are expected
to lie along the low-A_ edge of the distribution-the Pareto set
of this multi-objective optimisation—along which an increase in
electron affinity comes at a cost of increasing the reorganisation
energy.

For this reason, the searches using fitness function F4 pref-
erentially sampled the low-electron affinity regions of chemical
space (Fig. [6R). The best molecules identified according to F4
all have electron affinities in the range 2.0-2.8 €V, near the cal-
culated electron affinity of pentacene (2.64 €V), which is close to
the experimental values of 2.35, 2.70 and 3.14 eV for three differ-
ent molecular orientations of pentacene crystalline films. 43745 A
though pentacene-based OFETs more commonly result in p-type
behaviour, the behaviour can be controlled by selecting electrodes
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Fig. 6 Plots of the reorganisation energy and solid-state electron affinity
for all molecules sampled across all 20 runs of the evolutionary algorithm,
minimising fitness function F4 (10 runs) and Fp (10 runs). A total of
15870 unique molecules (23.3% of the total chemical space) are sampled
in this combined set of searches. Points are plotted with three different
colour series: a) molecule sampled by fitness function F4 and not Fp
(Fa—Fg), Fg and not Fq (Fp—Fa) or Fy and Fg (FaNFpg);
b) colour coded by number of nitrogen atoms in the molecule and c)
by degree of non-linearity in the molecular structure (as defined in the
ESIt). Locations of four azapentacenes molecules proposed by Winkler
and Houk® (WH5A-WHT7B) are labelled on each plot.
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Fig. 7 Chemical diagrams of four azapentacenes proposed by Winkler
and Houk.12

with a work function that matches the semiconductors ionisation
energy or electron affinity. In fact, pentacene has reported am-
bipolar or n-type behaviour on low work function metals.4¢47
Therefore, to reduce the barrier for electron injection in the F4
set of molecules and achieve an n-type OFET, a low work func-
tion electrode such as calcium (W = 2.87 eV) would be required.
The discovery of molecules with simultaneously low reorganisa-
tion energy and high electron affinity, to match more typical metal
electrodes, requires a multi-objective optimisation, which we ad-
dress through linear scalarisation, leading to fitness function Fg,
whose results are discussed below.

These property maps of chemical space also reveal important
chemical trends that can inform molecular design. From Fig. @)
we can see that there is a general increase in reorganisation en-
ergy and electron affinity with the number of nitrogen substitu-
tions. We also observe a discontinuity in the lower edge of the dis-
tribution, where there is a clear shift in a large group of molecules
towards higher electron affinities. Comparison with Fig. [6f shows
that this region corresponds to linear molecules, in which no
bends have been introduced into the ring arrangement of the pen-
tacene core. Linear molecules dominate the low reorganisation
energy region of chemical space for electron affinities larger than
around 2.6 eV. The trend amongst non-linear molecules is less
clear than with nitrogen substitution, such that the property dis-
tributions of molecules with 1, 2, 3 and 4 degrees of non-linearity
overlap significantly.

We label in Fig. [f] the positions of four molecules proposed by
Winkler and Houk*® (WH5A-WH7B, Fig. [7) based on calcula-
tions of their single molecule electronic properties, with the aim
of minimizing the reorganization energies whilst targeting gas
phase electron affinities above 3 eV. All four molecules are linear
azapentacenes so lie within the linear-molecule region of Fig. [,
and could lead to good electron mobilities due to the relatively
small differences between reorganisation energies within this re-
gion. We see that WH5A was particularly well designed and lies
on low-A_ edge of the distribution. We take these molecules,
proposed by experienced chemists using computational tools and
intuition about crystal packing, as a benchmark for the best
molecules proposed by our evolutionary algorithm.

3.3 High Electron Affinity Aza-substituted Candidates

Ten runs of the evolutionary algorithm were performed to min-
imise fitness function F', with all other details of the search iden-
tical to those using F4. Fg includes a linear penalty equal to the
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Fig. 8 Chemical diagrams of the top 10 best performing molecules from
the combined 10 runs for the evolutionary search for minimisation of
fitness function Fg. Labels and Fp fitness values (in €V) are given
below each chemical diagram.

Schottky-Mott model of the barrier for electron injection, which
is applied to molecules with solid state electron affinities below
4.1 eV. The impact on the search is to restrict most sampling to
molecules in the high electron affinity region of chemical space
(Fig.[6R). In this region, all low-reorganisation energy molecules
are linear (Fig.[6k) with 6 or 7 nitrogens (Fig.[6p), differing in the
pattern of nitrogen substitution.

The 10 best molecules from these searches are shown in Fig.
we label these 1B to 10B. Double nitrogen substitution of the
terminal rings, leading to pyridazine functionality, emerges from
these searches as being particularly favoured. Pyridazine rings
have gained some interest in 7-conjugated materials*® and poly-
mer thin-film field effect transistors.*” Our results suggest that
this is a globally optimum solution for combining low electron re-
organisation energy with high electron affinity in aza-substituted
acenes. Pyridazine groups occur at both ends of the two best
molecules according to Fg (1B and 2B), as well as 5B and 7B;
only two of the top 10 (4B and 9B) lack a pyridazine ring. The
remaining nitrogens decorate the long edges of the molecules in
a variety of symmetric and asymmetric patterns. Our previous
work has shown that nitrogens along the long edge of pentacene
can favour sheet-like crystal packing,” often leading to improved
electron mobility.

The Fp set of molecules have estimated electron affinities from
4.1 to 4.3 eV, matching the work function targeted by the fitness
function and similar to the electron affinities of commonly used n-
type materials, such as Cgg and Cro S0 (~4 ev) 2L Thus, they are
more suitable as electron transport materials for n-channel OFETs
using more typically used electrodes, eg. gold (W = 5.1 V).

Journal Name, [year], [vol.], 1 |7



3.4 Energy Structure Function Maps

To estimate the electron mobility achievable by each molecule,
we need both the molecular electronic properties, which were
optimised during the evolutionary search, as well as the its likely
crystal structures. We therefore preformed CSP for the top ten
best performing molecules obtained from each of fitness func-
tions F4 and Fg and the four benchmark molecules, WH5A-
WH7B. The mean electron mobility for each crystal structure
within 7 kJ/mol from the global minimum on each molecule’s
landscape was obtained from the trace of the calculated mobility
matrix, g = tr(p)/3.

We have previously discussed several measures for assessing a
molecule based on the properties calculated for its ensemble of
low energy crystal structures.”8 A central assumption of CSP is
that the most likely observable crystal structure is the structure
with the lowest calculated energy. If the energy model used in
CSP is reliable, then the calculated mobility for this global lattice
energy minimum structure, jigum, is a simple first measure of each
molecule’s expected performance.

We first consider molecules 1A-10A (Fig.[5), optimised with re-
spect to reorganisation energy: their electron mobilities show a
large variability (Table , ranging from less than 1 cm?(Vs) ™!
for molecule 2A up to 17 cm?(Vs)~! for 4A-the singly nitro-
gen substituted naphtho[1,2-a]anthracene. The differences in
igm amongst such similar molecular structures show the large
effect of crystal packing preference on the charge carrier mobil-
ity, despite similarly small reorganisation energies. The global
minimum crystal structures of both 2A and 4A feature co-planar
molecular stacking in the so-called y packing of PAH molecules, >
which is usually considered to promote high mobility. However,
while the stacked molecules are orientationally aligned in the pre-
dicted structure of 4A (Fig. E])), the molecules alternate orienta-
tion along the molecular stacks for 2A (Fig. [Oh), which likely dis-
rupts electronic coupling and leads to its poor electron mobility.
Considering only the properties of their global energy minimum
crystal structure, molecules 3A, 4A and 8A are the most attrac-
tive targets for synthesis and characterisation. All three have pre-
dicted lowest energy crystal structures featuring stacks of orien-
tationally aligned molecules, as in Fig. [Op.

a) b)
0.011 eV 770.1948 eV
© 20.1082 eV 0.1948 eV
S oot v 0.1948 eV

-

Fig. 9 Coplanar stacking of molecules in the global energy minimum
predicted crystal structures of molecules a) 2A and b) 4A. Red spheres
mark the centroids of each molecule. Green dotted lines are the hop-
ping pathways along molecular stacks, showing values of the electronic
coupling, |V, after scaling.
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The number of predicted crystal structures in the low energy re-
gion of the landscape varies greatly between molecules (Table [2),
and corresponds to small energy differences between predicted
structures in almost all cases. To better reflect uncertainties in
the energetic ranking of structures, due to errors in the energy
model and the lack of temperature in our crystal structure eval-
uation, 23053
on crystallisation outcome, we have previously proposed a prob-
abilistic view of each molecule’s ESF map. For this, we calculate
a Boltzmann-like weighted landscape average of the electron mo-
bility for the predicted crystal structures:

as well as uncertainties related to kinetic influences

exp(—AFE;/T)

S, ep(-AL 0 O

() = ZﬁiPz‘ P =

where AF; is the energy difference of a crystal structure from the
global minimum; this is used to assign a probability, P;, that this
crystal structure will be observed experimentally. The constant
7 = 2.70 kJ/mol was obtained by fitting to energy differences be-
tween known pairs of polymorphs. 425

Naturally, molecules are less distinguished using the land-
scape averaged mobility than that based on one crystal structure.
Molecule 4A is still ranked highly based on (), due to a large
number of high mobility structures on its ESF map (Fig. [LOp),
while 7A now also ranks highly. The high (i) for 7A results
from a large family of high density crystal structures with very
high mobility between 4 and 7 kJ/mol above the global mini-
mum (Fig. [I0p). Although the average mobility is high over the
low energy predicted crystal structures, such a target represents a
risk: the landscape contains large numbers of both high and low
mobility crystal structures.

A wide range of properties within the energetic region of pos-
sible crystal structures corresponds to a large uncertainty in the
target property. To capture the risk associated with uncertainty
in the resulting crystal structure, we propose a measure of the
variability of the mobility amongst the predicted structures:

97 1/2

@2 = | Y n- ( Yap,
‘ d 6

2 _\271/2
= [(a”) — (i)°]
where P; is calculated in the same way as in the landscape-
averaged mobility. (Aﬂ2>1/ 2 approaches zero for a landscape of
crystal structures with uniform mobility.

An ideal target molecule should maximise (), while minimis-
ing (Af?)'/2. However, for molecules 1A-10A, we find that the
two measures have similar magnitudes; some of these molecules
could lead to materials with very high electron mobility, but the
risk is high that synthesis could lead to a low mobility material.

Molecules 1B-10B have electron affinities that are better suited
for n-type behaviour and, despite their higher reorganisation en-
ergies, yield crystal structures with predicted mobilities in the
same range as 1A-10A (Table [2). Several of the pyridazine-



Molecule  Number of fien / cm?(Vs) 1 () / em?(Vs)~1 (AE2YY2? / em?(Vs) 1 A/ eV Ag/ev
Structures

1A 30 3.546 1 6.908 N 3.236 W 0.1346 2.640
2A 126 0.969 1 3.525 1 4.022 1N 0.1351 2.444
3A 22 13.33 IS 5.654 N 4.849 1R 0.1362 2.623
4A 274 17.00 I 7.886 N 6.079 R 0.1364 2.049
5A 40 5.407 N 6.870 N 5452 N 0.1374 2.391
6A 61 8.161 N 7.353 5.136 N 0.1380 2.583
7A 93 7.026 N 9.715 I 6.493 N 0.1386 2.791
8A 42 14.17 I 6.686 N 5.183 N 0.1389 2.401
9A 162 1.887 N 4591 1N 4.884 1N 0.1394 2.351
10A 133 3.271 W 5.894 4.873 1R 0.1399 2.282
1B 44 10.34 I 7.316 R 4.079 1A 0.1719 4.101
2B 1 10.87 N 10.87 I 0.000 0.1738 4.191
3B 9 9.695 I 8.658 N 2.874 1 0.1763 4.168
4B 11 2406 W 1.974 N1 1.204 1 0.1775 4.140
5B 13 13.38 I 5.457 1R 5.005 N 0.1780 4.112
6B 54 1.477 1 6.344 IR 5.246 N 0.1780 4.129
7B 8 6.250 N 4376 1R 2.853 W 0.1783 4.329
8B 52 9.832 N 7.600 I 3.901 N 0.1785 4.275
9B 43 5.118 N 7.000 N 2574 1 0.1786 4.141
10B 35 4478 1R 5.960 N 2.785 W 0.1797 4.278
WH7A 85 8.446 IR 9.210 N 3.049 W 0.1849 4.138
WH7B 49 0.528 1 5.408 N 3493 W 0.2036 4.160
WHS5A 139 20.27 IS 14.60 IS 6.584 N 0.1562 3.591
WH5B 54 15.22 I 8.543 I 4318 1R 0.1724 3.623

Table 2 Summary of the electron transport properties for the top 10 molecules identified through evolutionary optimisation of fitness functions F'4 (1A-
10A), Fz (1B-10B) and four azapentacenes proposed by Winkler and HoukZ® (WH5A-WHT7B): the number of structure with a lattice energy within
7 kJ/mol of the global minimum in the CSP landscape; the global minimum, average and deviation of the mean electron mobility; the reorganisation
energy for electron transport and solid-state electron affinities. Solid-state electron affinities were estimated from the gas phase isolated molecule

calculations - see ESIf.
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Fig. 10 ESF map of electron mobility in the predicted crystal structures of molecules a) 4A, b) 7A and c) 2B. Each point corresponds to a distinct
predicted crystal structure. Colouring and size of the circles correspond to the magnitudes of the calculated mean electron mobilities (in cm?(Vs)~1).
Grey points are structures above 7 kJ mol~1, for which mobilities were not calculated.

based pentacene derivatives (eg. 1B, 2B and 3B) show promis-
ing predicted properties, based on their global minimum crystal
structures (figm) and landscape-averaged mobilities ({iz)). These
higher electron affinity molecules also show less variability in
electron mobility, (AﬂQ)l/ 2 than 1A-10A. In particular, 2B leads
to a sparse crystal structure landscape (Fig. ) with an unusu-
ally large (~8 kJ/mol) energy gap between the global minimum
and all higher energy predicted crystal structures; this gives a
high confidence of observing the low energy predicted crystal
structure, so that (Aﬁz)l/ 2 =0 and (i) = figu is the highest
landscape-averaged electron mobility of all the molecules.

2B is therefore the most promising of the molecules identified
in this study, and an attractive option for synthesis and charac-
terisation as well as further, more detailed computational studies,
such as extended CSP in further space groups and higher level as-
sessment of charge carrier mobility. At the current level of theory
applied to the structure and property calculations, the global lat-
tice energy minimum structure of 2B has a mobility tensor with
eigenvalues of 30.18, 2.12 and 0.30 cm?(Vs)~!, therefore ex-
hibiting predominantly 1D conduction. Inspection of the crystal
structure and electronic coupling of its dimers shows that con-
duction occurs along the molecular stacks, along which there is
large electron coupling (|V,;| =0.1911 €V, after scaling) between
molecules, larger then any other direction by an order of mag-
nitude for this crystal; the 1D electron hopping pathway in this
crystal structure is shown in Fig.

Finally, we ask how the molecules arrived at by the evolu-
tionary approach compare to those designed through intuition
by experienced chemists. The predicted properties for molecules
WH5A-WH7B are included in Table 2l WH7A and WH7B are
most directly comparable to those optimised to fitness function
Fp, as their electron affinities fall within the range covered by
1B-10B. WH7A compares well to the optimised molecules, but
is inferior to molecule 2B in all of its properties. WH7B is out-
performed by most of the molecules proposed by the evolutionary
algorithm. Molecules WH5A and WH5B are less directly compa-
rable, as their electron affinities lie between those in sets 1A-10A
and 1B-10B. However, they have very good predicted electron
mobilities, particularly of their global minimum energy predicted
crystal structures. WHS5A has a higher fign and (i) than any

10 | Journal Name, [year], [vol.], 1

Fig. 11 A 2D plane of the global minimum crystal structure of 2B
showing ~-type stacking of molecules. Red spheres mark the centroids
of each molecule and the green dotted lines are the hopping pathways
with the largest rate of electron transport in this crystal structure.

of the molecules proposed by the evolutionary optimisation, al-
beit with higher variability (Aﬂ2>1/ 2. and hence risk, than all of
the molecules proposed by the evolutionary approach. The good
properties of WH5A and WH7A are due, in part, to the crystal
packing; the intermolecular hydrogen bonding, which leads to
stacking of molecules in many of the low energy predicted crystal
structures, was correctly anticipated by Winkler and Houk.1>*>%

The comparison between WH5A-WH?7B and the molecules pro-
posed by the evolutionary algorithm underscores one of the main
weaknesses of our current approach: while chemists can de-
velop useful intuition about crystal packing, our evolutionary op-
timisation is currently ’'blind’ to the likely crystal structures of
each molecule, because CSP is performed after evolutionary op-
timisation. This points to a challenging future development of
the method: to include CSP within the fitness function eval-
uation itself. Evaluation of predicted crystal structures within
the evolutionary search might also differentiate molecules more
clearly, wheareas the current evaluation yields large numbers of
molecules with small differences in reorganisation energy that
can be overridden by differences in crystal packing.



The comparison also highlights a strength of the evolutionary
algorithm: multi-objective optimisation, eg. for low reorgani-
sation energy and high electron affinity, is challenging for intu-
itive molecular design, particularly for more complex molecules,
where the influence of molecular structure on crystal packing will
be less clear. However, multi-objective optimisation can be per-
formed in an algorithmic search, such as with the simple approach
that we took here with fitness function Fg.

4 Conclusions

We have demonstrated how coupling of an evolutionary optimisa-
tion algorithm for chemical space exploration with crystal struc-
ture prediction and property simulations can be a powerful ap-
proach for discovery of functional molecular crystals. The method
is designed to assist in the discovery of molecular materials where
the structure-property relationships are not obvious and intuitive.

Here, the methodology has been applied to the relatively small
chemical space of aza-substituted pentacenes, for the identifica-
tion of promising n-type semiconductor materials. The evolution-
ary algorithm is flexible in the choice of fitness function used to
guide optimisation. Two simple measures of molecular fitness are
used here, both chosen to maximise the probability for large elec-
tron mobilities. The first minimises the electron reorganisation
energies from Marcus theory and a second fitness that combines
low reorganisation energy with high electron affinity, to decrease
the barrier for the injection of an electron into the semiconductor
and increase the overall OFET performance.

The evolutionary search, which is driven by a set of molecu-
lar transformation operations, is found to efficiently identify the
fittest molecules - here, typically requiring calculations on 1 per-
cent of molecules in the chemical space considered. The searches
have identified promising chemical substructures: apart from
pentacene, the region of lowest reorganisation energy is domi-
nated by molecules featuring the naphtho[1,2-a]anthracene mo-
tif, whose electronic properties (electron reorganisation energy
and electron affinity) show low sensitivity to further function-
alisation - here, further nitrogen substitution. Several of these
molecules yield global energy minimum crystal structures with
very high predicted electron mobilities. For high electron affinity,
as well as low reorganisation energy, we find that a linear pen-
tacene core with terminal pyridazine rings is common amongst
many of the best molecules.

While optimisation of molecular properties is easily imple-
mented and computationally efficient, we find that the influ-
ence of crystal packing has a dominant role in determining elec-
tron mobility through its impact on electronic coupling between
molecules; there is large variation in calculated mobility of crys-
tals predicted for molecules of nearly equal reorganization en-
ergy, as well as between low energy predicted crystal structures
of the same molecule. For this reason, future development of the
evolutionary optimisation for molecular materials should include
crystal packing effects within the fitness function. This is chal-
lenging because of the computational cost associated with CSP,
but developments such as machine learned energy models>>®
and fast structure searching algorithms could help reduce these
timescales.

CSP introduces a complication to the evaluation of molecules
because each molecule is associated with an ensemble of crystal
structures of similar energetic stability, but sometimes large vari-
ation in properties. We use several measures to judge the fitness
of a molecule’s landscape of predicted crystal structures, based
on properties of the lowest energy structure, a weighted average
over low energy structures, and assessment of the variability of
properties between crystal structures. These provide measures of
the potential of a molecule, as well as risk associated with uncer-
tainty of the resulting crystal structure.

Molecules with large landscape-averaged properties as well as
small variation in properties between low energy potential crys-
tal structures are attractive. Small variation in properties can
result from a sparsity in the crystal structure landscape, a fur-
ther advantage of which is that small numbers of structures can
be treated with more rigorous methods for property prediction.
From this work, the symmetric hexa-azapentacene molecule, 2B,
meets these criteria, with a large energy gap between predicted
crystal structures and a high calculated electron mobility for the
lowest energy structure.

Comparison was made to a series of azapentacenes previously
proposed as promising n-type organic semiconductors, WH5A,
WH5B, WH7A and WH7B, none of which were found to have
both a large average and small variation of the electron mobili-
ties, properties which we predict for molecule 2B. From this com-
parison, we judge that the evolutionary algorithm developed here
is at least as successful as intuitive molecular design assisted with
computational tools, while also having clear opportunities for de-
velopment, particularly through integration of solid state struc-
ture prediction more strongly into the evolutionary process itself.
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