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Abstract

Background

Environmental enteric dysfunction (EED) may be an important modifiable cause of child

stunting. We described the evolution of EED biomarkers from birth to 18 months in rural Zim-

babwe and tested the independent and combined effects of improved water, sanitation, and

hygiene (WASH), and improved infant and young child feeding (IYCF), on EED.

Methodology and findings

The Sanitation Hygiene Infant Nutrition Efficacy (SHINE) trial was a 2x2 factorial cluster-ran-

domised trial of improved IYCF and improved WASH on child stunting and anaemia at 18

months of age. 1169 infants born to HIV-negative mothers provided plasma and faecal

specimens at 1, 3, 6, 12, and 18 months of age. We measured EED biomarkers that reflect

all domains of the hypothesized pathological pathway. Markers of intestinal permeability

and intestinal inflammation declined over time, while markers of microbial translocation and

systemic inflammation increased between 1–18 months. Markers of intestinal damage (I-

FABP) and repair (REG-1β) mirrored each other, and citrulline (a marker of intestinal epithe-

lial mass) increased from 6 months of age, suggesting dynamic epithelial turnover and
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regeneration in response to enteric insults. We observed few effects of IYCF and WASH on

EED after adjustment for multiple comparisons. The WASH intervention decreased plasma

IGF-1 at 3 months (β:0.89, 95%CI:0.81,0.98) and plasma kynurenine at 12 months (β: 0.92,

95%CI:0.87,0.97), and increased plasma IGF-1 at 18 months (β:1.15, 95%CI:1.05,1.25),

but these small WASH effects did not translate into improved growth.

Conclusions

Overall, we observed dynamic trends in EED but few effects of IYCF or WASH on biomark-

ers during the first 18 months after birth, suggesting that these interventions did not impact

EED. Transformative WASH interventions are required to prevent or ameliorate EED in low-

income settings.

Author summary

Child stunting remains a global health challenge rooted in an intergenerational cycle of

poor health, reduced neurodevelopment and poverty. Environmental enteric dysfunction

(EED) is an acquired condition of the small intestine likely resulting from frequent faecal-

oral microbial exposure, which is hypothesized to underlie stunting. We found dynamic

changes in EED biomarkers between 1 and 18 months of age in a cohort of rural Zimba-

bwean infants, suggesting a complex developmental period of intestinal maturation, adap-

tation and response to environmental insults. Randomized improved infant and young

child feeding, and improved water, sanitation and hygiene (WASH) interventions had no

meaningful impact on EED. Greater investment in transformative WASH is needed to

prevent EED in low-income countries.

Introduction

Child stunting, defined as an attained length or height>2 standard deviations below the age-

and sex-matched standard population median [1], is a persistent global health challenge.

Stunting is associated with reductions in child survival, early childhood development, educa-

tional attainment and adult economic productivity [2–4]. An estimated one-fifth of children

(149 million) are stunted before the age of 5 years in low- and middle-income countries

(LMICs) [5]. Interventions to reduce stunting have largely focused on improved complemen-

tary feeding and prevention of diarrhoea. However, the impact of these interventions on

restoring linear growth deficits is modest [6–8]. Evidence to support other nutrition-sensitive

interventions, which address the underlying determinants of stunting during the first 1000

days of life, is currently limited [9]. The need to identify modifiable causal mechanisms under-

lying stunting is a paramount global health need.

Three decades ago, tropical enteropathy was proposed as an important factor in undernu-

trition [10,11]. This small intestinal pathology, now called environmental enteric dysfunction

(EED), has recently gained considerable interest as a plausible cause of stunting [12,13]. EED

is a subclinical disorder characterized by reduced villus height, increased crypt depth and lym-

phocytic infiltration [12], resulting in impaired absorption and gut barrier function. Nutrient

deficiencies, fungal toxin exposure and chronic exposure to enteric pathogens are hypothe-

sized causes of EED [14–16].
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There is no agreed case definition for EED. Differential urinary excretion of two sugars,

typically lactulose and mannitol, has most often been used to characterize abnormalities in gut

permeability and absorption, but this test has substantial limitations [17,18] and only captures

part of the pathology underlying EED [15]. To date, studies have failed to demonstrate repro-

ducible changes in these markers following interventions. Nutritional supplementation with

vitamin A [19], zinc [20,21], multiple micronutrients [22], alanlyl-glutamine [23–25] or die-

tary supplementation [26,27] have produced transient or inconsistent improvements. Inter-

ventions aimed at ameliorating intestinal inflammation, permeability or microbiome

disruption have also been unsuccessful, including probiotics [28], antibiotics [29], long-chain

polyunsaturated fatty acids [30], lactoferrin with lysozyme [31], and albendazole plus zinc

[32]. Several other biomarkers have been adopted to reflect a wider range of functional and

structural characteristics of EED [15,33]. A number of these have shown modest negative rela-

tionships with linear growth, although results vary by setting and age group [32,34–40]. Since

EED is acquired early in life among children living in impoverished unsanitary conditions

[15,41,42], it is plausible that water, sanitation and hygiene (WASH) interventions, designed

to block faecal-oral transmission of enteropathogens, may prevent EED. The WASH Benefits

trial in Bangladesh, testing the impact of a water, sanitation and hygiene intervention with or

without a nutritional supplement, showed that the interventions improved some markers of

gut inflammation and permeability in infants at three months of age, but by 28 months of age

several biomarkers were higher among infants in the intervention arms compared to control

[43]. In addition, only the MAL-ED study has measured the range and dynamics of EED bio-

markers during the first two years of life, and only for a limited set of markers [44].

The Sanitation Hygiene Infant Nutrition Efficacy (SHINE) trial [45] was a cluster-random-

ized trial testing the impact of improved household water quality, sanitation, and hygiene

(WASH) and improved infant and young child feeding (IYCF) on linear growth between birth

and 18 months. We hypothesized that the effect of the WASH intervention would be mediated

in part through reduced diarrhoea but primarily through reduced EED. We have previously

reported the trial primary outcomes: the IYCF intervention modestly increased length-for-age

Z-score (LAZ) by 0.16 and reduced stunting by 20% at 18 months, but the WASH intervention

had no impact on linear growth or diarrhoea [46]. The WASH Benefits trials in Bangladesh

and Kenya also found no impact of a WASH intervention on stunting and WASH Benefits

Kenya found no impact on diarrhoea [47,48]. To investigate the impact of the WASH and

IYCF interventions on EED, and to describe the evolution of EED during infancy, we mea-

sured biomarkers of EED in a subgroup of infants enrolled in SHINE at 1, 3, 6, 12, and 18

months of age.

Methods

A detailed description of the SHINE trial design and methods has been published [45], and the

protocol, behaviour change modules, and statistical analysis plan are available at https://osf.io/

w93hy. SHINE was a 2x2 factorial cluster-randomised trial assessing the individual and com-

bined effects of improved IYCF and improved WASH on child stunting and anaemia at 18

months of age (ClinicalTrials.gov NCT01824940). A total of 211 clusters, defined as the catch-

ment area of 1–4 Village Health Workers (VHWs) employed by the Ministry of Health and

Child Care (MoHCC), were allocated to one of four intervention groups using highly con-

strained randomization: standard-of-care (SOC); IYCF; WASH; or IYCF+WASH. Between 22

November 2012 and 27 March 2015, pregnant women living in these clusters were enrolled

following written informed consent. VHWs delivered treatment group-specific behavior

change interventions and commodities during 15 home visits, between enrolment and 12
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months postnatal. Between 13–17 months, VHWs made monthly visits to provide routine

care, deliver intervention commodities in active groups, and encourage participants to practice

behaviors relevant to their study arm. At 18 months a review module, which reiterated key

messages, was implemented in all arms. Commodities and behavior change communication

messages delivered in the four treatment groups were:

SOC: promotion of exclusive breastfeeding to 6 months [49], and uptake of maternal-child

health services.

WASH: SOC interventions plus a ventilated improved pit (VIP) latrine, two handwashing

stations, plastic mat and play yard (North States, Minneapolis, MN); monthly delivery of soap

and chlorine solution (WaterGuard, Nelspot, Zimbabwe) with promotion of safe disposal of

feces, handwashing with soap, protection of infants from geophagia, chlorination of drinking

water, and hygienic preparation of complementary food.

IYCF: SOC interventions plus 20g small-quantity lipid-based nutrient supplement

(SQ-LNS) to be fed to the infant daily from 6–18 months; education and counseling to feed the

infant nutrient-dense locally available food, feeding during illness, and dietary diversity.

WASH+IYCF: All SOC, WASH, and IYCF interventions.

A latrine was constructed in SOC and IYCF arms after completion of the trial. Due to the

nature of the interventions, masking was not possible.

Data collection

Research nurses made two home visits during pregnancy and five postnatal visits at infant ages

1, 3, 6, 12, and 18 months. At baseline, maternal education and age, household wealth, access

to water and sanitation, and food insecurity were assessed; mothers were tested for HIV via

rapid test algorithm and HIV-positive women were urged to seek immediate care for preven-

tion of mother-to-child transmission. Infant birth date, weight, and delivery details were tran-

scribed from health facility records; the trial provided Tanita BD-590 infant scales to all health

institutions in the study area and trained facility staff. Gestational age at delivery was calculated

from the date of the mother’s last menstrual period.

Given the household-based trial interventions, visits were not conducted if the mother had

moved from the household where she consented, except for the 18-month visit (trial endpoint)

when follow-up was conducted anywhere within Zimbabwe. Indicators of uptake of the inter-

ventions were collected at all visits and reported here for the 12-month postpartum visit.

Environmental Enteric Dysfunction (EED) substudy. Part-way through the trial (from

mid-2014 onwards) mother-infant pairs were invited to join a substudy to investigate bio-

markers of EED. Women were informed about the EED substudy at their 32-week gestation

visit and those with live births were enrolled at the 1 month postnatal visit, or as soon as possi-

ble thereafter. We pre-specified that primary trial inferences would be based on findings

among infants born to mothers who were HIV-negative during pregnancy, because of the

likely impact of HIV exposure and infant cotrimoxazole prophylaxis on underlying causal

pathways [33]. Results from HIV-unexposed children are reported in this paper; EED results

among HIV-exposed infants will be reported separately.

From children in the EED substudy, additional specimens were collected at each postnatal

visit, including stool (passed on the morning of the research visit and collected by the mother

into a plain container) and blood, collected by venepuncture into an EDTA tube. In the field

laboratory, EDTA tubes were centrifuged to collect plasma, which was stored at -80˚C. Stool

specimens were transported in a cold box to the field laboratory, aliquoted into plain tubes

and stored at -80˚C. Samples were subsequently transferred to the Zvitambo Laboratory in

Harare for long-term storage at -80˚C until analysis.
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Biomarkers of EED. We selected a range of biomarkers that would characterize the

domains of EED. These were previously described, together with the rationale for each [33],

with the following modifications since publication of that methods paper [50]. First, plasma

citrulline was added as a biomarker of small intestinal damage, since lower circulating concen-

trations reflect reduced enterocyte mass [51]. Second, EndoCAb was dropped as a measure of

microbial translocation due to technical problems with the commercial assay [50]. Third,

kynurenine:tryptophan ratio was added as an emerging marker of inflammation in children

with EED [37], in place of alpha-1-acid glycoprotein which had a high coefficient of variation

in our laboratory. Lactulose-mannitol testing was undertaken at all time-points except 1

month of age, because of concerns about interrupting early exclusive breastfeeding. The test

has previously been described in detail elsewhere [33]. Briefly, after a 30-minute fast infants

ingested 2mL/kg body weight (maximum 20mL) of a sterile solution containing 250 mg/mL

lactulose and 50 mg/mL mannitol. A urine bag was placed, and all urine passed over a 2-hour

period was collected, preserved with chlorhexidine and transported in a cool box to the field

laboratory, where it was measured, aliquoted into plain tubes and stored at -80C. The final list

of EED biomarkers and their respective domains are summarized in Table 1.

All assays were undertaken by laboratory scientists masked to the trial intervention arm.

Plasma samples were tested at the Zvitambo laboratory by Enzyme Linked Immunosorbent

Assay (ELISA) according to manufacturers’ instructions for CRP (limit of detection (LOD)

0.01ng/mL), soluble CD14 (LOD 125pg/mL), IGF-1 (LOD 0.026ng/mL) (all from R&D Sys-

tems, Minneapolis, MN, USA); and I-FABP (LOD 47pg/mL); Hycult Biotechnology, Uden,

The Netherlands. Stool samples were tested at the Zvitambo laboratory by ELISA according to

manufacturers’ instructions for neopterin (LOD 0.7nmol/L; GenWay Biotech Inc, San Diego,

CA, USA), myeloperoxidase (LOD 1.6ng/mL; Immundianostik, Bensheim, Germany), A1AT

(LOD 1.5ng/mL; BioVendor, Brno, Czech Republic), and REG-1β (LOD 0.625ng/mL; TECH-

LAB Inc, Blacksburg, VA, USA). Plasma citrulline (LOD 100ng/mL), kynurenine (LOD 40ng/

mL), and tryptophan (200ng/mL) were assayed by ultrahigh-performance liquid chromatogra-

phy tandem mass spectrometry with electrospray ionization (Waters, Wilmslow, U.K.) at

Imperial College, London. Urine samples were tested on a Shimadzu Prominence liquid chro-

matograph with a Restek Ultra Amino 3μm 150/2.1mm column and tandem Sciex

QTRAP5500 mass spectrometer with a Turbo V ion source and TurboIonSpray probe at Pain

Care Specialists of Oregon, USA. Both analytes were quantified against lab-made calibrators at

ng/mL levels of 3250, 2500, 1250, 750, 350, 100, 10, and 1. The calibrator was confirmed each

day by lab-made quality control samples at 150 and 750ng/mL. Lactulose for calibrators and

control were obtained from Spectrum Chemical (LOD 1ng/mL). Mannitol was obtained from

Tokyo Chemical Industry (LOD 1ng/mL). Both internal standards were obtained from Sigma-

Aldrich. Citrulline and KTR were not measured at 18 months (no funding for samples). We

also calculated the environmental enteropathy score (EE score) proposed by Kosek et al. [52],

Table 1. Domains of environmental enteric dysfunction and corresponding biomarkers.

Domain Biomarker

Intestinal Inflammation Fecal neopterin, fecal myeloperoxidase

Small Intestinal Damage and

Repair

Fecal regenerating gene 1β, plasma intestinal fatty acid binding protein, plasma

citrulline

Intestinal Permeability Fecal alpha-1 antitrypsin, urinary lactulose:mannitol ratio

Microbial Translocation Plasma soluble CD14

Systemic Inflammation Plasma C-reactive protein, plasma kynurenine:tryptophan ratio

Growth Axis Plasma insulin-like growth factor 1

https://doi.org/10.1371/journal.pntd.0007963.t001
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as a composite index reflecting the severity of intestinal enteropathy and treated it as a contin-

uous variable in our analyses.

Sample size. The substudy was based on a sample size of 250 children per trial arm with

longitudinal assessments of EED, after allowing for missed samples and loss to follow-up.

Assuming an average of 2–3 infants per cluster, type I error of 5%, and a coefficient of varia-

tion across clusters of 0.25 provides >80% power to detect a difference of at least 0.18 standard

deviations between WASH and non-WASH arms, or between IYCF and non-IYCF arms.

Statistical methods

All analyses were intention-to-treat at the child level. Independent intervention effects of IYCF

and WASH, as well as IYCF-by-WASH interaction effects, were evaluated by fitting separate

regression models with each biomarker as the dependent variable. Independent variables

included IYCF and WASH coded as dummy variables and an IYCF-by-WASH interaction

term. If the interaction was not significant (p>0.05) and if the interaction term was <0.25

standard deviations in absolute magnitude, main intervention effects were tested to compare

IYCF to non-IYCF and WASH to non-WASH groups in separate models. Except for citrulline

and EE score, tobit regression was used to account for unobserved biomarker values below the

LOD using the package AER [53], and sandwich standard error estimation was used to account

for cluster membership using the sandwich package [54], both in R version 3.5.3. For citrulline

and EE score, no infants were below the LOD, so linear regression models were fitted by gener-

alized estimating equations (GEE), with an exchangeable correlation to account for cluster

membership, using the geepack package [55]. All biomarker values were natural log-trans-

formed, except for EE score because of zero values. A separate model was fitted for each study

visit. For each biomarker, the Holm method was used to account for multiple comparisons

across study visits. The robustness of model results to influential observations was assessed by

re-fitting each model after 95% winsorization of log-transformed biomarker values or raw EE

scores [56]. Regression coefficients are reported as the ratio of biomarker concentrations

between intervention and control arms, or as the difference between arms for EE scores. To

graphically present the longitudinal biomarker trajectories in each intervention group, we fit-

ted generalized additive models of biomarker concentration against infant age with the use of

cubic splines with 3 knots for smoothing.

Ethics and regulatory oversight

Women gave written informed consent to join the trial and additional consent for their infant

to join this substudy. Both the SHINE trial and this substudy were approved by the Medical

Research Council of Zimbabwe and the Institutional Review Board of the Johns Hopkins

Bloomberg School of Public Health.

Results

Of 5280 women enrolled in the SHINE trial, there were 3989 live births to 3937 HIV-negative

mothers; of these, 1169 (29%) infants were enrolled in the EED substudy. Of the 1169 enrolled

infants, 33 (2.8%) died and 31 (2.7%) were lost to follow-up or exited before the 18-month visit

(Fig 1A). A further 68 did not provide a specimen at 18 months, meaning 1037 infants were

included in analyses (Fig 1B). Specimen collection at interim visits was lowest at the earliest

study visit and was largely similar across intervention arms (Fig 1B).

Baseline characteristics of mother-infant pairs who were enrolled versus not enrolled in the

EED substudy are shown in S1 Table. Compared with mothers not enrolled in the substudy,

EED mothers had a slightly better food security (assessed by the coping strategy index) and
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were from households with a more diverse diet. Baseline characteristics by randomized arm

for the 1037 infants included in this analysis are shown in Table 2. More than half of all house-

hold members practiced open defecation and about one-third of households had an improved

latrine at baseline. Approximately two-thirds obtained drinking water from improved sources,

and the median return-trip walk from their water source was ten minutes. The frequency of

Fig 1. Flow of participants through the SHINE Environmental Enteric Dysfunction (EED) substudy. (A)

Enrolment, treatment allocation, sub-study selection and losses to follow-up. (B) Specimen collection. SOC, standard

of care; IYCF, infant and young child feeding; WASH, water, sanitation and hygiene. None means that no serum or

stool samples were collected at that visit, but infants remained in the substudy.

https://doi.org/10.1371/journal.pntd.0007963.g001

Environmental enteric dysfunction in Zimbabwean children

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007963 February 14, 2020 7 / 29

https://doi.org/10.1371/journal.pntd.0007963.g001
https://doi.org/10.1371/journal.pntd.0007963


Table 2. Maternal, household and infant baseline characteristics of HIV-negative mothers and their liveborn infants included in analyses, by intervention arm.

SOC IYCF WASH IYCF plus

WASH

Mothers 311 347 229 266

Infants 279 316 206 245

Mothers completing baseline visit 275 313 203 241

Household Characteristics

Median Number of Occupants [IQR] 5[3,6] 5[4,6] 5[4,6] 5[4,6]

Wealth Quintile[57]

1 (lowest) 59 (23.0%) 40 (13.3%) 39 (19.7%) 37 (15.8%)

2 56 (21.8%) 58 (19.3%) 37 (18.7%) 48 (20.5%)

3 51 (19.8%) 63 (20.9%) 43 (21.7%) 50 (21.4%)

4 47 (18.3%) 70 (23.3%) 46 (23.2%) 47 (20.1%)

5 (highest) 44 (17.1%) 70 (23.3%) 33 (16.7%) 52 (22.2%)

Electricity

Power grid 8/255 (3.1%) 11 (3.7%) 5 (2.5%) 1 (0.4%)

Other power source

Solar 177/255

(69.4%)

228 (76.0%) 141 (71.2%) 181 (77.0%)

Generator 4/255 (1.6%) 6 (2.0%) 7 (3.5%) 6 (2.6%)

No Electricity 74/255 (29.0%) 66 (22.0%) 50 (25.3%) 48 (20.4%)

Sanitation

Household members defecate in the open 99/801 (12.4%) 134/884

(15.2%)

94/576

(16.3%)

116/642 (18.1%)

Any latrine at household 82/255 (32.2%) 122 (41.1%) 65 (34.4%) 79 (35.0%)

Improved latrine at household 69/255 (27.1%) 103 (34.7%) 59 (31.4%) 71 (31.4%)

Improved latrine with well-trodden path not shared with other households and not used for

storage

59/255 (23.1%) 94 (31.6%) 53 (28.2%) 64 (28.3%)

Water

Main source of household drinking water improved 155/254

(61.0%)

187 (63.0%) 120 (62.8%) 138 (60.8%)

Treated drinking water to make safer 33/251 (13.1%) 34 (11.6%) 22 (11.6%) 28 (12.4%)

Median one-way walk time to fetch water [IQR], min 10[5,15] 5.5[3,15] 10[5,20] 10[5,15]

Mean water volume collected per person in past 24 h (SD), L 7.8(6.6) 8.6(7.3) 7.7(7.0) 8.5(10.7)

Hygiene

Handwashing station at household 5/242 (2.1%) 6 (2.1%) 39 (20.2%) 56 (24.8%)

Handwashing station with water and rubbing agent 5/242 (2.1%) 3 (1.0%) 10 (5.2%) 9 (4.0%)

Improved floor� 129 (46.9%) 129 (41.2%) 83 (40.9%) 104 (43.2%)

Median number of chickens [IQR] 6 [1,10] 7 [3,12] 5.5 [2,10] 6 [1,10]

Livestock observed inside home 104 (40.5%) 117 (38.9%) 85 (43.1%) 96 (40.9%)

Feces observed in the yard 84 (32.7%) 118 (39.2%) 72 (36.4%) 76 (32.3%)

Diet quality and food security

Household meets minimum Diet Diversity Score[58] 106/235

(45.1%)

133/266

(50.0%)

83/178

(46.6%)

94/208 (45.2%)

Median Coping Strategies Index score [IQR][59] 0 [0,6] 0 [0,4] 0 [0,7] 0 [0,4]

Maternal characteristics

Mean age (SD), years 26.0 (6.5) 26.6 (6.7) 27.0 (6.9) 27.1 (6.6)

Mean height (SD), cm 159.6 (8.3) 160.5 (6.1) 159.3 (9.1) 159.6 (8.4)

Mean mid-upper-arm circumference (SD), cm 26.2 (3.0) 26.7 (3.2) 26.9 (3.5) 26.8 (3.4)

Positive microscopy for Schistosoma haematobium 15/252 (6.0%) 31/290 (10.7%) 25/191

(13.1%)

17 (7.4%)

(Continued)
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open defecation was higher, while improved latrine ownership, wealth index scores, and

employment rate were lower in the SOC arm than in the other arms. Maternal, household and

infant baseline characteristics were otherwise largely similar across intervention arms.

Intervention uptake

At the 12-month study visit, among EED households in the WASH arms, 97% received venti-

lated improved pit latrines, almost all received handwashing stations and play mats, more than

96% received play yards, and>80% received 80% or more of the planned deliveries of soap

and chlorine solution (Table 3). Among households in the IYCF arms, approximately 80%

received�80% of planned deliveries of the SQ-LNS. Across all intervention groups�92%

completed the intervention modules. A median of 15 out of 15 scheduled intervention visits

between enrolment and 12 months were received by mothers in all groups, with the exception

of the WASH-only arm (median[IQR] 14[14–15].

Biomarker trends

Changes over time in each biomarker between 1–18 months of age, by randomized treatment

arm, are shown in Figs 2–5. Stool biomarkers of intestinal inflammation decreased overall dur-

ing follow-up, but with some variations in the precise pattern (Fig 2).

Myeloperoxidase was quite stable around geometric mean of 7518ng/mL (95%CI:7014–

8059) between 1 and 6 months, then rapidly declined thereafter to 2825ng/mL (95%CI:2669–

2991) at 18 months. Neopterin showed a minor increase from 1 to 6 months of age (from

980nmol/L (95%CI:908–1057) to 1283nmol/L (95%CI:1230–1337)), followed by a steep

decline to 383nmol/L (95%CI:362–407) at 18 months.

Table 2. (Continued)

SOC IYCF WASH IYCF plus

WASH

Mean years of schooling completed (SD) 9.4 (1.8) 9.7 (1.7) 9.4 (1.8) 9.5 (1.9)

Median parity [IQR] 2 [1,3] 2 [1,3] 2 [1,3] 2 [1,3]

Married 252 (94.0%) 285 (95.0%) 182 (92.9%) 225 (95.7%)

Employed 16 (6.2%) 33 (11.0%) 32 (16.2%) 21 (9.0%)

Religion

Apostolic 139 (51.7%) 133 (43.9%) 99 (50.3%) 113 (47.9%)

Other Christian 119 (44.2%) 150 (49.5%) 84 (42.6%) 100 (42.4%)

Other 11 (4.1%) 20 (6.6%) 14 (7.1%) 23 (9.7%)

Infant characteristics

Female sex 125 (44.8%) 147 (46.5%) 112 (54.4%) 129 (52.7%)

Mean birthweight (SD), kg 3.09 (0.47) 3.13 (0.45) 3.14 (0.46) 3.11 (0.47)

Birthweight <2500 g 26 (9.7%) 15 (5.0%) 13 (6.7%) 25 (10.5%)

Institutional delivery 245 (89.7%) 271 (88.6%) 179 (92.3%) 216 (91.5%)

Vaginal delivery 263 (96.0%) 282 (91.6%) 187 (92.6%) 224 (93.3%)

Baseline variables are shown for 1046 infants and their mothers enrolled in the EED substudy who provided at least one specimen of stool or blood at the 18-month

endline visit. Maternal and household data were collected about 2 weeks after consent was recorded (approximately 14 gestational weeks). Baseline for infants was at

birth. Data are n or n (%), unless otherwise specified. Where n not stated, <7% of data missing.

SHINE, Sanitation, Hygiene, Infant Nutrition Efficacy trial; EED, environmental enteric dysfunction; SOC, standard of care; IYCF, infant and young child feeding;

WASH, water, sanitation, and hygiene. IQR, interquartile range; min, minutes; SD, standard deviation; L, litres; cm, centimetres; kg, kilograms; g, grams.

�Improved floor defined as concrete, brick, cement, or tile; unimproved floor defined as mud, earth, sand, or dung.

https://doi.org/10.1371/journal.pntd.0007963.t002
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Table 3. Intervention delivery and participant uptake in the SHINE EED substudy by treatment group.

SOC IYCF WASH IYCF plus

WASH

Non-

WASHa
Combined

WASHa
Non-IYCFa Combined

IYCFa

Fidelity of intervention delivery

Children with 18-month outcomes (on whom

inferences are based), n

279 316 206 245 595 451 485 561

WASH Supplies

SHINE-installed ventilated improved pit

latrine

NA NA 203

(98.5%)

238

(97.1%)

NA 441 (97.8%) NA NA

Two handwashing stations (Tippy Taps)

delivered

NA NA 205

(99.5%)

245 (100%) NA 450 (99.8%) NA NA

Baby mat Delivered NA NA 200

(97.1%)

244

(99.6%)

NA 444 (98.4%) NA NA

Play yard Delivered NA NA 199

(96.6%)

237

(96.7%)

NA 436 (96.7%) NA NA

Median liquid soap deliveries [IQR]b NA NA 20 [19–20] 20 [20–20] NA 20 [19–20] NA NA

Received�80% of expected soap deliveries NA NA 175

(85.0%)

218

(89.0%)

NA 393 (87.1%) NA NA

Median Water Guard deliveries [IQR]c NA NA 15 [14–15] 15 [15–15] NA 15 [15–15] NA NA

Received�80% of expected Water Guard

deliveries

NA NA 175

(85.0%)

216

(88.2%)

NA 391 (86.7%) NA NA

IYCF Supplies

Median deliveries of small-quantity lipid-

based nutrient supplement [IQR]d
NA 13 [12–13] NA 13 [13–13] NA NA NA 13 [13–13]

Received�11 (80% of expected) deliveries of

small-quantity lipid-based nutrient supplement

NA 254

(80.4%)

NA 209

(85.3%)

NA NA NA 463 (82.5%)

Behavior change modules

Median intervention modules [IQR]c 15 [14–15] 15 [14–15] 14 [14–15] 15 [15–15] 15 [14–15] 15 [14–15] 15 [14–15] 15 [15–15]

Completed intervention modules 5114/5522

(92.6%)

7877/8350

(94.3%)

5203/5632

(92.4%)

7289/7680

(94.9%)

12991/13872

(93.6%)

12492/13312

(93.8%)

10317/

11154

(92.5%)

15166/16030

(94.6%)

Participant uptake of promoted behaviors at

the 12-month visit

WASH behaviors

Mothers with outcomes at 12 months and 18

months, n

239 282 176 221 521 397 415 503

Children with outcomes at 12 months and 18

months, n

243 284 179 225 527 404 422 509

Household members who defecate in the

open

487/1029

(47.3%)

516/1346

(38.3%)

2/869

(0.2%)

11/1162

(0.9%)

1003/2375

(42.2%)

13/2031

(0.6%)

NA NA

Any latrine at household 80 (33.2%) 116

(42.0%)

178 (100%) 225 (100%) 196 (37.9%) 403 (100%) NA NA

Improved latrine at household 64 (26.6%) 97 (35.1%) 178 (100%) 225 (100%) 161 (31.1%) 403 (100%) NA NA

Improved latrine with well-trodden path not

shared with other households and not used for

storage

53 (22.0%) 75 (27.2%) 154

(86.5%)

200

(88.9%)

128 (24.8%) 354 (87.8%) NA NA

Handwashing station at household 19 (8.2%) 26 (9.6%) 177

(98.9%)

220

(97.8%)

45 (8.9%) 397 (98.3%) NA NA

Handwashing station with water and rubbing

agent at household

9 (3.9%) 7 (2.6%) 150

(86.7%)

187/210

(89.0%)

16 (3.2%) 337 (88.0%) NA NA

Ever treats drinking water to make safer 31 (12.9%) 28 (10.1%) 167

(93.8%)

203

(90.2%)

59 (11.4%) 370 (91.8%) NA NA

Disposes water from cleaning infant nappies

in a latrine

68 (28.6%) 67 (24.7%) 49 (27.8%) 55 (24.9%) 135 (26.5%) 104 (26.2%) NA NA

(Continued)
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Biomarkers of intestinal damage showed more variable patterns (Fig 3).

Stool REG-1β, a marker of epithelial regeneration, increased linearly from 40.6μg/mL (95%

CI:36.4–45.1) at 1 month to 154.6μg/mL (95%CI:145.5–164.2) at 12 months, with a small

decrease to 132.9μg/mL (95%CI:123.1–143.6) at 18 months. Plasma citrulline, a marker of

small intestinal epithelial mass, was approximately 2744ng/ml (95%CI:2658–2834) from 1 to 6

months, but increased to 3150ng/mL (95%CI:3075–3227) by 12 months. Plasma I-FABP,

which reflects small intestinal villous damage, showed a U-shaped pattern, declining from

1031pg/mL (95%CI:993–1021) at 1 month to 913pg/mL (95%CI:892–934) at 6 months, fol-

lowed by an increase to 1198pg/mL (95%CI:1160–1237) at 18 months.

Table 3. (Continued)

SOC IYCF WASH IYCF plus

WASH

Non-

WASHa
Combined

WASHa
Non-IYCFa Combined

IYCFa

Play space is visibly clean NA NA 164

(94.8%)

200

(92.2%)

NA 364 (93.3%) NA NA

Child ever observed to eat soil 179

(74.3%)

188

(66.4%)

38 (21.2%) 62 (27.6%) 367 (70.0%) 100 (24.8%) NA NA

Child ever observed to eat chicken feces 65 (27.0%) 53 (18.7%) 5 (2.8%) 7 (3.1%) 118 (22.5%) 12 (3.0%) NA NA

IYCF Behaviors

Child still breastfeeding 237

(97.9%)

277

(97.9%)

175

(97.8%)

219

(97.3%)

NA NA 412 (97.9%) 496 (97.6%)

Mother reports correct ways to feed child

during and after illness

168

(69.4%)

220

(78.6%)

123

(69.5%)

170

(75.9%)

NA NA NA NA

Infant diet met minimum dietary diversity in

past 24h

NA NA NA NA NA NA 291 (69.5%) 390 (77.4%)

Infant consumed iron-rich food in past 24h 129

(53.5%)

186

(67.1%)

91 (52.3%) 158

(71.5%)

NA NA 220 (53.0%) 344 (69.1%)

Infant consumed animal source food in past

24h

163

(67.4%)

195

(68.9%)

116

(65.5%)

150

(66.7%)

NA NA 279 (66.6%) 345 (67.9%)

Infant consumed vitamin-A-rich food in past

24h

165

(68.2%)

224

(79.2%)

119

(66.5%)

178

(79.8%)

NA NA 284 (67.5%) 402 (79.4%)

Nutributter consumed in past 24h NA 265

(94.3%)

NA 202

(89.8%)

NA NA NA 467 (92.3%)

Data are n or n (%), unless otherwise specified. The denominator for indicators of fidelity of intervention delivery are the number of children who provided outcomes

and a plasma or stool specimen at 18 months. The denominator for indicators of participant uptake of promoted behaviours at the 12-month visit are the number of

women (for household-level indicators) and children (for child-level indicators) who provided 12-month and 18-month outcomes. Where n not stated, <7% of data

missing.

Village health workers were scheduled to visit households monthly to deliver 30 sachets of a small-quantity lipid-based nutrient supplement (sufficient to provide 20g

per day for the infant), 1 L of liquid soap, and 150mL (one bottle) of Water Guard for families of fewer than five people (two bottles for families of five or more people).

The combined WASH group comprised the group receiving only the WASH intervention and the group receiving the WASH + IYCF intervention, whereas the non-

WASH group comprised the two arms not including WASH (SOC and IYCF). The combined IYCF group comprised the two IYCF-containing arms (IYCF and IYCF

+WASH), whereas the non-IYCF group comprised the two arms not including IYCF (SOC and WASH).

SHINE, Sanitation, Hygiene, Infant Nutrition Efficacy trial; EED, environmental enteric dysfunction; SOC, standard of care; IYCF, infant and young child feeding;

WASH, water, sanitation, and hygiene; NA, not applicable; IQR, interquartile range.
aNon-WASH is SOC (n = 279) + IYCF (n = 316); Combined WASH is WASH (n = 206) + IYCF plus WASH (n = 245); Non-IYCF is SOC (n = 279) + WASH (n = 206);

Combined IYCF is IYCF (n = 316) + IYCF plus WASH (n = 245)
bMaximum of 20 deliveries.
cMaximum of 15 deliveries.
dMaximum of 13 deliveries.

https://doi.org/10.1371/journal.pntd.0007963.t003

Environmental enteric dysfunction in Zimbabwean children

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007963 February 14, 2020 11 / 29

https://doi.org/10.1371/journal.pntd.0007963.t003
https://doi.org/10.1371/journal.pntd.0007963


Fig 2. Geometric means, pointwise 95% confidence intervals and the percent of infants below the limit of detection for biomarkers of intestinal inflammation

at 1, 3, 6, 12, and 18 months in the EED substudy by combined treatment arm. (A) IYCF vs non-IYCF. (B) WASH vs non-WASH. IYCF, infant and young child
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Markers of intestinal permeability decreased during the 18 month follow-up period. Stool

A1AT decreased linearly from 0.47mg/mL (95%CI:0.44–0.51) at 1 month to 0.24mg/mL (95%

CI:0.22–0.25) at 18 months (Fig 2). Urinary LM ratio peaked at 6 months (0.84, 95%CI:0.71–

0.86) then declined steeply thereafter to 0.49 (95%CI:0.43,0.53) at 18 months. By contrast,

plasma biomarkers of systemic inflammation showed opposite patterns (Fig 4).

CRP increased between 1 and 18 months, from 0.63mg/L (95%CI:0.55–0.71) to 1.28mg/L

(95%CI:1.14–1.43). However, KTR declined from 64.8 (95%CI: 62.2,67.6) at 1 month to

approximately 44.9 (95%CI: 43.6,46.3) between 6–12 months.

Soluble CD14, a marker of microbial translocation, showed a pronounced increase from

769,192pg/mL (95%CI: 741,069–798,383) at 1 month to 1,334,175 pg/mL (95%CI: 1,292,950–

1,3767,16) at 18 months. Finally, IGF-1, which is produced by the liver in response to growth

hormone, declined rapidly from 27.1 ng/mL (26.0–28.2) at 1 month to a fairly stable minimum

around 17.9ng/mL at 12 months (17.4–18.5) (Fig 5).

Intervention effects

There was no consistent evidence of interaction between IYCF and WASH for any biomarker

based on our prespecified criteria(S3 Table), so intervention arms were combined into non-

IYCF and IYCF, non-WASH and WASH as previously specified. Overall, there was little evi-

dence of intervention effects on biomarkers after adjustment for multiple comparisons. Rela-

tive to the non-IYCF group, plasma sCD14 was 10% lower at 1 month in the IYCF group

(Tobit β = 0.90, 95%CI:0.81–1.00) (S13 Table); stool neopterin was 1.11 times higher (1.11,

95%CI:0.99–1.25) and 25% lower (0.75, 95%CI:0.58–0.98) at 6 months and 18 months, respec-

tively (S6 Table); plasma citrulline was 8% higher (1.08, 95%CI:1.02–1.14) at 6 months (S11

Table), and plasma IGF-1 was 9% lower at 3 months (0.91, 95%CI:0.83,1.00) (S15 Table). How-

ever, these effects were not statistically significant after adjustment for multiple comparisons.

Relative to the non-WASH group, stool A1AT was 1.17 times higher (1.17, 95%CI:1.01–

1.35) (S4 Table) and stool myeloperoxidase was 1.16 times higher (1.16, 95%CI:1.02–1.31) at

12 months in the WASH group (S5 Table) resulting in a higher EE score (0.29, 95%CI:0.02–

0.57) (S16 Table). At 12 months, plasma KTR was 8% (0.92, 95%CI:0.86,0.98) lower (S7 Table)

and plasma CRP was 24% lower (0.76, 95%CI:0.59–0.98) (S14 Table) in the WASH vs non-

WASH groups. Plasma IGF-1 was 11% lower in the WASH group (0.89, 95%CI:0.81–0.98) at 3

months and 1.15 times higher (1.15, 95%CI:1.05–1.25) at 18 months, respectively (S15 Table).

The decrease in KTR was due to an 8% decrease (0.92,95%CI:0.87–0.97) in kynurenine at 18

months (S8 Table). Only the decrease in IGF-1 at 3 months, the decrease in kynurenine at 12

months, and the increase in plasma IGF-1 at 18 months in the WASH group remained statisti-

cally significant after adjustment for multiple testing. Model results were robust to influential

observations.

Discussion

In this substudy of over 1000 HIV-unexposed infants from the SHINE birth cohort in rural

Zimbabwe, we investigated the evolution of EED during infancy and evaluated the impact of

feeding; WASH, water, sanitation and hygiene;<LOD(%), percent of samples below the limit of detection. Data were smoothed using generalized additive models

with cubic splines and 3 knots. Dot (.) indicates a statistically significant difference between treatment arms at that study visit by Tobit regression. Asterisk (�)

indicates statistical significance difference after adjustment for multiple testing. Each visit had a window to enable follow-up if the infant was not seen on the target

date. These were: month 1 [4–12 weeks], month 3 [12–25 weeks], month 6 [25–51 weeks], month 12 [51–76 weeks], and month 18 [76–104 weeks]. Median[IQR]

infant age in months at each visit was 1.3[1.1,1.9], 3.4[3.2,4.0], 6.4[6.2,7.0], 12.3[12.1,12.5], 18.0[17.8,18.3]. KTR was not measured at 18 months. MPO,

myeloperoxidase; NEO, neopterin.

https://doi.org/10.1371/journal.pntd.0007963.g002
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improved water, sanitation and hygiene, and improved infant feeding on biomarkers of EED.

We measured biomarkers that reflect different aspects of intestinal structure and function,

microbial translocation, systemic inflammation and growth hormone activity at 1, 3, 6, 12, and

18 months of age, to capture the entire hypothesized pathway from the gut to growth [33].

Overall, we found dynamic changes in all biomarkers over the first 18 months, likely reflecting

Fig 3. Geometric means, pointwise 95% confidence intervals and the percent of infants below the limit of detection for biomarkers of

intestinal damage, biomass and regeneration at 1, 3, 6, 12, and 18 months in the EED substudy by combined treatment arm. (A) IYCF vs

non-IYCF. (B) WASH vs non-WASH. IYCF, infant and young child feeding; WASH, water, sanitation and hygiene;<LOD(%), percent of

samples below the limit of detection. Data were smoothed using generalized additive models with cubic splines and 3 knots. Dot (.) indicates a

statistically significant difference between treatment arms at that study visit by Tobit regression or by GEE estimated linear regression. Asterisk

(�) indicates statistical significance after adjustment for multiple testing. Each visit had a window to enable follow-up if the infant was not seen

on the target date. These were: month 1 [4–12 weeks], month 3 [12–25 weeks], month 6 [25–51 weeks], month 12 [51–76 weeks], and month 18

[76–104 weeks]. Median[IQR] infant age in months at each visit was 1.3[1.1,1.9], 3.4[3.2,4.0], 6.4[6.2,7.0], 12.3[12.1,12.5], 18.0[17.8,18.3].

Citrulline was not measured at 18 months. CIT, citrulline; I-FABP, intestinal fatty acid binding protein; REG-1β, regenerating gene 1 beta.

https://doi.org/10.1371/journal.pntd.0007963.g003
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changes in environmental exposures, intestinal maturation and adaptation during the first

thousand days of life. However, we observed no consistent effects of either the IYCF or WASH

interventions on biomarkers during the first 18 months after birth, suggesting that our inter-

ventions did not impact EED in this cohort.

We report changes over time for the largest number of EED biomarkers in infants to date.

Biomarker trends were similar within EED structural and functional domains but varied

between domains. In general, markers of intestinal permeability and intestinal inflammation

declined over time, whilst markers of microbial translocation and systemic inflammation

increased between 1–18 months of age. Markers of intestinal damage (I-FABP) and repair

(REG-1β) generally mirrored each other, and citrulline (a marker of intestinal epithelial mass)

increased from around 6 months of age, suggesting a dynamic process of epithelial turnover

and regeneration in response to enteric insults during infancy. The increase in citrulline at 6

months may also be attributable to the introduction of solid foods around that time, since die-

tary supplementation can increase plasma citrulline [60]. The higher citrulline concentration

in the IYCF group compared to non-IYCF when the SQ-LNS intervention was introduced as 6

months is also consistent with this; however, the higher plasma citrulline in the IYCF group

was not significant after correction for multiple comparisons. EED permeability marker A1AT

declined linearly through the first 18 postnatal months, while markers of intestinal inflamma-

tion (myeloperoxidase and neopterin) remained relatively stable during the first half of infancy

and only declined after 6 months of age. The KTR is influenced by tryptophan catabolism

through the kynurenine pathway, regulated by the rate-limiting enzyme indoleamine 2,3-diox-

ygenase 1 (IDO1), which is induced by inflammatory cytokines. Since IDO1 has a wide tissue

distribution, including in the digestive tract [61], its activity can be influenced by both systemic

and intestinal inflammation [62,63]; furthermore, concentrations of tryptophan may be gov-

erned by both dietary intake and microbiome activity [64]. The KTR therefore represents an

integrated measure of multiple metabolic and inflammatory processes, and the trend in KTR

during infancy differs by geographic setting [37]. In our study, the KTR decreased markedly

from 1 to 6 months, similar to previous findings in Peruvian infants [37]. Soluble CD14 and

CRP both increased linearly during the 18 months of follow-up. Soluble CD14 is a marker of

monocyte activation, predominantly in response to lipopolysaccharide (LPS) stimulation via

Toll-like receptor 4. We were unable to measure LPS directly in young infants, in whom blood

could not always be taken without contamination from environmental LPS, and we are unable

to ascertain the source of LPS that triggers sCD14 elaboration. It seems paradoxical that intes-

tinal permeability declined over time, whilst sCD14 –potentially being produced in response

to translocated bacterial products from the gut–increased during the same period. However,

lipopolysaccharide may also arise from other sources, such as respiratory exposure to biomass

fuels, so sCD14 likely reflects the composite inflammatory milieu arising from multiple sources

of bacterial products. Also, A1AT reflects leakage of large proteins from the systemic circula-

tion into the gut and does not reflect the pore size of LPS translocation in the other direction,

so these two biomarkers would not be expected to be directly related. Consistent with the rise

in sCD14 was a progressive increase in CRP, which reflects low-grade chronic inflammation

that develops over time. CRP is produced by the liver in response to stimulation by interleu-

kin-6 and reflects innate immune activation through pattern recognition receptors. Like

sCD14, the drivers of CRP remain uncertain and are likely multiple, including bioactive bacte-

rial products from the gut. There is accumulating evidence that low-grade chronic inflamma-

tion underlies stunting and other long-term chronic diseases [65]. IGF-1, which is produced

by the liver in response to growth hormone stimulation, declined rapidly up to age 12 months,

and stabilised thereafter. Overall, IGF-1 concentrations were very low compared to cohorts of

European infants [66,67]. Since IGF-1 mediates the effects of growth hormone at the growth

Environmental enteric dysfunction in Zimbabwean children

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007963 February 14, 2020 15 / 29

https://doi.org/10.1371/journal.pntd.0007963


Fig 4. Geometric means, pointwise 95% confidence intervals and the percent of infants below the limit of detection for EED biomarkers of intestinal

permeability and microbial translocation at 1, 3, 6, 12, and 18 months in the EED substudy by combined treatment arm. (A) IYCF vs non-IYCF. (B) WASH vs

Environmental enteric dysfunction in Zimbabwean children
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plate, these low levels, which decline further over infancy, may be reflective of the population-

level linear growth faltering that occurred in this cohort [46]. IGF-1 values declined as CRP

increased, consistent with observations from a previous Zimbabwean birth cohort [65], and

suggestive of growth hormone resistance due to chronic inflammation, as is seen in clinical

disorders such as Crohn’s disease [68,69]. Overall, these biomarker trends show an intense

period of adaptation in multiple physiological processes during a key phase of linear growth.

The Mal-ED study also reported trends from birth to 24 months of age for A1AT, myeloperox-

idase and neopterin, with similar patterns to those observed in our cohort [44]. These values

are very similar to the values observed in Zimbabwean infants, and far exceed values in healthy

reference populations in high-income countries [70–72].

Overall, we found few effects of the randomized interventions on biomarkers in this large

cohort of infants. Compared to the non-IYCF group, we observed a decrease in neopterin at

18 months (β:0.74, 95%CI:0.57–0.96) in the IYCF group after adjusting for multiple testing.

Neopterin is a marker of monocyte and macrophage activation by T-helper 1 (TH1) cells in

response to infection. An improved nutrient supply can reduce Th1 cell cytokine production

to achieve a more balanced inflammatory response [73–75]. Compared to non-WASH, we

observed a small decrease in kynurenine at 12 months and an increase in IGF-1 at 18 months

in the WASH group after multiple testing correction, but no impact on any other biomarkers.

Both effects are small, and the clinical relevance at these ages is unclear.

Overall, the lack of consistent change in any intestinal biomarker suggests that the WASH

intervention did not prevent or ameliorate EED, at least as measured by the best currently

available biomarkers. This reinforces our previous report that WASH also had very limited

effect on enteropathogen carriage [76]. By contrast, WASH Benefits Bangladesh [43] reported

that children in all intervention groups had lower intestinal permeability (lactulose and manni-

tol) and inflammation (neopterin) at age 3 months compared to the control group. Diarrhoea

prevalence, E.coli contamination of water, and Giardia duodenalis prevalence were also

reduced in this trial [77,78], which is consistent with the hypothesis that EED is caused by

environmental exposure to enteric pathogens. However, by age 28 months markers of intesti-

nal permeability (A1AT and lactulose excretion) and inflammation (myeloperoxidase) were

increased in the WASH and nutrition arms, making the impact of the trial interventions diffi-

cult to ascertain. A smaller randomized trial of community-wide WASH reported a decrease

in myeloperoxidase in children 1–5 years of age after 2 years of follow-up [79]. This study also

reported significant improvements in access to piped water. There was no impact on soil-

transmitted helminth infections, and other indicators of enteric pathogen exposure were not

reported [78]. The impact of nutritional interventions have also been inconsistent

[19,22,26,27,30,80].

We have recently asserted that the elementary WASH interventions implemented in

SHINE did not reduce faecal exposure sufficiently to improve growth [46,81]. Our analyses of

the EED substudy, and our prior analysis of enteropathogens [76], are both entirely consistent

with this conclusion. Investment in WASH interventions below a minimum threshold may be

insufficient to produce noticeable health gains [82], although there are clearly important bene-

fits of WASH for human dignity, women’s time and safety. Community-level improvements

non-WASH. IYCF, infant and young child feeding; WASH, water, sanitation and hygiene;<LOD(%), percent of samples below the limit of detection. Data were

smoothed using generalized additive models with cubic splines and 3 knots. Dot (.) indicates a statistically significant difference between treatment arms at that study

visit by Tobit regression. Asterisk (�) indicates statistical significance after adjustment for multiple testing. Each visit had a window to enable follow-up if the infant

was not seen on the target date. These were: month 1 [4–12 weeks], month 3 [12–25 weeks], month 6 [25–51 weeks], month 12 [51–76 weeks], and month 18 [76–104

weeks]. Median[IQR] infant age in months at each visit was 1.3[1.1,1.9], 3.4[3.2,4.0], 6.4[6.2,7.0], 12.3[12.1,12.5], 18.0[17.8,18.3]. A1AT, alpha-1 antitrypsin; LM,

lactulose mannitol; sCD14, soluble CD14.

https://doi.org/10.1371/journal.pntd.0007963.g004
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Fig 5. Geometric means, pointwise 95% confidence intervals and the percent of infants below the limit of detection for EED biomarkers of systemic

inflammation and growth hormone activity at 1, 3, 6, 12, and 18 months in the EED substudy by combined treatment arm. (A) IYCF vs non-IYCF. (B) WASH vs
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in WASH coverage are associated with reductions in environmental faecal contamination

[83]. In addition, exposure to animal rather than human excreta may represent a larger source

of faecal contamination [84]. Animal exposure has been associated with EED biomarkers of

intestinal permeability and inflammation [85]. Whilst we tried to intervene in SHINE to

reduce contact between children and animal faeces through geophagia, by providing a play

mat and yard as a safe space for children, our intervention was likely insufficient to prevent

microbial exposure through this and other routes. A better understanding of faecal exposure

pathways [86–88], places of exposure [89], and patterns of exposure to different enteric patho-

gens [90] may be important to develop more comprehensive WASH interventions. Collec-

tively, the findings from SHINE support our assertion that “transformative WASH” is needed

to yield child health gains [81]. Transformative WASH refers to more effective interventions

that radically reduce faecal contamination in the household environment [81,91]. These may

include a safe and continuous supply of piped household water; high community-wide sanita-

tion coverage; complete separation of animal faeces from the child’s environment; and alterna-

tive behaviour-change modalities, as we have recently discussed in detail [81,91]. Proof-of-

concept trials that evaluate the impact of transformative WASH on biomarkers of EED and on

linear growth are still needed to test the hypothesis that EED underlies stunting and can be

prevented through effective reductions in faecal-oral transmission. Our current findings there-

fore do not suggest that WASH is unimportant for prevention of EED and promotion of linear

growth; rather, they suggest that much more investment in WASH is needed to prevent EED

and restore healthy growth.

This is the largest cohort to date in which such an extensive range of EED biomarkers has

been measured during a crucial period of growth and development in a sub-Saharan African

setting. Embedding this substudy in a randomized trial has allowed us to ascertain the effects

of WASH and IYCF on these biomarkers during this period, with laboratory analysts who

were masked to intervention arm. Some limitations of our analyses are notable. First, this was

a substudy from a larger cluster-randomized controlled trial. Although baseline variables were

largely balanced across trial arms for the infants included in this analysis, increasing confi-

dence in the internal validity of our findings, there were more mothers from households with a

more diverse diet and slightly better coping strategy index, meaning the external validity of

these substudy results is unclear. Second, there was less frequent specimen collection at the

earliest study visits (1 and 3 months), due to the practice of mothers moving from their home-

stead in the perinatal period, which may have limited the power to detect statistically signifi-

cant differences between intervention groups at the youngest ages. Third, EED is a difficult

condition to identify. There is no accepted case definition, and available biomarkers have limi-

tations. For example, methods used to undertake and analyse the lactulose-mannitol test differ

between studies, as reviewed extensively elsewhere [18]. Biomarkers are imperfect at capturing

intestinal structure and dynamics; for example, I-FABP is predominantly (but not entirely)

located small intestinal enterocytes in the villous tips, but has a very short half-life and does

not necessarily reflect long-term small intestinal damage. However, we were unable to feasibly

or ethically obtain small intestinal biopsies from young infants in rural sub-Saharan Africa. As

non-WASH. IYCF, infant and young child feeding; WASH, water, sanitation and hygiene;<LOD(%), percent of samples below the limit of detection. Data were

smoothed using generalized additive models with cubic splines and 3 knots. Dot (.) indicates a statistically significant difference between treatment arms at that study

visit by Tobit regression. Asterisk (�) indicates statistical significance after adjustment for multiple testing. Each visit had a window to enable follow-up if the infant

was not seen on the target date. These were: month 1 [4–12 weeks], month 3 [12–25 weeks], month 6 [25–51 weeks], month 12 [51–76 weeks], and month 18 [76–104

weeks]. Median[IQR] infant age in months at each visit was 1.3[1.1,1.9], 3.4[3.2,4.0], 6.4[6.2,7.0], 12.3[12.1,12.5], 18.0[17.8,18.3]. CRP. C-reactive protein; KTR,

kynurenine:tryptophan ratio; IGF-1, insulin-like growth factor 1.

https://doi.org/10.1371/journal.pntd.0007963.g005
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such, we evaluated intervention effects on individual biomarkers as others have done [43],

selecting a wide range of biomarkers that we have previously reviewed in detail [33].

Our analyses illustrate that WASH and nutritional interventions did not prevent EED dur-

ing infancy in an environment with high levels of faecal contamination [76], where biomarkers

of gut damage and inflammation highlight the range of enteric insults that are experienced in

low-income countries. The elementary WASH interventions tested in SHINE (pit latrines,

handwashing stations not connected to a water source, and point-of-use water chlorination)

are insufficient to prevent this pervasive and chronic enteric pathology, and transformative

solutions are required.
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