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Abstract

Urban settlements and urbanised populations continue to grow rapidly and much of this transi-

tion is occurring in less developed countries. Remote sensing techniques are now often applied to

monitor urbanisation and changes in settlement patterns. In particular, increasing availability of

very high resolution imagery (<1m spatial resolution) and computing power is enabling complete

sets of settlement data in the form of building footprints to be extracted from imagery. These

settlement data provide information on the changes occurring in cities, particularly in countries

which may lack other data on urbanisation. While spatially detailed, extracted building footprints

typically lack other information that identify building types or can be used to differentiate intra-

urban land uses or neighbourhood types. This work demonstrates an approach to classifying

settlement types through multi-scale spatial patterns of urban morphology visible in building

footprint data extracted from very high resolution imagery. The work uses a Gaussian mixture

modelling approach to select and hierarchically merge components into clusters. The results are

maps classifying settlement types on a high spatial resolution (100m) grid. The approach is applied

in Kaduna, Nigeria; Kinshasa, Democratic Republic of the Congo; and Maputo, Mozambique and

demonstrates the potential of computational methods to take advantage of large spatial datasets

and extract meaningful information to support monitoring of urban areas. The model-based

approach produces a hierarchy of potential clustering solutions, and we suggest that this can

be used in partnership with local knowledge of the context when creating settlement typologies.
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Introduction

Urban settlements and urbanised populations have been growing at unprecedented rates
around the world (Seto et al., 2010; UN Department of Economic and Social Affairs,
2019). By 2050, the United Nations predicts 68% of the world’s population will live in
cities and towns, and most of this change will be occurring in low- and middle-income
countries (UN Habitat, 2016). This transition towards more urbanised living has potential
to impact health, livelihoods, and family structures (Benza et al., 2017; WHO & UN-Habitat,
2010). Urban sprawl and megacities are a dramatic and visible change on the landscape and a
major cause of vegetation loss (McDonald et al., 2008), and the growth of slums and informal
settlements within cities is a concern for potential adverse health exposures and environmental
risks (UN Habitat, 2016; WHO & UN-Habitat, 2010). Yet at the same time, well-designed
and managed urban areas have the potential to improve sustainability and more efficiently
provide services, access to facilities, and resources to larger numbers of people (Seto et al.,
2010). These tensions in the transition towards urbanising populations have gained attention
from policy makers. The Sustainable Development Goals and the UN New Urban Agenda
specifically seek to leave no one behind while creating inclusive, safe, environmentally sus-
tainable, and healthy cities (UN General Assembly, 2017). These development goals highlight
that urban areas are not homogenous in their development needs, and they require more
detailed, disaggregated data to monitor these issues. In recent years, remotely sensed earth
observation data and imagery, with consistent mapping over large areas, has frequently been
used to monitor city growth and urbanisation patterns (Irwin and Bockstael, 2007; Luck and
Wu, 2002; Schneider and Woodcock, 2008; Taubenb€ock et al., 2012). Improvements in sensor
technology, combined with growing computational power, are enabling a new trend towards
mapping larger areas of the globe at ever finer resolutions (Patlolla et al., 2012; Roy
Chowdhury et al., 2018). Very high resolution (VHR) imagery, with pixel resolutions of
less than 1m, makes even small objects detectable in visible and near infrared imagery.
VHR imagery has been used to monitor changes and to classify land uses within urban
areas (Graesser et al., 2012; Kuffer et al., 2014), but such imagery requires different analysis
approaches using object-based classification and textural features instead of methods based on
per-pixel spectral indices (Engstrom et al., 2015; Kit et al., 2012; Kuffer et al., 2016). Advances
in image processing are using the pixel-based textures in the imagery to segment meaningful
objects (Cheriyadat et al., 2007; Yuan et al., 2015) as well as machine learning algorithms to
produce detailed maps of urbanisation by detecting and extracting all built features visible in
imagery scenes (Yuan, 2016). For example, Microsoft has used neural networks to produce
complete building footprint datasets from imagery for the US and Canada (Bing Maps Team,
2018, 2019). These automated extraction approaches are building on efforts such as
OpenStreetMap (http://www.osm.org) and crowd-sourced efforts to manually digitise struc-
tures from imagery. These efforts, and others, have produced a range of outputs mapping
human settlements at different spatial resolutions (Roy Chowdhury et al., 2018).

Imagery-derived building datasets can provide valuable information for monitoring cities
and the extents of urban areas, particularly in places without detailed planning maps or
cadastral data. However, building footprints generally lack information about the building
types or land uses and are only binary maps of settled versus unsettled areas. Despite the
limited attribute information, patterns in the building features can suggest local land uses
(Barr et al., 2004; Steiniger et al., 2008). Individual buildings form the basis of the built
landscape and the broader patterns of building density, size, shapes, and orientations can
convey information about land use and economic activities (Steiniger et al., 2008).
Our perceptions of these morphological and spatial patterns follow from Gestalt principles

2 EPB: Urban Analytics and City Science 0(0)

http://www.osm.org


(Li et al., 2004; Steiniger et al., 2008). These psychological principles describe how we
organise and group visual elements based on their proximity and similarity in size or ori-
entation. These types of visual patterns in spatial data of buildings have been used to classify

regular and irregular neighbourhood types (Yan et al., 2019) or more nuanced functional
areas (Steiniger et al., 2008), to classify individual buildings (Hecht et al., 2015), predict
buildings’ ages (Rosser et al., 2019), and as part of automated cartographic generalisations

(Lüscher and Weibel, 2013).
The present work addresses the challenge of classifying settlement types at a high spatial

resolution to characterise intra-urban differences. Such maps can support urban planning and
studies of urbanisation patterns (Seto et al., 2010) and population distribution (Grippa et al.,
2019). Identifying areas of distinct settlement patterns, such as from building footprint data, can
help to guide survey data collections and statistical models used to make population estimates

(Wardrop et al., 2018). We utilise one of the new sources of building footprints extracted from
VHR imagery produced by Ecopia (http://www.ecopiatech.com). As noted above, these data-
sets lack detailed attribute information, and the goal of our work is to extract new information

from the spatial patterns of these built-up features alone. We draw on previous work (Benza
et al., 2016; Seto and Fragkias, 2005) of using fragmentation statistics (McGarigal et al., 2008)
to quantify the patchiness, connectivity, and shape of the urban form. We use a model-based
clustering procedure (Fraley and Raftery, 2003) to identify and map settlement types, and we

implement our full approach in a high-performance computing environment.

Materials

Study areas

The sites of Kaduna, Nigeria; Kinshasa, Democratic Republic of the Congo; and Maputo,
Mozambique were selected to test the classification approach. These regions were chosen for
the availability of recent building footprint datasets as well as to explore a variety of less

developed country contexts. Each site includes a mix of land uses within a large urban center
in addition to outlying settlements, and more sparsely settled rural areas. The extent of the
study sites are shown in Figure 1, and we refer to them throughout the paper by their main
urban center: Kaduna, Kinshasa, and Maputo, respectively.

Building footprint data

We use a new dataset (! 2020 Maxar Technologies, Ecopia.AI) of building footprints
produced by Ecopia in partnership with Maxar (formerly DigitalGlobe). These feature

data are extracted from imagery mosaics with 50 cm spatial resolution or better, using
artificial intelligence methods (DigitalGlobe, 2018). Accuracy and completeness statistics
were not available in our specific study areas, but all extracted features pass several auto-

mated checks for valid geometries and for every 1000 km2 of processed area, 50 km2 is
randomly selected and features are manually digitised and compared to reach 95% com-
pleteness (Ecopia and DigitalGlobe, 2017). The output of the Ecopia processing is a set of
polygon features representing building footprints. There were 2,298,272 features in Kaduna,

1,118,386 in Kinshasa, and 1,258,369 in Maputo. These building features are unlabelled –
they contain no attribute information about the structures such as height or use. An exam-
ple of the building features is shown in Figure 1. We note that the extraction process does

not always produce polygons with straight edges or square corners. This initial observation
prompted us to explore a landscape perspective of settlement patterns with raster-based
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analyses rather than methods that rely on building-specific measurements (Barr et al., 2004)

and require geometrically accurate shapes. Prior to processing, we converted the polygons to

binary rasters with a 1m spatial resolution in their local WGS 84 UTM coordinate system.

The choice of resolution was to reduce file size. One consquence of the conversion is that

features which are smaller than 1m� 1m are excluded, though these are unlikely to be

meaningful structures.

Methods

In our approach, the mapped footprints are treated as patches in the landscape and a variety

of metrics are used to quantify their morphological patterns. These types of calculations

Figure 1. Study areas of Kaduna, Nigeria (a), Kinshasa, Democratic Republic of the Congo (b), and Maputo,
Mozambique (c). The extent of the building footprint datasets are shown in dark grey. An example of the
building features from an area of Kinshasa is shown in the lower right quadrant. (Data source:! 2020 Maxar
Technologies, Ecopia.AI.).
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have their origins in landscape ecology (McGarigal, 2015; McGarigal et al., 2008) but have

been used previously to quantify morphological patterns of cities using built-up areas from

land cover maps (Benza et al., 2016; Luck and Wu, 2002; Seto and Fragkias, 2005). We

extend such work to classify high-resolution areas within the study region based on the

combination of patterns at multiple spatial scales. We do this by defining a set of processing

locations covering the study areas on a regular grid at 3 arc-second spatial resolution

(approximately 100m� 100m). This resolution was chosen to match other geospatial data-

sets (Lloyd et al., 2019) as our intention in future work is to compare settlement classifica-

tions with other demographic datasets. At each location, we calculated seven different

metrics of the building patterns within a circular neighbourhood. The radius of the circular

neighbourhood was varied in 50m increments from 50m up to 500m in order to quantify

spatial patterns at multiple spatial scales. Therefore, for each location in the 100m grid,

there were 70 values (7 metrics� 10 spatial scales). The processing steps are further

explained in the supplementary materials (Section 1). The metrics are described in detail

in the next section.

Spatial metrics

Previous studies of urban morphology and building features have shown the importance of

quantifying density, size, and shape (Benza et al., 2016; Jochem et al., 2018; Roy

Chowdhury et al., 2018). Examples of the building patterns associated with each metric

are shown in Section 3 of the supplementary materials. We quantified the density of build-

ings as the number of patches per area

Patch Density ¼ n

A
(1)

where n is the count of patches and A is the total area of the processing window. Within a

fixed area, increasing patch density implies more structures, which may be smaller or more

tightly spaced. Two metrics are used to explore the size of building footprints. The first is the

average area of all patches within the processing window

Mean Patch Area ¼ 1

n

Xn
i¼1

ai (2)

where ai is the area of the i-th patch within the processing window. The variability in the size

of patches is summarised by the coefficient of variation (CV)

Patch Size CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ai�
Pn

i¼1
ai

� �� �2
n

r
Pn

i¼1
ai

n

(3)

The CV expresses variation in building footprint sizes as the ratio of standard deviation

in patch sizes to the average patch size within the processing window. Areas with a high CV

might suggest a less planned area, mixed building uses, or a transition area between two

settlement types – from larger administrative/commercial structures to small housing, for

example.
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The shape and regularity of patches are summarised with a landscape shape index and an
average patch shape index. Both metrics are based on standardised measures of the perim-
eters, and higher values are found in areas with more irregularly shaped structures, which
could be associated with less planned urbanisation.

Landscape Shape Index ¼ 0:25Effiffiffiffi
A

p (4)

where 0.25 is an adjustment for using raster data and E is the total edge length of patches in
the area of the processing window, A. The average patch shape index is defined by each
patch’s edge length, e, relative to a minimum size possible given its area (minðeÞ)

Shape Index ¼ e

min eð Þ (5)

The value for minðeÞ depends on the minimum perimeter for a compact square shape of
area a. This can take one of three forms (Bogaert et al., 2000).

f ¼ integer
ffiffiffi
a

p� �
m ¼ a� f 2

min eð Þ ¼ 4f; when m ¼ 0

min eð Þ ¼ 4fþ 2; when f 2 < A � f 1þ fð Þ
min eð Þ ¼ 4fþ 4; when A > fð1þ fÞ

The shape index can be interpreted as a degree of aggregation of the patch, while a fractal
dimension is used to quantify the complexity in those patch shapes.

Fractal Dimension Index ¼ 2ln 0:25pð Þ
ln að Þ (6)

where p is the perimeter of each patch with area, a. We used the average of the index values
for patches within the processing window. Structures with simple shapes have low values,
and a low average fractal index within the processing window could suggest more regular or
planned settlements.

Finally, we use a patch cohesion index to measure the level of connectedness of the patches
in each window. Areas with low cohesion are characterised by small, separated structures,
while high cohesion is seen among central areas with a fewer, large, agglomerated structures.

Patch Cohesion Index ¼ 1�
Pn

i¼1 piPn
i¼1 pi

ffiffiffiffi
ai

p
 !

� 1� 1ffiffiffiffi
Z

p
� ��1

� 100 (7)

where p is the perimeter of each patch, i, with area, a, and Z is the total number of cells
within the processing widow.

The landscape metrics, calculated across spatial scales, show strong correlation.
Additionally, the metrics are on different response scales and have different ranges of pos-
sible values but need to be combined in the clustering algorithm. Therefore, to reduce the
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correlation and to highlight the patterns of variation, the standardised data (mean centred
and scaled by the standard deviation) are used for principal components analysis. We select
the minimum set of components that explained 90% of the variation in each metric across
scales. Principal components were calculated in R with prcomp (R Core Team, 2017).

Classification

After calculating the range of metrics, the next phase of processing is to classify patterns.
This step identifies the important differences in combinations of metrics (see example in
supplementary material, Section 3). We applied a multi-step model-based clustering proce-
dure (Fraley and Raftery, 2003; McNicholas, 2016). Specifically, we used a Gaussian finite
mixture model implemented in MCLUST version 5 software and the functions of the R
package mclust (Scrucca et al., 2016). This implementation allows for different combina-
tions of equal or varying quantities in the covariance to describe the volume, shape, and
orientiation of the ellipsoidal clusters in multivariate data space. This flexibility helps to find
more irregular or overlapping clusters in the data. Following Fraley and Raftery (2003), we
use similar notations to describe these model forms as equal (“E”) or varying (“V”) such
that a “VEV” model has equal shapes with varying volumes and orientations of components
while “VVV” is fully varying. Selecting the number of components and parameterisation for
the best fitting model is guided by a Bayesian Information Criterion (BIC) calculation
(Scrucca et al., 2016).

Mixture models can be computationally burdensome for large datasets. We used a data
sampling and model comparison approach suggested by Wehrens et al. (2004). We tested a
range of different covariance structures in the MCLUST software and the top six candidate
models were selected to achieve the best BIC (Table S2 and Figure S2). The top models were
then re-fit using the full set of pixels, and the final model form and number of compenents
was selected to maximise the log-likelihood. More details are given in Section 4 of the
supplementary material.

Many applications of mixture models for model-based clustering treat the selected
number of mixture components to be the number of clusters. However, model selection
guided by BIC often suggests a larger number of components to fit the data than there are
well-separated clusters in the data (Baudry et al., 2010; Hennig, 2010). This difference can
occur when there are overlapping clusters or when clusters are not Gaussian. Multiple
solutions to identify clusters from a larger set of components have been suggested
(Hennig, 2010), including likelihood ratio tests (McLachlan and Rathnayake, 2014), alter-
native information criteria such as the integrated complete-data likelihood (Biernacki et al.,
2000), or connected components (Scrucca, 2016). We used a process to hierarchically merge
the components of the top model in order to minimise a measure of entropy (Baudry et al.,
2010). The result was a stepped grouping of components into a range of clusters, from two
up to a maximum when each component is treated as a cluster. In order to select the final
number of clusters for each study area, we examined plots of the change in entropy with
each merging step as well as the output prediction maps to select a parsimonious grouping
that still maintained intra-urban variation in settlement patterns. Baudry et al. (2010) rec-
ommend choosing a grouping of components that produces meaningful cluster types while
guided by aims of reducing entropy.

After selecting the number of clusters, we made a final map of predicted settlement type.
Each pixel was classified based on a maximum predicted probability of cluster membership.
We applied a 3� 3 majority filter to minmially smooth the predicted classes. Each study area
was processed separately so component numberings may vary. To facilitate comparison
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among areas, we relabeled the clusters numerically in order of descending average patch
density at 100m scale. We chose a numeric class labelling instead of attempting to provide
class names (i.e., “residential”, “industrial”, etc.) to take a more exploratory approach of the
unsupervised classification results and to avoid subjectivity in the labelling.

Results

For each of the three study areas, sets of 70 data layers were produced from the landscape
feature calculations (7 features� 10 spatial scales). Custom Python scripts were written to
implement the feature calculations and the moving window operations in parallel. The data
layers were centred, scaled, and reduced to 18 principal component layers each for Kaduna
and Kinshasa and 19 layers for Maputo. Details on the components selected are provided in
the supplementary materials (Table S1). The loadings for the principal components are
shown in the supplementary materials (Figure S1).

The reduced sets of layers were used for the model-based clustering, and BIC values were
used to compare models. Across the three areas, the fully varying model (“VVV”) was
always chosen with between 6 and 13 components. The candidate models are summarised
in the supplementary materials (Table S2). The full set of BIC values are shown in the
supplementary materials (Figure S2). The best performing model for each study area was
selected by maximising the log-likelihood. In all three study areas, the largest number of
components among the top candidate models (11 for Kaduna, 12 for Kinshasa, and 13 for
Maputo) was selected as the best performing model.

Starting from the maximum number of components suggested in the model selection step,
the goal was to reduce these components to a smaller number of interpretable clusters based
on an entropy criterion (Baudry et al., 2010), which provided a sequence of hierarchical
merging solutions to minimise this criterion. The results of the entropy calculations are
shown in Figure 2 as both a plot of entropy versus the number of clusters as well as a
dendrogram plot of the suggested components to merge at each step. Lower branches on the
dendrogram correspond to more clusters, but also higher entropy. Also included in each
plot of entropy versus number of clusters is a two-segment piecewise linear model which
Baudry et al. (2010) suggest could indicate an optimal number of clusters. The plots all show
almost linearly increasing entropy scores without a clear “elbow”. The minimal break points
of the piecewise model suggested combining components into smaller numbers of clusters:
four clusters for Kaduna and Maputo, and five clusters for Kinshasa.

In the dendrogram calculated for Kaduna, there were three clearly distinct clusters form-
ing from the components, while a fourth cluster is potentially made from multiple compo-
nents. Kinshasa and Maputo show similar patterns but to a lesser extent. In each site, four
components appear to form a grouping, though the remaining components were not clearly
separated.

Examples of the predicted settlement type maps at 100 m spatial resolution for Kinshasa
are shown in Figure 3 using the 12 cluster solution and with the reduced 5 cluster solution in
Figure 4. Predictions for Kaduna and Maputo study areas are shown in the supplementary
materials (Figures S3 to S6). While the model-based clustering method does not consider
spatial configurations of the data, geographic groupings of settlement types clearly emerge.
In Kinshasa, large structures, such as for warehouses or industrial use, remain one of the
distinct types and are found predominantly in the northern part of the city. Rural areas are
also predicted into distinct settlement types made up of small, patchy building footprints
along the southern and eastern edges of the study area. The large number of different classes
along the southern edge of the main urban area are combined into one settlement type after
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the merging step (creating type 2 in Figure 4). The five settlement type solution
continues to show differences in settlement types within the core area of Kinshasa (shown
in Figure 4).

The Kinshasa study area presents an opportunity to compare our unsupervised clustering
results to labelled data. Using a previously published land use map (B�ed�ecarrats et al., 2016;
Groupe Huit and Arter, 2014), rasterised to match our predicted settlement type grids, we
compared our model-based settlement types at the pixel level. The classification comparison
is shown in Figure 5, with the land use classes in the left column mapped to the 5 and 12
predicted settlement types in the right columns, and summarised in Table 1. The land use
map was produced in 2014 by planners working with the city government and stakeholders
to indicate the main function of areas of the city. The updated map classifies the majority
of land in Kinshasa as different residential uses, which reflect changes in the region’s
history as Democratic Republic of the Congo gained independence and Kinshasa grew.
Planned neighbourhoods and upper class residential areas are more compact, defined,
and tend to follow gridded street layouts near the city centre. The self-built housing category
occupies the largest land area and more recent areas of growth and expansion on the edges
of the city.

Figure 2. Results of merging mixture model components to reduce entropy scores in potential clusters.
Plots of the entropy versus the number of potential clusters (top row) include a piecewise linear model with
a breakpoint suggesting the minimum number of clusters for Kaduna, Nigeria (a), Kinshasa, Democratic
Republic of the Congo (b), and Maputo, Mozambique (c). The merging of components creates a hierarchy of
potential clusters and settlement types as shown in the bottom row dendrogram plots for Kaduna (d),
Kinshasa (e), and Maputo (f).

Jochem et al. 9



The self-built residential type (labelled in the figure as “Res”) maps on to class 2 of our 5
type classification, which is covered by 7 of the 12 class predicted types. Thus, the
settlement pattern-derived types are suggesting additional areas of settlement types within
the city land use map. Interestingly, the planned (“Plan Res”) and the upper class
(“Upper Res”) residential land use areas are mapped by classes 3 (and 10) of the 5 (and
12) class predicted settlement types, suggesting that they do exhibit morphological patterns
that are distinct from most of the other residential lands. The industrial and administrative
areas are primarily predicted into type 5 (and type 12) along with military camps. While these
areas are clearly distinct from residential uses, the landscape metrics are not able to differen-
tiate between them.

Figure 3. Predicted settlement types for Kinshasa, Democratic Republic of the Congo, at 100m spatial
resolution. Clusters are defined by Gaussian mixture model components using spatial patterns of building
footprints. Examples of the building footprints are shown in the inset maps (a) and (b), overlaid on the
predicted types. A 3� 3 majority smoothing filter was applied to the predicted classes. Clusters are labelled
in decreasing average patch density. Whitespace in the maps are unsettled pixels.
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Discussion

Patterns of settlement, location, and configurations are the result of long-term political and
economic decisions interacting with the landscape (Seto et al., 2010), but they can reflect

differences in the current conditions and help identify areas such as “slums” for targeted
interventions (Kuffer et al., 2016). Fragmentation statistics have proven to be able to quan-

tify urban morphology and help to characterise urban areas (Seto and Fragkias, 2005; Seto
et al., 2010), but most studies have been conducted at macroscales using land cover maps.

Notably, Benza et al. (2016) used fragmentation metrics of vegetation and settlement with

Figure 4. Predicted settlement types for Kinshasa, Democratic Republic of the Congo, at 100m spatial
resolution after merging components. The mixture model components from a 12 settlement type solution
were merged to a 5 settlement type solution to reduce entropy in the predicted classes. A 3� 3 majority
smoothing filter was applied to the predicted classes. Examples of the building footprints are shown in the
inset maps (a) and (b) overlaid on the predicted types. Settlement types were relabelled by decreasing
average patch density after merging. Whitespace in the maps are unsettled pixels.
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decision trees to classify areas around Accra, Ghana, into an urban gradient with a 450m

spatial resolution, though they did not consider multiple spatial scales in their analyses.
Creating settlement type maps that can highlight intra-urban variations while also con-

sistently covering large study areas to facilitate inter-city comparisons remains a challenge.

Such classification maps can help monitor urban growth and development and contribute to

estimating population size and characteristics (Benza et al., 2017; Grippa et al., 2019). Much

attention within urban analytics has been given to making more automated machine learn-

ing and processing of new data streams in urban settings (Ibrahim et al., 2019; Yan et al.,

2019). These approaches have the advantage of rapidly identifying generalisable patterns

within data, but they can face a challenge from inconsistent definitions or understandings of

settlement types (Lilford et al., 2019). Our approach to classification is also data-driven,

clustering morphological patterns, though rather than emphasising the generalisability of

the classifications, we feel it can be best used as part of “complementary technologies”

(Engin et al., 2019) with local stakeholder knowledge and guided by an application.
Improvements in image processing are now enabling complete and spatially detailed

maps of building footprints to be extracted from VHR imagery for large areas. These

buildings create spatial patterns on the landscape. We draw on psychological principles of

visual organisation (Li et al., 2004) and leverage high-performance computing resources to

quantify urban morphology (size, density, and shape of structures) for local areas. We

applied a data sampling and model comparison approach for model-based clustering

(Wehrens et al., 2004). Repeated trials of this strategy showed that it provided a balance

between consistent results and reduced computational burden. In all three study areas, the

model-based clustering approach suggested a large number of variably sized and oriented

components. We sought to reduce these model components by merging them to a more

easily interpretable number of clusters to predict settlement types. Merging mixture

Figure 5. Cross-comparison of a land use map (Groupe Huit and Arter, 2014) with predicted settlement
types in Kinshasa at the 100m pixel level. The land use types include administrative (“Admin”), industrial
zones (“Ind”), planned residential neighbourhood (“Plan Res”), upper class residential (“Upper Res”), self-
built residential (“Res”), and military camps (“Mil”). Smaller land use types are omitted for clarity. Colours
match Figures 3 and 4 for the predicted settlement type maps.
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components is a common challenge in model-based clustering (Hennig, 2010). After creating

a hierarchy of potential merges based on an entropy score (Baudry et al., 2010), we pre-

sented results from two clusterings using the maximum number of components and one that

minimised the entropy in the clustering.
The large number of components (11–13) initially identified in the model-based clustering

makes it difficult to interpret the results as meaningful settlement types, and the reduced set

of clusters suggested by the merging steps can potentially remove important variations. The

loss of variation was most noticeable in Kaduna, where large urban areas in the merged

results were differentiated primarily into small structures versus large. However, the reduced

clustering in Kinshasa and Maputo retained more variation between settlement types in the

urban areas. This result may reflect actual differences in the structure of the cities or in the

study areas – Kaduna is the largest geographic area, and even though it contains a major

city of Northern Nigeria, most of the region is sparsely built up rural areas, while the

Kinshasa and Maputo study areas are smaller in extent and focused on large cities.

Therefore, an application focused on urban fringes or other particular areas may need to

use other criteria to select an optimal clustering solution. In all three study areas, the fringes

of the cities were found to contain many settlement types. Benza et al. (2016) note that urban

context can best be conceptualised as a gradient based on the degree of built settlement. The

different cluster types we found along the edges of the study cities may reflect the model

attempting to resolve that transition in urban gradient.
Our comparison with an existing land use map in Kinshasa demonstrates how our

unsupervised classification approach can be used in conjunction with other data of a

place. While the morphology-based classification maps to the broad categories in the land

use map, it can also suggest variations within residential areas. Thus, the clustering solutions

can be exploratory and suggest other settlement typologies. Rather than seeking a single,

standard definition for supervised classification of settlement types, land uses may be best

understood through a combination of on-the-ground knowledge of local contexts with top-

down models and data analyses (Mahabir et al., 2016). Baudry et al. (2010) similarly note

that a substantive interpretation of clusters should be used as a guide along with methods

such as entropy scores. In this way, the hierarchy of clustering outcomes we demonstrate

could support a more participatory approach to classifying settlement types by first identi-

fying potential patterns in the data and then enabling people with local knowledge to group

them to support particular policy analyses or for relevance in a specific context.
Our work has shown potential to detect and classify settlement patterns in limited, poly-

gon representations of buildings with a few simple metrics; however, we have only tested this

approach in three areas of Africa. We have treated the three study areas separately in this

work. Urban settlement growth is taking different paths around the world (Schneider et al.,

2015), and more work is needed, particularly in the design of training samples, to ensure that

the classifications can be generalisable to other places. There is a large number of potential

landscape fragmentation statistics (McGarigal, 2015). We have only tested seven metrics

that seek to quantify principles of Gestalt theory (Li et al., 2004; Steiniger et al., 2008) and

which showed good results in other studies. Future work should examine settlement patterns

in other areas and explore if different contexts require certain metrics. We also note that this

work has only used landscape metrics that can be calculated from the building footprint

patterns. Our goal was not to include any other data, though a possible extension to the

work could consider patterns of vegetation as Benza et al. (2016) did, or include other

features such as roads, major intersections, or points-of-interest to help characterise settle-

ment types.
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The resolution of the classification maps should be explored further. These analyses have

used an approximately 100m resolution grid in order to create classification maps which

integrate with other openly available demographic and geospatial datasets (e.g., Lloyd et al.,

2019). However, this resolution may be too coarse to detect local changes in morphology in

dense urban areas. On the other hand, a very fine resolution classification with more local

variation between settlement types may be difficult to interpret, particularly in sparsely

settled areas. The choice of processing resolution should ultimately be guided by the appli-

cation or research question.
An important consideration in this approach to classifying settlement areas is the accu-

racy of the building footprint dataset. We used a commercial dataset for this work, but other

datasets could potentially be used in similar analyses, though all would face similar issues if

there is incompleteness. While OpenStreetMap shows variable completeness in digitised

buildings (Hecht et al., 2013), in areas with adequate coverage, it could provide an alterna-

tive source. Additionally, the Microsoft-produced building footprints have recently become

openly available for Tanzania and Uganda (https://github.com/microsoft/Uganda-

Tanzania-Building-Footprints). This growing availability of such building datasets will

hopeful encourage other creative uses of such data to study urban areas.

Conclusion

As urban settlements continue to grow in size and in population, understanding their differ-

ences, both within and between cities, becomes key for planning, delivering, and monitoring

projects in support of sustainable development. While future cities are often envisioned as a

web of interconnected systems and both generating and supported by a wealth of new data

streams, in many parts of the world, information on basic city structure and function is still

lacking or non-existent. This data gap is particularly acute in low- and middle-income

countries, many of which are experiencing the fastest urban transitions. Advances in

VHR imagery and remote sensing data, along with improved computational power, are

helping to provide information on urban areas through building feature extractions. This

work provides an example of how computational methods can be used to extract new

information from such big geospatial datasets to support research on population and

development.
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