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Abstract

Permutation tests were first introduced in Eden and Yates (1933), Fisher (1935) and

Pitman (1937a, 1937b, 1938), and are popular nowadays due to several nice properties

they possess and the cheap availability of computation power of modern computers.

In this paper, we demonstrate potential power loss of permutation tests using the pro-

totype permutation test for comparing two populations that may possibly be different

only in locations. Specifically, we show that the reference distribution used for this

permutation test depends on the true value of the unknown parameter that is being

tested and this may reduce the power in comparison with the standard parametric test

especially for small sample sizes. The observations made for this particular permuta-

tion test in this paper is applicable to numerous other permutation tests and so users

should be aware of this potential power loss of permutation tests for small sample sizes.
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1 Introduction

Permutation tests have a long history going back to Eden and Yates (1933), Fisher (1966,

First edition 1935) and Pitman (1937a, 1937b, 1938); see David (2008) for a description

of the early development. Advantages of permutation tests include being nonparametric,

asymptotically as powerful as standard parametric tests (cf. Hoeffding, 1952), making full

use of the observations rather than just the ranks and so often more powerful than rank-based

tests (cf. Kempthorne and Doerfler, 1969, Good, 2005, p.47), and reliable for both small and

large sample sizes. With the cheap availability of computation power, permutation tests are

popular nowadays. Readers are referred to the books Edgington and Onghena (2007), Good

(2005), Manly (2006) and Pesarin and Salmaso (2010) for excellent overviews.

The purpose of this paper is to illuminate potential power loss of permutation tests in

comparison with standard parametric tests especially when sample sizes are small. Numer-

ous permutation tests for different settings have been proposed in the statistical literature

and this paper focuses on the permutation test for comparing two populations, which may

possibly differ in locations only, both for ease of exposition of the main idea of this paper and

for this test being the prototype of permutation tests considered first by Pitman (1937a) and

used routinely in the statistical literature to illustrate the key ideas of permutation tests.

Similar observations as described in this paper can be made for permutation tests in more

general situations.

A brief description of how the permutation test for this particular problem is carried out

is given in Section 2. In Section 3, we point out from the large sample viewpoint the reason

why this permutation test may have lower power than the standard large sample two-sample

test. This potential loss of power is demonstrated by statistical simulation in Section 4 when

the sample sizes are small. Some concluding remarks are contained in Section 5. Finally,

the Appendix provides some mathematical details for the statements in Section 3.

2 The permutation test

Assume X1, . . . , Xm are i.i.d. observations from the first population with probability density

function (pdf) f and, independently, Y1, . . . , Yn are i.i.d. observations from the second

population with pdf f(· − δ), where δ ∈ R is an unknown parameter. We are interested in

testing the hypothesis H0 : δ = 0 against the (two-sided) alternative Ha : δ 6= 0, without

assuming a specific form for f(·). Below is how the permutation (PM) test should be carried

out; see, e.g., Canay et al. (2017), Chung and Romano (2013), Edgington and Onghena

(2007), Good (2005), Manly (2006) and Ernst (2004).
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To be precise let N = m+ n denote the total sample size, define

Z = (Z1, . . . , ZN) = (X1, . . . , Xm, Y1, . . . , Yn), (2.1)

as the vector of all observations, ket π = (π(1), . . . , π(N)) be a permutation of the N indexes

{1, . . . , N} and denote by GN the set of all N ! permutations of {1, . . . , N}. Define the test

statistic

Tm,n(Z) = Tm,n(Z1, . . . , ZN) =
√
N

(
Z1 + . . .+ Zm

m
− Zm+1 + . . .+ ZN

n

)
=
√
N
(
X̄ − Ȳ

)
,

where X̄ =
∑m

i=1Xi/m and Ȳ =
∑m

i=1 Yi/m are the corresponding sample means. Under

the null hypothesis H0 : δ = 0, the joint distribution of Zπ = (Zπ(1), . . . , Zπ(N)) is the

same as that of Z for any π ∈ GN , and so the N ! values Tm,n(Zπ) corresponding to theN !

permutations π ∈ GN are equally likely to occur conditioning on the observed vector Z.

We denote the order statistic of the sample |Tm,n(Zπ1)|, . . . |Tm,n(ZπN !
)| by

|T (1)
m,n(Z)| ≤ · · · ≤ |T (N !)

m,n (Z)|

and define for a given nominal level α ∈ (0, 1) the quantity k = N ! − dαN !e where dαN !e
denotes the largest integer less than or equal to αN !. Let M+(Z) and M0(Z) be the number

of values |T (j)
m,n(Z)| (j = 1, . . . , N !) that are greater than |T (k)

m,n(Z)| and equal to |T (k)
m,n(Z)|,

respectively, and set

a(Z) =
αN !−M+(Z)

M0(Z)
.

The permutation test for the hypotheses H0 : δ = 0 versus H1 : δ 6= 0 is finally defined as

φPM(Z) =


1 if |Tm,n(Z)| > |T (k)

m,n(Z)|

a(Z) if |Tm,n(Z)| = |T (k)
m,n(Z)|

0 if |Tm,n(Z)| < |T (k)
m,n(Z)| .

(2.2)

Under the null hypothesis H0 : δ = 0, since the N ! values |Tm,n(Zπ)| (as well as Tm,n(Zπ))

corresponding to the N ! permutations π ∈ GN are equally likely to occur conditioning on

the given Z, we have

PΠ {H0 is rejected by φPM |Z} =
M+(Z)

N !
+
M0(Z)

N !
a(Z) = α ,

where Π = (Π(1), . . . ,Π(N)) denotes the random permutation that has a uniform distribu-

tion on GN . Since the test φPM in (2.2) is of size α conditioning on Z, it is also of size α

unconditionally.
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Let

Tm,n(ZΠ) =
√
N

(
ZΠ(1) + . . .+ ZΠ(m)

m
−
ZΠ(m+1) + . . .+ ZΠ(N)

n

)
. (2.3)

Then, after accounting for discreteness, the PM-test (2.2) rejects the null hypothesis if

Tm,n(Z) is either less than the α/2 quantile or larger than the 1 − α/2 quantile of the

distribution of Tm,n(ZΠ). Hence the conditional (on the given Z) distribution of Tm,n(ZΠ)

is the reference distribution used by the PM-test to judge whether or not the observed

Tm,n(Z) is too extreme and so H0 should be rejected.

The (permutation) distribution of Tm,n(ZΠ) involves N ! terms, which are reduced actually

to
(
N
m

)
terms for the test statistic Tm,n(Z) used here and can be prohibitively large, even

for moderate values of m and n. Only when the number
(
N
m

)
is small, all the

(
N
m

)
possible

values of Tm,n(ZΠ) can be easily enumerated and in this case the PM-test (2.2) be computed

exactly.

In practice the permutation distribution is approximated routinely by statistical sim-

ulation in the following way. Generate a random permutation Π and compute Tm,n(ZΠ).

Repeat this for a large number of times, R, say R = 10, 000 for example, and these R values

of Tm,n(ZΠ) allow the permutation distribution or its quantiles to be estimated accurately.

For example, the (1−α/2)-quantile of |Tm,n(ZΠ)| can be estimated by the 1−α sample quan-

tile of the R values of |Tm,n(ZΠ)|, which is the d(1− α)Re-th largest value of the |Tm,n(ZΠ)|
values. Hence the PM-test (2.2) rejects H0 only if |Tm,n(Z)| exceeds this sample quantile.

Alternatively, the p-value is computed as the proportion of the R simulated |Tm,n(ZΠ)| values

that are equal to or larger than the observed |Tm,n(Z)|; H0 is rejected only if the p-value is

less than α.

3 The potential power loss of the PM-test

Note that the reference distribution Tm,n(ZΠ) in (2.3) is conditional on, and built from,

the two observed samples X1, . . . , Xm and Y1, . . . , Yn by using the random permutation Π.

But the unknown parameter δ of the second population pdf f(x− δ) from which Y1, . . . , Yn

have been generated may well be not equal to zero. If the true status of nature that

has generated the Y1, . . . , Yn is δ 6= 0. this true status of nature does not change after

the utterance of the words “let’s assume H0 is true”. Hence it is clear that the reference

distribution of the PM-test works as intended only if the true value of δ is equal to zero.

Although in statistical practice it not known whether δ is equal to zero or not (since we are

only presented with the observed Z) the effect of δ on the reference distribution has not been

investigated in the literature.
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In the following discussion we will answer this question. Theorem 3.1 below gives the

asymptotic distribution of Tm,n(ZΠ), both conditionally (on the observed Z) and uncondi-

tionally, as the sample sizes m and n become large. The proof is given in the Appendix. It

is immediately clear from the theorem how the asymptotic distribution of Tm,n(ZΠ) depends

through the variance on the true but unknown value δ inherited by the Yi’s. Throughout

this paper N (µ, τ 2) denotes a normal distribution with mean µ and variance τ 2.

Theorem 3.1. Assume X1, . . . , Xm are i.i.d. with pdf f(x) and, independently, Y1, . . . , Yn

are i.i.d. with pdf f(y − δ) for some δ ∈ R, with V ar(X1) = V ar(Y1) = σ2 < ∞. Let

m → ∞ and n → ∞ with m/N → λ ∈ (0, 1) and n/N → 1− λ ∈ (0, 1). Then, conditional

on the sequence X1, X2, . . . , Y1, Y2, . . .,

Tm,n(ZΠ)
D−→ N (0, δ2 + σ2/(λ(1− λ))) a.s.

that is, given almost every sequence X1, X2, . . . , Y1, Y2, . . ., the conditional distribution of

Tm,n(ZΠ) is asymptotically normal with mean 0 and variance δ2+σ2/(λ(1−λ)). Furthermore,

the unconditional distribution of Tm,n(ZΠ) has the same asymptotic normal distribution, i.e.

Tm,n(ZΠ)
D−→ N (0, δ2 + σ2/(λ(1− λ))) .

Figure 1: The conditional pdf ’s (solid curves) and the corresponding asymptotic normal

pdf’s (dotted curves) of the statistic Tm,n(ZΠ) in (2.3) for f(x) = exp(−x2/2)/
√

2π, with

m = 20 and n = 29. Left panel: δ = 0; middle panel: δ = 3; right panel: δ = 6.

In Figure 1 we presents three pdf’s of the conditional distributions of Tm,n(ZΠ) in (2.3)

corresponding to δ = 0, 3, 6 with m = 20, n = 29 and f(x) = exp(−x2/2)/
√

2π, each based

on one randomly observed Z = (X1, . . . , Xm, Y1, . . . , Yn) and R = 10, 000 simulations of

Π. Each pdf (solid curve) is produced from these simulated values of Tm,n(ZΠ) by using

the kernel density estimate (cf. Wand and Jones, 1995, and the companion R package

KernSmooth). The three conditional pdf’s are given by the three solid curves, while the
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three dotted curves give the corresponding asymptotic normal pdf’s from Theorem 3.1. We

observe that the small sample conditional distribution of Tm,n(ZΠ) is close to the large sample

asymptotic normal distribution and that the distribution of Tm,n(ZΠ) clearly depends on the

true value of δ. The ideal reference distribution for the PM-test is given by the steepest pdf

in the left panel of Figure 1 which happens only when the true value of δ is equal to zero.

But the reference distribution actually used by the PM-test may well be a flatter pdf that

corresponds to a non-zero δ value.

Now let us look at the reference distribution of the standard large sample (LS) test. Let

τ 2
λ = σ2/(λ(1−λ)). Since under the assumptions of Theorem 3.1 the quantity Tm,n(Z)+

√
Nδ

converges in distribution to N (0, τ 2
λ), the asymptotic level α test is defined by

φLS(Z) =

 1 if |Tm,n(Z)| > z1−α/2σ̂/
√
λ(1− λ)

0 if |Tm,n(Z)| ≤ z1−α/2σ̂/
√
λ(1− λ)

(3.1)

where zq denotes the q-quantile of standard normal distribution and

σ̂2 =

(
m∑
i=1

(Xi − X̄)2 +
n∑
j=1

(Yj − Ȳ )2

)
/(N − 2)

is the pooled estimate of the common variance. Since σ̂2 a.s.→ σ2, the LS-test essentially uses

N (0, τ 2
λ) as the reference distribution in judging whether or not the observed Tm,n(Z) is too

extreme and so H0 should be rejected.

The reference distribution N (0, τ 2
λ) of the LS-test is therefore clearly different from the

asymptotic reference distribution N (0, δ2 + τ 2
λ) of the PM-test unless the true value of δ in

the density f(y−δ) of Y1, . . . , Ym is equal to zero. As a result of Theorem 3.1, asymptotically,

the PM-test rejects H0 if and only if

|Tm,n(Z)| > z1−α/2

√
δ2 + τ 2

λ

while the LS-test rejects H0 if and only if

|Tm,n(Z)| > z1−α/2

√
τ 2
λ .

The corresponding p-values of the PM-and LS-test for the observed Tm,n(Z) are given asymp-

totically by

P{ |N (0, δ2 + τ 2
λ)| ≥ |Tm,n(Z)| }

and

P{ |N (0, τ 2
λ)| ≥ |Tm,n(Z)| }
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respectively. These expressions indicate that, asymptotically, the PM-test rejects H0 less

frequently, and so is less powerful, than the LS-test when δ 6= 0.

In order to investigate the difference between the two tests in more detail we derive more

accurate approximations to the powers of both tests. By noting that Tm,n(Z) +
√
Nδ has

an asymptotic distribution N (0, τ 2
λ) for any δ ∈ R, a straightforward calculation shows that

the power of the PM-test can be approximated by

P {H0 is rejected by φPM} ≈ P{ |N (−
√
Nδ, τ 2

λ)| > z1−α/2

√
δ2 + τ 2

λ) }

= Φ
(
−zα/2

√
1 + δ2

τ2λ
−
√
Nδ
τλ

)
+ Φ

(
−zα/2

√
1 + δ2

τ2λ
+
√
Nδ
τλ

)
where Φ is the cumulative distribution function (cdf) of the standard normal distribution.

On the other hand the power of the LS-test can be approximated by

P {H0 is rejected by φLS} ≈ P{ |N (−
√
Nδ, τ 2

λ)| > z1−α/2τλ }

= Φ
(
−zα/2 −

√
Nδ
τλ

)
+ Φ

(
−zα/2 +

√
Nδ
τλ

)
It is clear that both asymptotic power functions approach α as δ → 0 and 1 as |δ| → ∞
as expected. Moreover, if N → ∞ and δ → 0 in such a way that

√
Nδ approaches a non-

zero constant, say ξ τλ, we obtain the approximations (by using additionally that
√

1 + x =

1 + x/2 + o(x) as x→ 0)

P {H0 is rejected by φPM} ≈ Φ
(
−zα/2 − ξ − zα/2 ξ2

2N

)
+ Φ

(
−zα/2 + ξ − zα/2 ξ2

2N

)
,

P {H0 is rejected by φLS} ≈ Φ
(
−zα/2 − ξ

)
+ Φ

(
−zα/2 + ξ

)
.

This implies (as N →∞,
√
Nδ → ξ τλ > 0)

P {H0 is rejected by φPM} − P {H0 is rejected by φLS} → 0,

which agrees with Hoeffding (1952, pp.172) and indicates that for large sample sizes both

tests behave very similar.

Nevertheless, for small sample sizes, there might be discernible differences between the

powers of the two tests. We demonstrate by simulation in the next section that the power

of the PM-test could be considerably smaller than the power of the LS-test for small sample

sizes m and n.

4 A simulation study of power

We set f(·) to a standard normal pdf, α = 1%, λ = 1/2 (and so m = n = N/2 for

N = 12, 18), and ∆ = (δ/σ)
√
λ(1− λ) over the grid points seq(0, 1, 0.04) by noting that
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both the power functions of the PM-test and LS-test depend on δ and σ only through the

ratio δ/σ. Hence, without loss of generality, σ is set to be 1 and so δ = ∆/
√
λ(1− λ) = 2∆.

Note that f(·) is chosen as a normal pdf in order that the approximate size α two-sample

LS-test will be replaced by the exact size α two-sample t-test for a fairer power comparison

with the PM-test. Note that λ = 1/2 maximizes ∆ = (δ/σ)
√
λ(1− λ) over λ ∈ (0, 1). The

cases of λ 6= 1/2 or α = 5% are also considered in our simulation study.

To simulate the power of a test at a given δ value, one independent Z = (X1, . . . , Xm, Y1,

. . . , Yn) is generated with X1, · · · , Xm
i.i.d.∼ N (0, 1) and Y1, · · · , Yn

i.i.d.∼ N (δ, 1), and the

outcome of the test for this Z, either rejection of H0 or not, is recorded. Repeat this

R = 10, 000 times, and the proportion of times out of the R generated independent Z values

that H0 is rejected is taken as the power of the test at δ. For each independent Z generated,

the LS-test is carried out by using the rejection rule in (3.1) but with z1−α/2 being replaced

by the larger (1−α/2)-quantile of the t distribution with N − 2 degrees of freedom in order

to keep the size equal to α for any N > 2 (in other words the two-sample t-test is actually

used instead of the asymptotic test). Note that the PM-test requires another inner loop

to compute the p-value of each Z generated, as described in the penultimate paragraph of

Section 2 and involving R = 10, 000 samples of the random permutation Π, from which the

rejection of H0 or not is determined for that Z.

In Figure 2 we display the difference between the power of the t-test and the power of the

PM-test (nominal level α = 0.01) over a set of grid points ∆ for the sample sizes n = m = 6

(N = 12) and n = m = 9 (N = 18). The results show that in the case N = 12 the power of

the t-test can be 5% larger than that of the PM-test. This occurs around ∆ = 0.9, with the

power of the PM-test being about 0.57 and the power of the t-test about 0.62. For larger

sample sizes there is little difference as predicted by the asymptotic results in Section 3.

Given the results in Figure 2 we have further compared the power of the t-test and

PM-test over the grid points δ = seq(0, 4, 0.1) for even smaller total sample sizes N =

seq(9, 16). In this case, the PM-test is carried out by using the formula in (2.2) and so

involves enumerating all the
(
N
m

)
combinations. In particular, for each N in seq(9, 16), the

sample sizes (m,n) are chosen so that the equal probability 1/
(
N
m

)
assigned to each of the(

N
m

)
possible Tm,n(Zπ)-values is less than the exact size α = 0.01 of the test. For example,

when N = 9, the (m,n) that satisfy this constraint are (5, 4) only. The smallest N is set to

be 9 because 1/
(

8
m

)
> α = 0.01 for any natural number m ≤ 8.

Among the sample sizes (m,n) considered, Figure 3 presents exemplarily the powers

and the difference between the powers of the t-test and PM-test over the grid points δ =

seq(0, 4, 0.1) for the cases of (m,n) = (5, 4) and (m,n) = (5, 5). For example, we observe
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for (m,n) = (5, 4) the power of the t-test can be larger than that of the PM-test by 14% at

δ = 3.0, with the t-test having power 0.791 and the PM-test having power 0.655.

We have also done the simulation study for the level α = 5%. In this case the smallest

sample sizes are given by m = 4 and n = 3, and N = seq(7, 16) is used. Among the cases

of (m,n) considered, the largest power difference observed between the t-test and PM-test

is 6% when m = 4 and n = 3, and the next largest power difference between the t-test and

PM-test is 4.5% when m = 4 and n = 4. Figure 4 plots the power and the difference between

the powers of the t-test and PM-test over the grid points δ = seq(0, 4, 0.1) for the cases of

(m,n) = (4, 3) and (m,n) = (4, 4). Compared with Figure 3 the power difference between

the t-test and PM-test is smaller for the level α = 0.05 than for α = 0.01.

The only power comparison of the two-sample t-test and PM-test for small sample sizes

that we have been able to find in the statistical literature is Tanizaki (1997) for the cases of

m = n = 5, 7, 9 and δ = 0, 0.5, 1.0. The simulation results in Tanizaki (1997, Table 1, σ = 1)

show that the power differences between the t-test and PM-test are always less than 1% and

so the two tests barely differ in power. Unfortunately, it is not clear how many replications

are used to simulate the power of the tests in Tanizaki (1997). Our simulation results show

that the tests could differ in power by as much as 14% when (m,n) = (5, 4), and so differ

from the observations made in Tanizaki (1997).

The conclusion from this simulation study is that, if one is comfortable about the as-

sumption on normality of the populations, then the two-sample t-test is clearly preferable to

the PM-test, especially when the sample sizes are small. Otherwise, the PM-test is clearly

preferable to the t-test since the t-test no longer controls the type I error rate at the nominal

level α.

5 Conclusions

We considered the classical two sample problem with a potential difference δ in the mean. In

contrast to the large sample test or t-test, the reference distribution of the permutation test

depends (implicitly) on the true but unknown value δ. This dependence is clearly reflected in

the asymptotic distribution of statistic Tm,n(ZΠ) of the permutation test given in Theorem

3.1. As a consequence the power of the PM-test could potentially be considerably smaller

than that of the t-test especially when the sample sizes are small. This is demonstrated

by our simulation results. So the users should be aware of this potential power loss of the

PM-test.

As a prototype we have concentrated on the simple two-sample location problem, but
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similar observations can be made for other permutation tests too. While the asymptotic

arguments in the general case are very similar to the ones given in Theorem 3.1 it will be

useful for practical purposes to investigate the power loss for the numerous permutation tests

proposed in the statistical literature, if the sample sizes are small.

It has been proposed in ter Braak (1992) to use the reference distribution based on

permuting the residuals, i.e. the mean-centered observations Z∗ = (X1 − X̄, . . . , Xm −
X̄, Y1− Ȳ , . . . , Yn− Ȳ ) for the two-sample problem considered in this paper. It can be shown

that, under the assumptions of Theorem 3.1, the asymptotic distribution of Tm,n(Z∗Π) is

N (0, σ2/(λ(1−λ))) and so does not depend on δ. But by using the distribution of Tm,n(Z∗Π)

as the reference distribution, the resultant PM-test no longer has its size equal to α for given

sample sizes (m,n) since the components of Z∗ = (X1−X̄, . . . , Xm−X̄, Y1−Ȳ , . . . , Yn−Ȳ ) are

not exchangeable. Hence one of the key properties of the PM-test (2.2) would be sacrificed.

6 Appendix

We prove Theorems 3.1 in this appendix by appealing to the lemma below on combinatorial

central limit theorem which is taken from DasGupta (2008, Pages 67-68, Theorem 5.5) and

proved in Hoeffding (1951). The proof is elementary. Other proofs are possible. For example,

one may use the coupling argument of Chung and Romano (2013, Section 5.3) to prove the

theorem, but it requires considerable more efforts to understand the coupling argument first.

Lemma 6.1. Let aN(i), bN(i) (i = 1, . . . , N) be two double arrays of constants with āN =∑N
i=1 aN(i)/N and b̄N =

∑N
i=1 bN(i)/N . If

N r/2−1

∑N
i=1 (aN(i)− āN)r(∑N

i=1 (aN(i)− āN)2
)r/2 = O(1) for any r > 2 (6.1)

and
max1≤i≤N

(
bN(i)− b̄N

)2∑N
i=1

(
bN(i)− b̄N

)2 = o(1) , (6.2)

then (SN − E(SN)) /
√
V ar(SN)

D→ N (0, 1), where SN =
∑N

i=1 aN(i)bN(Π(i)) and Π is the

random permutation that has a uniform distribution on GN . Furthermore, with cN(i, j) =

aN(i)bN(j), 1 ≤ i, j ≤ N ,

E(SN) =
1

N

N∑
i=1

N∑
j=1

cN(i, j)

and

V ar(SN) =
1

N − 1

N∑
i=1

N∑
j=1

d2
N(i, j) (6.3)
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where

dN(i, j) = cN(i, j)− 1

N

N∑
k=1

cN(k, j)− 1

N

N∑
k=1

cN(i, k) +
1

N2

N∑
k=1

N∑
l=1

cN(k, l). � (6.4)

In order to use this lemma to prove Theorem 3.1, the statistic Tm,n(ZΠ) defined in (2.3)

can be written as

Tm,n(ZΠ) = SN =
N∑
i=1

aN(i)bN(Π(i))

with

aN(i) =


√
N/m, 1 ≤ i ≤ m

−
√
N/n, m+ 1 ≤ i ≤ N

and bN(i) = Zi =

 Xi, 1 ≤ i ≤ m

Yi−m, m+ 1 ≤ i ≤ N .

It is straightforward to show that (6.1) is true in this case. To prove (6.2), note first that

1

N

N∑
i=1

(
bN(i)− b̄N

)2
=

1

N

N∑
i=1

(bN(i))2 −
(
b̄N
)2

with

b̄N = Z̄N =
1

N

m∑
i=1

Xi +
1

N

n∑
i=1

Yi
a.s.→ λE(X1) + (1− λ)E(Y1)

and

1

N

N∑
i=1

(bN(i))2 =
1

N

N∑
i=1

Z2
i =

1

N

m∑
i=1

X2
i +

1

N

n∑
i=1

Y 2
i
a.s.→ λE(X2

1 ) + (1− λ)E(Y 2
1 )

by the law of large numbers. Hence

1

N

N∑
i=1

(
bN(i)− b̄N

)2 a.s.→ λE(X2
1 ) + (1− λ)E(Y 2

1 )− (λE(X1) + (1− λ)E(Y1))2 . (6.5)

Furthermore, note that

1

N
max

1≤i≤N

(
bN(i)− b̄N

)2 ≤ 2

N
max

1≤i≤m
X2
i +

2

N
max
1≤i≤n

Y 2
i +

2

N

(
b̄N
)2
,

(
b̄N
)2
/N

a.s.→ 0, and that max1≤i≤mX
2
i /N

a.s.→ 0 and max1≤i≤n Y
2
i /N

a.s.→ 0 which follow

directly from
∑m

i=1 X
2
i /m

a.s.→ E(X2
1 ) and

∑n
i=1 Y

2
i /n

a.s.→ E(Y 2
1 ), respectively. Hence

1

N
max

1≤i≤N

(
bN(i)− b̄N

)2 a.s.→ 0. (6.6)
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Combination of (6.5) and (6.6) shows that (6.2) holds for almost every sequenceX1, X2, . . . , Y1,

Y2, . . .. It follows therefore from Lemma 6.1 that, for almost every sequenceX1, X2, . . . , Y1, Y2, . . .,

the conditional distribution of Tm,n(ZΠ) is asymptotically normal with mean

E(SN) =
1

N

N∑
i=1

N∑
j=1

aN(i)bN(j) =
1

N

N∑
i=1

aN(i)
N∑
j=1

bN(j) = 0

and variance V ar(SN). To find V ar(SN) from (6.3), note from (6.4) that

dN(i, j) = aN(i)Zj − aN(i)Z̄N , d2
N(i, j) = (aN(i))2

(
Z2
j − 2ZjZ̄N +

(
Z̄N
)2
)
,

and so

V ar(SN) =
1

N − 1

N∑
i=1

N∑
j=1

d2
N(i, j)

=
1

N − 1

N∑
i=1

(aN(i))2

(
N∑
j=1

Z2
j −N

(
Z̄N
)2

)

=
N

N − 1

(
1

m
+

1

n

)( N∑
j=1

Z2
j −N

(
Z̄N
)2

)
a.s.→ 1

λ(1− λ)

(
λE(X2

1 ) + (1− λ)E(Y 2
1 )− (λE(X1) + (1− λ)E(Y1))2)

= δ2 + σ2/(λ(1− λ)) .

This completes the proof of that, for almost every sequence X1, X2, . . . , Y1, Y2, . . ., the con-

ditional distribution of Tm,n(ZΠ) is asymptotically N (0, δ2 + σ2/(λ(1− λ))).

For the unconditional distribution, note that

Tm,n(ZΠ) = Tm,n(Z0
Π) + Tm,n(∆Π) (6.7)

where Z0 = (X1, · · · , Xm, Y1 − δ, · · · , Yn − δ) and ∆ = (0, · · · , 0, δ, · · · , δ) ∈ RN whose first

m components are zero and the last n components are δ. By using Lemma 6.1 again in a

similar way as above but with bN(i) = 0 for 1 ≤ i ≤ m and bN(i) = δ for m + 1 ≤ i ≤ N ,

it is straightforward to show that Tm,n(∆Π) is asmptotically N (0, δ2). For Tm,n(Z0
Π), since

the components of Z0 are i.i.d. each with pdf f(x), it is clear that Tm,n(Z0
Π) has the same

distribution as Tm,n(Z0) and has the asymptotic normal distribution N (0, σ2/(λ(1 − λ))).

Furthermore, since the distribution of Tm,n(Z0
Π) has nothing to do with Π and so Tm,n(Z0

Π)

and Tm,n(∆Π) are independent. Hence, from (6.7), Tm,n(ZΠ) has the asymptotic distribution

N (0, δ2 + σ2/(λ(1− λ))). This completes the proof of Theorem 3.1.
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Figure 2: The simulated power (left panel) and the difference between the powers (right

panel) of the t-test and PM-test (with α = 1%) over a grid points of ∆. The samples size is

n = m = 6 (upper row) and n = m = 9 (lower row) .
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Figure 3: The power (left panel) and the difference between the powers (right panel) of the t-

test and PM-test (nominal level α = 1%) over a grid points of δ. Upper row: (m,n) = (5, 4)

as indicated by the numbers 5 and 4 in the figures; lower row (m,n) = (5, 5) as indicated by

the numbers 5 and 5 in the figures.
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Figure 4: The power (left panel) and the difference between the powers (right panel) of the t-

test and PM-test (nominal level α = 5%) over a grid points of δ. Upper row: (m,n) = (4, 3)

as indicated by the numbers 4 and 3; lower row (m,n) = (4, 4) as indicated by the numbers

4 and 4.
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