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Abstract

Next generation sequencing has revolutionised rare disease diagnostics. Concomitant with advancing technologies has been a rise in the number of new gene disorders discovered and diagnoses made for patients and their families. However, despite the trend towards whole exome and whole genome sequencing, diagnostic rates remain suboptimal. On average, only ~30% of patients receive a molecular diagnosis. National sequencing projects launched in the last five years are integrating clinical diagnostic testing with research avenues to widen the spectrum of known genetic disorders. Consequently, efforts to diagnose genetic disorders in a clinical setting are now often shared with efforts to prioritise candidate variants for the detection of new disease genes. 

Herein we discuss some of the biggest obstacles precluding molecular diagnosis and discovery of new gene disorders. We consider bioinformatic and analytical challenges faced when interpreting next generation sequencing data and showcase some of the newest tools available to mitigate these issues. We consider how incomplete penetrance, non-coding variation and structural variants are likely to impact diagnostic rates and we further discuss methods for uplifting novel gene discovery by adopting a gene-to-patient based approach.

 
Introduction

In the modern genomics era, there has been an exponential rise in exome and genome sequencing for the 400 million patients worldwide with rare genetic diseases (RGD). These next-generation sequencing (NGS) technologies are thriving in the diagnosis of RGD where traditional methods e.g. cytogenetics, Sanger sequencing, and linkage analysis have been limited by low resolution testing, single test throughput, and the requirement to test multiple affected families, respectively. Whole exome sequencing (WES) and whole genome sequencing (WGS) can objectively test the genome for potential disease-causing variants without an a priori candidate gene, which has facilitated a rapid expansion of research into the discovery of new disease genes. 

WES and WGS have now transitioned from a research environment into routine clinical practice as recognised diagnostic tests.[1] However, despite their promise, current diagnostic rates are suboptimal; on average only ~30%[2, 3] of patients offered WES or WGS receive a molecular diagnosis, although diagnostic rates vary by disease[3] with developmental delay phenotypes reporting higher solve rates at ~40%[4]. Regardless, most patients sequenced remain without a prognosis or treatment option. This is in part because NGS diagnostic testing is limited to known disease genes. Therefore, causal variants in novel genes or those outside of targeted (virtual) gene panels are ignored, at least until iterative analyses in light of new gene discoveries become commonplace. However, the genomics field is still an active research arena and national projects such as the UK’s 100,000 Genomes Project[5] and the USA’s All of Us Research Program[6] are utilising large-scale sequencing efforts to diagnose patients and discover new RGD. As a result, the boundary between clinical diagnostics and novel gene discovery is increasingly blurred, with many analysts adopting a dual diagnostic and research role. Patients consented only for clinical diagnostics will have their genome tested against known disease genes, whereas patients consented additionally for research may receive a diagnosis following functional studies on candidate variants undertaken in a research setting. This approach is steadily increasing the number of new gene disorders identified, however there is a still much to be discovered about the human genome. In fact, >75% of the phenotypical consequences for variation in all ~20,000 human genes is unaccounted for, thus rendering the exome far from obsolete[7]. Novel gene discovery is still hindered by vast quantities of variants of uncertain significance found in genes of undetermined biological function. A sequenced genome will output millions of variants; yet just a single nucleotide change may cause disease. Therefore, deciphering benign- from disease-causing variation is limiting disease-gene discoveries. Moreover, current analytical and annotation methods are imperfect[8, 9] and variation is not restricted to coding regions, which has necessitated research into structural variants and non-coding DNA. With the physiology of most genes unknown, and much still to be learnt about the non-coding genome, many genetic diseases will preclude detection until a greater proportion of the human genome has been biologically elucidated, or new methods are developed to uplift novel gene discovery.  

This article will consider some of the biggest opportunities and challenges in the diagnosis and discovery of RGD with a focus on variant analysis from NGS data. Herein we consider patient selection, technological challenges, variant prioritisation, incomplete penetrance, transcript- and tissue-specific annotation, in addition to non-coding and structural variation. We further discuss current and future avenues to ameliorate these factors and propose a new approach for novel gene discovery to tackle the notorious diagnostic odyssey of rare disease.
 
Application of NGS technologies

WES and WGS are usually applied for suspected Mendelian disease of putative complete penetrance. With many patients being contemporaneously consented for both clinical diagnostic and research studies, the selection criteria are largely overlapping. These usually include: a severe phenotype that is unexplained by acquired or environmental factors; high suspicion for a monogenic disorder and; previous negative gene panel and/or microarray screening. Perhaps the main difference is where research studies are not limited to monogenic disease and may use NGS to elucidate the genetic architecture of complex diseases e.g. asthma, diabetes and inflammatory bowel disease. However, the success of WES/WGS diminishes rapidly for these diseases, therefore it is imperative to be clear on the uses and limitations of NGS prior to offering genetic testing.

Pedigree selection
 
With clear evidence of a Mendelian disorder, it is crucial to sequence the most appropriate individuals where applicable. Trio exomes (parent/offspring) are most useful for de novo inheritance[10], however if multiple children are affected then sequencing additional siblings increases diagnostic power where funds permit[11]. For dominant inheritance, sequencing the most distantly related affected individuals, e.g. cousins, increases power to discriminate pathogenic variants by reducing DNA shared between relatives by chance[12]. Where insufficient tissue is available for sequencing, e.g. prenatal death, parents can be sequenced and tested for rare, recessive variants in the absence of the proband; this is particularly useful in cases of recurrent fetal death[13].

Clinical phenotyping

With the most appropriate cases selected, it is vital that all clinical information (deemed relevant or not) is available for variant analysis. These data are usually collected and summarised before being assessed alongside biological evidence to support or refute the relevance of a given variant[14]. However, phenotyping only represents a snapshot in time; clinical data require updating longitudinally to accurately catalogue the phenotypic spectrum of disease, or to facilitate re-analysis when NGS proves negative.

When the predominant phenotype is restricted to a particular organ system it is tempting to assume that the genetic focus is within genes associated with that organ alone; often clinicians refer patients under the guise of an organ-specific phenotype and perhaps omit other clinical features that may prove critical to diagnosis. In 2017, we reported on a child referred for WES to resolve the aetiology of his renal disease with atypical features[15]. Initial analysis, restricted to nephrological genes, proved equivocal and only when the clinical phenotype was reviewed independently later was a wealth of additional dysmorphic features identified, explained by a pathogenic variant in CBL, causing a Noonan-like phenotype. This was aided by having direct access to the clinical notes, which many diagnostic laboratories do not have permission to view. Therefore, it is essential that all salient information is shared with the analysis team or that avenues are available to contact referring clinicians where applicable.
 
Technological challenges

NGS technologies are prone to technical errors. Detailed discussion on short-read sequencing (SRS), competing chemistries, sequencing platforms, and quality control pipelines have been extensively reviewed elsewhere[12, 16, 17]. 

The vast quantity of raw sequencing data produced necessitates sophisticated informatics pipelines for data handling, analysis and interpretation. The GATK best practices guideline[18] is now considered the gold-standard tool for variant-calling and has provided some analytical consensus[19], however with a large suite of competing tools available and varying accepted standards for genotype quality, read depth and mapping scores, many diagnostic centres vary in their approaches.

Understanding the computational steps of a variant-calling pipeline is important for downstream variant interpretation. The inclusion/exclusion of variants will depend on pre-programmed user-specific parameters selected in the pipeline. Interrogating variant quality is paramount to minimise type 1 errors and is aided by visualising read data and utilising genome browsers[20, 21]. Variant quality will depend on variant type, genomic region, depth of sequencing coverage, and analytical pipeline used. Particular attention should be paid to: indels and loss-of-function variants; mapping issues around repetitive and polymorphic regions; poor quality scores; strand bias; homopolymer tracts; high GC content; and insufficient or low coverage (Figure 1). The punctate nature of WES and its imperfect probe design mean that some regions escape capture altogether. These errors are minimised by the uniform coverage (but at the expense of lower depth) of WGS. However, WGS does not capture the full range of genomic variation, missing ~5% due to mapping errors[22].

Figure 1 | Common examples where variant calling may prove erroneous
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Forward reads are coloured red and point to the right and reverse reads are coloured lilac and point to the left. (A) Polymorphic regions are prone to common variation. Here, forward and reverse reads align over a short exon on a highly polymorphic HLA gene as visualised in the integrative genomics viewer. Multiple variants are scattered throughout the region, otherwise known as a ‘confetti effect’. The accuracy and performance of variant calling is challenged when reads are highly divergent from the reference sequence. (B) Homopolymer repeats are tracts of repeated nucleotide sequences; this may be single nucleotide repeats, double, triple etc. Here, the red box outlines a repeated sequence of CA. Careful attention should be paid to variants in repeat tracts longer than 7 repeats. Variant calling is prone to errors in homopolymer tracts, particularly when a variant is an expansion of a repeat i.e. if the reference sequence is CCCCCCCT and the variant called is CCCCCCCC. (C) Strand bias occurs when reads aligning to a reference are biased towards the forward or reverse strands. Here, all reads aligning to the region are on the reverse strand as shown by the arrow (they are all lilac and point towards the left). Strand bias is common around exon boundaries, particularly for whole exome sequencing. This challenges variant calling when it is not possible to accurately assess whether variants are evenly distributed on both the forward and reverse strands. False positive calls are made when a given variant is skewed towards either the forward or reverse strands.  (D) Low depth of coverage is when the number of reads covering a region are few – many pipelines will filter variants with a read depth of <4. Here, the forward and reverse reads covering the small deletion have a read depth of only 5, (four with the indel and one without). Variant accuracy and allele balance cannot be accurately assessed without a greater depth of coverage.

Virtual gene panels and clinical diagnostics
 
For well characterised RGD, a rapid diagnosis can be made if a variant is found in a gene already associated with that disease. This is the premise behind in silico (virtual) gene panels applied in clinical diagnostic testing. If an overlapping phenotype and formal assessment by the application of curation guidelines, most typically the American College of Medical Genetics and Genomics (ACMG), support a pathogenic variant then there is potential for diagnosis. Yet, despite a drive towards standardised guidelines, many diagnostic labs vary in their variant interpretation[23, 24]. Further, gene panels are problematic as they are subjectively curated and outdated at the point that new discoveries are published. This necessitates iterative re-analysis, which can boost diagnostic rates by 10-15%[25, 26]; however this is seldom done due to constraints on workload and time[27]. Nevertheless, since ~50% of haploinsufficient disease-genes remain to be discovered[7], gene panels are rarely successful for the majority of exomes and genomes analysed. Research is therefore required to resolve pathogenic variation in the remaining disease exome, which has been facilitated by patients recruited into research studies. Challenges and considerations specifically related to prioritising variants for novel gene discovery are reviewed below.

Data volume

An average genome sequenced has ~3-4 million variants and sifting through these manually is impossible. WES produces significantly fewer variants at 20,000-22,000[28], however this number is still too large for individual variant-level scrutiny and it misses non-coding variation. Bioinformatic methods can restrict data to a more manageable number, however this still leaves an overwhelmingly large number (tens to thousands) of variants to consider in more detail. This range is highly dependent on whether analysis is conducted on an exome or genome and whether trio sequencing is available.
 
Variant analysis and prioritisation

Most variant analysts have a filtering framework to whittle down vast quantities of genomic data to a more manageable list of candidates. Although general filtering strategies are recommended, there is no universal framework governing this process. Invariably, analysis is tailored to individual cases by considering an aggregate of information.
 
De novo analysis

Many RGD occur as one-off (de novo) events i.e. present in the proband but absent from unaffected parents[29]. The rate of de novo mutation is between 44-82 events per genome with 1-2 affecting coding regions, and this number increases with paternal age[28, 30]. Restricting analysis to de novo variants can reduce a genome significantly[28]. This is achieved using trio data (parents/offspring), which is not always available due to cost restrictions or inability to sequence related individuals due to parental death, loss of contact, unknown paternity and parental refusal. Consequently, some exomes and genomes have to be analysed as singletons (proband-only) at the expense of analytical noise. Duo studies (one parent/proband) are preferable to proband-only, however many novel variants in the proband will be inherited by the other (unsequenced) parent. Overwhelmingly, singleton analysis is too noisy to identify candidates without arbitrary and restrictive filtering. Further, in rare cases, parental germline mosaicism can result in multiple affected offspring with assumed de novo inheritance[31].

Recessive analysis

Multiple affected siblings to unaffected parents increases the probability for recessive inheritance. Where consanguinity is declared or implied through relatedness checks, regions of autozygosity (where regions of DNA are identical by descent) can be targeted as hotspots for rare homozygous variation. Biallelic inheritance of compound heterozygotes in trans are best identified with trio analysis, unless the variants are close enough together in the proband that visualising overlapping read data can determine phase. However, assigning pathogenicity becomes more challenging when one variant is a known pathogenic variant and a second is of low quality or has low in silico predictors. That said, there are cases of known pathogenic variants causing disease when co-inherited with a second more common variant (or hypomorph)[32]. The tradeoff here is ensuring that allele frequencies are not filtered too restrictively especially when hypomorphs can have allele frequencies as high as 7%[33]. 
 
Allele frequency

Since population allele frequency (AF) data have been made publicly available, detecting rare variation has become far easier[5, 34]. The largest repository of WES/WGS data for ostensibly healthy adults, depleted for rare childhood disease, is the genome aggregation database, or gnomAD (http://gnomad.broadinstitute.org), hosting 125,748 exomes and 71,702 genomes. With AF differing between ethnicities, it is important that rare variation is compared with the AF of the patient’s ethnic group; i.e. what may be rare in Caucasians could be common in Latinos. Historically, global repositories have been biased towards European ancestry, and whilst this bias still exists, many more ancestries are now included with updated databases. 

Undoubtedly global repositories are immensely powerful, however most individuals harbour a number of private variants absent from these repositories. Even at 197,450 samples, gnomAD is underpowered to accurately catalogue rare variation on a population level[35]. That said, AF still remains a fundamental filtering tool in rare disease, but frequency cutoffs are often arbitrary and overly lenient. Whiffin et al.[36] developed a statistical tool (http://cardiodb.org/allelefrequencyapp/) for the frequency-based filtering of candidate variants accounting for disease prevalence, inheritance mode, allelic heterogeneity, penetrance and sampling variance. The tool was shown to reduce candidate variants by two-thirds whilst maintaining sensitivity.

Variant type

Variant type is an important consideration in variant analysis (Table 1). Coding variants are usually considered first, although splicing variants and indels may impact both coding and non-coding regions. Loss-of-function variants (frameshift, stop-gain and essential splice-site) are regarded as the most pathogenic coding variants and are rarer compared to all other variant types. However, they are enriched for technical artefacts and many of these error types are not accounted for by current curation guidelines[35, 37]. Missense variants are scattered across disease genes in healthy populations, challenging their interpretation. Regional missense constraint metrics are helping to prioritise candidates[38, 39]. Splicing variants (exonic and intronic) can augment regulatory domains within mRNA, particularly those controlling splicing and may also influence translation[40, 41]. However, these are difficult to assess beyond the canonical splice site and many in silico tools perform poorly[42, 43]. That said, recent splicing libraries are widening the biological understanding of splicing variants and these can be used to train splicing models[44, 45]. Synonymous variants are often discarded but are not benign by default and show a degree of selective pressure. These variants can alter the consensus sequence around splice sites and may also augment translation[40]. Short indels spanning coding regions may result in loss-of-function, sequence truncation/elongation, or splicing events. Yet these are often poorly resolved and aligned[46]. Non-coding variation is considered later in this review.

Table 1 | Variant classes including occurrence, consequence and considerations.
	Variant class
	description
	Occurrence
	Consequence
	Considerations

	Synonymous
	Single nucleotide variant
	~11,800 per genome
	Do not alter the amino acid sequence
	· Not always benign
· Can affect transcription and splicing

	Missense
	Single nucleotide variant
	~10,600 per genome
	Single amino acid substitution
	· Scattered across disease genes in healthy populations
· Metrics available that map missense constraint at a regional gene level and highlight critical regions that may be implicated in disease 

	Splicing
	Single nucleotide variant (essential or non-essential splice site) or indel
	~2,300 per genome
	Alter the sequence around splice junctions and may result in aberrant mRNA transcription
	· Variants may reduce or strengthen the natural splice site, disrupt regulatory sequences (e.g. silencers and enhancers), introduce new splice sites, or activate cryptic splice sites
· Difficult to assess beyond the canonical splice site due to limitations in annotation software, particularly for indels and deep intronic variants

	loss of function
	Frameshift, nonsense or essential splice site
	~100 per genome
	May result in protein truncation or protein loss due to nonsense medicated decay
	· Predicted most pathogenic compared to all other variant types
· Enriched for annotation, technical and transcript artefacts
· Single exon genes escape nonsense medicated decay

	Short indels

	Small insertions or deletions <50 base-pairs
	~420,000 per genome
	- In-frame indels may elongate or truncate the protein product
- Out of frame indels will result in loss-of-function
- Indels across splice sites may disrupt splicing
	· May have regulatory roles on DNA structure and function
· Often poorly resolved and aligned particularly from short read exome data
· WGS improves indel calling
· Long read sequencing outperforms short read sequencing


Rates of variant occurrence were collated from 1000 genomes data, ExAC data, and a cohort of 44 Caucasian genomes[47-49]. Note that rates of variation are likely to be an underestimate as cohort sizes are still underpowered to detect all rare variation[35]. Additionally, indel rates are likely grossly underestimated due to alignment and mapping issues[50].


In silico tools

In silico tools score variants according to functional consequence (Table 2). A wealth of competing software is available, yet many informatics pipelines are incompatible with these tools, nor do they keep up with updated versions. Discordant evidence lowers the confidence of relying on any one score. Composite scores, which utilise statistical methods, machine-learning, and deep neural networks help to resolve this issue[51, 52]. Yet, no single method emerges superior and therefore a consensus approach is still recommended[53]. 




Table 2 | Selection of commonly applied in silico prediction tools available for variant prioritisation.

	Category 
	Algorithm 
	Source 
	Principle 

	Non-synonymous SNV prediction 
	SIFT[54]
	http://sift.jcvi.org 
	Evolutionary conservation 

	
	PolyPhen-2[55] 
	http://genetics.bwh.harvard.edu/pph2 
	Evolutionary conservation and protein structure/function 

	
	MutationTaster[56] 
	http://www.mutationtaster.org 
	Evolutionary conservation and protein structure/function 

	
	Grantham[57]
	https://gist.github.com/danielecook/ 
	Biological consequence of amino-acid change 

	
	PROVEAN[58]
	http://provean.jcvi.org
	Delta score model

	
	ClinPred[59]
	https://bio.tools/ClinPred
	Machine learning

	
	FunSAV[60]
	http://sunflower.kuicr.kyoto-u.ac.jp/sjn/FunSAV
	Random forest model

	Synonymous snv prediction 
	FATHMM-MKL[61] 
	http://fathmm.biocompute.org.uk/fathmmMKL.htm 
	Sequence conservation within hidden Markov models 

	
	GWAVA[62] 
	https://www.sanger.ac.uk/sanger/StatGen_Gwava 
	Integration of various genomic and epigenomic annotations 

	
	TraP[63]
	http://trap-score.org 
	Integrates sequence motif changes and GERP++

	INDEL PREDICTION
	IndelMINER[64]
	http://omicstools.com/indelminer-tool
	Heuristic model based on split read data

	
	ABRA[65]
	https://github.com/mozack/abra
	De novo assembly

	
	VarScan[66]
	http://varscan.sourceforge.net/
	Integration of read coverage, base quality and number of strands

	
	DINDEL[67]
	https://omictools.com/dindel-tool
	Bayesian method

	
	GATK Haplotype Caller[18]
	http://software.broadinstitute.org/gatk/
	Bayesian method

	
	DDIG-in[68]
	http://sparks-lab.org/ddig
	Machine learning method

	
	DeepVariant[69]
	https://github.com/google/deepvariant/
	Deep neural network

	Splicing prediction 
	GeneSplicer[70] 
	https://ccb.jhu.edu/software/genesplicer/ 
	Markov model 

	
	MaxEntScan[71] 
	http://genes.mit.edu/burgelab/maxent/ 
	Maximum entropy model 

	
	Human Splicing Finder[72] 
	http://www.umd.be/HSF/ 
	Position dependent logic 

	
	MutPred Splice[73] 
	http://mutdb.org/mutpredsplice/about.htm 
	Machine-learning prediction of exonic variants 

	
	SpliceAi[74]
	https://pypi.org/project/spliceai/ 
	Deep neural network

	Conservation prediction 
	PhyloP[75]
	http://compgen.bscb.cornell.edu/phast/ 
	Statistical phylogenetic tests 

	
	GERP++[76] 
	http://mendel.stanford.edu/SidowLab/downloads/gerp/ 
	Conservation across species

	
	PhastCons[77]
	http://compgen.cshl.edu/phast/ 
	Phylogenetic hidden Markov model

	
	Panther-PSEP[78]
	http://pantherdb.org/tools/csnpScoreForm.jsp
	Position-specific evolutionary conservation

	Non-coding prediction
	DeepSEA[79]
	http://deepsea.princeton.edu/
	Deep learning algorithm

	
	GenoCanyon[80]
	http://genocanyon.med.yale.edu
	Unsupervised learning

	
	SInBaD[81]
	http://tingchenlab.cmb.usc.edu/sinbad/
	Sequence information based decision model

	protein prediction
	AGGRESCAN3D[82]
	http://biocomp.chem.uw.edu.pl/A3D/
	Protein aggregation method

	
	DUET[83]
	http://structure.bioc.cam.ac.uk/duet
	Integrated computational approach

	
	HMMvar-func[84]
	http://bioinformatics.cs.vt.edu/zhanglab/HMMvar/download.php
	Hidden Markov models

	
	LS-SNP/PDB[85]
	http://ls-snp.icm.jhu.edu/ls-snp-pdb
	Genome-wide mapping of SNVs onto protein structures

	
	NeEMO[86]
	http://protein.bio.unipd.it/neemo/
	Residue interaction networks

	
	PMut[87]
	http://mmb.irbbarcelona.org/PMut
	Neural network

	Composite score
	CADD[88] 
	http://cadd.gs.washington.edu/ 
	Multiple genomic annotations 

	
	M-CAP[51]
	http://bejerano.stanford.edu/mcap/ 
	Machine-learning composite score

	
	Eigen[89]
	http://www.columbia.edu/~ii2135/eigen.html 
	Unsupervised spectral model

	
	Dann[52]
	http://cbcl.ics.uci.edu/public_data/DANN 
	Deep neural network

	
	REVEL[90]
	https://sites.google.com/site/revelgenomics/

	Ensemble learning method

	
	Alamut
	https://interactive-biosoftware/alamut-visual
	Composite score using splicing, missense and ESE prediction tools



Alamut is a commercial product and does not have a corresponding research paper. Updated versions are available from the source links. [ESE - exonic splicing enhancer; SNV – single nucleotide variant].



Although in silico tools can help to prioritise variants, that is not to say they predict disease-causality. Most metrics cannot discriminate by gene; however new methods are shifting data interpretation from the variant to the gene-level. GenePy is a gene-based pathogenicity score that can be applied to both cohorts and individuals. This metric correctly selected pathogenic genes for inflammatory bowel disease[91]. However, no current method can link a specific phenotype to a gene based on biological function - all gene-based metrics reflect the burden of mutation within genes of equally-predicted causality.

Tissue-specific annotation

Tissue-specific annotation has been a neglected area of variant interpretation. The genotype tissue expression (GTEx) portal has facilitated the study of tissue-specific gene expression and regulation important for variant analysis, e.g. a predicted pathogenic variant only expressed in testes in the context of a strong neurodevelopmental phenotype would likely be deprioritised. Equally, a variant strongly expressed in the kidney for a nephrological phenotype would warrant further scrutiny, even if overall tissue expression was low. That said, prudence is advised here; GTEx data were collected from cadavers, which will not necessarily represent in utero isoform gene expression when disease pathogenesis may have occurred[92]. Furthermore, some individuals present mosaicism and variants will be missed if the tissue of origin is not sequenced. 

Transcript-specific annotation

Transcript-specific annotation considers how a variant affects all annotated transcripts of that given gene. Certain disorders are transcript-specific, i.e. only variants disrupting particular transcripts cause disease. Protein truncating variants in titan (TTN) - one of the largest genes encoding an essential protein component of striated muscle - cause dilated cardiomyopathy[93], yet loss-of-function variants are found in healthy individuals. In healthy controls, loss-of-function variants occur in exons absent from dominantly expressed isoforms (the resultant spliced RNA as a result of a given transcript)[94]. This is where nomenclature and understanding variant notation is essential. Diagnostic reports often describe variants with coding (c.) and protein (p.) notation in keeping with HGVS guidance[95], yet often neglect to include which transcript the variant relates to. To confuse matters further, there are different annotation databases (RefSeq, Gencode, Ensembl) and transcripts vary between them. Nevertheless, reporting variants using genome (g.) nomenclature e.g. 1-55516888-G-A is preferable as all transcript consequences (from any preferred annotation database) can be assessed, e.g. a variant may be loss-of-function on one transcript yet intronic on all others (Figure 2). Furthermore, the same loss-of-function variant may disrupt a poorly expressed transcript in only one (clinically irrelevant) tissue. If this loss-of-function variant was reported without the transcript information e.g. p.Trp71Ter, then an analyst could be forgiven for assuming the variant may be pathogenic if found in a known disease gene. On the other hand, this same variant may be uniquely and moderately expressed in a tissue of interest, yet have low overall tissue expression, risking its exclusion. This is where amalgamating both tissue- and transcript-specific information is most valuable.


Figure 2 | Schematic of the 3-184966166-TC-T variant and its transcript-specific annotations.
[image: ]
(A) shows how the 3-184966166-TC-T variant causes a frameshift event on one transcript (ENST00000440662) and is intronic on the two remaining transcripts, including the canonical transcript identified by the asterisk (ENST00000231887*). If the variant were just annotated as EHHADH: p.Trp71Ter, this would neglect important transcript-specific information that would otherwise lower the pathogenicity of the variant. (B) Shows the individual transcripts and their corresponding exons (blue boxes). The canonical transcript is shaded in dark blue. Mean isoform expression of each transcript across GTEx tissues is shown on the right. The dotted orange line shows the position of the variant across all annotated transcripts. The transcript harbouring the p.Trp71Ter variant only disrupts the coding sequence of the ENST00000440662 isoform and has low mean expression across tissues, suggesting this transcript is not biologically important. Contrastingly, the canonical transcript (ENST00000231887*) is highly expressed approaching 3.5 transcripts per million, yet the variant is intronic for this transcript. Therefore, by using transcript level annotation, variant pathogenicity can be more accurately assessed and avoid providing a false sense of pathogenicity, particularly if the gene has a known disease association.


To aid in the interpretation of transcript-specific annotation, Cummings et al.[37] developed a tool that facilitates the rapid visualisation of isoform expression values across tissues, called the proportion expressed across transcript (pext) score. Pext is capable of differentiating between weakly and highly evolutionarily conserved exons and thus serves as a surrogate for functional importance (Figure 3). The integration of pext into the gnomAD browser now provides an opportunity to rapidly exclude variants from weakly expressed exons.
















Figure 3 | Schematic of how pext enables visualisation of isoform expression across exonic regions.
[image: ]
Pext values are integrated from the GTEx dataset by computing the median expression of a transcript for GTEx tissue samples. The expression of a given base is defined as the summed expression of all transcripts that touch that base. This is repeated for every GTEx tissue and then normalised by the whole gene expression in that tissue. Transcript 1 has low tissue expression compared with transcripts 2 and 3. The overhanging region of exon 2 (on transcript 1) has a base pext of 1 TPM and therefore this region is likely to have low conservation or be enriched for annotation errors. Therefore, a variant in the region of the yellow star would be easily identified as a low priority candidate due to the relative drop in mean pext secondary to low tissue expression in GTEx across that region. The caveat to this rule is where transcript 1 is uniquely expressed in the tissue of interest, and therefore expression values should be assessed against tissues of interest, rather than just the mean expression across all tissues. The integration of pext into the gnomAD browser allows the analyst to visualise both mean pext and tissue specific-pext. [GTEx – genotype tissue expression; TPM - transcript per million]. Figure is adapted from Cummings et al.[37].

Incomplete penetrance

Harbouring a disease-causing variant does not always result in expression of disease, a phenomenon known as incomplete penetrance, reviewed elsewhere[96]. To illustrate this, gnomAD (which is depleted for individuals with rare childhood diseases) contains known pathogenic variants in haploinsufficient genes (RB1, APC). Indeed, incomplete penetrance is not uncommon; several examples exist whereby pathogenic variants do not always present clinically in the individuals who carry them (Table 3)[97].

Table 3 | Examples of incompletely penetrant genes.

	Gene(s)
	Phenotype
	Paper

	CX46
	Congenital cataract
	Shawky et al.[98]

	ASXL1
	Bohring-Opitz syndrome
	Ropers et al.[99]

	NF1
	Neurofibromatosis type 1
	Fahsold et al.[100] 

	CFH, CFI, CFB, C3, MCB
	Atypical haemolytic syndrome
	Bresin et al.[101]

	COL1A1, COL1A2
	Osteogenesis imperfecta
	Veitia et al.[102]

	LRRK2
	Parkinsons disease
	Alessi et al.[103]

	SCN5A
	Brugada syndrome
	Gourraud et al.[104] 

	DCC
	Agenesis of the corpus callosum
	Marsh et al.[105]



Examples of genes displaying incomplete or reduced penetrance supported by scientific literature across a diverse range of phenotypes.

Population sequencing projects have revealed a high burden of potential protein-damaging variants in apparently healthy individuals[35, 47, 96]. Data extracted from the UK biobank, are beginning to evaluate rare disease-causing variants and refine penetrance estimates[106]. This challenges the analysis of NGS data when some genetic diseases may segregate through unaffected parents at allele frequencies higher than expected for a fully penetrant disease variant. On the other hand, some variants may be fully penetrant, yet modifier genes or rescue events may vary phenotype expressivity.

Non-coding variation

Until recently, non-coding DNA (comprising 98% of the human genome) was considered ‘junk’. With the falling costs of WGS and advancing technologies (Table 4), non-coding variation is proving itself to be important for gene regulation, epigenetics and 3D genome structure[107]. 

Table 4 | Description of technologies for the detection of gene regulation, epigenetics and genome structure.
	Type
	Description

	technologies to assess non-coding variation

	ChIP‐seq
	ChIP‐sequencing (ChIP-seq) is a method to analyse protein interactions with DNA. ChIP-seq combines chromatin immunoprecipitation (ChIP) with DNA sequencing to identify DNA regions bound by proteins of interest. Histone marks indicating regulatory properties include H3K4me3, H3K27me3, and H3K27ac. Transcription factor binding sites can be analysed using ChIP‐seq in a genome‐wide manner.

	DNase‐seq, ATAC‐seq and FAIRE‐seq
	These technologies identify ‘open chromatin’ regions where DNA binding proteins can access target DNA sequences.

	Hi‐C and ChIA‐PET
	These technologies are chromosome conformation capture‐based methods for genome‐wide analysis of 3D chromatin interactions. Hi‐C is capable of detecting all possible interactions between DNA sequences in the genome, such as topological association domains. Chromatin interaction analysis by paired-end tag sequencing (ChIA‐PET) incorporates ChIP-based enrichment and high-throughput sequencing to determine de novo long range chromatin interactions across the genome.

	MeDIP‐seq and whole‐genome bisulfite‐seq
	These technologies provide genome‐wide analysis of methylated DNA sequences. MeDIP‐seq combines ChIP and high-throughput sequencing. Whole‐genome bisulfite‐seq uses both treated (with sodium bisulfite) and untreated genomic DNA to identify methylated regions.



ATAC-seq – assay for transposase-accessible chromatin using sequencing assay; ChIA-PET – chromatin interaction analysis by paired-end tag sequencing; ChIP-seq – chromatin immunoprecipitation sequencing; DNASE-seq – Dnase I hypersensitive sites sequencing; FAIRE-seq – formaldehyde-assisted isolation of regulatory elements sequencing; MEDIP-seq – methylated DNA immunoprecipitation sequencing.


Efforts to understand non-coding variation have come through the ENCODE project, which has provided experimental evidence on the function of non-coding regulatory elements and gained new insights into the nature of transcription, chromatin structure and histone modification[108]. Results suggest that 80% of the genome contains elements linked to biochemical function, and that intergenic regions contain cis-regulatory elements such as enhancers, promoters, silencers and untranslated RNA transcripts with regulatory function (Table 5)[109]. In silico methods that exploit ENCODE data and use machine-learning to predict the functional impact of non-coding single nucleotide variants are emerging[61, 62, 89, 110]. However, the routine integration of these metrics is lacking, not least because the same variant may have conflicting effects in different tissues, individuals, and developmental stages and most analytical workflows are ill-equipped to interpret their effects[62]. 


Table 5 | Description of non-coding variant classes.
	Type
	Description

	Representative functional non‐coding elements

	Untranslated region
	Untranslated regions (UTRs) are transcribed DNA included in the mature mRNA but not translated into protein. The 5’ (upstream) UTR and 3’ (downstream) UTR are important for translational control, mRNA stability and intracellular localisation. The 5’ UTR contains the 5’ cap and the 3’ UTR contains the polyadenylation signal (AAUAAA) and miRNA-binding sites.

	Promoter
	Promoters provide binding for the promoter machinery that initiates gene transcription, typically located upstream of a gene. Epigenetic markers for active and repressive promoters include H3K4me3 and H3K27me3, respectively.

	Enhancer
	Enhancers provide binding sites for proteins that help active transcription and control of expression levels of distal gene(s). H3K27ac is known as the representative mark of active enhancers.

	Silencer
	Silencers provide binding sites for proteins important in the repression of transcription.

	Transcription factor binding sites
	TF binding sites are genomic elements bound by TF proteins that play a crucial role in regulation of gene transcription. TFs bind preferably to specific DNA sequence motifs in cis-regulatory regions of promoter and enhancer DNA.

	Insulators
	Insulators are DNA elements that act as a blocker of interactions between regulatory elements (e.g., enhancer-blocker insultators) and/or a barrier to propagation of repressive chromatin (barrier insulators).

	Transcribed non‐coding regions
	Some non-coding DNA is transcribed into functional RNA but not translated into protein. Specific examples include transfer RNA, ribosomal RNA, miRNA, long (intergenic) non‐coding RNA, small nucleolar RNA, and others.



 [TF – transcription factor; miRNA – microRNA; UTR – untranslated region].


Structural variation

Structural variants (SVs) are genomic rearrangements larger than 50 base-pairs. SVs not only affect gene dosage, but can modulate the basic mechanisms of gene regulation by altering the copy number of regulatory elements and by modifying the 3D genome through topological associating domains. SV disease mechanisms are reviewed elsewhere[107].

SVs can be balanced (inversions and translocations), or unbalanced (deletions, insertions and duplications) and we are only beginning to appreciate their prevalence. A preprint by Collins et al.[111] catalogued 433,371 distinct SVs across >14,000 genomes in gnomAD, producing 7,439 SVs on average per individual, contributing to approximately 25-29% of all rare protein truncating events. Therefore, there is likely to be an appreciable burden of rare pathogenic variation secondary to SVs undetected by current clinical testing standards. This has often been suspected, particularly in cases when one pathogenic variant is detected in a recessive gene of interest and there’s suspicion for a ‘second hit’ somewhere else in the genome. Indeed, a recent preprint showed that 4% of undiagnosed genomes were solved using SV calling[112].

The most well studied SVs are unbalanced SVs, or copy number variants (CNVs). Array comparative genomic hybridisation is the first-line diagnostic CNV test, however its low resolution and inability to detect balanced rearrangements mean that a large proportion of SVs are missed[107]. As technologies have advanced, the detection of SVs has moved away from cytogenetics towards NGS (Table 6). Methods to detect SVs from short-read WGS data has been made possible by an abundance of tools that exploit paired-end reads, read depth, and split reads (Figure 4). Theoretically, all SV classes can be detected at a finer scale than offered by traditional methods. However, these methods are limited, particularly from short-read data where mapping is notoriously inaccurate round repetitive regions, and most analytical pipelines do not support SV calling when their throughput is predominantly WES. Long-read sequencing (LRS) is emerging as a solution and has already revealed many times more SVs per genome when compared with SRS; however, cost is still a substantial issue[113]. Linked-read technology, provided by 10X Genomics, integrates SRS with long range information. Long molecules of DNA are fragmented and labelled with a barcode; these fragments undergo SRS, producing a set of labelled reads that originate from the same DNA molecule. This technology is cheaper compared with LRS and facilitates simultaneous detection of small and large variants from a single library, however this technology is prone to the same limitations as both SRS and LRS.[114]


Table 6 | Methods for the detection of structural variants and their corresponding advantages and disadvantages.

	Methods
	Advantages
	Disadvantages

	G banded karyotype
	· Unbiased
· Good for aneuploidy
	· Limited resolution (5-7 megabases)

	FISH
	· Uses fixed interphase cells
· Assesses balanced translocations
· Detects mosaicism and tumour heterogeneity
	· Requires multiple probes/assays to test multiple loci
· Low resolution (100-200 kilobases)

	Array CGH
	· Good for CNV and loss of heterozygosity
· Better resolution than FISH
· Low cost per data point
	· Resolution still limited (50-100 kilobases)
· Cannot detect balanced translocations
· Cannot detect copy neutral CNVs
· Low throughput

	MLPA
	· Detects small rearrangements up to 50bp
· High throughput
· Uses up to 40 probes
	· Cannot detect copy neutral CNVs
· Poor for mosaicism and tumour heterogeneity

	Short read sequencing (SRS)
	· Can detect full range of genetic variation
· High throughput
· Resolution from 50bp
· Greater per base accuracy than LRS
· Deeper coverage
	· Dependent on coverage
· Susceptible to GC bias
· Prone to errors particularly around low complexity regions
· Requires WGS to assess all SV classes

	Long read sequencing (LRS)
	· Can detect full range of genetic variation
· High throughput
· Detects more SVs than SRS
· More uniform coverage
· Greater overall accuracy than SRS
	· Expensive
· Lower per base accuracy than SRS
· Lower depth of coverage
· Cannot resolve sequences larger than input DNA

	Linked-read sequencing 
	· Can detect full range of genetic variation
· Constructs long range haplotypes
· Low error rate
· Lower cost compared with LRS
	· Cannot resolve sequences larger than input DNA
· Susceptible to GC bias
· Reduced performance around small indel calling


[Bp – base pair; CGH – comparative genomic hybridisation; CNV – copy number variant; FISH – fluorescence in situ hybridisation; kbp – kilo-base pair; LRS – long read sequencing; MLPA – multiplex ligation-dependent probe amplification; SRS – short read sequencing; SV – structural variant; WGS – whole genome sequencing].



Figure 4 | Methods to detect structural variation using next generation sequencing data.  
[image: ]
Read depth is exploited to assess deletions and duplications. Reads aligned to the reference genome will show increased coverage over duplicated regions and decreased coverage in the presence of a deletion. Paired reads are sequenced from either end, leaving an insertion gap in the middle. In a deletion the read pairs align to the reference further apart than expected. Dotted red lines denote change in read position/orientation between sample and reference. In a tandem duplication the orientation of the read pair is reversed in the reference. In an insertion the read pairs are aligned closer together than expected i.e. their insert size is less than expected. For inversions, the paired reads align in the same direction (either in the forward or reverse direction). For a translocation, the reads pairs are mapped to different chromosomes. Split reads occur over breakpoints. For a deletion, reads across the breakpoint will be split in the reference. For a tandem duplication, reads spanning the concatenation of the duplication will be split where the insertion begins and ends. For an insertion, reads will split at the point where the insertion begins or ends. For an inversion, the right read pair is split at the point where the inversion begins. The remaining split read will change orientation and align at the reverse end of the inversion. For a translocation, reads spanning the join between translocated regions will be split and align with their independent chromosomes e.g. chromosome 1 (chr1) and chromosome 8 (chr8).  



Applying supporting evidence from literature

When a list of candidates remains following variant prioritisation, scrupulous assessment of the scientific literature is mandatory to evaluate biological significance. This is achieved by reading papers on a gene(s) of interest and accessing databases such as OMIM[115] (http://omim.org/), ClinVar[116] (https://www.ncbi.nlm.nih.gov/clinvar/), and Decipher[117] (https://decipher.sanger.ac.uk/), which catalogue genotype/phenotype relationships with degrees of supporting evidence. This part of analysis is perhaps the most time-consuming as it involves evaluating copious amounts of evidence. Often the only genotype/phenotype association is through a genome wide association study; yet rare pathogenic variants may not present the same phenotype.

There is also a risk that published papers make false associations between a gene and disease. This was apparent in historical papers that linked ‘rare’ (at the time) segregating variants as pathogenic for a particular phenotype based on public databases primarily representing Europeans. Some rare variants in European populations may be common in other ethnicities. Only when public repositories started to include a diverse range of ethnicities did these ‘rare variants’ prove to be common and not disease causing at all. For example, the MYBPC3 (p.G278E) variant was classified as pathogenic for hypertrophic cardiomyopathy in African populations. The variant was later reclassified as benign when found to be common in Africans[118]. Additionally, as public repositories have increased in size, many presumed disease-causing variants have been deemed ‘too common’ to be pathogenic[119]. Removing these variants from the literature is impossible, but the data-sharing ethos of ClinVar ameliorates this issue by encouraging evidence-based submissions which may refute previous claims of pathogenicity. By leveraging knowledge from multiple submissions, clinical significance and assertion criteria, ClinVar can be exploited as an important tool for the accurate interpretation of variant pathogenicity[120].

Genes of unknown function and functional validation

Although phenotype-genotype associations are continually expanding, most variants remain variants of unknown significance (VUS). Perhaps the biggest challenge in reaching a diagnosis is the paucity of knowledge into the biological function of all 20,000 genes. It is estimated that 70-75% of human genes still have no known function in human health and 50% of disease genes are yet to be discovered[7, 121, 122]. Regretfully, most WES/WGS does not yield a diagnosis and consequently multiple VUS candidates remain. New diagnoses cannot be made without functional studies on potential candidates; this is an unrealistic and financially unviable method to discover new disease-causing genes and is a major bottleneck. The MatchMaker Exchange[123] is aiding in this regard; clinicians and analysts can share patient phenotype and genotype data in hope of finding a match. Discovering additional affected kindreds promotes novel disease-gene discovery through functional experiments and shared phenotype data. It is noteworthy though that functional validation is not synonymous with causation. For one, rescue events can restore a given genotype and proving a gene is knocked out/down does not mean it is pathogenic. Furthermore, many functional studies use mouse models; these are contentious and at best can only approximate effects in humans. Zebrafish and xenopus serve as alternatives due to their short generation time and high fecundity, yet are less related to humans than mice[124, 125]. There has been a recent trend towards CRISPR/cas9 gene editing of organoids derived from human or embryonic stem cells, however, many syndromes overlap multiple cell types, therefore organisms often serve as a superior method[126].


Prioritising candidates using constraint metrics

If it were possible to introduce disruptive mutations into human genes and survey their effects, many genetic
disorders would already be discovered. However, it is not ethical to create human knockouts. Therefore, these are only identified when comparing naturally-occurring knockouts with patient phenotypes[127, 128]. Yet, with ~100 per genome[47], it is difficult to assign which knockout, if any, is responsible.

Instead, the aggregation of large population datasets has begun to reveal the natural variation of inactivating
variants across the human genome, serving as a model for human gene inactivation. We can leverage population data to evaluate the strength of natural selection at a gene level and model constraint (or shift in allele frequency distribution) compared to an expectation. In 2019, Karczewski et al.[35] developed a continuous measure of intolerance to predicted loss-of-function variation modelled on 141,000 WES/WGS samples from the gnomAD database, thus placing each gene on a spectrum of loss-of-function intolerance. This method, called the lower observed/expected upper bound fraction (LOEUF) can predict haploinsufficient genes even in the absence of biological function. Furthermore, similar approaches can be applied to detect missense constraint, including at a regional level, and prioritise both dominant and recessive disease genes[38, 129]. 

Discussion

The genomics field is moving at an unprecedented pace in an era of global collaboration. Efforts to help resolve incomplete penetrance, non-coding variation and structural variants are rapidly advancing and the use of LRS shows real promise. The drive towards data sharing and open-access resources are uplifting novel gene discoveries and refining computational methods. Community assessment efforts to evaluate computational methods are helping to resolve genomic issues around variant annotation and variant calling[9]. Population aggregation databases are widening the spectrum of genomic variation across populations and these data can be used to model mutational patterns and predict essentiality of genes[35]. National genomic sequencing projects are accelerating health research and personalised medicine[6, 130]. That said, the data sharing process is complex with issues around data access permissions, firewalls, and data compatibility[131].

Despite the huge advances in genomics, current approaches to rare disease diagnosis and novel discoveries are still hindered by vast data of uncertain significance found in genes of unknown function. Even with myriad advancing methods, diagnosing rare disease is extremely challenging without a prior correlation between a clinical phenotype and causal gene. This is particularly frustrating when, for many rare disease patients, the causal mutation is present in their sequencing data. New gene discovery is still largely confined by taking single patient cases and bringing the phenotype to the gene; an approach limited by intensive functional experiments on genes of equally-predicted causality. Therefore, there is perhaps need to re-think the current approach to NGS analysis.

Shifting the current diagnostic paradigm

Large-scale rare disease sequencing projects are working to end the diagnostic odyssey tainting rare disease[6, 130].  By amassing large cohorts, there are opportunities to improve novel gene discovery using bespoke methodology. The Deciphering Developmental Disorders project has utilised large cohorts to discover novel disease genes by exploiting statistically-driven methods e.g. by computing rare mutational burden in genes versus controls[132].

New constraint metrics such as LOEUF provides a continuous spectrum of intolerance to gene inactivation and can be used to discover novel disease genes[35]. Using the extremes of this spectrum, there is an opportunity to identify predicted haploinsufficient disease genes yet to be discovered by accurately focusing genomic analysis to the most damaging (loss-of-function) variants in LOEUF constrained genes. In essence, adopting a gene-to-patient based approach that matches predicted pathogenic variants to rare disease patients, thus reducing most of the analytical noise that currently precludes novel discoveries (Figure 5) and building a much-needed phenotypic catalogue of human gene knockouts that has otherwise been unachievable. This will be most valuable if and when phenotype data are accurate, comprehensive and collected longitudinally. Given the rarity of these mutations, this is only achievable by exploiting massive cohort sizes, now possible by recent global efforts. This method is best applied to non-embryonically lethal diseases caused by variants in haploinsufficient genes, but also shows promise for recessive inheritance; genes that falls in the middle of the LOEUF spectrum are enriched for recessive diseases and can be targeted accordingly[35]. 

Figure 5 | A proposed method for novel disease-gene discovery. 
[image: ] 
 (1) The current ‘patient to gene approach’. Following sequencing of a given patient (A) there is usually a high burden of variants of unknown significance. One of these candidates may be the causal variant (red), however with literature lacking on the function of all 20,000 human genes, all candidates are essentially of equally-predicted causality; at least until a time that functional experiments can validate pathogenicity. (2) A proposed new method that reverses the patient-to-gene approach. Here, genes are ranked based on predicted haploinsufficiency, modelled from population data (LOEUF constraint metric). High confidence inactivating variants are filtered on a curated list of predicted disease-causing genes and are extracted from rare disease cohorts independent of phenotype. These predicted pathogenic variants are then matched to individual patients (B, C, D, E and F). 


Conclusion

Diagnosing rare diseases is challenging, however the pace at which genomics has moved from a research setting into mainstream clinical medicine exemplifies its utility. Methods are continually advancing to improve variant analysis and interpretation, particularly by modelling gene constraint from population data, utilising machine-learning and deep neural networks to predict variant consequence, and visualising transcript- and tissue-specific annotation. Furthermore, recent efforts to understand the non-coding genome are revealing a large spectrum of variation implicated in disease. 

With a wealth of research into the human genome, it is expected that diagnostic rates will continue to rise. Rethinking current practices by utilising large cohorts and adopting gene-based approaches may accelerate novel gene discovery, where functional experiments on genes of equally-predicted causality have been a major bottleneck. The mainstream integration of SV calling into informatics pipelines is likely to resolve a percentage of undiagnosed rare diseases and it is hoped that as control cohorts increase in size, incomplete penetrance will be more accurately quantified. Genomics has already revolutionised rare disease diagnostics, and as we start the new decade we can likely look ahead to significant diagnostic uplift which will facilitate the development of personalised therapies and begin to end the diagnostic odyssey of rare disease.


Key points
1) Genomics has revolutionised rare disease diagnostics. Consequently, whole exome and genome sequencing are now recognised clinical diagnostic tests.
2) Current diagnostic rates for exome and genome sequencing are ~30% on average. This is challenged by clinical diagnostic testing limiting analysis to known disease genes. Therefore, disease variants in genes of unknown function are missed. Novel disease-gene discovery is required to uplift diagnostic rates and is being facilitated by national genome sequencing projects, whereby patients are contemporaneously consented for both diagnostic and research studies.
3) Over 75% of the phenotypical consequences of variants in the exome are unaccounted for. Therefore, there is still much to be understood about the biological function of all ~20,000 human genes before clinical diagnostic testing will significantly uplift diagnostic rates.
4) Many disease variants reside outside of coding regions. Research into structural variants and non-coding variation is rapidly advancing. Long-read sequencing shows real promise in elucidating the role of non-coding DNA and structural variation, however cost is a substantial issue.
5) Variant interpretation is challenging and is hindered by millions of variants called per genome. Utilising segregation, in silico tools and allele frequencies can help in this regard, however in many cases, multiple variants of uncertain significance remain. These require functional studies to validate their effects, which is impossible to achieve for multiple candidates per exome/genome. Leveraging large datasets and exploiting constraint metrics provide an opportunity to adopt gene-to-patient based approaches.
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