Speech enhancement using polynomial eigenvalue decomposition
Speech enhancement using polynomial eigenvalue decomposition
Speech enhancement is important for applications such as telecommunications, hearing aids, automatic speech recognition and voice-controlled system. The enhancement algorithms aim to reduce interfering noise while minimizing any speech distortion. In this work for speech enhancement, we propose to use polynomial matrices in order to exploit the spatial, spectral as well as temporal correlations between the speech signals received by the microphone array. Polynomial matrices provide the necessary mathematical framework in order to exploit constructively the spatial correlations within and between sensor pairs, as well as the spectral-temporal correlations of broadband signals, such as speech. Specifically, the polynomial eigenvalue decomposition (PEVD) decorrelates simultaneously in space, time and frequency. We then propose a PEVD-based speech enhancement algorithm. Simulations and informal listening examples have shown that our method achieves noise reduction without introducing artefacts into the enhanced signal for white, babble and factory noise conditions between -10 dB to 30 dB SNR.
Neo, Vincent W.
7ec5cc5f-8248-40ec-8864-b31335d4ddf2
Evers, Christine
93090c84-e984-4cc3-9363-fbf3f3639c4b
Naylor, Patrick A.
13079486-664a-414c-a1a2-01a30bf0997b
2019
Neo, Vincent W.
7ec5cc5f-8248-40ec-8864-b31335d4ddf2
Evers, Christine
93090c84-e984-4cc3-9363-fbf3f3639c4b
Naylor, Patrick A.
13079486-664a-414c-a1a2-01a30bf0997b
Neo, Vincent W., Evers, Christine and Naylor, Patrick A.
(2019)
Speech enhancement using polynomial eigenvalue decomposition.
In Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA).
IEEE..
(doi:10.1109/WASPAA.2019.8937235).
Record type:
Conference or Workshop Item
(Paper)
Abstract
Speech enhancement is important for applications such as telecommunications, hearing aids, automatic speech recognition and voice-controlled system. The enhancement algorithms aim to reduce interfering noise while minimizing any speech distortion. In this work for speech enhancement, we propose to use polynomial matrices in order to exploit the spatial, spectral as well as temporal correlations between the speech signals received by the microphone array. Polynomial matrices provide the necessary mathematical framework in order to exploit constructively the spatial correlations within and between sensor pairs, as well as the spectral-temporal correlations of broadband signals, such as speech. Specifically, the polynomial eigenvalue decomposition (PEVD) decorrelates simultaneously in space, time and frequency. We then propose a PEVD-based speech enhancement algorithm. Simulations and informal listening examples have shown that our method achieves noise reduction without introducing artefacts into the enhanced signal for white, babble and factory noise conditions between -10 dB to 30 dB SNR.
This record has no associated files available for download.
More information
Published date: 2019
Identifiers
Local EPrints ID: 439802
URI: http://eprints.soton.ac.uk/id/eprint/439802
PURE UUID: c4e110e4-d811-43d6-9d41-7cd1808160f7
Catalogue record
Date deposited: 05 May 2020 16:30
Last modified: 17 Mar 2024 04:01
Export record
Altmetrics
Contributors
Author:
Vincent W. Neo
Author:
Christine Evers
Author:
Patrick A. Naylor
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics