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Copepods that enter dormancy, such as Calanoides acutus, are key primary consumers in Southern Ocean food webs where they convert a
portion of the seasonal phytoplankton biomass into a longer-term energetic and physiological resource as wax ester (WE) reserves. We stud-
ied the seasonal abundance and lipid profiles of pre-adult and adult C. acutus in relation to phytoplankton dynamics on the Western
Antarctic Peninsula. Initiation of dormancy occurred when WE unsaturation was relatively high, and chlorophyll a (Chl a) concentrations,
predominantly attributable to diatoms, were reducing. Declines in WE unsaturation during the winter may act as a dormancy timing mecha-
nism with increased Chl a concentrations likely to promote sedimentation that results in a teleconnection between the surface and deep wa-
ter inducing ascent. A late summer diatom bloom was linked to early dormancy termination of females and a second spawning event. The
frequency and duration of high biomass phytoplankton blooms may have consequences for the lifespan of the iteroparous C. acutus females
(either 1 or 2 years) if limited by a total of two main spawning events. Late summer recruits, generated by a second spawning event, likely
benefitted from lower predation and high phytoplankton food availability. The flexibility of copepods to modulate their life-cycle strategy in
response to bottom-up and top-down conditions enables individuals to optimize their probability of reproductive success in the very variable
environment prevalent in the Southern Ocean.
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Introduction
Lipid-rich copepods are important conduits of carbon flow from

the base of the marine food web to higher trophic levels and sup-

port fish, mammal and seabird communities (Pervushin, 1968;

Hopkins and Torres, 1989; Voronina, 1998). At high latitudes,

primary production is strongly influenced by the availability of

light resulting in distinct phytoplankton bloom cycles and a

relatively short productive season (Ma et al., 2014). As the photo-

period increases after the winter minimum, the annual onset of

stratification initiates the highly productive phytoplankton

“Spring” bloom (Sverdrup, 1953; Huisman et al., 1999). The life

cycles of copepods are strongly affected by this distinct seasonal-

ity, and they have developed specific adaptations to take advan-

tage of short-term food availability to survive long periods of
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food scarcity. Calanoid copepods are an ecologically important

order of marine copepods and several species, particularly those

in the Calanidae and Eucalanidae families (Baumgartner and

Tarrant, 2017), undergo ontogenetic vertical migration from rela-

tively shallow to deep water where they spend a large proportion

of their life cycle in dormancy (Hagen et al. 1993; Sartoris et al.,

2010), a resting stage with reduced metabolism and swimming

activity (Maps et al., 2014). To outlast the winter months, these

copepods accumulate large lipid stores within a membrane-

bound oil sac that can occupy a large part of the body cavity (Lee

et al., 2006). Not only does this lipid store have to provide fuel

for metabolic processes during dormancy, but also it must pro-

vide the energy needed to re-ascend to the surface, continue de-

velopment to adulthood, and fuel early egg production (Pond

et al., 2012). As in other oceans, copepods dominate the meso-

zooplankton across most of the Southern Ocean, in terms of bio-

mass, abundance, grazing activity, and secondary production

(Atkinson et al., 2012b). Calanoides acutus is a major contributor

to zooplankton biomass (Shreeve et al., 2005; Marrari et al.,

2011) and an abundant species of herbivorous copepod that

spends a large proportion of their life cycle (up to 7–9 months) in

dormancy (Hagen et al., 1993; Drits et al., 1994; Tarling et al.,

2004; Atkinson et al., 2012b). Mating occurs in deep water during

late winter and the males perish shortly after while the females

migrate to surface waters to feed on the phytoplankton bloom

and begin spawning at the start of spring/summer. Nauplii and

early copepodites develop in the euphotic zone until vertical mi-

gration to deeper water of pre-adult (CIV and CV) and adult

(CVI) stages at the end of summer when feeding in surface waters

is terminated (Atkinson et al., 1997; Tarling et al., 2004). Little is

known about the life span of overwintered late stage copepodites

with some studies suggesting a 1 year life cycle (Marin, 1988;

Atkinson et al., 1997) whilst others suggest that individuals may

re-enter dormancy and survive an extra year (Drits et al., 1994;

Hagen and Schnack-Schiel, 1996).

Prior to dormancy, overwintering stages concentrate phyto-

plankton lipids and accumulate large stores of total lipid (TL),

mainly as wax esters (WEs). High concentrations of TL can be ac-

cumulated per individual (>500 mg) representing an energy-rich

food source for higher trophic levels (such as fish) and a large res-

ervoir of essential fatty acids (FAs) such as 20:5(n-3) (eicosapen-

taenoic acid, EPA) and 22:6(n-3) (docosahexaenoic acid). This

accumulation of lipids represents the long-term storage of short-

term phytoplankton production. The presence or absence of co-

pepod species that enter dormancy plays a fundamental role on a

global scale in determining whether or not a region supports a

lipid-rich food web (Record et al., 2018). The timing and dura-

tion of dormancy has implications for carbon flow as ontogenetic

vertical migration events (VMEs) dictate time periods when

stored lipids (carbon) are either available in surface waters or se-

questered to the deep ocean due to respiration during dormancy

(Jónasdóttir et al., 2015). Potential triggers influencing vertical

distribution patterns have been identified, such as lipid accumu-

lation above a threshold level (Rey-Rassat et al., 2002; Maps et al.,

2012) and utilization during dormancy (Johnson et al., 2008);

however, cues remain poorly understood and seasonal datasets

are scarce. Following the development of a population over an

entire life cycle could provide a better understanding of how these

mechanisms influence behaviour. Pond et al. (2012) showed that

a critical minimum threshold of �50% WE unsaturation within

the copepod is important for dormancy initiation. The

composition of these lipids, and not the bulk amount, then pro-

vides the ability of the WE store to shift from a liquid to a solid

phase allowing dormant copepods to become neutrally buoyant

in cold deep water and conserve energy (Visser and Jónasdóttir,

1999; Lee et al., 2006; Pond and Tarling, 2011). Although cope-

pod species that enter a period of dormancy have evolved in the

open ocean, where such a strategy could provide a key evolutive

advantage, genetic programming of individuals that inhabit rela-

tively shallow coastal and shelf sea environments is likely to result

in the accumulation of large WE reserves with high levels of unsa-

turation (Falk-Petersen et al., 2009; Clark et al., 2012). As the FA

component of WE is mainly derived from the diet, a suitable

food source is critical. High proportions of FA 16:1(n-7), 20:5(n-

3), 18:4(n-3), and 22:6(n-3) in storage lipids indicate the impor-

tance of diatoms and dinoflagellates in the zooplankton diet

(Graeve et al., 1994; Falk-Petersen et al., 2000; Budge et al., 2006).

Diatoms often dominate the biomass of phytoplankton blooms in

the Southern Ocean (Ducklow et al., 2012) and are an important

source of primary nutrition as they produce long-chain polyunsat-

urated FAs (PUFAs) [such as 20:5(n-3)] in abundance (Kattner

and Hagen, 2009). The timing and duration of blooms varies spa-

tially and temporally, as a result of physicochemical factors, and

could help explain why the timing of descent in dormancy induc-

ing copepods can be so variable between regions and years (Heath

et al., 2004; Johnson et al., 2008; Pepin and Head, 2009). More re-

search is required to better understand the trophic transfer of lip-

ids, particularly in a time of global climate change shown to affect

the composition, timing, and magnitude of phytoplankton blooms

(Smetacek and Nicol, 2005; Sommer and Lengfellner, 2008;

Rozema et al., 2017). These changes are expected to have major

implications for the capacity of copepods to undertake their sea-

sonal life cycles successfully (Pond et al., 2014). Understanding

population dynamics is fundamental to predict how copepods

might respond to future climate change and how Antarctic ecosys-

tems may be influenced by bottom-up forcing.

In this study, in Ryder Bay on the Western Antarctic

Peninsula, the lipid content and composition of C. acutus indi-

viduals (the pre-adult CV and adult CVI) were analysed over a

“summer (S1)–winter–summer (S2)” time series and the FA com-

position was determined to investigate links between the accumu-

lation and composition of WE and diet. Research in the Southern

Ocean often focuses on copepods inhabiting the deep-water open

ocean (>500–1000 m depth); however, many populations suc-

cessfully overwinter in relatively shallow coastal and shelf sea

environments (<500 m depth, Clark et al., 2012). Ryder Bay is a

marginal habitat that is relatively advection free due to localized

gyre-like circulation features (Beardsley et al., 2004; Moffat et al.,

2008; personal observation), which promotes the retention of

phytoplankton and zooplankton populations. This study, which

repeatedly sampled the same population in the same local area, is

one of very few that presents complete seasonal sampling, includ-

ing winter and the transition periods between winter and the pro-

ductive summer, and provides valuable information to better

understand the behaviour of copepods in a coastal environment.

Methods
Sample collection
This study was conducted at the Rothera time series site (RaTS,

latitude 67.572�S; longitude 68.231�W, bottom depth 520 m) in

Ryder Bay on the Western Antarctic Peninsula (Figure 1).
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Seawater samples for chlorophyll a (Chl a) concentration and

taxonomic composition analysis were collected from the standard

monitoring depth of 15 m by using a 12-l Niskin bottle deployed

from a small boat. One to eight litres were filtered over GF/F glass

fibre filters (47 mm, Whatman, Eindhoven, The Netherlands), af-

ter which the filters were carefully folded and wrapped in alumin-

ium foil, snap-frozen in liquid nitrogen, and stored at �80�C
until analysis in the home laboratory using high-performance liq-

uid chromatography (HPLC) and chemical taxonomy analysis

[CHEMTAX, see Biggs et al. (2019) for methodological details].

Calanoides acutus samples were collected from two depth pro-

files, i.e. 500–200 m (deep) and 200–0 m (shallow), to separate

the overwintering “winter” population from the active “summer”

population (Huntley and Escritor, 1991; Schnack-Schiel et al.,

1991). A 200-mm mesh ring net (0.26 m2 opening) was used to

obtain population abundance counts (copepodite stages CI–CVI)

in shallow water, and a 500-mm mesh ring net (0.26 m2 opening

equipped with a double release mechanism) was used to obtain

CV (pre-adult) and CVI (adult males and females) individuals

from both shallow and deep water. Sampling of copepods oc-

curred weekly (weather dependent) during summer 1 (S1, 23

November 2012–18 April 2013) and summer 2 (S2, 14 November

2013–21 February 2014). To include community dynamics year

round, sampling was performed on three occasions during

“winter”. Zooplankton were kept in a plastic portable cooler and

transported back to the laboratory within 2 h of capture.

Calanoides acutus in good condition were quickly sorted for lipid

analysis using a binocular microscope and the remainder (of the

net haul) preserved in 200 ml of formaldehyde (5% final concen-

tration), and stored at 4�C. Formaldehyde-preserved zooplankton

samples were split (1/3) using a plankton splitter, and abundances

were determined under a binocular microscope.

Lipid analysis
A total of 331 samples of C. acutus were collected for lipid analy-

sis consisting of 1635 individuals. Lipids were extracted from

stage CV and CVI (male and female) following Pond and Tarling

(2011). Individuals and bulk samples were initially transferred to

1.1-ml tapered vials (Chromacol) containing 500ml of chloro-

form:methanol (2:1 v:v) and stored at �80�C. After transport to

the home laboratory, the solvent containing each C. acutus sam-

ple was pipetted into 8-ml glass vials using glass pipettes. The 1.1-

ml vials (containing the exoskeleton) were briefly re-extracted

and vortexed a further three times with 1 ml chloroform:metha-

nol (2:1 v:v), and the final volume was adjusted to 4 ml. After the

addition of 1 ml of potassium chloride (0.88% w:v), samples were

vortexed and centrifuged for 2 min at 400� g to promote phase

separation. The lower chloroform phase, containing the TL ex-

tract, was removed using Hamilton glass syringes containing a

Teflon tipped plunger, into pre-weighed 4-ml glass vials before

being evaporated under nitrogen and stored in a vacuum desicca-

tor overnight prior to reweighing.

Lipid class analysis
Aliquots of TL (10 mg) were subjected to high-performance thin-

layer chromatography (HPTLC) using a hexane:4 diethyl ether:-

acetic acid (90:10:1) solvent system (Pond and Tarling, 2011).

The plates were sprayed with 8% (v:v) phosphoric acid contain-

ing 3% (w:v) copper acetate solution, followed by heating at

160�C for 13 min to char the lipid classes and create dark areas on

the HPTLC plate. Lipid classes were then quantified by scanning

densitometry (Shimadzu Dual-wavelength TLC Scanner, CS-

930), the different lipid classes being identified by comparison

with known standards (Pond et al., 1995). The degree of WE

unsaturation was used to calculate an unsaturation index as de-

scribed in Pond and Tarling (2011). In short, HPTLC separated

the WEs into two bands: the upper band was rich in saturated

fatty and monounsaturated FAs and the lower band was domi-

nated by PUFAs. The unsaturation index was calculated by divid-

ing the amount of PUFA WE by the total WE, providing an index

of the degree of unsaturation ranging between 0 and 1.0 (Stevens

et al., 2004) and presented as a percentage between 0 and 100%.

Figure 1. Map of the sampling area: (a) location of Rothera station on the northern tip of Marguerite Bay along the Western Antarctic
Peninsula and (b) large-scale map of the sampling site (RaTS) within Ryder Bay and close to Rothera station.
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FA analysis of TL
Dried aliquots of 150 mg of TL were used for FA analysis. Samples

were derivatized with 1 ml of 2% sulphuric acid–methanol (after

the addition of standards: 5mg 19:0 and 1mg 12:0) and incubated

for 4 h at 80�C. After cooling in water, 2 ml of Milli-Q water and

2 ml of hexane were added and vortexed and the upper layer was

transferred to a 10-ml glass vial. Two millilitres of hexane was

added once more and vortexed, and the upper layer was trans-

ferred to a 10-ml glass vial. The sample containing the FA methyl

esters was transferred in 200ml of hexane to a 2-ml vial and stored

at �20�C until analysis on a ULTRA Trace gas chromatograph

(GC). The GC was equipped with a BPX-70 column with hydro-

gen as the carrier gas.

Statistics
Comparisons of FA and WE unsaturation data were performed

by linear regression in SigmaPlot V14.0 (Systat Software Inc., San

Jose, CA, USA).

Results
Two main periods of phytoplankton accumulation occurred in

S1 (2012–2013), 30 November–2 January and 11 February–15

April (Figure 2), as indicated by Chl a dynamics, which were

dominated by diatoms (86 6 14% n¼ 13 and 88 6 19% n¼ 17,

of total Chl a, respectively; Biggs et al., 2019). Female C. acutus

are important for population growth (due to spawning) and con-

tributed most across all time points to populations in both shal-

low (37 6 40%, n¼ 32) and deep (61 6 33%, n¼ 28) water. At

the start of S1, females were the most abundant stage and only

found in deep water (Figure 3a and b) until the abundance of

females inhabiting shallow waters (shallow female) increased be-

tween 30 November and 12 December (Figure 3b), from 4 to 108

ind 100 m�3, indicating the first ontogenetic VME (VME 1) of S1

and post-winter dormancy termination. The increase in shallow

female abundance coincided with a decline in numbers of females

inhabiting deep waters (deep females, from 44 to 4 ind 100 m�3)

at the same time as rapidly increasing Chl a concentrations (from

0.5 to 3.5mg l�1, Figure 2). Following the decline in the initial

phytoplankton bloom at the beginning of January in S1

(Figure 2), shallow female numbers began to decline at the same

time as a rise in the number of deep females (0–18 ind 100 m�3,

Figure 3a) and deep CVs (0–9 ind 100 m�3, Figure 3c), indicating

VME 2 (29 December to 17 January) and the descent of individu-

als to deep water (dormancy initiation). The number of deep

females continued to increase until a steep decline between

20 February and 2 March (from 30 to 8 ind 100 m�3, Figure 3a)

alongside a brief increase in shallow female abundance (from 8 to

33 ind 100 m�3, Figure 3b) and indicated a third VME (VME 3)

and the second ascent of females in S1 (dormancy termination).

Chl a concentrations had been increasing for 2 weeks prior to

VME 3 (from 0.81 to 5.79mg l�1) and a high biomass phyto-

plankton bloom (max¼ 16 mg Chl a l�1) developed over a period

of 2 months (Figure 2).

Copepodite stage CV was, overall, the second most dominant

life-cycle stage contributing on average 22 6 27% n¼ 28 to total

numbers. At the beginning of S1, CVs were absent from net hauls

(Figure 3c and d) and numbers remained relatively low until a

rapid increase in the abundance of CVs inhabiting shallow waters

(shallow CVs) between 1 and 20 February (from 12 to 123 ind

100 m�3, Figure 2d), 7–10 weeks after the peak in abundance of

shallow females during VME 1. Numbers of shallow CVs

remained high until 13 March (Figure 3d) and declined at the

same time as increasing numbers of CVs found in deep water

(deep CVs, from 7 to 129 ind 100 m�3, Figure 3c) indicating a

fourth VME (VME 4, 13 March to 18 April) and the start of the

CV overwintering period (dormancy initiation). Chl a concentra-

tions during this late-season diatom bloom peaked on 12 March

and declined thereafter, until low concentrations on 15 April

(Figure 2) indicated the end of the phytoplankton productive

season.

At the beginning of the winter dormancy period (18 April),

CVs contributed 88% to total population abundance (Figure 4).

A steady decline in the number of deep CVs was observed until

14 November (down to 0 ind 100 m�3, Figure 3c), at the same

time as a steady rise in the number of deep females (up to 39 ind

100 m�3, Figure 3a), and indicates the maturation of copepodites

from CV to CVI stages. The greatest change in the ratio of

CV:CVI occurred between 16 May and 12 August (from 13 to 1)

with relatively more males in deep nets on 12 August (30%) than

females (18%, Figure 4). Male abundance remained high (and

only observed in deep water) until 14 November and declined

thereafter to zero by mid-December in S2 (Figure 3e). A 68% de-

cline in population abundance over winter indicates that (in ret-

rospect) each female at VME 1 needed to contribute a minimum

of 3 (CV) individuals to the population at the start of the over-

wintering period (VME 4) to maintain population numbers (at

VME 5 compared with VME 1) and offset losses during winter.

This suggests that, generally, even low numbers of females can re-

constitute the numbers required to ensure the population long-

term viability.

At the beginning of S2 (2013–2014), phytoplankton biomass

began to slowly increase during November and rapidly increased

from 0.4 to 4.8 mg l�1 between 2 and 14 December (Figure 2).

One extended period of increased Chl a concentrations followed

(2 December–14 February) with the phytoplankton community

continually dominated by diatoms (83 6 15%, of Chl a, n¼ 32;

Biggs et al., 2019]. Between 14 November and 14 December, a

sharp decline in deep females (39–2 ind 100 m�3, Figure 3a) and

Figure 2. Time series of Chl a (as measured by HPLC) at 15-m
depth at the sampling site in Ryder Bay. Dashed lines separate time
periods of: S1 from 23 November 2012 to 18 April 2013; winter (W)
from 19 April 2013 to 13 November 2013 and S2 from 14 November
2013 to 21 February 2014. Shaded areas (grey) represent time
periods of VMEs 1–6 as indicated by numbers (1–6) at the top of
the chart.
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an increase in shallow females (0–38 ind 100 m�3, Figure 3b) in-

dicated a fifth VME (VME 5) and post-winter dormancy termina-

tion. Shallow female abundance peaked on 17 January (96 ind

100 m�3, Figure 3b) and declined until the end of S2 (41 ind

100 m�3); however, the number of deep females remained low

until an increase between 30 January and 14 February (from 1 to

18 ind 100 m�3, Figure 3a) at the same time as declining surface

Chl a concentrations (from 5.6 to 0.7 mg l�1 between 12 and 17

February, Figure 2). This indicates a sixth VME (VME 6, 30

January–14 February) and the descent of females at the end of S2

(dormancy initiation). CVs were absent during S2 until an in-

crease in shallow CVs on 17 January (20 ind 100 m�3; Figure 3d)

that continued until the end of the season (52 ind 100 m�3 by 21

February).

When examining the population dynamics of all C. acutus

copepodite stages (CI–CVI), a period of increased abundance oc-

curred in S1 between 17 January and 2 March 2013 (304 6 144

ind 100 m�3, n¼ 7, Figure 3f). At the initial increase on 17

January (333 ind 100 m�3), a rapid rise in the share of CIs was

observed (59%, Figure 4) occurring 5 weeks after the peak in

Figure 3. Temporal dynamics of C. acutus abundance (ind 100 m�3). Deep refers to individuals collected between 500 and 200 m depth and
shallow between 200 and 0 m. Shaded areas (grey) represent time periods of VMEs 1–6. (a) The abundance of deep females, (b) the
abundance of shallow females, (c) the abundance of deep CVs, (d) the abundance of shallow CVs, (e) the abundance of deep males, and (f)
total population abundance (stages CI–CVI). Different y-axis scales between subplots.

Figure 4. Relative abundance of stage separated C. acutus (CI–CVI), with shallow and deep individuals combined, over the study period at
the sampling site in Ryder Bay. Grey lines represent time periods (beginning and end) of VMEs 1–6, indicated at the top of the chart.
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shallow females at the beginning of S1 (Figure 3b). A second

rapid increase in the share of CIs occurred on 13 March (40%

of total, Figure 4) when total abundance was lower (97 ind

100 m�3) and 3 weeks after the second peak in numbers of shal-

low females (33 ind 100 m�3, Figure 3) on 20 February. This

indicates two rounds of spawning occurred during S1. During

S2, population abundance remained low until a sharp increase

on 14 February 2014 (1291 ind 100 m�3, Figure 3f). Only one

sharp rise in CI abundance was captured in the dataset during

S2 (Figure 4) with 3106 CI–CIV 100 m�3 on 14 February in S2

(data not shown) appearing 1 month later than the initial CI in-

crease in S1.

Lipids, WE, and FAs
WEs are often the main type of storage lipid in dormancy induc-

ing copepods and generally dominate TL profiles. In this study,

the percentage of TL contained as WEs was �80% in both

females and CVs confirming that WE were the main storage lipid

of C. acutus individuals (Supplementary Online Resource 1). The

TL FA profiles of females were dominated by 20:1(n-9) (18%),

20:5(n-3) (16%), 20:3(n-3) (11%), 16:1(n-7) (11%), and 22:1(n-

11) (9%) (Table 1) with CV FA dominated by 20:5(n-3) (21%),

20:1(n-9) (19%), 20:3(n-3) (12%), 22:6(n-3) (9%), and 22:1(n-

11) (8%) (Table 2). Male FA profiles were mainly composed of

20:1(n-9) (22%), 22:6(n-3) (19%), 20:5(n-3) (14%), 22:1(n-11)

(11%), 10:0 (9%), and 16:0 (8%) (Table 3). FAs were grouped

into PUFAs and saturated and monounsaturated FAs (SMUFA)

to investigate seasonal unsaturation dynamics in FA data. Of total

PUFA, 20:5(n-3) and 20:3(n-3) accounted for the largest share

(42 and 26%, respectively) whilst 20:1(n-9), 22:1(n-11), and

16:1(n-7) accounted for the majority of SMUFA (33, 15, and

16%, respectively). When the FA data are combined for CV and

CVI stages, linear regressions indicated the concentration of

20:5(n-3) (mg ind�1) significantly related to total PUFA

(p< 0.0001, r2¼ 0.99, n¼ 18, Figure 5a) as did % 20:5(n-3) to %

of polyunsaturated WEs (PUWEs, p< 0.0001, r2¼ 0.84, n¼ 18,

Figure 5b). Although concentrations of 22:6(n-3) and 20:3(n-3)

significantly related to total PUFA (p< 0.0001, r2¼ 0.88 and 0.77,

respectively, n¼ 18, Figure 5c and e), no significant relationship

was observed between % PUWE and both % 22:6(n-3)

(p¼ 0.061, r2¼ 0.20, n¼ 18, Figure 5d) and % 20:3(n-3)

(p¼ 0.63, r2¼ 0.01, n¼ 18, Figure 5f). Of the dominant SMUFA,

the sum of 20:1(n-9) and 22:1(n-11) FA strongly related to con-

centrations of total SMUFA (mg ind�1, p< 0.0001, r2¼ 0.91,

n¼ 18, Figure 5g) and negatively related to % PUWE

(p< 0.0001, r2¼ 0.61, n¼ 18; Figure 5h). When both % 20:1(n-

9) and % 22:1(n-11) were compared with PUWE, both had a sig-

nificant negative linear relationship (p¼ 0.0002, r2¼ 0.60 and

p¼ 0.0032, r2¼ 0.43, n¼ 18); however, no significant relationship

was observed between % 16:1(n-7) and % PUWE (p¼ 0.83,

r2¼ 0.003, n¼ 18). The FA dataset indicates that the unsaturation

dynamics of WE are primarily determined by the accumulation

of 20:5(n-3) during the summer and selective utilization of

20:5(n-3) combined with the retention of both 20:1(n-9) and

22:1(n-11) FA during winter.

The TL content of females at the beginning of S1 (23

November) was 112mg ind�1 (Figure 6a) and 28% unsaturation

of WE (Figure 7a). TL content and WE unsaturation separated by

depth and stage are available in Supplementary Online Resources

2 and 3. During dormancy termination (VME 1, 30 November–

12 December), female TL increased slightly to 136.8mg ind�1 and

remained relatively constant throughout (131.5–141.4mg ind�1,

Figure 6a); however, WE unsaturation declined from 31 to 22%

(Figure 7a). During VME 2 (dormancy initiation), female TL in-

creased from 124 to 350mg ind�1 (Figure 6a) and WE unsatura-

tion increased from 33 to 49% (Figure 7a). At the beginning of

Figure 5. Linear regressions of copepod FAs and % polyunsaturation
of total WE (% PUWE) for (a) concentrations of 20:5(n-3) FA vs.
PUFA total, (b) % 20:5(n-3) vs. % PUWE, (c) concentrations of
22:6(n-3) FA vs. PUFA total, (d) % 22:6(n-3) vs. % PUWE, (e)
concentrations of 20:3(n-3) FA vs. PUFA total, (f) % 20:3(n-3) vs. %
PUWE, (g) concentrations of 20:1(n-9)þ 22:1(n-11) vs. SMUFAs
total, and (h) % 20:1(n-9)þ 22:1(n-11) vs. % PUWE. y-Axis scales
differ between plots.
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VME 3 (second diapause termination in S1), female TL peaked at

419mg ind�1 on 22 February and declined to 284mg ind�1 at the

end (2 March, Figure 6a), and female WE unsaturation declined

from 66 to 32% (20 February–3 March, Figure 7a). This suggests

lipid utilization by females during VME 3. Although abundances

were low, the highest TL content of females during S1 occurred at

the start of VME 4 (13 March, 426 mg ind�1, Figure 6a); however,

unsaturation continued to increase until the end (57% on 18

April, Figure 7a) at the same time as peak unsaturation of CV

WE (71%, Figure 7b).

Similar to females, CV TL content (Figure 6b) and WE unsatu-

ration (Figure 7b) were low (12 mg ind�1 and 11%, respectively)

at the beginning of S1 (similar to abundances) and increased to

254mg ind�1 on 17 January (Figure 6b) and 61% on 11 January

(Figure 7b). A decline in CV TL followed between 17 January and

2 March (down to 78mg ind�1) and coincided with the

Table 1. Temporal dynamics of adult female C. acutus FAs (FA %) per copepod

CVI female FA %: mean (n¼ 29)

Month year
December

2012
January

2013
February

2013
March
2013

April
2013

May
2013

August
2013

September
2013

November
2013

December
2013

January
2014

February
2014

Day/FA 19 29 17 20 8 13 18 16 12 26 14 28 6 14 30 17 30 14 21

10:0 6.7 6.4 4.4 4.0 3.0 2.4 0.8 3.1 4.8 3.1 – 5.1 5.9 7.0 9.1 4.9 3.0 3.4 3.3
14:0 5.6 8.2 3.7 4.2 4.0 3.6 4.7 4.2 4.5 4.0 – 5.6 5.1 5.5 6.1 3.8 3.5 3.3 3.7
15:0 0.0 0.0 2.6 2.2 2.8 3.2 0.0 2.3 0.0 0.0 – 0.0 0.0 0.0 0.0 2.5 2.7 3.2 2.0
16:0 4.8 13.1 4.9 4.8 4.3 4.1 9.9 4.5 3.7 4.5 – 6.1 5.7 5.4 6.2 4.7 4.0 3.7 4.5
16:1(n-7) 8.1 5.7 12.5 13.1 11.4 12.4 9.7 12.4 10.3 8.5 – 9.7 8.2 8.7 10.7 10.5 8.6 8.6 9.9
16:4(n-1) 0.0 1.7 5.1 3.7 3.5 3.6 1.0 2.0 0.0 0.0 – 0.0 0.0 0.0 0.0 5.1 4.9 5.5 4.8
17:0 0.0 0.0 2.8 1.5 2.5 3.5 0.0 2.9 0.0 0.0 – 0.0 0.0 0.0 0.0 2.4 2.7 2.8 2.1
18:1(n-9) 3.9 4.3 4.4 4.5 4.3 4.3 4.6 4.8 4.3 4.8 – 4.1 4.5 4.9 4.0 3.4 3.9 4.0 4.8
18:1(n-7) 0.2 0.0 0.0 2.2 1.0 1.9 2.7 2.4 0.0 1.9 – 2.2 1.0 0.0 0.0 0.0 0.0 0.0 0.0
18:4(n-3) 0.0 1.4 4.3 3.6 3.4 4.0 3.5 3.7 0.0 2.0 – 0.0 0.0 0.0 0.0 3.8 3.7 3.3 3.6
20:1(n-9) 30.2 17.2 14.9 15.5 16.9 14.1 12.3 16.0 26.4 23.8 – 21.1 24.9 26.5 26.4 12.5 13.1 13.2 15.2
20:3(n-3) 13.2 0.0 6.4 9.0 11.7 12.2 3.8 11.4 13.7 11.1 – 12.3 13.9 9.7 5.8 12.0 13.4 12.9 9.6
20:4(n-3) 0.0 2.8 1.3 1.0 1.9 2.0 0.0 2.0 2.0 2.4 – 0.0 0.0 0.0 0.0 2.0 2.2 2.2 1.5
22:1(n-11) 10.1 18.6 6.9 7.3 7.7 6.3 15.9 6.9 11.4 10.5 – 10.4 10.2 13.1 12.7 6.2 6.2 6.1 6.5
20:5(n-3) 13.4 14.5 18.4 16.1 15.6 15.5 22.6 14.2 13.6 16.8 – 14.6 13.3 13.0 12.4 19.6 20.5 20.5 21.7
22:6(n-3) 3.8 6.0 7.4 7.4 6.1 6.9 8.5 7.1 5.3 6.6 – 8.8 7.1 6.1 6.6 6.6 7.5 7.2 6.9
Saturated 17.1 27.7 18.4 16.7 16.6 16.9 15.4 17.1 13.1 11.5 – 16.8 16.8 17.9 21.4 18.3 16.0 16.3 15.6
Monounsaturated 52.5 45.8 38.7 42.7 41.3 38.9 45.2 42.5 52.4 49.6 – 47.5 48.9 53.3 53.8 32.7 31.9 32.0 36.3
Polyunsaturated 30.5 26.5 42.8 40.6 42.1 44.2 39.4 40.4 34.6 38.9 – 35.8 34.3 28.9 24.8 49.0 52.2 51.7 48.1

Table 2. Temporal dynamics of pre-adult stage CV C. acutus FAs (FA %) per copepod

CV FA %: mean (n¼ 53)

Month year
December

2012
January

2013
February

2013
March
2013

April
2013

May
2013

August
2013

September
2013

November
2013

December
2013

January
2014

February
2014

Day/FA 19 29 17 20 8 13 18 16 12 26 14 28 6 14 30 17 30 14 21

10:0 – – – 1.0 2.4 2.2 2.5 2.8 3.8 4.1 – – – – – – – – –
14:0 – – – 3.6 2.7 2.8 2.1 2.8 3.6 3.6 – – – – – – – – –
15:0 – – – 3.1 1.6 0.0 1.7 0.0 0.0 0.0 – – – – – – – – –
16:0 – – – 5.8 4.1 4.0 4.3 6.4 6.3 4.7 – – – – – – – – –
16:1(n-7) – – – 8.2 5.5 5.7 3.6 4.1 5.4 4.8 – – – – – – – – –
16:4(n-1) – – – 4.2 5.1 5.0 5.4 5.9 2.2 0.0 – – – – – – – – –
17:0 – – – 3.0 2.8 0.0 2.8 0.0 0.0 2.7 – – – – – – – – –
18:1(n-9) – – – 4.3 3.4 4.0 4.4 3.5 4.3 4.3 – – – – – – – – –
18:1(n-7) – – – 3.0 1.0 1.0 0.7 0.0 0.0 0.0 – – – – – – – – –
18:4(n-3) – – – 4.0 3.7 3.7 3.8 3.7 2.8 0.0 – – – – – – – – –
20:1(n-9) – – – 13.4 15.8 19.2 17.7 27.3 21.7 25.0 – – – – – – – – –
20:3(n-3) – – – 9.0 13.0 11.9 9.5 2.7 7.4 16.0 – – – – – – – – –
20:4(n-3) – – – 1.3 2.1 1.3 0.0 2.4 0.0 0.0 – – – – – – – – –
22:1(n-11) – – – 6.3 7.3 8.6 7.2 7.5 11.4 10.4 – – – – – – – – –
20:5(n-3) – – – 19.1 21.2 22.6 24.4 24.2 22.2 16.6 – – – – – – – – –
22:6(n-3) – – – 10.7 8.3 7.9 10.2 6.8 9.0 7.7 – – – – – – – – –
Saturated – – – 16.5 13.5 9.1 13.3 12.0 13.7 15.2 – – – – – – – – –
Monounsaturated – – – 35.2 33.1 38.6 33.5 42.3 42.7 44.5 – – – – – – – – –
Polyunsaturated – – – 48.3 53.4 52.3 53.3 45.7 43.6 40.3 – – – – – – – – –
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appearance of greater numbers of CIII and CIV stages; however,

WE unsaturation remained relatively high (>51%) during this

time (Figure 7b). WE unsaturation of both CVs and females

peaked on 18 April (71 and 57%, respectively, Figure 7b) at the

end of VME 4; however, the TL content of CVs continued to in-

crease until 16 May (to 270 mg ind�1, Figure 6b), at the same time

as a quantitatively similar rise in female TL (Figure 6a). Prior to

overwintering, female unsaturation increased to 57% on 18 April

and declined to 32% on 14 November, a 25% decrease during

dormancy (Figure 7a). Although female TL (in S1) peaked on 13

March at the start of VME 4 (426 mg ind�1, Figure 6a), TL was

lower at the end of VME 4 on 18 April (347 mg ind�1), increased

to 385mg ind�1 on 16 May, and declined to 212mg ind�1 on 14

November (start of VME 5). This corresponds to a decrease of

174mg TL ind�1 (16 May to 14 November) and 130 mg ind�1 of

PUWE. CVs were absent in net hauls on 14 November; therefore,

winter CV lipid utilization estimates cannot be calculated.

At the end of the main overwintering period, male numbers

were still relatively high (9 ind 100 m�3 on 14 November,

Figure 3e); however, their TL content (27 mg ind�1,

Supplementary Online Resource 2e) and WE unsaturation (12%,

Supplementary Online Resource 3e) were low and remained low

(TL 20–30 mg ind�1, unsaturation 21–25%) until male abundance

declined to zero after 7 December (Figure 3e). Females domi-

nated the population at the beginning of S2 and, similar to S1, TL

remained relatively constant during dormancy termination (VME

5, 173–229 mg ind�1, Figure 6a), unlike WE unsaturation that de-

clined from 32 to 21% (Figure 7a). The TL content of females at

the start of S2 (VME 5) was higher than at the start of S1 (VME

1, 137–132mg, ind�1); however, declines in WE unsaturation

were highly similar between seasons (from 31 to 22% in VME 1).

At the start of VME 6 (female dormancy initiation in S2), the TL

content of females had rapidly increased to 427 mg ind�1 with

64% unsaturation (Figures 6a and 7a, respectively). Although fe-

male WE unsaturation of 49% at VME 2 (Figure 7a) suggests this

level was sufficient for dormancy, the second high biomass dia-

tom bloom of S1 (Figure 2) allowed females to increase their TL

content and unsaturation at the end of the productive season

Table 3. Temporal dynamics of adult male C. acutus FAs (FA %) per copepod

CVI male FA %: mean (n¼ 6)

Month year
December

2012
January

2013
February

2013
March
2013

April
2013

May
2013

August
2013

September
2013

November
2013

December
2013

January
2014

February
2014

Day/FA 19 29 17 20 8 13 18 16 12 26 14 28 6 14 30 17 30 14 21

10:0 – – – – – – – – – – 12.9 2.5 7.2 – – – – – –
14:0 – – – – – – – – – – 6.4 4.5 5.1 – – – – – –
15:0 – – – – – – – – – – 0.0 0.0 0.0 – – – – – –
16:0 – – – – – – – – – – 7.7 10.7 6.8 – – – – – –
16:1(n-7) – – – – – – – – – – 7.3 3.0 3.5 – – – – – –
16:4(n-1) – – – – – – – – – – 0.0 0.0 0.0 – – – – – –
17:0 – – – – – – – – – – 0.0 0.0 0.0 – – – – – –
18:1(n-9) – – – – – – – – – – 2.3 3.3 3.6 – – – – – –
18:1(n-7) – – – – – – – – – – 0.0 0.0 0.0 – – – – – –
18:4(n-3) – – – – – – – – – – 0.0 0.0 0.0 – – – – – –
20:1(n-9) – – – – – – – – – – 13.0 22.0 31.4 – – – – – –
20:3(n-3) – – – – – – – – – – 8.6 0.0 0.0 – – – – – –
20:4(n-3) – – – – – – – – – – 0.0 0.0 0.0 – – – – – –
22:1(n-11) – – – – – – – – – – 8.3 11.8 13.0 – – – – – –
20:5(n-3) – – – – – – – – – – 12.0 17.8 14.5 – – – – – –
22:6(n-3) – – – – – – – – – – 21.4 24.3 14.9 – – – – – –
Saturated – – – – – – – – – – 27.1 17.8 19.1 – – – – – –
Monounsaturated – – – – – – – – – – 30.9 40.1 51.5 – – – – – –
Polyunsaturated – – – – – – – – – – 42.0 42.1 29.4 – – – – – –

Figure 6. Time series of TL content per copepod (mg ind�1) for (a) female C. acutus and (b) CV C. acutus. Shaded areas (grey) represent time
periods of VMEs 1–6. Error bars represent 61 standard error.
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(VME 4, 426mg ind�1 and 57%, respectively), similar to those of

females in S2 (at VME 6, Figures 6 and 7).

Discussion
Chl a and VMEs
Although patchiness in time and space may theoretically have

influenced the results, duplicate net hauls were comparable (slope

of linear regression¼ 0.92, r2¼ 0.84, p< 0.0001, Supplementary

Online Resource 4) and deep mixed layer depths (MLD) due to

storm events were rare (maximum MLD of 112 m during winter

2013, data not shown) indicating that mixing events did not af-

fect the vertical distribution of individuals (Clarke et al., 2008;

Dong et al., 2008).

In this study, the timing of ontogenetic VMEs suggests that

dormancy was initiated by females as soon as sufficient stores of

TL and PUWE were accumulated. This could have consequences

for predators of copepods in surface waters as lipid-rich females

were only available for �2 weeks during the first half of January

in S1 and 2–4 weeks in S2 (from mid-January to mid-February),

after which females migrated to below the base of the thermocline

(�200 m) and a portion of carbon stored as lipids was seques-

tered to the deep ocean as a consequence of respiration during

dormancy (Jónasdóttir et al., 2015).

VMEs were linked to the seasonal dynamics of Chl a, i.e. the

frequency and duration of phytoplankton blooms. Dormancy ter-

mination was timed to coincide with high biomass blooms that

consisted both of micro-sized (VME 1) and nano-sized (VME 3

and 5) diatoms (Biggs et al., 2019). Calanoides acutus is primarily

herbivorous with a short reproductive period that was timed to

coincide with high phytoplankton food availability (Atkinson,

1998; Pasternak and Schnack-Schiel, 2001a). Furthermore, the

second ascent of females in S1 (VME 3) indicated that the high

biomass diatom bloom provided a strong cue for ascent

(Dezutter et al., 2019), even though female levels of TL (364–

419mg l�1) and unsaturation (66–48%) were still high, and only

34–64 days (VME 2–3) after the initial descent (VME 2). VME 3

represented the mass movement of carbon from deep to shallow

water and may have allowed surface-dwelling predators access to

an additional peak in the abundance of lipid-rich copepods. Prior

to dormancy initiation (VME 2, 4 and 6), it is likely that individ-

uals can directly sense reducing/low phytoplankton food concen-

trations (Bautista and Harris, 1992; Perissinotto, 1992; Atkinson,

1994; Pasternak and Schnack-Schiel, 2001a; Garrido et al., 2013);

however, at dormancy depths (500–200 m), signals of phyto-

plankton biomass (at the surface) must be transmitted through

the water column and are likely related to sedimentation of

organic matter (Annett et al., 2010; Ducklow et al., 2012; Turner,

2015). During winter, when Chl a concentrations are low, in-

creased proportions of smaller flagellated phytoplankton are ob-

served (Rozema et al., 2017) and the shift to a high biomass,

diatom-dominated period (at VME 1 and 5) most likely pro-

moted a more herbivorous diet with reduced coprophagy/copror-

hexy (Pasternak and Schnack-Schiel, 2001a, b; Turner, 2002,

2015) and (at the same time as increased stratification during

VME 1 and 5; Biggs et al., 2019) increased the load and sinking

speed of faecal pellets (FPs) in the water column. Similarly, a rela-

tively low biomass, flagellate-dominated period (Biggs et al.,

2019) was observed prior to the second high biomass diatom

bloom in S1, and the second ascent of females (VME 3). FPs pro-

duced from flagellated phytoplankton diets have been observed to

sink almost ten times slower than diatom fed pellets (Ploug et al.,

2008), likely related to mineral ballasting by biogenic silica (Voss,

1991). Diatoms also produce transparent exopolymer particles

(TEPs) in abundance and are a major component of diatom

aggregates (Passow, 2002). TEPs production combined with or-

ganic material released from melting sea ice (and increased strati-

fication) may produce further deposition resulting in a rain of

organic material at depth. Rapidly sinking FPs (>300 m d�1)

(Ploug et al., 2008; Atkinson et al., 2012a) would enable organic

material to reach the overwintering population of C. acutus (500–

200 m) within 1–2 days and pigment degradation products, char-

acteristic of the phytoplankton community, can be detected in

FPs (Nelson, 1989). Microbial degradation of sedimenting or-

ganic matter may leak solutes into the surrounding water

(Turner, 2015), which, through chemosensory mechanisms and

probably hormonally mediated, may trigger the ascent (Irigoien,

2004).

Losses
Declines in abundance over the winter period (a 68% reduction

between April and November 2013, VME 4–5, Supplementary

Online Resource 5) suggest the 64 ind 100 m�3 at the start of S1

(total population abundance at VME 1) each needed to contrib-

ute �3 offspring (total of 192 ind 100 m�3 required on 18 April

2013) to balance losses during winter. At dormancy initiation

(VME 4), population numbers were 48% less (100 ind 100 m�3

captured on 18 April 2013) representing (in retrospect) a mini-

mum total requirement of �6 ind female�1, over S1 and winter

combined, to maintain the population over an annual cycle. This

indicates during S1 either loss rates were twice as high (to main-

tain the population) or egg production twice as low. Low egg pro-

duction may be related to relatively lower TL stores at the start of

Figure 7. Time series documenting changes in WE unsaturation (%) in (a) females and (b) CVs. Shaded areas (grey) represent time periods of
VMEs 1–6. Error bars represent 61 standard error.
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S1, compared with S2 (VME 1, 137 6 5 mg ind�1, n¼ 3; VME 5,

200 6 25mg ind�1, n¼ 4) as well as reduced CI–CIV recruitment

(1266 ind 100 m�3 at initial CI peaks in S1 and 3106 ind 100 m�3

in S2). Whilst the large amounts of lipid and high unsaturation

alone could have triggered entrance into dormancy at VME 2 and

6, lower TL and unsaturation were observed at VME 2 compared

with VME 6 (Figures 6 and 7). Eggs, nauplii, copepodites, and

potentially even adults of C. acutus are within the potential prey

range for many of the large zooplankton species that were often

observed during both seasons, such as Metridia gerlachei,

Rhincalanus gigas, (Para)euchaeta antarctica, euphausids, poly-

chaetes and arrow worms. The 1 month earlier increase in larger-

sized zooplankton abundance (>200 mm) in S1 than in S2

(Supplementary Online Resource 6) matched the 1 month earlier

descent of female C. acutus, which may imply that enhanced pre-

dation pressure affects the initial decision of females to descend.

The combination of increased numbers of larger-sized zooplank-

ton and reducing/low Chl a concentrations (January S1) may

have resulted in even higher predation pressure on smaller zoo-

plankton (including nauplii and copepodites) by larger omnivo-

rous individuals (Pasternak and Schnack-Schiel, 2001a) and

contribute to high losses over S1.

The nano-sized cells during the second high biomass diatom

bloom in S1 (Biggs et al., 2019) likely represented a suitable prey

size for copepodites (Perissinotto, 1992) as they mature and at-

tempt to increase lipid stores at the end of the productive season;

however, relatively low TL content of CVs was observed (270 mg

ind�1) at diapause initiation (VME 4). The biomass dominant

phytoplankton population during this bloom (11 mm Ø diatom)

was subjected to high rates of viral lysis (Biggs et al., unpub-

lished), which may have reduced food availability during a crucial

time of lipid accumulation prior to diapause. Increased substrate

availability (due to the viral shunt) could explain the S1 peak in

bacteria abundance mid-March (Biggs et al., unpublished), which

likely benefitted micro-zooplankton grazers (Azam et al., 1991).

Although considered primarily herbivorous, low phytoplankton

abundance could stimulate carnivorous grazing (Pasternak and

Schnack-Schiel, 2001a) by late-season recruits and explain why

CV TL increased between 18 April and 16 May (from 233 to

270mg ind�1) whilst WE unsaturation declined (from 71 to

61%). Reduced lipid stores combined with a relatively shallow

diapause depth (<500 m) could be related to high winter mortal-

ity as deeper depths may allow females to better take advantage of

the lipid phase transition effects of a highly unsaturated (�50%)

lipid store (Pond and Tarling, 2011). If neutral buoyancy cannot

be achieved, then high rates of lipid utilization and mortality may

be due to additional energetic costs associated with swimming to

maintain an optimum position in the water column. At the same

time, predation pressures may be higher in the top 500 m than

below (Yamaguchi et al., 2004; Harper and Peck, 2016) and indi-

viduals close to the bottom depth, where phase transition of WEs

may occur, would be more concentrated and exposed to the ben-

thic community. The relatively high unsaturation of CVs (com-

pared with females) at the time of overwintering (71–61%) and

low TL (233–270 mg ind�1 representing 132–140mg ind�1 of

PUWE and �32–34 mg ind�1 EPA) suggests that increased unsa-

turation was prioritized when TL was increased. The data of

Pond and Tarling (2011) also indicate that, at depths <500 m,

WE phase transition occurred at higher temperatures and was

more pronounced at higher levels of unsaturation (70%). The

greater increase in the unsaturation of CV WE prior to diapause

may have been a mechanism to compensate for lower TL stores

and take advantage of energetic savings at higher temperatures as

lipid stores become increasingly dense with depth.

Diapause mechanisms and life cycle
The level of unsaturation of the WE lipid store, rather than the

total amount (TL), is potentially a key mechanism influencing

the dormancy behaviour of calanoid copepods (Pond and

Tarling, 2011; Pond et al., 2012). In our study, unsaturation levels

peaked at the start of the main dormancy period (VME 4) and

declined over the winter. Dynamics were determined by the re-

tention of FA 20:1(n-9) and 22:1(n-11) (during winter) and the

selective accumulation (during summer) and utilization (during

winter) of 20:5(n-3) (EPA). Changes in unsaturation were often

not mirrored by changes in TL indicating a more functional role

of FA composition. EPA is a precursor of eicosanoids that are lo-

cally acting “tissue hormones” and may influence functions such

as reproduction, ion, and water transport (Persson and Vrede,

2006). The WE of many herbivorous copepods is also character-

ized by considerable amounts of long-chain monounsaturated

fatty alcohols [20:1(n-9) and 22:1(n-11)], which are not present

in significant amounts in their phytoplankton diet (Albers et al.,

1996; Lee et al., 2006; Pond et al., 2012). This biosynthesis of fatty

alcohols and esterification with FA to WE resulted in rapid lipid

accumulation since there is both de novo synthesis and incorpora-

tion of dietary lipids (Graeve et al., 2005). During increases in

unsaturation (summer), stores of 20:1(n-9) and 22:1(n-11)

(retained during winter) are likely reduced to fatty alcohols

(Kattner et al., 1994; Pond et al., 2012) and esterified to 20:5(n-3)

acquired from dietary sources. Unsaturation level of the entire

lipid store was therefore determined by synergistic changes in

“pools” of 20:1(n-9) þ 22:1(n-11) and 20:5(n-3), rather than

unsaturation dynamics determined solely by 20:5(n-3). This ac-

tion has a double impact on unsaturation levels (þ1 PUFA, �1

MUFA), as FAs are converted to fatty alcohols (and vice versa),

likely providing a stable signal regarding changes in unsaturation

state. The physiological impact of selective EPA utilization during

dormancy may further act as a biological timer (Häfker et al.,

2017, 2018) and, combined with increased buoyancy (due to re-

ducing unsaturation and phase transition), could stimulate as-

cent. In relatively deep waters of the Scotia sea, late-stage C.

acutus individuals that typically diapause between 500 and

1000 m or deeper were observed with a tri-modal vertical distri-

bution at one site (<100, 400–600, and 800–1000 m) and concen-

trated in the 300–500 m depth range at another (Pond et al.,

2012). One explanation for this is that individuals had ascended

from deeper waters to an intermediate depth to await the initia-

tion of the “Spring” bloom (Pond et al., 2012). This initial

“intermediate” migration is potentially triggered by reduced lev-

els of unsaturation; however, in coastal and relatively shallow

shelf sea areas such as Ryder Bay, bottom depth (520 m) is similar

to this intermediate depth; therefore, signals of reduced unsatura-

tion and increased phytoplankton standing stock may combine to

initiate ascent.

The late-season high biomass diatom bloom of S1 coincided

with the second ascent of females (VME 3) at the same time as

lipids appear to be utilized (TL decreased from 419 to 284mg

ind�1 and WE unsaturation decreased from 66 to 32%). The sec-

ond S1 spawning event coincided with a decline in total female

abundance over VME 3 (from 31 to 9 ind 100 m�3,

10 T. E. G. Biggs et al.
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Supplementary Online Resource 5a) and suggests that the ascend-

ing females that spawned expired after a 1-year life cycle. In con-

trast during S2, a singular but prolonged high biomass bloom

(Figure 2) resulted in a singular spawning event and a 1-month

delay in dormancy initiation of (most likely “new”) females. Chl

a concentrations were relatively low between 21 February and 15

April post-S2 (1.5 6 0.7 mg l�1, n¼ 8), and these females likely

remained in dormancy to complete a 2-year life cycle. Such a

mechanism could explain why some studies suggest the overwin-

tering stages of C. acutus complete their life cycle in 1 year

(Marin, 1988; Quetin et al., 1996; Atkinson et al., 1997) and

others that they re-enter diapause and survive an extra year

(Hagen and Schnack-Schiel, 1996; Tarling et al., 2004). The late-

season phytoplankton bloom in S1 was associated with higher

temperature (Biggs et al., 2019), similar to novel autumn blooms

observed in the Arctic (Ardyna et al., 2014), and suggests that

global warming could influence the lifespan of vertically migrat-

ing copepods and promote a 1-year life cycle, rather than a 2-year

life cycle.

Although two spawning events were observed in S1, the abun-

dance of CI–IV in shallow water on 2 March 2013 (initial peak of

531 ind 100 m�3) was similar to 17 January 2013 (735 ind

100 m�3). Maturing copepodites from the late-season spawning

event would likely benefit from reduced predation pressure due

to lower numbers of larger-sized zooplankton and an abundance

of phytoplankton food (Pasternak and Schnack-Schiel, 2001a)

and could explain the similarity in CI–CIV numbers, even though

peak shallow female abundance was threefold higher during VME

1 (108 ind 100 m�3) than VME 3 (33 ind 100 m�3). Conversely,

copepodites from the early-season spawning event would have

matured during times of low Chl a (food availability) with in-

creased proportions of cryptophytes (preference of diatoms as

food type; Verity and Smayda, 1989; Head and Harris, 1994) and

high numbers of larger-sized zooplankton (high predation pres-

sure, Pasternak and Schnack-Schiel, 2001a). An early-season mis-

match and late-season match, between peaks of Chl a, new C.

acutus recruits and higher trophic predators (Durant et al., 2013),

likely resulted in a relatively greater contribution of individuals

from the late-season spawning event to annual reproductive suc-

cess. This flexible dormancy strategy would enable females to

maximize phytoplankton food availability and reproductive capa-

bility whilst reducing predation risk.

It is likely that multiple internal and external factors combine,

such as a lipid-modulated endogenous clock (Johnson et al.,

2008; Häfker et al., 2018), TL content (to support reproductive

maturation and winter survival; Hagen and Schnack-Schiel, 1996;

Rey-Rassat et al., 2002), WE unsaturation (buoyancy regulation;

Pond et al., 2012), and food availability (Friedland et al., 2016) to

serve as a timing mechanism to determine ontogenetic vertical

migration behaviour.

Conclusions
The dormancy behaviour of C. acutus CV and CVI stages appears

coupled to the frequency and duration of phytoplankton blooms.

Dormancy termination post-winter coincided with reduced unsa-

turation (�30%) and increased phytoplankton standing stock.

Once sufficient lipid stores were accumulated after the initial phy-

toplankton bloom period (350 mg TL ind�1 with �49% unsatura-

tion), dormancy was initiated when Chl a concentrations

declined. An early S1 increase in larger-sized zooplankton num-

bers (compared with S2) likely contributed to increased losses

and early dormancy initiation. A late summer diatom bloom,

driven by higher temperatures, stimulated ascent and spawning

of dormant females for the second time in S1 and the resulting

late-season copepodites would benefit from reduced predation

(low numbers of larger-sized zooplankton) and high phytoplank-

ton food availability, i.e. a match between peaks of Chl a, new C.

acutus recruits, and higher trophic predators. The loss of females

during dormancy termination (VME 3) suggests that individuals

expire after two main “spawning events”. Furthermore, the tim-

ing of these events is regulated by the frequency and duration of

phytoplankton blooms, which have consequences for the lifespan

of C. acutus females, either 1 or 2 years. This flexible strategy

would enable females to maximize phytoplankton food availabil-

ity and reduce the likelihood of predation, thereby increasing re-

productive capability whilst promoting the survival of produced

offspring via reduced mortality rates. As such, dormancy behav-

iour and copepod lifespan, and thus zooplankton’s role in the bi-

ological carbon pump, are intimately linked to the structure and

dynamics of the Southern Ocean food web.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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