The University of Southampton
University of Southampton Institutional Repository

Adhesion lithography for fabrication of printed radio-frequency diodes

Adhesion lithography for fabrication of printed radio-frequency diodes
Adhesion lithography for fabrication of printed radio-frequency diodes
Radio-frequency (RF) diodes are quintessential elements of passive RF identification tags that are used on livestock, luxury objects, and healthcare products. They are also used in near-field communication applications that enable wireless data transfer between devices. An RF diode—when matched to a suitable antenna—picks up the alternating current (AC) signal that is emitted from an RF source and transforms it to a DC signal. The DC signal can then be used to decode the information stored in the tagged object, or to simply power another electronic or optoelectronic device (e.g., a sensor, battery, or LED). The high demand for RF-harvesting devices, however, can only fully be met if their fabrication costs are substantially reduced. To realize this reduction in cost, novel printing technologies that permit manufacturing on large substrates are required. With these technologies it should be possible to ascertain that an increased diode performance (in terms of a small voltage drop, minimum leakage current, and a large gamut of operating frequencies) is attained.
Georgiadou, Dimitra G.
84977176-3678-4fb3-a3dd-2044a49c853b
Semple, James
44fd17bf-5f7c-4e73-91c1-65be28b1c881
Anthopoulos, Thomas D.
d6ee9390-d991-4277-a721-030f22d614c9
Georgiadou, Dimitra G.
84977176-3678-4fb3-a3dd-2044a49c853b
Semple, James
44fd17bf-5f7c-4e73-91c1-65be28b1c881
Anthopoulos, Thomas D.
d6ee9390-d991-4277-a721-030f22d614c9

Georgiadou, Dimitra G., Semple, James and Anthopoulos, Thomas D. (2017) Adhesion lithography for fabrication of printed radio-frequency diodes. SPIE Newsroom. (doi:10.1117/2.1201611.006783).

Record type: Article

Abstract

Radio-frequency (RF) diodes are quintessential elements of passive RF identification tags that are used on livestock, luxury objects, and healthcare products. They are also used in near-field communication applications that enable wireless data transfer between devices. An RF diode—when matched to a suitable antenna—picks up the alternating current (AC) signal that is emitted from an RF source and transforms it to a DC signal. The DC signal can then be used to decode the information stored in the tagged object, or to simply power another electronic or optoelectronic device (e.g., a sensor, battery, or LED). The high demand for RF-harvesting devices, however, can only fully be met if their fabrication costs are substantially reduced. To realize this reduction in cost, novel printing technologies that permit manufacturing on large substrates are required. With these technologies it should be possible to ascertain that an increased diode performance (in terms of a small voltage drop, minimum leakage current, and a large gamut of operating frequencies) is attained.

Full text not available from this repository.

More information

Published date: 16 January 2017

Identifiers

Local EPrints ID: 439819
URI: http://eprints.soton.ac.uk/id/eprint/439819
PURE UUID: 5c48e8e7-aafa-4d55-b7e5-c7dcff0bc5ea
ORCID for Dimitra G. Georgiadou: ORCID iD orcid.org/0000-0002-2620-3346

Catalogue record

Date deposited: 05 May 2020 16:30
Last modified: 02 Sep 2020 01:52

Export record

Altmetrics

Contributors

Author: James Semple
Author: Thomas D. Anthopoulos

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×