The University of Southampton
University of Southampton Institutional Repository

Barrierless hole injection through sub-bandgap occupied states in organic light emitting diodes using substoichiometric MoOx anode interfacial layer

Barrierless hole injection through sub-bandgap occupied states in organic light emitting diodes using substoichiometric MoOx anode interfacial layer
Barrierless hole injection through sub-bandgap occupied states in organic light emitting diodes using substoichiometric MoOx anode interfacial layer

In this letter, highly efficient hole injection was demonstrated in hole only devices based on organic semiconductors with different highest occupied molecular orbital level and transport properties. The barrierless hole injection was achieved by using a substoichiometric MoOx thin film (consisting of 65% Mo+6 and 35% Mo+5) as a higly effective anode interfacial layer. The current in these devices was found to be space charge limited, achieved due to the formation of highly efficient anode ohmic contact via the excellent band alignment through occupied gap states at the ITO/MoOx and MoOx/organic semiconductor modified interface. Quite remarkably, the efficiency of hole injection was found to be almost independent of the MoOx thickness, which is indicative of perfect band alignment at the anode interface.

0003-6951
1-4
Vasilopoulou, Maria
aad1381e-d091-4090-8c7c-b74bed22393d
Palilis, Leonidas C.
b09e9554-54da-4be5-aa08-bda894e2b86f
Georgiadou, Dimitra G.
84977176-3678-4fb3-a3dd-2044a49c853b
Kennou, Stella
7ca6a6bd-6a05-4110-b3da-c8807f798370
Kostis, Ioannis
681af9a6-5162-4f35-b6b1-365ea7ce7e47
Davazoglou, Dimitris
a946cf5d-287a-4734-ba55-b180ab4525ed
Argitis, Panagiotis
ab9c4ea6-3dd2-4e34-935d-81bfb360f358
Vasilopoulou, Maria
aad1381e-d091-4090-8c7c-b74bed22393d
Palilis, Leonidas C.
b09e9554-54da-4be5-aa08-bda894e2b86f
Georgiadou, Dimitra G.
84977176-3678-4fb3-a3dd-2044a49c853b
Kennou, Stella
7ca6a6bd-6a05-4110-b3da-c8807f798370
Kostis, Ioannis
681af9a6-5162-4f35-b6b1-365ea7ce7e47
Davazoglou, Dimitris
a946cf5d-287a-4734-ba55-b180ab4525ed
Argitis, Panagiotis
ab9c4ea6-3dd2-4e34-935d-81bfb360f358

Vasilopoulou, Maria, Palilis, Leonidas C., Georgiadou, Dimitra G., Kennou, Stella, Kostis, Ioannis, Davazoglou, Dimitris and Argitis, Panagiotis (2012) Barrierless hole injection through sub-bandgap occupied states in organic light emitting diodes using substoichiometric MoOx anode interfacial layer. Applied Physics Letters, 100 (1), 1-4, [013311]. (doi:10.1063/1.3673283).

Record type: Article

Abstract

In this letter, highly efficient hole injection was demonstrated in hole only devices based on organic semiconductors with different highest occupied molecular orbital level and transport properties. The barrierless hole injection was achieved by using a substoichiometric MoOx thin film (consisting of 65% Mo+6 and 35% Mo+5) as a higly effective anode interfacial layer. The current in these devices was found to be space charge limited, achieved due to the formation of highly efficient anode ohmic contact via the excellent band alignment through occupied gap states at the ITO/MoOx and MoOx/organic semiconductor modified interface. Quite remarkably, the efficiency of hole injection was found to be almost independent of the MoOx thickness, which is indicative of perfect band alignment at the anode interface.

This record has no associated files available for download.

More information

e-pub ahead of print date: 6 January 2012

Identifiers

Local EPrints ID: 440488
URI: http://eprints.soton.ac.uk/id/eprint/440488
ISSN: 0003-6951
PURE UUID: f37eaa1b-4d58-4e3c-b7ee-6f28f825d68d
ORCID for Dimitra G. Georgiadou: ORCID iD orcid.org/0000-0002-2620-3346

Catalogue record

Date deposited: 05 May 2020 16:42
Last modified: 17 Mar 2024 04:00

Export record

Altmetrics

Contributors

Author: Maria Vasilopoulou
Author: Leonidas C. Palilis
Author: Stella Kennou
Author: Ioannis Kostis
Author: Dimitris Davazoglou
Author: Panagiotis Argitis

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×