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Vapor-deposited molybdenum oxide films are used as low resistance anode interfacial layers in applications
such as organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs). A versatile method for the
vapor deposition of molybdenum oxide layers is presented, which offers the control of the oxygen stoichiom-
etry of the deposited films and their doping with hydrogen. The possibility of tuning the electronic structure
of the deposited molybdenum oxides is also investigated by controlling oxygen deficiency and hydrogenation
(the incorporation of hydrogen within the molybdenum oxide's lattice). To take advantage of the altered
electronic properties of the non-stoichiometric Mo oxides, we embedded them as anode interfacial layers
in organic optoelectronic devices. Large improvement in the operational characteristics of both electrolumi-
nescent devices and bulk heterojunction solar cells was achieved and correlated with the oxygen deficiency
and the hydrogen content of the Mo oxides.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Transition metal oxides (TMOs) have been recognized as one of
the most promising class of materials that are widely used in organic
optoelectronic devices to enhance charge exchange with organic
molecules [1–6]. Molybdenum trioxide (MoO3), in particular, has
drawn considerable attention because of the improvement induced
in the performance of organic light emittingdiodes (OLEDs) and organic
photovoltaics (OPVs) when inserted as hole injection layer in these
devices [7–15]. This improvement has been mainly attributed to the
decrease of the hole injection/extraction barrier at the anode/organic
interfaces. The lowering of the charge injection/extraction barrier has
been considered to be a result of favorable energy level alignment
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between the MoO3 and the organic semiconducting molecules [16].
This is due to the oxide's high work function value that allows facile
charge transfer to/from the highest occupied molecular orbital
(HOMO) of an organic molecule. In general, the work function is
an important parameter for charge exchange because it represents
the energetic requirements for adding or removing an electron to
or from a solid. In recent years, substoichiometric molybdenum
oxides (MoOx, x b 3), formed mainly by thermal evaporation, were
also used to enhance hole exchange in OLEDs and OPVs mainly
due to their improved n-type conductivity originated from intrinsic
oxygen vacancies [17–22].

Our group has recently investigated the electronic structures
of tungsten (W) and molybdenum (Mo) oxide films deposited in re-
ducing environments (termed as substoichiometric metal oxide
films) and their application as charge transport layers in organic
optoelectronic devices [9–11,23]. In this work, we used a simple,
cost-effective method to prepare oxygen-deficient and hydrogenated
molybdenum oxides and to clarify their role in organic optoelectronic
devices. We present evidence that both oxygen deficiency and hydro-
genation result in occupation of occupied gap states lying within the
forbidden gap. Upon the implementation of oxygen-deficient and
hydrogenated Mo oxides as hole injection/extraction layers in poly
[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1′,3}-thiadiazole)]
license.
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Fig. 1. FT-IR spectra of molybdenum oxide films: (a) MoO3, (b) MoO3−x, and (c)
HyMoO3−x, deposited in O2, N2, and H2 environment, respectively.
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Fig. 3. Tauc plot (α(hν)1/2 versus hν) derived from absorption measurements for
10-nm-thick Mo oxide films.
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(F8BT)-based OLEDs and poly(3-hexythiophene) (P3HT):[6,6]-phenyl-
C71-butyric acid methyl ester (PCBM-71),(P3HT:PCBM-71) bulk
heterojunction OPVs, improved device performance was achieved
compared to devices with stoichiometric MoO3.
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Fig. 2. Wavelength variation of the (a) refractive index and (b) the extinction coeffi-
cient of Mo oxide films with a thickness of 10 nm.
2. Experimental

2.1. Materials preparation and characterization

Stoichiometric MoO3, oxygen-deficient, MoO3−x (reduced in ni-
trogen environment), and hydrogenated, HyMoO3−x (reduced in hy-
drogen environment) films, were deposited in a homemade system,
consisting of a stainless steel reactor, similar to the one previously
presented [24,25]. The samples were positioned on an aluminum
susceptor, 2.5 cm below a Mo filament heated by an (AC) current
flowing through two Cu leads. The pressure in the reactor (base pres-
sure) was set by a diaphragm pressure gauge (Baratron) and a
PC-driven needle valve allowing the flow of O2, N2, or pure hydrogen
through the reactor and thus setting the base pressure at the desired
value. For the deposition, after loading the substrate, the reactor was
evacuated down to 10−2 Torr. Then, the Mo wire was heated at
560 °C. The deposition rate was measured about 0.5 nm/s in the
case of the stoichiometric and oxygen-deficient films, while it was
found ~0.25 nm/s for the hydrogenated Mo oxides. During deposi-
tion, the substrates remained at near room temperature, depending
on the deposition time, however, never exceeding 50 °C. Transmit-
tance and absorption measurements were performed using a Perkin
Elmer Lampda 40 UV/Vis spectrophotometer. FT-IR transmittance
spectra were recorded on a Bruker, Tensor 27 spectrometer using
128 scans at 4 cm−1. The film resistance was measured using the
four-point probe method with a dedicated Keithley meter. A LEO
Supra 35 VP scanning electron (SEM) and a PHILIPS CM 20 transmis-
sion electron (TEM) microscope were used for film surface and bulk
characterization, respectively. The dispersion of the refractive indices
and extinction coefficients were measured using a J. A. Woollam Inc.
M2000F rotating compensator ellipsometer (RCE™) running the
WVASE32 software at an angle of incidence of 75.14°.
2.2. Devices fabrication and characterization

OLEDs and OPVs were fabricated on ITO-coated glass substrates
(2 × 2 cm) with a sheet resistance 20 Ω/square, which served as
the anode electrode. Substrates were ultrasonically cleanedwith a stan-
dard solvent regiment (15 min each in acetone and isopropanol). In
OLEDs, the Mo oxide layer was then deposited followed by an
approximately 70-nm-thick emissive layer (EML), the green-emitting
copolymer poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1′,3}-
thiadiazole)] (F8BT), spin coated from a chloroform solution (at a
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Fig. 4. SEM images of Mo oxides: (a) MoO3, (b) MoO3−x, and (c) HyMoO3−x, deposited in O2, N2, and H2, respectively. The scale bar is at 100 nm.
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concentration of 6 mg/ml). After deposition, the EML layerwas annealed
at 80 °C for 10 min in air. F8BTwas purchased fromAmericanDye Source
and used as received. Then, in some devices, a previously reported thin
polyoxometalate (POM) layerwas deposited froma solution inmethanol,
on top of the EML to serve as an electron injection/transport layer [26,27].
The devices were completed with a 150-nm-thick aluminum cathode,
deposited in a dedicated chamber. Films thicknesses were estimated
with ellipsometry. For OPVs, the active layer was a blend (1:0.8 wt%)
of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C71-butyric acid
methyl ester (PCBM-71), spin coated froma 10-mg/ml chloroform solu-
tion to form a 100-nm-thick film. After deposition, the active layer was
annealed at 125 °C for 10 min.

3. Results and discussion

The structural changes of the molybdenum oxide films deposited
in different environments were studied with Fourier transform infra-
red (FTIR) spectroscopy. The results are shown in Fig. 1. Films depos-
ited in oxygen environment were found to be fully stoichiometric
(MoO3, curve a) and showed three characteristic bands, which corre-
spond to the three different kinds of oxygen bondings that exist in an
octahedron of the thermodynamically stable orthorhombic structure
of MoO3: (a) two bands at 959 and 905 cm−1 attributed to the
stretching mode of terminal oxygen (vO_Mo), (b) two bands at
740 and 678 cm−1 assigned to the stretching mode of doubly coordi-
nated oxygen (vO\Mo2), and (c) a band at 566 cm−1 attributed to
the stretching mode of triply coordinated oxygen (vO − Mo3)
[28–30]. Upon introducing N2 within the chamber the molybdenum
oxide films were found substoichiometric (curve b); a shift of the
vO\Mo2 band to lower wave numbers (868 → 721 → 683 cm−1) is
(a) (b) 
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Fig. 5. TEM images of (a) MoO3, (b) MoO3−x, and (
detected, confirming therefore the reduction of the MoO3 films possibly
through the formation of oxygen vacancies in the doubly coordinated ox-
ygen [20]. Similarly, the band of the vO_Mo shifts to higher wave num-
bers (948 → 973 → 975 cm−1). In the case of the hydrogenated film
(deposited in pure hydrogen environment) (curve c), the shift of the
vO_Mo band is even higher (978 cm−1), indicating that in that case
the O_Mo bonds are more affected, possibly through the incorporation
of hydrogen within the oxide's lattice (H-doping). As a consequence, a
new band also appears at 1107 cm−1 attributed to the bending mode
ofMo\OHbonds (δMo\OH); similar results have been reported in liter-
ature for molybdenum bronzes (HxMoO3) [31,32].

Spectroscopic ellipsometry (SE) measurements showed that
for stoichiometric MoO3 the dispersion of its refractive index was
dependent on deposition time (i.e. film thickness) and that after
5 sec (i.e. 50-nm-thick films) of deposition, the refractive index de-
creased and obtained values below that of fused silica (1.45), as the
film became highly porous. Oxygen-deficient and hydrogenated Mo
oxide films showed increased refractive indices, n, and extinction
coefficients, k, compared to those of MoO3, as seen in Fig. 2a and
b, respectively. These results, combined with data derived from
X-ray (XPS) and ultraviolet (UPS) photoelectron spectroscopy pub-
lished elsewhere [9–11], are clear evidence for the formation of gap
states within the oxide's band gap after its reduction with N2 and
especially with H2 [11]. As a result, different band gap values, EG,
were calculated for each Mo oxide. The EG values were derived
from the Tauc plots, presented in Fig. 3, as the intercept of the tan-
gent in the plot of α(hν)1/2 versus hν (where α is the absorption
coefficient) with the hν axis gives the band gap energy. Stoichio-
metric MoO3 films have an optical band gap of approximately
3.0 eV, while both oxygen-deficient (MoO3−x) and hydrogenated
(c) 

50 nm

c) HyMoO3−x films. The scale bar is at 50 nm.
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Fig. 6. (a) The OLED device architecture and the emissive layer (F8BT) chemical struc-
ture and (b) the corresponding energy diagram.
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Fig. 7. (a) Current density–voltage (solid symbols) and luminance–voltage (open sym-
bols) characteristic curves of OLEDs with the structure ITO/Mo oxides (5 nm)/F8BT/Al
devices. (b) The corresponding current efficiency-voltage characteristics.
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(HyMoO3−x) films exhibit smaller values due to the presence of the
occupied gap states within their forbidden gap [11].

The morphology of these films comprises a grain-like, nanostruc-
tured surface as it can be seen in scanning electron microscopy
(SEM) pictures, presented in Fig. 4. The stoichiometric film exhibited
grains with dimensions around 30–35 nm. However, the grain size
seems to substantially decrease when films are deposited in
oxygen-poor environment; especially in the case of the hydrogenated
one, the size of these grains is less than 5–10 nm. The porosity of
the films is also decreasing upon hydrogenation, resulting in im-
proved film forming properties (smoother layers with decreased sur-
face roughness), which may be beneficial for device performance. We
also used transmission electron microscopy (TEM) to characterize
the structural evolution of the Mo oxides. The results are presented
in Fig. 5. All films were completely amorphous. The stoichiometric
and oxygen-deficient films (Fig. 5a and b) exhibited an obvious po-
rosity with the porosity of the former to be larger than the porosity
of the latter. The hydrogen-deposited Mo oxide film, however (Fig. 5c),
exhibited the best homogeneity as it exhibited the lowest pinhole
density, which contributes to the formation of a stable interface and
is beneficial for device performance.

After having correlated the film preparation conditions with their
electronic structure and properties, we then applied these oxides as
anode interlayers in organic polymer-based organic light emitting di-
odes (OLEDs). The fabricated device structure was ITO/Mo oxide
(hole injection layers)/F8BT (as the emissive layer)/polyoxometalate
(POM) (electron injection layer)/Al. The device architecture and the
emissive layer (F8BT) chemical structure are shown in Fig. 6a. In
Fig. 6b, the corresponding energy diagram, as derived from UPS mea-
surements [11], is illustrated. From this energy diagram, the
formation of gap states within the substoichiometric or hydrogenated
oxide's energy gap is evident. These states are expected to have a pos-
itive impact in the device operation as they can serve as paths to per-
mit hole transport from the polymer's highest occupied molecular
orbital (HOMO) to the anode, thus reducing the hole injection barrier
at the ITO/F8BT interface.

In Fig. 7(a) the current density–voltage–luminance (J–V–L) charac-
teristics for devices with a 5-nm-thin Mo oxide film are shown. In the
MoO3-based device, a rather large turn-on voltage (light-emission be-
gins at about 3.5 V) and overall low performance (with maximum cur-
rent density about 1700 mA/cm2 and a peak luminance of 4000 cd/m2)
is observed. On the contrary, the oxygen-deficient and especially the
hydrogenated Mo oxide-based devices exhibited more than one order
of magnitude higher luminance, accompanied by a large decrease in
the device turn-on and generally in the operating voltage. The device
with the HyMoO3−x reaches luminance values up to 30000 cd/m2 and
current densities of 4300 A/m2,while it also exhibits a low turn-on volt-
age of 2.5 V. The peak efficiency of 8 cd/A (Fig. 7(b)) represents one of
the best values reported for OLEDs incorporating thin F8BT layers. It
should be mentioned that the time stability of the devices operating
in air was tested in a period of 700 h and was found satisfactory for all
three different types of Mo oxide-based devices (data not shown) be-
cause of the exceptional environmental stability of the molybdenum
oxide layers.

Finally, we investigate the effect of the incorporation of the Mo ox-
ides described previously as hole extraction/transport (HEL/HTL) layers
in OPVs based on P3HT:PC71BM (1:0.8 wt/%) bulk heterojunction (BHJ)
photoactive layer. The beneficial use of thermally evaporated MoO3 as
anode buffer layer in OPVs has already been shown by other groups
[33]; the purpose of this workwas to demonstrate the benefits of depo-
sition ofMo oxide layers in reducing environments. The device architec-
ture is presented in Fig. 8(a), while the corresponding energy level
diagram derived from UPS measurements [11] is also shown in
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Fig. 8(b). It should bementioned that the OPVdevices are consisting of a
simple aluminum cathode without an additional electron injection
layer (as in the case of OLEDs described above). The Mo oxide thick-
nesses were optimized at 10 nm, while the photoactive layer was
about 100 nm. All Mo oxide layers were exposed to air after their
deposition and prior to BHJ layer spin coating, and thus, our devices'
operation cannot be considered as optimized. Current density–voltage
(J–V) characteristics under AM 1.5 G irradiation are shown in Fig. 9.
A significant improvement in the short-circuit current (Jsc), the open-
circuit voltage (Voc), the fill factor (FF), and the cell power conversion
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Fig. 9. Current density versus voltage characteristics for P3HT:PC71BM BHJ devices em-
bedding 10 nm Mo oxide hole extracting layers.
efficiency (PCE) was achieved for substoichiometricMo oxides compared
to the stoichiometric MoO3 HEL. In particular, Voc increases from 0.52 V
for MoO3 to 0.59 V for MoO3−x and even further to 0.64 V for HyMoO3−x

film-based OPVs. Similarly, the Jsc increases from −5.7 to −7.3 and fur-
ther to −8.0 mA/cm2 for the MoO3, MoO3−x and HyMoO3−x bearing
devices, respectively, while the FF increases from 0.32 to 0.54 (almost a
70% improvement) for the device with the stoichiometric and the
devices with the non-stoichiometric Mo oxides, respectively. The
large enhancement of the Voc, the Jsc, and the FF are attributed
to the considerable reduction of the series resistance and the
substoichiometric Mo oxide modified cells (from 50 Ω cm2 for the
MoO3-based cell to 28 Ω cm2 and even further to 10 Ω cm2 for
the MoO3−x and the HyMoO3−x based cells, respectively), coming
mainly from improved transport through the gap states, as illustrat-
ed in Fig. 8(b). In addition, the non-stoichiometric Mo oxides
exhibited less adsorbed water (measured with FTIR, not shown),
which may be destructive for device operation, as was verified by
others for surface contaminants present in thermally air exposed
MoO3 [34,35].

4. Conclusions

In summary, we have shown that oxygen-deficient and hydroge-
nated Mo oxides exhibit desirable electronic properties, relative to
their parent stoichiometric, for application in organic optoelectronic
devices. The tuning of their electronic structure was achieved as a re-
sult of either oxygen deficiency or hydrogen incorporation within
their lattice, evidenced through the hydroxyl group formation. Elec-
trons from oxygen vacancies or from hydrogen dopant atoms are
transferred to states located inside their band gap. As a consequence,
a favorable energy alignment at the metal oxide/organic interface
may occur. The beneficial role of hydrogenation versus oxygen vacan-
cy formation in Mo oxides for application in efficient organic elec-
tronic devices was demonstrated.
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