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ABSTRACT

While the distribution of kinetic energy across spatial scales in the submesoscale range (1–100 km) has been

estimated from observations, the associated time scales are largely unconstrained. These time scales can

provide important insight into the dynamics of submesoscale turbulence because they help quantify to what

degree the flow is subinertial and thus constrained by Earth’s rotation. Here a mooring array is used to

estimate these time scales in the northeast Atlantic. Frequency-resolved structure functions indicate that

energetic wintertime submesoscale turbulence at spatial scales around 10 km evolves on time scales of about

1 day. While these time scales are comparable to the inertial period, the observed flow also displays char-

acteristics of subinertial flow that is geostrophically balanced to leading order. An approximate Helmholtz

decomposition shows the order 10-km flow to be dominated by its rotational component, and the root-mean-

square Rossby number at these scales is estimated to be 0.3. This rotational dominance and Rossby numbers

below one persist down to 2.6 km, the smallest spatial scale accessible by the mooring array, despite sub-

stantially superinertial Eulerian evolution. This indicates that the Lagrangian evolution of submesoscale

turbulence is slower than the Eulerian time scale estimated from the moorings. The observations therefore

suggest that, on average, submesoscale turbulence largely follows subinertial dynamics in the 1–100-km range,

even if Doppler shifting produces superinertial Eulerian evolution. Ageostrophic motions become increas-

ingly important for the evolution of submesoscale turbulence as the scale is reduced—the root-mean-square

Rossby number reaches 0.5 at a spatial scale of 2.6 km.

1. Motivation

Recent observations of submesoscale flows have im-

proved our understanding of their dynamics. The sub-

mesoscales, here referring to the spatial scales of about

1–100-km wavelength, encompass the dynamical transi-

tion from energetic mesoscale eddies at a few hundred

kilometers to high-frequency internal waves and mixed

layer turbulence at scales smaller than 1km. The obser-

vations show submesoscale energy levels undergo a large

seasonal cycle in themixed layer and drop off rapidlywith

depth below the base of the mixed layer. Together with

theoretical expectations, idealized models, and realistic

numerical simulations, this suggests that submesoscale

turbulence is energized primarily by mixed layer baro-

clinic instabilities (Boccaletti et al. 2007; Fox-Kemper

et al. 2008; Mensa et al. 2013; Sasaki et al. 2014; Callies

et al. 2015, 2016; Buckingham et al. 2016; Thompson et al.

2016). Wintertime atmospheric forcing generates deep

well-mixed surface layers, which in the presence of lateral

buoyancy gradients provide a large reservoir of potential

energy available for release. Subsequent to the conver-

sion to submesoscale kinetic energy by the instability,

turbulent scale interactions redistribute the energy across

the submesoscale range and thus energize the full range

of scales. Outside of winter and well below the mixed

layer, this energization is absent and submesoscale tur-

bulence is much weaker.

These dynamics have been inferred largely from

spatial statistics of submesoscale flows: wavenumberCorresponding author: Jörn Callies, jcallies@caltech.edu
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spectra estimated at different depths and seasons from

shipboard current profilers and towed instruments

(Wang et al. 2010; Callies and Ferrari 2013; Shcherbina

et al. 2013; Callies et al. 2015; Rocha et al. 2016;

Chereskin et al. 2019). These spatial statistics, however,

provide only indirect and at best qualitative information

on the time scales of the flow. Helmholtz and wave–

vortex decompositions of the observed wavenumber

spectra allow a scale-by-scale categorization of the ob-

served flow into whether it is dominated by slow geo-

strophic flow or fast internal waves (Bühler et al. 2014).
While this categorization provides crucial clues for the

dynamical interpretation of the observations, it offers

no information on the time scales of the balanced sub-

mesoscale turbulence that is energized in winter.

Access to the time scales of submesoscale flows

would allow important insight into their dynamics. The

assumption that submesoscale turbulence evolves on

sufficiently long time scales to be to leading order

geostrophically balanced, that is, that the Rossby num-

ber is sufficiently small, has guided the interpretation of

the observations in terms of geostrophic turbulence

theory (e.g., Le Traon et al. 2008; Callies et al. 2015,

2016), and it is a core assumption of the wave–vortex

decomposition that has been employed to aid this in-

terpretation (Bühler et al. 2014). Understanding at what

scale this assumption breaks down is important because

this is where the dynamical constraint imposed by

Earth’s rotation is at least partially overcome (e.g.,

Thomas et al. 2008; McWilliams 2016). At this scale,

the horizontal divergence assumes the same order of

magnitude as the vertical vorticity, such that vertical

velocities reach the magnitudes expected from an as-

pect ratio scaling—instead of being reduced by an-

other small factor equal to the Rossby number, as is

the case in quasigeostrophic dynamics (e.g., Pedlosky

1987; Barkan et al. 2019). It has been argued that the

resulting vertical flow crucially enhances the vertical

exchange between the surface and interior ocean (e.g.,

Ferrari 2011; Omand et al. 2015; Mahadevan 2016) and

that the associated horizontal convergence funda-

mentally changes how buoyant particles and tracers

are dispersed (D’Asaro et al. 2018). The spatial scale at

which the Rossby number reaches order one is also

where kinetic energy is expected to experience a sub-

stantial forward cascade, instead of being trapped at

large scales as is the case in geostrophic turbulence

(e.g., Müller et al. 2005; Capet et al. 2008; Molemaker

et al. 2010).

To address these questions, Callies et al. (2015) esti-

mated from observations of submesoscale turbulence a

scale-dependentRossby numberRo(k)5 [ft(k)]21, which

compares the inertial time scale f21 to the advective time

scale t(k) 5 [k3hjû(k)j2i/2]21/2. Here k is the wave-

number measured along a ship track, and hjû(k)j2i/2 is

the kinetic energy spectrum. In the western subtropical

North Atlantic, where wintertime submesoscale turbu-

lence is particularly energetic, this Rossby number in-

creases with k1/2 from Ro(k) ’ 0.1 at the wavelength

l5 2p/k5 100km to Ro(k)’ 1 at l5 1 km, suggesting

that small-Rossby-number dynamics break down qual-

itatively at a wavelength of order 1 km. Consistent with

this result, Shcherbina et al. (2013) found the vertical

vorticity measured at scales of order 1 km to have

magnitudes of the same order as f and to be significantly

skewed to positive values.

In apparent contradiction with these observations,

however, a recent submesoscale-permitting numerical

simulation of the global ocean showed submesoscale

turbulence to have time scales much shorter than the

inertial period (Rocha et al. 2016; Qiu et al. 2018; Torres

et al. 2018). In wavenumber–frequency spectra of ki-

netic energy, which offer a comprehensive and concise

description of the spatial and temporal scales of sub-

mesoscale flows, submesoscale turbulence was found to

have energy concentrated along a straight line in loga-

rithmic wavenumber–frequency space (Torres et al.

2018; cf. Fig. 5 here). In the Kuroshio extension region,

which has submesoscale turbulence of similar charac-

teristics and energy levels as in the western subtropical

North Atlantic the observations of Shcherbina et al.

(2013) and Callies et al. (2015) were from, this line

crosses the inertial frequency at a wavelength of about

50 km. Flow at spatial scales smaller than 50 km there-

fore evolves on time scales that are superinertial. In con-

trast to the observational Rossby number estimates, these

wavenumber–frequency spectra inferred from the simu-

lation thus seem to suggest that describing submesoscale

turbulence with subinertial dynamics is hopeless.

This apparent contradiction between the observations

suggesting low-Rossby-number dynamics at scales larger

than order 1 km and the simulation suggesting super-

inertial evolution across most of the submesoscale range

indicates a fundamental lack of understanding of the

time evolution of submesoscale turbulence. There are at

least two possible resolutions. First, it remains unclear

whether observations support the inference that sub-

mesoscale turbulence evolves on time scales comparable

to and shorter than the inertial period. While the simu-

lated mesoscale and submesoscale turbulence has been

shown to have energy levels comparable to observations

(Rocha et al. 2016; Qiu et al. 2018; Erickson et al. 2020),

there are so far no observational constraints on the

time scales of this turbulence. Second, it remains un-

clear whether the rapid Eulerian evolution diagnosed

in wavenumber–frequency spectra is indeed inconsistent
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with low-Rossby-number dynamics. Slowly evolving sub-

mesoscale flow could be swept past an Eulerian observer

and thus appear at an Eulerian period that is much shorter

than the time scale of Lagrangian evolution.

In this paper, we present indirect support for this second

interpretation by inferring time scales of submesoscale

turbulence from observations and confirming the rapid

Eulerian evolution. Ideally, one would seek an observa-

tional estimate of the wavenumber–frequency spectrum,

but currently no observational estimate that extends into

the submesoscale range is available for the open ocean.1

The logistical demands for observing such a spectrum are

substantial: if standard spectral techniqueswere to be used,

estimating the spectrum across the relevant time and space

scales would require simultaneous hourly observations in

at least 200 locations along a line, with a spacing of 0.5km

and sustained for at least several months.

While a full wavenumber–frequency spectrum is

currently not available, partial information on the

spatial and temporal scales of submesoscale turbu-

lence can be obtained from the Ocean SurfaceMixing,

Ocean Submesoscale Interaction Study (OSMOSIS)

mooring array that was deployed in the northeast

Atlantic from September 2012 to September 2013

(Buckingham et al. 2016; Yu et al. 2019). We here

calculate frequency-resolved structure functions from

velocity differences across mooring pairs. In addition

to the usual temporal information, these statistics

provide spatial information at scales corresponding to

the separation distance between the moorings. The

OSMOSIS array consisted of nine moorings that were

arranged in two squares centered on a central mooring

(cf. Figs. 1 and 3). The outer square had a side length

of about 13 km; the inner square had a side length of

about 2 km. With this arrangement, mooring pairs

separated by about 1–20 km are available, which al-

lows us to make inferences about spatial scales cor-

responding to wavelengths of about 2–40 km.

The paper is organized as follows. Section 2 gives an

overview of the OSMOSIS observations. Section 3 dis-

cusses frequency-resolved structure functions, the key

quantity to be diagnosed from observations, and de-

scribes how they are related to wavenumber–frequency

spectra. Section 4 introduces an approximate Helmholtz

decomposition that can be applied to the observed

frequency-resolved structure functions to aid the dy-

namical interpretation. Section 5 describes the results

obtained from the mooring array and offers a dynamical

interpretation. Section 6 summarizes the dynamical in-

sight gleaned from the observations.

2. Observations

Nine subsurface moorings were deployed as part of the

OSMOSISproject (Buckinghamet al. 2016;Yuet al. 2019).

FIG. 1. Location of theOSMOSIS array in the northeastAtlantic. The shading shows a surface

kinetic energy snapshot from the numerical simulation, and the white dotsmark the locations of

the central and outer moorings. The landmass in the northeast corner of the map is Ireland.

1 For a mesoscale wavenumber–frequency spectrum obtained

fromaltimetry, seeWunsch and Stammer (1995) andWunsch (2009).
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They were each equipped with a number of Nortek

Aquadopp acoustic current meters distributed across

the upper ocean. We restrict our analysis to the current

meters located closest to 50- and 500-m depth. The

nominal depths of the selected instruments are listed in

Table 1. Despite the differences in nominal depth, we

treat these instruments as if they were at the same depth

and subsequently refer to them as the 50- and 500-m in-

struments. The instrument closest to 500m failed on the

northeast (NE) outer mooring, so we only have eight

instruments at that depth. The moorings occasionally

experienced substantial knockdown by the currents, but

we estimate this has a negligible effect on the statistics

presented below (appendix).

The current meter data have a time resolution of

10min. We linearly interpolate the data onto a common

time grid with the same 10-min spacing.We separate the

data into four time segments that roughly correspond to

the fall, winter, spring, and summer seasons (Fig. 2). The

fall season starts on 18 September 2012, and all seasons

are 140 days long. We overlap the seasons by 50% be-

cause the spectral analysis used below requires win-

dowing; the overlap allows us to take full advantage of

the information content of the data.

The current meters at 50-m depth are in the seasonal

thermocline in summer and in the mixed layer in win-

ter, whereas the current meters at 500-m depth are at

the lower edge of the subpolar mode water layer year-

round (Fig. 2c). This is revealed by hydrographic data

collected by gliders that were deployed in the region

over the full period covered by the mooring measure-

ments (Thompson et al. 2016). The sharp seasonal

thermocline deepens from about 50m at the beginning

of the time series in September 2012 to 100m in

November. The seasonal thermocline subsequently

disappears and leaves the subpolar mode water layer

exposed to the atmosphere. This weakly stratified layer

reaches down to the permanent thermocline below

about 600-m depth. A new seasonal thermocline starts

forming in the spring of 2013, first intermittently in

May, then permanently in June.

The frequency-resolved structure functions introduced

below are calculated from mooring pairs and aver-

aged over a collection of pairs of similar lateral sep-

aration. We group the 36 mooring pairs into nine

collections with similar separation using k-means

clustering (Fig. 3). The collections have average sep-

arations ranging from 18.7 km, corresponding to the

diagonals of the outer array, to 1.3 km, corresponding

to the pairs formed between the eastern inner moor-

ings and the central mooring.

3. Frequency-resolved structure functions

At every available mooring location x, we can calcu-

late the temporal Fourier transform of the measured

velocity component u:

~u(x,v)5

ð‘
2‘

u(x, t) e2ivt dt. (1)

For simplicity, we here use the notation for an infinitely

long and continuously sampled signal u; in practice, the

continuous Fourier transform is replaced by a discrete

Fourier transform, and the finite time series is multiplied

by a Hann window to minimize spectral leakage. As

usual, we can estimate the frequency spectrum hj~u(v)j2i
from (1), where the angle brackets denote an expecta-

tion value that in practice corresponds to an average

over the different moorings. We assume isotropy and

homogeneity, by which the frequency spectrum be-

comes independent of location and the orientation of

the coordinate system.

Having access to the temporal Fourier transforms

at mooring pairs located at x and x 1 r (Fig. 4a), we

can also calculate the frequency-resolved structure

function

Du(r,v)[
1

2
hj~u(x1 r,v)2 ~u(x,v)j2i. (2)

The angle brackets again denote an expectation value,

now corresponding in practice to an average over

mooring pairs that are separated by similar distances,

that is, that are in the same collection of pairs (Fig. 3).

By the homogeneity and isotropy assumptions, the

frequency-resolved structure function (2) only depends

on the separation r 5 jrj and the orientation of the ve-

locity component relative to r. We define u 5 u � r/r as
the longitudinal component and y 5 u � (z 3 r)/r as the

transverse component relative to the respective moor-

ing pair, where z is the vertical unit vector (Fig. 4a).

The transverse frequency-resolved structure function

Dy(r, v) is defined analogously to (2). We take advan-

tage of the difference between the longitudinal and

TABLE 1. Nominal depths (m) of the acoustic current meters.

Shallow Deep

Central 51 528

NE inner 56 531

NW inner 28 494

SW inner 29 497

SE inner 41 510

NE outer 62

NW outer 59 535

SW outer 43 522

SE outer 53 526
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transverse statistics in the approximate Helmholtz de-

composition introduced in section 4.

The frequency-resolved structure function encodes

spatial as well as temporal information. It is related

to the wavenumber–frequency spectrum hjû(k,v)j2i
through

Du(r,v)5 hj~u(v)j2i2 h~u*(x,v)~u(x1 r,v)i

5

ðð
hjû(k,v)j2i(12 eik�r) d2k

5

ð‘
0

hjû(k,v)j2iF
0
(kr) dk, (3)

where the kernel in the last expression is

F
0
(j)5 12 J

0
(j) , (4)

and J0 denotes the Bessel function of the first kind and

zeroth order. This identity follows by making use of the

Wiener–Khinchin theorem, Bessel’s integral, and the

isotropy assumption (e.g., Yaglom 1962). We denote

the two-dimensional wavenumber vector by k and its

magnitude by k 5 jkj. We use a standard normalization

for the two-dimensional isotropic spectrum:

2pkhjû(k,v)j2i5 hjû(k,v)j2i, (5)

which ensures that integrals over the respective

wavenumber domains return the frequency spec-

trum hj~u(v)j2i.

FIG. 2. OSMOSIS observations of a full seasonal cycle. (a) Velocities from the central

mooring at 50-m depth (raw: transparent; filtered to 20 days: solid). (b) Hann windows for the

four seasons (fall, winter, spring, summer). (c) Stratification inferred from gliders, showing

the evolution of the seasonal thermocline in the top 200m and the permanent thermocline

below 600m. Note the arsinh-scaled color map. The horizontal lines show the depths of the

current meters analyzed in this study.
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Note that in principle the cross-spectrum

h~u*(x, v) ~u(x1 r, v)i can be inverted for the

wavenumber–frequency spectrum with a Hankel trans-

form (cf. LaCasce 2016):

hjû(k,v)j2i5
ð‘
0

h~u*(x,v)~u(x1 r,v)iJ
0
(kr)kr dr. (6)

But performing this integration in separation space is dif-

ficult with the observations available to us. From the

OSMOSIS array, the cross-spectrum can be estimated at

only nine separation distances that are not optimally

spaced for a Hankel transform. (Note above that the isot-

ropy assumption assures that the cross-spectrum is real.)

The identity (3) will be a central tool in our analysis

of the OSMOSIS observations: using it, we will gather

information on the underlying wavenumber–frequency

spectrum. The identity tells us that the frequency-resolved

structure function at separation distance r samples the

wavenumber–frequency spectrum hjû(k,v)j2i with the

weighting kernel F0(kr). The kernel is small for kr � 1,

rises to order unity around kr ; p (where r corre-

sponds to the half-wavelength p/k), and oscillates

around unity with decreasing amplitude for larger

kr (Fig. 5b). The frequency-resolved structure func-

tion at different separation distances r thus contains

partial information on the underlying wavenumber–

frequency spectrum.

We illustrate this information content using a nu-

merical simulation, from which we can calculate both

the full wavenumber–frequency spectrum and the

frequency-resolved structure functions (Fig. 5). The sim-

ulation setup is similar to the North Atlantic simulation

described in Chelton et al. (2019); the detailed setup and

further analysis will be described in a forthcoming

publication—here we use this simulation for illustration

only. We sample the model at the OSMOSIS mooring

locations and 50-m depth, and we use the 140-day period

corresponding to the winter season. All Fourier coeffi-

cients are calculated by multiplying the 140-day time

segments byHannwindows and subsequently applying a

discrete Fourier transform. The averages are applied

FIG. 3. Collections of mooring pairs with similar separations. Each subplot corresponds to a

collection, with the mean separation r indicated in the title. The pairs are marked with the

colored lines.
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over all moorings for the frequency spectrum and over

all mooring pairs in the respective pair collection for the

frequency-resolved structure functions. Averaging in

frequency bins is applied to reduce the estimation error.

The normalization is such that hjû(v)j2 1 jŷ(v)j2i/25
[Du(‘, v)1Dy(‘, v)]/2, assuming the flow is decorre-

lated between infinitely spaced moorings.

The wavenumber–frequency spectrum displays fea-

tures familiar from the previous analyses of Rocha et al.

(2016), Savage et al. (2017), and Torres et al. (2018)

(Fig. 5a). Energy that is broadband in both wave-

number and frequency space falls along a slanted line

in logarithmic wavenumber–frequency space, rang-

ing from a few hundred kilometers to the model’s dis-

sipation scales and from time scales of months to

superinertial frequencies. Energy at the inertial fre-

quency is concentrated at large spatial scales. Energy

at the semidiurnal tidal frequency is also enhanced

at large scales. Energy at superinertial frequen-

cies shows some enhancements along the dispersion

curves of low-mode internal waves. A lot of this in-

formation can be extracted with frequency-resolved

structure functions.

At the lowest frequencies, the flow is dominated by

spatial scales (wavelengths) larger than 2r5 37.4 km, the

largest scale sampled by the mooring array. This means

that the flow is correlated across the corresponding

mooring pairs, and the frequency-resolved structure

function at r 5 18.7 km is reduced below the frequency

spectrum (Fig. 5c). In other words, the weighting kernel

F0(kr) corresponding to r 5 18.7 km misses a large part

of the energy at these lowest frequencies (Fig. 5b). At

smaller separation, the flow is even more strongly cor-

related across mooring pairs, that is, the kernels miss

even more of the energy, and the frequency-resolved

structure functions are suppressed even more.

As the frequency increases, the dominant spatial

scale decreases. Around v 5 3 3 1026 cps, the energy

is dominated by spatial scales comparable to the larger

mooring separations of order 10 km. This means that

the flow becomes decorrelated between the respective

moorings, and the weighting kernels start sampling

the entire energy—the frequency-resolved structure

functions converge to the frequency spectrum (cold-

colored lines in Fig. 5c). At the same frequencies, the

flow is still correlated across moorings separated

by distances of order 1 km and the corresponding

frequency-resolved structure functions are still sup-

pressed (warm-colored lines in Fig. 5c).

At the inertial and tidal frequencies, the energy is

again dominated by scales larger than those captured by

the mooring array. The frequency-resolved structure

functions capture this: at all separations, they are re-

duced compared to the frequency spectrum. At the in-

ertial and semidiurnal tidal frequencies, the pairs

separated by order 10 km still feature peaks, reflecting

the extension of the inertial and tidal flow to these

spatial scales. The pairs separated by order 1 km show

less enhancement at these frequencies because there is

less of an inertial or tidal signal left at the corresponding

spatial scales.

At the highest frequencies, the energy starts being

dominated by order 1 km scales, such that the flow

becomes decorrelated across all mooring pairs. The

frequency-resolved structure functions indicate this re-

duction in scale by the successive convergence toward

the frequency spectrum.

Note that the design of the mooring array entails a

gap in logarithmic separation space (Figs. 3 and 5b).

The pairs formed by the outer moorings and the

closest inner moorings have a much larger separation

(r 5 7.8 km) than the pairs formed by the diagonals of

the inner moorings (r 5 3.1 km). The gaps in the

frequency-resolved structure functions between these

separations are thus the result of the sampling pattern

and have no physical significance (Fig. 5c).

FIG. 4. Geometry of velocity measurements at mooring pairs and

(hypothetical) mooring triplets. (a) Velocities u at moorings lo-

cated at x and x 1 r. (b) Mooring triplet with side length r and

radiusR. The tangent and normal vectors t and nwith respect to the

triangle are shown in blue, the ones with respect to the mooring

pair are shown in red.
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4. Single-separation Helmholtz decomposition

An important discriminating property of sub-

mesoscale flow is the degree to which it is rotational

or divergent. Given appropriate boundary conditions,

there is a unique streamfunction c and velocity po-

tential f, such that the horizontal flow u can be de-

composed as follows:

u5 z3=c1=f . (7)

One can distinguish between the rotational and diver-

gent components by exploiting that they produce dif-

ferent statistics for the longitudinal and transverse

velocities. For a mooring pair, it is intuitive that diver-

gent flow generates more variance of the longitudinal

velocity difference and that rotational flow generates

more variance of the transverse velocity difference. We

exploit this property to estimate the rotational and di-

vergent components.

Differences in the statistics of transverse and longi-

tudinal velocity components were used by Bühler et al.
(2014) to derive an exact Helmholtz decomposition

calculable from one-dimensional wavenumber spectra.

Lindborg (2015) reformulated that decomposition for

structure functions and simplified the decomposition

into the compact formulas

D
rot
(r)5Dy(r)1

ð‘
0

[Dy(s)2Du(s)]
ds

s
, (8)

D
div
(r)5Du(r)1

ð‘
0

[Du(s)2Dy(s)]
ds

s
, (9)

where Drot(r) and Ddiv(r) denote the structure functions

of the rotational and divergent velocity components,

FIG. 5. Illustration of the information frequency-resolved structure functions provide about

the underlying wavenumber–frequency spectrum. (a) The wavenumber–frequency spectrum

estimated from a numerical model simulation. (b) The kernels F0(kr) for the separations r

available from the OSMOSIS array (see legend). (c) The frequency-resolved structure

functions for the same separations, estimated from a virtual mooring array. Also shown is the

frequency spectrum, which is an integral over all wavenumbers with a unit weight. Short black

vertical lines mark the two lunar diurnal frequencies, the inertial frequency, the lunar

semidiurnal frequency, and the first harmonic of the lunar semidiurnal frequency.
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respectively. We drop the frequency dependence in this

section for notational compactness, but we will apply

decompositions of this type to the frequency-resolved

structure functions estimated from OSMOSIS data. We

note in passing that the formulas derived below equally

apply to purely spatial data, for example, those obtained

from surface drifters (although additional complications

arise from the biased sampling of drifters; Choi et al.

2017; Pearson et al. 2019).

It is difficult to apply the exact Helmholtz decom-

position (8)–(9) to the mooring observations. For every

separation distance r, these formulas require an inte-

gration over structure functions at all smaller separa-

tion distances s # r. One could approximate that

integral for the larger mooring separations because

a number of smaller separations are available, but

the integration is entirely impossible for the smallest

mooring separations.

Under certain conditions (to be made explicit below),

however, one can obtain an approximate Helmholtz

decomposition from knowledge of the transverse and

longitudinal structure functions at a single separation

distance r only:

D
rot
(r)5

3

2
Dy(r)2

1

2
Du(r), D

div
(r)5

3

2
Du(r)2

1

2
Dy(r) .

(10)

These formulas share with (8)–(9) the sensible property

that the divergent and rotational components sum up to

the full velocity structure function:

D
rot
(r)1D

div
(r)5Du(r)1Dy(r) . (11)

We detail three ways to derive the formulas in (10). In

the first derivation, we assume that the flow is dominated

by scales larger than r, which allows an approximation to

(8) and (9). In the second derivation, we consider the

divergence and vorticity calculated from an equilateral

mooring triangle. In the third derivation, we consider

the kernels through which the longitudinal and trans-

verse structure functions are related to the rotational

and divergent components of the kinetic energy spec-

trum, and we find the linear combination that isolates

the respective part in the asymptotic limit kr� 1. While

these three derivations all lead to the same result, we

find that describing all three builds intuition for the

meaning and limitations of (10).

It is possible to find somewhat more accurate formulas

than (10) if one takes advantage of the statistics at more

than one separation distance.We here discuss the single-

separation decomposition (10) only because we find that

its lack of accuracy is easily outweighed by its simplicity

and interpretability.

a. Large-scale limit of the exact decomposition

If the signal is dominated by scales larger than the

separation r, structure functions have an r2 dependence

(e.g., Babiano et al. 1985). Equation (8) then yields

D
rot
(r)5Dy(r)1 [Dy(r)2Du(r)]

ðr
0

�s
r

�2 ds

s

5
3

2
Dy(r)2

1

2
Du(r) . (12)

The analogous calculation for Ddiv(r) leads to the di-

vergent component in (10). The single-separation

decomposition (10) is thus exact in the limit of the

flow being dominated by scales larger than the sepa-

ration r.

If Du(s) and Dy(s) followed a known power law sm for

0, s, rwith 0,m, 2, (8) and (9) would instead yield

the exact decomposition

D
rot
(r)5

m1 1

m
Dy(r)2

1

m
Du(r),

D
rot
(r)5

m1 1

m
Du(r)2

1

m
Dy(r) . (13)

We here exclusively use (10) because it can be applied if

the structure functions are known at a single separation

only. The error incurred by assuming the nonlocal limit

is further discussed below.

b. Triangular mooring array

The same formulas arise from calculating the struc-

ture function of the rotational and divergent compo-

nents of the flow estimated form a triplet of moorings

arranged in an equilateral triangle with side length

r (Fig. 4). To illustrate this, we consider diagnos-

ing the rotational part of the flow. The magnitude

of this rotational component is estimated from the

moorings as the flow along the circle circumscribing

the triangle:

u
rot

5
1ffiffiffi
3

p �
3

i51

u
i
� t

i
, (14)

where xi and ti are the position vector and tangent unit

vector of mooring i (tangent to the circumcircle of the

triangle, pointing in the counterclockwise direction; see

Fig. 4b), and ui5 u(xi) is the velocity vector at mooring i.

The normalization factor is chosen such that

hu2
roti1 hu2

divi5Du(r)1Dy(r) , (15)

with a similarly defined udiv [cf. (11)]. The variance of

the such-defined rotational component of the flow
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matches the formula for the rotational component in

the single-separation Helmholtz decomposition:

hu2
roti5

1

2
hjuj2i1 2

3
�
3

i51
�
3

j5i11

h(u
i
� t

i
)(u

j
� t

j
)i (16)

5
1

2
hjuj2i1 2h(u

1
� t

1
)(u

2
� t

2
)i (17)

5
1

2
hjuj2i1 2 cos2a h(u

1
� t01)(u2

� t02)i

2 2 sin2a h(u
1
� n0

1)(u2
� n0

2)i (18)

5
3

2
Dy(r)2

1

2
Du(r) , (19)

so setting Drot(r)5 hu2
roti recovers (10). In this calculation,

we used that all three mooring pairs are statistically in-

distinguishable and that orthogonal velocity components

are uncorrelated per the isotropy assumption. In the third

line, t0i and n0
i are the transverse and longitudinal unit

vectors with respect to the mooring pair (1, 2) (Fig. 4b).

They are related to the triangle’s tangent vectors by

t1 5 cosat01 2 sinan0
1 and t2 5 cosat02 1 sinan0

2. The angle

a 5 p/6 is half of the interior angle of the mooring

triangle. The formula for the divergent part follows by

replacing the ti by the outward normal unit vectors

ni (Fig. 4b).

Notably, the triplet statistics in (19) can be calculated

from a singlemooring pair—there is no need for an actual

mooring triplet arranged in an equilateral triangle. This

is a consequence of the homogeneity and isotropy as-

sumptions, in combination with the fact that all mooring

pairs in the triangle have the same separation r.

c. Linear combination of weighting kernels

We begin by writing the Helmholtz decomposition (7)

in spectral space:

jû(k)j2 5 l2jĉ(k)j2 1 k2jf̂(k)j2 2 2klReĉ*(k)f̂(k) , (20)

jŷ(k)j2 5k2jĉ(k)j2 1 l2jf̂(k)j2 2 2klReĉ*(k)f̂(k) , (21)

where k5 k � r/r5 k cosu is the longitudinal component

of the wavevector, l 5 k � (z 3 r)/r 5 k sinu is the

transverse component of the wavevector, and u is the

angle between r and the wavevector k. Then the longi-

tudinal and transverse structure functions can be written

as (the cross term drops out by symmetry if isotropy is

assumed)

Du(r)5
1

2p

ð‘
0

ðp
2p

k2[sin2uhjĉ(k)j2i1 cos2uhjf̂(k)j2i]

3 (12 eikrcosu) dudk , (22)

Dy(r)5
1

2p

ð‘
0

ðp
2p

k2[cos2uhjĉ(k)j2i1 sin2uhjf̂(k)j2i]

3 (12 eikrcosu) dudk . (23)

The azimuthal integrations evaluate to

Du(r)5

ð‘
0

k2[hjĉ(k)j2iF
1
(kr)1 hjf̂(k)j2iF

2
(kr)]dk ,

(24)

Dy(r)5

ð‘
0

k2[hjĉ(k)j2iF
2
(kr)1 hjf̂(k)j2iF

1
(kr)]dk ,

(25)

where the weighting kernels are

F
1
(j)5

1

2
2

J
1
(j)

j
and F

2
(j)5

1

2
2

J
1
(j)

j
1 J

2
(j) .

(26)

The reversed kernels in (24) and (25) confirm that we can

extract information on the rotational and divergent com-

ponents of the flow from the longitudinal and transverse

structure functions (Fig. 6a). The longitudinal and trans-

verse structure functions sample different parts of the

rotational and divergent components of the flow. Ideally,

we would find combinations of the kernels that isolate

D
rot
(r)5

ð‘
0

k2hjĉ(k)j2iF
0
(kr) dk , (27)

D
div
(r)5

ð‘
0

k2hjf̂(k)j2iF
0
(kr) dk . (28)

The exact Helmholtz decomposition (8) and (9) ach-

ieves just that: taking the difference of (24) and (25)

isolates the J2(kr) term, division by r and integration

over r yields F1(kr) for the kernels, and combining

that back with the respective structure functions

cancels one contribution and consolidates the other

to an F0(kr) kernel.

If structure functions are available at a single sepa-

ration r only, the weighting kernels in (24) and (25)

cannot be combined to exactly isolate the rotational and

divergent components. One arrives at the approximate

single-separation decomposition (10), however, if one

combines the kernels optimally in the kr � 1 limit.

Using Taylor series expansions around j [ kr 5 0, one

finds that the kernel functions satisfy

F
0
(j)5

j2

4
1O (j4), F

1
(j)5

j2

16
1O (j4),

F
2
(j)5

3j2

16
1O (j4) . (29)
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It is straightforward to find linear combinations that

asymptotically match the kernels F0(j) and 0, that

is, that isolate the rotational or divergent compo-

nents (Fig. 6b):

3

2
F
2
(j)2

1

2
F
1
(j)5F

0
(j)1O (j4),

3

2
F
1
(j)2

1

2
F
2
(j)5O (j4) . (30)

These linear combinations yield (10).

d. Accuracy

The single-separation Helmholtz decomposition

(10) is accurate in the limit of large-scale dominance

(i.e., spectra falling off more steeply than k23). The

formulas have no distinguishing power if flow is de-

correlated across the separation r (i.e., if the flow is

dominated by scales smaller than r). In that latter case,

the formulas assign 1/2 of the energy to each compo-

nent even if the flow is purely rotational or purely

divergent.

To get a sense for the accuracy of the method in the

local regime, that is, between the two limits above,

consider a purely rotational flow that at high wave-

numbers follows a power-law spectrum k2nwith 1, n,
3. At small separations, Du(r) and Dy(r) follow a power

law rn21 (e.g., Babiano et al. 1985) and Dy(r) 5 nDu(r)

(e.g., Charney 1971). The rotational part is then diag-

nosed to be (3n2 1)/2(n1 1) of the total energy, and the

remainder is assigned erroneously to the divergent part

(Fig. 7). For n5 2, for example, the formulas (10) assign

5/6 of the energy to the rotational component and 1/6 of

the energy to the divergent component. The fractional

error assumes the nonlocal limits 1 and 1/2 for n5 3 and

n 5 1, respectively.

The formulas (10) are thus accurate in the large-scale

limit, still give qualitatively useful results in the local

regime, and have no distinguishing power in the small-

scale limit. These properties can be intuited from the

derivation as a diagnostic from a mooring triangle: the

triangle perfectly resolves flow dominated by scales

larger than the triangle’s size, and the triangle has no

chance of distinguishing between rotational and diver-

gent flow if the dominant scales are smaller than the

triangle’s size. For scales similar to the triangle’s size,

the triangle yields some information on the Helmholtz

properties of the flow, but the diagnostics are not

perfect.

e. Rossby number

The single-separation Helmholtz decomposition also

allows us to define a scale-dependent Rossby num-

ber. To obtain the right normalization constant, we

FIG. 6. Integration kernels with which thewavenumber spectra are sampled. (a) Integration

kernels for the full, longitudinal, and transverse structure functions for a flow that is purely

rotational. (b) Integration kernels for the rotational and divergent components of the flow in

the diagnosis of the rotational component. The divergent component spills into the diagnosed

rotational component for j * p.

APRIL 2020 CALL I E S ET AL . 1075



again consider a triangular mooring array, which

suggests how to calculate the vorticity (or analo-

gously divergence):

z(r)5
1

pR2

ð
=3u d2x5

1

pR2

þ
u � tds’ 2

3R
�
3

i51

u
i
� t

i

5
2

r
u
rot

, (31)

where the first integration is over the disk enclosed

by the circumcircle of the mooring triangle (radius

R5 r/
ffiffiffi
3

p
), and the second integration is along the cir-

cumcircle itself. This tells us that

hz2(r)i5 4

r2
D
rot
(r) , (32)

and we consequently define a scale-dependent Rossby

number as

Ro(r)5
hz2(r)i1/2

f
5

2

fr
[D

rot
(r)]1/2 . (33)

For frequency-resolved data, Drot(r, v) is a spectral

density in frequency space and carries an additional

time dimension. We therefore define the scale- and

frequency-dependent Rossby number as

Ro(r,v)5
2

fr
[vD

rot
(r,v)]1/2. (34)

We will estimate this from the mooring data.

This Rossby number characterizes the importance

of inertial terms at a wavelength 2r and a period of

2p/v. A small Rossby number indicates dynam-

ics that are to leading order geostrophic and thus

horizontally nondivergent. We will see below that we

consistently diagnose the observed submesoscale

flow to be dominated by the rotational component

and to have a Rossby number smaller than one all the

way down to the smallest scales sampled by the

mooring array.

5. Results

a. Frequency-resolved structure functions

1) SHALLOW WINTERTIME STATISTICS

We begin by discussing the frequency spectrum

hjû(v)j2 1 jŷ(v)j2i/2 and the frequency-resolved struc-

ture function [Du(r, v)1 Dy(r, v)]/2 calculated from the

instruments near 50-m depth and for the winter period.

We subsequently contrast these results with the other

seasons and the data from near 500-m depth. The sta-

tistics are calculated the same way as described above

for the model simulation.

The frequency spectrum has familiar features (Fig. 8b;

e.g., Ferrari and Wunsch 2009). There is broadband

energy at subinertial frequencies, a peak at the in-

ertial frequency, a peak at the semidiurnal tidal

frequency, and broadband energy at supertidal fre-

quencies. The spectrum flattens out at frequencies

larger than 2 3 1024 cps, which we attribute to in-

strument noise. The broadband subinertial energy

falls off slowly with frequency, roughly like v21.

Within the bounds of the spectral estimation error,

the statistics are homogeneous and isotropic except

at the semidiurnal tidal frequency, where anisotropy

can be detected (not shown).

The frequency-resolved structure functions now

allow us to assign spatial scales to the frequencies

covered by the frequency spectrum. At the lowest

frequencies, the frequency spectrum dominates over

the frequency-resolved structure functions at all sep-

arations, suggesting that the energy is dominated by

scales larger than the largest sampled scale 2r 5
37.4 km. As the frequency increases, the frequency-

resolved structure functions for the larger separations

(r 5 7.8–18.7 km) successively converge to the fre-

quency spectrum within the subinertial range. This

indicates a successive decrease in spatial scale that

accompanies the decrease in time scales, as expected

for a turbulent flow. The flow just below the inertial

frequency is dominated by a scale of about 2r 5
10 km—the flow is decorrelated at a separation r 5
7.8 km but correlated at a separation r 5 3.1km.

Submesoscale turbulence at scales larger than 10km is

thus associatedwith subinertial frequencies. Submesoscale

turbulence at scales smaller than 10km appear to have

FIG. 7. Accuracy of the single-separation Helmholtz decom-

position. Shown are the diagnosed rotational and divergent

fractions of the total energy, assuming that the actual flow is

purely rotational and has an energy spectrum that follows a

power law k2n.
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Eulerian time scales comparable to or shorter than the

inertial period.

At the inertial frequency, the frequency spectrum

again strongly dominates over the frequency-resolved

structure functions at all separations, indicating that

these near-inertial motions have large spatial scales. The

frequency-resolved structure functions do not show a

distinct signal at the inertial frequency, suggesting that

at the captured scales dynamics other than near-inertial

motion dominate.

At the semidiurnal tidal frequency, the frequency

spectrum also dominates over the frequency-resolved

structure functions at all separations, suggesting

the signal is dominated by tidal motion that has

FIG. 8. Frequency-resolved structure functions estimated for the four seasons from the OSMOSIS array at

50-m depth. The colored lines show the frequency-resolved structure functions for the separations r given in the

legend, and the black lines show the kinetic energy frequency spectra. The formal error bars are indicated

below the four panels and vary by separation. Short black vertical lines mark the two lunar diurnal frequencies,

the inertial frequency, the lunar semidiurnal frequency, and the first harmonic of the lunar semidiurnal fre-

quency. For reference, the short horizontal colored lines in (a) show the spacing of structure functions that vary

with r2 and r1.
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wavelengths larger than the largest scale sampled by

the array: either external tides or low-mode internal

tides. The frequency-resolved structure functions at

the larger separations have a small tidal peak, sug-

gesting that tidal waves still dominate at these spatial

scales. At the smaller separations, there is no dis-

cernible tidal signal.

In the supertidal frequency band, the frequency-

resolved structure functions match the frequency spec-

trum for the larger separations and successively converge

onto the frequency spectrum for the smaller separations.

This indicates that this frequency band is dominated by

spatial scales of a few kilometers at the lower frequen-

cies and of order 1 km or smaller at the higher fre-

quencies. At v 5 1024 cps, the flow is completely

decorrelated across all moorings.

As justified further below, we interpret the flows at

1–10 km in the winter mixed layer as an extension of

balanced submesoscale turbulence into the super-

inertial range. At scales smaller than 1 km, atmo-

spherically forced three-dimensional turbulence likely

makes a contribution to the frequency spectrum

(cf. Evans et al. 2018), but the mooring array cannot

resolve such small lateral scales.

2) SEASONALITY

The frequency statistics undergo substantial season-

ality (Figs. 8a–d). At v 5 1025 cps, that is, a period of

about 1 day, the frequency spectrum is almost an order

of magnitude larger in winter than in summer. This

frequency remains dominated by a spatial scale around

10 km throughout the year, indicating that this season-

ality in the frequency spectrum is a seasonality in sub-

mesoscale turbulence.

At lower frequencies, the seasonality is less pro-

nounced. At v 5 1026 cps, that is, a period of about

10 days, there is little seasonality. At even lower fre-

quencies, there appears to be some seasonality, but

the error bars are large. At these periods, there are

few degrees of freedom because the segments are

only 140 days long and the spatial scale of the flow is

large, such that the motion across the moorings is

correlated. The formal error bars on the frequency

spectrum are underestimates of the true uncer-

tainty because they assume decorrelated signals at all

moorings.

The near-inertial motion also undergoes a seasonal

cycle. The peak changes its amplitude somewhat be-

tween the seasons, but most notable is the seasonality

at small scales. While there is no discernible inertial

peak at the sampled separations in winter or spring,

there are clear peaks at all separations in summer and

fall. A plausible explanation would be that nonlinear

submesoscale turbulence dominates at the inertial

frequency in winter and spring, drowning out any

signal from inertial motion. The turbulent motion

generates a broadband signal in both wavenumber

and frequency space, and no peak occurs in the fre-

quency statistics. In summer and fall, instead, near-

inertial waves that are linear to leading order appear

to dominate. In summer, in particular, the spatial

scales of near-inertial waves are remarkably small,

with a significant part of the variance at separations of

order 1 km. We speculate that the increased Burger

number of the seasonal thermocline may enhance the

dispersion of near-inertial waves by geostrophic flow,

facilitating the transfer of near-inertial energy to

small scales (e.g., Young and Ben Jelloul 1997; Xie

and Vanneste 2015; Thomas et al. 2017; Rocha

et al. 2018).

There is some seasonality in the semidiurnal tidal peak,

with the highest energy occurring in fall. In all seasons,

there are discernible tidal peaks in the frequency-resolved

structure functions at the larger separations but not the

smaller separations.

The supertidal frequencies display some seasonality

as well. The broadband energy level is somewhat re-

duced outside of winter, letting a minor peak at the tidal

harmonic at v 5 4.5 3 1025 cps emerge in spring,

summer, and fall.

3) PRESSURE GRADIENTS

To further investigate the distribution of energy near

the inertial frequency, we now consider the power

spectra of pressure gradients as inferred from linear

dynamics:

iv~u2 f~y52~p
x

and iv~y1 f ~u52~p
y
. (35)

We calculate the frequency spectra hj~px(v)j2 1
j~py(v)j2i/2f 2 and the frequency-resolved structure func-

tions [Dpx(r, v)1 Dpy(r, v)]/2f 2. We include the f22

normalization such that these pressure gradient statis-

tics match the velocity statistics for geostrophic flow. For

strongly superinertial flow, these pressure gradient sta-

tistics are equal to v2/f 2 times the velocity statistics.

But the pressure gradient statistics reveal new infor-

mation around the inertial frequency because they

filter out linear inertial motion, which consists of a

balance between the tendency and Coriolis terms

and produces no pressure gradients. Any remaining

signal at the inertial frequency must thus be due to

nonlinear dynamics. The inferred pressure gradients

are then of course not equal to the true pressure gra-

dients but instead include contributions from the

nonlinear terms.
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These pressure gradient statistics cleanly remove

the inertial peak (Fig. 9). This confirms that the iner-

tial peak is due to linear dynamics, and it allows us to

‘‘see through’’ the inertial peak. In winter, where

there is no discernible inertial peak in the frequency-

resolved structure functions at any separation, the

pressure gradient statistics confirm that this broad-

band energy is due to nonlinear dynamics, that is,

submesoscale turbulence. This supports the picture

that submesoscale turbulence extends to superinertial

Eulerian frequencies, in this case for spatial scales

smaller than about 10 km. These pressure gradient

statistics also confirm the seasonal cycle in this

strongly nonlinear submesoscale turbulence with variance

levels that differ by an order of magnitude between winter

and summer.

In contrast to linear inertial waves, linear tidal waves

are associated with a pressure signal. A prominent peak

thus remains in the pressure gradient statistics at the

semidiurnal frequency. Interestingly, there is less sea-

sonality in this peak than in the velocity statistics,

possibly because seasonally variable near-inertial or

submesoscale energy leaks into the tidal frequency in

the velocity statistics but not in the pressure gradient

statistics.

4) DEEP DATA

At 500-m depth, the general shape of the frequency

spectra and the frequency-resolved structure functions

is similar to that of the statistics at 50-m depth

(Fig. 10). At low frequencies, the energy levels at

500m are similar to those at 50m, as expected for

thermocline-spanning mesoscale eddies. At higher

frequencies, which are associated with smaller scales,

the energy is reduced by about an order of magnitude

compared to 50-m depth. The frequency spectra are

substantially steeper, indicating that small-scale en-

ergy is more surface trapped.

The subinertial energy around v 5 1025 cps still

undergoes a substantial seasonal cycle. The difference

between winter and summer is somewhat muted, but

the minimum now occurs in fall and is still about an

order of magnitude lower than in winter. While 500m

does not fall into the mixed layer according to com-

mon definitions, it still is in the weakly stratified sub-

polar mode water layer above the main thermocline

FIG. 9. Frequency-resolved structure functions for pressure gradients, estimated for the four seasons from the

OSMOSIS array at 50-m depth. All lines and error bars are the same as in Fig. 8.
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(Fig. 2c). Unlike strongly stratified thermocline water,

this layer therefore does experience a seasonal ener-

gization of submesoscales (Erickson et al. 2020).

b. Helmholtz decomposition

To further elucidate the submesoscale dynamics, we

now apply the single-separation Helmholtz decom-

position introduced in section 4 to the wintertime

mooring data at 50-m depth (Fig. 11). For every sep-

aration r, we compare the frequency spectrum, the

frequency-resolved structure function [Du(r, v) 1
Dy(r, v)]/2, and the diagnosed rotational component

Drot(r, v)/2. It is important to remember here that the

single-separation Helmholtz decomposition can only

distinguish between rotational and divergent flow if the

flow is dominated by scales comparable to or larger

than r. This is not the case if the frequency-resolved

structure function matches the frequency spectrum,

that is, if the flow sampled at moorings separated by a

distance r is decorrelated. In such a case with small-

scale dominance, the single-separation Helmholtz de-

composition assigns half the energy to the rotational

component, irrespective of the actual rotational con-

tent of the flow.

FIG. 10. Frequency-resolved structure functions estimated for the four seasons from the OSMOSIS array at 500-m

depth. The presentation is the same as in Fig. 8.
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Across almost all separations and frequencies, the

Helmholtz decomposition indicates rotational domi-

nance where it has distinguishing power. Wherever

the frequency-resolved structure function falls be-

low the frequency spectrum, the diagnosed rotational

component makes up a large fraction of the total

energy. Where the frequency-resolved structure

functions converge to the frequency spectrum, the

rotational component drops to one-half of the energy,

as expected.

There are only a few exceptions to this general pic-

ture. At low frequencies, where estimation errors are

large, there are occasional fluctuations of the rotational

component away from the corresponding frequency-

resolved structure function. Similarly, the diagnosed

rotational component sometimes makes up a fraction

larger than one-half where the frequency-resolved

structure functions match the frequency spectrum

and the decomposition has no distinguishing power

(e.g., at r 5 13.2 km and v ’ 5 3 1026 cps). At the

inertial and tidal frequencies, the rotational compo-

nent drops to half or even less of the frequency-

resolved structure function for the larger separations.

The most likely reason for this is that submesoscale

turbulence at these frequencies and spatial scales is

decorrelated (cf. Fig. 9), but there could also be a

nonnegligible contribution from linear waves with a

substantial divergent component. This feature dis-

appears at smaller separation, where submesoscale

turbulence is correlated across mooring pairs.

FIG. 11. Single-separation Helmholtz decomposition of the wintertime data at 50-m depth. Each panel corresponds to the separation r

given in the title. For reference, the kinetic energy frequency spectrum (black line) is shown in every panel. For every separation, the

frequency-resolved structure function (blue to red lines) are compared to the diagnosed rotational component (orange lines). The ref-

erence frequencies marked by vertical black lines are the same as in Fig. 8.
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In summary, this decomposition suggests that the

energetic submesoscale turbulence that dominates the

spatial scales sampled by the mooring array is largely

rotational, that is, horizontally nondivergent. This is the

case even at inertial and slightly superinertial frequen-

cies, where the flow is dominated by spatial scales of a

few kilometers.

c. Rossby numbers

To further assess the dynamics of the energetic

wintertime submesoscale turbulence, we now calculate

the frequency- and scale-dependent Rossby number

defined in (34) for the winter data at 50-m depth

(Fig. 12). For every separation r, the Rossby number

first increases with frequency, reaches a maximum at

intermediate frequencies, and then decreases. At fre-

quencies larger than v 5 2 3 1024 cps the Rossby

numbers for all separations increase again, but this

frequency range is likely contaminated by instrument

noise and should be ignored. The peak Rossby number

increases from about 0.1 for r 5 18.7 km, reached

around v 5 2 3 1026 cps, to about 0.5 for r 5 1.3 km,

reached around the inertial frequency. This peak

Rossby number at the smallest accessible scales is

roughly consistent with the Rossby number that

Buckingham et al. (2016) estimated from triangles

formed by the inner and central moorings, that is, on

the smallest scales considered here (Fig. 3).

The increase of peak Rossby number with de-

creasing separation r is expected for energetic sub-

mesoscale turbulence. If the wavenumber spectrum

falls off like k22, the scale-dependent Rossby number

increases with k1/2 or r21/2. The increase from 0.1 to

0.5 is roughly consistent with the expected factor

(18.7 km/1.3 km)1/2 5 4.

If this scaling continues to hold at smaller scales,

the Rossby number reaches one around r 5 300m.

This is somewhat smaller than what Callies et al.

(2015) inferred for the western subtropical North

Atlantic, not surprisingly given that the meso-

scale and submesoscale energy levels are substan-

tially lower in the OSMOSIS region (Thompson

et al. 2016).

A Rossby number of 0.5 at the smallest scales

captured by the mooring is also consistent with the

diagnosed rotational dominance in submesoscale

turbulence. While at such a Rossby number advective

nonlinearities are starting to become important, the

flow is expected to retain a rotational dominance until

the Rossby number becomes one. Given the level of

accuracy that the single-separation Helmholtz decom-

position can diagnose the rotational component with,

the two diagnostics agree in their characterization of

the flow as somewhat but not entirely geostrophically

dominated.

It is important to emphasize that the Rossby number

at r 5 1.3 km peaks at the inertial frequency but is not

one. This means that the advective time scale diagnosed

with the Rossby number is smaller than the Eulerian

time scale diagnosed with the frequency decomposition.

That the flow evolves on a dominant time scale com-

parable to the inertial period in an Eulerian frame

therefore does not necessarily imply that the nonlinear

terms in the momentum equation have the same mag-

nitude as the Coriolis and pressure gradient terms. In

other words: the Lagrangian evolution may still be

subinertial, even if the Eulerian evolution is inertial or

superinertial.

6. Conclusions

Our analysis of the OSMOSIS mooring array data

confirms the energization of the submesoscale range

in winter. We can now unambiguously attribute this

seasonal cycle to balanced submesoscale turbulence,

whose energy level frequency-resolved structure

functions show to vary by about an order of magni-

tude between winter and the rest of the year. This

supports the dynamical interpretation previously

gleaned from wavenumber spectra and their dy-

namical decomposition, which is that balanced flows

induced by mixed layer instabilities produce the

wintertime energization.

Furthermore, the OSMOSIS array allows us to as-

sign time scales to the energetic wintertime sub-

mesoscale turbulence. We find that wavelengths of

order 10 km correspond to time scales of order 1 day,

FIG. 12. Scale- and frequency-dependent Rossby number for the

wintertime data at 50-m depth. The separations r are given in the

legend. The reference frequencies marked by vertical black lines

are the same as in Fig. 8. The data beyond v 5 2 3 1024 cps are

dominated by noise and should be ignored.
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suggesting that submesoscale turbulence at scales

smaller than 10 km evolves on time scales similar to or

shorter than the inertial period. At the same time, we

infer from an abridged Helmholtz decomposition

that submesoscale turbulence is largely horizontally

nondivergent across the observed scales, and we find

that the scale-dependent Rossby number does not ex-

ceed 0.5 down to spatial scales of 2.6 km. This suggests

that while Eulerian time scales are superinertial

at spatial scales of about 10 km and smaller, the

Lagrangian evolution is likely subinertial down to

subkilometer scales. This is broadly consistent with

previous estimates of scale-dependent Rossby num-

bers from observed wavenumber spectra (Callies et al.

2015) and wavenumber–frequency spectra from nu-

merical simulations (Rocha et al. 2016; Qiu et al. 2018;

Torres et al. 2018).

These findings suggest that a description of sub-

mesoscale turbulence based on subinertial dynamics is

at least not qualitatively misleading down to scales of a

few kilometers. It should be kept in mind, however,

that our statistics only speak to average conditions.

Especially in an intermittent flow field, strongly

ageostrophic dynamics can still play a role locally. For

example, our statistics do not deny the importance of

accelerated sharpening of submesoscale buoyancy

gradients produced by mixed layer instabilities into

sharp fronts. Yet, our statistics suggest that, on aver-

age, horizontal divergence becomes comparable to the

vertical vorticity only at scales of order 1 km and

smaller.
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APPENDIX

Mooring Knockdown

In May 2013, strong currents knocked down the up-

permost current meters on the OSMOSIS moorings by

more than 200m in depth (Fig. A1). While such a large

knockdown is rare in the year-long deployment—the

root-mean-square knockdown is 25m for the instru-

ments at 50-m nominal depth and 21m for the

instruments at 500-m nominal depth (Figs. A1a,b)—it

does create concern about the reliability of the recor-

ded currents.

To estimate the velocity error, we assume (pessi-

mistically) that the moorings are stiff pendulums an-

chored at the seafloor at depth H. Then the angle

u between the mooring line and the true vertical can

be determined by the instrument depth h inferred

from the pressure sensor on the current meter. If h0
denotes the depth of the instrument when the mooring

is upright, then

u5 arccos
H2h

H2 h
0

. (A1)

The azimuthal velocity of the instrument is then

(H 2 h0)du/dt. For small angles u, the azimuthal mo-

tion is roughly horizontal, so we will consider it as an

estimate for the horizontal velocity error due to the

mooring motion.

The spectrum of the azimuthal mooring motion

(H2 h0)
2
v2hjû(v)j2i is well below the kinetic energy

spectrum inferred from the recorded currents (Fig. A1c).

These frequency spectra are estimated from the full

mooring record, with the same spectral estimation pro-

cedure as described in the main text. The most prom-

inent azimuthal mooring motion occurs at the

semidiurnal tidal frequency, presumably because the

periodic nature of the tidal currents more effectively

moves the mooring line than a quasi-random turbu-

lent flow. Even at its extreme (at the first harmonic of

the semidiurnal lunar tide), the spectrum of the azi-

muthal mooring motion is a factor 20 below the ki-

netic energy spectrum. This suggests that our spectral

estimates are robust at roughly a 5% level—and

probably better because the moorings are not stiff

pendulums.

We do not have enough information to estimate the

longitudinal velocity (H2 h0) sinudl/dt, where l denotes

the longitudinal angle of the mooring pendulum rela-

tive to due east. It seems unlikely, however, that this

component of mooring motion is orders of magnitude

larger than the azimuthal component.

Frequency-resolved structure functions should have a

similar relative error because the mooring motion error

is not random but rather strongly correlated with the

flow itself. It should also be noted that the moorings

were typically knocked synchronously, so while the in-

struments were located away from their rest depths, they

were still located at approximately the same depths

relative to one another. This means that the velocity

differences still reflect largely horizontal rather than

vertical shear, as intended.
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