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Abstract 

Preorganization of large, directionally oriented, electric fields inside protein active sites has been 

proposed as a crucial contributor to catalytic mechanism in many enzymes, and may be efficiently 

investigated at the atomistic level with molecular dynamics simulations. Here we evaluate the ability of 

the AMOEBA polarizable force field, as well as the additive Amber ff14SB and Charmm C36m models, to 

describe the electric fields present inside the active site of the peptidyl-prolyl isomerase cyclophilin A. We 

compare the molecular mechanical electric fields to those calculated with a fully first principles quantum 

mechanical (QM) representation of the protein, solvent, and ions, and find that AMOEBA consistently 

shows far greater correlation with the QM electric fields than either of the additive force fields tested. 

Catalytically-relevant fields calculated with AMOEBA were typically smaller than those observed with 

additive potentials, but were generally consistent with an electrostatically-driven mechanism for catalysis. 

Our results highlight the accuracy and the potential advantages of using polarizable force fields in systems 

where accurate electrostatics may be crucial for providing mechanistic insights.  
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Introduction 

Over the past thirty years, molecular simulations have become an integral and routine part of 

understanding biological processes at the molecular level. Advances in both CPU and GPU hardware, and 

more reliable and sustainable software packages, have led to both wider uptake and greater numbers of 

applications across multiple fields.1 Microsecond-length simulations are now routine, allowing exploration 

of biomolecular dynamics on timescales relevant for a variety of biological processes, whether through 

conventional simulation, enhanced sampling, or kinetic modeling of the underlying process. 

Simultaneously, the major families of biomolecular force fields have undergone multiple rounds of 

development and improvement.2–7 For any force field, this reparametrization process requires significant 

time and resource investment to identify errors, develop corrections, and validate the accuracy of the 

new parameters. The functional form of each force field, which provides the framework for parameter 

optimization, has therefore remained relatively unchanged and similar between families for decades.8,9 

With small variations between force field families, each typically features a simple harmonic 

representation of bonds and angles, a Fourier series for proper dihedrals, a Lennard-Jones model of van 

der Waals (vdW) interactions, and most importantly, an additive, fixed-point-charge representation of 

electrostatic interactions.10–12 The philosophy for parametrization of these fixed-point-charges varies 

between families and has seen substantial modification between force field iterations, but generally 

entails a significant focus on fitting to either molecular electrostatic potentials (for example of sidechain 

fragments), interaction energies, or derived thermodynamic properties.10–14 For a given biomolecule, 

these electrostatic and vdW parameters are then relied upon to accurately recreate interatomic 

interactions in all possible environments. 

Given the diversity of biomolecular environments and the relative simplicity of common potential 

functions it is perhaps surprising that biomolecular force fields have seen such broad and successful 

applications.1,15–17 However, the latest additive force fields feature a delicate balance of force field terms 

built up over decades, that continue to evolve to be usefully applied in new contexts. Where force fields 

have failed, parameter improvements have often focused on tweaks to backbone and sidechain torsional 

potentials,6,18 but have also included changes to the Lennard-Jones potential,19 pair-specific corrections 

to nonbonded interactions in defined environments,20 adaptations of parametrization protocols to 

develop implicitly polarized partial charges,21,22 and even application-specific water models.23 

Nevertheless, fixed, atom-centered partial charges suffer from known deficiencies in their representation 

of intermolecular interactions.24 First, molecular electrostatic potentials, often the main target for fitting 
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electrostatic parameters, are more accurately recreated if higher order, atom-centered multipoles are 

included in the fitted potential function.25,26 Second, additive models do not include an explicit 

representation of induction, and may therefore represent electrostatics poorly for molecular 

conformations, functional groups, or environments not well-validated in the parametrization process.27–

30 This lack of transferability may pose challenges in the use of force fields for new, untested, applications. 

Alternative, more advanced, models of electrostatics have been implemented in new families of 

biomolecular force fields,31,32 of which the Charmm Drude33 and AMOEBA force fields34 are amongst the 

most extensively developed. Both include explicit representation of mutual polarization, and AMOEBA 

also incorporates a classical multipole representation of fixed electrostatics. These potential functions 

have been repeatedly shown to improve representation of electrostatic properties around biologically 

relevant moieties, and can improve the reliability and convergence properties of hybrid quantum 

mechanical/molecular mechanical (QM/MM) studies.35–44 Nevertheless, the accuracy advantages of 

polarizable force fields in the context of real protein environments are still poorly understood, and should 

be explored in systems where quantitatively accurate intramolecular electrostatics may be crucial to 

provide mechanistic insight. Biological catalysis is a particular focus in this regard as, in both naturally-

occurring and designed systems, enzyme active sites may pre-orient substrates and stabilize reaction 

transition states with focused electric fields or other electrostatic motifs.45,46 Although studies of the 

enzyme-catalyzed chemical reactions require QM/MM techniques, the reactant and product states can 

be studied efficiently with purely MM models, provided the underlying electrostatic model is sufficiently 

accurate to provide useful information on the active site environment. 

Given this interest, here we test the ability of biomolecular force fields to reproduce the electric fields 

inside a whole protein and its associated solvent and ionic environment, using the peptidyl-prolyl 

isomerase cyclophilin A (CypA) as a model system. We choose to evaluate the accuracy of the AMOEBA 

polarizable force field, as it has recently been promisingly used in proof-of-concept work for enzyme 

design.47,48 Although ultimately successful in redesigning active site interactions, the additional 

computational cost of AMOEBA has prevented lengthy studies of active site dynamics, and there has been 

little assessment so far of the physical accuracy of AMOEBA electric fields within the folded protein 

environment over typical simulation timescales. 

Assessing this physical accuracy by comparison to experiment has substantial difficulties. Biophysical 

techniques for measuring intramolecular electric fields, such as vibrational Stark effect spectroscopy, can 

provide precise and sensitive measurements of electric fields inside biomolecular environments, but 



 4 

remain technically challenging and may require the introduction of unnatural amino acids to act as 

vibrational probes.49 Instead, we evaluate the accuracy of AMOEBA electrostatics by comparison to a fully 

quantum mechanical representation, calculated using the ONETEP linear-scaling density functional theory 

(DFT) software.50 ONETEP is based on a reformulation of DFT which takes advantage of the locality of 

electronic structure to allow DFT calculations with computational effort that increases linearly with the 

number of atoms, as compared to conventional DFT approaches where the computational effort increases 

with the third power. As a result, ONETEP can perform calculations on many thousands of atoms, such as 

entire proteins in solvent, as we do here. A unique characteristic of ONETEP is that it retains the full near-

complete basis set accuracy of conventional DFT by in situ optimisation of Non-orthogonal Generalised 

Wannier Functions51 (NGWFs) which are expressed in terms of a periodic sinc (psinc) basis set which is 

equivalent to plane waves. The ONETEP program has been developed to run on parallel computers, using 

hybrid MPI-OpenMP parallelism.52  

To test the ability of biomolecular force fields to reproduce the electric fields derived from DFT we first 

perform ns-length AMOEBA molecular dynamics (MD) simulations of CypA to generate structural 

ensembles for wild-type (WT) and mutant systems. We then calculate electric fields at the reaction site 

using AMOEBA,53 and the widely used Amber ff14SB2 and Charmm C36m3 additive protein force fields. 

Each set of electric fields is then compared with those calculated at the DFT level with ONETEP. We find 

that AMOEBA electric fields show far greater correlation to DFT than those of additive potentials, and with 

smaller systematic error. Our results highlight the utility of polarizable potentials in biomolecular 

environments where the accurate reproduction of electrostatics is crucial. If mechanistic insights are 

desired, recent high-performance software implementations obviate the timescale limitations of standard 

polarizable simulations to some extent,54–56 but cross-validation with experimental data would remain 

highly desirable to complement the computational predictions.  
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Methods 

CypA system preparation 

The initial structures for simulated systems were taken from crystal structures of wild-type human CypA 

bound to HIV capsid protein, PDB entries 1M9C and 1M9Y.57 In both cases, chain A was taken as the 

structure of the CypA receptor, and the substrate was trimmed to a six-residue model peptide, of 

sequence HAGPIA from PDB 1M9C (with the G-P peptide bond in the trans configuration), or AAAPIA from 

PDB 1M9Y (with the A-P peptide bond in the cis configuration). Substrate N and C termini were not capped 

and peptides were modeled in their zwitterionic states. Basic and acidic residues were modeled in their 

ionized states and histidine residues modeled in their neutral, Nd-protonated form. Finally, R55A mutant 

structures with equivalent cis- and trans-proline substrates were created by manually truncating the 

Arg55 residue in the crystal structures to the Cb atom. 

CypA MD simulations 

Simulations of both WT and R55A mutant CypA, bound to cis- and trans-proline substrates, were 

performed in triplicate using the AMOEBA polarizable force field. A control simulation of WT CypA bound 

to the cis-proline substrate was also performed with the Amber ff14SB additive force field. See Table S1 

for a list of all simulations performed. Initial protein crystal structures were protonated and solvated using 

the tleap module of the Amber14 package.58 CypA-peptide complexes were neutralized with Cl- anions, 

solvated in an approximately 63 x 65 x 62 Å periodic box of water such that no solute atom was less than 

8.0 Å from the box edge, and Na+/Cl- ions added to create a 150 mM NaCl ionic atmosphere. The 

simulation of the WT CypA cis-proline system performed with the Amber additive force field used the 

same starting configuration as the first AMOEBA replicate, except ion positions in bulk solvent were 

randomized. In total, system sizes varied from 17727 atoms (R55A trans-proline system), to 19030 atoms 

(R55A cis-proline system). 

AMOEBA simulations used the AMOEBA 2013 force field for protein and ions, and the AMOEBA 2003 

water model.53,59 Simulations were performed in triplicate, with unique random seeds for the thermostat 

and barostat. Systems were energy minimized for 2500 steps with a steepest descent algorithm, then 

heated to 300 K over 50 ps in the NVT ensemble, followed by equilibration to 1.0 bar over 100 ps in the 

NPT ensemble. Production simulations were then performed for a total of 25 ns each, with trajectory 

frames saved at 10 ps intervals for a total of 2500 frames per trajectory. An Andersen thermostat and 

Monte Carlo barostat were used to maintain temperature at 300 K and pressure at 1 bar throughout. A 

velocity Verlet integrator with a 1 fs timestep was used in all simulations. Long-range electrostatic 
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interactions were treated with a Particle Mesh Ewald summation with a 7.0 Å real-space cutoff. Van der 

Waals interactions were subject to a 9 Å cutoff with an analytical long-range correction. Induced dipole 

convergence was set to 10-5 D/atom. All MD simulations were performed with the Tinker-OpenMM plugin, 

using Tinker version 7.1, and OpenMM version 6.3.55,60 

The WT cis-proline Amber simulation used the ff14SB force field for protein, TIP3P model for water and 

Joung and Cheatham parameters for ions.2,61,62 The system was energy minimized for 5000 steps with a 

steepest descent algorithm, followed by 5000 steps with a conjugate gradient algorithm. Next, the system 

was heated to 300 K over 50 ps in the NVT ensemble, equilibrated to 1.0 bar over 100 ps in the NPT 

ensemble, and simulated for a further 25 ns under NPT conditions, with trajectory frames saved every 

10 ps for a total of 2500 per trajectory. A Langevin thermostat and Berendsen barostat were used to 

maintain temperature and pressure. A 2 fs timestep was used throughout, and the SHAKE algorithm used 

to constrain all bonds involving hydrogen.63 Long-range electrostatic interactions were treated with a 

Particle Mesh Ewald summation with an 8.0 Å real-space cutoff, while van der Waals interactions were 

calculated with an 8 Å cutoff and long-range analytical correction. MD simulations were performed with 

the pmemd.cuda module of the Amber14 software.58 

MM field calculations 

Using the 2500 frames extracted from each trajectory, electric fields were calculated using the AMOEBA 

2013, Amber ff14SB and Charmm C36m force fields. The electric fields experienced by the peptide 

substrate were evaluated by calculating the environmental field, 𝐸"⃗ $%&, following the approach of Fried & 

Wang:64 

 𝐸"⃗ $%& = 𝐸"⃗ ()*+,$- − 𝐸"⃗ ,/01%2  (1) 

Here 𝐸"⃗ ()*+,$- and 𝐸"⃗ ,/01%2 refer to the electric field at a given site in the fully solvated protein-ligand 

complex, and in a ligand-only system stripped of receptor and solvent, respectively. Fields were first 

calculated at the two atoms of the isomerized peptide bond - the proline N atom and the carbonyl C atom 

of the preceding residue (Fig. 1). Atom-centered fields were then linearly interpolated to provide the field 

experienced at the bond midpoint. After AMOEBA simulations, the electric fields	𝐸"⃗ ()*+,$- at the C and N 

atoms were calculated directly for each trajectory frame using the instantaneous induced atomic dipole 

at each atomic site, �⃗�/%2, and the relevant atomic polarizability taken from the AMOEBA force field, 𝛼: 

 
𝐸"⃗ ()*+,$-,+),17/819,$ =

�⃗�/%2
𝛼

 
(2) 
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For additive force fields the electric field was calculated by dividing the electrostatic force, �⃗�$,$ , exerted 

upon the desired atom, by its partial charge, 𝑞: 

 
𝐸"⃗ ()*+,$-,122/</&$ =

�⃗�$,$	
𝑞

 
(3) 

For all force fields, post-processing of trajectory frames to remove the CypA receptor, solvent and ion 

coordinates allowed the equivalent calculation of electric fields in the ligand-only system, 𝐸"⃗ ,/01%2. Finally, 

the electric field arising from the protein/solvent/ionic atmosphere of the system and acting on the 

rotatable amide bond,	𝐸"⃗ $%&, was calculated via Eqn. 1. 

For each trajectory structure, fields were calculated and compared across force fields in two distinct ways. 

First, x, y, and z field components at the substrate proline N and preceding C atom were evaluated directly 

in the Cartesian coordinate frame. Second, the field at each atom was also projected along a vector 

perpendicular to the plane of the substrate proline ring, calculated individually for each frame as the unit-

length cross product of the N-Ca and N-Cd bond vectors. This vector approximates the proposed 

orientation of the peptidyl carbonyl group at the cis-trans transition state.65 The projection of the 

substrate N and C field vectors along the same direction therefore estimates the magnitude of the 

environment electric field aligned with the peptidyl carbonyl group during the peptide bond rotation. 

Finally, N and C atom projections were averaged to interpolate the field magnitude at the bond midpoint. 

These two distinct approaches compare 1) the full electric field vectors, and 2) the electric field magnitude 

oriented along a catalytically-relevant direction. 

For the additive models, electric fields were calculated using an in-house python script making use of the 

Amber sander python API. For the AMOEBA model, fields were calculated using a separate in-house 

python script, linking to the analyze module of Tinker 7.1. 

Finally, ten frames were extracted at 2.5 ns intervals from the first AMOEBA simulation performed for 

each of the four CypA-substrate systems, for comparison with ONETEP DFT fields. 

ONETEP field calculations 

All DFT calculations in this work were performed with the ONETEP linear-scaling DFT package in the norm-

conserving pseudopotential approximation. The PBE exchange-correlation functional was used. A minimal 

in situ optimized NGWF basis was employed, with an 8.0 a0 (≈4.23 Å) localization radius. Density kernel 

truncation was not applied. 
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For consistency with MM calculations, periodic boundary conditions were employed throughout. The MM 

frames were not truncated in any way. A plane-wave kinetic energy (k. e.) cutoff of 800 eV was assumed. 

Given that the dimensions of the simulation cell varied slightly between MM frames (due to the use of 

NPT conditions), and that the cell edges need to be divisible into an integer number of grid points, the 

actual k. e. cutoffs were between 798 and 832 eV. The resultant subtle difference in basis set quality 

between frames was neglected. 

To calculate electric fields, we first calculated electrostatic potentials on a Cartesian grid with a spacing of 

about 0.13 Å (a so-called double grid, with a spacing sufficiently fine to represent densities). Two separate 

components to the potentials were considered – one due to the valence-electronic pseudodensity 

(Hartree potential), and one due to the local pseudopotential. Both components were obtained in 

reciprocal space using Fast Fourier Transforms (FFTs) using standard ONETEP methodology. Exchange and 

correlation potentials, representing non-classical effects, were excluded from analysis. Electric fields were 

obtained from the potential in reciprocal space, where the gradient operator is simply 𝑖�⃗�: 

 𝐸"⃗ (�⃗�) = −𝑖�⃗�𝑈(�⃗�) (4) 

and subsequently transformed back to real space via an inverse FFT. Final electric fields at arbitrary points 

in space were obtained via trilinear interpolation from the nearest grid points. 

Quantities that underwent FFT-processing on a double grid suffer from a small amount of ringing artifacts 

with a period of the original (single) grid spacing. While the magnitude of the ringing is small, we are 

investigating sums of two components to the electric field (Hartree and pseudopotential) that have 

opposite signs and similar magnitudes, thus cancelling out to a large degree. This magnifies relative errors 

in the total electric field. To improve the accuracy of the calculated fields we smoothed the field values 

on the grid using a 27-point 3D stencil, where the stencil weights were given by B
C
2EFG, where 𝑑B is the 

taxicab distance of a stencil point from the middle of the stencil. This procedure was found to efficiently 

attenuate the ringing artifacts. 

The use of Cartesian grids in the DFT calculations with localised orbitals and in subsequent processing is 

expected to subtly break rotational invariance (by distinguishing certain spatial directions corresponding 

to grid edges) and translational invariance (so-called eggbox effect). These effects are minimised in 

ONETEP where the local orbitals (NGWFs) are optimised in situ, but they are not completely eliminated.66 

To alleviate any concerns over whether these have measurable effect on the obtained electric fields, we 

performed six additional calculations for one of the MM frames, where the systems were variously rotated 
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and translated relative to the grid. Typical error magnitudes were found to be in the order of 0.1 MV/cm, 

with a maximum below 0.4 MV/cm, making them negligible in our analysis. 

Data availability 

All underlying data used for this study is made freely available (DOI: 10.5281/zenodo.3678278), including 

the simulation trajectories, calculated electric fields, and analysis code for calculating fields from AMOEBA 

and fixed-charge simulations. The code and underlying data used to create figures is also available in this 

repository. 
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Results 

CypA as an exemplar for electrostatically-driven enzyme mechanisms 

The peptidyl-prolyl isomerase CypA catalyzes the cis/trans isomerization of the amide preceding proline 

residues in proteins, inducing a structural change in peptide chains that would otherwise be extremely 

slow under physiological conditions. This fundamental catalyst for protein conformational change is 

ubiquitously expressed and plays a role in a wide variety of biomolecular mechanisms, including protein 

folding, trafficking, and signalling and regulation. Equally, however, CypA has been implicated in a wide 

variety of disease processes, particularly the facilitation of viral infection and replication.67 

Owing to this broad spectrum of activity and therapeutic interest, CypA structure, dynamics and catalytic 

mechanism have been well-studied for decades using both experimental and computational structural 

biology approaches.65,68–74 Many of these studies have identified residue R55, conserved across the 

cyclophilin family, as mechanistically crucial – either a R55A or R55K mutation result in a similar reduction 

of catalytic efficiency.71,75 In the case of the lysine mutation this change in activity occurs in spite of little 

structural perturbation of the active site.71,72 A subtle combination of electrostatic, structural and/or 

dynamical effects has therefore long been thought to underlie the contribution of R55 to catalysis. 

Intriguingly, in a combined NMR and molecular dynamics study, Camilloni and co-workers proposed that 

R55 provides a stabilizing electric field that aligns with the electric dipole of the peptidyl carbonyl group 

as the pseudo-peptide bond rotates through the cis/trans transition state.65 This ‘electrostatic handle’ was 

suggested to drive the rotation to occur only via positive peptide w-angles by reducing the activation 

energy when the carbonyl dipole is aligned with the R55 electric field, and increasing it when nonaligned. 

From simulations of WT CypA, Camilloni et al. calculated the mean electric field component aligned 

perpendicular to the plane of the proline ring (chosen to be roughly normal to the peptide bond in either 

of the cis/trans ground states) to be stabilizing, but relatively small at -40 to -50 MV cm-1.65 

Solvatochromism experiments suggest this magnitude lies between the electric field strengths exerted on 

probe molecules by polar, hydrogen-bonding environments such as alcohols or water, and those exerted 

by apolar solvents such as hexane.64 The CypA active site is therefore likely to be representative of typical 

intramolecular field strengths encountered in protein environments with both polar and non-polar 

moieties. Potential energy surfaces calculated for a model proline dipeptide by Camilloni et al. also 

suggested that a field of -50 MV cm-1 aligned with the cis/trans transition state would lower the 

isomerization activation energy by approximately 30 kJ mol-1, qualitatively consistent with experimentally 

observed reaction speed-ups over the uncatalyzed reaction.65 
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Nevertheless, the electrostatic handle hypothesis was proposed using CypA field strengths determined 

with ONIOM DFT calculations, the relatively high computational cost of which precludes the use of this 

approach to study electric fields in proteins more generally. The hypothesis does suggest, however, that 

CypA provides a well-suited test case to evaluate the ability of the AMOEBA force field to recreate electric 

fields in protein active sites, which would provide a much faster route to evaluating ground-state 

electrostatics, energetics and dynamics. 

AMOEBA field magnitudes projected perpendicular to the substrate proline ring are smaller than 
those of additive force fields 

To evaluate the ability of AMOEBA to model typical intramolecular fields in CypA, we first calculated 

electric fields present in structural ensembles of the WT, cis-proline, CypA complex (PDB 1M9Y,57 prepared 

and simulated as per the Methods). For each simulation frame from the triplicate simulations performed 

with AMOEBA, the Cartesian x, y, and z components of environmental electric field were calculated at the 

C and N atoms of the substrate peptide bond. Each atom-centered field was projected along the vector 

perpendicular to the plane of the peptide proline ring, which reflects the magnitude of the field aligned 

with the carbonyl group of the peptide bond when rotated during the substrate isomerization. Projections 

were then linearly averaged to estimate the field magnitude at the peptide bond midpoint (Fig. 1). After 

projection, intramolecular electric field magnitudes ranged from -40 to +40 MV cm-1 (Fig. 2A), even in 

these short simulations. However, the distributions overlapped substantially and the mean field strengths 

from each independent simulation spanned a much smaller range, from -6.9 to -16.8 MV cm-1. 
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Figure 1 – Orientation of CypA (blue cartoon) and AAAPIA truncated peptide substrate (gray sticks) in a 
cis-proline conformation generated from PDB entry 1M9Y. Residue R55 of CypA is positioned 
approximately above the peptide proline ring, and, in the ground state, interacts with the proline carbonyl 
oxygen atom. Substrate C and N atoms for the calculation of environment field are depicted as balls, and 
the approximate orientation of the proposed environmental electric field is overlaid with a black arrow 

 
Figure 2 – Distributions of environmental electric fields projected perpendicular to the proline ring, 
observed in 25 ns simulations of the WT, cis-proline CypA complex. A) Field distributions observed at the 
isomerized peptide bond in three replicate AMOEBA simulations (solid, dashed, and dotted lines). B) Field 

A)

B)
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distributions observed for the structures of the AMOEBA Run 1 ensemble (black, identical simulation to 
Run 1 in panel A), but with fields recalculated using either the Amber (orange), and Charmm (blue) force 
field. In both panels, ticks on the x-axis denote the mean of each distribution 

 

Part of the variation in field strength originates from the projection of the Cartesian field components 

along a vector perpendicular to the proline ring at each timestep. The direction of this vector is not 

identical for every MD snapshot, as torsional motions and out-of-plane bending subtly affect the 

conformation of the substrate proline ring. Thus, even if the CypA environment provided a constant 

electric field, a distribution of field strengths would be observed owing to the conformational fluctuation 

of the peptide. To interrogate the effects of substrate conformational fluctuation, for the first AMOEBA 

replicate we visualized the Cartesian components of the vector perpendicular to the proline ring, and 

compared them with the Cartesian components of the calculated electric fields at the substrate peptide 

N and C atoms (Movies S1 and S2). Even after structural superimposition of the frames, the electric field 

vectors were distributed across a wide range of orientations. However, the vectors perpendicular to the 

proline ring remained in a compact distribution of orientations, indicating that intramolecular fluctuations 

of the substrate proline were not the dominant source of the observed variance in electric field. 

Equilibrium active site structural fluctuations of the receptor, and distal residues in the substrate, 

therefore engender the majority of the observed variance. 

The magnitude of field fluctuations is affected by the sensitivity of the force field electrostatic model to 

small structural changes. The AMOEBA field distributions were therefore compared with those of the 

Amber ff14SB and Charmm C36m additive models, with a TIP3P water model in both cases. For each of 

the additive force fields, the electric fields at the substrate peptide C and N atoms were recalculated for 

each trajectory frame of the AMOEBA structural ensemble from the first replicate. 

Fields calculated with the additive models were systematically larger (more negative) than those of 

AMOEBA and showed a broader distribution (Fig. 2B). Distributions with Amber and Charmm force fields 

were remarkably similar, although slightly larger fields were calculated with the Charmm partial charges 

(�̅� = −41.0 MV cm-1) compared to Amber (�̅� = −37.0 MV cm-1). For the Charmm partial charges, 

increasing the real-space electrostatic cutoff from 8 Å to the commonly-used 12 Å made a negligible 

difference (< 0.02 %) to the total electrostatic energies and calculated field strengths, indicating that the 

differences between each force field family were systematic, rather than caused by real-space cutoff 

choice. For an appropriately balanced Ewald sum, this is of course what would be expected. To investigate 

whether the force field used to create the structural ensemble biased the calculated fields, we generated 
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an alternative structural ensemble of the same system with the Amber ff14SB force field. This ensemble 

showed analogous results, with a very broad distribution of Amber field strengths centered 

at -40.9 MV cm-1, and a comparatively tight AMOEBA distribution centered at -18.2 MV cm-1 (Fig. S1). 

Therefore, the differences observed between the fields calculated with additive and polarizable models 

were not simply caused by the structural ensemble generated with the AMOEBA force field. Instead, the 

broader distribution of field strengths observed with Amber & Charmm supports the notion that an 

additive Coulombic electrostatics model is more sensitive to the instantaneous environmental 

conformations than the AMOEBA polarizable model. 

DFT fields at the CypA active site are consistent with AMOEBA 

In our simulations of the WT cis-proline complex, the AMOEBA force field consistently showed an offset 

of ca. +15 to +25 MV cm-1 to Amber or Charmm electric field strengths. Although this trend was internally 

consistent across simulations and between force fields (Fig. S2, Table S2), the AMOEBA electric fields 

appeared to differ from those calculated by Camilloni & coworkers in CypA, which were estimated to be 

at least -40 MV cm-1 at the active site in both the cis-proline and trans-proline ground states.65 However, 

our system and methodology also differed substantially from this previous study. Simulations here were 

performed with a different peptide substrate, applied no NMR restraints to the protein structural 

ensemble, and calculated fields at both peptide C and N atoms during the projection of the field vector 

along the peptide normal, rather than only at the N atom.65 As such, we tested the accuracy of our 

MM-calculated field strengths by comparison to field strengths calculated with ONETEP DFT on the entire 

simulation system, which consisted of 19018 atoms. A subset of ten frames extracted at 2.5 ns intervals 

from the first replicate AMOEBA WT cis-proline simulation was used for comparison. Field vectors were 

compared directly using their Cartesian x, y, and z components in the simulation frame, rather than any 

projection along a specific vector. 
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Figure 3 – Comparison of ONETEP DFT electric fields inside the CypA WT cis-proline system with those of 
MM force fields. A-C) Comparison of the Cartesian x, y, and z field components at the cis-proline N-atom 
(dark blue crosses) and preceding C-atom (black circles), for ONETEP and (A) AMOEBA, (B) Amber and (C) 
Charmm force fields. D-F) Equivalent comparison of the Cartesian x, y, and z field components at the bond 

A)

B)

C)

D)

E)

F)
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midpoint, taken as the mean of the N and C atom components. In all cases, uncertainty is estimated from 
resampling the data with replacement (n = 2000) and is provided as the 95% confidence intervals in R2 

 

Table 1 – Regression statistics for CypA WT cis electric fields calculated with AMOEBA, Amber and Charmm 
force fields, and compared to ONETEP DFT calculations 

Regression statistic AMOEBA Amber Charmm 
Slope 0.86 ≤ 0.95 ≤ 1.05 0.70 ≤ 0.94 ≤ 1.23 0.87 ≤ 1.13 ≤ 1.45 

y-intercept 1.7 ≤ 3.5 ≤ 5.3 11.0 ≤ 14.8 ≤ 18.9 10.6 ≤ 15.1 ≤ 20.0 
Fields calculated as the mean of those at the C and N peptide atoms (see Fig. 3D-F for the regression lines). 
Uncertainty estimated as the 95% confidence interval in regression statistics calculated by resampling the data with 
replacement (n = 2000) 

 

Correlations between the ONETEP DFT and AMOEBA fields were relatively high, with R2 of 0.75 and 0.92 

for fields calculated at the substrate peptide N and C atoms respectively (Fig. 3A). Correlations between 

Amber or Charmm fields and ONETEP were far smaller, with R2 no higher than 0.60 (Fig 3B-C). Moreover, 

regression lines for the additive force fields appeared to have a large positive intercept for fields calculated 

at the peptide N and C atoms individually. An identical trend was observed when comparing QM and MM 

results after averaging the N and C atom field components for each frame (Fig. 3D-F). Again, AMOEBA 

fields gave close agreement to those calculated with ONETEP (R2 = 0.90), with slope close to unity and 

without the substantial positive y-intercept and broad confidence intervals exhibited by Amber and 

Charmm fields (Table 1). 

The large, positive y-intercepts observed when comparing the additive model field components to DFT 

suggest that Amber and Charmm may systematically estimate more positive electric fields than AMOEBA 

(Table 1). This may appear counterintuitive given that Amber and Charmm field magnitudes, when 

projected along the vector perpendicular to the proline ring, were substantially more negative than those 

of AMOEBA (Fig. 2B). However, by projecting fields along the vector perpendicular to the proline ring we 

only compare the catalytically-relevant dimension of field strength, and do not compare the full 

differences in field magnitude and direction between the force fields. The comparison of individual 

Cartesian components with DFT more fairly characterizes both properties. Additionally, the relatively 

limited data used in each comparison (30 points, one for each Cartesian component of the field in ten 

separate trajectory frames) could potentially result in dataset bias, and we have not attempted to ensure 

structural diversity between the analyzed frames, preferring instead to use the whole trajectory length to 

extract time-separated frames at regularly spaced intervals. The confidence intervals in the R2 values (Fig. 

3, estimated by resampling with replacement), almost never overlap for the ONETEP/AMOEBA and 

ONETEP/additive models, suggesting that the improved correlation observed with AMOEBA is likely to be 
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statistically significant if the whole population were compared. To broaden the structural diversity of the 

dataset while restricting the overall size to a computationally-tractable number of full-DFT electric field 

calculations, we similarly analyzed alternative CypA-peptide substrate complexes. 

AMOEBA reproduction of DFT fields is insensitive to substrate isomer and CypA mutation 

Having established that AMOEBA fields were consistent with those of DFT in the WT cis-proline system, 

we performed an identical analysis of the WT CypA bound to a trans-proline substrate (PDB 1M9C,57 

prepared as per the Methods). After simulation with the AMOEBA force field, the AMOEBA, Amber and 

Charmm MM fields at the bond midpoint, projected perpendicular to the proline ring, were compared 

across all trajectory snapshots (Fig. S2). Taking the first replicate as representative, the ONETEP and MM 

x, y, and z field components were then compared for a subset of 10 equally-spaced frames extracted from 

the full 25 ns simulation (Fig 4A-B). 

Again, AMOEBA showed a narrow distribution of projected field strengths approximately 15-20 MV cm-1 

more positive than Amber or Charmm fields calculated from the same structures (Fig. 4A). In terms of the 

absolute x, y, and z field components, AMOEBA also exhibited strong correlation with the DFT fields, 

achieving an R2 of 0.95 across the ten frames extracted from the WT trans-proline trajectory. In contrast, 

Amber and Charmm fields for the same structural ensemble showed far lower correlations (R2 = 0.82 and 

0.73 respectively), and again, 95% confidence intervals in R2 for the AMOEBA and additive model 

comparisons did not overlap, despite the limited dataset size (Fig. 4B). Next, we performed an identical 

comparison of electric fields in two mutant CypA systems to add further structural diversity to the dataset 

and evaluate the transferability of the observed trends to the functionally relevant R55A mutation. We 

evaluated R55A systems with either cis-proline or trans-proline substrates in order to be equivalent to the 

WT systems, and fields from three 25 ns AMOEBA simulation of each mutant system were calculated and 

compared across the AMOEBA, Amber ff14SB and Charmm C36m force fields (Fig. S2). For each simulated 

system the first trajectory was taken to be representative, and a subset of ten equally spaced frames were 

again used to correlate Cartesian field components with ONETEP. 
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Figure 4 – Comparison of MM and DFT fields calculated for additional CypA systems. A, C, E) Distributions 
of electric field projected perpendicular to the proline ring from 25 ns AMOEBA simulations of the (A) WT 
trans-proline, (C) R55A cis-proline, or (E) R55A trans-proline system. Fields were evaluated at the 
substrate peptide bond midpoint using the AMOEBA (black), Amber (orange) or Charmm (blue) force 
fields. Field magnitudes of the frames extracted for ONETEP analysis are denoted by ticks (teal) on the x-
axis. B, D, F) Comparison of ONETEP DFT x, y, and z electric field components at the peptide bond center 
with those of AMOEBA (black, solid), Amber (orange, dashed) and Charmm (blue, dotted) for a subset of 
frames from the 25 ns AMOEBA trajectory of the (B) WT trans-proline, (D) R55A cis-proline, or (F) R55A 
trans-proline system. Uncertainty is estimated from resampling the data with replacement (n = 2000) and 
is provided as the 95 % confidence intervals in R2 

A)

C)

E)

B)

D)

F)
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Table 2 – Regression statistics for CypA WT trans and R55A electric fields compared to ONETEP DFT 
calculations 

System Regression 
statistic 

AMOEBA Amber Charmm 

WT trans Slope 0.86 ≤ 0.92 ≤ 0.98 0.84 ≤ 1.02 ≤ 1.21 0.73 ≤ 0.94 ≤ 1.16 
y-intercept -9.0 ≤ -6.5 ≤ -3.8 -25.6 ≤ -18.4 ≤ -12.3 -27.9 ≤ -20.0 ≤ -12.6 

R55A cis Slope 0.88 ≤ 0.98 ≤ 1.08 0.41 ≤ 0.70 ≤ 0.99 0.75 ≤ 1.12 ≤ 1.50 
y-intercept -4.0 ≤ -2.4 ≤ -0.5 -2.0 ≤ 1.8 ≤ 6.3 -3.7 ≤ 0.6 ≤ 5.6 

R55A trans Slope 0.86 ≤ 0.92 ≤ 0.98 0.68 ≤ 0.75 ≤ 0.84 0.63 ≤ 0.70 ≤ 0.77 
y-intercept -2.8 ≤ -0.4 ≤ 2.1 -6.5 ≤ -2.6 ≤ 0.8 -5.8 ≤ -1.8 ≤ 1.9 

Fields calculated as the mean of those at the C and N peptide atoms (see Fig. 4B,D,F for the regression lines). 
Uncertainty estimated as the 95% confidence interval in regression statistics calculated by resampling the data with 
replacement (n = 2000) 

 

On mutation of Arg55 in the CypA protein to alanine there appeared to be a large reduction in the 

projected field magnitude experienced at the substrate proline bond (Fig. 4C, E). The absolute magnitude 

of this reduction differed in the AMOEBA force field compared to the two additive force fields, but was 

similar in relative terms – fields were reduced by approximately 40-50 % upon CypA mutation with the 

cis-proline substrate, and by approximately 80-90 % upon mutation with the trans-proline substrate. 

Notably, the fields calculated with the additive models always showed a broader distribution with higher 

variance (Table S2), again suggesting that the additive potentials were more sensitive to small structural 

changes in instantaneous conformation than the polarizable model. This led to greater populations of 

frames with comparatively high and low field strengths when calculated with the additive models. 

Comparison of the MM field components to their DFT equivalents (Fig 4D, F) highlighted identical trends 

to those observed for the WT systems – AMOEBA consistently showed greater correlation and lower 

systematic errors to DFT fields. Across the four CypA systems individually, no clear trend in terms of over- 

or underestimation was observed with particular force fields. Slopes, intercepts and R2 varied (Table 1-2), 

but AMOEBA consistently demonstrated high correlation to DFT fields (R2 = 0.86 - 0.95). Combining all 

four CypA systems together, however, highlighted a slight tendency for the additive force fields to 

underestimate the magnitude of the x, y, and z electric field components compared to DFT in both the 

positive and negative directions (Fig 5A), that is, negative field strengths were calculated to be too 

positive, positive were calculated to be too negative. Additionally, the broad distribution of the Amber 

and Charmm fields remained evident in the comparison of the individual Cartesian field components with 

DFT, consistent with earlier observations of the field strengths projected perpendicular to the proline ring. 



 20 

 
Figure 5 – Comparison of DFT and MM calculated fields across all four simulated CypA systems. A) 
Comparison of x, y, and z field components at the peptide bond midpoint. AMOEBA (black, solid line, linear 
regression y = 0.90x - 1.3) shows far greater correlation to ONETEP DFT fields than either Amber ff14SB 
(orange, dashed line) or Charmm C36m (blue, dotted line), and without substantially over- or 
underestimating field strengths at extreme values. B) Comparison of field magnitudes projected along the 
vector perpendicular to the substrate proline ring. The color scheme is identical to panel A. 

 

Table 3 – Regression statistics for all CypA electric fields calculated with AMOEBA, Amber and Charmm 
force fields and compared to ONETEP DFT calculations 

Field metric 
evaluated 

Regression 
statistic 

AMOEBA Amber Charmm 

x, y, z-
components 

Slope 0.86 ≤ 0.90 ≤ 0.94 0.72 ≤ 0.80 ≤ 0.90 0.70 ≤ 0.78 ≤ 0.88 
y-intercept -2.4 ≤ -1.3 ≤ -0.1 -3.2 ≤ -0.5 ≤ 2.2 -3.5 ≤ -0.5 ≤ 2.6 

Perpendicular 
to proline 

Slope 1.07 ≤ 1.19 ≤ 1.32 1.30 ≤ 1.68 ≤ 2.08 1.40 ≤ 1.81 ≤ 2.22 
y-intercept -5.5 ≤ -4.0 ≤ -2.5 -19.2 ≤ -14.4 ≤ -9.8 -20.9 ≤ -15.5 ≤ -11.0 

Fields calculated as the mean of those at the C and N peptide atoms (see Fig. 5A-B for the regression lines). 
Uncertainty estimated as the 95% confidence interval in regression statistics calculated by resampling the data with 
replacement (n = 2000) 

 

The observation that additive force fields slightly underestimated the magnitude of the electric field 

components compared to DFT again appeared to contradict the fact that, when fields were projected 

perpendicular to the proline ring, field strengths were almost always larger (more negative) with Amber 

and Charmm than with AMOEBA (Fig. 2B, Fig. 4A, C, E, Fig. S2). When the projected electric fields were 

compared to DFT fields, however, the additive force fields demonstrated a clear systematic error, with y-

intercepts of approximately -15 MV cm-1, and slopes much greater than 1 (Fig. 5B, Table 3). In contrast, 

projected AMOEBA electric fields showed a small systematic offset of -4 MV cm-1 from those of DFT. 

Hence, the majority of the observed difference in field magnitudes between AMOEBA and additive force 

fields is caused by projecting the total electric field along a catalytically-relevant dimension. This 

comparison may not therefore assess the general accuracy of an MM force field; instead, our conclusions 

A) B)
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are better drawn taking into account both magnitude and directionality of the total field, by comparing 

individual field components. With this in mind, Cartesian field components calculated with AMOEBA 

correlated well with those of DFT (R2 = 0.92) and with slope close to unity and intercept close to zero 

(Table 3).  
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Discussion 

Electric fields in polarizable and additive models 

The development of electrostatic parameters for additive biomolecular force fields is problematic owing 

to the fundamentally different environments in which the atomic partial charges are first derived 

(generally by gas-phase QM calculations upon individual amino acids or fragments) and then applied 

(condensed-phase simulations of large macromolecular complexes, including water, ions and other 

solutes). The Amber and Charmm force field families, like many others, have compensated for the effects 

of transferring parameters to the condensed phase by fitting partial charges that are intrinsically 

overpolarized.10,11,76,77 This approximation is ultimately inadequate, and recognition of this fact has 

contributed to the drive to develop accurate explicitly polarizable models.8,24,31,33 

Nevertheless, parametrization processes for additive models are generally intended to recreate 

intermolecular energetics (determined by the electrostatic potential at a given site) and forces 

(determined by the electric field) as accurately as possible. However our results for CypA suggest that the 

intrinsic overpolarization of atomic partial charges is insufficient to recreate the effects of induction upon 

intramolecular electric fields, and that this issue may be generalizable to multiple force field families. The 

polarization model in AMOEBA is both a more accurate electrostatic model overall, with reduced random 

error and improved correlation to DFT fields, and does not show a sizable systematic error in electric 

fields, with a near unity slope in comparison to DFT (Fig 5). 

The implications of poorly estimating intramolecular electric fields are likely to vary by application. 

Properties reliant on a balance of intermolecular interactions and conformational propensities, such as 

solvation or binding free energies, exploration of structural and dynamical ensembles, or kinetics of 

transitions, are likely to be recreated successfully with well-parametrized additive models through 

compensatory effects of the remaining potential function terms. Both the Amber ff14SB and Charmm 

C36m force fields have been well validated for their ability to accurately recreate biomolecular structure 

and dynamics.2,3 AMOEBA, or other equally accurate polarizable models, may provide significant 

improvement in accuracy when the electric field is the crucial property of interest.47,48,64 Notably, our 

results suggest this is true even for electric fields encountered in ‘normal’ protein environments – the 

maximum electric field magnitudes encountered in CypA (approximately ±75 MV cm-1 from Fig. 5) are well 

below those measured in more ‘extreme’ environments, such as the active site of ketosteroid isomerase.78 

Beyond electrostatics calculations, intramolecular electric fields, and how proteins conformationally 

respond to changes in electric fields, are also increasingly implicated in biophysical processes, from 
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enzyme reaction mechanisms to voltage sensing in ion channels.78–82 Nevertheless, the increased 

computational cost of polarizable models is still likely to limit the scope of dynamics-based applications 

to large biomolecular systems. Advances in both software and hardware will therefore be crucial to 

further extend the range of applications for polarizable simulations, although our simulations with CypA 

demonstrate that nanosecond-length dynamics are currently routinely accessible via the use of consumer-

grade GPU hardware, at relatively modest computational cost (for CypA, an approximately 40-fold 

increase for AMOEBA with Tinker-OpenMM over equivalent additive simulations). Clearly, the excellent 

agreement of AMOEBA with DFT observed here does not negate the potential for inaccuracy in other 

systems or even alternative states along the CypA reaction pathway, but it does highlight the potential for 

polarizable MM models to achieve quantitative accuracy in biological environments where the electric 

field is crucial for structure or function. 

Implications for CypA mechanism 

The ‘electrostatic handle’ mechanism of CypA proposes that catalytic activity is driven by the alignment 

of a large electric field (provided by the R55 residue in WT CypA) with the carbonyl dipole of the residue 

preceding the substrate proline in the transition state. Our results with both AMOEBA and additive force 

fields are consistent with a significant contribution of R55 to the overall electric field in both CypA ground 

states. However, the magnitude of this contribution (taken as the difference between mean fields in the 

WT and R55A simulations) appears to be smaller than that proposed by Camilloni and coworkers, with a 

maximum of -8.7 MV cm-1 for the cis-proline or -23.5 MV cm-1 for the trans-proline system across all 

AMOEBA simulations (Table S2), rather than the ca. -30 MV cm-1 estimated previously.65 

The comparisons of QM and MM electric fields performed here were not designed specifically to probe 

the CypA mechanism, and there may be multiple reasons for the observed discrepancies in field strengths. 

First, the 25 ns MD simulations performed with AMOEBA, without replica-averaged NMR restraints, are 

unlikely to fully explore the equilibrium ground state dynamics of CypA. Field distributions varied between 

repeat simulations of all four WT and R55A CypA states (Fig. S2, Table S2), suggesting a lack of 

convergence of the absolute field strengths. However, in all but one simulation AMOEBA fields, projected 

perpendicular to the proline ring, were relatively smaller than those of either Amber or Charmm. On 

average, AMOEBA fields also showed a drop in field strength in the R55A mutant simulations, generally 

supporting the conclusion that R55 makes significant contributions to the active site field in the ground 

states. Additionally, the control calculation of AMOEBA field strengths taken from a structural ensemble 
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generated with Amber suggests that the use of AMOEBA for MD does not fundamentally change the 

distribution of configurations explored, in the context of electric fields. 

It is also possible that the contribution of R55 to electric fields in CypA was previously overestimated. First, 

field strengths were previously calculated at the proline N atom only, rather than averaged across both 

peptide bond atoms, and we consistently see a larger electric field at the proline N than the preceding C 

atom in all force fields tested in our calculations (Table S2). Second, although fields were previously 

calculated using DFT ONIOM calculations at the B3LYP/6-31G** level, only a subset of the CypA protein 

(250 atoms) was included in the QM region, and without long-range electrostatic effects of protein and 

solvent estimated by electrostatic embedding. Moreover, electric fields were calculated taking into 

account the contribution of only the CypA receptor residues, not using the environment fields approach 

of Fried & Wang that includes back-polarization of the receptor by the substrate.64 It is difficult to predict 

the modulation of electric field caused by back-polarization at a specific site along a specific vector, but 

the effect should strictly be included as far as practicable. Finally, the previous WT CypA simulations were 

performed incorporating experimentally-derived restraints, and should therefore be a reliable 

representation of the WT structural ensembles. However, trajectory frames were geometry optimized 

using the Amber ff99SB-ILDN force field prior to the DFT calculations, and structures of the R55A mutant 

were generated directly from the WT structural ensemble rather than a separate set of simulations. The 

previously reported effects of the R55A mutation are therefore purely electrostatic, and do not consider 

the potential for any structural reconfiguration upon mutation. Both approximations are conceptually 

likely to overstabilize and hence overestimate the electrostatic effects within the CypA active site. 

Our results are therefore broadly consistent with the electrostatic mechanism proposed by Camilloni and 

coworkers, but may not have captured all catalytically-relevant CypA motions too, as the magnitude of 

the overall field contribution is small. The limitations of the short simulations performed here, 

notwithstanding the fact that the AMOEBA 2013 protein force field has not been as widely tested and 

validated as either of the two additive models investigated, mean that we cannot draw unambiguous 

conclusions regarding the CypA mechanism. Recent detailed investigations of CypA dynamics have 

required both innovative biophysical techniques, and lengthy advanced sampling methodologies for 

simulations, and the use of polarizable force fields does not negate this necessity for adequate 

sampling.74,83–85 However, the accuracy of AMOEBA fields compared to DFT suggests that polarizable 

simulations provide a promising avenue to better explore the electrostatic contributions to mechanism 

across members of the cyclophilin family, in a computationally efficient way.  
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Conclusion 

AMOEBA’s use of higher order multipoles and an induced dipole representation of induction has been 

developed to accurately reproduce the electrostatic potential around small molecules and amino acid 

fragments. The results presented here demonstrate that this accurate representation of electrostatics 

transfers directly to a typical condensed phase biomolecular environment. The ability of MM force fields 

to reproduce intramolecular electric fields is an experimentally relevant property of interest, and 

increasingly experimentally measurable via, for example, Stark effect spectroscopy or redox potential 

measurements.49,86 The use of linear-scaling ONETEP DFT calculations allowed us to evaluate electric fields 

inside fully atomistic, fully solvated representations of CypA under periodic boundary conditions and in 

the presence of explicit ions, without simplified or truncated structural models. In the absence of 

experimental measurements of electric fields in CypA, we compared electric fields calculated with 

AMOEBA, Amber and Charmm biomolecular force fields with these extensive QM calculations. AMOEBA 

showed significantly better agreement with DFT-calculated fields across the full range of systems, 

structures and field magnitudes tested, with non-overlapping 95 % confidence intervals in R2 in the 

majority of cases, despite relatively small sample sizes. 

The high accuracy of AMOEBA electrostatics in condensed phase, intramolecular environments, suggests 

that it (and potentially other polarizable force fields) may be ideal for applications where electrostatic 

accuracy is key. Electric field strengths in the CypA simulations are well within the range of those typically 

found in biomolecular environments, which therefore suggests a wide range of potential applications. 

Promisingly, however, studies of enzyme activity and mechanism with polarizable force fields have already 

begun to allow quantitative insights into electrostatically-driven biological mechanisms that additive force 

fields appear unable to provide.47,48 The results we present from simulations of CypA cannot 

unambiguously determine a reaction mechanism, nor were they intended to. They are supportive of, but 

not limited to, an electrostatic role for R55, consistent with what is known for CypA. However the fact 

that AMOEBA can determine electric fields in CypA with almost DFT-level accuracy indicates that, with 

suitably equilibrated structural ensembles, provided for example by high-performance software 

implementations,54,55 AMOEBA could be used to accurately probe the ground-state dynamics and electric 

fields of the wider cyclophilin family within single simulations, and at substantially lower computational 

cost than is currently required for QM/MM or QM post-processing approaches. 
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